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Faults in a network may take various forms such as hardware failures while a node or a link
stops functioning, software errors, or even missing of transmitted packets. In this paper, we
study the link-fault-tolerant capability of an n-dimensional hypercube (n-cube for short)
with respect to path embedding of variable lengths in the range from the shortest to the
longest. Let F be a set consisting of faulty links in a wounded n-cube Q n , in which every
node is still incident to at least two fault-free links. Then we show that Qn � F has a path
of any odd (resp. even) length in the range from the distance to 2n � 1 (resp. 2n � 2)
between two arbitrary nodes even if jFj ¼ 2n� 5. In order to tackle this problem, we also
investigate the fault diameter of an n-cube with hybrid node and link faults.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

In many parallel computer systems, processors are connected on the basis of interconnection networks. Such networks
usually have a regular degree, i.e., every node is incident to the same number of links. Popular instances of interconnection
networks include hypercubes, star graphs, meshes, bubble-sort networks, etc.

The hypercube is one of the most versatile interconnection networks yet discovered for parallel computation. It can effi-
ciently simulate many other networks of various sizes [14]. Because nodes and/or links in a network may fail accidentally, it
is demanded to consider fault tolerance of a network. Hence, the issue of faulty hypercubes has been widely addressed in
researches [2,4,11,16,20–24]. For example, Latifi et al. [11] proved that an n-dimensional hypercube (n-cube for short)
has a hamiltonian cycle even if it has n� 2 faulty links. Furthermore, Li et al. [16] showed that an n-cube is bipancyclic even
if it has up to n� 2 faulty links; Tsai et al. [20] showed that a faulty n-cube is both hamiltonian laceable and strongly ham-
iltonian laceable if it has n� 2 faulty links. Recently, Xu et al. [24] showed that an n-cube, with n� 2 faulty links, contains a
path of length l between any two nodes of distance d� for each integer l satisfying d� 6 l 6 2n � 1 and 2jðl� d�Þ, where expres-
sion 2jðl� d�Þ means that l� d� � 0 ðmod 2Þ. Moreover, Fu [4] proved that a fault-free path of length at least 2n � 2f � 1 (or
2n � 2f � 2) can be embedded to join two arbitrary nodes of odd (or even) distance in an n-cube with f 6 n� 2 faulty nodes.

Since linear array and rings are two of the most fundamental structures for parallel and distributed computation, a variety
of efficient algorithms were developed on these two topologies [14]. In particular, embedding of linear array and rings in a
. All rights reserved.
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faulty interconnection network is of great significance. For example, path embedding in a faulty n-cube was addressed in
[16,20,24]. However, one should notice that each component of a network may have different reliability. Thus, the probabil-
ity that all faulty components would be close to one another seems low. With this observation, Harary [7] first introduced
the concept of conditional connectivity. Later, Latifi et al. [13] defined the conditional node-faults, which require each node of
a network to have at least g fault-free neighbors. It is intuitive to extend this concept by defining conditional link-faults, which
require that every node will be incident to at least g fault-free links. In this paper, we only concern g ¼ 2. For convenience, we
say a network is conditionally faulty if and only if every node is incident to at least two fault-free links. Under this assumption,
Chan and Lee [2] discussed the existence of hamiltonian cycles in an n-cube with 2n� 5 conditional link-faults. In addition,
Tsai [21] showed that an injured n-cube contains a fault-free cycle of every even length from 4 to 2n inclusive even if it has up
to 2n� 5 conditional link-faults. It was also proved in [21] that an n-cube with 2n� 5 conditional link-faults is hamiltonian
laceable and strongly hamiltonian laceable.

As Shih et al. [18] showed, any fault-free link of a faulty n-cube lies on a cycle of even length in the range from 6 to 2n

when up to 2n� 5 conditional link-faults may occur. In other words, there exists a path of odd length from 1 to 2n � 1,
excluding 3, between any two adjacent nodes in a faulty n-cube with 2n� 5 conditional link-faults. In this paper, we are curi-
ous whether paths of variable lengths still can be constructed to join two arbitrary nodes of distance greater than one. More
precisely, we will show that a conditionally faulty n-cube, with 2n� 5 faulty links, contains a fault-free path of length l be-
tween any two nodes u and v of distance d� P 2 for each l satisfying d� 6 l 6 2n � 1 and 2jðl� d�Þ.

The rest of this paper is organized as follows. In Section 2, basic definitions and notations are introduced. In Section 3, the
fault diameter of the n-cube is investigated. The partition of a conditionally faulty n-cube is presented in Section 4. Fault-
tolerant path embedding is shown in Section 5. Finally, the conclusion is presented in Section 6.
2. Preliminaries

Throughout this paper, we concentrate on loopless undirected graphs. For the graph definitions, we follow the ones given
by Bondy and Murty [1]. A graph G consists of a node set VðGÞ and a link set EðGÞ that is a subset of fðu;vÞjðu;vÞ is an unor-
dered pair of VðGÞg. Two nodes, u and v, of G are adjacent if ðu;vÞ 2 EðGÞ. Then u is a neighbor of v, and vice versa. A graph H is
a subgraph of G if VðHÞ# VðGÞ and EðHÞ# EðGÞ. A graph G is bipartite if its node set can be partitioned into two disjoint partite
sets, V0ðGÞ and V1ðGÞ, such that every link joins a node of V0ðGÞ and a node of V1ðGÞ.

A path P of length k from node x to node y in a graph G is a sequence of distinct nodes hv1;v2; . . . ;vkþ1i such that
v1 ¼ x;vkþ1 ¼ y, and ðv i;v iþ1Þ 2 EðGÞ for every 1 6 i 6 k if k P 1. Moreover, a path of length zero consisting of a single node
x is denoted by hxi. For convenience, we write P as hv1; . . . ;v i;Q ;v j; . . . ;vkþ1i, where Q ¼ hv i; . . . ;v ji. The ith node of P is de-
noted by PðiÞ; i.e., PðiÞ ¼ v i. We use ‘ðPÞ to denote the length of P. The distance between any two nodes, u and v, of G, denoted
by dGðu;vÞ, is the length of the shortest path joining u and v in G. The diameter of G, denoted by DðGÞ, is defined to be
maxfdGðu;vÞ j u;v 2 VðGÞg. A cycle is a path with at least three nodes such that the last node is adjacent to the first one.
For clarity, a cycle of length k is represented by hv1;v2; . . . ;vk;v1i. A path (or cycle) in a graph G is a hamiltonian path (or
hamiltonian cycle) if it spans G. A bipartite graph is hamiltonian laceable [19] if there exists a hamiltonian path between
any two nodes that are in different partite sets. Moreover, a hamiltonian laceable graph G is hyper-hamiltonian laceable
[15] if, for any node v 2 ViðGÞ and i 2 f0;1g, there exists a hamiltonian path of G� fvg between two arbitrary nodes of
V1�iðGÞ. Later Hsieh et al. [9] introduced strongly hamiltonian laceability. A hamiltonian laceable graph G is strongly hamilto-
nian laceable if there exists a path of length jVðGÞj � 2 between any two nodes in the same partite set.

Let u ¼ bn�1 . . . bi . . . b0 be an n-bit binary string. For any j, 0 6 j 6 n� 1, we use ðuÞj to denote the binary string
bn�1 . . . �bj . . . b0. Moreover, we use ðuÞj to denote the bit bj of u. The Hamming weight of u, denoted by wHðuÞ, is
jf0 6 i 6 n� 1 j ðuÞi ¼ 1gj. The n-cube Q n consists of 2n nodes and n2n�1 links. Each node corresponds to an n-bit binary
string. Two nodes, u and v, are adjacent if and only if v ¼ ðuÞj for some j and we call the link ðu; ðuÞjÞ j-dimensional. We define
dimððu;vÞÞ ¼ j if v ¼ ðuÞj. The Hamming distance between u and v, denoted by hðu;vÞ, is defined to be
jf0 6 i 6 n� 1 j ðuÞi – ðvÞigj. Hence two nodes, u and v, are adjacent if and only if hðu;vÞ ¼ 1. It is well known that Qn is a
bipartite graph with partite sets V0ðQnÞ ¼ fu 2 VðQ nÞjwHðuÞ is even} and V1ðQnÞ ¼ fu 2 VðQnÞjwHðuÞ is odd}. Moreover, Qn

is both node-transitive and link-transitive [14].
Let Q j;i

n be a subgraph of Q n induced by fu 2 VðQ nÞ j ðuÞj ¼ ig for 0 6 j 6 n� 1 and i 2 f0;1g. Clearly, Q j;i
n is isomorphic to

Qn�1. Then the node partition of Qn into subgraphs Q j;0
n and Qj;1

n is called j-partition. The set of crossing links between Q j;0
n and

Qj;1
n , denoted by Ej

c ¼ fðu;vÞ 2 EðQ nÞ j u 2 VðQ j;0
n Þ;v 2 VðQj;1

n Þg, consists of all j-dimensional links of Q n. In order to clearly indi-
cate the faulty elements in graph G, we use FðGÞ to denote the set of all faulty elements in G.
3. Fault diameter of the n-cube

Let G be a graph. A faulty link (or faulty node) of G is a link (or node) that can be deleted from G. To be precise, the deletion
of a subset Fe of EðGÞ, denoted by G� Fe, is the spanning subgraph of G obtained by deleting the links in Fe from G; the dele-
tion of a proper subset Fv of VðGÞ, denoted by G� Fv , is the subgraph containing the nodes of G not in Fv and the links of G not
incident with any node in Fv . By such definition, if a node is deleted from G, then all links incident with this node are deleted.
Moreover, we define that G� ðFe [ Fv Þ ¼ ðG� FeÞ � Fv . Suppose that u is an arbitrary node of G and v is a neighbor of u. We



T.-L. Kueng et al. / Parallel Computing 35 (2009) 441–454 443
say that v is a reachable neighbor of u if both v and ðu;vÞ are fault-free; otherwise, v is an unreachable neighbor of u. The
following lemma is a basic property of Q n.

Lemma 1 [17]. For any two nodes, u and v, of Qn, there exist n internally node-disjoint paths joining u and v, hðu;vÞ of which are
of length hðu;vÞ and the other n� hðu;vÞ of which are of length hðu;vÞ þ 2.

The next corollary directly follows from Lemma 1.

Corollary 1. Let F be a set of n� 1 node-faults and/or link-faults in Q n. For any pair u;v of distinct nodes in Q n � F, then
dQn�Fðu;vÞ 6 hðu;vÞ þ 2.

Latifi [12] investigated the fault diameter of Q n under the assumption that every node has at least one fault-free neighbor.
The following theorem was proved in [12].

Theorem 1 [12]. Let F be a set of 2n� 3 faulty nodes in Q n such that every node of Qn has at least one fault-free neighbor. For any
pair u;v of distinct nodes in Qn � F, then dQn�Fðu;vÞ 6 hðu; vÞ þ 4.

Although only node-faults are admitted by Latifi [12], it is noticed that a similar result can be obtained when both node-
faults and link-faults are involved. To be precise, we improve Theorem 1 by proving the next corollary.

Corollary 2. Suppose that u and v are any two distinct nodes of Q n;n P 2. Let F be a set of utmost 2n� 3 hybrid node-faults and/
or link-faults in Qn such that both u and v are fault-free with at least one reachable neighbor. Then
dQn�Fðu;vÞ

¼ n if jFj 6 2n� 3; hðu;vÞ ¼ n; and n P 2;

6 nþ 1 if jFj 6 2n� 3; hðu;vÞ ¼ n� 1; and n P 2;

6 hðu; vÞ þ 4 if jFj 6 2n� 3; hðu;vÞ 6 n� 2; and n P 3;

6 n if jFj ¼ 2n� 4; hðu; vÞ ¼ n� 2; and n – 4:

8>>>><
>>>>:
For clarity, we prove the the first part of Corollary 2 in advance.

Proposition 1. Suppose that u and v are any two distinct nodes of Qn with hðu;vÞ ¼ n. Let F be a set of 2n� 3 hybrid node-faults
and/or link-faults in Qn such that both u and v are fault-free with at least one reachable neighbor. Then dQn�Fðu;vÞ ¼ n.

Proof. It is not difficult to verify that this proposition holds for n ¼ 2. Hence, we only concern the case that n P 3. Let
Iu ¼ fi1; . . . ; ipg be a set of p distinct integers of f0;1; . . . ;n� 1g such that ðuÞi1 ; . . . ; ðuÞip are reachable neighbors of u. Similarly,
let Iv ¼ fi01; . . . ; i0qg# f0;1; . . . ;n� 1g be a set of q distinct integers such that ðvÞi

0
1 ; . . . ; ðvÞi

0
q are reachable neighbors of v. We

distinguish the following two cases.
Case 1: Suppose that Iu \ Iv – ;. Let j 2 Iu \ Iv . Then we partition Qn into Qj;0

n and Qj;1
n . For convenience, let F0 ¼ FðQj;0

n Þ and
F1 ¼ FðQj;1

n Þ. Since hðu;vÞ ¼ n, nodes u and v are located in different subcubes. Moreover, we have hðu; ðvÞjÞ ¼ n� 1. By the
pigeonhole principle, we have jF0j 6 n� 2 or jF1j 6 n� 2. Without loss of generality, we assume that jF0j 6 n� 2. Moreover,
we assume that u 2 VðQj;0

n Þ. By Lemma 1, Qj;0
n has at least one fault-free path L of length n� 1 between u and ðvÞj. Hence,

hu; L; ðvÞj;vi forms a fault-free path of length n between u and v.
Case 2: Suppose that Iu \ Iv ¼ ;. Since jFj ¼ 2n� 3, we can conclude that 3 6 pþ q 6 n. Without loss of generality, we

assume that p P q. Thus, we have p P 2.
Suppose that n ¼ 3. We have p ¼ 2 and q ¼ 1. Let j 2 Iv . Without loss of generality, we assume that u 2 VðQj;0

n Þ. Obviously
Qj;0

n is fault-free and it has a fault-free path L of length two between u and ðvÞj. Then hu; L; ðvÞj; vi is a fault-free path of length
three.

Suppose that n P 4. Let j 2 Iu. Since Iu \ Iv ¼ ;; ðuÞj is a reachable neighbor of u whereas ðvÞj is an unreachable neighbor of
v. Again, we assume that u 2 VðQj;0

n Þ. Let F0 ¼ FðQj;0
n Þ and F1 ¼ FðQj;1

n Þ. If jF1j 6 n� 2, Lemma 1 ensures that Q j;1
n has a fault-

free path R of length n� 1 between ðuÞj and v. Hence, hu; ðuÞj;R;vi is a fault-free path of length n between u and v.
Suppose that jF1jP n� 1. Thus, we have jF0j þ jF \ Ej

cj 6 n� 2. Let eIv ¼ fk 2 Iv jððvÞkÞj 2 NQn�FððvÞkÞg, where NQn�FððvÞkÞ
is the set of all reachable neighbors of ðvÞk.

Subcase 2.1: Suppose that eIv – ;. Let k 2 eIv and H be a subgraph of Qn induced by fx 2 VðQnÞjðxÞj ¼ ðuÞj; ðxÞk ¼ ðuÞkg.
Then H is an ðn� 2Þ-cube inside Qj;0

n . Because ðvÞj is an unreachable neighbor of v and it is outside H, there are utmost n� 3
faulty elements in H. By Lemma 1, H has a fault-free path L of length n� 2 between u and ððvÞkÞj. So hu; L; ððvÞkÞj; ðvÞk;vi is a
fault-free path of length n.

Subcase 2.2: Suppose that ~Iv ¼ ;. Let k1 2 Iv . Since jFj 6 2n� 3 and pþ q 6 n, there exists an integer
k2 2 f0;1; . . . ;n� 1g � fj; k1g such that ððvÞk1 Þk2 is a reachable neighbor of ðvÞk1 and ðððvÞk1 Þk2 Þj is a reachable neighbor of
ððvÞk1 Þk2 . Let w ¼ ððvÞk1 Þk2 and X be a subgraph of Qn induced by fx 2 VðQnÞ j ðxÞj ¼ ðuÞj; ðxÞk1

¼ ðuÞk1
; ðxÞk2

¼ ðuÞk2
g. Then X is

an ðn� 3Þ-cube inside Qj;0
n . Obviously, ðuÞk1 , ðvÞj, and ððvÞk1 Þj are unreachable neighbors of u, v, and ðvÞk1 , respectively. Since

ðuÞk1 ; ðvÞj, and ððvÞk1 Þj are outside X, there are utmost n� 4 faulty elements in X. It follows from Lemma 1 that X has a fault-
free path L of length n� 3 between u and ðwÞj. So hu; L; ðwÞj;w; ðwÞk2 ¼ ðvÞk1 ;vi is a fault-free path of length n between u and v.

In summary, we conclude that dQn�Fðu;vÞ ¼ n and the proof is completed. h
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Proof of Corollary 2. Now we concern that hðu; vÞ 6 n� 1. The proof is by the induction on n. The result is true for n ¼ 2. As
our inductive hypothesis, we assume that the result holds for Qn�1 with n P 3. Since hðu;vÞ 6 n� 1, we partition Qn along
some dimension j such that both u and v are in the same subcube. By transitivity, we assume that j ¼ 0 and u; v 2 VðQ 0;1

n Þ. Let
Fi ¼ FðQ0;i

n Þ for i 2 f0;1g.
Case 1: Suppose that jF1j 6 2n� 5 ¼ 2ðn� 1Þ � 3. First, we consider the case that both u and v have at least one reachable

neighbor in Q0;1
n . Then it follows from the inductive hypothesis that dQn�Fðu;vÞ ¼ dQ0;1

n �F1
ðu; vÞ ¼ n� 1 if

hðu;vÞ ¼ n� 1; dQn�Fðu;vÞ 6 dQ0;1
n �F1

ðu;vÞ 6 n if hðu;vÞ ¼ n� 2, and dQn�Fðu;vÞ 6 dQ0;1
n �F1

ðu;vÞ 6 hðu;vÞ þ 4 if hðu;vÞ 6
n� 3 for n P 4.

Now we consider the case that either u or v has no reachable neighbors in Q0;1
n . Thus, we have jF1jP n� 1 and

jF0j þ jF \ E0
c j 6 n� 2. Since n� 1 6 jF1j 6 2n� 5, we have n P 4. Without loss of generality, we assume that u has no

reachable neighbors in Q0;1
n . Accordingly, ðuÞ0 is the unique reachable neighbor of u.

Suppose that hðu;vÞ ¼ n� 1. Since hððuÞ0;vÞ ¼ n, it follows from Proposition 1 that dQn�FððuÞ0;vÞ ¼ n. Let P be a fault-
free path of length n between ðuÞ0 and v. Obviously, we have u R VðPÞ. Hence hu; ðuÞ0; P;vi forms a fault-free path of length
nþ 1.

Suppose that hðu;vÞ 6 n� 2. If ðvÞ0 is a reachable neighbor of v, then it follows from Corollary 1 that

dQ0;0
n �F0

ððuÞ0; ðvÞ0Þ 6 hððuÞ0; ðvÞ0Þ þ 2 ¼ hðu;vÞ þ 2 since jF0j 6 n� 2. Let H be a shortest path between ðuÞ0 and ðvÞ0 in

Q0;0
n � F0. Then hu; ðuÞ0;H; ðvÞ0;vi forms a fault-free path of length at most hðu; vÞ þ 4. When jFj ¼ 2n� 4, we have

jF0j 6 n� 3. Therefore, Q0;0
n � F0 has a path H of length n� 2 between ðuÞ0 and ðvÞ0 if hðu;vÞ ¼ n� 2. Thus hu; ðuÞ0;H; ðvÞ0;vi

is a fault-free path of length n. On the other hand, if ðvÞ0 is an unreachable neighbor of v, then we have ðvÞ0 2 F or

ðv ; ðvÞ0Þ 2 F. By Lemma 1, Q0;0
n has n� 1 internally node-disjoint paths L1; . . . ; Ln�1 between ðuÞ0 and ðvÞ0. For clarity, Li can

be written as hðuÞ0; L0i; ððvÞ
0Þi; ðvÞ0i for 1 6 i 6 n� 1. Let Ti ¼ hðuÞ0; L0i; ððvÞ

0Þi; ðvÞi;vi with 1 6 i 6 n� 1. Then fT1; . . . ; Tn�1g is

a set of n� 1 internally node-disjoint paths between ðuÞ0 and v. We distinguish two subcases.
Subcase 1.1: One of fT1; . . . ; Tn�1g, say Ti, is fault-free. Hence, hu; ðuÞ0; Ti;vi is a path of length at most hðu;vÞ þ 4 between

u and v. In particular, we consider the case that hðu;vÞ ¼ n� 2. Clearly, n� 2 paths of fT1; . . . ; Tn�1g are of length n� 1. When

n P 5, u and v have no common neighbors. Since ðfðvÞ0; ðv ; ðvÞ0Þg [
Sn�1

i¼1 fðuÞ
i; ðu; ðuÞiÞgÞ \ ð

Sn�1
i¼1 VðTiÞ [ EðTiÞÞ ¼ ;, at most

n� 3 faults may appear on T1; . . . ; Tn�1. Hence there exists a fault-free path Tk of fT1; . . . ; Tn�1g such that ‘ðTkÞ ¼ n� 1 if

n P 5. Then hu; ðuÞ0; Tk;vi is a fault-free path of length n.
Subcase 1.2: None of fT1; . . . ; Tn�1g is fault-free. It is noticed that jFj ¼ 2n� 3 in this subcase. Moreover, we claim that

hðu;vÞ ¼ 2. Because T1; . . . ; Tn�1 are internally node-disjoint and u has no reachable neighbors in Q0;1
n , every of fT1; . . . ; Tn�1g

contains exactly one faulty element. Since VðTiÞ \ VðQ0;1
n Þ ¼ fv ; ðvÞ

ig for 1 6 i 6 n� 1, there exist two distinct integers t1 and
t2;1 6 t1; t2 6 n� 1, such that FðTt1 Þ ¼ fðvÞ

t1g ¼ fðuÞt2g and FðTt2 Þ ¼ fðvÞ
t2g ¼ fðuÞt1g. By transitivity, we assume that

t1 ¼ n� 1 and t2 ¼ n� 2. Again, Lemma 1 ensures that Q 0;1
n has n� 1 internally node-disjoint paths R1; . . . ;Rn�1 of length at

most four between u and v. For clarity, we can write Ri as hu;R0i; ðvÞ
i;vi for 1 6 i 6 n� 1. Thus, we have ‘ðRn�2Þ ¼ ‘ðRn�1Þ ¼ 2

and ‘ðRiÞ ¼ 4 for 1 6 i 6 n� 3. Because ðvÞ0 is an unreachable neighbor of v, v has a reachable neighbor in Q0;1
n , say ðvÞk with

some k 2 f1; . . . ;n� 3g. To be precise, we write Rk ¼ hu; xk; yk; ðvÞ
k;vi and Lk ¼ hðuÞ0; ðxkÞ0; ðykÞ

0; ððvÞkÞ0; ðvÞ0i, where xk is

some neighbor of u and yk is a common neighbor of xk and ðvÞk.
Subcase 1.2.1: Suppose that ððvÞkÞ0 is an unreachable neighbor of ðvÞk. Let Sð1Þk ¼ hðuÞ

0; ðxkÞ0, ðykÞ
0i and

Sð2Þk ¼ hðykÞ
0; yk; ðvÞ

ki. Because Tk has only one faulty element, Sð1Þk is fault-free. Since ðVðSð2Þk Þ [ EðSð2Þk ÞÞ\
ð
S

i – kVðTiÞ [ EðTiÞÞ ¼ ;; Sð2Þk is also fault-free. Then hu; ðuÞ0; Sð1Þk ; ðykÞ
0; Sð2Þk ; ðvÞk;vi is a fault-free path of length six.

Subcase 1.2.2: Suppose that ððvÞkÞ0 is a reachable neighbor of ðvÞk. Let H be the subgraph of Q0;0
n induced by

fx 2 VðQ0;0
n Þ j ðxÞp ¼ ðuÞp; p 2 f1; . . . ;n� 3g � fkgg. Obviously, H is isomorphic to Q3. Then we claim that jFðHÞj 6 2. Since

jF0j 6 n� 2, this claim holds for n ¼ 4. In what follows, we concern that n P 5. It is easy to see that Lk; Ln�2, and Ln�1 are

inside H. Moreover, we have ðVðTiÞ [ EðTiÞÞ \ ðVðHÞ [ EðHÞÞ ¼ fðuÞ0g for i 2 f1; . . . ;n� 3g � fkg. Since Ti contains one faulty

element for each 1 6 i 6 n� 1, at least n� 4 faulty elements are outside H; i.e., jFðHÞj 6 2. Since hððuÞ0; ððvÞkÞ0Þ ¼ 3, it

follows from Lemma 1 that H has a fault-free path S of length three between ðuÞ0 and ððvÞkÞ0. As a result,

hu; ðuÞ0; S; ððvÞkÞ0; ðvÞk;vi is a fault-free path of length six.
Case 2: Suppose that jF1jP 2n� 4. Thus, we have jF0j þ jF \ E0

c j 6 1.
Subcase 2.1: Suppose that ðuÞ0 and ðvÞ0 are reachable neighbors of u and v, respectively. Since jF0j 6 1, it follows from

Lemma 1 that Q0;0
n has a fault-free path L of length at most hðu;vÞ þ 2 between ðuÞ0 and ðvÞ0. Then hu; ðuÞ0; L; ðvÞ0;vi is a

fault-free path of length at most hðu; vÞ þ 4 between u and v. When jFj ¼ 2n� 4, we have jF0j þ jF \ E0
c j ¼ 0. Hence Q0;0

n has a

path L of length hðu;vÞ between ðuÞ0 and ðvÞ0. Then hu; ðuÞ0; L; ðvÞ0; vi is a fault-free path of length hðu;vÞ þ 2 between u and
v.

Subcase 2.2: Suppose that ðuÞ0 or ðvÞ0 is an unreachable neighbor of u or v, respectively. It is noticed that jFj ¼ 2n� 3 in

this subcase. Since jF0j þ jF \ E0
c j 6 1, we assume that ðuÞ0 is an unreachable neighbor of u. If v is a reachable neighbor of u,

then dQn�Fðu;vÞ ¼ 1. Otherwise, let ðuÞk be a reachable neighbor of u with some k 2 f1; . . . ;n� 1g. Since
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jF0j þ jF \ E0
c j 6 1; ððuÞkÞ0 is a reachable neighbor of ðuÞk. If ðuÞk – ðvÞk, then hððuÞk;vÞ ¼ hðu;vÞ � 1. Obviously, ðuÞ0 is not on

any shortest path between ððuÞkÞ0 and ðvÞ0. Thus, Q0;0
n has a fault-free path L of length hðððuÞkÞ0; ðvÞ0Þ ¼ hðu;vÞ � 1 between

ððuÞkÞ0 and ðvÞ0. Then hu; ðuÞk; ððuÞkÞ0; L; ðvÞ0;vi is a fault-free path of length hðu;vÞ þ 2. If ðuÞk ¼ ðvÞk, then hððuÞk;vÞ ¼
hðu;vÞ þ 1. By Lemma 1, Q0;0

n has a fault-free path L of length hðu; vÞ þ 1 between ððuÞkÞ0 and ðvÞ0. Then hu; ðuÞk;
ððuÞkÞ0; L; ðvÞ0;vi is a fault-free path of length hðu;vÞ þ 4.

The proof is completed. h

The following theorem characterizes a property of shortest paths in a faulty n-cube.

Theorem 2. Let F be a set of 2n� 5 faulty links in Qn such that every node of Qn � F has at least two neighbors. Moreover, let j be
an integer of f0;1; . . . ;n� 1g such that both Q j;0

n and Qj;1
n are conditionally faulty with 2n� 7 or less faulty links. Suppose that u is

a node of Qj;0
n and v is a node of Qj;1

n . Then there exists a shortest path P� between u and v in Q n � F such that P� crosses the
dimension j exactly once.

Proof. Since jFðQ j;0
n Þj þ jFðQ

j;1
n Þj 6 jFj ¼ 2n� 5, we assume that jFðQ j;1

n Þj 6 n� 3. Since ðuÞj – ðvÞj, every shortest path
between u and v crosses the dimension j an odd number of times. If there is a shortest path between u and v crossing the
dimension j exactly once, the proof is done. Thus, we assume that one shortest path between u and v, namely P, crosses
the dimension j more than once. Accordingly, the shortest path P can be represented as hu; P0; x1; ðx1Þj;
P1; ðx2Þj; x2; P2; x3; ðx3Þj; . . . ; xr ; ðxrÞj; Pr ;vi with odd integer r P 3. For convenience, let H ¼ hðx1Þj; P1; ðx2Þj; x2; P2;

x3; ðx3Þj; . . . ; xr ; ðxrÞj; Pr ;vi. By Corollary 1, we have dQj;1
n �FðQj;1

n Þ
ððx1Þj;vÞ 6 hððx1Þj;vÞ þ 2. Suppose that R is a shortest path

between ðx1Þj and v in Q j;1
n � FðQ j;1

n Þ. Then we have ‘ðHÞ 6 ‘ðRÞ. Since r P 3, we have ‘ðHÞP hððx1Þj;vÞ þ 2 P ‘ðRÞ. As a result,
P� ¼ hu; P0; x1; ðx1Þj;R;vi happens to be a shortest path between u and v and it crosses the dimension j exactly once. h

The fault diameter of Q n is computed as follows.

Theorem 3. [12] Let F be a set of faulty nodes in Qn such that every node of Q n has at least one fault-free neighbor. Then the
diameter of Qn � F is computed as follows:
DðQn � FÞ ¼
n if jFj 6 n� 2;
nþ 1 if jFj ¼ n� 1;
nþ 2 if jFj ¼ 2n� 3:

8><
>:
We improve Theorem 3 by proving the next corollary.

Corollary 3. Let F be a set of hybrid node-faults and/or link-faults in Q n, n P 3, such that every node of Q n has at least one
reachable neighbor. Then DðQ4 � FÞ ¼ 4 if jFj 6 2; DðQ4 � FÞ ¼ 5 if jFj ¼ 3; DðQ 4 � FÞ ¼ 6 if jFj 2 f4;5g. When n – 4,
DðQn � FÞ ¼
n if jFj 6 n� 2;
nþ 1 if n� 1 6 jFj 6 2n� 4;
nþ 2 if jFj ¼ 2n� 3:

8><
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Fig. 1. An example that the distance between 0100 and 0111 is 6.



446 T.-L. Kueng et al. / Parallel Computing 35 (2009) 441–454
Proof. Suppose that n – 4. The result follows from Lemma 1, Corollary 2, and Theorem 3. Suppose that n ¼ 4. Applying
Lemma 1, Corollary 2, and Theorem 3, we also have DðQ4 � FÞ ¼ 4 if jFj 6 2;DðQ4 � FÞ ¼ 5 if jFj ¼ 3;DðQ4 � FÞ 6 6 if
jFj ¼ 4, and DðQ 4 � FÞ ¼ 6 if jFj ¼ 5. Let F ¼ f0000;0101;0110; ð0111;1111Þg. Then dQ4�Fð0100;0111Þ ¼ 6. See Fig. 1. There-
fore, DðQ 4 � FÞ ¼ 6 if jFj ¼ 4. h
4. Partition of an n-cube with conditional link-faults

In this section, we propose a procedure to partition Q n with 2n� 5 conditional link-faults. Recall that a network is said to
be conditionally faulty if every node of this network is incident to at least two fault-free links. Suppose that Qn;n P 4, is con-
ditionally faulty with 2n� 5 faulty links. For convenience, let F ¼ FðQ nÞ and Fi denote the set of faulty i-dimensional links.
Since jFj ¼ 2n� 5, there are utmost two nodes of Q n incident to n� 2 faulty links. For any two distinct nodes, u and v, of Q n,
the procedure PartitionðQn; F;u;vÞ determines a dimension j according to the following rules:

(1) Suppose that there are exactly two nodes incident to n� 2 faulty links. Then the two nodes must be connected by a
faulty link ðw; ðwÞjÞ with some j 2 f0;1; . . . ;n� 1g. Obviously, both Q j;0

n and Q j;1
n are conditionally faulty with n� 3

faulty links.
(2) Suppose that there is only one node, namely z, incident to n� 2 faulty links. Let S ¼ f0 6 i 6 n� 1 j
ðz; ðzÞiÞ 2 Fg ¼ fk3; . . . ; kng and f0;1; . . . ;n� 1g � S ¼ fk1; k2g. Then both Qi;0

n and Qi;1
n are conditionally faulty for each

i 2 S.

(2.1) If there exists a dimension j of S such that jFjj > 1, then we partition Q n along dimension j. Otherwise, if there

exists a dimension j of S such that jFðQj;0
n Þj � jFðQ

j;1
n Þj > 0, then we partition Qn along dimension j. Obviously, both

Q j;0
n and Q j;1

n contain 2n� 7 or less faulty links.
(2.2) Suppose that jFij ¼ 1 and jFðQi;0

n Þj � jFðQ
i;1
n Þj ¼ 0 for every i 2 S. That is, for any i 2 S, either jFðQi;0

n Þj or jFðQi;1
n Þj

remains 2n� 6. Hence, for any ðx; yÞ 2 F � fðz; ðzÞiÞ j i 2 Sg, we have ðxÞi ¼ ðyÞi ¼ ðzÞi for every i 2 S. That is, for
ðx; yÞ 2 F � fðz; ðzÞiÞ j i 2 Sg, we have x; y 2 fz; ðzÞk1 ; ðzÞk2 ; ððzÞk1 Þk2g. Because both ðz; ðzÞk1 Þ and ðz; ðzÞk2 Þ are fault-
free, it follows that F � fðz; ðzÞiÞ j i 2 Sg# fððzÞk1 ; ððzÞk1 Þk2 Þ; ððzÞk2 ; ððzÞk1 Þk2 Þg. Since jF � fðz; ðzÞiÞ j i 2 Sgj ¼ n�
3 6 2, we obtain n 2 f4;5g. The faulty links are distributed as illustrated in Fig. 2.

(2.2.1) If there exists a dimension j of S such that ðzÞj is neither u nor v, then we partition Qn along dimension j.
(2.2.2) Otherwise, fu;vg equals to fðzÞi j i 2 Sg; thus, we have n ¼ 4. In this case, we partition Q4 along any

dimension j 2 S. Clearly, u and v belong to the same partite set of Q4.
(3) Suppose that every node is incident to utmost n� 3 faulty links. Obviously, every ðn� 1Þ-cube in Qn is conditionally
faulty. Let S ¼ f0 6 i 6 n� 1 j Fi – ;g.

(3.1) Suppose that jFjjP 2 with some j 2 S. Then both Qj;0

n and Qj;1
n contain 2n� 7 or less faulty links.

(3.2) Suppose that jFij 6 1 for each i 2 S. Clearly we have 2n� 5 ¼ jFj ¼ j
S

i2SFij ¼
P

i2SjFij 6 n; i.e., n 6 5. Then a
dimension j of S can be chosen so that both Qj;0

n and Qj;1
n contain 2n� 7 or less faulty links.
(3.2.1) When n ¼ 5, we claim that jFðQ j;0
n Þj � jFðQ

j;1
n Þj > 0 for some j 2 S. Let ei ¼ ðbi4 . . . bii . . . bi0; bi4 . . . �bii . . . bi0Þ

be an i-dimensional link of Q5 for i 2 f0;1;2;3;4g. Suppose that F ¼ fe0; e1; e2; e3; e4g is a faulty set of
Q5 such that jFðQi;0

5 Þj � jFðQ
i;1
5 Þj ¼ 0 for each i 2 f0;1;2;3;4g. Then we have b0i ¼ b1i ¼ b2i ¼ b3i ¼ b4i

for each i 2 f0;1;2;3;4g; i.e., all faulty links are incident with an identical node. This contradicts the
assumption that every node is incident to utmost n� 3 faulty links.

(3.2.2) Similarly, there exists an integer j 2 S such that jFðQj;0
4 Þj � jFðQ

j;1
4 Þj > 0.
In summary, the proposed procedure determines a j-partition of Q n such that both Q j;0
n and Q j;1

n are conditionally faulty

with jFðQ j;0
n Þj þ jFðQ

j;1
n Þj 6 2n� 6.
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Fig. 2. The distributions of faulty links indicated in (2.2).
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5. Path embedding in hypercubes

The following theorems were proved by Tsai [20] and Xu [24].

Theorem 4 [20]. Let n P 3. Suppose that F # EðQnÞ is a set of utmost n� 2 faulty links. Then Qn � F is hamiltonian laceable and
strongly hamiltonian laceable.

Theorem 5 [20]. Let n P 3. Suppose that F # EðQnÞ is a set of utmost n� 3 faulty links. Then Q n � F is hyper-hamiltonian
laceable.

Theorem 6 [24]. Let F be a set of n� 2 faulty links in Q n (n P 2). Suppose that u and v are any two different nodes of Qn � F.
Then Q n � F contains a path of length l between u and v for every l satisfying dQn�Fðu;vÞ 6 l 6 2n � 1 and 2jðl� dQn�Fðu;vÞÞ.

As Tsai [21] showed, an n-cube with 2n� 5 conditional link-faults is hamiltonian laceable and strongly hamiltonian
laceable.

Theorem 7 [21]. Let F be a set of faulty links in Qn (n P 3) such that every node of Qn � F has at least two neighbors. Then Q n � F
is hamiltonian laceable and strongly hamiltonian laceable if jFj 6 2n� 5.

To prove our main result, we need the next two lemmas.

Lemma 2 [21]. Assume that n P 2. Let x and u be two distinct nodes of V0ðQnÞ; let y and v be two distinct nodes of V1ðQnÞ. Then
there exist two node-disjoint paths P1 and P2 such that the following conditions are satisfied: (1) P1 joins x to y, (2) P2 joins u to v,
and (3) VðP1Þ [ VðP2Þ ¼ VðQnÞ.

Lemma 3. Let v be any node of Qn ðn P 3Þ and let ðw; bÞ be any link of Qn � fvg. For every odd integer l in the range from 1 to
2n � 3;Qn � fvg has a path of length l between w and b.

Proof. Since Q n is node-transitive, we assume that v ¼ 0n. We prove this lemma by the induction on n. The induction base
depends on Q 3. With the link-transitivity, the required paths are listed in Table 1.

When n P 4, we assume that the result is true for Qn�1. Then we partition Qn along dimension p other than dimððw; bÞÞ.
Obviously, v is located in Qp;0

n .
Case 1: Suppose that ðw; bÞ is in Q p;0

n . By the inductive hypothesis, Qp;0
n � fvg has a path of odd length l0 between w and b

for any odd integer l0 from 1 to 2n�1 � 3. Let H be a path of length 2n�1 � 3 between w and b in Qp;0
n � fvg. Since 2n�1 � 3 > 1,

we can represent H as hw;u;H0; bi. By Theorem 6, Q p;1
n has a path H1 of odd length l1 between ðwÞp and ðuÞp for any odd

integer l1 from 1 to 2n�1 � 1. As a result, hw; ðwÞp;H1; ðuÞp;u;H0; bi is a path of odd length 2n�1 � 2þ l1, in the range from

2n�1 � 1 to 2n � 3.
Case 2: Suppose that ðw; bÞ is in Q p;1

n . By Theorem 6, Qp;1
n has a path of odd length l1 between w and b for any odd integer l1

from 1 to 2n�1 � 1. Let H be a path of length 2n�1 � 1 between w and b in Qp;1
n . Then we can choose a link ðx; yÞ on H such that

v R fðxÞp; ðyÞpg. Hence, we can represent H as hw;H01; x; y;H
00
1; bi. By the inductive hypothesis, Qp;0

n � fvg has a path H0 of odd

length l0 between ðxÞp and ðyÞp for any odd integer l0 from 1 to 2n�1 � 3. As a result, hw;H01; x; ðxÞ
p;H0; ðyÞp; y;H001; bi is a path of

odd length 2n�1 þ l0, in the range from 2n�1 þ 1 to 2n � 3. h

As Shih et al. [18] showed, any fault-free link of Q n lies on a cycle of even length from 6 to 2n when up to 2n� 5 condi-
tional link-faults may occur.

Theorem 8 [18]. Let F be a set of 2n� 5 faulty links in Q n such that every node of Q n � F has at least two neighbors. Suppose that
u and v are any two adjacent nodes of Q n � F. Then Qn � F contains a path of odd length l between u and v if l is in the range from 1
to 2n � 1 excluding 3.

In the following discussion, we focus on constructing paths between any two nodes with distance greater than one.

Theorem 9. Let F be a set of 2n� 5 faulty links in Qnðn P 3Þ such that every node of Q n � F has at least two neighbors. Suppose
that u and v are two arbitrary nodes of Q n � F with distance d� ¼ dQn�Fðu;vÞP 2. Then Qn � F contains a path of length l between
Table 1
The paths of variable lengths between w and b in Q 3 � f000g.

ðw; bÞ ¼ ð011; 001Þ h011;111;101;001i; h011;111;110;100;101;001i
ðw; bÞ ¼ ð011;111Þ h011;001;101;111i; h011; 001;101;100;110;111i
ðw; bÞ ¼ ð101; 001Þ h101;111; 011;001i; h101;100;110;111; 011;001i
ðw; bÞ ¼ ð101;100Þ h101;111;110;100i; h101;111;011; 010;110;100i
ðw; bÞ ¼ ð101;111Þ h101;100;110;111i; h101;100;110;010;011;111i



448 T.-L. Kueng et al. / Parallel Computing 35 (2009) 441–454
u and v for every integer l satisfying both d� 6 l 6 2n � 1 and 2jðl� d�Þ, where expression 2jðl� d�Þ means that
l� d� � 0 ðmod 2Þ.

Proof. Applying procedure Partition(Q n, F, u, v), we can determine a j-partition of Q n such that both Qj;0
n and Q j;1

n are condi-
tionally faulty with jFðQ j;0

n Þj þ jFðQ
j;1
n Þj 6 2n� 6. As a result, the proof can proceed by the induction on n. The induction base,

depending upon Q3, follows from Theorem 6. As our inductive hypothesis, we assume that the result holds for Q n�1 when
n P 4.

Case I: Suppose that u and v are in the different partite sets of Qn. Without loss of generality, we assume that u 2 V0ðQnÞ
and v 2 V1ðQnÞ. By Theorem 7, Qn � F is hamiltonian laceable. Moreover, a shortest path between u and v can be easily
obtained by a simple breadth-first search. Therefore, we mainly concentrate on the paths of odd lengths in the range from
d� þ 2 to 2n � 3.

Subcase I.1: Suppose that jFðQj;0
n Þj 6 2n� 7 and jFðQj;1

n Þj 6 2n� 7. Without loss of generality, we assume that
jFðQj;0

n ÞjP jFðQ
j;1
n Þj; thus, jFðQj;1

n Þj 6 n� 3.
Subcase I.1.1: Suppose that both u and v are in Qj;0

n . By the inductive hypothesis, Qj;0
n � FðQj;0

n Þ contains a path H0 of length

2n�1 � 1 between u and v. Let A ¼ fðH0ðiÞ;H0ðiþ 1ÞÞ j 1 6 i 6 2n�1; i � 1 ðmod 2Þg be a set of disjoint links on H0. Since

jAj ¼ d2n�1�1
2 e > 2n� 5 for any n P 4, there exists a link ðw; bÞ of A such that ðw; ðwÞjÞ; ðb; ðbÞjÞ, and ððwÞj; ðbÞjÞ are all fault-free.

Hence, H0 can be written as hu;H00;w; b;H
00
0;vi. Since jFðQj;1

n Þj 6 n� 3, it follows from Theorem 6 that Q j;1
n � FðQj;1

n Þ contains a

path H1 of odd length l1 between ðwÞj and ðbÞj for any odd integer l1 from 1 to 2n�1 � 1. As a result,

hu;H00;w; ðwÞ
j;H1; ðbÞj; b;H000;vi is a path of odd length 2n�1 þ l1, in the range from 2n�1 þ 1 to 2n � 1. See Fig. 3a for

illustration.
The paths of lengths less than 2n�1 þ 1 can be obtained as follows. By Corollary 2, we have d� ¼ dQn�Fðu;vÞ 6 hðu; vÞ þ 4

and dQj;0
n �FðQj;0

n Þ
ðu;vÞ 6 hðu;vÞ þ 4. By the inductive hypothesis, Qj;0

n � FðQj;0
n Þ has a path T0 of length l0 between u and v for any

odd integer l0 in the range from dQj;0
n �FðQj;0

n Þ
ðu;vÞ to 2n�1 � 1. If d� ¼ hðu;vÞ or d� ¼ hðu;vÞ þ 4, then dQj;0

n �FðQj;0
n Þ
ðu;vÞ ¼ d�.

Otherwise, if d� ¼ hðu; vÞ þ 2, then dQj;0
n �FðQj;0

n Þ
ðu;vÞ 6 d� þ 2.

Subcase I.1.2: Suppose that both u and v are in Qj;1
n . Since jFðQj;1

n Þj 6 n� 3, it follows from Corollary 1 that
d� 6 dQj;1

n �FðQj;1
n Þ
ðu;vÞ 6 hðu;vÞ þ 2. Thus, there exists a shortest path between u and v in Qn � F such that it does not cross

the dimension j. By inductive hypothesis, Qj;1
n � FðQj;1

n Þ contains a path T1 of odd length l1 between u and v for each odd integer

l1 from d� to 2n�1 � 1. Let T1 be a path of length 2n�1 � 1 between u and v in Qj;1
n � FðQj;1

n Þ. Moreover, let

A ¼ fðT1ðiÞ; T1ðiþ 1ÞÞ j 1 6 i 6 2n�1; i � 1 ðmod 2Þg be a set of disjoint links on T1. Since jAj ¼ d2n�1�1
2 e > 2n� 5 for n P 4,

there exists a link ðw; bÞ of A such that ðw; ðwÞjÞ; ðb; ðbÞjÞ, and ððwÞj; ðbÞjÞ are all fault-free. Hence, T1 can be written as

hu; T 01;w; b; T
00
1;vi. Since jFðQj;0

n Þj 6 2n� 7, it follows from Theorem 8 that Qj;0
n � FðQj;0

n Þ contains a path T0 of odd length l0
between ðwÞj and ðbÞj for any odd integer l0 in the range from 1 to 2n�1 � 1 excluding 3. As a result,

hu; T 01;w; ðwÞ
j; T0; ðbÞj; b; T 001;vi is a path of odd length 2n�1 þ l0, in the range from 2n�1 þ 1 to 2n � 1 excluding 2n�1 þ 3. See

Fig. 3b for illustration.
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Fig. 3. Illustration for Subcase I.1.
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The path of length 2n�1 þ 3 is discussed as follows. When n ¼ 4, we have jFðQj;0
n Þj 6 1. Thus, there exists an integer k of

f0;1;2;3g � fj; dimððw; bÞÞg such that ððwÞj; ððwÞjÞkÞ, ððbÞj; ððbÞjÞkÞ, and ðððwÞjÞk; ððbÞjÞkÞ are all fault-free. Hence,

hu; T 01;w; ðwÞ
j; ððwÞjÞk; ððbÞjÞk, ðbÞj; b; T 001;vi is a path of length 11. See Fig. 3c for illustration. When n P 5, we have

jAj � jFj ¼ jAj � ð2n� 5Þ ¼ d2n�1�1
2 e � ð2n� 5ÞP 2. Thus, there is a link ðx; yÞ of A, other than ðw; bÞ, such that ðx; yÞ and ðw; bÞ

have no shared endpoints and ðx; ðxÞjÞ, ðy; ðyÞjÞ, and ððxÞj; ðyÞjÞ are all fault-free. Without loss of generality, T1 can be written as

hu;R01;w; b;R
00
1; x; y;R

000
1 ;vi. Hence, hu;R01;w; ðwÞ

j; ðbÞj; b;R001; x; ðxÞ
j, ðyÞj; y;R0001 ;vi is a path of length 2n�1 þ 3. See Fig. 3d.

Subcase I.1.3: Suppose that u is in Q j;0
n and v is in Qj;1

n . By Theorem 2, we have a shortest path P� between u and v in Qn � F

such that P� crosses the dimension j exactly once. Thus, P� can be represented as hu; P0; x; ðxÞj; P1;vi, where P0 is a shortest

path joining u to some node x in Qj;0
n � FðQj;0

n Þ and P1 is a shortest path joining ðxÞj to v in Qj;1
n � FðQj;1

n Þ. See Fig. 3e and f for
illustration.

Subcase I.1.3.1: Suppose that ‘ðP0Þ > 0 and ‘ðP1Þ > 0. By Theorem 6, Qj;1
n � FðQj;1

n Þ contains a path T1 of length l1 between

ðxÞj and v for each l1 satisfying ‘ðP1Þ 6 l1 6 2n�1 � 1 and 2jðl1 � ‘ðP1ÞÞ. Suppose that ‘ðP0Þ ¼ 1. It follows from Theorem 8 that

Qj;0
n � FðQj;0

n Þ contains a path T0 of odd length l0 between u and x for any odd integer l0 in the range from 1 to 2n�1 � 1

excluding 3. Suppose that ‘ðP0Þ > 1. By the inductive hypothesis, Qj;0
n � FðQj;0

n Þ contains a path T0 of length l0 between u and x

for each l0 satisfying ‘ðP0Þ 6 l0 6 2n�1 � 1 and 2jðl0 � ‘ðP0ÞÞ. As a result, hu; T0; x; ðxÞj; T1;vi is a path of odd length l0 þ l1 þ 1,
in the range from d� to 2n � 3.

Subcase I.1.3.2: Suppose that ‘ðP0Þ ¼ 0 or ‘ðP1Þ ¼ 0. Since d� ¼ dQn�Fðu; vÞ > 1, we have u – x or v – ðxÞj. With symmetry,

we assume that ‘ðP0Þ ¼ 0. By the inductive hypothesis, Qj;1
n � FðQj;1

n Þ contains a path T1 of even length l1 between ðxÞj and v
for each even integer l1 from ‘ðP1Þ to 2n�1 � 2. As a result, hu ¼ x; ðxÞj; T1;vi is a path of odd length l1 þ 1 in the range from

‘ðP1Þ þ 1 ¼ d� to 2n�1 � 1.
The paths of odd lengths in the range from 2n�1 þ 1 to 2n � 1 are constructed as follows. Since jV1ðQj;0

n Þj ¼ 2n�2 > 2n� 5 for

n P 4, we can choose a node y from V1ðQj;0
n Þ such that ðy; ðyÞjÞ is fault-free. Let R0 be a path joining u to y in Qj;0

n � FðQj;0
n Þ and R1

be a path joining ðyÞj to v in Qj;1
n � FðQj;1

n Þ. Similar to Subcase I.1.3.1, H ¼ hu;R0; y; ðyÞj;R1;vi is a path of any odd length in the

range from d0 ¼ dQj;0
n �FðQj;0

n Þ
ðu; yÞ þ dQj;1

n �FðQj;1
n Þ
ððyÞj;vÞ þ 1 to 2n � 1. By Corollary 3, we have d0 6 ðnþ 1Þ þ ðn� 1Þ þ 1 6 2n�1 þ 1

for n P 4. That is, H can be a path of any odd length in the range from 2n�1 þ 1 to 2n � 1.
Subcase I.2: Suppose that jFðQj;0

n Þj ¼ 2n� 6 or jFðQj;1
n Þj ¼ 2n� 6. Without loss of generality, we assume that

jFðQj;0
n Þj ¼ 2n� 6. Thus, Qj;1

n is fault-free. By procedure PartitionðQn; F;u;vÞ, the faulty links are distributed as shown in Fig. 2.
Subcase I.2.1: Suppose that both u and v are in Qj;0

n . Let ðw; bÞ be a faulty link of Q j;0
n such that both ðw; ðwÞjÞ and ðb; ðbÞjÞ are

fault-free. For convenience, let F0 ¼ FðQj;0
n Þ � fðw; bÞg. By the inductive hypothesis, Qj;0

n � F0 has a path Pl of odd length l

between u and v for any odd integer l in the range from dQj;0
n �F0
ðu;vÞ to 2n�1 � 1. If ðw; bÞ is on Pl, we write Pl as hu; P0l;w; b; P

00
l ;vi

and define ePl ¼ hu; P0l;w; ðwÞ
j; ðbÞj; b; P00l ;vi. Otherwise, Pl can be written as hu; P0l; x; y; P

00
l ;vi, where ðx; yÞ is a link on Pl such that

both ðx; ðxÞjÞ and ðy; ðyÞjÞ are fault-free. Similarly, we define ePl ¼ hu; P0l; x; ðxÞ
j; ðyÞj; y; P00l ;vi. Then ePl is a path of length lþ 2. By

Corollary 2, we have d� ¼ dQn�Fðu;vÞ 6 hðu;vÞ þ 4 and dQj;0
n �F0
ðu;vÞ 6 hðu; vÞ þ 4. First, if d� ¼ hðu;vÞ or d� ¼ hðu;vÞ þ 4, then

we have d� ¼ dQj;0
n �F0
ðu;vÞ and thus l ranges from d� to 2n�1 � 1. Next, if d� ¼ hðu;vÞ þ 2 ¼ dQj;0

n �F0
ðu;vÞ, then l ranges from d� to

2n�1 � 1. Finally, if d� ¼ hðu; vÞ þ 2 and dQj;0
n �F0
ðu;vÞ ¼ hðu;vÞ þ 4, then l ranges from d� þ 2 to 2n�1 � 1. For the final case, a

shortest path between u and v in Qn � F can be constructed by a breadth-first search. In summary, the paths of odd lengths

from d� þ 2 to 2n�1 þ 1 are constructed.
By Theorem 6, Qj;1

n contains a path T1 of length l1 between ðwÞj and ðbÞj for each odd integer l1 from 1 to 2n�1 � 1.
Similarly, Q j;1

n contains a path R1 of length l1 between ðxÞj and ðyÞj for each odd integer l1 from 1 to 2n�1 � 1. Thus,
hu; P02n�1�1;w; ðwÞ

j; T1; ðbÞj; b; P002n�1�1, vi (or hu; P02n�1�1; x; ðxÞ
j;R1; ðyÞj; y; P002n�1�1;vi) is a path of length 2n�1 þ l1, in the range

from 2n�1 þ 1 to 2n � 1.
Subcase I.2.2: Suppose that both u and v are in Qj;1

n . Let ðw; ðwÞiÞ be a faulty link in Qj;0
n such that both ðw; ðwÞjÞ and

ððwÞi; ððwÞiÞjÞ are fault-free. Since d� ¼ dQn�Fðu;vÞ > 1, we assume that ðwÞj is different from u and v. Moreover, since n P 4, we

assume that t 2 f0;1; . . . ;n� 1g � fj; ig. Let X ¼ fððwÞj; ððwÞjÞkÞ j k R fi; j; tgg. Since jXj ¼ n� 3, our inductive hypothesis

ensures that Qj;1
n � X contains a path T1 of odd length l1 between u and v for any odd integer l1 satisfying d� 6 l1 6 2n�1 � 1. Let

T1 denote a path of length 2n�1 � 1 between u and v in Qj;1
n � X. It is noted that ððwÞj; ððwÞjÞiÞ is on T1. Hence, T1 can be

represented as hu; T 01; ðwÞ
j; ððwÞjÞi; T 001;vi. By Theorem 8, Qj;0

n � ðFðQ
j;0
n Þ � fðw; ðwÞ

iÞgÞ contains a path T0 of odd length l0
between w and ðwÞi for 5 6 l0 6 2n�1 � 1. As a result, hu; T 01; ðwÞ

j;w; T0; ðwÞi; ððwÞjÞi; T 001;vi is a path of odd length 2n�1 þ l0, in

the range from 2n�1 þ 5 to 2n � 1. See Fig. 4a for illustration.
Let T0 denote the longest path between w and ðwÞi in Qj;0

n � ðFðQ
j;0
n Þ � fðw; ðwÞ

iÞgÞ. Moreover, let
A ¼ fðT0ðkÞ; T0ðkþ 1ÞÞ j 1 6 k 6 2n�1; k � 1 ðmod 2Þg be a set of disjoint links on T0. The paths of lengths 2n�1 þ 1 and
2n�1 þ 3 can be obtained as follows:
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Fig. 4. Illustration for Subcase I.2.
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(a) Since jAj ¼ d2n�1�1
2 e > 3 for n P 4, there exists a link ðx; yÞ of A such that both F \ fðx; ðxÞjÞ; ðy; ðyÞjÞg ¼ ; and

fðxÞj; ðyÞjg \ fu;vg ¼ ; are satisfied. Without loss of generality, we assume that x 2 V0ðQnÞ. By Lemma 2, there exist
two node-disjoint paths P1 and P2 in Qj;1

n such that (i) P1 joins u to ðxÞj, (ii) P2 joins ðyÞj to v, and (iii)
VðP1Þ [ VðP2Þ ¼ VðQ j;1

n Þ. As a result, hu; P1; ðxÞj; x; y; ðyÞj; P2;vi is a path of length 2n�1 þ 1. See Fig. 4b for illustration.
(b) We write T0 as hw ¼ x0; x1; . . . ; x2n�1�1 ¼ ðwÞ

ii. Then we can choose a pair of nodes from ffx0; x3g; fx1; x4g; fx2; x5gg,
namely fxk; xkþ3g, such that both F \ fðxk; ðxkÞjÞ; ðxkþ3; ðxkþ3ÞjÞg ¼ ; and jfðxkÞj; ðxkþ3Þjg \ fu;vgj 6 1 are satisfied.

(b.1) Suppose that xk 2 V0ðQnÞ. If jfðxkÞj; ðxkþ3Þjg \ fu;vgj ¼ 0, Lemma 2 ensures that Q j;1

n has two node-disjoint paths
P1 and P2 such that (i) P1 joins u to ðxkÞj, (ii) P2 joins ðxkþ3Þj to v, and (iii) VðP1Þ [ VðP2Þ ¼ VðQj;1

n Þ. Hence,
hu; P1; ðxkÞj; xk; xkþ1; xkþ2; xkþ3; ðxkþ3Þj; P2;vi is a path of length 2n�1 þ 3. If jfðxkÞj; ðxkþ3Þjg \ fu;vgj ¼ 1, we assume
that ðxkÞj ¼ v . By Theorem 5, Q j;1

n � fvg has a hamiltonian path H1 joining u to ðxkþ3Þj. Then hu;H1; ðxkþ3Þj; xkþ3,
xkþ2; xkþ1; xk; ðxkÞj ¼ vi is a path of length 2n�1 þ 3. See Fig. 4c.

(b.2) Suppose that xk 2 V1ðQ nÞ. The required paths can be obtained similarly.
Subcase I.2.3: Suppose that u is in Qj;0
n and v is in Qj;1

n . If ðu; ðuÞjÞ is fault-free, the shortest path between u and v can be of

the form hu; ðuÞj; P1;vi, where P1 is a shortest path joining ðuÞj to v in Qj;1
n . By the inductive hypothesis, Qj;1

n contains a path T1

of even length l1 between ðuÞj and v for any even integer l1 from dQj;1
n
ððuÞj;vÞ ¼ d� � 1 to 2n�1 � 2. Then hu; ðuÞj; T1;vi is a path

of odd length l1 þ 1 in the range from d� to 2n�1 � 1. On the other hand, if ðu; ðuÞjÞ is faulty, we choose a neighbor of u, namely

x, in Qj;0
n � FðQj;0

n Þ. Obviously, we have either hððxÞj;vÞ ¼ hðu;vÞ � 2 or hððxÞj; vÞ ¼ hðu;vÞ. Let R1 be a shortest path joining ðxÞj

to v in Qj;1
n . Then hu; x; ðxÞj;R1;vi is a path of length hðu;vÞ or hðu;vÞ þ 2. Thus, we have d� 6 hðu;vÞ þ 2. By Theorem 6, Qj;1

n

has a path T1 of length l1 between ðxÞj and v for any odd integer l1 from hððxÞj;vÞ to 2n�1 � 1. Then hu; x; ðxÞj; T1;vi is a path of

odd length l1 þ 2 in the range from d� þ 2 to 2n�1 þ 1.
The paths of lengths greater than 2n�1 � 1 can be obtained as follows. Since jFðQj;0

n Þj ¼ 2n� 6, the j-partition determined

by Partition ðQ n; F;u;vÞ guarantees that link ðv ; ðvÞjÞ is fault-free if hðu;vÞ is odd. (See (2.2) in Section 4). Let ðw; bÞ be a faulty

link in Qj;0
n such that both ðw; ðwÞjÞ and ðb; ðbÞjÞ are fault-free. By the inductive hypothesis, Qj;0

n � ðFðQ
j;0
n Þ � fðw; bÞgÞ contains

a path H0 of length 2n�1 � 2 between u to ðvÞj. Three subcases are distinguished.
Subcase I.2.3.1: Suppose that ðw; bÞ is not located on H0. See Fig. 4d. We choose a link ðx; yÞ on H0 such that ðx; ðxÞjÞ and

ðy; ðyÞjÞ are fault-free and ððxÞj; ðyÞjÞ is not incident with v. Thus, H0 can be represented as hu;H00; x; y;H
00
0; ðvÞ

ji. By Lemma 3,

Qj;1
n � fvg contains a path T1 of odd length l1 between ðxÞj and ðyÞj for any odd integer l1 from 1 to 2n�1 � 3. Consequently,

hu;H00; x; ðxÞ
j; T1; ðyÞj; y;H000; ðvÞ

j;vi is a path of odd length 2n�1 þ l1, in the range from 2n�1 þ 1 to 2n � 3.
Subcase I.2.3.2: Suppose that ðw; bÞ is located on H0 and ðw; bÞ is not incident with ðvÞj. See Fig. 4e. Thus, H0 can be

represented as hu;H00;w; b;H
00
0; ðvÞ

ji. By Lemma 3, Qj;1
n � fvg contains a path T1 of odd length l1 between ðwÞj and ðbÞj for

1 6 l1 6 2n�1 � 3. Hence, hu;H00;w; ðwÞ
j; T1; ðbÞj; b;H000; ðvÞ

j;vi is a path of odd length 2n�1 þ l1, in the range 2n�1 þ 1 to 2n � 3.
Subcase I.2.3.3: Suppose that ðw; bÞ is located on H0 and ðw; bÞ is incident with ðvÞj. See Fig. 4f. Let w ¼ ðvÞj. Thus, H0 can

be represented as hu;H00; b;w ¼ ðvÞ
ji. By Theorem 6, Qj;1

n contains a path T1 of odd length l1 between ðbÞj and v for any odd
integer l1 satisfying 1 6 l1 6 2n�1 � 1. Then hu;H00; b; ðbÞ

j; T1;vi is a path of odd length 2n�1 þ l1 � 2, in the range from
2n�1 � 1 to 2n � 3.
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Case II: Suppose that u and v belong to the same partite set of Qn. This case is similar to Case I and the details are
described in Appendix A. h
6. Conclusion

Fault tolerance is an important research issue in the area of interconnection networks. Since linear array and rings are two
of the most fundamental structures, the node-fault and link-fault tolerance are widely investigated for path embedding in var-
ious kinds of network topologies. By induction, we show that a conditionally faulty Qn, with 2n� 5 faulty links, has a fault-free
path of odd (resp. even) length in the range from d� to 2n � 1 between two arbitrary nodes of odd (resp. even) distance d�.

Let PrðnÞ denote the probability that every node of an n-cube containing 2n� 5 faulty links is incident to at least

two fault-free links. Then PrðnÞ is computed as follows: PrðnÞ ¼ 1 if n ¼ 3; PrðnÞ ¼ 1� 2n� n
2n�5ð Þ

n�2n�1
2n�5

� � if n ¼ 4; PrðnÞ ¼

1� 2n� n�2n�1�n
n�5

� �
þ2n� n

n�1ð Þ n�2n�1�n
n�4

� �
n�2n�1

2n�5

� � if n P 5. One can verify that PrðnÞ approaches to 1 as n increases. Thus, the assumption of con-

ditional link-faults is probabilistically reasonable.
Let u be any node of Q n and let v ¼ ððuÞ0Þ1. Suppose that F ¼ fðu; ðuÞiÞ j 2 6 i 6 n� 1g [ fðv; ðvÞiÞ j 2 6 i 6 n� 1g is a set of

2n� 4 faulty links in Qn. Obviously, Qn � F has no hamiltonian paths joining u and ðuÞ1. That is, an n-cube with 2n� 4 or
more conditional link-faults is likely to have no paths of some specific lengths. In this sense, our result is optimal. A number
of researchers [5,8,10,22,23] addressed the fault-tolerant hamiltonicity (or hamiltonian connectivity) in some special classes
of network topologies under the consideration of conditional fault model. For example, the crossed cube [3], which is a var-
iation of hypercubes, possesses some properties superior to the hypercube. Fu [6] showed that a conditionally faulty n-
dimensional crossed cube contains a fault-free hamiltonian cycle even if it has 2n� 5 faulty links. Hence, it is intriguing
to study fault-tolerant path embedding on crossed cubes under the assumption of conditional faults.
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Appendix A. Case II in proof of Theorem 9

Case II: Suppose that u and v belong to the same partite set of Q n. Thus, the distance d� between u and v is even. Without
loss of generality, we assume that u;v 2 V0ðQnÞ. By Theorem 7, Q n � F is strongly hamiltonian laceable. Moreover, a shortest
path between u and v can be obtained by a breadth-first search. Hence, we concentrate on the paths of even lengths in the
range from d� þ 2 to 2n � 4.

Subcase II.1: Suppose that jFðQ j;0
n Þj 6 2n� 7 and jFðQ j;1

n Þj 6 2n� 7. Without loss of generality, we assume that
jFðQ j;0

n ÞjP jFðQ
j;1
n Þj. Thus, jFðQj;1

n Þj 6 n� 3.
Subcase II.1.1: Suppose that both u and v are in Q j;0

n . By the inductive hypothesis, Qj;0
n � FðQ j;0

n Þ has a path H0 of length
2n�1 � 2 between u and v. Let A ¼ fðH0ðiÞ;H0ðiþ 1ÞÞ j 1 6 i 6 2n�1 � 1; i � 1 ðmod 2Þg be a set of disjoint links on H0. First, sup-

pose that jFðQ j;0
n Þj > 0. Since jAj ¼ d2n�1�2

2 e > 2n� 5� jFðQ j;0
n Þj for n P 4, there exists a link ðw; bÞ of A such that

ðw; ðwÞjÞ; ðb; ðbÞjÞ, and ððwÞj; ðbÞjÞ are all fault-free. Next, suppose that jFðQ j;0
n Þj ¼ 0 and n P 5. Since jAj ¼ d2n�1�2

2 e > 2n� 5, there

still exists a link ðw; bÞ of A such that ðw; ðwÞjÞ; ðb; ðbÞjÞ, and ððwÞj; ðbÞjÞ are all fault-free. Finally, suppose that jFðQ j;0
n Þj ¼ 0 and

n ¼ 4. If there does not exist any node z of V1ðQ j;0
4 Þ such that ðz; ðzÞjÞ is faulty, there must exist a link ðw; bÞ on H0 such that

ðw; ðwÞjÞ, ðb; ðbÞjÞ, and ððwÞj; ðbÞjÞ are all fault-free. If there exists a node z of V1ðQ j;0
4 Þ such that ðz; ðzÞjÞ is faulty, then it follows

from Theorem 5 that Q j;0
4 � fzg has a hamiltonian path, still namely H0, between u and v. Obviously, there also exists a link

ðw; bÞ on H0 such that ðw; ðwÞjÞ; ðb; ðbÞjÞ, and ððwÞj; ðbÞjÞ are all fault-free. In summary, H0 can be written as

hu;H00;w; b;H
00
0;vi. Since jFðQ j;1

n Þj 6 n� 3, it follows from Theorem 6 that Qj;1
n � FðQj;1

n Þ contains a path H1 of odd length l1 be-

tween ðwÞj and ðbÞj for any odd integer l1 satisfying 1 6 l1 6 2n�1 � 1. As a result, hu;H00;w; ðwÞ
j;H1; ðbÞj; b;H000;vi is a path of

even length in the range from 2n�1 to 2n � 2.
The paths of lengths less than 2n�1 are obtained as follows. By Corollary 2, we have d� ¼ dQn�Fðu;vÞ 6 hðu;vÞ þ 4 and

dQj;0
n �FðQj;0

n Þ
ðu;vÞ 6 hðu;vÞ þ 4. By inductive hypothesis, Q j;0

n � FðQ j;0
n Þ has a path T0 of length l0 between u and v for any even

length from dQj;0
n �FðQj;0

n Þ
ðu; vÞ to 2n�1 � 2. If d� ¼ hðu;vÞ or d� ¼ hðu;vÞ þ 4, then dQj;0

n �FðQj;0
n Þ
ðu;vÞ ¼ d�. If d� ¼ hðu; vÞ þ 2, then

dQj;0
n �FðQj;0

n Þ
ðu;vÞ 6 d� þ 2.

Subcase II.1.2: Suppose that both u and v are in Qj;1
n . Since jFðQj;1

n Þj 6 n� 3, it follows from Lemma 1 that d� 6 hðu;vÞ þ 2.
Thus, Q n � F has a shortest path between u and v that does not cross the dimension j. By the inductive hypothesis,

Q j;1
n � FðQj;1

n Þ contains a path T1 of length l1 between u and v for any even integer l1 satisfying d� 6 l1 6 2n�1 � 2. Let T1 be
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a path of length 2n�1 � 2 between u and v in Qj;1
n � FðQ j;1

n Þ. Moreover, let A ¼ fðT1ðiÞ; T1ðiþ 1ÞÞ j 1 6 i 6 2n�1 � 1;

i � 1 ðmod 2Þg be a set of disjoint links on T1. First, suppose that jFðQj;1
n Þj > 0. Since jAj ¼ d2n�1�2

2 e > 2n� 5� jFðQ j;1
n Þj for

n P 4, there exists a link ðw; bÞ 2 A such that ðw; ðwÞjÞ, ðb; ðbÞjÞ, and ððwÞj; ðbÞjÞ are all fault-free. Next, suppose that

jFðQj;1
n Þj ¼ 0 and n P 5. Since jAj ¼ d2n�1�2

2 e > 2n� 5, there still exists a link ðw; bÞ 2 A such that ðw; ðwÞjÞ; ðb; ðbÞjÞ and

ððwÞj; ðbÞjÞ are all fault-free. Finally, suppose that jFðQj;1
n Þj ¼ 0 and n ¼ 4. If there does not exist any node z of V1ðQ j;1

4 Þ such

that ðz; ðzÞjÞ is faulty, there exists a link ðw; bÞ on T1 such that ðw; ðwÞjÞ, ðb; ðbÞjÞ and ððwÞj; ðbÞjÞ are all fault-free. If there exists

a node z of V1ðQj;1
4 Þ such that ðz; ðzÞjÞ is faulty, Theorem 5 ensures that Q j;1

4 � fzg has a hamiltonian path, still namely T1, be-

tween u and v. Obviously, there also exists a link ðw; bÞ on T1 such that ðw; ðwÞjÞ; ðb; ðbÞjÞ and ððwÞj; ðbÞjÞ are all fault-free. In

summary, T1 can be written as hu; T 01;w; b; T
00
1;vi. Since jFðQ j;0

n Þj 6 2n� 7, it follows from Theorem 8 that Qj;0
n � FðQj;0

n Þ contains

a path T0 of length l0 between ðwÞj and ðbÞj for any odd integer l0 from 1 to 2n�1 � 1 excluding 3. As a result,

hu; T 01;w; ðwÞ
j
; T0; ðbÞj; b; T 001;vi is a path of any even length in the range from 2n�1 to 2n � 2, excluding 2n�1 þ 2.

The path of length 2n�1 þ 2 is discussed as follows. When n ¼ 4, jFðQ j;0
n Þj 6 1. Thus, there exists an integer k of

f0;1;2;3g � fj; dimððw; bÞÞg such that ððwÞj; ððwÞjÞkÞ, ððbÞj; ððbÞjÞkÞ, and ðððwÞjÞk; ððbÞjÞkÞ are all fault-free. Hence,
hu; T 01;w; ðwÞ

j; ððwÞjÞk; ððbÞjÞk, ðbÞj; b; T 001;vi is a path of length 10. When n P 5, we have jAj � jFj ¼ d2n�1�2
2 e � ð2n� 5ÞP 2. Thus,

there is another link ðx; yÞ of A, other than ðw; bÞ, such that ðx; ðxÞjÞ; ðy; ðyÞjÞ, and ððxÞj; ðyÞjÞ are all fault-free. Without loss of
generality, T1 can be written as hu;R01;w; b;R

00
1; x; y;R

000
1 ;vi. Hence, hu;R01;w; ðwÞ

j; ðbÞj; b;R001; x; ðxÞ
j, ðyÞj;R0001 ;vi is a path of length

2n�1 þ 2.
Subcase II.1.3: Suppose that u is in Qj;0

n and v is in Qj;1
n . By Theorem 2, there exists a shortest path P� between u and v in

Qn � F such that P� crosses the dimension j exactly once. Thus, P� can be written as hu; P0; x; ðxÞj; P1;vi, where P0 is a shortest
path joining u to some node x in Q j;0

n � FðQ j;0
n Þ and P1 is a shortest path joining ðxÞj to v in Q j;1

n � FðQ j;1
n Þ.

Subcase II.1.3.1: Suppose that ‘ðP0Þ > 0 and ‘ðP1Þ > 0. By Theorem 6, Q j;1
n � FðQj;1

n Þ has a path T1 of length l1 between ðxÞj

and v for each l1 satisfying ‘ðP1Þ 6 l1 6 2n�1 � 1 and 2jðl1 � ‘ðP1ÞÞ. Suppose that ‘ðP0Þ ¼ 1. By Theorem 8, Qj;0
n � FðQj;0

n Þ has a

path T0 of length l0 between u and x for any odd integer l0 from 1 to 2n�1 � 1 excluding 3. Suppose that ‘ðP0Þ > 1. By the

inductive hypothesis, Q j;0
n � FðQ j;0

n Þ has a path T0 of length l0 between u and x for each l0 satisfying ‘ðP0Þ 6 l0 6 2n�1 � 1

and 2jðl0 � ‘ðP0ÞÞ. Hence, hu; T0; x; ðxÞj; T1;vi is a path of even length l0 þ l1 þ 1 in the range from d� to 2n � 2.
Subcase II.1.3.2: Suppose that ‘ðP0Þ ¼ 0 or ‘ðP1Þ ¼ 0. With symmetry, we assume u ¼ x. By the inductive hypothesis,

Qj;1
n � FðQj;1

n Þ contains a path T1 of length l1 between ðuÞj and v for any odd integer l1 form ‘ðP1Þ to 2n�1 � 1. Then
hu; ðuÞj; T1;vi is a path of even length l1 þ 1 in the range from ‘ðP1Þ þ 1 ¼ d� to 2n�1.

The paths of lengths greater than 2n�1 are constructed as follows. Since jVðQj;0
n Þ � fugj � ð2n� 5Þ > 1 for n P 4, we can

choose a node y from VðQj;0
n Þ � fug such that ðy; ðyÞjÞ is fault-free and ðyÞj is not v. Let R0 be a path joining u to y in

Qj;0
n � FðQj;0

n Þ and R1 be a path joining ðyÞj to v in Qj;1
n � FðQ j;1

n Þ. Similar to Subcase II.1.3.1, H ¼ hu;R0; y; ðyÞj;R1;vi is a path

of even length in the range from d0 ¼ dQj;0
n �FðQj;0

n Þ
ðu; yÞ þ dQj;1

n �FðQj;1
n Þ
ððyÞj;vÞ þ 1 to 2n � 2. By Corollary 3, we have

d0 6 ðnþ 1Þ þ ðn� 1Þ þ 1 6 2n�1 þ 2 for n P 4. Therefore, H is a path of even length in the range from 2n�1 þ 2 to 2n � 2.
Subcase II.2: Suppose that jFðQ j;0

n Þj 6 2n� 6 or jFðQ j;1
n Þj 6 2n� 6. Without loss of generality, we assume that

jFðQj;0
n Þj ¼ 2n� 6. Thus, Qj;1

n is fault-free. It is noticed that the faulty links are distributed as shown in Fig. 2.
Subcase II.2.1: Suppose that both u and v are in Q j;0

n . Let ðw; bÞ be a faulty link of Q j;0
n such that both ðw; ðwÞjÞ and ðb; ðbÞjÞ

are fault-free. Let F0 ¼ FðQ j;0
n Þ � fðw; bÞg. By the inductive hypothesis, Qj;0

n � F0 has a path Pl of length l between u and v for
any even integer l from dQj;0

n �F0
ðu;vÞ to 2n�1 � 2. If ðw; bÞ is on Pl, we write Pl as hu; P0l;w; b; P

00
l ;vi and define

ePl ¼ hu; P0l;w; ðwÞ
j
; ðbÞj; b; P00l ;vi. Otherwise, Pl can be written as hu; P0l; x; y; P

00
l ;vi, where ðx; yÞ is a link on Pl such that both

ðx; ðxÞjÞ and ðy; ðyÞjÞ are fault-free. Similarly, we define ePl ¼ hu; P0l; x; ðxÞ
j
; ðyÞj; y; P00l ;vi. Then ePl is a path of length lþ 2. By Cor-

ollary 2, we have d� ¼ dQ n�Fðu;vÞ 6 hðu; vÞ þ 4 and dQj;0
n �F0
ðu;vÞ 6 hðu; vÞ þ 4. If dQj;0

n �F0
ðu;vÞ ¼ d�, then path ePl is the desired

path. Otherwise, if dQj;0
n �F0
ðu;vÞ ¼ d� þ 2, then ePl is a path of even length in the range from d� þ 4 to 2n�1. It is noticed that a

shortest path between u and v in Qn � F can be constructed based on a breadth-first search.
By Theorem 6, Qj;1

n contains a path T1 of length l1 between ðwÞj and ðbÞj or a path R1 of odd length l1 between ðxÞj and ðyÞj

for any odd integer l1 from 1 to 2n�1 � 1. Thus, hu; P02n�1�2;w; ðwÞ
j
; T1; ðbÞj; b; P002n�1�2;vi (or hu; P02n�1�2; x; ðxÞ

j
;R1; ðyÞj; y; P002n�1�2;vi)

is a path of even length in the range from 2n�1 to 2n � 2.
Subcase II.2.2: Suppose that both u and v are in Q j;1

n . Let ðw; ðwÞiÞ be a faulty link of Qj;0
n such that both ðw; ðwÞjÞ and

ððwÞi; ððwÞiÞjÞ are fault-free. Since n P 4, we assume that t 2 f0;1; . . . ;n� 1g � fj; ig. Moreover, we assume that
w 2 V0ðQj;0

n Þ. Let X ¼ fððwÞj; ððwÞjÞkÞ j k R fi; j; tgg. Since jXj ¼ n� 3, our inductive hypothesis ensures that Q j;1
n � X contains

a path T1 of even length l1 between u and v for d� 6 l1 6 2n�1 � 2. Let T1 denote the longest path between u and v in
Qj;1

n � X. It is noted that ððwÞj; ððwÞjÞiÞ is on T1. Hence, T1 can be represented as hu; T 01; ðwÞ
j
; ððwÞjÞi; T 001;vi. By the inductive

hypothesis, Qj;0
n � ðFðQ

j;0
n Þ � fðw; ðwÞ

iÞgÞ contains a path T0 of odd length l0 between w to ðwÞi for 5 6 l0 6 2n�1 � 1. As a result,
hu; T 01; ðwÞ

j
;w; T0; ðwÞi; ððwÞjÞi; T 001;vi is a path of even length 2n�1 þ l0 � 1, in the range from 2n�1 þ 4 to 2n � 2.

Let A ¼ fðT1ðkÞ; T1ðkþ 1ÞÞ j 1 6 k 6 2n�1 � 1; k � 1 ðmod 2Þg be a set of disjoint links on T1. Then the paths of lengths 2n�1

and 2n�1 þ 2 can be obtained as follows. When n ¼ 4, we suppose that fp; q; j; ig ¼ f0;1;2;3g. Since ðw; ðwÞiÞ is faulty, we have
either fðw; ðwÞpÞ; ððwÞp; ððwÞpÞiÞ; ððwÞpÞi; ðwÞiÞg \ F ¼ ; or fðw; ðwÞqÞ; ððwÞq; ððwÞqÞiÞ; ððwÞqÞi, ðwÞi; ðwÞqÞiÞg \ F ¼ ;. Without loss



Table 2
The paths of lengths 10, 12, and 14 between u ¼ 0101 and v ¼ 1001 in Q 4 � fef ; ð0001;0101Þ; ð0001;1001Þg.

ef 2 fð0000;0010Þ; ð0010; 0011Þg hu ¼ 0101;0100;0110; 0111; 0011;0001;0000;1000;1100;1101;1001 ¼ vi
hu ¼ 0101;0100;0110; 0111; 0011;0001;0000;1000;1100;1110;1111;1101;1001 ¼ vi
hu ¼ 0101;0100;0110; 0111; 0011;0001;0000;1000;1100;1110;1010;1011;1111;1101;1001 ¼ vi

ef ¼ ð0100;0110Þ hu ¼ 0101;0111; 0110;0010; 0011;0001;0000;1000;1100;1101;1001 ¼ vi
hu ¼ 0101;0111; 0110;0010; 0011;0001;0000;1000;1100;1110;1111;1101;1001 ¼ vi
hu ¼ 0101;0111; 0110;0010; 0011;0001;0000;1000;1100;1110;1010;1011;1111;1101;1001 ¼ vi

ef ¼ ð0110;0111Þ hu ¼ 0101;0111; 0011;0010; 0110;0100;0000;1000;1100;1101;1001 ¼ vi
hu ¼ 0101;0111; 0011;0010; 0110;0100;0000;1000;1100;1110;1111;1101;1001 ¼ vi
hu ¼ 0101;0111; 0011;0010; 0110;0100;0000;1000;1100;1110;1010;1011;1111;1101;1001 ¼ vi
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of generality, we assume fðw; ðwÞpÞ; ððwÞp; ððwÞpÞiÞ; ððwÞi; ðwÞpÞiÞg \ F ¼ ;. Obviously, hu; T 01; ðwÞ
j
;w; ðwÞp, ððwÞpÞi; ðwÞi;

ððwÞjÞi; T 001;vi is a path of length 2n�1 þ 2. Moreover, since jAj � jFj ¼ d2n�1�1
2 e � ð2n� 5Þ ¼ 1 for n ¼ 4, there exists one link

ðx; yÞ 2 A such that ðx; ðxÞjÞ; ðy; ðyÞjÞ, and ððxÞj; ðyÞjÞ is fault-free. Hence, T1 can be represented as hu;R1; x; y;R2;vi. Obviously,
hu;R1; x; ðxÞj; ðyÞj; y;R2;vi is a path of length 2n�1. When n P 5, we have jAj � jFj ¼ d2n�1�2

2 e � ð2n� 5ÞP 2. Thus, there are
two links ðx1; y1Þ; ðx2; y2Þ 2 A such that fðxk; ðxkÞjÞ; ðyk; ðykÞ

jÞ; ððxkÞj; ðykÞ
jÞ j k ¼ 1;2g \ F ¼ ;. Hence, T1 can be represented as

hu;R1; x1; y1;R2; x2; y2;R3;vi. Obviously, hu;R1; x1; ðx1Þj; ðy1Þ
j
; y1;R2; x2; y2;R3;vi and hu;R1; x1; ðx1Þj; ðy1Þ

j
; y1, R2; x2; ðx2Þj; ðy2Þ

j
; y2;

R3, vi are paths of length 2n�1 and of length 2n�1 þ 2, respectively.
Subcase II.2.3: Suppose that u is in Qj;0

n and v is in Q j;1
n . If ðu; ðuÞjÞ is fault-free, the shortest path between u and v can be of

the form hu; ðuÞj; P1;vi, where P1 is a shortest path joining ðuÞj to v in Qj;1
n . By the inductive hypothesis, Q j;1

n contains a path T1

of odd length l1 between ðuÞj and v for d� � 1 6 l1 6 2n�1 � 1. Then hu; ðuÞj; T1;vi is a path of even length in the range from d�

to 2n�1. If ðu; ðuÞjÞ is faulty, we choose a neighbor of u in Q j;0
n � FðQ j;0

n Þ, namely x, such that ðxÞj – v . Obviously, we have either

hððxÞj;vÞ ¼ hðu;vÞ � 2 or hððxÞj;vÞ ¼ hðu;vÞ. Let R1 be a shortest path joining ðxÞj to v in Q j;1
n . Then hu; x; ðxÞj;R1;vi is a path of

length hðu;vÞ or hðu;vÞ þ 2. By Theorem 6, Qj;1
n contains a path T1 of even length l1 between ðxÞj and v for any even integer l1

from hððxÞj;vÞ to 2n�1 � 2. Then hu; x; ðxÞj; T1;vi is a path of even length in the range from d� þ 2 to 2n�1.
The paths of lengths greater than 2n�1 are obtained as follows. Let ðw; bÞ be a faulty link in Q j;0

n such that both ðw; ðwÞjÞ and
ðb; ðbÞjÞ are fault-free. Depending on whether ðv ; ðvÞjÞ is faulty, we distinguish two subcases.

Subcase II.2.3.1: Suppose that ðv ; ðvÞjÞ is fault-free. By the inductive hypothesis, Qj;0
n � ðFðQ

j;0
n Þ � fðw; bÞgÞ contains a path

H0 of length 2n�1 � 1 between u to ðvÞj.
Subcase II.2.3.1.a: Suppose that ðw; bÞ is not located on H0. We choose a link ðx; yÞ on H0 such that ðx; ðxÞjÞ and ðy; ðyÞjÞ are

fault-free and ððxÞj; ðyÞjÞ is not incident with v. Thus, H0 can be represented as hu;H00; x; y;H
00
0; ðvÞ

ji. By Lemma 3, Q j;1
n � fvg

contains a path T1 of odd length l1 between ðxÞj and ðyÞj for any odd integer l1 from 1 to 2n�1 � 3. Consequently,
hu;H00; x; ðxÞ

j
; T1; ðyÞj; y;H000; ðvÞ

j
;vi is a path of even length 2n�1 þ l1 þ 1, in the range from 2n�1 þ 2 to 2n � 2.

Subcase II.2.3.1.b: Suppose that ðw; bÞ is located on H0 and ðw; bÞ is not incident with ðvÞj. Thus, H0 can be represented as
hu;H00;w; b;H

00
0; ðvÞ

ji. By Lemma 3, Qj;1
n � fvg contains a path T1 of odd length l1 between ðwÞj and ðbÞj for any odd integer l1

from 1 to 2n�1 � 3. Then hu;H00;w; ðwÞ
j
; T1; ðbÞj; b;H000; ðvÞ

j
;vi is a path of even length 2n�1 þ l1 þ 1, in the range from 2n�1 þ 2 to

2n � 2.
Subcase II.2.3.1.c: Suppose that ðw; bÞ is on H0 and ðw; bÞ is incident with ðvÞj. Let b ¼ ðvÞj. Thus, H0 can be written as

hu;H00;w; b ¼ ðvÞ
ji. By Theorem 6, Q j;1

n has a path T1 of odd length l1 between ðwÞj and v for 1 6 l1 6 2n�1 � 1. Thus,
hu;H00;w; ðwÞ

j
; T1; vi is a path of even length 2n�1 þ l1 � 1, in the range from 2n�1 to 2n � 2.

Subcase II.2.3.2: Suppose that ðv ; ðvÞjÞ is faulty. According to procedure PartitionðQ n; F;u;vÞ, this subcase occurs only
when n ¼ 4 and there is a unique node z of V1ðQ4Þ such that both ðz;uÞ and ðz;vÞ are faulty links. In addition, each faulty
link corresponds to a unique dimension. By transitivity, we assume that z ¼ 0001;u ¼ 0101, and v ¼ 1001. Then the paths
obtained by brute force are listed in Table 2.
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