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需求不確定下控檔片之管理 

 

學    生：楊 懿 淑                               指導教授：張永佳 博士  

 

國立交通大學工業工程與管理學系 

摘要 

半導體製作過程中控檔片(Control and Dummy Wafers) 的主要功能在於確保

晶圓產品的品質與製程穩定。大量的控檔片並非產品卻不可或缺，一但短缺則會

導致製程停頓與交期延誤，間接會提高成本和降低獲利。故有效的管理控檔片是

晶圓製造過程中重要的議題。 

本研究主要探討控檔片之降級法則與需求服務水準兩種問題，目的是在多期

多產品不確定需求前提下最小化總成本。本研究以兩階段隨機規劃模型求出新片

的供給數量、降級的數量、方式與途徑，探討降級法則；再以機遇限制規劃模型

滿足預設的需求服務水準，並提出利用滾動時窗法將機遇限制規劃模型轉換成等

價的動態線性規劃模型求解。經由實例驗證，本研究所設計之控檔片管理模式在

實務上因將需求不確性列入考慮，故提高其應用上之有效性。 

 

關鍵詞：控檔片、隨機規劃、機遇限制規劃、需求不確定性。 
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Managing Control and Dummy Wafers  
under Demand Uncertainty 

 

Student : Yi Shu Yang Advisor: Dr. Yung Chia Chang 

 

Department of Industrial Engineering and Management 

National Chiao Tung University 

ABSTRACT 

The first subject of this dissertation is to study a realistic planning environment in wafer 

fabrication for the control and dummy wafers problem (C/DWP) with uncertain demand. A 

two-stage stochastic programming model is developed based on scenarios and solved by a 

deterministic equivalent large linear programming model. The model explicitly considers the 

objective to minimize the total cost of C/D wafers. A real-world example is given to illustrate 

the practicality of a stochastic approach. The results are better in comparison with 

deterministic linear programming by using expectation instead of stochastic demands. The 

model improved the performance of C/D wafers management and the flexibility of 

determining the downgrading policy. For the inventory management with service level, a 

chanced-constrained model is developed to minimize the total cost and to keep satisfaction of 

customer with pre-specified probability level. Based on rolling horizon method, this model is 

transformed into a dynamically equivalent linear problem. A numerical example problem is 

illustrated to provide information for setting customer satisfaction levels and unfolding 

effective inventory management options. 

Keywords: control and dummy wafers, stochastic programming, chance-constrained 

programming, demand uncertainty 
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1. Introduction 

1.1 Motivation 

Control and dummy (C/D) wafers are indispensable to manufacturing processes in 

semiconductor wafer fabrication. Control wafers are used to measure the refraction indices 

and etching rates in order to test the quality of equipment and monitor the process prior to 

risking the real product wafer. This ensures process stability and normal equipment operation. 

Control wafers may also be used with products together as proof of product quality in the 

process by measuring particle numbers and film thickness. Dummy wafers are used to 

distribute heat uniformly inside the furnaces. Each inspection item requires C/D wafers for 

different devices. Figure 1-1 represents an overview of the applications of C/D wafers in a 

wafer fabrication. Any lack or surplus of C/D wafers may cause the loss of equipment 

capacity and production movement because they occupy equipment capacity of wafer 

fabrication, not only affecting production planning but also decreasing process yield. 

Besides the cost and quality issues, the lifecycles of C/D wafer make management a real 

challenge. The major characteristics of C/D wafers is that they can repeat the same functional 

test several times until they fail to conform to quality specifications related to requirements 

for cleanliness or thickness. When a qualification is due, the C/D wafers associated with that 
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process is pulled from the inventory. If the number of C/D wafers is not enough, new C/D 

wafers are released. Once the C/D wafer is used, it has to be checked whether it can be reused 

or not. If yes, it can either return back to the inventory, or to a lower grade based on the 

demand. Good management can reduce the number of C/D wafers brought in to the 

manufacturing process and improve the efficiency of C/D wafer usage. 

Therefore, the main challenges of C/D wafer management are downgrading problem 

and inventory control. 

 

  

Figure 1-1  Applications of C/D wafers in process 



 

3 

 

1.2 Objectives 

C/D wafer management is a crucial issue of complexity in the wafer fabrication, because 

it needs to consider not only downgrading policy, release rule, and inventory control, but also 

service level under demand uncertainty. Even though many researchers have focused on C/D 

wafers management, little study has been done under demand uncertainty which is a 

realization of nature. In real world, the manufacturer has to meet the demand for different 

products according to the service level requirements set by its customers. To capture the 

trade-off between customers satisfaction and production costs, it makes C/D wafers 

management effectively and efficiently. This research attempts to: 

1. Develop a two-stage stochastic programming model to minimize the total cost of 

C/D wafers and to set the quantities of new C/D wafers released and C/D wafers 

recycled or downgraded to meet the stochastic demands of each grade. 

2. Develop a chance-constrained programming model to minimize the total cost of 

C/D wafers and to make production and C/D wafers sourcing decisions during the 

planning horizon subject to the service level requirements set by customers. 

To attain the mission of the stochastic C/D wafers downgrading problem (SC/DWDP), a 

scenario-base approximation approach is proposed to give advantages in terms of retaining a 
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linear model and easier solutions by utilizing a single large equivalent LP model. Next, to 

achieve the objectives of C/D wafers service level problem (C/DWSLP) constructed by a 

chance-constrained programming model, an approach is proposed to decide an appropriate 

C/D wafer quantity for each grade in each period. The approach includes three phases: (i) 

transforming the empirical cumulative demand data, if it is non-normal, into a set of data 

which is approximately normal distributed, (ii) transforming the chance-constrained 

programming model into an equivalent integer programming, and (iii) using rolling horizon 

method to solve the problem dynamically. 

1.3 Thesis Outline 

The remaining of this study is organized as follows.  

Chapter 2 reviews four portions, viz., (i) downgrading resource (ii) inventory 

management (iii) stochastic Programming and (iv) normal Transformation. Chapter 3 

describes the background information including: the PUR process of C/D wafers, the resource 

downgrading characteristics of C/D wafers, demand uncertainty, and assumptions of this 

study. In chapter 4, a two-stage stochastic programming model is proposed, while a 

chance-constrained programming model is presented in chapter 5. Finally, conclusion and 
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future research are given in chapter 6. Figure 1-2 illustrates the architecture of these six 

chapters in this study. 

 

Figure 1-2  Organization of this study 
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2. Literature Review 

The purpose of using C/D wafers is to assure that the wafer manufacturing process 

operations meet the required manufacturing specifications. Downgrading resources and 

inventory control are two characteristics of C/D wafer management. To properly account for 

product demand fluctuate, this research considers that the demand is uncertain.  

Rare researches have been conducted on C/D wafer management since Wong and Hood 

[76] used discrete event simulation to run a hypothetical fab model with an industry-standard 

CMOS base process. They did not provide a method for efficiently managing test wafers but 

only examined the impact of test wafers on process cycle time, wafer throughput, and fab line 

equipment capacity requirements. Chen et al. [17] pointed out the issues about C/D wafer 

management. Later, Chen et al. [19] proposed a pull system to manage C/D wafers in order to 

increase the efficiency of C/D wafers. According to the above, downgrading rules and 

inventory control are the keys of a good C/D wafers management. Therefore, the literature 

review includes downgrading resources, inventory management, stochastic programming, and 

normal transformation. The first two topics are related to the C/D wafer management, while 

the last two are related to methodologies implemented in this research. 



 

7 

 

2.1 Downgrading Resource 

Due to the reuse and downgrading of the C/D wafers, resource downgrading problem is 

quite different from other production problems. Some researchers focused on downgrading 

rules. Chen, et al. [18] suggested downgrading and release rules for C/D wafers. Foster, et al. 

[32] studied test wafer consumption by simulation. Although simulation can realize stochastic 

events and observe the effects by the current state of the system during a specific simulation 

run, it needs more time to produce results, and the randomness does not guarantee the same 

results between different runs. On the other hand, Foster, et al. [32] also suggested “lowest 

inventory first” downgrading rule which only can yield suboptimal solution. Chung, et al. [23] 

proposed a linear programming model for the C/D wafers downgrading problem to minimize 

the total cost of C/D wafers by using expected demand in the photolithography area of a wafer 

fab. Wu, et al. [77] aimed to minimize the long-term daily use of brand-new C/D wafers in a 

fab by a linear programming model. Özelkan and Çakanyildirim [57] represented a resource 

downgrading problem as a network model with side constraints, which results in an integer 

programming formulation. Of the above, little work has been done to include the uncertainty 

of demands so as to meet the rapidly changing demands of the future. Liou, et al. [53] 

established a capacity forecast model for C/D wafers for decision support instead of basing it 

on personal experience or the historical reservation data in practice. Popovich, et al. [62] 
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mentioned that Motorola MOS12 designed a re-use matrix to determine the possible uses for 

C/D wafers. However, it is manual and thus has limitations due to the complexity of 

identifying downgrading paths and controlling the inventory of C/D wafers. 

This downgrading substitution structure also occurs in some other practical settings, for 

example, in the steel industry by Wagner et al. [72], memory chips by Leachman [51], 

inventory policies of priority by Duran et al. [30], and semiconductor chips by Hsu et al. [41]. 

2.2 Inventory Management 

Inventory has been one of the most investigated areas of research. Early work done by 

Harris [38] on inventory management goes back to the classical economic lot size model 

which assumes a steady demand and holding costs over time. Deterioration of products is 

realistic in many inventory systems. In determining the optimal inventory policy of product, 

the loss due to deterioration should be taken into account. Ghare and Schrader [33] initiated 

the analysis of deteriorating inventory by establishing a classical no-shortage inventory model 

with a constant rate of decay. Covert and Philip [25] extended Ghare and Schrader’s model by 

establishing an economic order quantity (EOQ) model for a variable rate of deterioration with 

a two-parameter Weibull distribution. Later, Kar et al. [48] proposed a deterministic 

inventory model for a single product stored in two storage facilities while the demand was 
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assumed linearly increasing, time-dependent over a fixed finite time horizon. To fit a more 

general inventory feature, Chang and Dye [13] developed an EOQ model to find the optimal 

total cost savings for deteriorating items with varying rate of deterioration during the special 

replenishment period. Chung and Tsai [22] developed an inventory model for deteriorating 

items with the demand of linear trend and shortages during a finite planning horizon. A line 

search was applied in a simple solution algorithm to determine the optimal interval without 

considering stock-outs. Chang et al. [14] proposed a finite time horizon EOQ model taking 

into accounts the followings: a time-varying deterioration rate, time value of money, 

shortages and permissible delay in payments. 

In practice, demand and service level may influence safety inventory. Inventory models 

have been continually modified to accommodate to more practical issues of the production 

planning and the real inventory systems. For a large family of lead time demand distributions, 

Platt et al. [60] declared that the optimal policy depends on two parameters: the fill rate and 

the EOQ scaled by the standard deviation of demand over the constant lead time. Silva Filho 

[68] proposed the cumulative demand is a random variable represented by a compound 

Poisson process, since the demand affects the inventory system. Gupta et al. [36] utilized a 

stochastic framework to provide quantitative guidelines for setting customer satisfaction 

levels and uncovering effective inventory management options. Furthermore, Bhunia and 
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Maiti [5] assumed that the production rate is a variable. They also presented inventory models 

in which the production rate depends on either on-hand inventory or demand. Das et al. [27] 

developed a multi-item inventory model with quantity-dependent inventory costs and 

demand-dependent unit cost under imprecise objective and restrictions. Both geometric 

programming (GP) and gradient-based nonlinear programming (NLP) methods are used to 

solve the problem. Rao et al. [65] modeled a single period multi-product inventory problem 

with uncertain demand and one-way product substitution in the downward direction. Pal et al. 

[58] constructed a deterministic inventory model with a stock-dependent demand rate and a 

constant item deteriorating rate. In addition, a fuzzy geometric programming (FGP) method is 

used to solve two highly nonlinear equations generated from the model. Duran et al. [30] 

provided tools for managing production and inventory tactically when customers differ in 

their willingness to pay and to wait. Many other references about multi-echelon inventory 

management in supply chains with uncertain demand and lead times appear in Gumus and 

Guneri’s survey [34]. 

For C/D wafers in the semiconductor industry, majority of researches have been focused 

on controlling inventory with deterministic demand, inventory management under uncertain 

demands has received relatively little attention. Chung, et al. [24] used a non-linear program 

to set a safe inventory level for control wafers. Since they assumed that demand follows an 
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approximately normal distribution, the optimal solutions were based on deterministic 

expected values to simplify stochastic events and dynamics that might reach misleading 

solutions. 

2.3 Stochastic Programming 

A great quantity of research has been conducted on C/D wafer management but most 

was based on the assumption of known or expected demand. Chung et al. [23] assumed the 

demand of C/D wafers is constant. Later, Chung et al. [24] used a non-linear program to set a 

safe inventory level for control wafers but assumed that demand follows an approximately 

normal distribution. Their optimal solutions were based on deterministic expected values to 

simplify stochastic events and dynamics that might reach misleading solutions. 

2.3.1  Two-stage stochastic programming 

Uncertainty is one of the main characteristics of semiconductor manufacturing systems. 

To handle uncertainty, it is appropriate to use a two-stage stochastic programming (SP) with 

recourse, which was first independently presented by Dantzig [26] and Beale [3]. It is a 

dynamic linear programming model characterized by uncertain future outcomes for some 

parameters, as follows. 
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( )[ ]ωxcx , Q E  min Z ω+=  (1) 

Subject to 

0≥≥ xbAx ,   (2) 

where  ( ) ( ) yωωx ⋅=  fmin  , Q  (3) 

Subject to 

( ) ( ) ( ) xωBωdyωD         +=  (4) 

0  ≥y , Ω ∈ω .  

The model is separated into two stages. At the first stage, referred to Equations (1) and 

Equation (2), the decision variables are chosen to minimize the direct cost and expected 

recourse cost that faces the recourse action taken. At the second stage, referred to Equations 

(3) and Equation (4), the decision variables are chosen due to the future uncertainty defined 

by probability space (Ω, P). Matrix A, vector b, and vector c are known with certainty. The 

function Q(x, ω), is referred as the recourse function. The technology matrix D(ω), the 

right-hand side d(ω), the inter-stage link matrix, B(ω), and the objective function coefficients 

f(ω) may be random. For a realization ω, the corresponding recourse action y is determined 

by Q(x, ω). Therefore, the optimal solution of the objective function hedges against all 

possible events ω∈Ω that might occur in the future. Kall [47] suggests that “here and now” 
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(HN) and “wait and see” (WS) are two different solution approaches to the stochastic 

programming. The WS approach assumes that the decision maker would not make the optimal 

decision until the outcome of a random variable can be observed. It is clear that such a 

solution is not implemented. The HN approach represents the true stochastic optimization 

solution without knowledge of the realization of random variables. A number of different 

algorithmic approaches have been proposed for solving the stochastic linear programming 

stated above, Equations (1) – (4). Refer to Wets [74] for an investigation of the recourse 

problem. Later, Wets [75] surveyed the use of large-scale linear programming techniques. 

Using mathematical programming techniques seemed to be one of the promising approaches 

to solve stochastic problem in some special cases, since stochastic models address the 

shortcomings of deterministic models directly. There are two measures to evaluate whether 

stochastic approach can be nearly optimal or nearly accurate: the expected value of perfect 

information (EVPI) and the value of the stochastic solution (VSS). EVPI and VSS give the 

motivation for stochastic programming in general and remain a key focus for the sensitivity 

analysis. EVPI measures the value of knowing the future with certainty while VSS assesses 

the value of knowing and using distributions on future outcomes. 

Uncertain demand is a realized nature of production process, so a lot of researches in 

production planning implemented stochastic programming to make meaningful planning 
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decisions. Bakir et al. [2] studied a realistic planning environment for a multi-product 

multi-period with stochastic demand. The normally distributed stochastic demand is 

approximated by a discrete approximation method. Gupta et al. [35] proposed a two-stage 

stochastic programming approach for incorporating demand uncertainty in multisite midterm 

supply chain planning problem. At the expense of imposing the normality assumption for the 

stochastic product demands, Gupta et al. [35] evaluated the expected second stage costs by 

analytical integration yielding an equivalent convex mixed-integer nonlinear problem. Zhang 

et al. [82] consider a discrete-time capacity expansion problem involving multiple families 

and multiple machine types, and non-stationary stochastic demand. They used a novel 

assumption that demand can be approximated by a distribution in order to allow them to solve 

the problem as a max-flow, min-cut problem. 

There has been a large variety of applications for stochastic programming; for example, 

fleet assignment by Ferguson and Dantzig [31], capacity planning by Christie and Wu [21], 

water resource management by Watkins et al. [73], and production planning by Leung et al. 

[52]. Many other references appear in King’s survey [49]. 

2.3.2  Chance-Constrained Programming 

It is apparent that many real world problems contain uncertainty. Charnes and Cooper 
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[15] were the pioneers who proposed chance constrained programming (CCP) as a means of 

managing uncertainty and probability. It provides a powerful means of modeling stochastic 

decision system which has ability to meet the constraints with certain reliability in an 

uncertain environment. The general formulation of CCP is as Equation (5) – (7): 

  min  Zccp cx=  (5) 

Subject to 

00 bx A   ≥  (6) 

[ ] [ ] I,,i,,whereP iiii 110 =∈≥≥ αα ,hxA  (7) 

Let ( ) I,,i, iii 1=∀= ,hAξ , be a random vector on the probability space (Ω, F, P). 

If the Ai is a row vector, the ith constraint is called individual constraint. If Ai is a r×c matrix 

with r >1, then the ith

I,,ihxaP
r

j
i

c

k
ijjjk 1

1 1
=∏ ≥



∑ ≥

= =
β

 constraint is referred to as joint chance constraint. When the stochastic 

variables are independent, then the joint chance-constraint (7) can be decomposed into the 

product of the constituting chance-constraints as Equation (8). 

 (8) 

If the stochastic variables are correlated, then the joint probabilities cannot be 

decomposed. This complicates the calculation of the probability and requires the simultaneous 
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integration of multivariate probability distributions. Plackett [60] proposed a reduction 

formula for multivariate normal integrals. 

There are a lot of practical problems which always involve uncertainty and probability. 

Chance-constrained programming has been implemented in a variety of fields. For instance, 

Petkov et al. [59] proposed a stochastic model to maximize the expected profit subject to the 

satisfaction of product demands with pre-specified probability levels, electrical circuit design 

by Ji et al. [45], routing problem by Wu et al. [78], soil conservation problem by Zhu et al 

[82], path planning for autonomous vehicles by Blackmore et al. [7], reservoir management 

by Azaier et al. [1], aggregate production planning by Silva Filho et al. [67], and production 

planning and sourcing problem by Yildirim et al. [79]. In general, obtaining the optimal 

solution of chance-constrained programming is not tractable. Bitran and Yanasse [6] 

considered deterministic approximations to a stochastic production problem on a rolling 

horizon basis. They showed that the service level constraint can be transformed into a 

deterministic equivalent constraint by specifying certain minimum cumulative production 

quantities that depend on the service level requirements. Kumral [50] proposed a combination 

of the chance-constrained programming and the genetic algorithm to find the optimal mine 

system parameters simultaneously. Jana et al. ([42], [43]) proposed a stochastic simulation 

based genetic algorithm approach to solve chance constraint programming problem in which 
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the random variables follow some discrete distributions [43] and continuous distributions [42]. 

Manandhar et al. [55] provided a semantic based on scenarios to model combinatorial 

decision problems involving uncertainty and probability, while Prekopa [63] provides a 

numerical solution of probabilistic constrained programming models. 

2.4 Normal Transformation 

For most industrial applications, normality is assumed due to the advantage of the 

analytical convenience and existing effective statistical methods. For example, Platt et al. [60] 

assumed that the lead time demand is normally distributed, so the asymptotic results can be 

used as the EOQ from zero to positive infinity to fit a theoretic curve for the order quantity Q 

and the reorder point R. Silva Filho [68] proposed the cumulative demand is a random 

variable represented by a compound Poisson process. Because the demand affects the 

inventory system, a chanced constraint is used to preserve the inventory constraint explicitly 

in a stochastic optimization model. A Gaussian approximation is also proposed to the 

compound Poisson process. You et al. [80] used Box-Cox transformation method to transform 

the experiment data investigated from microcircuit process. But, for many engineering 

operations such as locating pins or automatic sensors, the manufacturing data is often 

truncated or appears to be non-normal. Pezdek [64] gave a non-normal data example and 



 

18 

 

perform process performance analysis. Pezdek [64] demonstrated how the non-normal 

characteristic would significantly impact on the data analysis result and the conclusion, thus 

convey incorrect process information. If the process characteristic is not normally distributed, 

there are two popular approaches to transform the non-normal data into a normal one. First, 

Johnson [46] proposed a system of three transformation families for selection of a 

transformation to normality. Let X be a random variable and Z be a standard normal variable. 

The three transformation families in Johnson system are, respectively as Equation (9) – (11),  

 

( ) ( )[ ]{ } ελεελεηγ +<<−−−+= X,XXlnZ , (9) 

( ) εεηγ >−+= X,XlnZ , (10) 

( )[ ] ∞<<∞−−+= − X,XsinhZ λεηγ 1 , (11) 

where - ∞ < γ, ε < ∞, η > 0, and λ > 0 are four parameters. The distribution determined by (9) 

is called the SB distribution denoted by SB (γ, η, ε, λ). Similarly, the distribution determined by 

(10) is called the SL distribution denoted by SL(γ, η, ε), and by (11) called the SU distribution 

denoted by SU

[37]

 (γ, η, ε, λ). The subscripts, B, L, and U, refer to X being bounded, lognormal, 

and unbounded, respectively. Hahn and Shapiro  gave further description of these 

distributions. In using the Johnson system, the first step is to determine which of the three 
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families should be used. The next step is to estimate parameters of the transformation family 

selected. A moment approach in the selection step is to choose the transformation family 

according to which region of the ),( 21 ββ  plane the estimated third (β1) and fourth (β2

[69]

) 

standardized sample moments fall into. Slifker and Shapiro  pointed out the major 

shortcomings of this procedure such as high mean-square errors and vulnerability to outliers 

of the sample third and fourth moments. 

Another percentile approach prevails and is in fact mostly adopted in practice. Johnson 

[46] proposed a method, which uses four percentiles. Based on symmetrical points, Bukac [12] 

suggested procedures for estimating parameters of SB distribution. Later, Mage [54] 

presented a method of reducing Bukac’s quadratic equations to a quadratic equation. Slifker 

and Shapiro [69] suggested choosing four symmetric standard normal deviates equally spaced 

with intervals 2z, i.e. 3z, z, -z, and -3z, admittedly not a serious restriction. Bowman and 

Shenton [9] proposed a simple algorithmic solution for normal deviates -sz, -z, z, and sz 

where s and z are arbitrary positive constants and s > 1. Meanwhile, Owen [56] proposed the 

starship procedure to search out a transformation that most nearly transforms the sample to 

normality, which is not only tied to Johnson system but also many possibilities exist for the 

transformations. Chou et al. [20] recommended that use the set Z = { z0: z0 = 0.25, 0.26, …, 

1.25}, instead of a single chosen value, to fit all the Johnson distributions which are feasible 
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for the Slifker and Shapiro’s estimation formulas. The best-fit Johnson distribution is chosen 

to be the one that best transforms the data to normality among the z0 values in Z. However, 

this procedure cannot discriminate the SL distribution family from the other two families. 

Chen and Kamburowska [16] proposed a procedure, called M procedure, which is consistent 

by setting a bound on the parameter to prevent from an incorrect selection when the 

underlying distribution is an SL distribution. 

Box and Cox [10] modified the family of power transformation proposed by Tukey [71]. 

Its simple form defined as T λ: y y(λ)  

( )







=

≠=
0

01

  y,     λyln

 ,    λ
λ
-y

  y
λ

λ  (12) 

The transformation in Equation (12) is defined for y > 0. It is hoped that for some value 

of λ, a non-normal data can be fitted to a normal distribution. Box and Cox [10] used the 

maximum likelihood method to estimate the parameter λ. An analytical expression for the 

accuracy of maximum likelihood estimate of λ is derived by Draper and Cox [29]. Hinkley 

[39] used order statistics to estimate the transformation parameter. Later, Hinkley [40] 

assumed that there might be a value of λ making the transformed data nearly symmetry and 

proposed a similar method for choosing a symmetrical transformation based on the 

asymmetry degree of the sample, which is measured by Equation (13) 
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d = (sample mean – sample median)/sample scale (13) 

If the underlying distribution is symmetric, then the mean and the median must be identical. 

Thus, the sample data drawn from such distribution should reflect such property, and a good 

estimate of λ should minimize the value of d. 

Base on the Tukey’s [71] recommendation with setting λ to –2 ≤ λ ≤ 2, Hinkley [40] 

proposed a step-by-step procedure for computing the power of Box-Cox transformation 

based on moment of percentile may be presented as follows: 

Step 1: Choose -2 as an initial guess λ0

Step 2: Transform the original sample by taking the power λ

 of λ for a given random sample. 

0

Step 3: Calculate d defined in Equation (13) using the inter-quartile range as the sample 

scale. 

 and then find the sample 

mean, sample median, and sample inter-quartile range for the transformed 

random sample. 

Step 4: Check whether d is less than a predetermined precision level. If not, iterate Steps 

1-3 by increasing the magnitude of λ by unit of 0.05 as new λc, till the difference 

between λ0 and λc is smaller than the predetermined precision level. 
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Step 5: Use the λ derived from Step 4 as the optimal estimate λ̂ . Employ Shapiro-Wilk 

[66] test to check the normality of the transformed sample.
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3. Background Information and Problem Description 

3.1 The PUR Process of C/D Wafers 

Cost is only a part of the C/D wafer issue because they also occupy the capacity of 

equipment, which is capital intensive. The usage of C/D wafers in wafer manufacturing 

processes can be divided into five primary categories, viz., (i) product monitoring, (ii) 

equipment monitoring, (iii) preventive maintenance, (iv) the experiment with engineering lots, 

and (v) repaired equipment if breakdown. Therefore, good management ought to reduce the 

number of C/D wafers brought in to the manufacturing process and improve the efficiency of 

C/D wafer usage since the major characteristic of C/D wafers is that they can repeat the same 

functional test several times until they fail to conform to quality specifications related to 

requirements for cleanliness or thickness. The reuse statuses consist of three processes, viz., (i) 

pre-disposition, (ii) in-use, and (iii) recycle stages, termed the PUR process. Figure 3-1 

represents the cyclic relation among PUR process of a C/D wafer used in a specific process.  

3.1.1  Pre-disposition 

Before control wafers are used to monitor production, they have to finish a series of 

operations, called pre-dispostion stage, to meet the required specifications. The purpose of 

this stage is to set up the initial measurements of C/D wafers themselves. 
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3.1.2  In-use 

Control wafers are used to monitor process, qualify tools, and develop new process 

techniques. To test the wellness of the tool prior to manufacturing the production wafer, 

control wafers may be run concurrently with them to perform as a witness to the process, or 

may also be used to pilot a process before wafers are committed to a tool. Therefore, output 

parameters are taken from the control wafers and adjustments are made to the tool or process 

correspondingly. On the other hand, dummy wafers are used on two sides of wafer cassette to 

protect the wafers heated uniformly inside the furnaces. 

In engineering lots, control wafers are built the designed structure, similar to built onto 

the real wafers, to simulate the actual production. The effects of a specific process to the 

structure can be studied, characterized, and optimized. 

3.1.3  Recycle 

After in-use stage, there are some remnants and particles left on the surfaces of C/D 

wafers. To reduce the WIP level of C/D wafer, recycle is a key process which polishes off the 

contaminants on the top of C/D wafers. This provides a clean C/D wafers re-used back to 

pre-disposition stage at a much reduced cost. 
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Figure 3-1  The cyclic relation among PUR process of a C/D wafer. 

 

 
Figure 3-2  Multi-level downgrading diagram for C/D wafer 
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3.2 The Resource Downgrading Characteristic of C/D Wafers 

The major characteristic of C/D wafers is that they can repeat the same functional test 

several times until they fail to conform to quality specifications related to requirements for 

cleanliness or thickness. The reuse statuses consist of the pre-disposition, in-use, and recycle 

stages, termed the PUR process, illustrated in Figure 3-2 with dotted arrows. We called it 

internal downgrading or recycling. Once a C/D wafer no longer conforms to the pre-defined 

specifications, it will be scraped or downgraded to lower grade of which the quality 

specifications are not so high. Hence, such a kind of downgrading is referred to here as 

external downgrading due to wafer quality, indicated by a dotted line and bold arrows in 

Figure 3-2. Furthermore, releasing new raw wafers as any grade of C/D wafers or 

downgrading C/D wafers that directly bypass the PUR process to lower grades where there is 

a deficit of C/D wafers is regarded as external downgrading due to demand, indicated by a 

solid line and bold arrows. 

Re-use is crucial to cost saving, but without some policy to prioritize and monitor it, the 

efficiency of C/D wafer could be decreasing. As a result, more expensive new C/D wafers will 

be brought into the manufacturing process. It is easy to see that C/D wafers are used in very 

large quantity occupying a significant portion of a fab’s expensive capacity. A good 
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management of C/D wafer must focus on identifying appropriate downgrading rules in order 

to increase both the recycled usage of C/D wafers and the throughput rates of wafers. 

3.3 Demand Uncertainty  

The semiconductor industry has become one of the leading industries in the world on 

account of rapid shrinkage of product design cycles and life cycles in the consumer 

electronics business. Therefore, competition is fierce and the pace of product innovation and 

changes in technologies is high. Due to the intensive capital investment, making efficient 

usage of current tools and well planning the production are of great important. Consequently, 

the demand for semiconductor products is becoming increasingly hard to predict. In the 

prevailing intangible business environment, with ever changing market conditions and 

customer expectations, it is necessary to consider the impact of uncertainties involved in the 

semiconductor industry. 

In the past of researches, deterministic models are assumed widely. But this assumption is 

rarely true. It is more reasonable to study this kind of “demand-driven” problems under 

uncertain environment because deterministic approach may thus yield unrealistic results by 

failing to capture the effect of demand variability on the tradeoff lost sales and inventory 

holding costs. Moreover, failure to incorporate a stochastic description of the product demand 
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could lead to either unsatisfied both customers and loss of market share or excessively high 

inventory holding costs. Buffa and Taubert [11] state that the normal, Poisson and negative 

exponential distributions have been found to be of considerable value in representing demand 

functions for inventory management. A classification of different areas of uncertainty is 

suggested by Subrahmanyam et al. [70] including uncertainty in prices, demand, equipment 

reliability, and manufacturing uncertainty. 

3.4 Problem Description 

3.4.1  Overview of stochastic management system of C/D wafers 

The stochastic management system of C/D wafers is depicted on a simplified 

representation of network system, as shown in Figure 3-3. While t = 1 represents the time 

period called "here and now", t = 2 is the next time period to "wait and see", and t = 0 is the 

previous time period. In Figure 3-3, each node represents the random demand for each grade 

of C/D wafers in each period. The solid arrows refer to external downgrading action due to 

demand while the segmented arrows refer to external downgrading action due to nature. The 

recycle or inventory is presented by dotted arrows. Therefore, in a stabilized system, the 

arrivals of C/D wafers at each node are equal to the departures. The inventory at the end of 

period t is available for withdrawal in the next period, and is also as the transit matrix that 



 

29 

 

provides the linkage between the periods of the model. To avoid affecting the processes, 

backlogging is not allowed.  

 

 

Figure 3-3 Schematic stochastic C/D wafers management system diagram 
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3.4.2  Assumptions 

A two-stage stochastic programming model for stochastic control and dummy wafer 

downgrading problem (SC/DWDP) and a chanced-constrained programming model for 

control and dummy wafer service level problem (C/DWSLP) were constructed for a 

theoretical manufacturing system based on the following assumptions: 

1. The product mix is given in period t = 1, which represents “now”. 

2. The multi-level downgrading rule is applied. 

3. Engineering lots are not considered. 

4. A shortage of C/D wafers is not allowed. 

5. The C/D wafers are classified into J grades. 

6. The downgrading graph for each product must be determined in advanced. 

7. A lot is the least unit for release, downgrading, and scrap. 

8. Each PUR process consists of three processes of operation. 

9. The maximum recycle ratio of C/D wafers for each grade is determined to allow the 

occurrence of unexpected breakages. (number of recycled to available C/D wafers 

ratio) 
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10. The minimum scrap ratio of C/D wafers for each grade is determined to avoid waste 

due to abundance of inventory (number of scraped to available C/D wafers ratio). 

11. The demands of products for all time periods are random and empirical. 

12. The integrated demands of C/D wafers of each grade at each period are 

independent. 

3.4.3  Stochastic C/D Wafers Downgrading Problem 

To attain the mission of C/D wafers in a fab, we define the stochastic C/D wafer 

downgrading problem (SC/DWDP) to minimize the total cost of C/D wafers while 

simultaneously determining their inventory policies, downgrading policies, and release rules 

for new wafers. We consider that the uncertainty of demands will result in more realistic 

planning decisions to meet rapidly changing future demands. Therefore, the purpose of this 

dissertation is to develop a two-stage stochastic programming model for SC/DWDP to 

minimize the total cost of C/D wafers and to set the quantity of new C/D wafers released and 

C/D wafers recycled or downgraded to meet the stochastic demands of each grade. The 

proposed stochastic model, which is balanced and hedges against various scenarios, can 

describe the real-world production setting more realistically than the static approach can. 

Furthermore, a discrete approximation of stochastic demand gives advantages in terms of 
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retaining a linear model and easier solutions by utilizing a single large equivalent linear 

programming model. It is more useful and efficient than a simulation approach. 

3.4.4  C/D Wafers Service Level Problem 

The influencing uncertainty of demands matters in making production decisions of C/D 

wafers. This feature makes C/D wafers production management appropriate for the 

application of chance-constraint programming (CCP), a more practical and general approach. 

The manufacturer has to meet the demand for multi-products according to the service level 

requirements set by its customers. And the demand for each product in each period is random. 

The C/D wafer service level problem (C/DWSLP) in a chance-constraint manner is presented. 

The chanced constraints will hold at least α of time, where α is referred to as the confidence 

level provided as an appropriate service level by the customers. The rolling horizon approach 

is proposed to dynamically transform the model into an equivalent deterministic problem 

based on the real life data at each time period and the optimal solution of the preceding 

period. 
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4. Optimization of Stochastic C/D Wafers Downgrading Problem 

4.1 Formulation of Stochastic C/D Wafers Downgrading Problem 

The integrated demand of the jth grade C/D wafers in each time period at the first stage 

is calculated by Equation (14). Given a scenario at the second stage, Equation (15) calculates 

the integrated demand of the jth
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The production planner’s objective is to minimize the total cost of the C/D wafers and 

to determine the supply quantity of C/D wafers at each grade for each period and inventory 

quantity at each grade for the next period. The first-stage formulation is given in Equations 

(16) – (21).  
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Subject to 
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All variables are non-negative integers. 

Equation (16) is the objective function that includes the cost of new C/D wafers, 

recycling cost, downgrading cost due to natural, downgrading cost due to demand, holding 

cost, and the expected cost of the second stage. The operative constraints, of which the first 

stage given a specific scenario, are formulated as follows. Equation (17) presents that the 

recycling capacity of the C/D wafers must meet the integrated demand of the jth grade. 

Equation (18) consists of balance constraints representing that the arrivals are equal to the 

departures at each grade. The recycle ratio is not more than a positive percentage given by 

Equation (19). The scrap rate is not less than a positive percentage given by Equation (20). 

The inventory of each grade is kept at a minimum level by Equation (21).  
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The second-stage formulation is given in Equations (22) – (27).  

( ) [ ] [ ] ( ) [ ]

( ) [ ] [ ]∑+∑ ∑+

∑+∑+∑=

==

−

=
++

=
++

==

J

j
j(s)j

J

j

jJ

k
k)(s)j(j

d
k)j(j

J

j
)(s)j(j

n
)j(j

J

j
jj(s)jj

J

j
j(s)

Ihxc

xcxcxcsQmin

1

2

1 1

2

1

2
11

1

2

1

2
00

 

(22) 

Subject to  

[ ] [ ] ,dxr )s(j)s(jjj
22 ≥  ,S,, ,J, s ,,j  1021 ==  (23) 

[ ] [ ] [ ] [ ] [ ] ,xIxxI
jJ

k
)s)(kj(j)s(j

j

k
)s(j)kj()s)(j)(j(j ∑+=∑++

−

=
+

=
−−−

0

11

1

11
11

0 1-

,S,, ,J, s ,,j  1021 ==  
(24) 

[ ] [ ] [ ] [ ] ,RxxIx r

j-

k
k)j(s)(j)(s))(j(jj(s)jj(s) ≤








∑++
=

−−−

1

1

22
11

12  ,S,, ,J, s ,,j  1021 ==  (25) 

[ ] [ ] [ ] ,RxIx s

)j(J

k
)s(j)kj(j)s(j)s(jJ ≥







∑+
+−

=
+

1

1

222  ,S,, ,J, s ,,j  1021 ==  (26) 

[ ] ,uI )s(j ≥2

 ,S,, ,J, s ,,j  1021 ==  (27) 

All variables are non-negative integers. 

In the second-stage formulation, Equation (22) represents the objective function of the 

second stage. Given a scenario, Equations (23) – (27) are similar to those at the first stage 

from Equation (17) – (21). Especially, the inventory for each grade at the end of period t = 1 
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is available for withdrawal in the next period, and provides the linkage between the two stages 

of the C/D wafer downgrading problem. All variables are non-negative integers. Finally, the 

first and second stage can be summed up into a single large linear programming model. 

Therefore, we determine all x’s and I’s to be optimal over all the scenarios because we solve 

the large linear programming model for all decision variables simultaneously. 

4.2 Optimization Methodology 

4.2.1  Demand Model and Scenario Construction 

The demands of products are modeled with a geometric Brownian motion process. 

Geometric Brownian motion (GBM) was firstly proposed to describe the variation of the 

stock price by Black and Scholes [7]. Benavides et al. [4] applied Geometric Brownian 

motion as the demand model for IC manufacturing industry, since the historical data is 

consistent with Semiconductor Industry Association data. According to Dixit and Pindyck 

[28], if [ ]t
mD  is the demand of product m in period t for C/D wafer downgrading problem, 

then the rate of change of this demand is assumed to be governed by Equation (28). 
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In Equation (28) dtdz tε=  and tε  is assumed as a standard normal random variable with 

respect to the time interval t. This model of demand implies that the variability of demand 
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increases linearly with the length of demand forecast horizon, so that over a finite time 

interval t, the change between the logarithms of demands in two different periods is 

distributed as Equation (29): 
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In models of decision making under uncertainty, it is essential to represent uncertainties 

in a form suitable for quantitative models. It is the most popular method for stochastic 

programming to generate a limited number of discrete scenarios that satisfy specified the 

random variables. Jarrow and Rudd [44] proposed binary tree with equal probability method 

to generate as small number of scenarios as possible and proved it has reasonably good 

approximation. 

Hence, this method is used to generate the demand distribution of each product at the 

second. Note that [ ]1
mD  represents the demand of product m in the period t = 1. There are two 

possibilities of demands for product m in the period t with probability 0.5 as Equation (30). 
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As an approximation example of five products, an event tree with 32 scenarios was 

constructed with two branches in each node, which represents high demand or low demand as 

shown in Figure 4-1. A scenario is a sequence of events. For example, scenario 1 is the set of 

event sequences {H, H, H, H, H} as high demands for each product A to E, respectively. 

 

 
Figure 4-1  Event tree and scenarios for SC/DWD problem model 

 

No need to reticence, there are no guarantees that those scenarios assembled in this 

particular manner can adequately represent the uncertainty of the C/D wafers demands caused 

by product mix. To address these potential limitations, sensitivity analyses are presented in a 

later section. 

S1      S 2       S 3       S 4        S 5       S 6        S 7       S 8         …          S 2 5       S 2 6    S 2 7      S 2 8    S 2 9       S 3 0    S 3 1     S 3 2 

* H represents high demand and L represents low demand 
Scenario
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4.2.2  Solution Procedure 

By taking all possible scenarios into account, the first- and second-stage linear 

programming models can be summed up into a single large linear programming model. The 

objective function of equation (16) can be extended to equation (31) for large-scale linear 

programming model. In other words, we are choosing all of x’s and I’s to be optimal over all 

the scenarios because we solve for all decisions simultaneously. 
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4.3 Implementation of Stochastic C/D Wafers Downgrading Problem 

To investigate the effect of the stochastic management system on the planning, 

real-world data is taken from a wafer fabrication factory located in the Science-Based 

Industrial Park in Hsin-Chu, Taiwan. 
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4.3.1  Numerical Example and Input Information 

In this production system, regarded as base case, there are five products A, B, C, D, 

and E with product mix 5: 7: 3: 4: 1 at the first stage. Based on historical data, we applied a 

geometric Brownian motion model and estimated the drift and variance parameters of the 

demands for each product, as given in Table 4-1. The monthly throughput target is 640 lots 

and the planning period is 28 days. C/D wafers can be categorized into three levels according 

to their conditions suitable for use in process. At the end of period t = 0, the inventory 

quantity is 30 for grade 1, 40 for grade 2, and 50 for grade 3. The maximum times of 

recycling a C/D wafer at each grade is 4, 5, and 6 for grade 1, 2, and 3, respectively. Table 4-2 

gives the frequencies of using the jth

 

 grade C/D wafers for each product and the unit cost for 

each kind is given in Table 4-4. The multilevel downgrading rule is implemented to minimize 

the total cost for SC/DWDP. Finally, the large Linear programming model is solved by using 

LINDO 6.01. 

Table 4-1  The parameters of demands for each product 
Product 

Parameters A B C D E 
μ 0.14 0.18 0.09 0.06 0.07 
σ 0.22 2 0.19 0.14 0.14 0.13 
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Table 4-2  The number of times for C/D wafer consumed 

by each product at each grade 
Product A B C D E 
Grade 1 6 4 6 7 5 
Grade 2 5 6 5 6 9 
Grade 3 9 7 8 6 5 

 
Table 4-3  The unit cost for  

(holding, recycling/natural downgrading, demand downgrading) 
 From 

To New Grade 1 Grade 2 Grade 3 
Grade 1 ( -- , 0 ,100) (  6 , 80, -- )   
Grade 2 ( -- , 0 ,100) ( -- , 70, 80 ) ( 6 , 70,  -- )  
Grade 3 ( -- , 0 ,100) ( -- , --,  80) ( -- , 60, 70 ) (  6 , 60, -- ) 

Scrap  ( -- , -- ,  5 ) ( -- , -- ,  5 ) ( -- , -- ,  5 ) 

 
Table 4-4  Economic benefit analysis for SC/DWDP 

Benefit Optimality VSS EVPI EV HN WS 
0.78% 0.02% 1139 29 146,414 145,275 145,246  

 

4.3.2  Experimental Results and Sensitivity Analysis 

The solution procedure includes the "here and now" (HN), "wait and see" (WS), and 

"expected value" (EV) approaches. To assess the benefit of the SC/DWDP model, the 

expected value of perfect information (EVPI) and optimality index are investigated. EVPI 

measures the value of knowing the future with certainty. Optimality is defined by the ratio of 

EVPI to the WS optimal solution. It indicates how costly the incomplete information about 
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the future is. To assess the value of knowing and using distributions on future outcomes, the 

value of the stochastic solution (VSS) and benefit are computed. Since benefit is the ratio of 

VSS to the HN optimal solution, the larger the benefit of the stochastic solution, the more 

implemental stochastic optimization is. 

The results for SC/DWDP are shown in Table 4-4. With perfect information, the 

minimized total cost of C/D wafers is 145246 dollars. With a "here and now" decision, we 

would make a minimized cost of 145275 dollars. Note that the optimality index is 0.02%, 

which means the stochastic solution is nearly optimal. In other words, the expected value of 

perfect information is worthless. On the part of the value of the stochastic solution, stochastic 

programming is superior to the expected approach by 0.78%, as shown in Table 4-4. This 

implies that, considering demand uncertainty, the accumulated capital could be saved up to 

0.3 million US dollars per year for wafer fabrication yielding 30,000 pieces of product wafers 

a month, since the WIP level of C/D wafers may be as many as 30,000 pieces priced at USD 

100 each. 

Here sensitivity analysis was conducted to determine how the results of the base case 

reported above vary with changes in the principal parameters of the model. Cost of new 

wafers, cost of holding, maximum recycle rate, minimum rate of scrap, and inventory level 

are included and experimental scenarios are shown in Table 4-5. 
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The results of the sensitivity analysis are summarized in the “tornado” diagram of 

Figure 4-2. The figure shows how the percentage of the optimal minimized total cost, 

compared with the base case, changes as the individual parameter is changed to the high and 

low values shown in Table 4-5. The dramatic impact of new wafer cost and maximum recycle 

rate plays the leading role in SC/DWDP management given demand uncertainties. The total 

cost of C/D wafers varies linearly by 7% while the cost of new wafers varies by 20%. Since 

the price of new wafers is market-driven, it should be considered as a random variable in 

future research. Similarly, the impact of the maximum recycle rate on the total cost reflects 

the importance of reuse characteristic. Nevertheless, a 10% decrease in the recycle rate 

resulted in 8% increase of total cost. On the contrary, the same amount increase in the recycle 

rate only saves 4% of total cost. Therefore, one of the thumbs-up rules in C/D wafer 

management is to keep the recycle rate as high as possible. In contrast, the results show that 

holding cost, minimum scrap rate, and inventory level restrict the impact that the volatility of 

demands has on total cost. 
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Table 4-5  Parameter values for sensitivity analysis 

Scenario 
number 

Sensitivity 
parameter 

New 
wafer 
cost 

Recycle  
rate 

Holding 
cost 

Scrap 
rate 

Inventory 

0 Base case 100 80 % 6 10 % 40 

1 
New wafer 

cost 80 80 % 6 10 % 40 

2 New wafer 
cost 60 80 % 6 10 % 40 

3 Recycle  
rate 100 70 % 6 10 % 40 

4 Recycle  
rate 100 90 % 6 10 % 40 

5 Holding 
cost 100 80 % 4 10 % 40 

6 Holding 
cost 100 80 % 8 10 % 40 

7 Scrap rate 100 80 % 6 5 % 40 

8 Scrap rate 100 80 % 6 15 % 40 

9 Inventory 100 80 % 6 10 % 30 

10 Inventory 100 80 % 6 10 % 50 
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Percentage of change of costs (%) 

Figure 4-2  Sensitivity of values of optimal alternatives 
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5. Optimization of the C/D Wafers Service Level Problem 

5.1 Formulation of Stochastic C/D Wafers Service Level Problem 

In this section, the objective of C/D wafer service level problem (C/DWSLP) is to 

minimize the total cost of C/D wafers in the system. A chance-constrained programming 

model is developed to determine how many new C/D wafers to release, how many C/D 

wafers to be reuse, to be downgraded due to nature or demand, and how many inventories to 

carry. The C/DWSLP with probabilistic constraints can be formulated as follows: 

[ ] [ ] [ ] [ ]

[ ] [ ]
∑



















∑+∑ ∑+

∑+∑+∑+∑

=

=

==

−

=
++

−

=
+

===T

t J

j

t
js

(s)J

j

jJ

k

t
k)j(j

(d)
k)j(j

J

j

t
jj

(n)
)j(j

J

j

t
jjjj

J

j

t
j

J

j

t
jj

xcxc                                          

xcxcxcIh
 min

Zmin

1

11 1

1

1
1

11
00

1  (32) 

Subject to 

[ ] [ ] αdxrP
t

τ

τ
j

t

τ

τ
jjj −≥



 ∑≥∑

==
1

11
, ,J,,,j 21= .T,,t 1=  (33) 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] ,xxxIxxI t
js

jJ

k

t
k)j(j

t
jj

t
j

j

k

t
k)j(j

t
))(j(j

t
j +∑++=∑++

−

=
+

=
−−−

−

01
11

1  

,J,,,j 21= .T,,t 1=  

(34) 

    
     



 

47 

 

[ ]

[ ] [ ] [ ]
rj

k

t
j)kj(

t
)j)(j(

t
j

t
jj R

xxI

x
≤

∑++
=

−−−
−

1
11

1
, ,J,,,j 21= .T,,t 1=  

(35) 

[ ]

[ ] [ ] [ ] [ ]
s

t
js

jJ

k

t
k)j(j

t
jj

t
j

t
js R

xxxI

x
≥

+∑++
−

=
+

0

, ,J,,,j 21= .T,,t 1=  
(36) 

[ ] uI t
j ≥ , ,J,,,j 21=  .T,,t 1=  (37) 

All variables are non-negative integers.          

The objective function, Equation (32), is to minimize the total cost considered. Equation 

(33) imposes the service level requirement for each grade on cumulative demand from the 

beginning up to the period t in order to ensure the jth grade C/D wafers satisfying the demand 

with a predetermined confidence level 1－α. Equation (34) is representing the balance of the 

arrival C/D wafers and the departures at each grade in any time period. The recycle ratio is no 

more than a positive percentage expressed by constraint Equation (35). The scrap rate is no 

less than a positive percentage represented by constraint Equation (36). The inventory of each 

grade must be greater than a safety stock level shown by constraint Equation (37). Finally, the 

production quantities are non-negative integers. 
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5.2 Optimization Methodology 

The solution of the above problem in period 0 for the planning horizon [0, T] is referred 

as the static solution for dynamic problem. The static solution is obtained by using the 

available information about the distribution of demand in the future periods and the initial 

inventory. A decision that sets the C/D wafer quantity of each grade at each period is referred 

to as the dynamic solution. In practice, there are some difficulties with solving the stochastic 

dynamic problem, such as dimensionality and integrating constraints underlying stochastic 

processes. 

In this section, an integrated approach is proposed for minimizing the total cost of C/D 

wafers in the system. The approach is developed to decide an appropriate C/D wafer quantity 

for each grade in each period with a service level predetermined by customers. It integrated 

three phases as follows:  

(i) Transform the empirical demand data of products, if non-normal, into a set of data 

which is approximately normal distributed,  

(ii) Estimate the normal distribution of C/D wafers demand for each grade,  

(iii) Transform the chance-constrained programming model into a deterministic one and 

then solve it dynamically by implementing rolling horizon method.  
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The detail procedures are in the following: 

Step 1: Compute the integrated demands for each grade of C/D wafers in period t by 

Equation (38). 

,jmmtjt ××× ⋅= fDd  ,J,,,j 21= ,M,,,m 21= .T,,t 1=  (38) 

Step 2: Use method of percentile (MOP) proposed by Hinkley [40] to choose an 

appropriate power, λ, to transform the empirical demand data into a normal 

distribution with mean, mµ , and standard deviation, 2
mσ .  

Step 3: According to normality, the demand of each grade C/D wafer in period t follows 

a normal distribution as expressed by Equation (39) 
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Then, the cumulative demand of each grade C/D wafer from the beginning to the 

period t also follows a normal distribution as expressed in Equation (40). 
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τ  denote the minimum cumulative C/D wafer quantity of the 

jth grade in period t. Then the chance-constrained Equation (33) can be rewritten 
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as Equation (41). 
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After standardization, Equation (41) can be expressed by Equation (42) 
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where [ ]•Φ  denotes the cumulative distribution function of standard normal. 

Then the probabilistic constraint Equation (42) can be expressed equivalently by 

Equation (43). 
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Step 4: Use Equation (43) to replace Equation (33) of the C/DWSLP formulated in the 

previous section. The rolling horizon approach repeats this procedure by using 

the available information in each period until time T. 
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5.3 Implementation of chance-constrained C/D Wafers Problem 

5.3.1  Numerical Example and Input Information 

To investigate the applicability and effects of the proposed model and approach, actual 

data is taken from a wafer fabrication factory. There are four products and three grades of C/D 

wafers. Table 5-1 presents the historical demand records of all products in the last five years. 

Table 5-1  The demands of all products in the last five years 

Time 
 Period 

Past 5 
Years 

Product 

A B C D 

1 

1 126 95 164 304 
2 117 105 182 299 
3 89 69 209 301 
4 78 89 206 345 
5 69 58 219 367 

2 

1 158 90 198 358 
2 134 88 178 329 
3 117 99 169 432 
4 108 56 159 477 
5 99 63 123 492 

3 

1 156 149 229 302 
2 105 110 268 295 
3 121 105 201 302 
4 135 103 267 350 
5 98 96 294 368 

4 

1 123 145 268 327 
2 134 138 259 338 
3 156 135 249 319 
4 89 145 295 323 
5 98 166 283 367 
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The frequencies of using each grade C/D wafers for products are shown in Table 5-2. 

Table 5-3 is the cost information. The initial conditions of this system are in the following: 

400,200,100,100,100,400 321
0
3

0
2

0
1 ====== uuuIII  

 

Table 5-2  Frequency of using the jth

Products 

 grade C/D wafers for products 

Grades 
1 2 3 

A 5 4 3 
B 5 3 4 
C 3 4 5 
D 4 3 5 

 
 

Table 5-3  The unit cost for 

(holding, recycling/natural downgrading, demand downgrading) 
 From 

To New Grade 1 Grade 2 Grade 3 
Grade 1 ( -- , 0 ,100) ( 6 , 50, --  )   
Grade 2 ( -- , 0 ,100) ( -- , 50, 80 ) ( 6 , 40,  --)  
Grade 3 ( -- , 0 ,100) ( -- , -- , 80) ( -- , 30, 70 ) ( 6 , 30, -- ) 
Scrap  ( -- , -- , 5 ) ( -- , -- ,  5 ) ( -- , -- ,  5 ) 

 

5.3.2  Experiment Results and Sensitivity Analysis 

The above chanced-constraint C/DWSLP with full downgrading rule, regarded as “base 

case”, was solved to fulfill 95% of service level. Using method of percentile, the best power λ 

is zero for empirical cumulative demand data in each period. This yields the optimal solution 
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of 733255 by Lingo 8.0. Accordingly to the results, the cost analysis is depicted by Figure 5-1. 

The new C/D wafers were consumed only at the first grade to ensure as high efficiency as 

possible (Figure 5-1 (a)). On the contrary, the inventory at the first grade only keeps pre-set 

minimum safety inventory to avoid running out of stock (Figure 5-1 (b)). 

Natural downgrading is the main characteristic for C/D wafers, so it is the best way to 

increase the utilization. Most of natural downgrading cost is spent at the first grade 

downgraded to the second grade, shown in Figure 5-1 (c). It means that most of surplus values 

of the first grade C/D wafers pass on to the next grades. On the other hand, the demand 

downgrading is a waste of C/D wafer capacity. Therefore, there is no cost for demand 

downgrading, shown in Figure 5-1 (d), only if unexpected demand occurs. As shown in 

Figure 5-1 (e), the recycling cost depends on the unit cost and the amount of demand. The 

highest scraping cost happened at the third grade in each time period, referring to Figure 5-1 

(f). This is because the most of C/D wafer capacity has been exhausted. Based on the cost 

analysis above, the proposed approach performs quite well in fulfilling service level 

predetermined by customers. 
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Figure 5-1  Cost analysis for the base case 
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 Next, the base case problem is solved for varying C/D wafers service levels. The optimal 

total costs incurred are illustrated in Figure 5-2. As shown in the figure, the total cost 

increases approximately linearly with service level. This initial linear relation changes to an 

exponential one at service level ranging from 90% to 99%. This indicates that the service 

level can be improved by 9%, from 90% up to about 99%, at the expense of modest cost 

increases. Furthermore, the continuously increasing slope of the curve implies that the cost 

resulted in per percent change in service level increases with service level. This agrees with 

the classic law of diminishing returns. 

 

Figure 5-2  Variation of total cost with service level 

For sensitivity analysis, seven experiment scenarios are designed and shown in Table 5-4. 

The first row of the table shows the base case above, while the successive scenarios are 20% 
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deviations from the base case to capture the model sensitivity with respect to downgrading 

rule, new wafer cost, natural downgrading cost, and demand downgrading cost. Holding cost 

is taken the same for all cases, since it only occupies relative small portion of the total cost.  

Results presented in the “tornado” diagram of Figure 5-3 summarize the rate of change in 

total cost with respect to new wafer cost, natural downgrading cost, and demand downgrading 

cost.  

Table 5-4  Experiment scenarios for sensitivity analysis 

Scenario 

number 

Sensitivity 
parameter 

New 
wafer 
cost 

Downgrading 
Rule 

Natural 
downgrading 

cost 

Demand 
downgrading 

cost 

Holding 
cost 

1 Base case 100 Full (40, 30) (80, 80, 70) 6 

2 high new  
wafer cost 

120 Full (40, 30) (80, 80, 70) 6 

3 low new  
wafer cost 

80 Full (40, 30) (80, 80, 70) 6 

4 
high natural 
downgrading 

cost 
100 Full (48, 36) (80, 80, 70) 6 

5 
low natural 

downgrading 
cost 

100 Full (32, 24) (80, 80, 70) 6 

6 
high Demand 
downgrading 

100 Full (40, 30) (96, 96, 84) 6 

7 
low demand 
downgrading 

cost 
100 Full (40, 30) (64, 64, 56) 6 
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New wafer cost illustrates the leading role in C/D wafers management given demand 

uncertainties. The total cost of C/D wafers varies linearly by 7% while the cost of new wafers 

increases or decreases 20%. On the other hand, the results indicate that increasing the natural 

downgrading cost by 20% has a near 4% increasing effect on total cost. It reveals, instead of 

releasing new wafers, that reuse downgrading wafers is more efficient and economic. In 

contrast, demand downgrading cost makes no impact on total cost since it is the last resource 

to use because its high cost and inefficiency. 

 

 
Figure 5-3 Tornado diagram for sensitivity analysis  
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6. Conclusion Remarks  

6.1 Concluding Remarks 

C/D wafer management is a challenge to engineers in wafer fabrication. In practice, 

most C/D wafer management still relies on the experience of field managers. But, setting 

proper downgrading rule and satisfying service level predetermined by customers becomes a 

very essential task. There are three contributions of this dissertation. First, uncertain demand 

condition, the nature of reality, is considered rather than deterministic demand assumed by 

most other researches. Secondly, a two-stage stochastic programming model for C/D wafer 

downgrading problem is proposed to determine the quantities of new wafer supply, recycling, 

and downgrading for each C/D wafer grade. Finally, a chance-constrained programming 

model is proposed to manage C/D wafers to meet service level set by customers. 

A numerical example implements the proposed two-stage stochastic model for C/D 

wafer downgrading problem (SCDWDP) to minimize the total cost of C/D wafers when 

demands are uncertain. It verified that this type of model can provide different insights than 

the deterministic optimization model, in essence, which assumes that future demands are 

known with certainty. Given the substantial uncertainties of the semiconductor manufacturing 

business environment, the ability of a stochastic model to deliver the leading performance 
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across a wide range of sensitivity analysis is impressive and valuable. In the presence of 

uncertainty, it is believed that implementing the multilevel downgrading rule will result in 

relatively significant savings and increase utilization efficiency by prolonging the life cycle of 

C/D wafers. However, for C/D wafers downgrading problem, it is impossible to find a 

solution that is an ideal under all circumstances; even decisions in stochastic models are 

balanced, or hedged against various scenarios. Therefore, care must be taken not to overstate 

the benefits of stochastic models.  

Secondly, a chance-constrained programming under demand uncertainty was proposed 

to minimize the total cost subject to constraints for the satisfaction of multiple-product 

demands with a pre-specified level of probability. In addition, to solve the C/D wafer service 

level problem, an integrated approach was proposed by combining normal transformation 

technique and rolling horizon method to solve the resulting mathematical program. 

However, uncertain demand is assumed to be normal in most of researches due to its 

advantages in computations. Normality needs to be tested rather than assumed in order not to 

induce bias of the analysis. In this paper, we propose implementing Box-Cox transformation 

as a priori means to the behavior demand distributions. On the other hand, normality of 

demands gives feasibility that chance-constrained programming can be represented as an 

equivalent integer programming formulation. 
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Nowadays, semiconductor manufacturers invest millions of dollars annually to manage 

control and dummy wafers, so any opportunity that results in savings will be focused. It is 

believed that both the proposed model and the integrated approach contribute a lot of saving 

to manufacturers. Both stochastic downgrading and service level problems provide the 

practical solutions for managing C/D wafers in a fab. With adoption of the proposed 

stochastic models, a manager can make the utilization of C/D wafers more effective and 

efficient. And then a wafer fab can create a higher return from investment and be more 

competing in the market. 

6.2 Future Research 

Future research directions might include development of efficient dynamic heuristics to 

solve larger scale dynamic downgrading problem, focus on estimating a demand model and 

generating economic scenarios to improve the discrete approximation of the probability 

distribution. In addition, establishing a multi-objective stochastic model for C/D wafers 

problem to minimize total cost can achieve multiple planning targets at one time. 
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