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under Demand Uncertainty

Student : Yi Shu Yang Advisor: Dr. Yung Chia Chang

Department of Industrial Engineering and Management

National Chiao Tung University

ABSTRACT

The first subject of this dissertation is to study a realistic planning environment in wafer
fabrication for the control and dummy wafers problem (C/DWP) with uncertain demand. A
two-stage stochastic programming model-is developed based on scenarios and solved by a
deterministic equivalent large linear programming model. The model explicitly considers the
objective to minimize the total cost of C/D wafers.-A real-world example is given to illustrate
the practicality of a stochastic approach. The results are better in comparison with
deterministic linear programming by using expectation instead of stochastic demands. The
model improved the performance of C/D wafers management and the flexibility of
determining the downgrading policy. For the inventory management with service level, a
chanced-constrained model is developed to minimize the total cost and to keep satisfaction of
customer with pre-specified probability level. Based on rolling horizon method, this model is
transformed into a dynamically equivalent linear problem. A numerical example problem is
illustrated to provide information for setting customer satisfaction levels and unfolding

effective inventory management options.

Keywords: control and dummy wafers, stochastic programming, chance-constrained

programming, demand uncertainty
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Notation

Index Definition Sets
m Product M = {1,2,..,M}
J Sequencing grade of C/D wafer J = {1,2,...,J}
k Number of grades changed K = {12, ...,J1}
S Demand scenario & = {1,2,..5}
t Time period T = {0,1,...,. T}

Notations for stochastic C/D downgrading problem and C/D service level problem

I Et] Quantity of inventory-for the j" grade of C/D wafers in period t

x([)t} Quantity of new C/D:wafers released to the j grade in period t

xEtj] Quantity of the j™ grade C/D'wafers for recycling in period t

X[-t]- Quantity of the j™ grade C/D wafers downgraded to the (j+k)™ grade due to
1k demand in period t

ths] Quantity of the j™ grade C/D wafers scraped in period t

Dr[‘t1] Matrix of demand of the product m in period t

d Et] Matrix of the integrated demand for the j™ grade C/D wafers in period t.

fjm Frequency of using the j grade C/D wafers in the process for product m

Cy Cost of the new C/D wafer/ per unit
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Cost of recycling a C/D wafer at the j™ grade/ per unit

Cost of natural downgrading a C/D wafer from the i grade to the j™ grade/ per
unit
Cost of demand downgrading a C/D wafer from the i grade to the j™ grade/

per unit

Cost of scraping a C/D wafer

Cost of holding the j™ grade C/D wafer

times of recycling for a C/D wafer at the " grade

Minimum level of inventory of the C/D wafers at each grade
Maximum rate of recycled C/D wafers at each grade
Minimum rate of scraped C/D-wafers at each grade

Service level

Expected demand of product.m

Demand variance of product m
Total demand for the | grade C/D wafers in period t, (scenario s)

Quantity of inventory for the " grade C/D wafers in period t (scenario s)

Quantity of new C/D wafers released to the j™ grade in period t (scenario s)

Quantity of the j™ grade of the C/D wafers for recycling or external

downgrading in period t (scenario s)

Quantity of the j™ grade of the C/D wafers downgraded to the (j+k)™ grade due

to demand in period t (scenario s)



1. Introduction

1.1 Motivation

Control and dummy (C/D) wafers are indispensable to manufacturing processes in

semiconductor wafer fabrication. Control wafers are used to measure the refraction indices

and etching rates in order to test the quality of equipment and monitor the process prior to

risking the real product wafer. This ensures process stability and normal equipment operation.

Control wafers may also be used with" products-together as proof of product quality in the

process by measuring particle numbers-and film thickness. Dummy wafers are used to

distribute heat uniformly insidethe furnaces. Each inspection item requires C/D wafers for

different devices. Figure 1-1 represents-an overview of the applications of C/D wafers in a

wafer fabrication. Any lack or surplus of C/D wafers may cause the loss of equipment

capacity and production movement because they occupy equipment capacity of wafer

fabrication, not only affecting production planning but also decreasing process yield.

Besides the cost and quality issues, the lifecycles of C/D wafer make management a real

challenge. The major characteristics of C/D wafers is that they can repeat the same functional

test several times until they fail to conform to quality specifications related to requirements

for cleanliness or thickness. When a qualification is due, the C/D wafers associated with that



process is pulled from the inventory. If the number of C/D wafers is not enough, new C/D
wafers are released. Once the C/D wafer is used, it has to be checked whether it can be reused
or not. If yes, it can either return back to the inventory, or to a lower grade based on the
demand. Good management can reduce the number of C/D wafers brought in to the

manufacturing process and improve the efficiency of C/D wafer usage.

Therefore, the main challenges of C/D wafer management are downgrading problem

and inventory control.
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Figure 1-1 Applications of C/D wafers in process



1.2 Objectives

C/D wafer management is a crucial issue of complexity in the wafer fabrication, because
it needs to consider not only downgrading policy, release rule, and inventory control, but also
service level under demand uncertainty. Even though many researchers have focused on C/D
wafers management, little study has been done under demand uncertainty which is a
realization of nature. In real world, the manufacturer has to meet the demand for different
products according to the service level requirements set by its customers. To capture the
trade-off between customers satisfaction and-production costs, it makes C/D wafers

management effectively and efficiently. This research attempts to:

1. Develop a two-stage stochastic programming ‘model to minimize the total cost of
C/D wafers and to set the quantities of new C/D wafers released and C/D wafers

recycled or downgraded to meet the stochastic demands of each grade.

2. Develop a chance-constrained programming model to minimize the total cost of
C/D wafers and to make production and C/D wafers sourcing decisions during the

planning horizon subject to the service level requirements set by customers.

To attain the mission of the stochastic C/D wafers downgrading problem (SC/DWDP), a

scenario-base approximation approach is proposed to give advantages in terms of retaining a



linear model and easier solutions by utilizing a single large equivalent LP model. Next, to

achieve the objectives of C/D wafers service level problem (C/DWSLP) constructed by a

chance-constrained programming model, an approach is proposed to decide an appropriate

C/D wafer quantity for each grade in each period. The approach includes three phases: (i)

transforming the empirical cumulative demand data, if it is non-normal, into a set of data

which is approximately normal distributed, (ii) transforming the chance-constrained

programming model into an equivalent integer programming, and (iii) using rolling horizon

method to solve the problem dynamically.

1.3 Thesis Outline

The remaining of this study is arganized as follows.

Chapter 2 reviews four portions, viz., (i) downgrading resource (ii) inventory

management (iii) stochastic Programming and (iv) normal Transformation. Chapter 3

describes the background information including: the PUR process of C/D wafers, the resource

downgrading characteristics of C/D wafers, demand uncertainty, and assumptions of this

study. In chapter 4, a two-stage stochastic programming model is proposed, while a

chance-constrained programming model is presented in chapter 5. Finally, conclusion and



future research are given in chapter 6. Figure 1-2 illustrates the architecture of these six

chapters in this study.

1. Introduction

2. Literatures
Review

3. Background
Information and

Problem Description

4. SC/DWDP 5. C/DWSLP

Conclusion and
Future Research

Figure 1-2  Organization of this study



2. Literature Review

The purpose of using C/D wafers is to assure that the wafer manufacturing process

operations meet the required manufacturing specifications. Downgrading resources and

inventory control are two characteristics of C/D wafer management. To properly account for

product demand fluctuate, this research considers that the demand is uncertain.

Rare researches have been conducted on C/D wafer management since Wong and Hood
[76] used discrete event simulation to runa hypothetical fab model with an industry-standard
CMOS base process. They did not provide a method for efficiently managing test wafers but
only examined the impact of test wafers on process cycle time, wafer throughput, and fab line
equipment capacity requirements. ‘Chen ‘et al. [17] pointed out the issues about C/D wafer
management. Later, Chen et al. [19] proposed a pull system to manage C/D wafers in order to
increase the efficiency of C/D wafers. According to the above, downgrading rules and
inventory control are the keys of a good C/D wafers management. Therefore, the literature
review includes downgrading resources, inventory management, stochastic programming, and
normal transformation. The first two topics are related to the C/D wafer management, while

the last two are related to methodologies implemented in this research.



2.1 Downgrading Resource

Due to the reuse and downgrading of the C/D wafers, resource downgrading problem is
quite different from other production problems. Some researchers focused on downgrading
rules. Chen, et al. [18] suggested downgrading and release rules for C/D wafers. Foster, et al.
[32] studied test wafer consumption by simulation. Although simulation can realize stochastic
events and observe the effects by the current state of the system during a specific simulation
run, it needs more time to produce results, and the randomness does not guarantee the same
results between different runs. On<the other;hand, Foster; et al. [32] also suggested “lowest
inventory first” downgrading rule which only can yield suboptimal solution. Chung, et al. [23]
proposed a linear programming model for the C/D wafers downgrading problem to minimize
the total cost of C/D wafers by using expected demand in the photolithography area of a wafer
fab. Wu, et al. [77] aimed to minimize the long-term daily use of brand-new C/D wafers in a
fab by a linear programming model. Ozelkan and Cakanyildirim [57] represented a resource
downgrading problem as a network model with side constraints, which results in an integer
programming formulation. Of the above, little work has been done to include the uncertainty
of demands so as to meet the rapidly changing demands of the future. Liou, et al. [53]
established a capacity forecast model for C/D wafers for decision support instead of basing it

on personal experience or the historical reservation data in practice. Popovich, et al. [62]



mentioned that Motorola MOS12 designed a re-use matrix to determine the possible uses for
C/D wafers. However, it is manual and thus has limitations due to the complexity of

identifying downgrading paths and controlling the inventory of C/D wafers.

This downgrading substitution structure also occurs in some other practical settings, for
example, in the steel industry by Wagner et al. [72], memory chips by Leachman [51],

inventory policies of priority by Duran et al. [30], and semiconductor chips by Hsu et al. [41].

2.2 Inventory Management

Inventory has been one of the maost investigated.areas of research. Early work done by
Harris [38] on inventory management goes back to the classical economic lot size model
which assumes a steady demand and holding costs over time. Deterioration of products is
realistic in many inventory systems. In determining the optimal inventory policy of product,
the loss due to deterioration should be taken into account. Ghare and Schrader [33] initiated
the analysis of deteriorating inventory by establishing a classical no-shortage inventory model
with a constant rate of decay. Covert and Philip [25] extended Ghare and Schrader’s model by
establishing an economic order quantity (EOQ) model for a variable rate of deterioration with
a two-parameter Weibull distribution. Later, Kar et al. [48] proposed a deterministic

inventory model for a single product stored in two storage facilities while the demand was



assumed linearly increasing, time-dependent over a fixed finite time horizon. To fit a more

general inventory feature, Chang and Dye [13] developed an EOQ model to find the optimal

total cost savings for deteriorating items with varying rate of deterioration during the special

replenishment period. Chung and Tsai [22] developed an inventory model for deteriorating

items with the demand of linear trend and shortages during a finite planning horizon. A line

search was applied in a simple solution algorithm to determine the optimal interval without

considering stock-outs. Chang et al. [14] proposed a finite time horizon EOQ model taking

into accounts the followings: a time-varying deterioration rate, time value of money,

shortages and permissible delay in payments.

In practice, demand and service level-may-influence safety inventory. Inventory models

have been continually modified to accommodate to more practical issues of the production

planning and the real inventory systems. For a large family of lead time demand distributions,

Platt et al. [60] declared that the optimal policy depends on two parameters: the fill rate and

the EOQ scaled by the standard deviation of demand over the constant lead time. Silva Filho

[68] proposed the cumulative demand is a random variable represented by a compound

Poisson process, since the demand affects the inventory system. Gupta et al. [36] utilized a

stochastic framework to provide quantitative guidelines for setting customer satisfaction

levels and uncovering effective inventory management options. Furthermore, Bhunia and



Maiti [5] assumed that the production rate is a variable. They also presented inventory models
in which the production rate depends on either on-hand inventory or demand. Das et al. [27]
developed a multi-item inventory model with quantity-dependent inventory costs and
demand-dependent unit cost under imprecise objective and restrictions. Both geometric
programming (GP) and gradient-based nonlinear programming (NLP) methods are used to
solve the problem. Rao et al. [65] modeled a single period multi-product inventory problem
with uncertain demand and one-way product substitution in the downward direction. Pal et al.
[58] constructed a deterministic inventory -model with a stock-dependent demand rate and a
constant item deteriorating rate. In addition, a fuzzy geometric programming (FGP) method is
used to solve two highly nonlinear equations generated from the model. Duran et al. [30]
provided tools for managing production-and inventory tactically when customers differ in
their willingness to pay and to wait. Many other references about multi-echelon inventory
management in supply chains with uncertain demand and lead times appear in Gumus and

Guneri’s survey [34].

For C/D wafers in the semiconductor industry, majority of researches have been focused
on controlling inventory with deterministic demand, inventory management under uncertain
demands has received relatively little attention. Chung, et al. [24] used a non-linear program

to set a safe inventory level for control wafers. Since they assumed that demand follows an

10



approximately normal distribution, the optimal solutions were based on deterministic
expected values to simplify stochastic events and dynamics that might reach misleading

solutions.

2.3 Stochastic Programming

A great quantity of research has been conducted on C/D wafer management but most
was based on the assumption of known or expected demand. Chung et al. [23] assumed the
demand of C/D wafers is constant. Later, Chung et.al. [24] used a non-linear program to set a
safe inventory level for control wafers-but -assumed that-demand follows an approximately
normal distribution. Their optimal solutions were based on deterministic expected values to

simplify stochastic events and dynamics that might reach misleading solutions.

2.3.1 Two-stage stochastic programming

Uncertainty is one of the main characteristics of semiconductor manufacturing systems.
To handle uncertainty, it is appropriate to use a two-stage stochastic programming (SP) with
recourse, which was first independently presented by Dantzig [26] and Beale [3]. It is a
dynamic linear programming model characterized by uncertain future outcomes for some

parameters, as follows.

11



Z = min cx + E_[Q(x, ®)] (1)

Subject to
Ax > b, x>0 2)
where Q(x, ) = min f(w)-y (3)
Subject to
D(@)y = d (o) + B (0)x 4)
y>0, wef.

The model is separated into two stages. At the first stage, referred to Equations (1) and

Equation (2), the decision variables. are chosen to-minimize the direct cost and expected

recourse cost that faces the recourse action taken. At the second stage, referred to Equations

(3) and Equation (4), the decision variables are chosen due to the future uncertainty defined

by probability space (£, P). Matrix A, vector b, and vector ¢ are known with certainty. The

function Q(X, w), is referred as the recourse function. The technology matrix D(w), the

right-hand side d(w), the inter-stage link matrix, B(®), and the objective function coefficients

f(w) may be random. For a realization e, the corresponding recourse action y is determined

by Q(X, w). Therefore, the optimal solution of the objective function hedges against all

possible events w €2 that might occur in the future. Kall [47] suggests that “here and now”

12



(HN) and “wait and see” (WS) are two different solution approaches to the stochastic

programming. The WS approach assumes that the decision maker would not make the optimal

decision until the outcome of a random variable can be observed. It is clear that such a

solution is not implemented. The HN approach represents the true stochastic optimization

solution without knowledge of the realization of random variables. A number of different

algorithmic approaches have been proposed for solving the stochastic linear programming

stated above, Equations (1) — (4). Refer to Wets [74] for an investigation of the recourse

problem. Later, Wets [75] surveyed.the use of large-scale linear programming techniques.

Using mathematical programming techniques seemed: to be one of the promising approaches

to solve stochastic problem in”some special cases, since stochastic models address the

shortcomings of deterministic models directly. There are two measures to evaluate whether

stochastic approach can be nearly optimal or nearly accurate: the expected value of perfect

information (EVPI) and the value of the stochastic solution (VSS). EVPI and VSS give the

motivation for stochastic programming in general and remain a key focus for the sensitivity

analysis. EVPI measures the value of knowing the future with certainty while VSS assesses

the value of knowing and using distributions on future outcomes.

Uncertain demand is a realized nature of production process, so a lot of researches in

production planning implemented stochastic programming to make meaningful planning

13



decisions. Bakir et al. [2] studied a realistic planning environment for a multi-product

multi-period with stochastic demand. The normally distributed stochastic demand is

approximated by a discrete approximation method. Gupta et al. [35] proposed a two-stage

stochastic programming approach for incorporating demand uncertainty in multisite midterm

supply chain planning problem. At the expense of imposing the normality assumption for the

stochastic product demands, Gupta et al. [35] evaluated the expected second stage costs by

analytical integration yielding an equivalent convex mixed-integer nonlinear problem. Zhang

et al. [82] consider a discrete-time capacity expansion.problem involving multiple families

and multiple machine types, and’ non-stationary stochastic demand. They used a novel

assumption that demand can be approximated by a distribution in order to allow them to solve

the problem as a max-flow, min-cut problem.

There has been a large variety of applications for stochastic programming; for example,

fleet assignment by Ferguson and Dantzig [31], capacity planning by Christie and Wu [21],

water resource management by Watkins et al. [73], and production planning by Leung et al.

[52]. Many other references appear in King’s survey [49].

2.3.2 Chance-Constrained Programming

It is apparent that many real world problems contain uncertainty. Charnes and Cooper

14



[15] were the pioneers who proposed chance constrained programming (CCP) as a means of
managing uncertainty and probability. It provides a powerful means of modeling stochastic
decision system which has ability to meet the constraints with certain reliability in an

uncertain environment. The general formulation of CCP is as Equation (5) — (7):

Zyp = Min cx ©)
Subject to

Ay X = by ©)

PI[AXx>h]>ea;, where Ja;e[01], i=1+,1 @)

Let & = (Ai hy ) Vi =1,=:,1, be arandom vector on the probability space (2, F, P).

If the A is a row vector, the i constraint-is called.individual constraint. If A; is a rxc matrix
with r >1, then the i constraint is referred to as joint chance constraint. When the stochastic
variables are independent, then the joint chance-constraint (7) can be decomposed into the
product of the constituting chance-constraints as Equation (8).

HP[kzlajkszhij}zﬁi i=1.-,1 ®)

j=L

If the stochastic variables are correlated, then the joint probabilities cannot be

decomposed. This complicates the calculation of the probability and requires the simultaneous

15



integration of multivariate probability distributions. Plackett [60] proposed a reduction

formula for multivariate normal integrals.

There are a lot of practical problems which always involve uncertainty and probability.

Chance-constrained programming has been implemented in a variety of fields. For instance,

Petkov et al. [59] proposed a stochastic model to maximize the expected profit subject to the

satisfaction of product demands with pre-specified probability levels, electrical circuit design

by Ji et al. [45], routing problem by Wu et al. [78], soil conservation problem by Zhu et al

[82], path planning for autonomous.vehicles by Blackmore et al. [7], reservoir management

by Azaier et al. [1], aggregate production planning by Silva Filho et al. [67], and production

planning and sourcing problem by Yildirim-et-al.-[79]. ‘In general, obtaining the optimal

solution of chance-constrained programming iS not tractable. Bitran and Yanasse [6]

considered deterministic approximations to a stochastic production problem on a rolling

horizon basis. They showed that the service level constraint can be transformed into a

deterministic equivalent constraint by specifying certain minimum cumulative production

quantities that depend on the service level requirements. Kumral [50] proposed a combination

of the chance-constrained programming and the genetic algorithm to find the optimal mine

system parameters simultaneously. Jana et al. ([42], [43]) proposed a stochastic simulation

based genetic algorithm approach to solve chance constraint programming problem in which

16



the random variables follow some discrete distributions [43] and continuous distributions [42].

Manandhar et al. [55] provided a semantic based on scenarios to model combinatorial

decision problems involving uncertainty and probability, while Prekopa [63] provides a

numerical solution of probabilistic constrained programming models.

2.4 Normal Transformation

For most industrial applications, normality is assumed due to the advantage of the

analytical convenience and existing effective statistical methods. For example, Platt et al. [60]

assumed that the lead time demand 1S normally distributed, so the asymptotic results can be

used as the EOQ from zero to positive infinity to fit a theoretic curve for the order quantity Q

and the reorder point R. Silva Filho [68] proposed the. cumulative demand is a random

variable represented by a compound Poisson process. Because the demand affects the

inventory system, a chanced constraint is used to preserve the inventory constraint explicitly

in a stochastic optimization model. A Gaussian approximation is also proposed to the

compound Poisson process. You et al. [80] used Box-Cox transformation method to transform

the experiment data investigated from microcircuit process. But, for many engineering

operations such as locating pins or automatic sensors, the manufacturing data is often

truncated or appears to be non-normal. Pezdek [64] gave a non-normal data example and
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perform process performance analysis. Pezdek [64] demonstrated how the non-normal

characteristic would significantly impact on the data analysis result and the conclusion, thus

convey incorrect process information. If the process characteristic is not normally distributed,

there are two popular approaches to transform the non-normal data into a normal one. First,

Johnson [46] proposed a system of three transformation families for selection of a

transformation to normality. Let X be a random variable and Z be a standard normal variable.

The three transformation families in Johnson system are, respectively as Equation (9) — (11),

Z=y+nhn{(X )2~ (X~} e<X<2+e, (©)
Z=y+nIn(X -¢), X >e, (10)
Z=y+nsinh (X —g)/1], —o<X<w), (11)

where - oo <y, £ <o, # >0, and A > 0 are four parameters. The distribution determined by (9)

is called the Sg distribution denoted by Sg (y, 7, &, A). Similarly, the distribution determined by

(10) is called the S, distribution denoted by S, (y, #, €), and by (11) called the Sy distribution

denoted by Sy (y, 1, & A). The subscripts, B, L, and U, refer to X being bounded, lognormal,

and unbounded, respectively. Hahn and Shapiro [37] gave further description of these

distributions. In using the Johnson system, the first step is to determine which of the three
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families should be used. The next step is to estimate parameters of the transformation family
selected. A moment approach in the selection step is to choose the transformation family
according to which region of the (\/,8_1, B>) plane the estimated third (81) and fourth (5.)
standardized sample moments fall into. Slifker and Shapiro [69] pointed out the major
shortcomings of this procedure such as high mean-square errors and vulnerability to outliers

of the sample third and fourth moments.

Another percentile approach prevails and is in fact mostly adopted in practice. Johnson
[46] proposed a method, which uses.four percentiles. Based on symmetrical points, Bukac [12]
suggested procedures for estimating parameters” of SBdistribution. Later, Mage [54]
presented a method of reducing Bukac’s quadratic-equations to a quadratic equation. Slifker
and Shapiro [69] suggested choosing four symmetric standard normal deviates equally spaced
with intervals 2z, i.e. 3z, z, -z, and -3z, admittedly not a serious restriction. Bowman and
Shenton [9] proposed a simple algorithmic solution for normal deviates -sz, -z, z, and sz
where s and z are arbitrary positive constants and s > 1. Meanwhile, Owen [56] proposed the
starship procedure to search out a transformation that most nearly transforms the sample to
normality, which is not only tied to Johnson system but also many possibilities exist for the
transformations. Chou et al. [20] recommended that use the set Z = { z0: z0 = 0.25, 0.26, ...,

1.25}, instead of a single chosen value, to fit all the Johnson distributions which are feasible
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for the Slifker and Shapiro’s estimation formulas. The best-fit Johnson distribution is chosen
to be the one that best transforms the data to normality among the z0 values in Z. However,
this procedure cannot discriminate the SL distribution family from the other two families.
Chen and Kamburowska [16] proposed a procedure, called M procedure, which is consistent
by setting a bound on the parameter to prevent from an incorrect selection when the

underlying distribution is an SL distribution.

Box and Cox [10] modified the family of power transformation proposed by Tukey [71].

Its simple form defined as T A: y = y(})

)
y -1
y(;v) T A# 0

12
Iny, Ay=0 (12)

The transformation in Equation (12) is-defined for y > 0. It is hoped that for some value
of 1, a non-normal data can be fitted to a normal distribution. Box and Cox [10] used the
maximum likelihood method to estimate the parameter A. An analytical expression for the
accuracy of maximum likelihood estimate of 4 is derived by Draper and Cox [29]. Hinkley
[39] used order statistics to estimate the transformation parameter. Later, Hinkley [40]
assumed that there might be a value of 2 making the transformed data nearly symmetry and
proposed a similar method for choosing a symmetrical transformation based on the

asymmetry degree of the sample, which is measured by Equation (13)
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d = (sample mean — sample median)/sample scale (13)

If the underlying distribution is symmetric, then the mean and the median must be identical.
Thus, the sample data drawn from such distribution should reflect such property, and a good

estimate of 4 should minimize the value of d.

Base on the Tukey’s [71] recommendation with setting 4 to =2 < 4 < 2, Hinkley [40]
proposed a step-by-step procedure for computing the power of Box-Cox transformation
based on moment of percentile may be presented as follows:

Step 1: Choose -2 as an initial'guess Zy of 4 for a given random sample.

Step 2: Transform the original sample by taking the power Ao and then find the sample
mean, sample median; -and._sample inter-quartile range for the transformed

random sample.

Step 3: Calculate d defined in Equation (13) using the inter-quartile range as the sample

scale.

Step 4: Check whether d is less than a predetermined precision level. If not, iterate Steps
1-3 by increasing the magnitude of A by unit of 0.05 as new A, till the difference

between 4q and A is smaller than the predetermined precision level.
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Step 5: Use the 4 derived from Step 4 as the optimal estimate A . Employ Shapiro-Wilk

[66] test to check the normality of the transformed sample.
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3. Background Information and Problem Description

3.1 The PUR Process of C/D Wafers

Cost is only a part of the C/D wafer issue because they also occupy the capacity of
equipment, which is capital intensive. The usage of C/D wafers in wafer manufacturing
processes can be divided into five primary categories, viz., (i) product monitoring, (ii)
equipment monitoring, (iii) preventive maintenance, (iv) the experiment with engineering lots,
and (v) repaired equipment if breakdown. Therefore, good management ought to reduce the
number of C/D wafers brought in-to the-manufacturing process and improve the efficiency of
C/D wafer usage since the major characteristic of C/D wafers is that they can repeat the same
functional test several times until they fail to conform.to quality specifications related to
requirements for cleanliness or thickness. The reuse statuses consist of three processes, viz., (i)
pre-disposition, (ii) in-use, and (iii) recycle stages, termed the PUR process. Figure 3-1

represents the cyclic relation among PUR process of a C/D wafer used in a specific process.

3.1.1 Pre-disposition

Before control wafers are used to monitor production, they have to finish a series of
operations, called pre-dispostion stage, to meet the required specifications. The purpose of

this stage is to set up the initial measurements of C/D wafers themselves.
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3.1.2 In-use

Control wafers are used to monitor process, qualify tools, and develop new process

techniques. To test the wellness of the tool prior to manufacturing the production wafer,

control wafers may be run concurrently with them to perform as a witness to the process, or

may also be used to pilot a process before wafers are committed to a tool. Therefore, output

parameters are taken from the control wafers and adjustments are made to the tool or process

correspondingly. On the other hand, dummy wafers are used on two sides of wafer cassette to

protect the wafers heated uniformly inside the furnaces:

In engineering lots, control wafers are built the designed structure, similar to built onto

the real wafers, to simulate the ‘actual production. The effects of a specific process to the

structure can be studied, characterized, and optimized.

3.1.3 Recycle

After in-use stage, there are some remnants and particles left on the surfaces of C/D

wafers. To reduce the WIP level of C/D wafer, recycle is a key process which polishes off the

contaminants on the top of C/D wafers. This provides a clean C/D wafers re-used back to

pre-disposition stage at a much reduced cost.
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Figure 3-1 The cyclic relation among PUR process of a C/D wafer.
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3.2 The Resource Downgrading Characteristic of C/D Wafers

The major characteristic of C/D wafers is that they can repeat the same functional test
several times until they fail to conform to quality specifications related to requirements for
cleanliness or thickness. The reuse statuses consist of the pre-disposition, in-use, and recycle
stages, termed the PUR process, illustrated in Figure 3-2 with dotted arrows. We called it
internal downgrading or recycling. Once a C/D wafer no longer conforms to the pre-defined
specifications, it will be scraped or downgraded to lower grade of which the quality
specifications are not so high. Hence, such arkind of downgrading is referred to here as
external downgrading due to wafer quality, indicated by a dotted line and bold arrows in
Figure 3-2. Furthermore, releasing. new raw wafers as any grade of C/D wafers or
downgrading C/D wafers that directly bypass the PUR process to lower grades where there is
a deficit of C/D wafers is regarded as external downgrading due to demand, indicated by a

solid line and bold arrows.

Re-use is crucial to cost saving, but without some policy to prioritize and monitor it, the
efficiency of C/D wafer could be decreasing. As a result, more expensive new C/D wafers will
be brought into the manufacturing process. It is easy to see that C/D wafers are used in very

large quantity occupying a significant portion of a fab’s expensive capacity. A good
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management of C/D wafer must focus on identifying appropriate downgrading rules in order

to increase both the recycled usage of C/D wafers and the throughput rates of wafers.

3.3 Demand Uncertainty

The semiconductor industry has become one of the leading industries in the world on
account of rapid shrinkage of product design cycles and life cycles in the consumer
electronics business. Therefore, competition is fierce and the pace of product innovation and
changes in technologies is high. Due to the jintensive capital investment, making efficient
usage of current tools and well planning-the production are of great important. Consequently,
the demand for semiconductor products Is becoming /increasingly hard to predict. In the
prevailing intangible business environment, with ever.changing market conditions and
customer expectations, it is necessary to consider the impact of uncertainties involved in the

semiconductor industry.

In the past of researches, deterministic models are assumed widely. But this assumption is
rarely true. It is more reasonable to study this kind of “demand-driven” problems under
uncertain environment because deterministic approach may thus yield unrealistic results by
failing to capture the effect of demand variability on the tradeoff lost sales and inventory

holding costs. Moreover, failure to incorporate a stochastic description of the product demand
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could lead to either unsatisfied both customers and loss of market share or excessively high
inventory holding costs. Buffa and Taubert [11] state that the normal, Poisson and negative
exponential distributions have been found to be of considerable value in representing demand
functions for inventory management. A classification of different areas of uncertainty is
suggested by Subrahmanyam et al. [70] including uncertainty in prices, demand, equipment

reliability, and manufacturing uncertainty.

3.4 Problem Description

3.4.1 Overview of stochastic management system of C/D wafers

The stochastic management system -of C/D wafers is depicted on a simplified
representation of network system, as shown in Figure 3-3. While t = 1 represents the time
period called "here and now", t = 2 is the next time period to "wait and see", and t = 0 is the
previous time period. In Figure 3-3, each node represents the random demand for each grade
of C/D wafers in each period. The solid arrows refer to external downgrading action due to
demand while the segmented arrows refer to external downgrading action due to nature. The
recycle or inventory is presented by dotted arrows. Therefore, in a stabilized system, the
arrivals of C/D wafers at each node are equal to the departures. The inventory at the end of

period t is available for withdrawal in the next period, and is also as the transit matrix that
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provides the linkage between the periods of the model. To avoid affecting the processes,

backlogging is not allowed.

< Upper lower s

------ » External downgrading action due to nature
-p  Internal downgrading action

e EX1ETNA]l dOWwngrading action due to demand

Figure 3-3 Schematic stochastic C/D wafers management system diagram
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3.4.2 Assumptions

A two-stage stochastic programming model for stochastic control and dummy wafer

downgrading problem (SC/DWDP) and a chanced-constrained programming model for

control and dummy wafer service level problem (C/DWSLP) were constructed for a

theoretical manufacturing system based on the following assumptions:

1. The product mix is given in period t = 1, which represents “now”.

2. The multi-level downgrading rule'is applied.

3. Engineering lots are not.considered.

4. A shortage of C/D wafers is not allowed.

5. The C/D wafers are classified.into J grades.

6. The downgrading graph for each product must be determined in advanced.

7. Aot is the least unit for release, downgrading, and scrap.

8. Each PUR process consists of three processes of operation.

9. The maximum recycle ratio of C/D wafers for each grade is determined to allow the

occurrence of unexpected breakages. (number of recycled to available C/D wafers

ratio)
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10. The minimum scrap ratio of C/D wafers for each grade is determined to avoid waste

due to abundance of inventory (number of scraped to available C/D wafers ratio).

11. The demands of products for all time periods are random and empirical.

12. The integrated demands of C/D wafers of each grade at each period are

independent.

3.4.3 Stochastic C/D Wafers Downgrading Problem

To attain the mission of C/D waferssin-a fab, we define the stochastic C/D wafer

downgrading problem (SC/DWDP) to—minimize the total cost of C/D wafers while

simultaneously determining their inventory policies, downgrading policies, and release rules

for new wafers. We consider that the uncertainty of demands will result in more realistic

planning decisions to meet rapidly changing future demands. Therefore, the purpose of this

dissertation is to develop a two-stage stochastic programming model for SC/DWDP to

minimize the total cost of C/D wafers and to set the quantity of new C/D wafers released and

C/D wafers recycled or downgraded to meet the stochastic demands of each grade. The

proposed stochastic model, which is balanced and hedges against various scenarios, can

describe the real-world production setting more realistically than the static approach can.

Furthermore, a discrete approximation of stochastic demand gives advantages in terms of
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retaining a linear model and easier solutions by utilizing a single large equivalent linear

programming model. It is more useful and efficient than a simulation approach.

3.4.4 C/D Wafers Service Level Problem

The influencing uncertainty of demands matters in making production decisions of C/D

wafers. This feature makes C/D wafers production management appropriate for the

application of chance-constraint programming (CCP), a more practical and general approach.

The manufacturer has to meet the demand for multi-products according to the service level

requirements set by its customers.-And the-demand for each product in each period is random.

The C/D wafer service level problem (C/DWSLP) in a chance-constraint manner is presented.

The chanced constraints will hold at least o of time, where « is referred to as the confidence

level provided as an appropriate service level by the customers. The rolling horizon approach

is proposed to dynamically transform the model into an equivalent deterministic problem

based on the real life data at each time period and the optimal solution of the preceding

period.
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4. Optimization of Stochastic C/D Wafers Downgrading Problem

4.1 Formulation of Stochastic C/D Wafers Downgrading Problem

The integrated demand of the j™ grade C/D wafers in each time period at the first stage
is calculated by Equation (14). Given a scenario at the second stage, Equation (15) calculates

the integrated demand of the j* grade C/D wafers in each time period.

d2‘1=§fjmxor[;], j=1,2,,3,t=12,-T.

m=1 (14)
t t H 1 .

d[(S)_z f; XDr[ngs) J:1|2!”'!‘J1 S=1,2,"',S, t:112|"'1T' (15)

The production planner’s objective is to minimize the total cost of the C/D wafers and
to determine the supply quantity of C/D wafers at each grade for each period and inventory

quantity at each grade for the next period. The first-stage formulation is given in Equations

(16) — (21).

. J
ning = Seod] + S e
J:

(16)
J J-j
DI El(nk)*Zh 1 +E§[Q(X 1.¢ )]

j=1k=1

Subject to
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rjX%]ngl], j=1,2,-,J a7

1y +:§X([lj]k)j =1} +i§;XE1(]j+k)' J=12:,J (18)
x%]/(| L :zjx([lj]_k)jjg R, j=12,+,J (19)
x?}/mﬂ+J_§1+1)x21(]j+k)jzRS, j=1,2,,3 20)
1j>u, j=12,--J 1)

All variables are non-negative integers.

Equation (16) is the objective function that includes the cost of new C/D wafers,
recycling cost, downgrading cost.due to natural, downgrading cost due to demand, holding
cost, and the expected cost of the second'stage. The operative constraints, of which the first
stage given a specific scenario, are formulated as follows. Equation (17) presents that the
recycling capacity of the C/D wafers must meet the integrated demand of the | grade.
Equation (18) consists of balance constraints representing that the arrivals are equal to the
departures at each grade. The recycle ratio is not more than a positive percentage given by
Equation (19). The scrap rate is not less than a positive percentage given by Equation (20).

The inventory of each grade is kept at a minimum level by Equation (21).
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The second-stage formulation is given in Equations (22) — (27).

J J J
H 2 2 n 2
min  Q(s)= Z. Coxgj](sﬁz ijXEj(]s)JrZ. C(ia)ﬂ)xg(j]ﬂ)(s)
] = o)

+ le {iar X e + Zhj o
Subject to
[2] [2]
rJXJJ(S)_dJ(S)’ j=1,2,--J,s = 0,1,---S (23)
ey + ZX(J oits) =1 st Z X§jxs):
(24)
j=12,d,5 = 01,8
2 -
XEJ(]S)/(IE(l) X1 ZX@ k)J(S)]< R =128 = 015 (25)
) g U o, — ~
EJ](s)/('E(]s) 2 X i) [ZRATIEL2, 0,8 = 0.1, (26)
I[(]S) >Uu, .
J:172’..."]’S = 0’1|'..|S (27)

All variables are non-negative integers.

In the second-stage formulation, Equation (22) represents the objective function of the
second stage. Given a scenario, Equations (23) — (27) are similar to those at the first stage

from Equation (17) — (21). Especially, the inventory for each grade at the end of period t = 1
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is available for withdrawal in the next period, and provides the linkage between the two stages
of the C/D wafer downgrading problem. All variables are non-negative integers. Finally, the
first and second stage can be summed up into a single large linear programming model.
Therefore, we determine all x’s and I’s to be optimal over all the scenarios because we solve

the large linear programming model for all decision variables simultaneously.

4.2 Optimization Methodology
4.2.1 Demand Model and Scenario Construction

The demands of products“are modeled with a geometric Brownian motion process.
Geometric Brownian motion (GBM) was firstly proposed to describe the variation of the
stock price by Black and Scholes {7]. Benavides et al. [4] applied Geometric Brownian
motion as the demand model for IC manufacturing industry, since the historical data is
consistent with Semiconductor Industry Association data. According to Dixit and Pindyck
[28], if Dr[Tt]] is the demand of product m in period t for C/D wafer downgrading problem,

then the rate of change of this demand is assumed to be governed by Equation (28).
dol =4 DYdt+o, DMdz, t=1,2T;m=12,,M. (28)

In Equation (28) dz =¢,+/dt and &, is assumed as a standard normal random variable with

respect to the time interval t. This model of demand implies that the variability of demand
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increases linearly with the length of demand forecast horizon, so that over a finite time
interval t, the change between the logarithms of demands in two different periods is

distributed as Equation (29):

in (D)= 1n (D)= 1In (Dm] ~N [ {um —%] t,ol t], “

In models of decision making under uncertainty, it is essential to represent uncertainties
in a form suitable for quantitative. models. It is the most popular method for stochastic
programming to generate a limitedvnumber of discrete-scenarios that satisfy specified the
random variables. Jarrow and Rudd [44] proposed:binary tree with equal probability method
to generate as small number of scenarios as possible and proved it has reasonably good

approximation.

Hence, this method is used to generate the demand distribution of each product at the

second. Note that Dr[%] represents the demand of product m in the period t = 1. There are two

possibilities of demands for product m in the period t with probability 0.5 as Equation (30).

02
Dr[E]=Dr[$]exF’ﬂ”m —h ot m=12,0 My =12, T (30)
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As an approximation example of five products, an event tree with 32 scenarios was
constructed with two branches in each node, which represents high demand or low demand as
shown in Figure 4-1. A scenario is a sequence of events. For example, scenario 1 is the set of

event sequences {H, H, H, H, H} as high demands for each product A to E, respectively.

& Ty
Product A H _ L_
Product B - 1 T =L

oduct B L
Product C H . L H L
28N L s "y JZES
Product D H L H = H L H L
AT (Y2 VEE Yy vy vy

Product E H L H L H L H L H L H L H L H L
Scenario Sl S2 S3 S4 S5 .86 S7 S8 - S05 S% S27 S28 S29 S30 S3 S

* H represents high demand and L represents low demand

Figure 4-1 Event tree and scenarios for SC/DWD problem model

No need to reticence, there are no guarantees that those scenarios assembled in this
particular manner can adequately represent the uncertainty of the C/D wafers demands caused

by product mix. To address these potential limitations, sensitivity analyses are presented in a

later section.
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4.2.2 Solution Procedure

By taking all possible scenarios into account, the first- and second-stage linear
programming models can be summed up into a single large linear programming model. The
objective function of equation (16) can be extended to equation (31) for large-scale linear
programming model. In other words, we are choosing all of x’s and I’s to be optimal over all

the scenarios because we solve for all decisions simultaneously.

min Z = ZCOX[I]"'ZCUX%] ZC(”) [1]
j=1

LA ()
+§1k§ CJ(J+k)XJ(J+k)+Zh 1

£33 coXi2l crxigl vy c(”)x[z]
22 Pjs) Z 0 OJ(3)+Z i %ics) Z ji(s)

s=1j=1

(31)

s=1j=1

+ZZpJ(S)[Z > CJ(J+k)XE(]J+k)(S)+th J(S):|

4.3 Implementation of Stochastic C/D Wafers Downgrading Problem

To investigate the effect of the stochastic management system on the planning,
real-world data is taken from a wafer fabrication factory located in the Science-Based

Industrial Park in Hsin-Chu, Taiwan.
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4.3.1 Numerical Example and Input Information

In this production system, regarded as base case, there are five products A, B, C, D,
and E with product mix 5: 7: 3: 4: 1 at the first stage. Based on historical data, we applied a
geometric Brownian motion model and estimated the drift and variance parameters of the
demands for each product, as given in Table 4-1. The monthly throughput target is 640 lots
and the planning period is 28 days. C/D wafers can be categorized into three levels according
to their conditions suitable for use in process. At the end of period t = 0, the inventory
quantity is 30 for grade 1, 40 for.grade 2, and 50 for grade 3. The maximum times of
recycling a C/D wafer at each grade is4, 5, and 6 for grade 1, 2, and 3, respectively. Table 4-2
gives the frequencies of using the j grade C/D wafers for-each product and the unit cost for
each kind is given in Table 4-4. The multilevel downgrading rule is implemented to minimize
the total cost for SC/DWDP. Finally, the large Linear programming model is solved by using

LINDO 6.01.

Table 4-1 The parameters of demands for each product

Product
Parameters A B C D E
u 0.14 018 0.09 0.06 0.07
o 022 019 014 014 013

40



Table 4-2 The number of times for C/D wafer consumed

by each product at each grade

Product A B C D E
Grade 1 6 4 6 7 5
Grade 2 5 6 5 6 9
Grade 3 9 7 8 6 5

Table 4-3 The unit cost for

(holding, recycling/natural downgrading, demand downgrading)

From

To New Grade 1 Grade 2 Grade 3

Gradel | (-,0,100) ( 6,80,-)

Grade2 | (--,0,100) (--,70,80) (6,70, --)

Grade3 | (--,0,100) (-%)%;780) (--,60,70) ( 6,60, -)
Serap (<., 5) (.=, 5) (==, 5)

Table 4-4 Economic benefit analysis for SC/DWDP

Benefit Optimality - VSS -~ EVPI EV HN WS
0.78% 0.02% 1139 29 146,414 145,275 145,246

4.3.2 Experimental Results and Sensitivity Analysis

The solution procedure includes the "here and now" (HN), "wait and see" (WS), and

"expected value" (EV) approaches. To assess the benefit of the SC/DWDP model, the

expected value of perfect information (EVPI) and optimality index are investigated. EVPI

measures the value of knowing the future with certainty. Optimality is defined by the ratio of

EVPI to the WS optimal solution. It indicates how costly the incomplete information about
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the future is. To assess the value of knowing and using distributions on future outcomes, the

value of the stochastic solution (VSS) and benefit are computed. Since benefit is the ratio of

VSS to the HN optimal solution, the larger the benefit of the stochastic solution, the more

implemental stochastic optimization is.

The results for SC/DWDP are shown in Table 4-4. With perfect information, the

minimized total cost of C/D wafers is 145246 dollars. With a "here and now" decision, we

would make a minimized cost of 145275 dollars. Note that the optimality index is 0.02%,

which means the stochastic solution is nearly optimal.In other words, the expected value of

perfect information is worthless.*On.the part of the value.of the stochastic solution, stochastic

programming is superior to the expected approach by 0.78%, as shown in Table 4-4. This

implies that, considering demand uncertainty, the accumulated capital could be saved up to

0.3 million US dollars per year for wafer fabrication yielding 30,000 pieces of product wafers

a month, since the WIP level of C/D wafers may be as many as 30,000 pieces priced at USD

100 each.

Here sensitivity analysis was conducted to determine how the results of the base case
reported above vary with changes in the principal parameters of the model. Cost of new
wafers, cost of holding, maximum recycle rate, minimum rate of scrap, and inventory level
are included and experimental scenarios are shown in Table 4-5.
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The results of the sensitivity analysis are summarized in the “tornado” diagram of

Figure 4-2. The figure shows how the percentage of the optimal minimized total cost,

compared with the base case, changes as the individual parameter is changed to the high and

low values shown in Table 4-5. The dramatic impact of new wafer cost and maximum recycle

rate plays the leading role in SC/DWDP management given demand uncertainties. The total

cost of C/D wafers varies linearly by 7% while the cost of new wafers varies by 20%. Since

the price of new wafers is market-driven, it should be considered as a random variable in

future research. Similarly, the impact of the maximum recycle rate on the total cost reflects

the importance of reuse characteristic. Nevertheless, a 10% decrease in the recycle rate

resulted in 8% increase of total cost. On the contrary, the same amount increase in the recycle

rate only saves 4% of total cost. Therefore, one of the thumbs-up rules in C/D wafer

management is to keep the recycle rate as high as possible. In contrast, the results show that

holding cost, minimum scrap rate, and inventory level restrict the impact that the volatility of

demands has on total cost.
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Table 4-5 Parameter values for sensitivity analysis

. e Ne .
Scenario  Sensitivity W Recycle Holding Scrap
wafer Inventory
number parameter rate cost rate
cost

0 Base case 100 80 % 6 10% 40

1 Newwafer g9 80 % 6 10% 40

2 Newwafer g, 80 % 6 10% 40
cost

3 Recycle 100 70 % 6 10% 40
rate

4 Recycle 100 90 % 6 10% 40
rate

5 Holding 100 80 % 4 10% 40
cost

6 Holding 100 80 % 8 10% 40
cost

7 Scrap rate 100 80 % 6 5% 40

8 Scrap rate 100 80 % 6 15% 40

9 Inventory 100 80 % 6 10% 30

10 Inventory 100 80 % 6 10% 50
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Figure 4-2  Sensitivity of values of optimal alternatives
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5. Optimization of the C/D Wafers Service Level Problem

5.1 Formulation of Stochastic C/D Wafers Service Level Problem

In this section, the objective of C/D wafer service level problem (C/DWSLP) is to
minimize the total cost of C/D wafers in the system. A chance-constrained programming
model is developed to determine how many new C/D wafers to release, how many C/D
wafers to be reuse, to be downgraded due to nature or demand, and how many inventories to
carry. The C/DWSLP with probabilistic constraints can-be formulated as follows:

minZ =

g St M)y lt]
Zh | +Zc x +_Zc”x“ +ZC,(,+1)X”

.
min 3| N (32)
t=1
: Zu;lc(ic&k)xgth) + ZC(S)XM
j=lk=

Subject to
(33)
[t] (34)

-1, [t] T (S I (S
Ij +x(j_1)(j_1)+glx(j_k)j_l +X] +me+k)+x15,

j=12,--3,t=1--T.
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0

<R, j=1,2,--d,t=1--T,

B j
' Et o X([tj]—l)( [EN gf([‘j]-k )i (35)
xld
= >R, j=12,--,J,t=1--T.
)+ & Xl + X4 (36)
IEt]ZU, j:1,2,"‘,J, t:].,"‘,T. (37)

All variables are non-negative integers.

The objective function, Equation (32), is.to minimize the total cost considered. Equation
(33) imposes the service level requirement for each grade on cumulative demand from the
beginning up to the period t in order to ensure the j grade C/D wafers satisfying the demand
with a predetermined confidence level 1 —a. Equation (34) is representing the balance of the
arrival C/D wafers and the departures at each grade in any time period. The recycle ratio is no
more than a positive percentage expressed by constraint Equation (35). The scrap rate is no
less than a positive percentage represented by constraint Equation (36). The inventory of each
grade must be greater than a safety stock level shown by constraint Equation (37). Finally, the

production quantities are non-negative integers.
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5.2 Optimization Methodology

The solution of the above problem in period 0 for the planning horizon [0, T] is referred
as the static solution for dynamic problem. The static solution is obtained by using the
available information about the distribution of demand in the future periods and the initial
inventory. A decision that sets the C/D wafer quantity of each grade at each period is referred
to as the dynamic solution. In practice, there are some difficulties with solving the stochastic
dynamic problem, such as dimensionality and rintegrating constraints underlying stochastic

processes.

In this section, an integrated approach IS proposed for minimizing the total cost of C/D
wafers in the system. The approach s developed to decide an appropriate C/D wafer quantity
for each grade in each period with a service level predetermined by customers. It integrated

three phases as follows:

(1) Transform the empirical demand data of products, if non-normal, into a set of data

which is approximately normal distributed,

(if) Estimate the normal distribution of C/D wafers demand for each grade,

(iii) Transform the chance-constrained programming model into a deterministic one and
then solve it dynamically by implementing rolling horizon method.
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The detail procedures are in the following:

Step 1. Compute the integrated demands for each grade of C/D wafers in period t by

Equation (38).

doj = Do~ frejr 1=12,---,3, m=1,2,--- M, t=1,---T. 38)

Step 2: Use method of percentile (MOP) proposed by Hinkley [40] to choose an
appropriate power, A, to transform the empirical demand data into a normal

distribution with mean, u,,sand'standard deviation, ar% :

Step 3: According to normality, the demand of each grade C/D wafer in period t follows

a normal distribution as expressed by Equation (39)
t 2 N 7\
dELN{ﬂdEt],ad?]], j=120 it =1 T. 39)

Then, the cumulative demand of each grade C/D wafer from the beginning to the

period t also follows a normal distribution as expressed in Equation (40).

] 2 - _
ZON g g | IRl b=l T (40)
=1 =1
t
Let I} = minz r;x; denote the minimum cumulative C/D wafer quantity of the
=1

j™ grade in period t. Then the chance-constrained Equation (33) can be rewritten
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as Equation (41).

P{%}dgf]slgﬂ=l—a, j=1,2,-3,t=1--T.

=1 (41)
After standardization, Equation (41) can be expressed by Equation (42)
(el
] /‘ild g
o ————|=1la, j=1,2,---,J,t=1---T,
oy “ (42)
>l

where @[e] denotes the cumulative distribution function of standard normal.
Then the probabilistic'constraint Equation(42) can be expressed equivalently by

Equation (43).

t -
ZF'X[T-]Z,M +oMal o JAL2 g T
S T gl 5 >l (43)

=1 =1

Step 4: Use Equation (43) to replace Equation (33) of the C/DWSLP formulated in the
previous section. The rolling horizon approach repeats this procedure by using

the available information in each period until time T.
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5.3 Implementation of chance-constrained C/D Wafers Problem

5.3.1 Numerical Example and Input Information

To investigate the applicability and effects of the proposed model and approach, actual
data is taken from a wafer fabrication factory. There are four products and three grades of C/D

wafers. Table 5-1 presents the historical demand records of all products in the last five years.

Table 5-1 The demands of all products in the last five years

Product
Time Past 5
Period Years A B C D
1 126 95 164 304
2 117 105 182 299
1 3 89 69 209 301
4 78 89 206 345
5 69 58 219 367
1 158 90 198 358
2 134 88 178 329
2 3 117 99 169 432
4 108 56 159 477
5 99 63 123 492
1 156 149 229 302
2 105 110 268 295
3 3 121 105 201 302
4 135 103 267 350
5 98 96 294 368
1 123 145 268 327
2 134 138 259 338
4 3 156 135 249 319
4 89 145 295 323
5 98 166 283 367
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The frequencies of using each grade C/D wafers for products are shown in Table 5-2.
Table 5-3 is the cost information. The initial conditions of this system are in the following:

I =400, 19=100, 1J=100, u, =100, u, =200, u, =400

Table 5-2  Frequency of using the j™ grade C/D wafers for products

Grades
Products
1 2 3
A 5 4 3
B 5 3 4
C 3 4 5
D 4 3 5

Table 5-3  The unit cost for
(holding, recycling/natural downgrading, demand downgrading)

From
To New Grade 1 Grade 2 Grade 3
Grade 1 (--,0,100) (6,50, --)
Grade 2 (--,0,100) (--,50,80) (6,40, --)
Grade 3 (--,0,1000 (--,--,80) (--,30,70) (6,30,--)
Scrap (-,-,5) (=,-, 5) (-,-,5)

5.3.2 Experiment Results and Sensitivity Analysis

The above chanced-constraint C/DWSLP with full downgrading rule, regarded as “base
case”, was solved to fulfill 95% of service level. Using method of percentile, the best power A

is zero for empirical cumulative demand data in each period. This yields the optimal solution
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of 733255 by Lingo 8.0. Accordingly to the results, the cost analysis is depicted by Figure 5-1.

The new C/D wafers were consumed only at the first grade to ensure as high efficiency as

possible (Figure 5-1 (a)). On the contrary, the inventory at the first grade only keeps pre-set

minimum safety inventory to avoid running out of stock (Figure 5-1 (b)).

Natural downgrading is the main characteristic for C/D wafers, so it is the best way to

increase the utilization. Most of natural downgrading cost is spent at the first grade

downgraded to the second grade, shown in Figure 5-1 (c). It means that most of surplus values

of the first grade C/D wafers pass.on to the next grades. On the other hand, the demand

downgrading is a waste of C/D. wafer capacity.-Therefore, there is no cost for demand

downgrading, shown in Figure 5-1 (d); onlyif unexpected demand occurs. As shown in

Figure 5-1 (e), the recycling cost depends on:the unit cost and the amount of demand. The

highest scraping cost happened at the third grade in each time period, referring to Figure 5-1

(f). This is because the most of C/D wafer capacity has been exhausted. Based on the cost

analysis above, the proposed approach performs quite well in fulfilling service level

predetermined by customers.
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Next, the base case problem is solved for varying C/D wafers service levels. The optimal
total costs incurred are illustrated in Figure 5-2. As shown in the figure, the total cost
increases approximately linearly with service level. This initial linear relation changes to an
exponential one at service level ranging from 90% to 99%. This indicates that the service
level can be improved by 9%, from 90% up to about 99%, at the expense of modest cost
increases. Furthermore, the continuously increasing slope of the curve implies that the cost

resulted in per percent change in service level increases with service level. This agrees with

the classic law of diminishing returns.

750,000

7:035
740,000
/733 b55
730,000
/26420
720,000

715810
< 03925

50% 60% 70% 80% 90% 100%

Total Cost

710,000

700,000

Service Level

Figure 5-2  Variation of total cost with service level

For sensitivity analysis, seven experiment scenarios are designed and shown in Table 5-4.
The first row of the table shows the base case above, while the successive scenarios are 20%
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deviations from the base case to capture the model sensitivity with respect to downgrading

rule, new wafer cost, natural downgrading cost, and demand downgrading cost. Holding cost

is taken the same for all cases, since it only occupies relative small portion of the total cost.

Results presented in the “tornado” diagram of Figure 5-3 summarize the rate of change in

total cost with respect to new wafer cost, natural downgrading cost, and demand downgrading

cost.

Table 5-4 Experiment scenarios for sensitivity analysis

. - New . Natural Demand .
Scenario Sensitivity Downgrading . . Holding
wafer downgrading downgrading
parameter Rule cost
number cost cost cost
1 Base case 100 Full (40,°30) (80, 80, 70) 6
2 high new
120 Full (40, 30) (80, 80, 70) 6
wafer cost
I
3 OWIEW g0 Ful (40,30)  (80,80,70) 6
wafer cost
high natural
4 downgrading 100 Full (48, 36) (80, 80, 70) 6
cost
low natural
5 downgrading 100 Full (32, 24) (80, 80, 70) 6
cost
6 high Demand Full (40,30)  (96,96,84) 6
downgrading
low demand
7 downgrading 100 Full (40, 30) (64, 64, 56) 6
cost
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New wafer cost illustrates the leading role in C/D wafers management given demand

uncertainties. The total cost of C/D wafers varies linearly by 7% while the cost of new wafers

increases or decreases 20%. On the other hand, the results indicate that increasing the natural

downgrading cost by 20% has a near 4% increasing effect on total cost. It reveals, instead of

releasing new wafers, that reuse downgrading wafers is more efficient and economic. In

contrast, demand downgrading cost makes no impact on total cost since it is the last resource

to use because its high cost and inefficiency.

7.39%

-7.31%

3.89%

Matural Downgradin,

-440%

W High
HLow
0.00%
0.03%

Demand Downgrading

-10% -8% -6% -4% -2% 0% 2% 4% 6% 8% 10%

Percentage of total cost changed

Figure 5-3 Tornado diagram for sensitivity analysis
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6. Conclusion Remarks

6.1 Concluding Remarks

C/D wafer management is a challenge to engineers in wafer fabrication. In practice,
most C/D wafer management still relies on the experience of field managers. But, setting
proper downgrading rule and satisfying service level predetermined by customers becomes a
very essential task. There are three contributions of this dissertation. First, uncertain demand
condition, the nature of reality, is considered rather than deterministic demand assumed by
most other researches. Secondly;-a two-stage stochastic programming model for C/D wafer
downgrading problem is proposed to determine the quantities of new wafer supply, recycling,
and downgrading for each C/D wafer grade. Finally,»a chance-constrained programming

model is proposed to manage C/D wafers to meet service level set by customers.

A numerical example implements the proposed two-stage stochastic model for C/D
wafer downgrading problem (SCDWDP) to minimize the total cost of C/D wafers when
demands are uncertain. It verified that this type of model can provide different insights than
the deterministic optimization model, in essence, which assumes that future demands are
known with certainty. Given the substantial uncertainties of the semiconductor manufacturing

business environment, the ability of a stochastic model to deliver the leading performance
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across a wide range of sensitivity analysis is impressive and valuable. In the presence of

uncertainty, it is believed that implementing the multilevel downgrading rule will result in

relatively significant savings and increase utilization efficiency by prolonging the life cycle of

C/D wafers. However, for C/D wafers downgrading problem, it is impossible to find a

solution that is an ideal under all circumstances; even decisions in stochastic models are

balanced, or hedged against various scenarios. Therefore, care must be taken not to overstate

the benefits of stochastic models.

Secondly, a chance-constrained programming under demand uncertainty was proposed
to minimize the total cost subject.to constraints for the satisfaction of multiple-product
demands with a pre-specified level of probability. In-addition, to solve the C/D wafer service
level problem, an integrated approach: was:proposed by combining normal transformation

technique and rolling horizon method to solve the resulting mathematical program.

However, uncertain demand is assumed to be normal in most of researches due to its

advantages in computations. Normality needs to be tested rather than assumed in order not to

induce bias of the analysis. In this paper, we propose implementing Box-Cox transformation

as a priori means to the behavior demand distributions. On the other hand, normality of

demands gives feasibility that chance-constrained programming can be represented as an

equivalent integer programming formulation.
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Nowadays, semiconductor manufacturers invest millions of dollars annually to manage

control and dummy wafers, so any opportunity that results in savings will be focused. It is

believed that both the proposed model and the integrated approach contribute a lot of saving

to manufacturers. Both stochastic downgrading and service level problems provide the

practical solutions for managing C/D wafers in a fab. With adoption of the proposed

stochastic models, a manager can make the utilization of C/D wafers more effective and

efficient. And then a wafer fab can create a higher return from investment and be more

competing in the market.

6.2 Future Research

Future research directions might include development of efficient dynamic heuristics to

solve larger scale dynamic downgrading problem, focus on estimating a demand model and

generating economic scenarios to improve the discrete approximation of the probability

distribution. In addition, establishing a multi-objective stochastic model for C/D wafers

problem to minimize total cost can achieve multiple planning targets at one time.
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