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ABSTRACT : Using the framework o f  the general structured (GS) observer, we present a straight- 
forward procedurefor designing an unknown input observer (UIO) jor a linear O'stem subject to 
unknown inputs or uncertain disturbances. The set o f  all GS observers insensitive to unknown inputs 
is derived in this paper. Moreover, an extension o f  the UIO, called the extended UIO, is' developed 
to estimate both the system state and the unknown input simultaneously. We show the existence 
conditions of  a stable UIO are the same as those of  a stable left inverse system. In addition, well- 
conditioned designs for both the state and unknown input estimations are also explored. Conditions 
o f  transmission zeros reveal that to achieve a stable UIO, the uncertain system should be minimum- 
phase. To overcome this restriction, we adopt a two-delay output stabilized method to design the 
stabilized UIO without implementing extra sensors. Experimental results Jor a DC servo motor 
system demonstrate the applicability o f  the proposed methodologies. Copyright @ 1997 Published 
by Elsevier Science Ltd 

L Introduction 

The reconstruction of the state of  a dynamic system whose input is not measurable 
is of  special importance in practice, since there are many situations where plant dis- 
turbance occurs or part  of  the input of the system is inaccessible. Under such cir- 
cumstances, a conventional observer that requires knowledge of all inputs cannot be 
used directly. The unknown input observer (UIO) was developed to estimate the 
state of  an uncertain system despite the existence of unknown inputs or uncertain 
disturbances. This UIO has received considerable attention from many researchers (1- 
9). In real applications, the UIO achieves better control performance and more reliable 
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diagnostic performance than a conventional observer. Recently, in addition to state 
estimation, the use of the UIO in fault diagnostic and process monitoring systems has 
also attracted much attention (10-13). 

Most previous papers on UIOs employed the design for a reduced-order UIO, e.g. 
as given in Refs (1-7). However, Yang and Wilde (7) demonstrated that the full-order 
UIO yields a faster rate of  estimated convergence than the reduced-order UIO, because 
the full-order UIO does not need to transform states and thus the dynamic restriction 
imposed by the system matrices is minimized. Although Yang and Wilde (7) used 
straightforward matrix operations to provide a practical design method, their design 
still involved considerable computational complexity. In this paper, unlike other 
approaches which are based on the Luenberger observer, we design a full-order UIO 
based on the configuration of  the general structured (GS) observer proposed by Cheok 
et al. (14). This approach leads to a more concise and straightforward formulation of 
the UIO problem. We obtain the set of  all GS observers insensitive to unknown inputs 
by applying the Moore-Penrose generalized inverse. Necessary and sufficient conditions 
for the existence of a stable full-order GS-UIO are provided, and it is shown that these 
conditions are the same as the existence conditions for the UIOs provided in Refs (5, 
9). It should be emphasized that the proposed UIO design is similar to the design of  a 
conventional observer, which requires only pole-placement techniques. In real appli- 
cations, the UIO still cannot exactly cancel out the undesired plant dynamics, because 
of  those unstructured uncertainties and noise. Thus, we also consider the design of a 
well-conditioned UIO to provide progressive robust estimation for system monitoring 
and fault diagnosis. 

Since the existence conditions are provided in terms of  transmission zeros, similar to 
the existence conditions of  the inverse system problem. We also propose an extended 
version of  UIO for estimating both system states and unknown inputs. We show in 
this paper that the left inverse system is an extension of the UIO. The estimation of 
unknown inputs can be further applied to accommodate process uncertainty so as to 
produce robust control systems. Thus, the UIO system can be directly or indirectly 
applied to many aspects of the analysis and design of multivariable control systems. 
Conditions of  transmission zeros also reveal that the given uncertain system should 
be minimum-phase to obtain a stable UIO. To overcome this restriction without 
implementing additional sensors, we adopt a stabilized method based on the technique 
of  two-delay output control proposed by Kaku et al. (15). The stabilized UIO design 
method entails that a stable UIO can generally be achieved without extra sensors. 

We have implemented the proposed UIO on a DC servo motor  system and on a 
servo table system with external loading. The dominant disturbance in the first system 
is friction and that in the second system is external loading. Experimental results 
indicate that the estimations of states and disturbances are in good agreement with 
measurements, thus confirming the applicability of the UIO methodologies developed 
here. 

The following notation will be used in this paper: a ,= b means a denotes b; E ,= the 
field of  real numbers; C ~= the field of  complex numbers; ] v ] .'= Euclidean norm 
of vector v; IlAll. '=spectral norm of  matrix A; C ~ . ' = { z ~ C ] l z l < l } ;  C~.'= 
{z ~ C II z l/> 1 }; 1. ,= the unit matrix of dimension n; A a-,= the transpose of A; A + = 
(A'rA)- ~A v .'= the Moore-Penrose generalized inverse of  A. 
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I L  Design of the General Structured UIO 

2.1. Full-order design 

We consider a deterministic linear time-invariant discrete-time system described by 

Xk + l = AXk + BUk + Edk (1 a) 

Yk = Cxk (1 b) 

where Xk E ~" is the state vector, Uk ~ ~P is the measurement input vector, dk ~ ~r is the 
unknown input vector, Yk ~ ~"  is the measurement output vector, and k denotes the 
discrete-time variable. A, B, E and C are constant matrices of  appropriate dimensions. 
Without loss of generality, we assume that E has full column rank and C has full row 
rank, i.e. rank(E) = r and rank(C) = m. Note that the term Edk in Eq. (la) can also 
be used to represent uncertainties acting upon the system, the so-called structured 
uncertainties, which may incorporate unknown time-variancy, unknown nonlinearity 
and uncertain coefficients (13). For  the system in Eq. (1), the general structured (GS) 
observer proposed by Cheok et al. (14) is as follows: 

YCk+ 1 = (A -- L l C A  - L2 C):~k + ( B - -  L 1CB)uk + L ayk+ ~ + Lzyk  (2) 

where ~k~ ~" denotes the estimated states, LI and L2 are dimensionally compatible 
constants to be determined. By setting L2 = 0, we obtain a full-order current update 
observer. Similarly, by setting L~ = 0 we obtain a full-order predicted observer (14). 
By Eqns (1) and (2), the estimation error equation is 

ek+ ~ = Xk+ ~ -- :fk+ ~ = (A -- L~ C A  -- Lz  C)ek + ( E - -  L~ CE)dk.  (3) 

The first major goal of this paper is to design a full-order unknown input observer 
(UIO) based on the structure of Eq. (2) for the system in Eq. (1). The U10 asymp- 
totically estimates the state vector Xk without knowledge of the unknown input signals 
dk. From Eq. (3), we conclude that an UIO can be achieved if and only if the following 
two conditions are satisfied simultaneously: 

(A1) the matrix ( A -  L~ C A -  L2 C) is asymptotically stable; 
(A2) L j C E -  E = O. 

Condition (A1) guarantees that the observer will be asymptotically stable. Obviously, 
if condition (A2) is satisfied, then the observer is independent of  the unknown input 
disturbance dk. The following lemma provided in Ref. (16) establishes a condition on 
the given system which ensures that the disturbance insensitivity condition (A2) can be 
satisfied. 

t e m m a  ! 
The equation L 1 C E  --- E is consistent if and only if rank(CE) = rank(E) = r. 

R e m a r k  1 

The condition of Lemma 1 is commonly adopted in the observer design for a linear 
system with unknown inputs. This necessary condition for the existence of a observer 
not sensitive to unknown inputs implies that specified state variables must be measured 
or at least appear as part of  the output. That  is, if E has only r nonzero rows, they 
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must be independent and then all corresponding r state variables must appear in the 
output yk. Motivated by this condition that unknown input effects should be contained 
in the output signals, we find that it is possible to estimate the unknown input signals 
by means of an UIO. The associated results for the unknown input estimation are 
presented in Section III of this paper. Also, by applying this condition for various sets 
of measurements, one can choose the minimum set of measurements necessary to 
observe the behavior of a system with unknown inputs. 

Now, if rank(CE) = rank(E) = r, the set of all solutions L~ for condition (A2) can 
be given by 

{L1 } = {E(CE) + +/S, [Ira - (CE)(CE) +][/S, is arbitrary} (4) 

where (CE) + = [(CE)X(CE)] ~(CE) a- is the Moore-Penrose generalized inverse. Equa- 
tion (4) entails that the matrix (A -- L~ CA - L2 C) becomes 

A - L I C A - - L 2 C =  A - [ L  2 /~, ] [cC~] 

where ,7t=A--E(CE)+CA. Therefore, condition (A1) is satisfied, that is, 
( A -  L~CA -L2  C) can be stabilized, if and only if the pair 

is detectable. It is easy to show that the pair (C, A) is completely observable (detectable) 
if and only if the pair 

is completely observable (detectable). The following theorem summarizes the above 
derivations. 

Theorem I 
The general structured observer (2) is a stable UIO for the uncertain system (1) if 

and only if the following two conditions are satisfied: 

(i) rank(CE) = rank(E), and 
(ii) the pair (C, ,4) is detectable. • 

The following lemma and corollary show that the detectability (observability) of the 
pair (C, A) is related to the transmission zeros of the triple (C, A, E). 

Lemma 2 
If  rank(CE) = rank(E), then the pair (C,.~) is detectable if and only if the triple 

(C, A, E) has no unstable transmission zeros. (For the proof see the Appendix.) 

Corollary 
If rank(CE) = rank(E), then the pair (C, A) is observable if and only if the triple 

(C, A, E) has no transmission zeros. 
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With the above results, we obtain the following theorems. 

Theorem H 
The general structured observer (2) is a stable UIO for the uncertain system (1) if 

and only if 

(i) rank(CE) = rank(E); and 
(ii) the triple (C, A, E) has no unstable transmission zeros. • 

Theorem III 
For  the uncertain system (l),  there exists a GS UIO whose eigenvalues can be freely 

assigned if and only if 

(i) rank(CE) = rank(E); and 
(ii) the triple (C, A, E) has no transmission zeros. • 

In the above theorems, condition (i) ensures that the observer is insensitive to the 
unknown input and condition (ii) ensures that the uncertain system is detectable 
(observable) by the UIO. 

Moreover,  by Eq. (4), we can write the set of  all unknown input insensitive GS 
observers in the following form: 

-~k +, = ( 2 -  £~ c ~ -  L2 C)~k + ( ~ -  £, C~)uk + (E(CE) + 

+I~ [Ira- CE(CE)+])yk+, + Lz)'k (5) 

where A = A-E(CE)+CA,  13 = B-E(CE)+CB, £~ and L2~ E,×m are arbitrary for 
observer performance design. That  is, the desired observer response can be achieved 
by assigning a suitable eigenstructure through the design of £1 and Lz. 

Remark 2 
The existence conditions for a full-order GS UIO given in Theorems II and III  are 

the same as those obtained by the other authors mentioned earlier, which are derived 
by the use of  Luenberger observer. Actually, the rank condition in Lemma 1 requires 
that the number  of  outputs m be greater than the number  of  unknown inputs r. Theorem 
III  requires that m be greater than r to obtain a system (C, A, E) without transmission 
zeros when the rank(CE) is maximal. Furthermore,  if the observed system contains 
unstructured modeling errors or measurement noise in addition to unknown inputs, 
the formulation of Eq. (5) entails that some conventional observer design techniques, 
e.g. eigenstructure assignment and noise filtering, can be directly applied to the present 
UIO design. 

Remark 3 
Theorem 11 shows that only systems (C, A, E) with stable transmission zeros may 

have a stable UIO. Conversely, a system (C, A, E) with a transmission zero outside or 
on the unit circle of  the complex plane has an unstable UIO. In classical control 
terminology, such systems are said to be non-minimum-phase.  This result indicates 
that the U I O  may be related to an inverse system. We will show in Section III that the 
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existence conditions for a stable UIO are the same as those for a stable left inverse 
system. Also, from the theory of  transmission zeros, as presented in Refs (6, 17), one 
has that if r = m then almost all triples (C, A, E) have n- -m  finite transmission zeros 
and if r # m, then almost all triples (C, A, E) generally have no transmission zeros. 
By the above statements and a condition given by Syrmos (6), which shows that 
rank(CE) = rank(E) is generic in C and E when m > r, we may conclude that the 
problem of UIO design with arbitrary pole-assignment is generally solvable if m > r. 

Remark 4 
By defining a new state zk = ~/c-  L~yk, we obtain the following alternative equivalent 

expression of the GS observer: 

2 k  + 1 = Qzk + Gy~ + Huh 

where 

Q = A - L I C A - L z C  

G = L2 + A L l  --LI CALl -L2CL1  

H = B - L I C B .  

The observer output equation is given by 

xk = zk + Llyk. 

Note that the above equivalent observer is important in the correspondence between 
the discrete-time and the continuous-time GS-UIO design. All the derived results for 
discrete-time systems can thus be valid for continuous-time systems. Although the 
present derivation is in discrete-time domain with the difference term, this equivalent 
structure allows the proposed GS observer to be applied to continuous-time systems 
without the differential term (18). 

Comment 1 (solutions for the reduced-order UIO) 
Although the set of  all unknown input insensitive GS observers in Eq. (5) is derived 

by the formulation of the full-order design, Eq. (5) is indeed implicitly involved in the 
solutions for the reduced-order UIO. We assume C = [0 I,,] for simplicity and express 
Eq. (la) in the following partitioned form: 

Bl [Xl,+I]_FA,I Al=IFx,,]+ [,=],,+ 
LX2k+JJ LA21 AnJLx=*J 

In a similar manner, by taking the partition of matrices 

i-A,, ~'~,27 ~ F#17 l 
A=L~21I .~22],B--[/~2], /]1 : [ ~ : 2 ] '  

L211 
L 2 = LL22 j 
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and computing (CE) + = E~-, we rewrite Eq. (5) in the following form: 

[ 2'k+ll=[--2''--I21'2~l .x,~-£1I.C~2-L~,][2,~+F~,-£1I~2q 
-/2k+,J _.¢~,-£,2-X~, .¢22-[,~.¢22-L22JL22kJ LE=-i, #RJ "' 
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+ lYk+l  
+ I_E~E; +L~(Im-E~E2 ) d  LL~2y " 

Set t ing /£12  = Im and L22 = 0 yields 

22k+ l = Yk+ 1 

21k+l  = (lZ~l 1 --/£11A21 )-~lk -]- (B1 --/£11/~2)Uk 't- (ZZll 2 --/£11 ~z122)Yk 

+ [ E 2 E I  + IS12(Im-- E z E f  )]yk+, 

which is the set of all minimal-order UIOs, and/£1~ is the design parameter for the 
observer response. 

2.2. Well-conditioned design 

One of  the most important applications of  UIOs is in the field of  model-based fault 
diagnosis and process monitoring. Although a UIO can achieve perfectly unknown 
input decoupling, in a general realistic case it still cannot cancel out the plant dynamics 
exactly because of modeling errors, parameter uncertainties and measurement noise. 
Since robustness of the estimation to errors in the process model is essential for 
diagnostic and monitoring applications, our current task is to further enhance the 
robustness of the UIO derived in Eq. (15), in the presence of unstructured modeling 
errors in the system model. Here, in addition to structured unknown inputs, we assume 
that there are unstructured modeling errors AA and z~B in matrices A and B. That  is, 
we consider a class of uncertain dynamic systems modeled by the following equations: 

Xk+ 1 = (A + AA)xk + (B + AB)Uk + Edk (6a) 

Yk = CXk. (6b) 

Using the GS observer (2) leads to the following estimation error equation: 

ek+, = (A -- L, CA - L 2 C)ek + (E--  L l CE)d k q- (AAx  k + ABuk). (7) 

For unknown input decoupling, we assume that conditions (i) and (ii) of Theorem II 
hold. Now, by giving L1 in the form of Eq. (4) for unknown input decoupling and 
letting Ad = (A - L l CA -- L2 C) = (A - LI CA - L2 C) and Ak = (AAxk + ABuk), we 
obtain the following dynamic equation for the estimation error: 

e~+ i = A¢lek 4- Ak (8) 

subject to the initial condition e0 = x0 - 2 o .  For  the case of distinct eigenvalues, the 
solution of Eq. (8) yields 
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k 
ek : A~,eo+ Z AdlAk-i 

i=1 

k 
= Q A k Q - ' e o + ~ Q A i - ~ Q  ~Ak ~ (9) 

i=1 

where Ad = QAQ ~ with Q is the modal matrix corresponding to Acl and A is a diagonal 
matrix with the eigenvalues of A¢~ as the diagonal elements. Taking the norms of both 
sides of Eq. (9), we obtain 

[ek[<~llQ[l'l[Q-1]['{ I [Akl l ' l e°]+~[[Ai  i:1 ' [l']Ak-i] } 

~i--I ] A k _ i  [ = ~c(Q). ~k. leo I + = (lO) 

where ~:(Q) .'= II Q II" It Q-i II is the condition number of Q and II A k II = ~k with ~ being 
the observer pole farthest from the origin point in the complex plane, here assumed to 
be located inside the unit circle. Equation (10) provides a guideline for enhancing the 
robustness of a UIO. It suggests that in this case the UIO gain matrix, /f~ and L2, 
should be chosen to minimize the condition number ~:(Q), in addition to yielding the 
desired eigenvalues. As for eigenstructure assignment, the objective in eigenvector 
selection here should be to make the eigenvectors as nearly mutually orthogonal as 
possible, so as to reduce the estimation error bound. Furthermore, based on Eq. (10), 
a multiple objective optimization technique proposed in Ref. (19) can also be directly 
applied to the design of the robust UIO for system monitoring. 

Remark 5 
Numerical algorithms for minimizing the condition number by eigenvector assign- 

ment have been proposed by Kautsky et al. (20). They explored iteration and opti- 
mization methods to approximate the optimal solution. However, the numerical 
stability provided by their iteration algorithm depends on the initial condition, i.e. an 
unsuitable initial condition may make the iteration process oscillate or diverge; a 
satisfactory solution is not always guaranteed. Another optimization method of par- 
ameterization also in Ref. (20) guarantees the computational stability but seems too 
complex for real applications and computations. By parameterizing the set of all 
achievable eigenvectors for assignment, Shen et al. (21) developed a simple but con- 
vergent numerical algorithm to obtain approximate optimization, in which the design 
criterion of fault diagnosis and system monitoring is involved in the approximations 
for well conditioned eigenvector assignment. 

III. Extended UIO Design for State and Unknown Input Estimation 

By Theorem II, it is clear that only systems (C, A, E) without unstable transmission 
zeros in the region outside the unit circle of the complex plane have stable UIOs. In 
classical control terminology such systems are said to be minimum-phase. Motivated 
by this criterion, we consider the problem of inverse system construction. There are 
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several methods for estimating the unknown deterministic input added to the plant, as 
given in Refs (22-24). As shown in Ref. (23), a system has a stable left inverse system 
if and only if its transfer matrix is full column rank and it contains no unstable zeros. 
Theorem II shows that the existence conditions for a stable UIO are sufficient to 
guarantee the existence of a stable left inverse system for unknown input estimation. 
Therefore, drawing on the concept of  the one-delay inverse system, as shown in Refs 
(22, 24), we propose the following extended UIO to estimate both system states and 
unknown inputs, if the unknown inputs need to be estimated. 

Theorem I V  

An extended UIO represented by the following equations 

ffk + l = ( A  - - L 1  C A  - -  L2 C)~c~ + ( B - -  L j CB)uk + L lyk+ 1 ~- L2yk (i l a) 

dk+, = ( C E )  + (Yk+,  - -  CAYck - CBu~)  (1 lb) 

can asymptotically observe the state and the unknown input of  the system represented 
by Eq. (1) if and only if 

(i) rank(CE) = rank(E); and 
(ii) the triple (C, A, E) contains no unstable transmission zeros. 

P r o o f  
(Necessary) Since conditions (i) and (ii) of  this theorem are the same as the necessary 

and sufficient conditions for the stable UIO, the above two conditions are at least 
necessary conditions for the present extended UIO. (Sufficient) Since conditions (i) 
and (ii) of  this theorem lead to a stable UIO being obtained, i.e. 
Xk--~k = ek ~ 0, and ( C E ) + ( C E )  = L ,  by Eq. (1) 

Yk + 1 = CAxk  + CBuk + CEdk 

we then obtain 

dk = ( CE)  + yk + l - ( CE)  + CAxk  -- ( CE)  + CBuk. 

Therefore, 

~lk '= dk+, - dk = (CE)  + CAek.  (12) 

For e~ ~ 0, we conclude that dk+~ --, d~. Thus, if x0 = ~0, then dk+~ = dk, which is the 
one-delay left inverse system shown in Refs (22, 24). • 

C o m m e n t  2 (a well-condit ioned design f o r  unknown input es t imation)  
A case with short sampling time will produce a large (CE)+. As a result, by Eq. (12), 

it will also generate a large error for unknown input estimation. To overcome this 
difficulty, we may further modify the input estimation equation (1 lb) as follows: 

dk+~ = (CE)  + [Yk +, - CAxk  -- CBu~] + L3 (C~;:k --Yk) (13) 

where L3 ~ ~r×,, can be designed to reduce the estimation error bound. Now, by Eq. 
(13), the input estimation error equation can be expressed as follows: 
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qk = dk+, -- d~ = (L3 C -  (CE) + CA)ek. 

Thus, 

Ink } >~ II(L'3C-(CE)+CA)I1"1 ek I. 

To minimize II L3 C- -  (CE) + CA II and thus suppress the amplitude of  qk, we can obtain 
L 3 a s  

L3 = (CE) + (CA C T) (CC T)- '. (14) 

Remark 6 
We have shown that a stable left inverse system exists if and only if a stable UIO 

exists. However, Eqns (11) and (13) provide more general implementations of  the 
inverse system. It can be shown that the observer for estimating system states and 
unknown inputs proposed by Gleason and Andrisani (24) is only a special case of the 
implementation of Eqns (11) and (13). Note that in Ref. (24), it is shown that the gain 
of  an optimal dead-beat input estimator can be determined by implementing the 
estimator as a Fisher filter. 

Remark 7 
Drawing on the results for the GS UIO, we propose the following dynamics for 

estimating both the system states and unknown inputs by designing L2 to result in the 
desired eigenvalues for the observer system: 

-~k+l = (14 - -E (CE)  + CA - L 2 C ) ~  k + E(CE)+ yk+~ H- L2y k + ( B - E ( C E )  + CB)u k 

dk+, = (CE) + (Yk+l - -  CAaCk - CBuk) 

o r  

dk+, = (CE) + {Yk+l -{- CA [ c T ( c c  T) -1 C-- I.]Yck -- CBuk -- CACT(CC T) -*Yk}. 

IV. Design o f  the Stabilized UIO 

The condition rank(CE) = rank(E) means that the corresponding states coupled 
with unknown inputs must be obtainable from the measurement outputs. Moreover, it 
implies that the number of  output signals should be no less than the number of unknown 
inputs, i.e. m >/r. In the case where m = r, the observability matrix of the pair (C, A) 
will be equal to C only. This condition always leads to a non-minimum-phase system 
and thus a stable UIO or extended UIO cannot be found. Therefore, additional sensors 
must be implemented to increase the number of  output signals so as to cope with this 
problem, as indicated in Remark 3. In general, if the number of sensors in a system is 
increased, the estimation accuracy can also be improved, because of  the extra infor- 
mation extracted from the additional sensors. However, implementing extra hardware 
sensors may not be practical in real applications, and it also increases the economic 
cost. Here, we adopt a stabilized method for the proposed UIO that avoids the non- 
minimum-phase problem and does not require extra hardware sensors. This method is 
based on the technique of  two-delay output control proposed by Kaku et al. (15). Here, 
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we consider only the case of  r = m, since the problem of non-minimum-phase always 
arises in a system with r = m; however, the present results can be extended to other 
cases with the same problem. We first consider a continuous-time system expressed by 

£(t) = Acx(t)  + Bcu(t) + Ecd(t) (15a) 

y(t)  = Cx(t)  (15b) 

where y(t)  and d(t) e ~r and the pair (C, Ac) are assumed to be observable. For  input 
estimation, the continuous-time extended U I O  requires derivative operations, which 
makes it unsuitable for practical implementation. Thus, we can use the digital extended 
UIO, allowing some delays. The corresponding discrete-time system of Eq. (15) with 
sampling time T can be written as 

Xk + 1 = AXk + BUk + Edk (16a) 

Yk = CXk (16b) 

where Xk = x ( k T ) ,  Yk = y ( k T ) ,  Uk = u(kT) ,  dk = d(kT);  and 

f; t A = e x p ( A ~ T ) ,  B =  exp(Ach)dh'Bc, E =  exp(Ach)dh'Ec. 
0 

Without loss of  generality, we also assume that C has full row rank and E has full 
column rank. To overcome the problem of unstable transmission zeros, an auxiliary 
output, previously introduced in Refs (15, 25), is employed as 

Zk = z ( k T +  iT) 

which lags by iT  with 0 < i < 1, as illustrated in Fig. 1. Then the dynamic equation of 
this auxiliary output  can be written as 

Zk = CAxk + Ct~Uk + Cff~dk (16c) 

where 

gk-1 

~ uk I 

LT (k-1)T 
Uk-1 

-'l 
kT 

I 
I 
I 

( k + l ) T  

Uk+l 

-4 
( k + 2 ) T  

FIG. 1. Input/output relation. 

i . .-  t 



224 Shao-Kun 9 Chart 9 et al. 

A=exp(AciT), 1~= exp(AcH)dh 'Bc,  E =  exp(Ach)dh'Ec.  

By Eq. (2), a modified general structured observer for the two-delay output discrete- 
time system described by Eq. (16) takes the following form: 

2k + ~ = A £Ck + BUk + L l (Zk CA2k - CJBUk ) + L2 (Yk -- Cfck) 

= (A -- L, CA-- L2 C)2k + (B-- L, C/~)Uk + L, Zk + L2Yk. (17) 

The estimation error equation is thus obtained as 

ek + , = (A -- L 1 C A -  LzC)ek  + ( E - L ,  C£~--)dk. 

The above equation shows that the present observer (17) is a stable UIO if and only if 
the following two conditions are satisfied: 

(B 1) the matrix (A - L~ CA-- L2 C) is asymptotically stable; 
(B2) L,  C E - E =  O. 

Since E has full column rank and (Cf') is a square matrix, we can conclude that (B2) 
is solvable if and only if (CE) is nonsingular and L~ is thus solved by 

Ll = E ( C i ' ) - I .  

This leads to 

A--L ,  C ~ - L 2 C  = A - E ( C ~ - I  C~--L~C. 

Therefore, the modified GS UIO can be stabilized if the pair (C, A - E ( C L  ~) ~ C,4) is 
detectable. Consequently, we can obtain the following theorem. 

Theorem V 
The modified GS observer (17) is a stable UIO for the two-delay output system (16) 

if and only if (i) (Cf') is nonsingular and (ii) the pair (C, A - E(C£-) ~ C.~) is detectable. 
The following two lemmas for the present UIO are adopted from Ref. (24). 

L e m m a  3 
If (CE) is nonsingular then (CL w) is nonsingular for almost all i. 

Lemma 4 
The pair (C, A - E ( C £  ~ ) -  1 CA)  is observable for almost all i if and only if the triple 

(C, Ac, Ec) of the continuous-time system in Eq. (15) has no zeros at the origin. 

From Lemmas 3 and 4, we can conclude that for the two-delay output system in Eq. 
(16), provided that (CE) is nonsingular, there always exists a stabilized UIO in the 
following form: 

~k+, = (A - E ( C ~  , CA - L2 C)~k + ( B -  E ( C ~  ' C~)u~ + E ( C ~  -'z~ + L2y~. 

Moreover, the unknown input vector can be estimated by 
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dk = ( CE) - ' [z, - CASk - Cl~uk]. (18) 

As with Theorem IV, one can easily verify that i f - f , - -*  x, then dk ~ dk. Also, by 
Comment  2, the input estimation equation (18) can be improved as follows: 

dk = ( C E )  l [ z  k - -  CI~)~ k - C B u k ]  ~- L3 (CY6 --y~). 

Choosing 

L3 = ( C E )  I C/ICT(CCT)- '  

entails that the amplitude of  the input estimation error can be suppressed. In summary,  
the main idea behind this method is to use the inter-sample output signal as auxiliary 
data to construct a stable UIO and extended UIO without additional hardware sensors. 
This method thus makes the UIO more practical and powerful. 

V. Experimental Results 

5.1. Implementation fo r  a servo motor 
A block diagram of a DC servo motor  was tested to verify the proposed UIO. 

Because the bandwidth of the current loop is in general much higher then that of  the 
motor,  we can view the current control loop as an ideal gain in practice. In the present 
UIO implementation, the current loop of the torque-controlled DC servo motor,  as 
shown in Fig. 2(a), was further simplified to a constant Kc as shown in Fig. 2(b). The 
dynamic equation for a torque-controlled DC servo motor  is 

[ 

On.oat PwM 
Controller i v [  amplifier 

I 

(a) 

] 

Icmd 

J s + B  

(b) 

FIG. 2. Block diagram of (a) current loop; and (b) simplified model of the DC servo motor. 
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TABLE I 
Parameters of the Sanyo U718 T D C servo motor 

Component Symbol Unit 

DC servo motor R 3. lf~ 
K~ 0.21952 N" m/A 
J 2.1756×10 4Kg'm2 
B 5.333 x 10 -4 N.m/(rad-  s -I) 
Kb 0.21952 N/(rad" s -~) 
Static friction 0.0539 N" m 

Tacho gain Hg 0.66845 V/(rad" s-t) 
Current feedback gain K. 0.2 V/Amp 
Encoder gain K~ 636.62 pulse/rad 
D/A gain Kd 2.442 X 10 -3  V/pulse 
Pitch of lead screw Kz 5 mm/rev 

B K, 1 
) Td (t) ~ ( t )  = -- - ) ~ o ( t ) +  7 - L ( t ) -  

d( t )  = Ko~o(t). 

where K,, J, B and Kb are the torque constant, inertia, viscous friction coefficient and 
back e.m.f, of  the motor,  respectively; Ke is the gain of  the encoder, 0 and 0 are the 
angular position and velocity of  the motor  in the units of  pulse and pulse/s, respectively. 

With the parameters of  the DC servo motor  listed in Table I, the motor  in state- 
space form is 

I -2 .45142 

~ ( t ) =  4596.433 

y(t) = I459~ "433 

0Ix( t )  + [-0.21952q [--- 17 L 0 lug's+L0/  '  

0 l x ( t  ) 
636.620 

where x - -  [Jt~o O/Ke] T, u = I a ,  d = Td. With 2 ms sampling time, a stabilized UIO was 
constructed to estimate the states and disturbance of the servo table system using only 
the measurement of  output  position and the input armature current. That  is, the output 
equation considered was as follows: 

Yk = [0 636.620]xk. 

By selecting i as 0.5 for the intermediate sampling of  the stabilized UIO,  we obtained 
the following equation for the auxiliary output: 

zk = [2922.598 636.62]xk+0.3209u, -  1.46189d~. 

By selecting poles at --0.3 + 0. l j, the stabilized UIO was as follows: 
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[ - 2 . 9 9 3 6  0.7916-] I-0.0014] [-0.0026],, 
Xk+l = --9.1780 2.3936J 2k + L0.0063y k -  L o . o o 8 6 p  

dk = - 0.6840z~ + [1999.2 0.4355]~k + 0.2195uk. 

A conventional P controller was used for the position feedback loop. For a sinusoidal 
command, the measured data for armature current, position and velocity are as plotted 
in Fig. 3(a)-(c), respectively. The estimated states of the position and velocity, also as 
shown in Fig. 3(b) and (c), respectively, are in good agreement with the measured data. 
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FIG. 3--continued overleaf 
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FIG. 3. Results of the stabilized UIO for the servo motor (a) measured current; (b) measured 
(dotted) and estimated (solid) position; (c) measured (dotted) and estimated (solid) velocity; 

and (d) estimated Coulomb friction torque. 

When  a servo mo to r  operates without  any external load, the major  disturbance is the 
Cou lomb  friction only, since the viscous friction has already been considered in the 
U I O  design. Indeed, the estimated disturbance shown in Fig. 3(d) exhibits the exact 
characteristics o f  C o u l o m b  friction, which is constant  and changes in sign as the 
direction o f  mot ion  changes. Compared  with the value o f  0.0539 N - m  for the static 
friction torque provided by the manufac ture r  (as in Table I), the present estimation 
results which range a round  0.05 N" m are quite satisfactory. 
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FIG. 4. Experimental setup for the servo table system. 
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5.2. External force monitoring for the servo table 
We next provided an external sinusoidal load to the servo table system shown in Fig. 

4. All the external loading, inertia of  the table and the ball screw, and machine slide 
friction can be categorized as disturbances to the servo motor. When the tare current, 
which was measured without loading, is subtracted, the external force estimated by 
multiplying the measured armature current by the torque constant is in good agreement 
with the force as measured by a dynamometer,  as shown in Fig. 5(a). Moreover, the 
estimated force from the stabilized UIO, as shown in Fig. 5(b), is also in good agreement 
with the measured force. As can be seen from the figures, the stabilized UIO renders 
satisfactory estimations for position, velocity and external load even without the mea- 
sured velocity data. 

VI. Conclusion 

This paper has considered the UIO problem from the perspective of  the general 
structured observer, which leads to a more concise and straightforward formulation of 
the problem. The set of all unknown input decoupling GS observers has been derived 
by computing the Moore-Penrose generalized inverse. Based on the derived UIO, we 
formulate a criterion for designing a well-conditioned UIO. By extending the resulting 
U10, we have developed an extended UIO which can be used to simultaneously estimate 
both the system states and the unknown inputs for uncertain systems. Equivalence 
between the UIO and the left inverse system has been proven and general forms for 
the implementation of an input estimator have also been provided. Moreover, the use 
of a two-delay output stabilized method means that a stable UIO can always be found 
without extra sensors. Experimental results concerning a DC servo motor  and a servo 
table system have proven the feasibility and effectiveness of  the proposed UIO designs. 
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FIG. 5. Results for the servo table (a) the measured (solid) and the armature current calculated 
(dotted) force; and (b) the measured (solid) and the stabilized-UIO estimated (dotted) force. 
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Appendix: The proof of Lemma 2 

Proof'. That the triple (C, A, E) has no unstable transmission zeros implies that for all 2 ~ C1 

It can readily be shown that this condition is invariant under coordinate transformation. It is 
shown by Fairman and Hirschorn (3) that if rank(CE) = rank(E), then it is always possible to 
transform the coordinates so that the matrices C, E are transformed into the form 

where E~ e N m×r has full column rank. Then, taking the co-ordinate transformation in the form 
of Eq. (A1) leads to 

.~_[PE, A,1 PF, A,2] 
- -  L Azl A2z l 

where 

A "/A21 A22J 

ff E~ '= Ira-El El +. 
One can find/~E, "E~ = 0. In fact, PF, is the orthogonal projector whose range is E{ and whose 
null space is El (26). We thus have 

0 
rank(I2I"cA 0E])=rank([  2I"-AC 0E])[(CE) I+CA 1,1) 

=rank([ 21"-A+E(CE)+CA 0E])=rank(I2I"c ~ 0E~.+m)×~.+,,) 

= rank 

I 21m--PE~All 
- -  A 2 1  

1., 
6_s, 

•In m - - A 2 2  = rank([Si $2S3]). 

0 
_6_$2 AS3 

Obviously, the columns of S~ and $3 are independent. Since El is the null space of/~E,, the 
columns of E1 and/~E~ A~2 are independent and therefore the columns of $2 and $3 are independent. 
We thus conclude that for all 2 e Ci 

rank(I21ncA 0E])=n+r  iff rank([  21n-'~C 0E~) = n + r  

iff rank([S1S2S3]) = n+r 
iff rank([SlS2]) = n 

iff rank([2I 'c  - A ] ) =  n. (A2) 

Equation (A2) implies that the pair (C,A) is detectable (by PBH rank tests). • 


