
Chapter 1 

Introduction 
 

1.1 Motivation 

Communicating with a computer or machines using nature speech, just like 

people do in the science fiction, has been the dream of everyone for a long time. Due 

to the maturity of the automatic speech recognition technologies, the dream will come 

true. The improvement on the computation hardware makes many complex 

algorithms feasible in a practical ASR with a low cost. The ASR is useful for many 

applications, such as automatic tickets booking, voice command, speech-to-text or 

text-to-speech system, etc. The ASR works very well when they are trained and tested 

under similar acoustic environments. However, with the deployment of ASR in real 

word, the input speech for recognition could not always be received in the similar 

acoustic conditions. The performance of the ASR will decrease as long as the training 

and testing environments are mismatched. The mismatch happens in many situations, 

such as the additive background noise, channel effects, different speaker 

characteristics, etc. The aim of the work presented in this thesis is to make automatic 

speech recognition systems robust to the additive background noises. 

In past years, many approaches dealing with the additive noise have been 

proposed. These approaches can be roughly categorized into three classes. First is to 

develop a special robust feature so that it is less sensitive to the various acoustic 

conditions, e.g., the short-time modified coherence representation (SMC)[1], the 

perceptual linear prediction (PLP), and the relative spectral (RASTA) approach[2]. 

Second class of approaches try to modify the speech features obtained in the 

application environment and make them better match to the acoustic conditions for 
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the clean speech models, e.g., the spectral subtraction (SS)[3], the code-book 

dependent cepstral normalization (CDCN)[4], and the probabilistic optimal filtering 

(POF)[5]. In the third class, the compensation is performed on the clean speech 

models, so that the modified models will be able to match the testing speech features 

collected in the application environment, e.g., speech and noise decomposition (SND) 

[6], vector Taylor series (VTS) [7], the model-based stochastic matching [8], and the 

parallel model combination (PMC) [9]. The method proposed in this thesis belongs to 

the third class. 

1.2 Overview 

The chapter of thesis is organized as follows. In chapter 2, the front-end 

techniques of the speech recognition system will be introduced, including the MFCC 

feature extraction. In chapter 3, the Hidden Markov Model and its training and 

recognition procedures will be described. In chapter 4, the parallel model combination 

method will be introduced first, and then, the method of robust speech recognition 

using the pre-trained noisy models will be proposed. The experiment results will be 

shown in the last of this chapter. The conclusions and future works will be presented 

in chapter 5. 
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Chapter 2 

Speech Signal Pre-Processing and Parameterization 

 In general, it is difficult to process speech signals directly in time-domain due to 

the fact that speech signals change fast with time. Fortunately, a speech signal is 

known to be short time stationary, i.e., any two successive short periods of a speech 

signal almost have the same characteristics. Due to this property, the short-term 

spectral analysis can be applied to get the features useful for speech recognition.

 There are several kinds of methods to obtain speech feature parameters, such as 

Linear Prediction Coding (LPC)[10], LPC-derived Cepstrum (LPCC)[11], Mel 

Frequency Cepstrum Coefficient (MFCC)[12], and Perceptual Linear Predictive 

analysis (PLP)[13], etc. Since the MFCC is a common and useful method to obtain 

the speech features, it will be introduced and used in this thesis. The procedures to get 

MFCCs are shown in Fig.2.1 and will be described in the following sections. 
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Fig. 2.1 Procedures of producing MFCCs.  

2.1 Pre-emphasis 

 Before getting the MFCCs, speech signals has to be processed through a 

high-pass filter, known as the procedure of pre-emphasis. The high-pass filter is often  
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represented as 

11)( −−= azzFpre ,      0.19.0 << a  (2-1) 

From the production model of voiced speech, there is an overall of −6 dB/oct decay, 

with −12 dB/oct due to excitation source and +6 dB/oct due to the radiation 

compensation, in speech radiated from lips as frequency increases. Therefore, a 

pre-emphasis filter providing +6 dB/oct in high-frequency will be adopted to 

compensate the overall −6 dB/oct decay. 

 

2.2 Frame Blocking with Hamming Window 

As mentioned before, since the speech signals are of short time stationary, 

windows with fixed length are commonly employed to block the speech signals frame 

by frame. Usually, there are three factors, called frame duration, overlap, and frame 

period, which should be considered for utilizing a fixed length window shown in 

Fig.2.2. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.2 The diagrams of the frame, overlap and frame duration. 
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The frame duration is the length of the window, which is often chosen as 25ms or 

30ms in speech process. Commonly, the frame duration 25ms is selected for the 

sampling frequency 16 KHz, each frame containing 400 samples. As for the sampling 

frequency 8 KHz, the frame duration 30ms is adopted, and then each frame contains 

240 samples. 

Besides, to avoid the characteristics of two successive frames changing too 

rapidly, an overlap between them will be purposely added. Usually, the overlaps 15ms 

and 20ms are selected for the sampling frequency 16 KHz and 8 KHz, respectively. 

With the overlap, the frame period, or frame shift, is defined as the difference between 

the frame duration and the overlap. 

 To fulfill frame blocking, in general, a fixed window 10 ],[ −≤≤ Nnnw , will be 

required for the speech signals s[n], where N is the length of the window. Then, the 

blocked frame is represented as 

 ][][];[ nmwnsmnf −=  (2-3) 

where m is the end position of the frame. Its Discrete-Fourier Transform becomes  
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 (2-4) 

Note that if  ideally equals to)( θjeW )(2 θπδ , will be equal to , 

i.e., the original signal s[n] is not changed after transformation. Viewing from the 

ideal , a good window should possess narrow main lobe and large degradation 

of side lobe. The simplest window is rectangular window. However, though it has a 

narrow main lobe in frequency domain, its degradation of side lobe is too small. 

);( meF jω )( ωjeS

)( θjeW
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Therefore, the Hamming window (2-5) is usually used instead of rectangular window. 

From Fig.2.3, it is obvious that the Hamming window has much better degradation of 

side lobe. 
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Fig. 2.3 Magnitude response of (a) Hamming window and (b) rectangular window. 

(a) (b)

Furthermore, the Fast Fourier Transformation is often adopted to substitute for 

the DFT for more efficient computation. To do FFT, the input data’s number must be 

 exactly; hence, in case that the number is less than or more than , it  is then 

purposely to pad with zeros or to truncate the input data to obtain  input data for 

FFT processing. 

N2 N2

N2

 

2.3 Cepstral Analysis 

    According to the speech production model, voiced speech is composed of a 

convolved combination of the excitation sequence e[n] with the vocal system impulse 

response θ[n], and expressed as   

 ][][][ nnens θ∗=  (2-6) 

It is difficult to separate the e[n] and θ[n] directly in spectral domain because the 

individual parts are not combined linearly. Commonly, a special domain, called the 
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cepstral domain, will apply to speech processing. In this domain, the representatives 

of the component signals will be linear combined, which can be separated in the 

cepstrum. 

The real cepstrum of a speech sequence s[n] is defined as 
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 (2-7) 

where  and  denotes FFT and IFFT operation, respectively. Usually, for 

real cepstrum, the IFFT operation will be replaced by Discrete-Cosine Transform. 

Besides, the independent variable n in cepstral domain is defined the term quefrency. 

{}⋅F {}⋅−1F

    After this operation, the low-quefrency part of cepstrum represents an 

approximate to the cepstrum of the vocal system impulse response, Cθ[n], and the 

high-quefrency corresponds to the cepstrum of the excitation, Ce[n]. Therefore,  

Cθ[n], containing more information about the speech signals, can be easily extracted 

by a low-time lifter 

  (2-8) 
⎩
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and  will be chosen to form a set of cepstral 

coefficients. Moreover, at , it implies the intensity of the signal, and it is usually 

not useful itself. The procedures of getting cepstral coefficients are shown in Fig.2.4, 

and some of vocabulary is illustrated in Fig.2.5. 

][ , ],3[ ],2[ ],1[ LCCCC ssss KK

0=n

In Fig.2.5(a), two components in the speech magnitude spectrum can be 

identified：a“slowly varying＂part due to the speech system, )(ωΘ , and a 

“quickly varying＂part due to the excitation )(ωE . These two components are 
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combined by multiplication. In Fig.2.5(b), two components in log-spectral domain are 

combined by addition. When the DCT is taken, two components in Fig.2.5(c) are 

approximately separated into two parts, and then can be easily extracted. 
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points data into M groups. Each group is represented by its average and thus, M points 

are obtained. However, it is not suitable for our perceptual hearing. 

    It is known that human perception of the frequency content of sounds, either for 

pure tones or for speech signals, does not follow a linear scale. Among several kinds 

of nonlinear transformation, Mel-scale has been widely used in modern speech 

recognition systems. The Mel-scale, obtained by Stevens and Volkman[15,16], is a 

perceptual scale and it attempts to mimic the human ear in terms of the manner that 

the frequencies are sensed and resolved. Mel is a unit of measure of perceived pitch or 

frequency of a tone. The precise meaning of the Mel scale becomes clearly by 

examining the following experiment. In the experiment, the reference frequency was 

selected as 1 KHz and set to be equal to 1000 mels. Then, by increasing the frequency, 

the subjects were asked to tell when they perceived a pitch twice of the reference, i.e., 

a pitch of 2000 mels. Once the subjects confirm and then the corresponding frequency 

will be recorded. For instance, if the pitch of 2000 mels they perceived is at 3.5 KHz, 

then, the frequency 3.5 KHz is mapped to 2000 mels. With the same procedure, the 

frequencies related to the pitches of 10 times, half, 1/10, etc. could be obtained and 

recorded. The formulation of Mel scale is approximated by 

 )
700

1(log2595)( 10
ffB +=  (2-9) 

where  is a function mapping the actual frequency to the Mel frequency, shown 

in Fig.2.6. 

)( fB

 

 

 

 

  (a) (b)

Fig. 2.6 Frequency warping according to Mel scale (a) linear frequency scale (b) logarithm frequency scale. 
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    According to the Mel scale warping, the Mel filter bank is then designed by 

placing M triangular filters non-uniformly along frequency axis to simulate the human 

hearing. The m-th triangular filter is represented as 
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where N is the number of FFT points, and M is the number of Mel filter bank. The 

boundary frequency f(m) in (2-10) can be calculated as 
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where  and  are the lowest and highest frequencies of the filter bank,  is 

the sampling rate of the input speech signal, and  is an inverse function of 

(2-9), represented as 

lf hf sF

)(1 ⋅−B

 )  (2-12) 110(700)( 2595/1 −=− bbB

with the Mel frequency b. It’s noted that if  is not an integer, then transform it 

to the nearest integer towards infinity. 

)(mf

    In this thesis, M is set as 20 or 24 when the sampling rate of the input speech 

signal is 8 KHz or 16 KHz. The Mel filter banks are shown in Fig. 2.7 and it is 

obvious that pass-band in low frequency is narrower than high frequency. It is because 

that our perceptual hearing is more sensitive to low frequency and some important 

information on the vocal tract, such as the first formant, hides in the low frequency. 

The narrow pass-band in low frequency can protect such information during 

compression; on the other hand, for high frequency, a wide pass-band can be used to 
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reduce the data complexity and not to influence the original characteristics. 

 

 

 

 

 

 

 
Fig.2.7 The Mel filter banks for (a) 8 KHz (b) 16 KHz. 

 

    The log-magnitude Mel spectrum is then derived by multiplying each FFT 

magnitude coefficients with corresponding Mel filter gains and taking logarithm as 
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where  is the FFT of the input speech . Next, the discrete-cosine transform 

will be applied to derive the Mel frequency cepstrum  as 
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For speech recognition, typically only the first 13 cepstrum coefficients, including the 

log-energy term, are used, and these coefficients are defined as Mel Frequency 

Cepstral Coefficients (MFCC). In addition to the MFCC, the dynamic features, 

delta-MFCC and delta-delta-MFCC, are usually employed in practical speech 

recognition to obtain the dynamic evolution of the speech signal, i.e. the temporal 

information of feature vector , and to cancel the channel effect. These two 

features are represented as (2-15) and (2-16). 

][ict
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where P represents the maximum number of frames shifted for the reference frame. It 

should be properly chosen, because too small P may imply too close frames and 

therefore the dynamic characters may not be properly extracted; too large P may 

imply frames describing too different states, i.e. different acoustic phenomena. 

Typically, P is usually chosen as 2. Since (2-15) and (2-16) relies on past and future 

speech parameter values, some modification is needed at the beginning and end of the 

speech. A simple first order differences will be used to solve this problem, that is 
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where T is the total number of frames. 

    In this thesis, each feature used for recognition contains 13 MFCCs, 13 

Delta-MFCCs and 13 Delta-Delta MFCCs, and the feature vector will be represented 

as . A stochastic 

model will be introduced later, and the feature vectors extracted in this chapter will be 

treated as the observation data to that model in training and recognition phase. 
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Chapter 3 

Speech Modeling and Recognition 

    Speech recognition is typically a problem of pattern recognition. The basic 

concept is to compare the incoming test speech signals with the reference signals 

trained before in database, and find the most possible signal as the recognition result. 

In stead of using the signals directly, the features extracted by the front-end process 

described in chapter 2 are utilized. These features will be the inputs of the recognizer, 

and some methods, such as Dynamic Time Warping (DTW)[17] and Hidden Markov 

Model (HMM)[18,19], will be employed to determine what the recognition result is. 

    The DTW method is to find the optimal projection with respect to time for the 

test speech data to each trained speech model in database, and the most similar model 

will be regarded as the recognition result, and the result may not be adopted if the 

score doesn’t exceed the threshold. The speech models applied to DTW will be 

word-level or sentence-level, and the dynamic programming algorithm will be used to 

find the optimal path. DTW has been successfully employed in applications with 

small vocabulary size[20,21,22]. However, it is not an efficient method for large 

vocabulary size, because too large database will be needed. 

    Contrary to DTW, HMM is a statistic method using probability to determine 

what the recognition result is. HMM has been widely applied as speech model in ASR 

(automatic speech recognition) in past several years because of its wonderful ability 

of characterizing the speech signal in a mathematically tractable way and better 

performance comparing to other methods. The underlying assumption of HMM is that 

the speech signal can be characterized as a parametric random process, and the 

parameters of the stochastic process can be estimated in a precise and well-defined 

scheme. In the fallowing sections, HMM and how to use it to do speech recognition 
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will be described in detail. 

3.1 Definition of Hidden Markov Model 

    Before describing the Hidden Markov Model, the Markov chain will be 

introduced first. The Markov chain is a class of random process that incorporates a 

minimum amount of memory instead of the completely memory. For example, let 

 be an observation sequence of random variables from a finite discrete 

set , then based on Bayes’ rule, the probability of observing the sequence is 

{ Nxxx ,...,, 21 }

O

),...,,|(...),|()|()(),...,,( 12121312121 −⋅⋅⋅⋅= NNN xxxxPxxxPxxPxPxxxP  (3-1) 

Under the assumption that  forms a first-order Markov chain, (3-1) will 

be reduced as 

{ Nxxx ,...,, 21 }

)|(...)|()|()(),...,,( 12312121 −⋅⋅⋅⋅= NNN xxPxxPxxPxPxxxP  (3-2) 

If  is associated to a state, the Markov chain can be represented by a finite state 

process, which is also called the observed Markov model and with parameters 

described as fallows 

ix

 eser of stattotal numbjiSxSxPa itjtij ≤≤=== − ,1   ),|( 1  (3-3) 

 statesnumber of totaliSxP ii  1  ),( 1 ≤≤==π  (3-4) 

where  is the transition probability from state i to j, and ija iπ  is the initial 

probability that the Markov chain will start at state I. Besides, the notion  

means that the observed variable is in state i at time t. Both parameters must be under 

the following constraints 

it Sx =

  (3-5) Mia
M

j
ij ≤≤=∑

=

1  ,1
1

  (3-6) ∑ =
M

i
i 1π

where M is the total number of states. 

In the observed Markov model, each state corresponds to a deterministically 
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observed variable , which means the output sources in any given state is not 

random. Fig 3.1 is an example of three state observed Markov model. There are 3 

states,  in this model, and they generate R, G and B, respectively. The 

state-transition probability matrix is 

tx

321  and , SSS

  (3-7) { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

5.01.04.0
2.03.05.0
2.02.06.0

ijaA

and the initial state probability matrix is 

  (3-8) [ T
i 3.02.05.0}{ == ππ ]
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Fig. 3.1 An example for the observed Markov model. 

Thus, the probability of observing the sequence  can be calculated 

as  

},,,,,{ GRBGBR

4
13213223121 1022.05.01.02.02.05.0),,,,,( −×=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅= aaaaaGRBGBRP π

    An extension to the observed Markov model introduces a non-deterministic 

process that generates output observation variables in any given state. Thus, 

depending only on the observation sequences is impossible to know the real state 

sequences. This new model is known as the Hidden Markov Model. The word 
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‘hidden’ implicitly shows that the desired state sequence is hidden behind the 

observation sequence, the only data that can be collected. In HMM, a new parameter 

is introduced as 

 statesnumber of totaliSxPxb itti  1  ),()( ≤≤==  (3-9) 

where  is the probability of the observed variable in state i at time t, and 

similar to (3-5) and (3-6), it must be under the following constraint 

)( ti xb

  (3-10) 1)(
1

=∑
=

M

i
ti xb

Fig 3.2 is an example of a three state hidden Markov model. The parameters A and  

are the same as the observed Markov model mentioned before, and the observation 

matrix is 

π
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Fig. 3.2 An example for the hidden Markov model.  

Thus, when we see the sequence , the corresponding state sequence 

can not be uniquely determined. The possible number of state sequences will be 729, 

and the sequence with the largest probability will be the desired one. In this example, 

the corresponding state sequence will be 

},,,,,{ GRBGBR

{ }1,1,2,1,2,1 , and the relative probability 
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equals to . In fact, it is not necessary to calculate all possible cases; 

instead, the decoding method, called Viterbi search[23], is widely employed due to its 

high efficiency. The Viterbi search will be introduced in Section 3.3.2. 

5101168.2 −×

 

3.2 HMM in Speech Recognition 

    As mentioned in Chapter 2, the speech signals are short time stationary, and 

several states will be generated after certain of training procedures. Signals with 

similar statistic properties will be classified into the same states. In traditional method, 

such as DTW, the speech data templates are usually of words or sentences, which 

usually results in an unreasonable database, especially for a task with a tremendous 

large of templates, such as the filed of medicine. Nevertheless, using HMM, smaller 

units, like syllables and phonemes, can be combined to form words or sentences 

which are desired to be recognized. Therefore, the dimension of database could be 

highly reduced since different words or sentences could be constructed by the same 

syllables or phonemes. There are some reasons that the DTW could not adopt the 

small units, like syllables or phonemes. First, DTW need to cut the unit by hand 

which is difficult to cut precisely. Second, even though the unit is cut precisely, it is 

still difficult to adjust the templates different in length to a suitable one. Therefore, 

HMM is superior to DTW in most speech recognition applications. 

    In order to execute the speech recognition, an ASR (automatic speech 

recognition) machine processes the sequence of speech signals extracted from speech 

recordings, and tries to decode their linguistic information, i.e. to recognize the 

speaker’s utterance. The basic ASR scheme is shown in figure 3.3. The first step of 

the ASR is feature extraction from the input speech signals, described in Chpter2. 

These feature vectors are called observations and denoted as O, and 

 is a sequence of T observations. The spoken language can be ),...,,( 21 ToooO =
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thought as a sequence of units, called linguistic units, and each unit can be trained and 

then modeled as a HMM model, denoted as Θ. Let S be a given sequence of linguistic 

units from the database, and the aim of the ASR is to find the correct linguistic units 

S* from a given observation sequence. Therefore, the ASR machine may be divided 

into two distinct phases. One is to build HMM speech models Θ based on the 

correspondence between the observation sequences O for training and the known 

linguistic units S; the other is to recognize a speech by the trained HMM models Θ 

and by the observation sequences O of the speech. 
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Fig. 3.3 Scheme of an ASR system functionality. 

The linguistic units in Mandarin can be in word level, such as \學校\, \學生\, \學

習\, syllable level, such as \學\, \校\, \生\, and phoneme level, such as \ㄒ\, \ㄧㄠ\, \ㄕ

\. Small units can be combined to form a larger unit. For example, \ㄒ\ and \ㄩㄝ\  

can be combined to represent \ㄒㄩㄝ\. Choosing a proper level is important since it 

can make the ASR machine work more efficiently. Though small units can reduce the 

size of database, it needs a lot of corpus to train proper models. Therefore, for a small 

task, like voice command, a word level model is enough, and it is not necessary to use 

phoneme level model which may complicate the ASR machine. On the other hand, a 

phoneme level model is better than a word level model for a large task, because using 

word level, even syllable level, would need a tremendous database. 

A left-to-right HMM model will be applied to represent the linguistic units. Fig. 

3.4 shows an example of 3-emtting state left-to-right HMM. The way to choose a  
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 Fig 3.4 A 3 state left-to-right HMM.

reasonable number of states depends on the selected units; typically, a vowel needs 7 

states (first and last are non-emitting state), and a consonant needs 5 states (first and 

last are non-emitting state, too). These HMM have a topology whereby transitions 

may only go to the same state or to the next state, i.e. no skips are allowed. Moreover, 

the two non-emitting state S0 and SN constrain the HMM to start in state S1 and 

terminate in state SN. Then, the phoneme level units can be easily combined to form 

the larger units by connect the state SN of current model and the state S0 of next 

model. 

The HMM can be typically classified into two types, one is discrete-HMM 

(DHMM) and the other is continuous-HMM (CHMM). The difference between 

DHMM and CHMM is the way to obtain the observation probability bi(ot). In DHMM, 

a codebook will be utilized to determine the observation probability. After training 

procedures, all observed vectors in state i will be categorized into a finite vector sets 

V = {V1, V2,…,VN}, and the corresponding probability of each vector set bi(Vn) will be 

obtained at the same time. Then, bi(ot) will be equal to bi(Vn) if ot belongs to Vn. 

Therefore, the observation probability is discrete distributed. Contrary to DHMM, a 

continuous probability distribution will be utilized to calculated the observation 

probability bi(ot) in CHMM. The mixture Gaussian distribution[24] will be applied to 

mimic the continuous distribution, and bi(ot) could be figured out as 
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where  is a Gaussian function, L is the dimension of the observation vector and 

M is the number of mixtures. As for ,  and w

)(⋅N

jmµ jmΣ jm, they respectively indicate 

the mean vector, the covariance matrix and the weighting coefficient of the mth 

mixture component in state Sj. The observations are assumed to be independent to 

each other, so the covariance matrix can be reduced to a diagonal form as 

  (3-13) 
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Then, the observation probability bi(Ot) can be rewritten as 
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As for the weighting coefficient wjm, it must satisfy 

  and ∑
=

=
M

m
jmw

1

1 Mmwjm ≤≤≥ 1  ,0  (3-15) 

In this thesis, the CHMM is adopted, whose model Θ  contains the following 

parameters: π, A, w, µ and Σ. The problems of probability calculation, decoding and 

parameter estimating for HMM will be described in next section. 

3.3 The Three Basic Problems for HMM 

    The three basic problems for HMM are probability evaluation, decoding and 

parameter estimating, and their descriptions, as follows: 
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1. Given a observation sequence O = (o1,o2,…,oT), and a HMM model 

Θ = (Α,Β,π), how to efficiently compute P(O|Θ)? 

2. Given a observation sequence O = (o1,o2,…,oT), and a HMM model 

Θ = (Α,Β,π), how to determine the state sequence S = (S1,S2,…,ST) such that 

P(O,S|Θ) is maximum? 

3. How to adjust a new model Θ’ such that P(O|Θ’) > P(O|Θ) until P(O|Θ’) is 

maximum? 

The solutions to these problems will be described more explicitly in the following sub 

sections. 

3.3.1 Solution to Problem 1-The Forward/Backward Algorithm 

    The most straightforward way is listing all possible state sequences and summing 

up their probabilities. It can be shown as 

 )()...()()|,()|(
122111 21

 all all
Tssssssss TTT

bababΘPΘP oooSOO
−∑∑ ==

SS
π   (3-16) 

If the number of states is N and the time length is T, then, the number of possible 

sequences will be NT, and will require 2TNT computations. Obviously, it is not an 

efficiently method. A more efficient method, called forward algorithm, will be used to 

solve this problem. First, define the forward probability: 

    (3-17) )|,()( 1 ΘiSPi t
t

t == oα

αt(i) is the probability that the HMM is in state i at time t having generated partial 

observation o1
t (namely o1o2…ot). αt(i) can be calculated inductively as follows: 

Step 1: Initialization 

   Nibi ii ≤≤= 1     )()( 11 oπα  (3-18) 

if under the constraint that HMM starts in state 1, (3-18) could be reduced to 

   )()( 1111 obi πα =  (3-19) 

Step 2: Induction 
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Step 3: Termination 
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if under the constraint that HMM end in state N, (3-21) could be reduced to 

   )()|( NΘP Tα=O  (3-21) 

It requires about N2T computations which are much less than direct calculation. In a 

similar manner, define the backward probability as 

  (3-22) )()( 1 Θi,S|OPi t
T
tt == +β

βt(i) is the probability of generating partial observation ot+1
T given that the HMM is in 

state i at time t, and it can be calculated inductively as follows: 

Step 1: Initialization 

 NiNiT ≤≤= 1     ,/1)(β  (3-23) 

Step 2: Induction 
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The probability calculation is not useful itself, but it and the forward/backward 

algorithm are important parts of the solution to the parameter estimating. 

3.3.2 Solution to Problem 2-The Viterbi Algorithm 

    In this problem, the aim is to find the best state sequence, which is the desired 

one in many applications. The forward algorithm described in the previous section 

can not find out such a state sequence, and the Viterbi algorithm can be applied to 

solve this problem efficiently. First, define the best-path probability: 

  (3-26) )|,,()( 1
11 ΘiSSPiV t
tt

t == −o
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Vt(i) is the probability of the most likely state sequence at time t, which has generated 

the observation o1
t (namely o1o2…ot) and ends in state i . The best-path probability 

Vt(i) can be calculated inductively as follows: 

Step 1: Initialization 

 )()1( 1111 obV π=  (3-27) 

 0)(...)3()2( 111 ==== NVVV  

  (B is the matrix to store the state) 0)(1 =iB

Step 2: Induction 
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It is noted that the some constraints has been added, i.e., the transition has been 

limited to stay in current state or transited to the next state. The Viterbi algorithm is 

similar to the forward algorithm and the major difference is the maximum operator in 

(3-28), which is used in place of the summing procedure in (3-20). 

3.3.3 Problem 3-Parameter Estimation(HMM training) 

    Given a HMM Θ = (Α,Β,π) and a set of observations O = (o1,o2,…,oT), the 

purpose of estimation is to adjust the model parameters so that the P(O |Θ) is local 
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maximized by using an iterative procedure. The initial HMM model will be produced 

by modified K-means[25] and Viterbi algorithm. Then, the Baum-Welch algorithm[26] 

(or called forward-backward algorithm) will be utilized to train the HMMs. 

    Before applying the training algorithms, some preparing works should be done. 

First, a set of speech data and their associated transcriptions should be prepared and 

they should be transformed into the MFCC feature vectors. These feature vectors will 

be treated as the observations of the HMM. Second, the number of states and the 

number of mixtures in a HMM must be determined. Then, the first step of training is 

to produce proper initial HMM models. The procedures to get initial HMM models 

could be divided into two manners depending on whether the boundary information is 

available. If the boundary information is available, such as Fig.3.5, the estimation of 

the HMM parameters would be more precise. The transcriptions with boundary 

information should be saved in text files as the form in Fig.3.6 (a). It is noted that 

even if the boundary information are not available, the transcriptions also should be 

prepared and saved as in text files as the form in Fig.3.6 (b). 

 

 

 

 

 
Fig. 3.5 Boundary information: the red line indicates the boundary information. 

 

 

 

 

  

 (a) (b)

 Fig 3.6 (a) transcription with boundary information. (b) transcription without boundary information. 
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The block diagram of getting an initial HMM model with boundary information 

is shown in Fig. 3.7. On the first iteration, the training data of a specific model are 

uniformly divided into N segments, where N is the number of states of such specific 

model. Then, the HMM parameters πi and aij can be first estimated as follows 

 
1at timeonsobeservati ofnumber 

1  at time  statein  nsobservatio ofnumber 
=

=
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i
iπ  (3-31) 

 
i

jiaij statefromns transitioofnumber 
 state  to state from ns transitioofnumber 

=  (3-32) 

It is noted that in implementation, the π vector will be set as 1 with leading element 

and 0 with others, i.e. the HMM is only allowed to start at state 1.  
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 initial HMM model 

 Fig. 3.7 Block diagram of getting an initial HMM model with boundary information.

Then, the modified K-means algorithm will be utilized to estimate the parameters 

w, µ and Σ . From the modified K-means algorithm, the observations will be clustered 

into M groups, where M is the number of mixtures in a state. The parameters can be 

estimated as follows 
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With the initial parameters, next, the uniform segmentation will be replaced by the 

Viterbi algorithm to divide the training data into states more precisely. The iterative 

procedures of Viterbi alignment, modified K-means and update parameters will be 

repeated until the parameters are converged. Then, the initial HMM models are 

created. 

    In the case that the boundary information is not available, the method to get the 

initial HMM models would be easier that the parameters in each state are initialized to 

be identical. The mean and the covariance are set to be equal to the global mean and 

variance. As for the initial probability vector π , the state transition matrix A and the 

weighting coefficient vector w, there is no information to compute these parameters; 

therefore, they would be set arbitrarily. Then, the initial HMM models are created. It 

is noted that the performance of the recognizer using the HMMs trained in this case 

would be worse. 

    After the initial HMM models have been created, the Baum-Welch algorithm 

will be utilized to get the final HMM models. The Baum-Welch algorithm, known as 

the forward-backward algorithm is the core of HMM training. Three variables, ξt(i,j), 

γt(i) and γt(j,k), will be defined first. The variable ξt(i,j) is defined as  
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which is the probability of being in state i at time t and state j at time t+1. The αt(i) 
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and βt(i) are the forward probability and the backward probability respectively, which 

have been introduced in 3.3.1, and the calculation of P(O|Θ) is also shown in 3.3.1. 

The variable γt(i) is defined as 
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which is the probability of being in state i at time t. The variable γt(j,k) is defined as 
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which is the probability of being in state j at time t with the k-th mixture component 

accounting for ot. The M is the total number of mixtures in a state, and all the 

parameters used in above equation will be the parameters of initial HMM models 

created before. Then, the new parameters of HMM models could be re-estimated as 

follows 
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These parameters, then, would be updated, and go back to calculate the variables 

ξt(i,j), γt(i) and γt(j,k). These operations will be repeated until the parameters π, A, w, 

µ and Σ are converged, and the HMM models are finally determinant. The complete 

flow chart of training procedures is shown in Fig.3.8. 
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Fig.3.8 Training procedures of the HMM. 

 28



3.4 Recognition Procedures 

    Given the HMMs and the observation sequence O ={o1,o2,…oT}, the recognition 

problem can be regarded as that of computing 

 { })|(maxarg Oii
wP   (3-44) 

where wi is the i-th vocabulary word. By Bayes’ Rule, P(wi|O) could be transformed 

as  

 
)(

)()|()|(
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P

wPwPwP ii
i =  (3-45) 

Thus, for a given set of prior probabilities P(wi), the most probable spoken word 

depends only on the likelihood P(O|wi). It can be solved by assuming that 

 )  (3-46) |()|( ii ΘPwP OO =

where Θi is the corresponding HMM of wi. The calculation of P(O|Θi) is shown in 

3.3.1. If not only the probability but the best state sequence is desired, i.e., P(O,S|Θi), 

the Viterbi algorithm, introduced in 3.3.2, could be applied. 

    Under the condition of connected words recognition (or called continuous speech 

recognition), (3-44) would be transformed as 

 { })|(maxarg OWii
P  (3-47) 

where Wi={ W1 , W2 ,…, Wn } is a word sequence. Similar to (3-46), the problem 

could be solved by assuming that 

 )  (3-48) |()|( ii PP ΘOWO =

where Θi is the connected HMMs of corresponding word sequence Wi. The 

connection of HMMs is simple when the HMM is the type of left-to-right HMM, 

mentioned in 3.2. The connection is just to connected the last state of former HMM 

with the first state of current HMM, and Fig 3.9. shows an example of connecting the 

HMM of “one” and the HMM of “two”. 
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the HMM of “one” the HMM of “two” 

Fig.3.9 The connection of the HMM of “one” and “two”. 

 

 

 

  

    In this thesis, all the training and recognition stages will utilize the HMM Tool 

Kits (HTK) [27], which is powerful tool kit dealing with the HMM. This tool kit is 

developed by the Speech Research Group of the University of Cambridge. 
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Chapter 4 

Speech Recognition with Additive Noise 

    The state-of-the-art speech recognition system works very well when they are 

trained and tested under similar acoustic environments. The performance of the 

recognizer will decrease as long as the training and testing environments are 

mismatched. However, when a recognizer works in a real-world, it has to face the 

environment distortions which cause mismatch between pre-trained models and 

testing data. Various sources cause the distortions, such as the channel effects, the 

additive background noise, the different speaker characteristics, the different speech 

modes, etc. In this thesis, only the additive noise is considered and solved. 

    In this chapter, first, the most popular method in model-based class, PMC, will 

be introduced. Then, the disadvantages of using PMC will be discussed. Final, the 

method of noisy speech recognition using the pre-trained noisy models will be 

proposed, and the effect of mismatched noise and mismatched signal-to-noise ratio 

(SNR) will be shown by some experiments. 

4.1 The Parallel Model Combination Method 

    In chapter 3, the statistical model HMM has been introduced to do the speech 

recognition. This model generally consists of the state transition probability, 

observation probability and initial state probability. However, these probabilities, 

especially the observation probability, are usually altered by environmental noise. 

Because the observation probability is expressed by mixture Gaussian distribution, 

their means and variances can be adapted so that they can represent the observation 

probability of noisy speech. In PMC method, the mean and variance combination is 

performed in linear spectral domain to obtain the mean and variance of noisy speech. 

The scheme of PMC method is illustrated in Fig.4.1. 
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 Fig 4.1 The scheme of PMC.

The inputs to the scheme are clean speech models and a noise model. The 

combination of the clean speech and noise is most naturally expressed in 

linear-spectral domain, i.e., it is simplest to model the effects of the additive noise on 

linear-spectral domain. The function to approximate this will be defined as the 

mismatch function and formed as follows 

 ][][][ τττ NSy +⋅= g  (4-1) 

where g is the gain matching term introduced to account for level difference between 

the speech and the noisy speech. In general, g will be set as 1. S[τ] is the clean speech 

‘observations’ in linear-spectral domain, N[τ] is the noise ‘observations’ in 

linear-spectral domain, and y[τ] is the noisy speech ‘observations’ in linear-spectral 

domain. However, the HMM model are trained by using the observations in the 

cepstral domain, so some domain transformation must be applied before doing the 

combination.  
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Some assumptions have been made in PMC method. First, the speech and noise 

are independent. Second, the frame/state alignment used to generate the speech 

models from the clean speech data is not altered by the additive noise, i.e. the state 

transition matrix A would not be changed. Third, a single Gaussian or multiple 

Gaussian mixtures model contains sufficient information to represent the distribution 

of observation vectors in the cepstral domain and log-spectral domain. Therefore, just 

the mean µ and variance Σ in the observation probability distribution should be 

adapted. 

    The first stage in the scheme of PMC is to transform the µ and Σ from the 

cepstral domain to the log-spectral domain. This is simply achieved by using the 

inverse DCT, and the mapping is given by 

  (4-2) cµCµ 1−=l

  (4-3) Tl )( 11 −−= CΣCΣ c

where µc and Σc are the mean vectors and full variance matrix, respectively, for clean 

speech models in cepstral domain, µl and Σl those in log-spectral domain, and C is the 

matrix representing the DCT and the elements of it are given by 

 )/)5.0(cos( BjiCij π−=  (4-4) 

where B is the number of Mel filter banks. 

    The second stage in scheme of the PMC is to transform the µ and Σ from the 

log-spectral domain to the linear-spectral domain. Since the transformation between 

the log-spectral domain and linear-spectral domain is nonlinear, different 

approximations are made. Here, three popular methods, log-normal approximation, 

log-add approximation and data-driven PMC (DPMC), will be introduced.  

The log-normal approximation assumes that the sum of two log-normally 

distributed variables is itself approximately log-normally distributed. Given the 
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assumption that the speech and noise are independent and additive in the 

linear-spectral domain the corrupted speech static parameters in the linear-spectral 

domain are 

 µµµ ~ˆ +=  (4-5) 

 ΣΣΣ ~+=
)

 (4-6) 

where µ and Σ are the mean vectors and full variance matrix, respectively, for clean 

speech models in linear-spectral domain. The notation ‘^’ and ‘~’ indicates that the 

parameters for corrupted speech and noise, respectively. The parameters of the clean 

speech in the linear-spectral and log-spectral domains are related by 
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ijjiij µµ  (4-8) 

the derivation could be found in [28]. Then, the mean vectors and full variance matrix 

for corrupted speech models in log-spectral domain could be obtained by 
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Finally, the mean vectors and full variance matrix for corrupted speech models in 

cepstral domain could be easily obtained by 

  (4-11) lµCµ ˆˆ ⋅=c

  (4-12) Tl CΣCΣ ⋅⋅= ˆˆ c

    The second method is log-add approximation. In the log-add approximation, the 

variances are assumed to be small, so for the static parameters it is possible to write 

 ))~exp()log(exp(ˆ l
i

l
i

l
i µµµ +=  (4-13) 

This approximation is the simplest method, but the performance will be not good. 
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    The third method is the data-driven PMC. The basic concept of DPMC is shown 

in Fig.4.2.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4.2 The illustration of data-driven PMC [28]. 

 

This is an iterative method; the integration is performed by generating corrupted 

speech observations. These are obtained by generating a speech observation and a 

noise observation for a particular pair of speech and noise states and combining them 

according to the appropriate mismatch function. Having generated a set of 

observations for a particular state pair, standard multiple mixture component 

single-emitting-state HMM training can be used to train the noisy speech model. This 

method could get more explicit noisy model, but would need large computation. 

    The PMC method has been proved that performs not bad in previously works. 

[29,30,31] 
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4.2 Robust Speech Recognition Using the Pre-Trained Noisy Models 

    Though the PMC method could obtain an acceptable performance, it still has 

some drawbacks in implementation. In the stage of transformation from the cepstral 

domain to the log-spectral domain, some information is lost due to the truncating of 

the original cepstrum coefficients described in chapter 2. After the truncating, the 

number of cepstrum coefficients is reduced from 20 (or 24) to 13. However, the 

domain transformation is based on the original number of cepstrum coefficients, i.e. 

the number of Mel filter banks B. Therefore, the mean vector µ which dimension is 13 

must be padded with zeros so that the dimension could be equal to the number of Mel 

filter banks B and this may cause a bad representation in log-spectral domain. 

    Second, the PMC method is assumed that the additive noises will not alter the 

state transition matrix A. Nevertheless, the state transition matrix A is indeed affected 

by the additive noise and the difference of A between clean speech models and noisy 

models are increasing as the SNR degrades. Fig. 4.3 shows the difference between the 

clean speech model and noisy model of “four” in low SNR. This would also cause the 

compensated noisy models work not well especially in low SNR. Unfortunately, there 

is still no efficiently method to precisely estimate the state transition matrix A of noisy 

models. 

 

 

 

 

 

 

Fig. 4.3 The transition matrix of model “four” in (a) clean speech model (b) noisy 

 model with 0dB (c) noisy model with 5dB (d) noisy model with 10dB. 
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    The most difficult part in PMC method is the stage of transformation from the 

log-spectral domain to the linear-spectral domain because it is a nonlinear 

transformation. The three approaches introduced above all have some disadvantages. 

The most important one is the assumption that the sum of two log-normally 

distributed variables is itself approximately log-normally distributed. Obviously, it is 

not surely. Even the sum of two single Gaussian distribution is not surely still a single 

Gaussian distribution. Approaches used in PMC method can just “approximately” 

represent the transformation from the log-spectral domain to the linear-spectral 

domain. Besides, one state is usually not enough to represent the HMM of noise. It is 

complicated for PMC method under the condition that the noise HMM contains more 

than one state. Furthermore, single Gaussian distribution is not sufficient to represent 

the observation probability in HMM. If the mixture Gaussian distribution is utilized to 

represent the observation probability, the computation load would increase and may 

not estimate well. The DPMC method might overcome the drawbacks described 

above, because it could represent the noisy model more explicitly. However, it need 

too much computation and is not useful for an on-line application. 

    Therefore, I will propose a concept that using the pre-trained noisy models to do 

the robust speech recognition. Now that it is hard to estimate the distribution of the 

noisy model just combining the clean speech model and noise model, and it is shown 

that using the matched noisy model will get the best recognition result (see the 

experiments result in 4.3), we can pre-train various noisy models and save as a 

database. In recognition phase, the first 10,000 sampling data will be used to analyze 

that current background noise belongs to which noise in the database, and then, the 

corresponding pre-trained noisy model will be utilized to do the recognition. The 

scheme is shown in Fig.4.4. 
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Fig. 4.4 The scheme of the method using the pre-trained noisy models to do the 

noisy speech recognition. 
 

 

In the stage of noise analysis, the noise type is chosen based on the mean spectrum, 

and the SNR is approximately decided by 
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where yi is the corrupted speech and N is the number of samples to estimate the noise. 

This method will need more memory to store the pre-trained noisy models, but with 

the progress of the storage technology, it would be no longer the problem. The 

advantage of this method is that a more explicitly noisy model could be obtained 

without too much computation in recognition phase. All the complicated computation 

will be done in training phase and the pre-trained noisy models will be stored in 

recognizer. 

 38



4.3 Experiments Result 

    The experiments will be divided into two parts. In the first part, the performance 

of the recognizer will be compared with the condition of using matched/mismatched 

noisy models, the MFCC with/without dynamic features and different mixture number 

of GMM. In the second part, a test noise which is not in the database will be added. 

Then, the experiments will show the performance of the recognizer using a most 

likely pre-trained noisy model. 

4.3.1 Experiments A 

    The clean speech data were collected from 16 persons with 8 males and 8 

females. 40 utterances for each containing 10 connected digits are recorded by each 

person. The noises used in this experiment are babble, f16, factory and white noise 

taken from NOISE-92 database [32] and resample them to 16KHz. The recorded 

clean speech data were manually added with these four noises individually at different 

SNR (0dB, 5dB, 10dB, 15dB, 20dB, 25dB and 30dB) to produce several sets of 

noise-corrupted speech data. The SNR is defined as 

 
N

S

P
PSNR log10 ⋅=  (4-15) 

where Ps is the average power of clean speech and PN is the average power of noise. 

The sampling rate is 16KHz. A 25 ms Hamming window shifted with 10 ms steps, a 

pre-emphasis factor of 0.97 and 24 Mel filter banks were used to evaluate 13 MFCCs 

(including the energy term) with its delta and delta-delta term to obtain 

39-dimensional feature vectors. For the case without dynamic terms, the feature 

vectors just contain 15 MFCCs. The testing data were selected from the original 

recorded data, two males and two females, so this in a speaker dependent experiment. 

The statistics of training data and testing data are shown in Table 4.1, and the number 

of states of each digit (the first and last state are null states) is shown in Table 4.2. 
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 Males Females Total 

Amounts of speakers 8 8 16 

Amounts of sentences 320 320 640 

Amounts of digits 3200 3200 6400 

  (a) 

 Males Females Total 

Amounts of speakers 2 2 4 

Amounts of sentences 80 80 160 

Amounts of digits 800 800 1600 

  (b) 

 Table 4.1 The statistics of (a) training speech data (b) testing speech data. 

Digits 0 1 2 3 4 5 6 7 8 9 sil 

Number of states 10 7 7 10 5 7 10 10 7 10 5 

 Table 4.2 The number of state of each digit. (sil means the silence) 

The experiments are divided into two sets. In the first experiment set, the MFCC 

features with its dynamic features are used, i.e. each feature vector contains 13 

MFCCs, 13 delta MFCCs and 13 delta-delta MFCCs. The other experiment set uses 

MFCC features only, and each feature vector contains 15 MFCCs. The performances 

are examined by the word accuracy rate (WAcc %) and the sentence correct rate 

(SCor %). The calculation of WAcc (%) and SCor (%) are 

 100(%) ×
−−−

=
w

wwww

T
ISDTWAcc  (4-16) 

 100(%) ×
−

=
s

ss

T
FTSCor   (4-17) 

where Tw and Ts are the total numbers of words and sentences. Dw, Sw and Iw represent 

the numbers of deletion errors, substitution errors and insertion errors, respectively. Fs 

means that the number of wrong sentences.  
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    The recognition results of the noise-corrupted speech under different SNR using 

the clean speech models are shown in Fig. 4.5.  

 

  (a)  (b) 

 
  (c)  (d) 

Fig. 4.5 The recognition results of the noisy speech using the clean speech models 

 under different SNR corrupted by (a) babble noise (b) f16 noise (c) factory 

 noise (d) white noise. 

It is shown that the performance of the recognizer degrades while the SNR decreases. 

Table 4.3 shows the recognition results of the noise-corrupted speech in different 

SNR using the clean speech models with different mixtures of GMM. The results are 

represented by the WAcc (%) and SCor (%, the values in the brackets). 

 clean 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 97.71 
(80.00) 

96.77 
(73.13) 

94.90 
(63.13)

90.68 
(55.00)

83.07 
(35.63)

75.21 
(20.63)

63.70 
(3.75) 

44.58 
(0.00) 

2-mixtures 98.02 
(85.63) 

96.46 
(77.50) 

95.73 
(73.75)

94.27 
(65.63)

90.10 
(45.63)

82.08 
(25.00)

69.22 
(6.25) 

49.01 
(0.00) 
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4-mixtures 98.75 
(90.00) 

96.98 
(80.63) 

95.94 
(75.63)

94.64 
(68.75)

89.38 
(48.13)

81.20 
(28.75)

69.32 
(6.88) 

50.42 
(1.25) 

8-mixtures 99.43 
(95.00) 

98.49 
(88.13) 

96.88 
(78.13)

93.28 
(65.00)

84.64 
(33.13)

71.41 
(7.50) 

58.49 
(0.63) 

43.02 
(0.00) 

  (a) 

 clean 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 97.71 
(80.00) 

95.47 
(63.75) 

93.96 
(55.63)

90.42 
(45.63)

84.74 
(35.00)

77.66 
(18.75)

70.10 
(7.50) 

55.94 
(0.00) 

2-mixtures 98.02 
(85.63) 

97.03 
(80.00) 

96.61 
(75.63)

95.52 
(68.38)

91.82 
(45.63)

86.72 
(28.13)

75.73 
(7.50) 

60.52 
(0.00) 

4-mixtures 98.75 
(90.00) 

97.24 
(83.13) 

96.35 
(76.88)

94.84 
(66.25)

91.51 
(51.25)

86.25 
(33.13)

74.69 
(11.25) 

59.27 
(0.63) 

8-mixtures 99.43 
(95.00) 

98.39 
(86.88) 

97.71 
(81.25)

96.25 
(72.50)

91.82 
(48.75)

84.48 
(20.63)

71.56 
(1.88) 

49.79 
(0.00) 

  (b) 

 clean 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 97.71 
(80.00) 

95.99 
(64.38) 

94.48 
(54.38)

90.68 
(45.63)

83.54 
(30.63)

74.84 
(15.63)

63.70 
(3.75) 

45.52 
(0.00) 

2-mixtures 98.02 
(85.63) 

96.25 
(75.00) 

95.47 
(71.88)

93.91 
(63.13)

90.16 
(45.00)

82.97 
(27.50)

70.57 
(5.63) 

51.41 
(0.63) 

4-mixtures 98.75 
(90.00) 

97.03 
(81.25) 

95.99 
(75.26)

93.85 
(66.88)

89.11 
(47.50)

80.94 
(28.13)

70.10 
(8.13) 

48.85 
(0.63) 

8-mixtures 99.43 
(95.00) 

98.67 
(89.04) 

97.19 
(80.63)

94.74 
(66.25)

88.44 
(43.13)

77.60 
(17.50)

61.82 
(0.63) 

41.56 
(0.00) 

  (c) 

 clean 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 97.71 
(80.00) 

94.64 
(58.75) 

92.86 
(54.38)

89.22 
(42.50)

83.23 
(30.00)

75.26 
(13.75)

64.58 
(3.13) 

46.41 
(0.00) 

2-mixtures 98.02 
(85.63) 

96.09 
(73.13) 

95.00 
(68.13)

92.29 
(56.88)

88.18 
(41.88)

81.04 
(19.38)

68.23 
(1.25) 

48.07 
(0.00) 

4-mixtures 98.75 
(90.00) 

96.15 
(76.25) 

94.79 
(71.25)

91.35 
(60.00)

85.89 
(45.63)

77.40 
(23.13)

66.20 
(2.50) 

49.69 
(0.00) 

8-mixtures 99.43 
(95.00) 

97.14 
(80.00) 

95.05 
(70.00)

89.48 
(53.75)

78.85 
(29.38)

63.54 
(0.00) 

53.65 
(0.00) 

41.72 
(0.00) 

  (d) 

Table 4.3 The recognition results of the noisy speech under different SNR using the 

 clean speech models with different mixtures of GMM. The noisy speech is 

 corrupted by (a) f16 noise (b) babble noise (c) factory noise (d) white noise. 
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The results show that using the dynamic features can get not bad performance while 

the SNR is larger than 20dB. Besides, increasing the number of mixtures of GMM is 

not useful for low SNR, because the observation probability distribution has been 

altered so severely by the noise that the noisy speech can be barely recognized by the 

original model. 

    The following experiments were examined to investigate the performances of 

noisy speech recognition using matched noisy models. The “matched” means if the 

tested noisy speech is corrupted by f16 noise in 0dB, the f16 noisy model trained in 

0dB condition will be utilized to do the recognition. Table 4.4 shows the recognition 

results of using the matched noisy models with different mixtures of GMM. The 

performances are presented by SCor (%), and values in the brackets are the 

recognition rates using clean speech models.  

 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 71.25 
(73.13) 

68.13 
(63.13) 

61.88 
(55.00) 

61.88 
(35.63) 

50.63 
(20.63) 

39.38 
(3.75) 

15.63 
(0.00) 

2-mixtures 82.50 
(77.50) 

83.75 
(73.75) 

76.25 
(65.63) 

76.88 
(45.63) 

68.75 
(25.00) 

58.13 
(6.25) 

15.00 
(0.00) 

4-mixtures 89.38 
(80.63) 

88.75 
(75.63) 

88.13 
(68.75) 

83.75 
(48.13) 

77.50 
(28.75) 

66.25 
(6.88) 

20.00 
(1.25) 

8-mixtures 92.50 
(88.13) 

93.75 
(78.13) 

92.50 
(65.00) 

87.50 
(33.13) 

85.63 
(7.50) 

54.38 
(0.63) 

16.25 
(0.00) 

  (a) 

 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 68.75 
(64.38) 

67.50 
(54.38) 

58.75 
(45.63) 

49.38 
(30.63) 

43.13 
(15.63) 

11.25 
(3.75) 

1.88 
(0.00) 

2-mixtures 82.50 
(75.00) 

82.50 
(71.88) 

76.88 
(63.13) 

69.38 
(45.00) 

60.00 
(27.50) 

18.75 
(5.63) 

3.13 
(0.63) 

4-mixtures 88.75 
(81.25) 

86.88 
(75.26) 

85.00 
(66.88) 

79.38 
(47.50) 

65.63 
(28.13) 

16.25 
(8.13) 

3.75 
(0.63) 

8-mixtures 91.88 
(89.04) 

92.50 
(80.63) 

88.13 
(66.25) 

82.50 
(43.13) 

67.50 
(17.50) 

17.50 
(0.63) 

2.50 
(0.00) 

  (b) 

 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 58.13 
(58.75) 

55.63 
(54.38) 

48.13 
(42.50) 

35.63 
(30.00) 

25.00 
(13.75) 

18.13 
(3.13) 

11.25 
(0.00) 
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2-mixtures 72.50 
(73.13) 

72.50 
(68.13) 

68.13 
(56.88) 

61.25 
(41.88) 

56.88 
(19.38) 

33.13 
(1.25) 

20.00 
(0.00) 

4-mixtures 84.38 
(76.25) 

83.75 
(71.25) 

80.00 
(60.00) 

72.50 
(45.63) 

63.13 
(23.13) 

45.63 
(2.50) 

26.88 
(0.00) 

8-mixtures 91.25 
(80.00) 

86.25 
(70.00) 

85.00 
(53.75) 

80.00 
(29.38) 

70.00 
(0.00) 

50.63 
(0.00) 

30.00 
(0.00) 

  (c) 

 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 78.13 
(63.75) 

71.25 
(55.63) 

65.00 
(45.63) 

52.50 
(35.00) 

43.75 
(18.75) 

19.38 
(7.50) 

5.00 
(0.00) 

2-mixtures 86.88 
(80.00) 

85.63 
(75.63) 

79.38 
(68.38) 

75.00 
(45.63) 

55.00 
(28.13) 

28.13 
(7.50) 

7.50 
(0.00) 

4-mixtures 89.38 
(83.13) 

85.63 
(76.88) 

86.25 
(66.25) 

75.00 
(51.25) 

58.13 
(33.13) 

29.38 
(11.25) 

6.25 
(0.63) 

8-mixtures 92.50 
(86.88) 

94.38 
(81.25) 

93.75 
(72.50) 

86.25 
(48.75) 

55.00 
(20.63) 

26.88 
(1.88) 

8.13 
(0.00) 

  (d) 

Table 4.4 The recognition results of the noisy speech under different SNR using the 

 clean speech models (the values in the brackets) and matched noisy models 

 with different mixtures of GMM. The noisy speech is corrupted by (a) f16 

 noise (b) factory noise (c) white noise (d) babble noise. 

 

The results show that the matched noisy models indeed promote the performance of 

noisy speech recognition. The performances are good when SNR is larger than 5 dB, 

and the mixture number of the GMM is 8. Besides, the matched noisy models are 

fairly good for the noisy speech corrupted by white noise in low SNR; the SCor (%) 

for white noisy speech is 30 in SNR 0dB.  

The next experiment will show the performance of using the same noisy models 

but with different SNR, i.e. the training and testing environment will be incongruity in 

SNR. The SNR of tested noisy speech is set 15dB, and the same kinds of noisy 

models trained in different SNR with the 8 mixtures GMM will be utilized to do the 

recognition. The experiment results are shown in Table 4.5, and the performances will 

be presented by SCor (%). 
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 0dB 5dB 10dB 15dB 20dB 25dB 30dB 
F16 25.63 61.88 86.25 87.50 88.75 77.50 70.63 

factory 15.63 31.25 71.88 82.50 79.38 75.00 62.50 
white 11.88 51.25 71.25 80.00 81.25 70.63 41.88 
babble 25.00 58.13 69.38 86.25 86.25 81.88 76.88 

Table 4.5 The recognition results of the noisy speech under 15dB SNR using the same 

kind of noisy models (f16) in different SNR with 8 mixtures of GMM. The 

highlighted values are the results using the matched noisy models. 

 

The results show that the SNR does not affect the performance very much, because 

the recognition rate would not change too large even use the noisy models with SNR 

varying 5dB from the matched SNR. Therefore, the SNR of the tested noisy speech 

can be roughly determined and still obtain good enough recognition results. 

    The above experiments will be examined again, but the features used are all 

replaced by the MFCC features without its dynamic terms, i.e. each feature contains 

only 15 MFCCs. These experiments are examined to see which features, with or 

without dynamic terms, are efficient to the noisy speech recognition using matched 

noisy models. Table 4.6 shows the recognition results of the noise-corrupted speech in 

different SNR using the clean speech models with different mixtures of GMM. The 

results are represented by the WAcc (%) and SCor (%, the values in the brackets). 

 clean 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 94.53 

(60.00) 

91.77 

(48.75) 

88.80 

(37.50)

83.91 

(25.63)

73.65 

(9.38) 

57.14 

(0.00) 

41.46 

(0.00) 

23.39 

(0.00) 

2-mixtures 91.98 

(50.00) 

89.48 

(36.88) 

89.43 

(39.38)

86.93 

(27.50)

79.32 

(10.63)

62.08 

(0.63) 

40.42 

(0.00) 

24.53 

(0.00) 

4-mixtures 95.05 

(67.50) 

93.54 

(52.50) 

92.55 

(49.38)

89.53 

(38.75)

82.14 

(21.25)

67.34 

(5.63) 

46.04 

(0.63) 

24.48 

(0.00) 

8-mixtures 96.30 

(71.25) 

93.23 

(52.50) 

88.80 

(37.50)

86.09 

(32.50)

77.45 

(10.63)

60.05 

(0.63) 

39.38 

(0.00) 

21.93 

(0.00) 

  (a) 
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 clean 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 94.53 

(60.00) 

93.59 

(57.50) 

92.08 

(50.00)

86.30 

(29.38)

74.79 

(9.38) 

61.72 

(0.63) 

46.61 

(0.00) 

29.17 

(0.00) 

2-mixtures 91.98 

(50.00) 

92.08 

(47.50) 

92.19 

(48.13)

88.75 

(33.13)

79.58 

(12.50)

62.14 

(1.25) 

48.44 

(0.00) 

31.04 

(0.00) 

4-mixtures 95.05 

(67.50) 

95.47 

(65.00) 

94.53 

(58.75)

90.99 

(44.38)

83.33 

(24.38)

69.01 

(6.88) 

51.72 

(0.00) 

34.27 

(0.00) 

8-mixtures 96.30 

(71.25) 

95.47 

(63.75) 

93.85 

(54.38)

89.38 

(40.63)

78.44 

(11.88)

61.61 

(0.00) 

45.47 

(0.00) 

29.01 

(0.00) 

  (b) 

 clean 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 94.53 

(60.00) 

92.03 

(50.00) 

89.43 

(41.25)

83.07 

(21.25)

72.71 

(5.00) 

58.54 

(0.63) 

40.42 

(0.00) 

20.89 

(0.00) 

2-mixtures 91.98 

(50.00) 

91.35 

(45.63) 

90.63 

(41.88)

85.68 

(25.00)

77.19 

(8.13) 

58.54 

(0.00) 

38.65 

(0.00) 

22.60 

(0.00) 

4-mixtures 95.05 

(67.50) 

93.91 

(53.75) 

92.86 

(45.63)

88.54 

(30.63)

79.79 

(13.13)

63.91 

(2.50) 

42.60 

(0.00) 

23.13 

(0.00) 

8-mixtures 96.30 

(71.25) 

94.64 

(58.13) 

91.77 

(46.25)

86.72 

(30.63)

75.94 

(6.25) 

57.24 

(0.63) 

38.18 

(0.00) 

21.51 

(0.00) 

  (c) 

 clean 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 94.53 

(60.00) 

88.33 

(35.63) 

82.50 

(21.25)

74.27 

(11.88)

63.96 

(0.00) 

54.01 

(0.00) 

40.10 

(0.00) 

20.05 

(0.00) 

2-mixtures 91.98 

(50.00) 

85.94 

(27.50) 

81.41 

(18.75)

76.20 

(8.75) 

68.33 

(1.25) 

55.21 

(0.00) 

36.72 

(0.00) 

19.22 

(0.00) 

4-mixtures 95.05 

(67.50) 

90.21 

(43.13) 

84.22 

(28.13)

78.33 

(17.50)

68.02 

(1.88) 

52.81 

(0.00) 

38.65 

(0.00) 

19.17 

(0.00) 

8-mixtures 96.30 

(71.25) 

89.01 

(37.50) 

83.70 

(26.25)

76.93 

(9.38) 

66.04 

(0.63) 

53.02 

(0.00) 

31.61 

(0.00) 

15.78 

(0.00) 

  (d) 

Table 4.6 The recognition results of the noisy speech under different SNR using the 

 clean speech models with different mixtures of GMM. The noisy speech is 

 corrupted by (a) f16 noise (b) babble noise (c) factory noise (d) white noise. 

 46



Comparing Table 4.6 with Table 4.3, we can find that the recognition results using the 

features without dynamic terms degrade seriously as the SNR decreasing, especially 

the SCor (%). The performances are bad even in 30dB SNR. Table 4.7 shows the 

recognition results of using the matched noisy models with different mixtures of 

GMM. The performances are presented by SCor (%), and values in the brackets are 

the recognition rates using clean speech models. 

 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 53.13 
(48.75) 

44.38 
(37.50) 

43.75 
(25.63) 

45.63 
(9.38) 

30.63 
(0.00) 

16.25 
(0.00) 

5.63 
(0.00) 

2-mixtures 50.63 
(36.88) 

53.75 
(39.38) 

50.00 
(27.50) 

47.50 
(10.63) 

43.75 
(0.63) 

17.50 
(0.00) 

9.38 
(0.00) 

4-mixtures 55.63 
(52.50) 

56.25 
(49.38) 

54.38 
(38.75) 

52.50 
(21.25) 

43.75 
(5.63) 

19.38 
(0.63) 

12.50 
(0.00) 

8-mixtures 56.88 
(52.50) 

53.75 
(37.50) 

53.75 
(32.50) 

51.88 
(10.63) 

41.25 
(0.63) 

16.25   
(0.00) 

13.75 
(0.00) 

  (a) 

 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 51.25 
(50.00) 

50.00 
(41.25) 

40.63 
(21.25) 

33.75 
(5.00) 

19.38 
(0.63) 

5.63 
(0.00) 

1.25 
(0.00) 

2-mixtures 51.25 
(45.63) 

35.63 
(41.88) 

50.00 
(25.00) 

43.75 
(8.13) 

20.63 
(0.00) 

11.25 
(0.00) 

4.38 
(0.00) 

4-mixtures 56.25 
(53.75) 

36.88 
(45.63) 

48.13 
(30.63) 

39.38 
(13.13) 

23.13 
(2.50) 

12.50 
(0.00) 

0.63 
(0.00) 

8-mixtures 56.25 
(58.13) 

51.88 
(46.25) 

46.25 
(30.63) 

40.63 
(6.25) 

21.25 
(0.63) 

10.00 
(0.00) 

0.63 
(0.00) 

  (b) 

 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 36.88 
(35.63) 

33.75 
(21.25) 

26.88 
(11.88) 

28.75 
(0.00) 

22.50 
(0.00) 

15.00 
(0.00) 

4.38 
(0.00) 

2-mixtures 32.50 
(27.50) 

48.75 
(18.75) 

41.25 
(8.75) 

36.88 
(1.25) 

35.00 
(0.00) 

21.88 
(0.00) 

6.25 
(0.00) 

4-mixtures 32.50 
(43.13) 

41.25 
(28.13) 

36.25 
(17.50) 

31.25 
(1.88) 

30.00 
(0.00) 

25.63 
(0.00) 

10.00 
(0.00) 

8-mixtures 39.38 
(37.50) 

49.38 
(26.25) 

41.88 
(9.38) 

41.88 
(0.63) 

39.38 
(0.00) 

31.88 
(0.00) 

9.38 
(0.00) 

  (c) 

 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 49.38 
(57.50) 

49.38 
(50.00) 

40.00 
(29.38) 

24.38 
(9.38) 

18.13 
(0.63) 

9.38 
(0.00) 

1.88 
(0.00) 

 47



2-mixtures 59.38 
(47.50) 

57.50 
(48.13) 

47.50 
(33.13) 

27.50 
(12.50) 

22.50 
(1.25) 

13.13 
(0.00) 

5.00 
(0.00) 

4-mixtures 55.63 
(65.00) 

57.50 
(58.75) 

45.00 
(44.38) 

25.00 
(24.38) 

26.88 
(6.88) 

16.88 
(0.00) 

3.75 
(0.00) 

8-mixtures 56.88 
(63.75) 

58.75 
(54.38) 

49.38 
(40.63) 

26.88 
(11.88) 

26.25 
(0.00) 

12.50 
(0.00) 

2.50 
(0.00) 

  (d) 

Table 4.7 The recognition results of the noisy speech under different SNR using the 

 clean speech models (the values in the brackets) and matched noisy models 

 with different mixtures of GMM. The noisy speech is corrupted by (a) f16 

 noise (b) factory noise (c) white noise (d) babble noise. 

 

Comparing Table 4.7 with Table 4.4, we can find that the recognition results using the 

features without dynamic terms were worse than those using the features with 

dynamic terms. The reason is that the dynamic terms are relatively not altered by the 

add noise. From (2-15), the term of ][][ icic ptpt −+ −  can diminish the influence of the 

additive noise. Assuming the noise is added equally to each frame, then 

 ][][])[][(])[][(][~][~ icicinicinicicic ptptptptptpt −+−+−+ −=+−+≈−  (4-18) 

where ][~ ic  is the noise-corrupted cepstrum coefficient and n[i] is the noise cepstrum 

coefficient. Therefore, the recognizer using MFCC with its dynamic features will 

obtain better results. 

4.3.2 Experiments B 

    In this experiment, a test noise which is not in the database will be added. The 

noise is the sound of drilling machine recorded in a construction site. A most likely 

noisy model should be selected first to do the recognition. The selection is based on 

the mean square error of the normalized mean spectrums between the tested noise and 

noises in the database. The noise which has minimum one will be selected and its 

model will be used as the noisy model. The mean spectrums of the f16, factory, 
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babble, white and drilling machine are shown in Fig 4.6. The babble noisy model is 

selected after comparing all four kinds of noise with the drilling machine noise. 

Therefore, the recognition will use the babble noisy models, and the results are shown 

in Table 4.8. The performances are presented by SCor (%). 

 
  (a) (b) 

 
  (c) (d) 

 
  (e) 

Fig. 4.6 Normalized mean spectrums of (a) f16 (b) factory (c) babble (d) white (e) 

 drilling machine. 

 49



 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

1-mixture 75.00 
(58.13) 

67.50 
(51.88) 

53.13 
(42.50) 

46.88 
(31.88) 

36.88 
(10.00) 

12.50 
(0.63) 

0.00 
(0.00) 

2-mixtures 80.00 
(78.13) 

82.50 
(70.00) 

73.75 
(58.75) 

68.13 
(34.48) 

47.50 
(5.00) 

10.63 
(0.00) 

1.88 
(0.00) 

4-mixtures 83.75 
(76.88) 

81.88 
(70.63) 

81.25 
(61.25) 

72.50 
(42.50) 

43.13 
(16.88) 

11.88 
(1.88) 

1.25 
(0.00) 

8-mixtures 89.38 
(80.63) 

88.75 
(73.75) 

86.88 
(57.50) 

81.88 
(28.75) 

48.75 
(1.25) 

14.38 
(0.00) 

1.88 
(0.00) 

Table 4.8 The recognition results of the drilling noisy speech under different SNR 

 using the clean speech models (the values in the brackets) and babble noisy 

 models with different mixtures of GMM. 

 

The results show that the performances are promoted obviously for the cases of SNR 

larger than 10 dB, and it shows again that using the noisy model with 8 mixtures 

GMM is the best choice. 
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Chapter 5 

Conclusions and Future Works 

    In this thesis a method using the pre-trained noisy models to do the noisy speech 

recognition has been proposed. Previously experiments have proved that it can 

improve the performance of the recognizer in unknown noisy environments. The best 

results are obtained by using the matched noisy models trained with the dynamic 

MFCC features and 8 mixtures GMM. The advantages of this method are summarized 

as follows: 

1) More explicit noisy models can be obtained easily. In this method, the mixture 

numbers of GMM can be increased to mimic the true noisy speech observation 

probability distribution. The state number of noise can be not limited as 1 to catch 

the behavior of the noise more precisely, and can obtain more exactly state 

transition matrix, because the noisy model are really trained using the truly 

noise-corrupted speech data.  

2) In on-line application, the system needs little computation to get an acceptable 

noisy model. The only operation needed to do is comparing with all the noise type 

in the database, and then, find a most likely noisy model. All the complicated 

computations, training the noisy models, are performed off-line. 

There are three further things should be done in the future. First is to modify the 

approach of selecting the most likely noisy model. In experiment 4.3.2, the babble 

noise is the closest to the tested noise, drilling machine noise, and it indeed can 

improve the performance. However, the babble noisy model is not the best selection 

but the f16 noisy model to do the recognition. Table 5.1 shows the recognition results 

of using babble noisy model and f16 noisy model. The performances are presented by 

SCor (%). 
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 30dB 25dB 20dB 15dB 10dB 5dB 0dB 

babble 89.38 88.75 86.88 81.88 48.75 14.38 1.88 

f16 90.00 87.50 84.38 80.00 64.38 33.75 12.50 

Table 5.1 The recognition results of using babble noisy model and f16 noisy model. 

It can be shown that using the f16 noisy model can obtain better results than babble 

noisy model. It means that the approach of selecting suitable noisy model should be 

modified. The noise types can not be identified only using the normalized mean 

spectrum. 

    Secondly, the environment existing varying noises should be considered. In this 

thesis, it is assumed that the environment exist only one kind of noise. The approach 

to estimate the noise is to analyze the first N samples of the noisy speech, which is 

regarded as the noise. Therefore, while the original noise is replaced with another 

kind of noise, this approach could not be used to estimate the newly noise. Another 

sufficient noise estimating approach should be used to overcome this problem. 

    The last work is to continue establishing the noisy models database. In this thesis, 

only four kinds of noisy models are established, and it is obviously not enough. In the 

future, more noises should be collected and these collected noises should be analyzed 

to classify them into groups. The noises in the same group are trained to produce one 

representative noisy model. In this way, the size of the noisy models database would 

be reduced, and the selecting of suitable noisy models might be easy and accurate. 
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