Parallel Computing 35 (2009) 441-454

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Embedding paths of variable lengths into hypercubes with conditional
link-faults

Tz-Liang Kueng?, Cheng-Kuan Lin®, Tyne Liang ®*, Jimmy .M. TanP, Lih-Hsing Hsu &'

2 Department of Computer Science and Information Engineering, Asia University, 500 Lioufeng Rd., Taichung, Taiwan 41354, ROC
b Department of Computer Science, National Chiao Tung University, 1001 University Rd., Hsinchu, Taiwan 30050, ROC
“Department of Computer Science and Information Engineering, Providence University, 200 Chung Chi Rd., Taichung, Taiwan 43301, ROC

ARTICLE INFO ABSTRACT

Article history: Faults in a network may take various forms such as hardware failures while a node or a link
Received 10 September 2007 stops functioning, software errors, or even missing of transmitted packets. In this paper, we
sgg’;“’ed in revised form 18 September study the link-fault-tolerant capability of an n-dimensional hypercube (n-cube for short)

with respect to path embedding of variable lengths in the range from the shortest to the
longest. Let F be a set consisting of faulty links in a wounded n-cube Q,, in which every
node is still incident to at least two fault-free links. Then we show that Q, — F has a path
of any odd (resp. even) length in the range from the distance to 2" — 1 (resp. 2" — 2)

Accepted 26 June 2009
Available online 2 July 2009

Keywords: . . .
lmyerconnection network between two arbitrary nodes even if |F| = 2n — 5. In order to tackle this problem, we also
Hypercube investigate the fault diameter of an n-cube with hybrid node and link faults.
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1. Introduction

In many parallel computer systems, processors are connected on the basis of interconnection networks. Such networks
usually have a regular degree, i.e., every node is incident to the same number of links. Popular instances of interconnection
networks include hypercubes, star graphs, meshes, bubble-sort networks, etc.

The hypercube is one of the most versatile interconnection networks yet discovered for parallel computation. It can effi-
ciently simulate many other networks of various sizes [14]. Because nodes and/or links in a network may fail accidentally, it
is demanded to consider fault tolerance of a network. Hence, the issue of faulty hypercubes has been widely addressed in
researches [2,4,11,16,20-24]. For example, Latifi et al. [11] proved that an n-dimensional hypercube (n-cube for short)
has a hamiltonian cycle even if it has n — 2 faulty links. Furthermore, Li et al. [16] showed that an n-cube is bipancyclic even
if it has up to n — 2 faulty links; Tsai et al. [20] showed that a faulty n-cube is both hamiltonian laceable and strongly ham-
iltonian laceable if it has n — 2 faulty links. Recently, Xu et al. [24] showed that an n-cube, with n — 2 faulty links, contains a
path of length [ between any two nodes of distance d* for each integer [ satisfying d* < [ < 2" — 1 and 2|(I — d"), where expres-
sion 2|(I — d") means that | — d* = 0 (mod 2). Moreover, Fu [4] proved that a fault-free path of length at least 2" — 2f — 1 (or
2" — 2f —2) can be embedded to join two arbitrary nodes of odd (or even) distance in an n-cube with f < n — 2 faulty nodes.

Since linear array and rings are two of the most fundamental structures for parallel and distributed computation, a variety
of efficient algorithms were developed on these two topologies [14]. In particular, embedding of linear array and rings in a
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faulty interconnection network is of great significance. For example, path embedding in a faulty n-cube was addressed in
[16,20,24]. However, one should notice that each component of a network may have different reliability. Thus, the probabil-
ity that all faulty components would be close to one another seems low. With this observation, Harary [7] first introduced
the concept of conditional connectivity. Later, Latifi et al. [13] defined the conditional node-faults, which require each node of
a network to have at least g fault-free neighbors. It is intuitive to extend this concept by defining conditional link-faults, which
require that every node will be incident to at least g fault-free links. In this paper, we only concern g = 2. For convenience, we
say a network is conditionally faulty if and only if every node is incident to at least two fault-free links. Under this assumption,
Chan and Lee [2] discussed the existence of hamiltonian cycles in an n-cube with 2n — 5 conditional link-faults. In addition,
Tsai [21] showed that an injured n-cube contains a fault-free cycle of every even length from 4 to 2" inclusive even if it has up
to 2n — 5 conditional link-faults. It was also proved in [21] that an n-cube with 2n — 5 conditional link-faults is hamiltonian
laceable and strongly hamiltonian laceable.

As Shih et al. [18] showed, any fault-free link of a faulty n-cube lies on a cycle of even length in the range from 6 to 2"
when up to 2n — 5 conditional link-faults may occur. In other words, there exists a path of odd length from 1 to 2" —1,
excluding 3, between any two adjacent nodes in a faulty n-cube with 2n — 5 conditional link-faults. In this paper, we are curi-
ous whether paths of variable lengths still can be constructed to join two arbitrary nodes of distance greater than one. More
precisely, we will show that a conditionally faulty n-cube, with 2n — 5 faulty links, contains a fault-free path of length [ be-
tween any two nodes u and v of distance d* > 2 for each [ satisfying d* <1< 2" —1 and 2|(I - d").

The rest of this paper is organized as follows. In Section 2, basic definitions and notations are introduced. In Section 3, the
fault diameter of the n-cube is investigated. The partition of a conditionally faulty n-cube is presented in Section 4. Fault-
tolerant path embedding is shown in Section 5. Finally, the conclusion is presented in Section 6.

2. Preliminaries

Throughout this paper, we concentrate on loopless undirected graphs. For the graph definitions, we follow the ones given
by Bondy and Murty [1]. A graph G consists of a node set V(G) and a link set E(G) that is a subset of {(u, v)|(u, v) is an unor-
dered pair of V(G)}. Two nodes, u and v, of G are adjacent if (u, v) € E(G). Then u is a neighbor of v, and vice versa. A graph H is
a subgraph of G if V(H) C V(G) and E(H) C E(G). A graph G is bipartite if its node set can be partitioned into two disjoint partite
sets, Vo(G) and V;(G), such that every link joins a node of V(G) and a node of V4 (G).

A path P of length k from node x to node y in a graph G is a sequence of distinct nodes (v1, v5,..., vx1) such that
1 =X, U1 =Y, and (v;, viy1) € E(G) for every 1 < i< kif k > 1. Moreover, a path of length zero consisting of a single node
x is denoted by (x). For convenience, we write P as (v1,...,7;,Q, vj,..., Ux.1), where Q = (v;,..., vj). The ith node of P is de-
noted by P(i); i.e., P(i) = v;. We use ¢(P) to denote the length of P. The distance between any two nodes, u and v, of G, denoted
by d¢(u, v), is the length of the shortest path joining u and » in G. The diameter of G, denoted by D(G), is defined to be
max{dg(u,v) | u, v € V(G)}. A cycle is a path with at least three nodes such that the last node is adjacent to the first one.
For clarity, a cycle of length k is represented by (v1, v5,..., v, v1). A path (or cycle) in a graph G is a hamiltonian path (or
hamiltonian cycle) if it spans G. A bipartite graph is hamiltonian laceable [19] if there exists a hamiltonian path between
any two nodes that are in different partite sets. Moreover, a hamiltonian laceable graph G is hyper-hamiltonian laceable
[15] if, for any node » € V;(G) and i € {0, 1}, there exists a hamiltonian path of G — {v} between two arbitrary nodes of
V1_i(G). Later Hsieh et al. [9] introduced strongly hamiltonian laceability. A hamiltonian laceable graph G is strongly hamilto-
nian laceable if there exists a path of length |V(G)| — 2 between any two nodes in the same partite set.

Let u=bh, q...b;...by be an n-bit binary string. For any j, 0 <j<n—1, we use (u) to denote the binary string
by_1...bj...by. Moreover, we use (u); to denote the bit b; of u. The Hamming weight of u, denoted by wy(u), is
{0 <i<n—1]|(u),=1}|. The n-cube Q, consists of 2" nodes and n2"' links. Each node corresponds to an n-bit binary
string. Two nodes, u and , are adjacent if and only if » = (u) for some j and we call the link (u, (1)) j-dimensional. We define
dim((u,v)) =j if v=(uy. The Hamming distance between u and v, denoted by h(u,v»), is defined to be
{0 <i<n-1](u);# (v);}|- Hence two nodes, u and v, are adjacent if and only if h(u, v) = 1. It is well known that Q, is a
bipartite graph with partite sets V(Q,) = {u € V(Q,)|wy(u) is even} and V;(Q,) = {u € V(Q,)|wx(u) is odd}. Moreover, Q,
is both node-transitive and link-transitive [14].

Let @' be a subgraph of Q, induced by {u € V(Q,) | (u); =i} for 0 <j<n-1andie {0,1}. Clearly, Q) is isomorphic to
Q,_;. Then the node partition of Q,, into subgraphs Q’° and Q’! is called j-partition. The set of crossing links between Q’° and
Q', denoted by E. = {(u, v) € E(Q,) | u € V(Q!°), v € V(QE")}, consists of all j-dimensional links of Q,,. In order to clearly indi-
cate the faulty elements in graph G, we use F(G) to denote the set of all faulty elements in G.

3. Fault diameter of the n-cube

Let G be a graph. A faulty link (or faulty node) of G is a link (or node) that can be deleted from G. To be precise, the deletion
of a subset F, of E(G), denoted by G — F,, is the spanning subgraph of G obtained by deleting the links in F, from G; the dele-
tion of a proper subset F, of V(G), denoted by G — F,, is the subgraph containing the nodes of G not in F, and the links of G not
incident with any node in F,. By such definition, if a node is deleted from G, then all links incident with this node are deleted.
Moreover, we define that G — (F, UF,) = (G — F.) — F,. Suppose that u is an arbitrary node of G and v is a neighbor of u. We
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say that v is a reachable neighbor of u if both v and (u, ) are fault-free; otherwise, v is an unreachable neighbor of u. The
following lemma is a basic property of Q,,.

Lemma 1 [17]. For any two nodes, u and v, of Q,, there exist n internally node-disjoint paths joining u and v, h(u, v) of which are
of length h(u, v) and the other n — h(u, v) of which are of length h(u, v) + 2.

The next corollary directly follows from Lemma 1.

Corollary 1. Let F be a set of n — 1 node-faults and/or link-faults in Q,. For any pair u, v of distinct nodes in Q, — F, then
do,-r(u,v) < h(u,v) + 2.

Latifi [12] investigated the fault diameter of Q,, under the assumption that every node has at least one fault-free neighbor.
The following theorem was proved in [12].

Theorem 1 [12]. Let F be a set of 2n — 3 faulty nodes in Q,, such that every node of Q,, has at least one fault-free neighbor. For any
pair u, v of distinct nodes in Q, — F, then do,_r(u, v) < h(u, v) + 4.

Although only node-faults are admitted by Latifi [12], it is noticed that a similar result can be obtained when both node-
faults and link-faults are involved. To be precise, we improve Theorem 1 by proving the next corollary.

Corollary 2. Suppose that u and v are any two distinct nodes of Q,,n > 2. Let F be a set of utmost 2n — 3 hybrid node-faults and/
or link-faults in Q,, such that both u and v are fault-free with at least one reachable neighbor. Then

=n if [F]<2n-3, h(u,v)=n, andn > 2
d <n+1 if [F|<2n-3, h(u,v)=n-1, andn>2,
arthV)y h(u,v)+4 if [F|<2n—3, h(u,v)<n—2, and n > 3,
<n if [Ff|l=2n-4, h(u,v)=n-2, and n# 4

For clarity, we prove the the first part of Corollary 2 in advance.

Proposition 1. Suppose that u and v are any two distinct nodes of Q, with h(u, v) = n. Let F be a set of 2n — 3 hybrid node-faults
and/or link-faults in Q,, such that both u and v are fault-free with at least one reachable neighbor. Then dq,_r(u, v) = n.

Proof. It is not difficult to verify that this proposition holds for n = 2. Hence, we only concern the case that n > 3. Let
I, = {i1,...,i,} be a set of p distinct integers of {0, 1,...,n — 1} such that (u)", ... (u)ip are reachable neighbors of u. Similarly,
letl, = {11, . ,l }c{0,1,...,n—1} beasetofq d1st1nct integers such that (v)1 (v)i3 are reachable neighbors of v. We
distinguish the following two cases.

Case 1: Suppose that I, N1, # . Letj € I, N I,,. Then we partition Q,, into Q’;° and Q! For convenience, let Fy = F(Q}°) and

= F(Q5). Since h(u, v) = n, nodes u and v are located in different subcubes. Moreover, we have h(u ,(v)) =n—1.By the
pigeonhole principle, we have |Fy| < n — 2 or |F{| < n — 2. Without loss of generality, we assume that |F0l < n — 2. Moreover,
we assume that u € V(QJO) By Lemma 1, QfO has at least one fault-free path L of length n — 1 between u and (»). Hence,
(u,L, (vY, v) forms a fault-free path of length n between u and v.

Case 2: Suppose that I, N1, = 0. Since |F| = 2n — 3, we can conclude that 3 < p + g < n. Without loss of generality, we
assume that p > q. Thus, we have p > 2.

Suppose that n = 3. We have p = 2 and q = 1. Let j € I,,. Without loss of generality, we assume that u € V(Qj,;o). Obviously
@’ is fault-free and it has a fault-free path L of length two between u and (vY.Then (u,L, (vY, v) is a fault-free path of length
three.

Suppose thatn > 4. Letj € I,. Since I, N1, = 0, (u)j is a reachable neighbor of u whereas v)j is an unreachable neighbor of
v. Again, we assume that u € V(Q{;O). Let Fp = F(Q{;O) and F; = F(Qj 1. If |[F1| < n— 2, Lemma 1 ensures that QJ1 has a fault-
free path R of length n — 1 between (u) and ». Hence, (u, (1), R, v) is a fault-free path of length n between u and .

Suppose that [F;| > n — 1. Thus, we have |Fq| + [F N E.| < n — 2. Let I, ={kel,|() e NQH,F((Z))k)}, where NQH,F((v)k)
is the set of all reachable neighbors of (v v)k.

Subcase 2.1: Suppose that T, = 0. Let k€ I, and O be a subgraph of Q, induced by {x € V(Qn)|(x); = (u);, (%), = (W) }-
Then O is an (n — 2)-cube inside Q’ 0 Because (v is an unreachable neighbor of »and it is outsrde o, there are utmostn — 3
faulty elements in ©. By Lemma 1, @ has a fault-free path L of length n — 2 between u and ((#)¥Y. So (u, L, ()%, (v)¥, v) is a
fault-free path of length n.

Subcase 2.2: Suppose that I, =0. Let ki e€l,. Since |[F|<2n-3 and p-+q<n, there exists an integer
ky € {O, 1,...,n—1} — {j.ky} such that ((»)*)* is a reachable neighbor of ()" and (((#)*")*2Y is a reachable neighbor of
(vyyke. Let w = ((#)*1)*> and Q be a subgraph of Q, induced by {x € V(Q,) | (x); = (w);, (X), = (W), (X), = (), }. Then Qs
an (n 3)-cube 1ns1de QJO Obviously, (u)*, (v), and (()*'Y are unreachable ne1ghbors of u, v, and ()", respectively. Since

. (v, and ((v)"Y are outside Q, there are utmost n -4 faulty elements in Q. It follows from Lemma 1 that Q has a fault-
free path L oflength n — 3 between u and (wY. So (u, L, (W), w, (w e = (v, v) is a fault-free path of length n between u and ».

In summary, we conclude that dq,_r(u, ) = n and the proof is completed. O
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Proof of Corollary 2. Now we concern that h(u, v) < n — 1. The proof is by the induction on n. The result is true for n = 2. As
our inductive hypothesis, we assume that the result holds for Q,_; with n > 3. Since h(u, ) < n — 1, we partition Q,, along
some dimension j such that both u and v are in the same subcube. By transitivity, we assume thatj =0and u, v € V(QS‘1 ). Let
F; = F(QY) forie {0,1}.

Case 1: Suppose that |[F;| < 2n — 5 = 2(n — 1) — 3. First, we consider the case that both u and v have at least one reachable
neighbor in QJ%'. Then it follows from the inductive hypothesis that dq, r(u,?v)= dgor p,(uv) =n—1 if
h(u,v) =n—-1,dg, r(u,v) < de _rwv)<n if h(u,v)=n-2, and dq,r(U,v) < ng_l_Fl (u,v) < h(u z/) +4 if h(u,v) <
n—3forn > 4.

Now we consider the case that either u or » has no reachable neighbors in Q?l‘l. Thus, we have |F;| > n—1 and
|Fo| + |FNE%] < n—2. Since n—1 < |F;| <2n—5, we have n > 4. Without loss of generality, we assume that u has no
reachable neighbors in Qg 1. Accordingly, (u)° is the unique reachable neighbor of u.

Suppose that h(u, ) = n — 1. Since h((u)°, v) = n, it follows from Proposition 1 that do,—r((u )%, v) = n. Let P be a fault-
free path of length n between (u)° and 2. Obviously, we have u ¢ V(P). Hence (u, (1), P, ») forms a fault-free path of length
n+1.

Suppose that h(u,v)<n—2. If (»)° is a reachable neighbor of », then it follows from Corollary 1 that
nguiFo((U)O,(U)O) < h(w)° (2)°) + 2 = h(u, v) + 2 since |Fo| <n—2. Let H be a shortest path between (u)° and (v)° in
Q%0 —F,. Then (u,(u)°,H,(v)°,v) forms a fault-free path of length at most h(u, v) + 4. When |F| = 2n —4, we have
[Fo| < n — 3. Therefore, Q%° — Fy has a path H of length n — 2 between (u)° and () if h(u, ) = n — 2. Thus (u, (w)°, H, (v)°, v)
is a fault-free path of length n. On the other hand, if (#)° is an unreachable neighbor of », then we have (v)° € F or
(v,(v)°) € F. By Lemma 1, Qo0 hasn—1 internally node-disjoint paths L;, ...,L,_; between ( u)? and ()°. For clarity, L; can
be written as ((u)°, L}, (#)°), ()% for 1 <i<n—1.LetT; = <(u)°,L;,((u)°)f,(u) vy with1 <i<n—1.Then {Ty,...,T,_1}is
a set of n — 1 internally node—dlsjomt paths between (u ) and ». We distinguish two subcases.

Subcase 1.1: One of {T4, ..., T,_1}, say T;, is fault-free. Hence, (u, (u)°, T;, v) is a path oflength at most h(u, v) + 4 between
u and v. In particular, we cons1der the case that h(u, v) =n — 2. Clearly, n-—2 paths of {T1 T,_1}are of lengthn — 1. When

> 5, u and » have no common neighbors. Since ({(v Mu U ), (u, (u) )}) (U,” 11 V(T;) UE(T;)) = 0, at most
n — 3 faults may appear on Ty,...,T,_1. Hence there ex1sts a fault free path Ty of {T1,...,Ty_1} such that ¢(Ty) =n-1if
n > 5. Then (u, u)°, Ty, v) is a fault-free path of length n.

Subcase 1.2: None of {Ty,...,T,_ 1} is fault-free. It is noticed that |[F| = 2n — 3 in this subcase. Moreover, we claim that
h(u, v) = 2. Because Ty, ..., T,_1 are internally node-disjoint and u has no reachable neighbors in QO~1 every of {Ty,...,Tn_1}
contains exactly one faulty element. Since V(T;) n V(Q%") = {v, (v)’ "\ for 1 <i< n— 1, there exist two distinct integers t1 and
t;,1<t1,t; <n—1, such that F(T,,) = {()"} = {w)?} and F(T,) = {(v )‘2 } = {(u)""}. By transitivity, we assume that
t; =n—1and t; = n — 2. Again, Lemma 1 ensures that Q%l hasn -1 internally node-disjoint paths Ry, ...,R,_1 of length at
most four between u and ». For clarity, we can write R; as (u, R;, (v)!, v) for 1 < i< n— 1. Thus, we have é(Rn 2) =4(Rp_1) =2
and £(R;) = 4 for 1 < i < n — 3. Because ()" is an unreachable neighbor of », v has a reachable neighbor in Q%, say ()" with
some ke {1,...,n— 3} To be precise, we write R, = (u, Xy, Yy, ()%, v) and Ly = ()°, (%)%, )%, (0)5)°, (v)°), where x, is
some neighbor of u and y, is a common neighbor of x; and ( ) .

Subcase 1.2.1: Suppose that ((#)X)° is an unreachable neighbor of (z)*. Let S,(:) = (W% x)° )% and
S;cz) = ()% ¥, (v)"). Because T, has only one faulty element, Sl(cl) is fault-free. Since (V(S( ) UE(S HHn
(Ui 2 V(T UE(T))) = 0, 52) is also fault free. Then (u, (u )O,Sf:), ), S(2 (v ) v) is a fault-free path of length six.

Subcase 1.2.2: Suppose that ((2))° is a reachable neighbor of (v)*. Let @ be the subgraph of QOO induced by
{xe V(2% (*)p = Wp,p € {1,...,n -3} — {k}}. Obviously, © is isomorphic to Q3. Then we claim that |[F(®)| < 2. Since
|[Fo| < n — 2, this claim holds for n = 4. In what follows, we concern that n > 5. It is easy to see that L;,L,_», and L,_; are
inside ©®. Moreover, we have( (T) UE(T)) N (V(@) UE(®)) = {(u)°} fori € {1,...,n — 3} — {k}. Since T; contains one faulty
element for each 1 <i<n—1, at least n — 4 faulty elements are outside @; i.e., |F(@)| < 2. Since h((u)°, (v)*)°) = 3, it
follows from Lemma 1 that @ has a fault-free path S of length three between (u)° and ((»)*)°. As a result,
w, )°,S, (1)9°, (v)%, ) is a fault-free path of length six.

Case 2: Suppose that |F;| > 2n — 4. Thus, we have |Fo| + [F N E2| < 1.

Subcase 2.1: Suppose that (u)° and ()" are reachable neighbors of u and , respectively. Since |Fo| < 1, it follows from
Lemma 1 that Q%° has a fault-free path L of length at most h(u, ») + 2 between (1)’ and (2)°. Then (u, (u)°,L, (#)°, v) is a
fault-free path of length at most h(u, v) + 4 between u and ». When |F| = 2n — 4, we have |Fq| + |[F N E2| = 0. Hence Q%° has a
path L of length h(u, ») between (u)° and (»)°. Then (u, (u1)°, L, ()°, ») is a fault-free path of length h(u, v) + 2 between u and
v.

Subcase 2.2: Suppose that (1)° or (2)° is an unreachable neighbor of u or », respectively. It is noticed that |[F| = 2n — 3 in
this subcase. Since |Fg| + [FNE°| < 1, we assume that (u)° is an unreachable neighbor of u. If v is a reachable neighbor of u,
then dg,_r(u,v) =1. Otherwise, let (u* be a reachable neighbor of u with some ke {1,....,n—1}. Since
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|Fol + |FNE%| < 1, ((w)*)? is a reachable neighbor of (u)*. If (u), # (), then h((u)*, v) = h(u, v) — 1. Obviously, (1)° is not on
any shortest path between ((u)*)° and (»)°. Thus, Q?,'O has a fault-free path L of length h(((1)*)°, ()°) = h(u, v) — 1 between
(W"° and (2)°. Then (u, W)*, (w)*)°,L, (#)°, v) is a fault-free path of length h(u, v) + 2. If (u), = (v),, then h((w)*, ) =
h(u,v)+1. By Lemma 1, Q%° has a fault-free path L of length h(u,v)+1 between ((u)*)° and (»)°. Then (u, (u)*,
(WO, L, (v)°, v) is a fault-free path of length h(u, v) + 4.

The proof is completed. O

The following theorem characterizes a property of shortest paths in a faulty n-cube.

Theorem 2. Let F be a set of 2n — 5 faulty links in Q,, such that every node of Q,, — F has at least two neighbors. Moreover, let j be
an integer of {0,1,...,n — 1} such that both Q{;o and Q{f are conditionally faulty with 2n — 7 or less faulty links. Suppose that u is
a node of an"o and v is a node of an‘l. Then there exists a shortest path P* between u and v in Q, — F such that P* crosses the
dimension j exactly once.

Proof. Since [F(Q}°)|+|F(Q}")| < |F|=2n-5, we assume that |F(Q}')] <n—3. Since (u), # (v);, every shortest path

between u and v crosses the dimension j an odd number of times. If there is a shortest path between u and v crossing the
dimension j exactly once, the proof is done. Thus, we assume that one shortest path between u and v, namely P, crosses
the dimension j more than once. Accordingly, the shortest path P can be represented as (u,Py,xq, (XY,
Pi, (X2, %3, Py, X3, (X3, ... %, (%Y, Pr,v) with odd integer r > 3. For convenience, let H = ((x;),Pi, (X)), Xa2,Ps,
x3,(xsY, ..., %, (x),P;, v). By Corollary 1, we have i g (X ¥, v) < h((x1), v) + 2. Suppose that R is a shortest path

between (x;) and vin Q' — F(Q}'). Then we have ¢(H) < ¢(R). Since r > 3, we have ¢(H) > h((x1), v) +2 > (R). As a result,
P* = (u, Py, xq, (x1),R, v) happens to be a shortest path between u and v and it crosses the dimension j exactly once. O
The fault diameter of Q,, is computed as follows.

Theorem 3. [12] Let F be a set of faulty nodes in Q, such that every node of Q,, has at least one fault-free neighbor. Then the
diameter of Q, — F is computed as follows:
n if [Fj<n-2,
DQ,-F)=<n+1 if |[F|l=n-1,
n+2 if |[F]=2n-3.

We improve Theorem 3 by proving the next corollary.

Corollary 3. Let F be a set of hybrid node-faults and/or link-faults in Q,, n > 3, such that every node of Q, has at least one
reachable neighbor. Then D(Q4 — F) =4 if [F| < 2; D(Qq4 —F) =5if [F|=3; D(Qq4 — F) =6 if |[F| € {4,5}. When n # 4,
n if [Fj<n-2,
DQ,—-F)=<{n+1 ifn-1<|F|<2n-4,
n+2 if |[Fj=2n-3.

1100 1101

0110 0111

Fig. 1. An example that the distance between 0100 and 0111 is 6.
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Proof. Suppose that n # 4. The result follows from Lemma 1, Corollary 2, and Theorem 3. Suppose that n = 4. Applying
Lemma 1, Corollary 2, and Theorem 3, we also have D(Q4 —F) =4 if |[F|<2,D(Qq4—F)=5 if [F|=3,D(Qs—F) <6 if
|[F| =4, and D(Q4 — F) = 6 if |F| = 5. Let F = {0000,0101,0110, (0111,1111)}. Then dg, r(0100,0111) = 6. See Fig. 1. There-
fore, D(Q, —F)=6if [F|=4. O

4. Partition of an n-cube with conditional link-faults

In this section, we propose a procedure to partition Q,, with 2n — 5 conditional link-faults. Recall that a network is said to
be conditionally faulty if every node of this network is incident to at least two fault-free links. Suppose that Q,,n > 4, is con-
ditionally faulty with 2n — 5 faulty links. For convenience, let F = F(Q,) and F; denote the set of faulty i-dimensional links.
Since |F| = 2n — 5, there are utmost two nodes of Q,, incident to n — 2 faulty links. For any two distinct nodes, u and v, of Q,,,
the procedure Partition(Q,, F, u, v) determines a dimension j according to the following rules:

(1) Suppose that there are exactly two nodes incident to n — 2 faulty links. Then the two nodes must be connected by a
faulty link (w, (w)') with some j € {0,1,...,n — 1}. Obviously, both Q'° and Q' are conditionally faulty with n—3
faulty links.

(2) Suppose that there is only one node, namely z incident to n—2 faulty links. Let S={0<i<n-1]
(z,(2)") € F} = {ks,...,ko} and {0,1,...,n — 1} — S = {ky, k,}. Then both Q'° and Q' are conditionally faulty for each
ieS.

(2.1) If there exists a dimension j of S such that |F;| > 1, then we partition Q, along dimension j. Otherwise, if there
exists a dimension j of S such that |F(Q{;°)\ . |F(Qf,'1'1 )| > 0, then we partition Q, along dimension j. Obviously, both
Q° and Q' contain 2n — 7 or less faulty links.

(2.2) Suppose that |Fj| =1 and |F(Q\%)| - |F(Q}')| = 0 for every i € S. That is, for any i € S, either |[F(Q%)| or |F(Q}")|
remains 2n — 6. Hence, for any (x,y) € F — {(z,(2)") | i € S}, we have (x); = (y); = (z); for every i € S. That is, for
(x,y) € F—{(z,(2)") | i € S}, we have x,y € {z,(2)"", (2)*?, ((2)"1)*}. Because both (z, (2)") and (z, (2)**) are fault-
free, it follows that F—{(z, (2))) |ie S} C{((@",((2")*), (2)"*,((2)"")**)}. Since |F-{(z,(2)))|ie S} =n—
3 < 2, we obtain n € {4, 5}. The faulty links are distributed as illustrated in Fig. 2.
(2.2.1) If there exists a dimension j of S such that (z)/ is neither u nor », then we partition Q, along dimension j.
(2.2.2) Otherwise, {u, v} equals to {(z)' | i € S}; thus, we have n = 4. In this case, we partition Q, along any

dimension j € S. Clearly, u and » belong to the same partite set of Q.
(3) Suppose that every node is incident to utmost n — 3 faulty links. Obviously, every (n — 1)-cube in Q, is conditionally
faulty. Let S={0<i<n-—1]|F; #0}.
(3.1) Suppose that |F;| > 2 with some j € S. Then both Q° and Q' contain 2n — 7 or less faulty links.
(3.2) Suppose that |F;| <1 for each i€ S. Clearly we have 2n —5 = |F| = |UsFil = X_icslFil < n; ie, n<5. Then a
dimension j of S can be chosen so that both Q/° and Q! contain 2n — 7 or less faulty links.
(3.2.1) When n = 5, we claim that |[F(Q%)| - |[F(Q.")| > O for some j € S. Let e; = (b ... by ... big, b ... by ... bio)
be an i-dimensional link of Qs for i € {0,1,2,3,4}. Suppose that F = {eg, e, e, e3,e4} is a faulty set of
Qs such that [F(Q%)|- |F(Qi")| = 0 for each i€ {0,1,2,3,4}. Then we have by = by; = by = bs; = by
for each i € {0,1,2,3,4}; i.e., all faulty links are incident with an identical node. This contradicts the
assumption that every node is incident to utmost n — 3 faulty links.
(3.2.2) Similarly, there exists an integer j € S such that |F(Q}%)] - |F(Q}")| > 0.

In summary, the proposed procedure determines a j-partition of Q,, such that both Q{;O and Q{;l are conditionally faulty
with [F(Q°)] + [F(Q})| < 2n - 6.

(b)

Fig. 2. The distributions of faulty links indicated in (2.2).
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5. Path embedding in hypercubes

The following theorems were proved by Tsai [20] and Xu [24].

Theorem 4 [20]. Let n > 3. Suppose that F C E(Q,,) is a set of utmost n — 2 faulty links. Then Q,, — F is hamiltonian laceable and
strongly hamiltonian laceable.

Theorem 5 [20]. Let n > 3. Suppose that F CE(Q,) is a set of utmost n — 3 faulty links. Then Q, — F is hyper-hamiltonian
laceable.

Theorem 6 [24]. Let F be a set of n — 2 faulty links in Q,, (n > 2). Suppose that u and v are any two different nodes of Q, — F.
Then Q,, — F contains a path of length | between u and v for every I satisfying do, r(u, v) <1< 2" -1 and 2|(I — do, r(u, v)).

As Tsai [21] showed, an n-cube with 2n — 5 conditional link-faults is hamiltonian laceable and strongly hamiltonian
laceable.

Theorem 7 [21]. Let F be a set of faulty links in Q,, (n > 3) such that every node of Q,, — F has at least two neighbors. Then Q,, — F
is hamiltonian laceable and strongly hamiltonian laceable if |F| < 2n —

To prove our main result, we need the next two lemmas.

Lemma 2 [21]. Assume that n > 2. Let x and u be two distinct nodes of Vo(Q,); let y and v be two distinct nodes of V1(Q,). Then
there exist two node-disjoint paths P, and P, such that the following conditions are satisfied: (1) P, joins x to y, (2) P, joins u to v,
and (3) V(P1) UV(Pz) = V(Qy).

Lemma 3. Let v be any node of Q, (n > 3) and let (w,b) be any link of Q, — {v}. For every odd integer l in the range from 1 to
—3,Q, — {7} has a path of length | between w and b.

Proof. Since Q, is node-transitive, we assume that v = 0". We prove this lemma by the induction on n. The induction base
depends on Q5. With the link-transitivity, the required paths are listed in Table 1.

When n > 4, we assume that the result is true for Q,_,. Then we partition Q, along dimension p other than dim((w, b)).
Obviously, v is located in Q‘,'?l'o.

Case 1: Suppose that (w, b) is in Q2°. By the inductive hypothesis, Q2° — {7} has a path of odd length I between w and b

for any odd integer [p from 1 to 2"~ — 3. Let H be a path of length 2"~ — 3 between w and b in Q2° — {»}. Since 2"' —3 > 1,
we can represent H as (w,u, Hp, b). By Theorem 6, Qﬁ*l has a path H; of odd length [; between (w)? and (u)” for any odd
integer I; from 1 to 2" ! — 1. As a result, (w, (wW)”,Hy, (u)”,u,Ho,b) is a path of odd length 2"~! — 2 + I, in the range from
2" _1t02"-3.

Case 2: Suppose that (w, b) is in Qﬁ'l. By Theorem 6, Qﬁ'l has a path of odd length [; between w and b for any odd integer [,
from 1 to 2""! — 1. Let H be a path of length 2"~! — 1 between w and b in Q‘,}]. Then we can choose a link (x,y) on H such that
v ¢ {(x)P, (y)'}. Hence, we can represent H as (w, H,x,y, H}, b). By the inductive hypothesis, Q?° — {#} has a path Hy of odd
length [, between (x)P and (y)? for any odd integer Io from 1 to 2"~! — 3. As a result, (w, H}, x, (x)?, Ho, (¥)F,y, H,, b) is a path of
odd length 2"~! + Iy, in the range from 2" ' +1to 2" —3. O

As Shih et al. [18] showed, any fault-free link of Q,, lies on a cycle of even length from 6 to 2" when up to 2n — 5 condi-
tional link-faults may occur.

Theorem 8 [18]. Let F be a set of 2n — 5 faulty links in Q,, such that every node of Q,, — F has at least two neighbors. Suppose that
u and v are any two adjacent nodes of Q,, — F. Then Q,, — F contains a path of odd length | between u and v if l is in the range from 1
to 2" — 1 excluding 3.

In the following discussion, we focus on constructing paths between any two nodes with distance greater than one.

Theorem 9. Let F be a set of 2n — 5 faulty links in Q,(n > 3) such that every node of Q, — F has at least two neighbors. Suppose
that u and v are two arbitrary nodes of Q,, — F with distance d* = dq,_¢(u, v) > 2. Then Q,, — F contains a path of length | between

Table 1
The paths of variable lengths between w and b in Qs — {000}.

(w,b) = (011,001) (011,111,101,001), (011,111,110, 100, 101, 001)
(w,b) = (011,111) (011,001,101,111), (011,001, 101,100,110, 111)
(w,b) = (101, 001) (101,111,011,001), (101,100,110,111,011,001)
(w, b) = (101, 100) (101,111,110, 100), (101,111,011,010, 110, 100)

) ( ) ( )

(w,b) = (101,111 101,100,110,111),(101,100,110,010,011,111
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u and v for every integer | satisfying both d* <1<2"—1 and 2|(l-d"), where expression 2|(I—d") means that
[—d" =0 (mod 2).

Proof. Applying procedure Partition(Q,, F, u, v), we can determine a j-partition of Q, such that both Q{;O and Qf,';l are condi-
tionally faulty with |[F(Q'%)| + |[F(Q"")| < 2n — 6. As a result, the proof can proceed by the induction on n. The induction base,
depending upon Q;, follows from Theorem 6. As our inductive hypothesis, we assume that the result holds for Q,,_; when
n =4

Case I: Suppose that u and v are in the different partite sets of Q,. Without loss of generality, we assume that u € V,(Q,,)
and » € V1(Q,). By Theorem 7, Q, — F is hamiltonian laceable. Moreover, a shortest path between u and » can be easily
obtained by a simple breadth-first search. Therefore, we mainly concentrate on the paths of odd lengths in the range from
d+2to2"-3.

Subcase 1.1: Suppose that \F(Qj'o)\ 2n—7 and \F(Qﬁ1)| < 2n-—7. Without loss of generality, we assume that
IF(Q")| > IF(Q}1)]; thus, [F(Q)] <n —3. A | |

Subcase 1.1.1: Suppose that both u and vare in Q}°. By the inductive hypothesis, Q2° — F(Q’°) contains a path Hy of length
2" _ 1 between u and v. Let A = {(Ho(i),Ho(i+1)) |1 <i<2"1i=1 (mod 2)} be a set of disjoint links on Hy. Since
Al = [2"—2]*1] >2n — 5 forany n > 4, there exists a link (w, b) of A such that (w, (w)), (b, (by’), and ((wY, (bY) are all fault-free.
Hence, Hy can be written as (u, Hy, w, b, Hy, v). Since |F(QJ,'1'] )| < n — 3, it follows from Theorem 6 that Q]n] - (an]) contains a
path H; of odd length I; between (wy and (by for any odd integer I; from 1 to 2" !'—1. As a result
(u, Hy, w, (w)f,H1,(b)j,b,H6, v) is a path of odd length 2" ! 4+, in the range from 2" ! +1 to 2" — 1. See Fig. 3a for
illustration.

The paths of lengths less than 2"~ + 1 can be obtained as follows. By Corollary 2, we have d* = do,-r(u,v) <h(u,v)+4
andd )(u, v) < h(u, v) + 4. By the inductive hypothesis, Q° — F(Q2°) has a path T, of length Iy between u and v for any
@0 _Foi0, (U, ¥) to 2" 1_1.1f d" = h(u, v) or d* = h(u, v) + 4, then dgio_pioy (U, v) =d.
Otherwise, if d* = h(u, v) + 2, then dgjo_pqio) (s V) < <d +2.

Subcase 1.1.2: Suppose that both u and v are in Q). Since |F(Q}!)|<n—3, it follows from Corollary 1 that
d’ < dQ,-,lfF(Qj])(m v) < h(u, v) + 2. Thus, there exists a shortest path between u and v in Q,, — F such that it does not cross
the dimension j. By inductive hypothesis, Q{;l —F (Qﬁl) contains a path T of odd length I; between u and v for each odd integer
l; from d to 2" '—1. Let T; be a path of length 2" —1 between u and v in Q}! — F(Q}"). Moreover, let
A={(T1(i),T1(i+1))|1<i<2" ", i=1 (mod 2)} be a set of disjoint links on T;. Since |A] = [%] >2n-5forn >4,
there exists a link (w,b) of A such that (w, (wY), ( , and ((wY, (by) are all fault-free. Hence, T; can be written as
(u, Ty, w,b, T%, v). Since |[F(QI%)| < 2n — 7, it follows from Theorem 8 that Q}° — F(Q’;?) contains a path T, of odd length I
between (wy and (by for any odd integer l, in the range from 1 to 2" '—1 excluding 3. As a result
W, T}, w, (WY, To, (by,b, T}, v) is a path of odd length 2" + I, in the range from 2""! + 1 to 2" — 1 excluding 2"! + 3. See
Fig. 3b for illustration.

Q}O F QJO
odd integer [y in the range from d

Fig. 3. Illustration for Subcase I.1.
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The path of length 2"! + 3 is discussed as follows. When n = 4, we have |F(Q}%)| < 1. Thus, there exists an integer k of
{0,1,2,3} — {j, dim((w, b))} such that (WY, ((wY)¥), (Y, ((bY)*), and (WYX ((bY)*) are all fault-free. Hence,
u, Ty, w, (w)j7((w)j)",( bY), (bY,b, T}, v) is a path of length 11. See Fig. 3c for illustration. When n > 5, we have

|A|—|F|=]Al—(2n-5) = [2" =17 — (2n —5) = 2. Thus, there is a link (x,y) of A, other than (w, b), such that (x,y) and (w, b)
have no shared endpomts and (x )J y)J and ( x)l ) are all fault-free. Without loss of generality, T; can be written as
(u,Ry,w,b,R{,x,y,R], v). Hence, (u,R’],. L (WY, b)f,b,R’{, , x)f, (yY,y,R”, v) is a path of length 2" ! + 3. See Fig. 3d.

Subcase 1.1.3: Suppose that u is in an'o and visin an"]. By Theorem 2, we have a shortest path P* between u and »in Q,, — F
such that P* crosses the dimension j exactly once. Thus, P* can be represented as (u, Py, x, (x)f, Py, v), where Py is a shortest
path joining u to some node x in Q/° — F(Q’;?) and P; is a shortest path joining (x) to vin Q}! — F(Q);!). See Fig. 3e and f for
illustration.

Subcase 1.1.3.1: Suppose that ¢(Pgy) > 0 and ¢(P;) > 0. By Theorem 6, Qj,f — F(Q{;]) contains a path T; of length [; between

(xy and v for each I; satisfying ¢(P;) < I < 2" — 1 and 2|(l; — £(P;)). Suppose that £(Py) = 1. It follows from Theorem 8 that
Q{I'O - F(Q{l’o) contains a path Ty of odd length I, between u and x for any odd integer [ in the range from 1 to 2™ ' — 1
excluding 3. Suppose that ¢(Py) > 1. By the inductive hypothesis, Q{;O - F(Q{;o) contains a path T, of length [y between u and x
for each I, satisfying ¢(Py) < lp < 2"!' — 1 and 2|(ly — £(Py)). As a result, (u, To, X, (x)f,Tl, v) is a path of odd length [y +1; + 1,
in the range from d* to 2" — 3. '

Subcase 1.1.3.2: Suppose that ¢(Py) = 0 or ¢(P;) = 0. Since d* = dq, r(u, v) > 1, we have u # x or v # (x)’. With symmetry,

we assume that ¢(Pp) = 0. By the inductive hypothesis, Q{f - F(Q{;]) contains a path T; of even length I; between (xY and v
for each even integer I; from ¢(P;) to 2"~! — 2. As a result, (u = x, (x/, Ty, v) is a path of odd length I; + 1 in the range from
(P)+1=d to2""' —1.

The paths of odd lengths in the range from 2"~ + 1 to 2" — 1 are constructed as follows. Since |V (Q}%)| = 2" > 2n — 5 for
n > 4, we can choose a node y from V; (Q’;) such that (y, (yY) is fault-free. Let R be a path joining u toy in Q%° — F(Q}°) and R,
be a path joining (y)j to vin Qj’1 - (Q{;] ). Similar to Subcase 1.1.3.1, H = (u, Ry, Y, (y)j, Ry, v) is a path of any odd length in the
range fromd' = dgio g0y (U.Y) + dQJLF(Q,nJ)((y)J} v) +1to2" — 1. By Corollary 3, wehaved < (n+ 1)+ (n—1)+1 < 2" " +1
for n > 4. That is, H can be a path of any odd length in the range from 2" ! + 1 to 2" — 1.

Subcase 1.2: Suppose that lF(Q{;O)l =2n-6 or |F(Q],';1)| =2n - 6. Without loss of generality, we assume that
IF(Q5%)| = 2n — 6. Thus, Q%! is fault-free. By procedure Partition(Qy, F, u, v), the faulty links are distributed as shown in Fig. 2.

Subcase 1.2.1: Suppose that both u and vare in Q/°. Let (w, b) be a faulty link of Q% such that both (w, (wY) and (b, (b) are
fault-free. For convenience, let Fy = (ano) — {(w,b)}. By the inductive hypothesis, an‘) —Fp has a path P, of odd length [
between u and v for any odd integer l in the range from do  (u, v) to 21 _1.1f (w, b) is on P;, we write P; as (u, P}, w, b, P}, v

and define P; = (u, P}, w, (wy, (bY, b, P}, v). Otherwise, P, can be written as (u, P}, x,y, P|, v), where (x,y) is a link on P; such that
both (x, (/) and (v, (y)) are fault-free. S1m1larly, we define P, = (u, P}, x, (xY, (yY,y, P}, v). Then P, is a path of length [ + 2. By
Corollary 2, we have d* =dq,r(u,v) <h(u,v) +4and dyo_p (u,v) < h(u, v) + 4. First, 1fd* = h(u,v) ord" = h(u, v) + 4, then

we haved” = do_p (u,v)and thusIranges fromd" to 21 _1.Next,ifd" = h(u,v)+2=d u, v), then I ranges from d"* to

0r,
21 _ 1. Finally, if d* = h(u, ») + 2 and dgio_, (U, v) = h(u, v) + 4, then I ranges from d" +2 to 2"=1 _ 1. For the final case, a
shortest path between u and v in Q, — F can be constructed by a breadth-first search. In summary, the paths of odd lengths
from d* + 2 to 2"~' + 1 are constructed.

By Theorem 6, Q;' contains a path T; of length I; between (wy and (bY for each odd integer I; from 1 to 2" ' —1.
Similarly, Qfl contains a path Ry of length I; between ‘(x)f and (yY for each odd integer I; from 1 to 2"! — 1. Thus,
(u, Pys ]] w, (WY, Ty, (by,b, P’ e U) (or (U, Py %, (XY, Ry, (Y, y,Pyua_;, v)) is a path of length 2" 14 [, in the range
from 2"~ +1 to 2" — 1.

Subcase 1.2.2: Suppose that both u and » are in Q{f. Let (w,(w)") be a faulty link in QJO such that both (w, (wY) and
((w)', (w)'Y) are fault-free. Since d” = dg,—r(u, v) > 1, we assume that (wY is different from u and ». Moreover, sincen > 4, we
assume that t € {0,1,....,n—1} — {j,i}. Let X = {((W), (W))*) | k ¢ {i,j,t}}. Since |X| =n— 3, our inductive hypothesis
ensures that Q{,‘l — X contains a path T; of odd length I; between u and v for any odd integer I; satisfyingd* < l; < 2" ! — 1. Let
T denote a path of length 2"' — 1 between u and » in Q};! — X. It is noted that ((w), (w))") is on T;. Hence, T; can be
represented as (u, T}, (wY, (w)Y)', T}, v). By Theorem 8, Q% — (F(Q}°) — {( (w)i)}) contains a path Ty of odd length I
between w and (w)' for 5 < I < 2’1 1 _1.Asaresult, (u, T}, (WY, w,To, W), (wY)', T}, ) is a path of odd length 2"~ + I, in
the range from 2"~! + 5 to 2" — 1. See Fig. 4a for illustration. ) 4 4 _

Let T, denote the longest path between w and (w)' in Q.°— (F(Q% — {(w,w))}). Moreover, let
A= {(To(k), To(k+1))|1<k<2"" k=1 (mod 2)} be a set of disjoint links on Ty. The paths of lengths 2! +1 and
214 3 can be obtained as follows
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n n_"

n n

Fig. 4. Illustration for Subcase 1.2.

(a) Since |A] = (%1 >3 for n > 4, there exists a link (x,y) of A such that both Fn{(x,(x)),(y,(yY)} =0 and
{xY, Y} n{u, v} =0 are satisfied. Without loss of generality, we assume that x € Vo(Q,). By Lemma 2, there exist
two node-disjoint paths P; and P, in Q{;l such that (i) P, joins u to (x), (ii) P, joins (y) to », and (iii)
V(Py)UV(Py) = V(Q:"). As a result, (u, Py, (X),x,y, (¥}, Py, ) is a path of length 2" + 1. See Fig. 4b for illustration.

(b) We write Ty as (W =Xo,X1,...,Xpn1 | = (w)"). Then we can choose a pair of nodes from {{Xo, s}, {X1,X4},{X2,Xs}},
namely {x;, X3}, such that both F 1 {(Xc, (X)), (Xes3, (Xei3))} = 0 and |{(x)', (Xes3Y} N {u, v} < 1 are satisfied.

(b.1) Suppose that x, € Vo(Qy). If [{(X), (Xi3)'} N {u, #}| = 0, Lemma 2 ensures that Q’;' has two node-disjoint paths
Py and P, such that (i) P; joins u to (x.), (ii) P, joins (x.3) to #, and (iii) V(P;) UV(P,) = V(Q}"). Hence,
(U, Py, (XY, Xy X1 Xis2, Xierss (Xeas Y, Pa, ) is a path of length 2"' + 3. If |[{(x,), (k23 } N {u, v}| = 1, we assume
that (x,Y = ». By Theorem 5, Q%' — {»} has a hamiltonian path H; joining u to (X,3). Then (u, Hy, (Xi.3), Xi:3,
Xicy2s Xiea 15 Xk (xk)j = v) is a path of length 2"~! + 3. See Fig. 4c.

(b.2) Suppose that x, € V1(Q,). The required paths can be obtained similarly.

Subcase 1.2.3: Suppose that u is in Q/° and »is in QJ;!. If (u, (uY) is fault-free, the shortest path between u and » can be of
the form (u, (u)j, Py, v), where P; is a shortest path joining (u)i to vin Q{;l. By the inductive hypothesis, Q{;] contains a path T,

of even length I; between (u) and v for any even integer I from d ;: ((uY, ») =d" —1to 2" — 2. Then (u, (uy, T, v) is a path

o
of odd length I; + 1 in the range from d* to 2"~! — 1. On the other hand, if (u, (u)j) is faulty, we choose a neighbor of u, namely
X, in Q’,;O - F(Q{;O). Obviously, we have either h((x, ») = h(u, v) — 2 or h((x), v) = h(u, v). Let R, be a shortest path joining (x
to vin Q5'. Then (u,x, (Y, Ry, v) is a path of length h(u, v) or h(u, ) + 2. Thus, we have d* < h(u, ) + 2. By Theorem 6, Q’;!
has a path Ty of length I; between (x) and v for any odd integer I; from h((xy, v) to 2"~! — 1. Then (u, x, (x}/, Ty, v) is a path of
odd length I; + 2 in the range from d* + 2 to 2! + 1.

The paths of lengths greater than 2"~! — 1 can be obtained as follows. Since \F(Q{;O)| = 2n — 6, the j-partition determined
by Partition (Q,, F,u, v) guarantees that link (, (vY) is fault-free if h(u, ») is odd. (See (2.2) in Section 4). Let (w, b) be a faulty
link in Q% such that both (w, (wy) and (b, (b)') are fault-free. By the inductive hypothesis, Q0 — (F(Q}%) — {(w, b)}) contains
a path Hy of length 2" — 2 between u to (v)j. Three subcases are distinguished. )

Subcase 1.2.3.1: Suppose that (w, b) is not located on Hy. See Fig. 4d. We choose a link (x,y) on Hq such that (x, (x) and
(y, (v) are fault-free and ((xY, (y)) is not incident with 2. Thus, Hy can be represented as (u, Hj,x,y, Hj, (v)). By Lemma 3,
Q{;‘ — {v} contains a path T; of odd length I; between (x) and (yY for any odd integer I; from 1 to 2"~! — 3. Consequently,
(u,Hy,x, (Y, T1, (Y, y,Hg, (v), v) is a path of odd length 2"~" + 1, in the range from 2"' +1 to 2" — 3.

Subcase 1.2.3.2: Suppose that (w,b) is located on Hp and (w,b) is not incident with (zY. See Fig. 4e. Thus, Ho can be
represented as (u,Hy, w, b, Hg, (vY). By Lemma 3, Q{f — {v} contains a path T; of odd length l; between (wy and (by for
1<l <2"' —3.Hence, (u,Hy,w, (WY, Ty, (b)), b,Hj, (vY, v) is a path of odd length 2" ' + I;, in the range 2" ' +1 to 2" — 3.

Subcase 1.2.3.3: Suppose that (w, b) is located on Hy and (w, b) is incident with (z). See Fig. 4f. Let w = (v). Thus, Hp can
be represented as (u, Hy,b,w = (vY). By Theorem 6, Q{;l contains a path T; of odd length I; between (bY and v for any odd
intelger L sagisfying 1<l <2 ' —1. Then (u,Hpy,b, (bY,T;,v) is a path of odd length 2"~' +1; — 2, in the range from
2" —1to2" 3.
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Case II: Suppose that u and » belong to the same partite set of Q,. This case is similar to Case I and the details are
described in Appendix A. O

6. Conclusion

Fault tolerance is an important research issue in the area of interconnection networks. Since linear array and rings are two
of the most fundamental structures, the node-fault and link-fault tolerance are widely investigated for path embedding in var-
ious kinds of network topologies. By induction, we show that a conditionally faulty Q,,, with 2n — 5 faulty links, has a fault-free
path of odd (resp. even) length in the range from d* to 2" — 1 between two arbitrary nodes of odd (resp. even) distance d".

Let Pr(n) denote the probability that every node of an n-cube containing 2n — 5 faulty links is incident to at least
two fault-free links. Then Pr(n) is computed as follows: Pr(n)=1 if n=3; Pr(n)=1- an(zin’s) if n=4; Pr(n)=

nx2n-1
2n-5

n (nx2"-1-n n n \ (nx2n-1-n
1-72 (3 )(” X(ﬁ")( v ) if n > 5. One can verify that Pr(n) approaches to 1 as n increases. Thus, the assumption of con-

nx2n—1
2n-5

ditional link-faults is probabilistically reasonable.

Let u be any node of Q, and let » = ((u)®)". Suppose that F = {(u, (u)") | 2 < n—l}U{( v))|2<i<n—1}isasetof
2n — 4 faulty links in Q,. Obviously, Q, — F has no hamiltonian paths j Jommg u and (u)". That is, an n- cube with 2n — 4 or
more conditional link-faults is likely to have no paths of some specific lengths. In this sense, our result is optimal. A number
of researchers [5,8,10,22,23] addressed the fault-tolerant hamiltonicity (or hamiltonian connectivity) in some special classes
of network topologies under the consideration of conditional fault model. For example, the crossed cube [3], which is a var-
iation of hypercubes, possesses some properties superior to the hypercube. Fu [6] showed that a conditionally faulty n-
dimensional crossed cube contains a fault-free hamiltonian cycle even if it has 2n — 5 faulty links. Hence, it is intriguing
to study fault-tolerant path embedding on crossed cubes under the assumption of conditional faults.
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Appendix A. Case II in proof of Theorem 9

Case II: Suppose that u and v belong to the same partite set of Q,.. Thus, the distance d* between u and v is even. Without
loss of generality, we assume that u, v € Vo(Q,). By Theorem 7, Q,, — F is strongly hamiltonian laceable. Moreover, a shortest
path between u and v can be obtained by a breadth-first search. Hence, we concentrate on the paths of even lengths in the
range from d” + 2 to 2" — 4.

Subcase IL1: Suppose that IF(Q}%)| <2n—7 and |F(Q}")| < 2n—7. Without loss of generality, we assume that
IF@)] = [F(@;")]. Thus, [F(Q;!)] <n - 3. _ . .

Subcase II.1.1: Suppose that both u and v are in Q. By the inductive hypothesis, Q}° — F(Q'?) has a path H, of length
2" _ 2 between uand v. Let A = {(Ho(i), Ho(i+ 1)) | 1 < i<2"™' —1,i=1 (mod 2)} be a set of disjoint links on Hy. First, sup-

pose that \F(Q’O)\ > 0. Since |A|=[25-2] >2n—5—|F(Q°)| for n >4, there exists a link (w,b) of A such that
(w, (wY), (b, (bY), and ((wY, (by) are all fault-free. Next suppose that [F(Q}°)| = 0and n > 5.Since |A| = [25-2] > 2n — 5, there
still exists a link (w, b) of A such that (w, (w)), (b, (b)), and ((wY, (bY) are all fault-free. Finally, suppose that |F(Q'?)| = 0 and

n = 4. If there does not exist any node z of Vi (Q’O) such that (z, (z)/) is faulty, there must exist a link (w, b) on Hy such that
(w, (wY), (b, (bY), and ((wY, (bY) are all fault-free. If there exists a node z of V;(Q°) such that (z, (z)/) is faulty, then it follows
from Theorem 5 that Q’4° — {z} has a hamiltonian path, still namely Hy, between u and ». Obviously, there also exists a link
(w,b) on Hy such that (w,(w)),(b, (b)), and ((w),(bY) are all fault-free. In summary, Ho can be written as
(u,Hy, w, b, Hy, v). Since |F(Q’ 1)\ <n-— 3 it follows from Theorem 6 that Q' — F(Q}') contains a path H; of odd length I; be-
tween (w)’ and (b) for any odd integer I, satisfying 1 < l; < 2"' — 1. As a result, (u, H,,w, (w),Hy, (bY,b,H, v) is a path of
even length in the range from 2"' to 2" — 2.

The paths of lengths less than 2" are obtained as follows. By Corollary 2, we have d* = dy, r(u, v) < h(u, v) + 4 and

dyjo_p g0 (U, ¥) < h(u, v) + 4. By inductive hypothesis, Q}” — F(Q}) has a path To of length I, between u and v for any even
length from dyo g0, (1, 2) to 2" _2.1f d* = h(u, v) or d" = h(u, v) + 4, then d o (u,v) =d". If d* = h(u, v) + 2, then
dQ}U (QJO)( V) < <d +2.

Subcase I1.1.2: Suppose that both u and v are in Q/". Since |[F(Q}")| < n — 3, it follows from Lemma 1 that d* < h(u, v) + 2.
Thus, Q, — F has a shortest path between u and v that does not cross the dimension j. By the mductlve hypothesis,
Qf,‘f — F(Q{;l) contains a path T, of length I; between u and v for any even integer [; satisfying d* < [; < 21 _2. Let T, be

QP-F@Y)



452 T.-L. Kueng et al./Parallel Computing 35 (2009) 441-454

a path of length 2"' —2 between u and » in Q.' —F(Q:'"). Moreover, let A= {(T;(i),Ti(i+1))|1<i<2" -1,
i=1 (mod 2)} be a set of disjoint links on T. First, suppose that [F(Q}")| > 0. Since |A] = [£5=2 1*2] >2n—5—|F(Q:") for
n > 4, there exists a link (w,b) € A such that (w,(wY), (b, (by), and ((wy,(by) are all fault-free. Next, suppose that
IF(@ZY =0 and n > 5. Since |A| = [%} > 2n -5, there still exists a link (w,b) € A such that (w, (w)), (b, (bY) and
((wY, (bY') are all fault-free. Finally, suppose that |[F(Q’")| = 0 and n = 4. If there does not exist any node z of V;(Q}') such
that ,(z)) is faulty, there exists a link (w, b) on T such that (w, (w)), (b, (bY) and ((wY, (bY) are all fault-free. If there exists
a node z of V;(Q}') such that (z, (z)') is faulty, Theorem 5 ensures that Q’1 — {z} has a hamiltonian path still namely T, be-
tween u and v. Obviously, there also exists a link (w, b) on T; such that (w, (wY), (b, (b)) and ((wY, (b)) are all fault-free. In
summary, T; can be written as (u, T, w, b, T}, ). Since |[F(Q"")| < 2n — 7, it follows from Theorem 8 that Q’° — F(Q’") contains
a path T, of length I, between (w) and (by for any odd integer I, from 1 to 2"' —1 excluding 3. As a result,
(u, Ty, w, (WY, To, (by,b, T}, v) is a path of any even length in the range from 2" to 2" — 2, excluding 2"" + 2.

The path of length 2" ' +2 is discussed as follows When n =4, |[F(Q'°)| < 1. Thus, there exists an integer k of

{0,1,2,3} — {j.dim((w, b))} such that ((wY,(w)y)"), ((bY)5, and ((wy)*,((by)*) are all fault-free. Hence,
W, Ty, w, (WY, (wy¥, (BY)¥, (bY, b, TY, v) is a path oflength 10 Whenn > 5, we have |A| — |F| = [Z--2] — (2n —5) > 2.Thus,
there is another link (x, y) ofA other than (w, b), such that (x, (x)"), (v, ¥)), ), and ((x), (v ') are all fault-free. Without loss of

gen]erallty, T, can be written as (u,R},w,b,R}],x,y,R, v). Hence (u, R, w, (WY, (bY,b,R},x,(x), (vY,R!, v) is a path of length
2" 2.

Subcase I1.1.3: Suppose that u is in Q}° and v is in Q/;'. By Theorem 2, there exists a shortest path P* between u and v in
Q, — F such that P* crosses the dimension j exactly once. Thus, P* can be written as (u, Po, x, (x)’, Py, ), where Py is a shortest
path joining u to some node x in Q'° — F(Q’°) and P; is a shortest path joining (x)’ to »in Q' — F(Q}").

Subcase I1.1.3.1: Suppose that ¢(Py) > 0 and ¢(P;) > 0. By Theorem 6, Q%' — F(Q%") has a path T; of length I; between (x)’
and v for each I satisfying ¢(P;) <1, < 2" — 1 and 2|(I; — £(P,)). Suppose that ¢(Py) = 1. By Theorem 8, Q° — F(Q'°) has a
path T, of length I, between u and x for any odd integer I, from 1 to 2"' — 1 excluding 3. Suppose that ¢(Py) > 1. By the
inductive hypothesis, Q'° — F(Q/°) has a path T, of length I, between u and x for each I, satisfying ¢(Po) <lp <2" ' —1
and 2|(lp — ¢(Po)). Hence, (u, Ty, x, (x)j, Ty, v) is a path of even length o + [; + 1 in the range from d* to 2" — 2.

~Subcase 11.1.3.2: Suppose that ¢(Py) = 0 or /(P;) = 0. With symmetry, we assume u = x. By the inductive hypothesis,
Q’1 (Q“) contains a path T; of length I; between (u )J and v for any odd integer I; form ¢(P;) to 2"' —1. Then
(u, (uy, Ty, v) is a path of even length I; + 1 in the range from ¢(P;) + 1 =d" to 2",

The paths of lengths greater than 2" are constructed as follows. Since |V(Q’n°) {u}| - (2n-5)>1 for n > 4, we can
choose a node y from V(Q.°) — {u} such that (y,(y)) is fault-free and (y) is not ». Let Ry be a path joining u to y in
Q’® — F(Q’®) and R, be a path joining (yY to v in Q' — F(Q""). Similar to Subcase I1.1.3.1, H = (u,Ro,y, (¥, Ry, v) is a path
of even length in the range from d = innﬂ,F(an%(u»J’) + dQ,nLF(Qj;;l)((y)j, v)+1 to 2" —-2. By Corollary 3, we have

d<(m+1)+m—-1)+1<2""+2forn > 4. Therefore, H is a path of even length in the range from 2" + 2 to 2" — 2.

Subcase I1.2: Suppose that |F(Q)%)|<2n—6 or |F(Q}')| <2n—6. Without loss of generality, we assume that
|F(Q%)| = 2n — 6. Thus, Q%" is fault-free. It is noticed that the faulty links are distributed as shown in Fig. 2.

Subcase I1.2.1: Suppose that both u and v are in Q/°. Let (w, b) be a faulty link of Q/° such that both (w, (wy) and (b, (b))
are fault-free. Let Fo = F(Q°) — {(w, b)}. By the inductive hypothesis, Q/° — F, has a path P; of length [ between u and v for
any even integer | from dQJu g, (U, V) tO 21— 2. If (w,b) is on P, we write P, as (u,P,w,b,P{,v) and define

= (u,P,w, (wY, (bY,b, P}, v). Otherwise, P, can be written as (u, P}, x,y, P, v), where (x,y) is a link on P, such that both

, x)f and (y, (yY) are fault-free. Similarly, we define P, = (u P x, x)’ Y,y, P/, v). Then P, is a path of length [ + 2. By Cor-

ollary 2, we have d" =dq, r(u,v) <h(u,v) +4 and den Fo (u V) < h(u v)+4.1If dQJo g (U, V) = d*, then path P, is the desired

path. Otherwise, if dQ,o £, (U v) =d" + 2, then Pisa path of even length in the range from d* +4 to 2" It is noticed that a
shortest path between u and vin Q, — F can be constructed based on a breadth-first search.

By Theorem 6, an contains a path T, of length [; between (W)’ and (by or a path R; of odd length I; between (x)’ and (y)
for any odd integer I; from 1 to 2" — 1. Thus, (4, Pputr_,, w, (WY, Ty, (bY,b, at_s V) (OF (U, Pyns 5, X, xRy, W), y, Py 5, v))
is a path of even length in the range from 2" ' to 2" — 2.

Subcase I1.2.2: Suppose that both u and v are in Q'. Let (w, (w)") be a faulty link of Q*° such that both (w, (w)) and
(W), (w)'y) are fault-free. Since n >4, we assume that te{0,1,....n—1} - {j,i}. Moreover, we assume that
w e Vo(Q0). Let X = {(wY, (W/)¥) | k ¢ {i,j,t}}. Since |X| = n — 3, our inductive hypothesis ensures that Q! — X contains
a path T; of even length [ between uand v for d° <l <2™ ! — 2. Let T, denote the longest path between u and v in
Q' — X. It is noted that ((wY, (wy )) is on T;. Hence, T; can be represented as (u, T, w)f (wY), T%, v). By the inductive
hypothesis, Q0 - ( (Q’O) {(w, (w)")}) contains a path T, of odd length Iy between w to ( )! for 5<lp <2"!' —1.Asaresult,
(u, T}, (W), w, To, ( (wy)! T’1’7 is a path of even length 2"' + I, — 1, in the range from 2"' + 4 to 2" — 2.

Let A = {(Ty( ) T1 (k +1) 1 < k<2"!'—1,k=1 (mod 2)} be a set of disjoint links on T;. Then the paths of lengths 2"
and 2" + 2 can be obtained as follows When n = 4, we suppose that {p,q,j,i} = {0,1,2,3}. Slnce ( . (w)') is faulty, we have
either {(w, (W)"), (W)’, (W)")). (W), (w)')} N F =0 or {(w, (w)?), (W)’ (W)")). (W)")', W), (w)")")} N F = 0. Without loss
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Table 2
The paths of lengths 10, 12, and 14 between u = 0101 and » = 1001 in Q4 — {ef,(0001,0101), (0001,1001)}.

e; € {(0000,0010), (0010,0011)} u=0101,0100,0110,0111,0011,0001, 0000, 1000, 1100,1101, 1001 = »)
u =0101,0100,0110,0111,0011,0001, 0000, 1000,1100,1110,1111,1101, 1001 = )

u=0101,0100,0110,0111,0011, 0001, 0000, 1000,1100,1110,1010,1011,1111,1101, 1001 = v)

(
(
(
ef = (0100,0110) (u=0101,0111,0110,0010,0011,0001, 0000, 1000,1100,1101, 1001 = v)
(u=0101,0111,0110,0010,0011,0001, 0000, 1000,1100,1110,1111,1101, 1001 = 2)
(u

(

(

(

=0101,0111,0110,0010,0011, 0001, 0000, 1000,1100,1110,1010,1011,1111,1101,1001 = v)

u=0101,0111,0011,0010,0110,0100, 0000, 1000, 1100,1101,1001 = »)
u=0101,0111,0011,0010,0110,0100, 0000, 1000,1100,1110,1111,1101,1001 = )
u=0101,0111,0011,0010,0110,0100, 0000, 1000,1100,1110,1010,1011,1111,1101,1001 = »)

e = (0110,0111)

of generality, we assume {(w,(W)),((W)’,(W)")"), (W), w)’))} NF=0. Obviously, (u, T}, (wy,w,(w)’, ((W)"),(w),

((wY)', T/, v) is a path of length 2” T2 Moreover since |A| — |F| = [&=! =11 — (2n — 5) = 1 for n = 4, there exists one link
(x y) €A such that (x (x, ), (y, ¥)), and ((xY, (y)) is fault-free. Hence, T, can be represented as (u, R;,x,y, R, v). Obviously,
(U, Ry, X, (x)j,(y)j,y,RL v) is a path ‘of length 2” . When n > 5, we have |A| — |F| = [£5=2] — (2n - 5) > 2. Thus, there are
two links (x1,¥;), (x2,¥,) € A such that {(xe, (%)), Vi, 0)), (%), 0)) [ k= 1,2} nF = 0. Hence T; can be represented as
<u7R17X1vyl7R27X27y27R37 1j>, ObViOUSIYv <U,R],X1, (Xl)J7 (y1)17y17R27X27.VZ7R37 > and <l1 R],X] Xl (yl)J Y Ry, %3, (XZ) (yZ) Y2,
Rs, v) are paths of length 2"' and of length 2"! + 2, respectively.

Subcase I1.2.3: Suppose that u is in Q'° and vis in Q. If (u, (u)') is fault-free, the shortest path between u and v can be of
the form (u, (uY, Py, v), where P, is a shortest path joining (u)' to vin Q’". By the inductive hypothesis, Q' contains a path T,
of odd length I; between (u)’ and vford* — 1 <I; < 2" — 1. Then (u, (uy,T;, v) is a path of even length in the range from d
to 2"7' If (u, (uY) is faulty, we choose a neighbor of u in Q° — F(Q’?), namely x, such that (x)’ # . Obviously, we have either
h((xY, v) = h( v) — 2 or h((x)', v) = h(u, v). Let R, be a shortest path joining (x)/ to vin Q}'. Then (u,x, (x)', R, v) is a path of
length h(u, v) or h(u, v) + 2. By Theorem 6, Q’;' contains a path T; of even length I, between (x ¥ and v for any even integer I,
from h((xy, v) to 2"~' — 2. Then (u,x, (x), Ty, ) is a path of even length in the range from d* + 2 to 2",

The paths of lengths greater than 2" are obtained as follows. Let (w, b) be a faulty link in Q/° such that both (w, (w)) and
(b, (by') are fault-free. Depending on whether (v v, (vY) is faulty, we distinguish two subcases.

Subcase I1.2.3.1: Suppose that (v, (v) ) is fault-free. By the inductive hypothesis, Q° — (F(Q'°) — {(w, b)}) contains a path
Ho of length 2" ' — 1 between u to (v).

Subcase 11.2.3.1.a: Suppose that (w, b) is not located on Hy. We choose a link (x, y) on H, such that (x, (x)') and (y, (y)) are
fault-free and ((xY, (yY) is not incident with 2. Thus, Hy can be represented as (u, Hj,x,y, Hj, (v)). By Lemma 3, Qi — (v}
contains a path T1 of odd length I; between (xy and ( )’ for any odd integer I; from 1 to 2"' — 3. Consequently,
(u,Hy,x, (x, Ty, (yY,y,Hy, (vY, v) is a path of even length 2” + 1 + 1, in the range from 2" +2 to 2" — 2.

Subcase 11.2.3.1.b: Suppose that (w, b) is located on Ho and (w, b) is not incident with (). Thus, H can be represented as
(u,Hy,w, b, H}, (v)). By Lemma 3, Q' — {#} contains a path T; of odd length I, between (w) and (b for any odd integer I,
from 1to 2"' — 3. Then (u, H,,w, (WY, T1, (bY, b, H}, (v), v) is a path of even length 2" + I; + 1, in the range from 2"' + 2 to
2" —2.

Subcase 11.2.3.1.c: Suppose that (w, b) is on Ho and (w, b) is incident with (). Let b = (v)'. Thus, Ho can be written as
(u,Hy,w,b = (vy). By Theorem 6, Q' has a path T; of odd length I; between (w) and » for 1<l <2"'—1. Thus,
(u,Hy,w, (WY, Ty, v) is a path of even length 2"' +1; — 1, in the range from 2" to 2" — 2.

Subcase 11.2.3.2: Suppose that (v, (y)j) is faulty. According to procedure Partition(Q,,F,u, v), this subcase occurs only
when n = 4 and there is a unique node z of V;(Q4) such that both (z,u) and (z, v) are faulty links. In addition, each faulty
link corresponds to a unique dimension. By transitivity, we assume that z = 0001,u = 0101, and » = 1001. Then the paths
obtained by brute force are listed in Table 2.
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