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Dynamic Optimal Training of A Three Layer Neural

Network with Sigmoid Function

Student: Yu-Yi Chi Advisor: Chi-Hsu Wang

Department of Electrical and Control Engineering
National Chiao Tung University

ABSTRACT

This thesis proposes a dynamical optimalTtraining algorithm for a three layer neural
network with sigmoid activation funetions in the hidden and output layers. This three
layer neural network can be used for classification problems, such as the classification
of Iris data. Rigorous proof has been presented for the dynamical optimal training
process for this three layer neural network, which guarantees the convergence of the
training in a minimum number of epochs. This dynamical optimal training does not
use fixed learning rate for training. Instead, the learning rates are updated for next
iteration to guarantee the optimal convergence of the training result. Excellent results
have been obtained for XOR and Iris data set.

il



ACKNOWLEDGEMENT

I feel external gratitude to my advisor, Chi-Hsu Wang for teaching me many things.
He taught me how to do to the research and the most important is that he taught me
how to get along with people.

And I am grateful to everyone in ECL. I am very happy to get along with you.

Finally, I appreciate my parent’s support and concern, therefore I can finish my

master degree smoothly.

il



TABLE OF CONTENTS

ABSTRACT (IN CHINESE) ....cttetiiiicieeee ettt i
ABSTRACT ...ttt ettt ettt et e et enbe et e e st eseenseeneenseeneesneenes ii
ACKNOWLEDGEMENT ...ttt iii
TABLE OF CONTENTS ..ottt sttt v
LIST OF TABLES ...ttt ettt sttt eneenne e v
LIST OF FIGURES ..ottt ettt e vi
CHAPTER 1 INtroduction. ......c..ceiuieiiiiiieiieeieete ettt 1
CHAPTER 2 The Perceptron as A Neural Network ........c.cccccvvevviienciieniiieeieeciee e, 3
2.1. Single Layer Perceptron.........cccueeeiieeiiieeiiieeiiee ettt evee e evee e svee e ens 3
2.2. The SImple EXQAMPIES ....cccviiieiieeiieeiieeee e e 6
2.3. Multi-layer Feed-Forward Perceptrons...........ccceeeveeeeiieeeiieesciieeeiie e 8
2.4. The Back-Propagation Algorithm (BPA) .......cccovoiviiiiiieieeeeceeeeee e, 9
CHAPTER 3 Dynamic Optimal Training of A Three-Layer Neural Network with
S1ZMOIA FUNCHON. ...cetiiiiiicciie et e e e e e e e saaeeeenneas 14
3.1. The Architecture of A Three-lzayer Network..........ccceeveeiiiiiiniiiniiiieee, 14
3.2. The Dynamic Optimal Léarning Rate.....lu...coooeriiiniiiiiiniiiiieieeieeeeee, 15
3.3. Dynamical Optimal Training via:Lyapunov’s Method ............ccccocvennenees 19
CHAPTER 4 Experimental Restlts ... e 22
4.1. Example 1: The XOR Problem i it et 22
4.2. Example 2: Classification'of Iris Data-Set............cccooceiiiiniiiiinniiniiene 31
CHAPTER 5 CONCIUSIONS......oiiiiiiiiiieiit ettt 42
REFERENCES ...ttt ettt sttt ettt seee e enaeeneenneas 43

v



LIST OF TABLES

TABLE 2.1 THE TRUTH TABLE FOR AND .....c.cooiiiiiiiiiiirtct ettt 6
TABLE 2.2 THE TRUTH TABLE FOR XOR.....ccocciiiiiiiiniiiictceee ettt 7
TABLE 4.1. THE TRAINING RESULT FOR XOR USING DYNAMICAL OPTIMAL TRAINING.27
TABLE 4.2. THE TRAINING RESULT FOR XOR USING FIXED LEARNING RATE B=0.9....... 28
TABLE 4.3. ACTUAL AND DESIRED OUTPUTS AFTER 10000 ITERATIONS.........c.ccccovevvenennn 37
TABLE 4.4. ACTUAL AND DESIRED OUTPUTS IN REAL TESTINGS.......ccoctvininiiieicienienenn 39



LIST OF FIGURES

FIGURE 2-1-1. SINGLE LAYER PERCEPTRON..............oosimoooeeooeioeeeeeseeeseeeeeeseeeeeeeseeeeoeeeeseeeeseseeee 3
FIGURE 2-1-2. ANOTHER MODEL OF SINGLE LAYER PERCEPTRON...........cccoovmvvvecrommmrrrerre. 4
FIGURE 2-2. THE HARD LIMITER FOR PERCEPTRON .......ccooovvvoooeommeeeeeeeeeeeeeeeeeeeeoeeeeseeeeeseseee 4
FIGURE 2-3. THE DECISION BOUNDARY FOR 2-DEMENSIONAL PLANE...........o.ccooommvvrcrne.. 5
FIGURE 2-4. THE INPUT DATA OF AND ....cooovooeeieeoeeeeeeeeeeeeeeeeeeeeeeeeeesee e eeseeeseeeseseeese s 6
FIGURE 2-5. THE ARCHITECTURE OF THE NETWORK FOR SOLVING AND LOGIC
PROBLEM.......coovvooeeeoeeeeeeeeeeeeeoeeeeseeeoeeeseeeeee e e eeeese e eeeeeeeeeeseseeseeeeeese e eeeseseeeeseees e 7
FIGURE 2-6. THE INPUT DATA OF XOR ........vvooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeeesseeseseeeseeeeseeese s 7
FIGURE 2-7. A THREE LAYER FEED-FORWARD NETWORK .........coovvvvoeoorroreeceeeereeeceeseeeeeeseeee 8
FIGURE 2-8. THE SIGMOID FUNCTION...........oooeoioooveeeeeseeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeseeeeseeeeeeeeeseseeee 9
FIGURE 3-1. THE THREE LAYER NEURAL NETWORK ......cccooovvvvoemomroeososeeeeeeeseseeeeeeseeeeeoeee 14
FIGURE 4-1. THE DISTRIBUTION OF XOR INPUT DATA SETS .....coovvveereeeeeeeeeseseeeeeeseeeeeeees 22
FIGURE 4-2. THE NEURAL NETWORK FOR SOLVING XOR .......cosoovveecreseeoeeeeseseeeeecesesseeeese 23
FIGURE 4-3-1. THE SQUARE ERROR J OF THE STANDARD BPA WITH FIXED B=1.5........... 23
FIGURE 4-3-2. THE SQUARE ERROR J OF, THE STANDARD BPA WITH FIXED =0.9........... 24
FIGURE 4-3-3. THE SQUARE ERROR.J OF THE STANDARD BPA WITH FIXED B=0.5........... 24
FIGURE 4-3-4. THE SQUARE ERROR J OF THE STANDARD BPA WITH FIXED B=0.1........... 25
FIGURE 4-4. THE SQUARE ERROR.J/ OF THE BPA WITH DYNAMIC OPTIMAL TRAINING...25
FIGURE 4-5. THE DIFFERENCE EQUATIONGBI)YAND Bopr = 7.2572 ccoooovveeeoeeeeeeereeeeeees 26
FIGURE 4-6. THE DYNAMIC LEARNING -RATES OE-EVERY ITERATION.........cooovvvvoreorreren. 26
FIGURE 4-7. TRAINING ERRORS OF DYNAMIC OPTIMAL LEARNING RATES AND FIXED
LEARNING RATES .......ooooooooeoeoeeeeeeeeeeeeeeeeeeeeeeeeoeeeseeeeeeseseeeseeeseeseeeeeeseeseeeees s eseeeseeee 27

FIGURE 4-8-1. THE SQUARE ERROR J OF THE BPA WITH VARIANT MOMENTUM(fS=0.9)...29
FIGURE 4-8-2. THE SQUARE ERROR J OF THE BPA WITH VARIANT MOMENTUM(S=0.5)...29
FIGURE 4-8-3. THE SQUARE ERROR J OF THE BPA WITH VARIANT MOMENTUM (= 0.1)..30
FIGURE 4-9. TOTAL SQUARE ERRORS OF DYNAMIC TRAINING AND THE BPA WITH

DIFFERENT LEARNING RATES AND MOMENTUM .....ccccciiiniininiiinieieieneneeeeeeeeeene 30
FIGURE 4-10-1. THE TOTAL IRIS DATA SET (SEPAL) .....cceectiiiiiiiniirieicececcieeeee e 31
FIGURE 4-10-2. THE TOTAL IRIS DATA SET (PETAL).....cceectiiiiiiiiinieieececcieeeeee e 32
FIGURE 4-11-1. THE TRAINING SET OF IRIS DATA (SEPAL) ....cccccceriiiiieiiiiieniceeeceeiecen 32
FIGURE 4-11-2. THE TRAINING SET OF IRIS DATA (PETAL) ....cceviriiiiieieicienceeeeeeeeeciene 33
FIGURE 4-12. THE NEURAL NETWORK FOR SOLVING IRIS PROBLEM.......cccccccectvirirrercnnnn 33
FIGURE 4-13-1. THE SQUARE ERROR J OF THE STANDARD BPA WITH FIXED g=0.1......... 34
FIGURE 4-13-2. THE SQUARE ERROR J OF THE STANDARD BPA WITH FIXED £=0.01....... 34
FIGURE 4-13-3. THE SQUARE ERROR J OF THE STANDARD BPA WITH FIXED £=0.001.....35

FIGURE 4-14. THE SQUARE ERROR J OF THE BPA WITH DYNAMIC OPTIMAL TRAINING .35

vi



FIGURE 4-15. TRAINING ERRORS OF DYNAMIC OPTIMAL LEARNING RATES AND FIXED
LEARNING RATES ...ttt sttt et s st 36

vii



CHAPTER 1

Introduction

Artificial neural network (ANN) is the science of investigating and analyzing the
algorithms of the human brain, and using the similar algorithm to build up a powerful
computational system to do the tasks like pattern recognition [1], [2], identification
[3], [4] and control of dynamical systems [5], [6], system modeling [7], [8] and
nonlinear prediction of time series [9]. The artificial neural network owns the
capability, to organize its structural constituents, the same as the human brain. So the
most attractive character of artificial neural network is that it can be taught to achieve
the complex tasks we just experienced before by using some learning algorithms and
training examples. The learning algorithms here can be roughly divided into two parts:
one is the supervised learning and the other is the unsupervised learning. One most
popular algorithm of artificial neural network for classification is the Error
Back-Propagation Algorithm [10], [11], which is the supervised learning. The
well-known error back-propagationalgorithm, or simply the back-propagation
algorithm, for training multi-layer perceptrons was proposed by Rumelhart in 1986
[12]. The back-propagation algorithm is @ generalized form of the delta learning rule,
which is actually based on the least-mean Square algorithm. The topic of the training
process is to minimize the standard mean-square error. Although the way to adjust the
weights of network, i.e., the method of steepest descent, is easy to understand, there
are several flaws in the back-propagation algorithm. One of them is that we don’t
have a suitable way to find the stable and optimal /earning rate. For smaller learning
rate, we may have a convergent result. But the speed of the output convergence is
very slow and need more number of epochs to train the network. For larger learning
rate, the speed of training can be accelerated, but it will cause the training result to
fluctuate and even leads to divergent result. Actually the dynamical optimal training
was proposed in [13] for a simple two layer neural network (without hidden layers)
without any activation functions in the output layer. The basic theme in [13] is to find
a stable and optimal learning for the next iteration in back propagation algorithm.
Moreover a more complicated three layer neural network (with one hidden layer) with
sigmoid activation functions in the hidden and output layers is very useful in
performing the classification problems, such as the XOR [14] and Iris data [15], [16].
However its learning process has been very slow in terms of the classical back
propagation algorithm. In other words, the dynamical optimal learning algorithm has
never been proposed for this type of neural network. Therefore the major purpose of

this thesis is to find a proper way to achieve the dynamical optimal training of the



three layer neural network with sigmoid activation functions in hidden and output
layers. Rigorous proof will be proposed and the popular XOR and Iris data
classification benchmarks will be fully illustrated. Excellent results have been
obtained by comparing our optimal training results with previous results using fixed
small learning rates.



CHAPTER 2

The Perceptron as A Neural Network

In this chapter, the multi-layer feed-forward perceptrons will be introduced. First the
single layer perceptron will be explained and it will lead to the multi-layer
perceptrons in later sections. Also the back propagation algorithm for multi-layer feed

forward perceptrons will be explained in section 2.4.

2.1. Single Layer Perceptron

The first model of the feed-forward network, perceptron, was proposed by F.
Rosenblatt in 1958 [17]. He hoped to find a suitable model to simulate the animal’s
brain and the visual system so that he proposed the “perceptron” model, which is a
supervised learning model. The supervised learning is also referred to as learning
with a teacher, and the teacher here means the input-output data sets for training. It
also means that the perceptron can beitrained by the given input-output data. The
perceptron is a neuronal model consists of two-parts. In the first part, the neural model
combines all the input signals apply to its corresponding weights. And in second part,
there comes the linear combiner followed by a hatd limiter. The structure of the
perceptron is depicted in Figure-2-1-1 (ot Figure 2-1-2). The hard limiter is shown in

Figure 2-2.
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Figure 2-1-1. Single layer perceptron
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Figure 2-1-2. Another model of single layer perceptron

The hard limiter-Two value function

Figure 2-2. The hard limiter for perceptron

In Figure 2-1-1, the input data set of the perceptron is denoted by {x;, x2,..., xn} and
the corresponding synaptic weights of the perceptron are denoted by {w,, w,..., wn}.
The external bias is denoted by b. The first part of the percpetron computes the linear
combination of the products of input data and synaptic weight with an externally

applied bias. So the result of the first part of the perceptron, v, can be expressed as
v:b+2wl.xi 2.1
i=1

Then in the second part, the resulted sum v 1is applied to a hard limiter. Therefore,
the output of the perceptron equals +1 or 0. The output of perceptron equals to +1 if
the resulted sum v is positive or zero; and the output of perceptron equals to 0 if v is
negative. This can be simply expressed by (2.2).



+1 vif b)Y xw, 20

= (22)
0 »if b+2xiwi <0

i=1
The goal of the perceptron is to classify the input data point represents by the set {xi,
X2,..., Xm} into one of two classes, C; and (. If the output of the perceptron equals to
+1, the input data point represented by the set {x;, xz,..., xn} Will be assigned to class
Cy. Otherwise, the input data point will be assigned to class C,. Since the
classification depends on the output of the perceptron, y, and the output y is decided
by the resulted sum v. If we only consider the simplest form of the perceptron, the
m-dimensional space can only be divided into two decision regions by the hyper-plane,
which is defined as
b+i xw, =0 (2.3)
i=1
One simple example is shown in Figure 2-3. In this case, there are only two input
variables x; and x; for single layer perceptron, for which the decision hyper-plane is a
straight line. The hyper-plane can be shown'as:
b+ xw.+x,w, =0 (2.4)
Note that the shift distance of the decision|lin¢ away from the origin is decided by the
parameter b in (2.4) (and (2.3)).
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Figure 2-3. The decision boundary for 2-demensional plane

For convenience, we can consider the architecture of single layer perceptron in

another form as depicted in Figure 2-1-2 and (2.1) can be rewritten as

V= iwixi (2.5)
i=0



In which, we substitute wy for the term b in (2.3) and xo= 1. The other results are all
the same [18].

2.2. The Simple Examples
Example 1. The AND Problem
The AND logic problem, which can be solved by the single layer perceptron easily.
The truth table for AND is shown in Table 2.1.
Table 2.1 The truth table for AND

A B A AND B
P —

0 0 0 (Class 0)

0 1 0 (Class 0)

1 0 0 (Class 0)

1 1 1 (Class 1)

The input data set of the AND logic is shown in Figure 2-4, which is obviously a
linearly separable problem. For solving this problem, we can build the single layer
perceptron by assigning the suitable synaptic weights with external bias for. The
architecture of the network is illustrated m Figure 2-5, in which the synaptic weights

are assigned as w; = w, = 1 and the external bias./==1.5.

Besides the AND logic, the OR-and NOT logic problems are also linear separable. So
these three logic problems can be solved by the same way easily. The only difference

is the choice of the synaptic weights wi, wpand external bias b.
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Figure 2-4. The input data of AND
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Figure 2-5. The architecture of the network for solving AND logic problem

Example 2. The XOR Problem
The Exclusive OR (XOR) logic problem can’t be solved by sirngevllayer perceptron
because the XOR logic is with nonlinear separable input data set. The truth table for
XOR is shown in Table 2.2.

Table 2.2 The truth table for XOR

A B A XOR B
0 0 0 (Class=4§2
0 1 1 (Class 1)
1 0 1 (Class 1)
1 1 0 (Class 0)

From Figure 2-6, we can see that the input data is not linear separable. So, the single
layer perceptron can not work for this-problem. We can not find the suitable

parameters wi, w, and b to classify the output y in Figure 2-6.

The input data of XOR
/’—i‘~~\
" , | ¢ 1
\ S
N \\
\| \\
\\ \\
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XZ So So
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[ S S
\\ \
\\\ \\
0,0 =1 =107
X,

Figure 2-6. The input data of XOR

b=-1.5
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From the statements of section 2.1 and 2.2, we know that the single layer perceptron
can only solve the problems which are linear separable. Besides this, another serious
defect is that we have no proper learning algorithm to adjust the synaptic weights for
the single layer perceptron, and all the parameters can only be assigned by
try-and-error method. Until 1985, this problem was solved when the
Back-Propagation algorithm was proposed. So the single layer perceptron was

gradually replaced by Back-Propagation algorithm in the present day.

2.3. Multi-layer Feed-Forward Perceptrons

In this section we will introduce the multi-layer feed-forward network, an important
class of neural network. The difference between single layer perceptron and
multi-layer feed-forward perceptrons is the “hidden layer”. The multi-layer network
consists of a set of input nodes (input layer), one or more hidden layers, and a set of
output nodes that constitute the output layer. The input signals will propagate through
the network in the forward direction. A multi-layer feed-forward fully-connected

network is shown in Figure 2-7 with only one hidden layer.

Figure 2-7. A three layer feed-forward network

The major characters of the multi-layer network are as follow:

(1) Besides the neurons of input layer, every neuron of the network has a nonlinear
activation function. Note that the activation function used in the multi-layer
network is smooth, means the activation function is differentiable everywhere,
which is different from the activation function for single layer perceptron, the

hard limiter shown in Fig. 2-2. The most popularly activation function is the



sigmoid function, whose graph is s-shaped, as shown in Figure 2-8 with
1
= 1+ exp(—ax) 26)
where y is the output signal of the neuron and v is the input signal. And the
parameter a is the slop parameter of the sigmoid function. We can get different
sigmoid functions by varying the slop parameter a, but we usually choose the
sigmoid function with @ = 1. Equation (2.6) is defined as a strictly increasing
function that exhibits a graceful balance between linear and nonlinear behaviors.
(2) The multi-layer network contains at least one hidden layer which is between input
layer and output layer. The hidden layers enable the multi-layer networks to deal
with more complex problems which can not be solved by single layer perceptron.
The number of hidden layers for different problems is also an open question. We
choose only one hidden layer with sigmoid activation functions in the hidden and
output layers to solve the classification problem in this paper. This three layer
perceptrons is also the most popular neural network adopted for many
engineering applications.

Sigmoid function
1 T T T

09F

08F

07r

1A +enpl-x)
5 =2 = o
(5] E= [ay] [a3]

=
(]
T

01

Figure 2-8. The sigmoid function

2.4. The Back-Propagation Algorithm (BPA)

The most serious problem of the single layer perceptron is that we don’t have any
proper learning algorithm to adjust the synaptic weights of the perceptron. But the
multi-layer feed-forward perceptrons don’t have this problem. The synaptic weights
of the multi-layer perceptrons can be trained by using the highly popular algorithm
known as the error back-propagation algorithm (EBP algorithm). We can view the

error back-propagation algorithm as the general form of the least-mean square



algorithm (LMS). The error back-propagation algorithm (or the back-propagation
algorithm) consists of two parts, one is the forward pass and the other is the backward
pass. In the forward pass, the effect of the input data propagates through the network
layer by layer. During this process, the synaptic weights of the networks are all fixed.
On the other hand, the synaptic weights of the multi-layer perceptrons are all adjusted
in accordance with the error-correction rule during the backward pass. Before using
error-correction rule, we have to define the error signal of the learning process.
Because the goal of the learning algorithm is to find one set of weights which makes
the actual outputs of the network equal to the desired outputs, so we can define the
error signal as the difference between the actual output and the desired output.
Specifically, the desired response is subtracted from the actual response of the
network to produce the error signal. In the backward pass, the error signal propagates
backward through the network from output layer. During the backward pass, the
synaptic weights of the multi-layer perceptrons are adjusted to make the actual
outputs of the network move closer to the desired outputs. This is why we call this
algorithm as “error back-propagation algorithm”. Now, we will consider the learning
process of the back-propagation algorithm. First, the error signal at the output node j

at the /" iteration is defined by
e ()= (0)-d; (1) 2.7)

where d; is the desired output of outputmodejand v"; is the actual output of output

node j. The y"; can also be represented as:

m m 1
Vi =pnet)) =———— (2.8)
1+exp(—net})
Where the term ¢ ( - ) is the activation function, which is the sigmoid function, and
net”; is the output of node j in output layer. We can rewrite (2.8) as a more general

form:

1
"=op(net' ) = ——mM88— 2.9
& (0( ! ) 1+ exp(—netf) 29)

where ykj is the output of node j in the Kt layer and netkj is the linear combination

output of node j in the Kt layer, which can be expressed as

net;‘ = z wf,. yit - bf (2.10)

In (2.10), the term wkj,- is the synaptic weight between the ;™ neuron in the & layer
and the /" neuron in the (k-1)" layer, and 5" is the external bias of the /™ neuron in the

Kt layer. Then we can define the square error of neuron j in output layer by:

&€ ) @1

10



By the same way, we can define the total square error J of the network as:
< -
J:Z;:EZ:@ (2.12)
J J

The goal of the back-propagation algorithm is to find one set of weights so that the
actual outputs can be as close as possible to the desired outputs. In other words, the
purpose of the back-propagation algorithm is to reduce the total square error J, as
described in (2.12). In the method of steepest descent, the successive adjustments
applied to the weight matrix W are in the direction opposite to the gradient
matrix 8J / OW . The adjustment can be expressed as:

oJ

AW(t)=—nW (2.13)

where # is the learning rate parameter of the back-propagation algorithm. It decides

t

the step-size of correction of the method of steepest descent [18]. Note that the

learning rate is a positive constant. By using the chain rule, the element of

matrix 6J/OW ,i.e.0] / 8’wa , can be represented as

aJ) " aJ 0wy Onet;

- 2.14
éwf,. 6yf 8net;‘ 8wfi @14)
We can rewrite 0y’ /Onet! by using (2.9)to have
- g =y, (1= 2.15
anetjk. 4 (ne ) 8net (1+exp(—net§f)} y’( y/) (2.15)

We can also rewrite onet| / ow!, by using (2.10) to have

anet

" [Zwﬁiy," | ] v (2.16)

jl

The item 0J/ 6yf in (2.14) can be discussed separately for two cases:

1. If K" layer is the output layer, then k = m and ykj =y";. So we can substitute (2.12)

intodJ /0y to have

S r-a) |-y a) e

oy; ay

2. If the & layer is not output layer which means the A" layer is one of the hidden

11



layers. So, by using the chain rule we can rewrite 0J / éyf as

k+1
8_k - Z a]k+1 anetllc (2.18)
oy; T\ Oner ay;

By using (2.10), the term Onet, ™ / @/f

k+1

Onet 0 K+l kg kel K+l

where w*/ is the synaptic weight between the ;™ neuron in the (k+1)™ layer and the

I™ neuron in the &A™ layer. For simplicity, we assume the item &J/énet!™ in (2.18) to

have the following form:

aJ k+1
——=9, 2.20
onet (220

Substitute (2.19) and (2.20) into (2:18), we have

oJ
¥=Z<5Ik+1w§+l) (2.21)
J

From (2.14) to (2.21), we have the following observations:

1. If the synaptic weights are between the hidden layer and output layer, then

oJ ” )
o =07 =) (1)) (222)
> Awfi :—n(y;," —dj)yf (l—y;?)yik_l (2.23)

2. If the synaptic weights are between the hidden layers or between the input layer
and the hidden layer, then

a(ika _ (z(é}kﬂwgﬂ )j J/f (1 _ yf )y,-k_l (2.24)

Ji !

> Aw, = —H(Z(@k*‘wzﬁ“ )jyﬁ (1=t (225)

i

Equation (2.23) and (2.25) are the most important formulas of the back-propagation
algorithm. The synaptic weights can be adjusted by substituting (2.23) and (2.25) into
the following (2.26):

12



wh (1+1) = wh (1) + AW (1) (2.26)

The learning process of Back-Propagation learning algorithm can be expressed by the

following steps:

Stepl: Decide the structure of the network for the problem.

Step2: Choosing a suitable value between 0 and 1 for the learning rate #.

Step3: Picking the initial synaptic weights from a uniform distribution whose value is
usually small, like between -1 and 1.

Step4: Calculate the output signal of the network by using (2.9).

Step5: Calculate the error energy function J by using (2.12).

Step6: Using (2.26) to update the synaptic weights.

Step7: Back to step4 and repeat step4 to step6 until the error energy function J is

small enough.

Although the network with BPA can deal with more complex problems which can not
be solved by single layer perceptron, the BPA still has the following problems:

1. Number of hidden layers

According to the result of theoretical researches, the number of hidden layer does not
need over two layers. Although nearly all ‘problems can be solved by two hidden
layers or even one hidden layer, we really have no idea to choose the number of
hidden layers. Even the number of neuronstifrthe hidden layer is an open question.

2. Initial synaptic weights

One defect of the method of steepest descent is the “local minimum” problem. This
problem relates to the initial synaptic weights. How to choose the best initial weights
is still a topic of neural network.

3. The most suitable learning rate

The learning rate decides the step-size of learning process. Although smaller learning
rate can have a better chance to have convergent results, the speed of convergence is
very slow and need more number of epochs. For larger learning rate, it can speed up
the learning process, but it will create more unpredictable results. So how to find a

suitable learning rate is also an important problem of neural network.
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CHAPTER 3
Dynamic Optimal Training of A Three-Layer Neural

Network with Sigmoid Function

In this chapter, we will try to solve the problem of finding the suitable learning rate
for the training of a three layer neural network. For solving this problem, we will find
the dynamic optimal learning rate of every iteration. The neural network with one
hidden layer is enough to solve the most problems in classification. So the dynamical
optimal training algorithm will be proposed in this Chapter for a three layer neural
network with sigmoid activation functions in the hidden and output layers in this
chapter.

3.1. The Architecture of A Three-Layer Network

Consider the following three layer neural network, as shown in the Figure 3-1, which
has only one hidden layer. The architecture of.the’neural network is M-H-N network.
There are M neurons in the input layerzand H neurons in the hidden layer and N

neurons in the output layer.

Figure 3-1. The three layer neural network



There is no activation function in the neurons of the input layer. And the activation
function for the neurons in the hidden and output layers is defined by
1
X)y=—— 3.1
S0 1+ exp(—x) G-1)

Note that we don’t consider the bias in this chapter.

3.2. The Dynamic Optimal Learning Rate

Suppose we are given the following training matrix and the desired output matrix:

X, X, X,p
Xyp=| 7 7 (3.2)
o e )
d, d, d,]
p=|® = by (3.3)
le dN2 dNP_NXP

There are P columns in (3.2) and (3.3) which implies that there are P sets of training
examples. And the weighting matrix between the input layer and the hidden layer is
expressed as:

hidden hidden hidden
I i/ T Wiy
hidden hidden hidden
w.o=| " W)y o Wy (3.4)
H ™ : : . : :
hidden hidden hidden
1 Wia W lgem

The weighting matrix between the hidden layer and the output layer is expressed as:

Wi Wy Win
W W e W
21 2 |
W, = : : . : (3.5)
Wyt Waa Wie ywr

Then, we can get the linear combiner output of the hidden layer due to (3.2) and (3.4)
which is expressed as:

hidden hidden hidden
1 S12 o Sip
hidden Shidden . Shidden
_ _ | %21 2 2P
Sy=Wy-X=| 7. . . (3.6)
hidden hidden . hidden
H1 St Sap lpxp
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And by using (3.1) and (3.6), the output matrix of the hidden layer is expressed as

below.

B hidden
f(s
11
Vip
hidden
Vap _ S (521
1% hidden
HP duxp | f (s i
1 1
1+ eislhlidd 1+ eislhzidden
1 1
14+e 14+
1 1
_ ghidden _ hidden
L 1+e l+e

) f (Slhzidden )

) S(s
) S(s

hidden
22

hidden
H?2

1

dden

14e

1

_ ghidden
1+e %

1

hidden

s

1+er

hidden
S (S 1P )
f ( Shidden )

2P

hidden
HP

f(s

JdHxP

(3.7)

JdHxP

The linear combiner output of the output layer due to (3.5) and (3.7) is expressed as:

St S
S S
Syt Sw2

Sip

Sop

Snp NxP

And the output of the output layer, whichriszalsorthe actual output of the network:

Y12
Y

Va2

Yip f(s”) f(slz)
Yap _ f(S21) f(Szz)
Ve yxp f(SNl) f(SNZ)
! 1 1]
I+e™  1+e™ 1+er
1 1 1
I+e 14+e> 1+e %
1 1 1
LI+e™ 1+e ™ I+e™ Jyep

Substituting (3.8) into (3.1) then we can get (3.9).

The most important parameter of the BP algorithm is the error signal. And the error

(3.8)
f(SlP)
f(Szp)
f(SNP) NxP

(3.9)

signal is the difference between the actual output of the network and the desire output.

So, we define the error function £ as:
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E=y-D=|"" = “r
en1 En2 NP Inxp
Yu—dn  yn—dy Yip=dp
- yzlfdﬂ yﬂtdﬂ yz”jd”’ (3.10)
le;le yNZ;dNZ yNP;dNP NxP

Finial, we define the total squared error, the energy function of the network, J as
follows:

2

ii(ykp d,) =%Tr(ET-E) (3.11)

p=1 k=1

l\.)l»—‘

The topic of the learning process is to minimize the total square error J. According to
Back-propagation algorithm, we use.thé method of steepest descent to adjust the
synaptic weights. And we apply.formula,(3.12) and (3.14) to update the weighting
matrixes Wy and Wy. Equation (3.12) and(3.14) are expressed as follow.

W (t+1) =W, (1)= ﬁHaW (3.12)
hldden htdden 8'] _ s

or jl (f‘l‘l) ()—ﬂY'W (_]—1,2, ’,H l—1,2, ,M)
Ji ¢

(3.13)
oJ

Wy(t+l)=WY(t)—ﬂYW (3.14)
Yy

or Wy (t41) 2w ()= o] (k=120 N 31,20 H)
K1

(3.15)
Where ¢ denotes the " iteration and P and Py are the learning rate of Wy and Wy
respectively.
Now, let us consider the derivative of (3.15) only,
oJ _ aJ 0y, Osy N oJ v, Oy, et O yp OSpp
6w,g. oy, Os;, 6w,q. 0y, 084, 6w,q. Vp OSip 8wk].
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(3.16)

In which,

v - ‘ {%ii(ykp—dkp) }:(ykp_dkp) (3-17)

p=1 k=1
8ykp _ a 1 —Sip -l _ 1 “Sip 2 TSk _ 1 3 18
2 s} e ) G
0s, 0
aw,l; = —aij (wklvlp +We,v,, +ot wkHva)= Vi (3.19)

Accordingly, the use of (3.17) ~ (3.18) and (3.19) in (3.16) yields

)
LS (=) 3 (1-7)v, (3.20)

p=l

oW
So, we can rewrite (3.15) as

i

ng‘(t—i'l)zwlq(t)—ﬂY'Z(ykp—dkp)'ykp(l_ykp)'vjp
p=l ‘
(k:1,2,---,N Zj=1,2,---,H) (3.21)

Equation (3.21) is the formula that we use to adjust the synaptic weights Wy.
Furthermore, let us consider the weighting matrix Wy between the input layer and the

hidden layer, as expressed in (3.13):

hidden hidden a‘]

Wii (’H):Wﬁ (t)—ﬁy'W (3.13)
i

t

For the convenience, we just discuss the derivative of (3.13) in the beginning.

oJ ) v A v, A v,

hidden hidden hidden hidden
ow; ov;, ow;, ov;, Ow;; ov;p OW);

| &J oy, N oJ 0y, et oJ Oyy, ' 8\’]1
- hidden
o, 8";1 0y, 8";1 Vi avjl awji

aJ oy, I oJ py, R oJ Qyy, . )2
hidden
oy, aij Oy, aij Wy, aij ow

Ji
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aJ ay1P+ aJ ay2P+---+ oJ Oy ) anP
Wp OVp Opyp OVp Wyp OV | OWL

Jt

rooov, & aJ oy
Z awhzdden Z( ka

p=l ¥ Wi PN kp avjp

P av ashzdden aJ ay
Z ashzdden a hzdden Z(a a 2 (322)
p=1 k=t\ OV, OV,

In which,

a.ykp 8ykp aSkp
_ — 1— W, 3.23
ov. 0s, , ov iy ( iy ) W ( )

P

In which we substitute (3.18) into (3.23).

ov. 0 _ ghidden -1 ghidden -2 _ ghidden
b= (147 ) amfiwe ) e =y, (1-y,)  G29)

a g hidden

ashidden 8
Jp _ hidden hidden hidden

B~ e (wj1 X), EWo S Wy, pr) X, (3.25)
Jji

Accordingly, the use of (3.17) ~ (3.23) ~ (3.24).and (3.25) in (3.22) yields

o itlzdden i{ ( ).xip.i((ykp_dkp)'ykp(l_ykp).wlg):| (3.26)

= k=1

So, we can rewrite (3.13) as
hzdden(t+1) hzdden {i{v ( ) X ﬁ:((y —d ).y (1_y )W)}}
Wii 1 ip p kp kp kp kp K

1

, (j:l,Z,---,H :i:1,2,---,M) (3.27)

Equation (3.27) is the formula that we use to adjust the synaptic weights . By using
(3.21) and (3.27), we can adjust the synaptic weights of the network.

3.3. Dynamical Optimal Training via Lyapunov’s Method
In control system, we know that we can use the Lyapunov function to consider the
stability of the system. The basic philosophy of Lyapunov’s direct method is the

mathematical extension of a fundamental physical observation: if the total energy of a
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mechanical (or electrical) system is continuously dissipated, then the system, whether
linear or nonlinear must eventually settle down to an equilibrium point [19]. So by the
same meaning, we define the Lyapunov function as
V=J (3.28)

Where the item J is total square error, defined in (3.11). And Equation (3.28) is
positive definite, which means that V'=J> 0. The difference of the Lyapunov function
is

AV =J,-J (3.29)
Where J;11 expresses the total square error of the (tJrl)th iteration. If Equation (3.29) is
negative, the system is guaranteed to be stable. Then, for AV <0 we have

J.,—J, <0 (3.30)
So, by using (3.11) we can get

,i(ykp t+l ) %ii(ykp kp)2

1

hS]
Il

l\)l'—‘
M~

=~
Il

1l
N |~
Mw
M=
=<
I

7| (5 (141)—d ) (1 (1)~ )|

=G(B, (1), BA1)) (3.31)

In Equation (3.31), the item J,is already known and the J;1; is the function of Sx(?)
and fy(t), so Ju1-J; can be expressed asiainew function G of fu(f) and fy(¢). For
simplification, we can assume that Su(f) = fy(¢) = p(t), then the function G only has
one parameter G(f(¢)). The Equation (3.31) can be rewritten as

Ju—J,=G(B(1)) (3.32)

If the parameter f(7) satisfies Ji+1 - J;= G(f(¢)) <0, then the set of f(¢) is the stable

range of the learning rate of the system at the " iteration. In this stable range, if the

1

]
Il

BopA?) satisfies that J;+; - J;  1is at its minimum, we call S,,/) the optimal learning rate
at the /" iteration. The optimal learning rate f,,(t) will not only guarantee the stability
of the training process, but also has the fastest speed of convergence.

In order to find the optimal learning rate f,,(¢) from the function J;+;- J; analytically,
we need to have an explicit form of J;+; - J,, like the simplest form of J,+; - J; (for a
simple two layer neural network) in [13]. But the function J;;; - J; here is a very
complicated nonlinear algebraic equation, it is nearly impossible to have a simple
explicit form. However we have also defined the function Ji+; - J; in (3.31) by
progressively evolving the equations from the beginning of this Chapter. Therefore we
can indeed defined (3.31) implicitly in Matlab coding. In this case, we can apply the
Matlab routine fminbnd to find the optimal learning rate f,,(f) from J;1; - J,. The
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calling sequence of fminbnd is:

FMINBND Scalar bounded nonlinear function minimization.
X = FMINBND(FUN,x1,x2) starts at X0 and finds a local minimizer X of the function
FUN in the interval xI1 <= X <= x2. FUN accepts scalar input X and returns a scalar

function value F evaluated at X.

The capability of the Matlab routine “fminbnd” is to find a local minimizer £, of the
function G(f), which has only one independent variable f, in a given interval. So we
have to define an interval when we use this routine. For the following two examples
in Chapter 4, we set the interval as [0.01, 100] to set the allowable learning rates
between 0.01 and 100. Note that for simplicity, we assume that fy(¢) = fy(¢) = p(¢) in
(3.31), therefore there is only one variable in (3.31). So we use the routine “fminbnd”
to find the optimal learning rate. However, we can also find the learning rate fy(¢) and
Sy(t) respectively by using another Matlab routine “fminunc”. But this routine
“fminunc” can only find the minimizer fx(¢) and By(f) around one specific point, not
around an interval. Therefore it is very:limited in application and is not appropriate

for this case.

Algorithm 1: Dynamic optimal:training algorithm for a three-layer neural network

Step 0: The following Wi(t), Wi(t), G(B@)); Bopt) and Y(¢) denote their respective
values at iteration .

Step 1: Given the initial weighting matrix Wy(1), Wy(1), the training input matrix X
and the desired output matrix D then we can find the actual output matrix of the
network Y(1) and the nonlinear function G(f(1)).

Step 2: Using Matlab routine “fminbnd” with the interval [0.01, 100] to solve the
nonlinear function G(4(1)) and find the optimal learning rate B,,(1).

Step 3: Iteration count /=1. Start the back propagation training process.

Step 4: Find if the desired output matrix D and the actual output matrix of the
network Y(1) are close enough or not? If Yes, GOTO Step 9.

Step 5: Update the synaptic weights matrix to yield Wg(#+1) and Wy(¢#+1) by using
(3.27) and (3.21) respectively.

Step 6: Find the actual output matrix of the network Y(#+1) and the nonlinear function
G(f(t+1)).

Step 7: Use Matlab routine “fminbnd” to find the optimal learning rate f,p(#+1) for
the next iteration.

Step 8: t=t+1 and GOTO Step 4.

Step 9: End.
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CHAPTER 4

Experimental Results

In this chapter, the classification problems of XOR and Iris data will be solved via our
new dynamical optimal training algorithm in Chapter 3. The training results will be

compared with the conventional BP training using fixed learning rate.

4.1. Example 1: The XOR Problem

The task is to train the network to produce the Boolean “Exclusive OR” (XOR)
function of two variables. The XOR operator yields true if exactly one (but not both)
of two conditions is true, otherwise the XOR operator yields false. We need only
consider four input data (0,0), (0,1), (1,1), and (1,0) in this problem. The first and
third input patterns are in class 0, which means the XOR operator yields “False”
when the input data is (0,0) or (1,1). The distribution of the input data is shown in
Figure 4-1. Because there are two vaniablés of XOR function, we choose the input
layer with two nodes and the output layer. with one node. Then we use one hidden
layer with two neurons to solye XOR problem.[14], as shown in Figure 4-2. The

architecture of the neural network 15 2-2-1. network.

The input data of XOR
B0, 1 11
ol ® (Class 0
2 B (Class 1
vy, 1
X

Figure 4-1. The distribution of XOR input data sets
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X4 114

Xy

Figure 4-2. The neural network for solving XOR

First, we use the standard BP algorithm with fixed learning rates (f = 1.5, 0.9, 0.5 and
0.1) to train the XOR, and the training results are shown in Figure 4-3-1 ~ 4-3-4. The
result of using BP algorithm with dynamic optimal learning rates to train the XOR is

shown Figure 4-4.

The square errar J of the standard BF Algorithm (the fixed leaming rate=1.5)
0.7 T T T T T T T

oo ut layer
05

0.4F

03F

The total square error J

02F

01F

0 |'\\—|\%V_ t
0 2000 4000 G000 8000 10000 12000 14000 16000
[teration

Figure 4-3-1. The square error J of the standard BPA with fixed f= 1.5
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The sguare error J of the standard BP Algorithrn (the fixed learning rate=0.5)
0.7 T T T T T T T

06 -

The total square error J

1 1 1 1 T T T
0 2000 4000 G000 5000 10000 12000 14000 16000
lteration

Figure 4-3-2. The square etror J of the standard BPA with fixed f= 0.9

The square error J of the standard BP Algarithm (the fixed learning rate=0.5)
0.7 T T T T T T T

0B} 1

0.5

0.4

0.3

The total square errar J

0.2

0.1

1 1 1 1 1 1 1
0 2000 4000 G000 8000 10000 12000 14000 16000
[teration

Figure 4-3-3. The square error J of the standard BPA with fixed = 0.5
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The sguare error J of the standard BF Algarithm (the fixed learning rate=0.1)
0.6

0.55 1

0.5

0.45

0.4

0.35

0.3

The total square errar J

0.25

02

0.15

D'I 1 1 1 1 1 1 1
0 2000 4000  &OO00 5000 10000 12000 14000 16000

[teration

Figure 4-3-4. The square error J of the standard BPA with fixed = 0.1

The =square errar J of the BP Algorithm with dynamic optimal learning rate
0.7 T T T T T T T

06 k

The total sgquare errar J

02 1

01r 1

1 1 ! 1 L
0 2000 4000 G000 5000 10000 12000 14000 16000
lteration

Figure 4-4. The square error J of the BPA with dynamic optimal training

The following Figure 4-5 shows the plot of (3.32) for -1 < #< 100, which is G(f) =
AJ(p) = Ji+1- J,, at iteration count ¢t = 1. The Matlab routine fiminbnd will be invoked
to find [y with the constraint that G(f4,p) < 0 with maximum absolute value. This Sy
is the learning rate for iteration count # = 2.The /S is found to be 7.2572 for iteration
count 2. The dynamic learning rate of every iteration is shown in Figure 4-6.
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i

Figure 4-6. The dynamic learning rates of every iteration
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The comparison of these cases is shown in Figure 4-7. In Figure 4-7, it is obvious that

our dynamical optimal training yields the best training results in minimum epochs.

The sguare errar J of the BF Algorithrm with dynamic optimal learning rate

o7

06

04

0.4f

0.3

The total square error J

0.z

01r

— J of thedynamic optimal leamning rate
— Jof the fixed learning rate=0.9
J of the fixed learning rate=0.1

0
a

1 1
2000 4000

8000
lteration

B000

10000 12000

14000 16000

Figure 4-7. Training errors of dynamic optimal leatning rates and fixed learning rates

Table 4-1 shows the training result via'dynamical optimal training for XOR problem.

Table 4.1. The training result for XOR using dynamical optimal training

Iterations

Training Results 1000 5000 10000 15000
W; (after trained) 6.5500 7.7097 8.8191 8.4681

W, (after trained) 6.5652 7.7145 8.1921 8.4703

W; (after trained) 0.8591 0.9265 0.9473 0.9573

W, (after trained) 0.8592 0.9265 0.9473 0.9573

W;s (after trained) 14.9536 26.2062 33.0393 37.8155

Wi (after trained) -19.0670 | -32.9550 | -41.3692 | -47.2513
Actual Output Y for (x4, X,) = (0,0) 0.1134 0.0331 0.0153 0.0089
Actual Output Y for (x4, X,) = (0,1) 0.8232 0.9300 0.9616 0.9750
Actual Output Y for (x4, X,) = (1,0) 0.8232 0.9300 0.9616 0.9750
Actual Output Y for (x4, X,) = (1,1) 0.2291 0.0925 0.0511 0.0334
J 0.0639 0.0097 0.0029 0.0012
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Table 4-2 shows the training result via the standard BP with fixed f = 0.9 for XOR
problem.

Table 4.2. The training result for XOR using fixed learning rate f = 0.9

Iterations

Training REST 1000 5000 10000 15000
W; (after trained) 4.7659 7.2154 7.6576 7.8631
W, (after trained) 4.8474 7.2228 7.6624 7.8670
W3 (after trained) 0.7199 0.8996 0.9234 0.9331
W, (after trained) 0.7228 0.8996 0.9234 0.9331
W;s (after trained) 6.2435 20.6467 25.5617 28.2288
W (after trained) -8.1214 -26.1034 | -32.1610 | -35.4456

Actual Output Y for (x4, x,) = (0,0) 0.2811 0.0613 0.0356 0.0264

Actual Output Y for (x4, X,) = (0,1) 0.6742 0.8885 0.9263 0.9415

Actual Output Y for (x4, X,) = (1,0) 0.6745 0.8885 0.9263 0.9415

Actual Output Y for (x4, X,) = (1,1) 04192 0.1479 0.0982 0.0781

J 0.2334 0.0252 0.0109 0.0068

To compare Table 4.1 with Table 4.2, we can see that-the training result via dynamical

optimal training is faster with better result-than-ether approaches.

Now, we will use another method, the back-propagation algorithm with momentum,
to solve XOR problem again. Then we will compare its training errors with that of
dynamic optimal training and see if dynamic optimal training is indeed better. The
back-propagation algorithm with momentum is to modify the Equation (2.13) by
including a momentum term as follows:
oJ
AW(t)=—77Wt +a- AW (t-1) (4.1)

where o is usually a positive number called the momentum constant and usually in the
range [0, 1). The training results of the BPA with momentum for XOR problem are
shown in Figure 4-8-1 ~ 4-8-3. The comparison of these cases is shown in Figure 4-9.
In Figure 4-9, we can see that some training results of BPA with momentum are as
well as the dynamic training but the most results of BPA with momentum are
unpredictable. The training results still depend on the chosen learning rates and

momentum.
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The square errar J with various momentumn (the fixed learning rate=0.5])
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Figure 4-8-1. The square error J of the'BPA with variant momentum(£ = 0.9)
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Figure 4-8-2. The square error J of the BPA with variant momentum(fZ= 0.5)
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The sguare errar J with various momentum (the ficed learning rate=0.1)
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Figure 4-8-3. The square error J of the BPA with variant momentum (S=0.1)

Compare dynamic learing rate with Momentum BP
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Figure 4-9. Total square errors of dynamic training and the BPA with different learning

rates and momentum
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4.2. Example 2: Classification of Iris Data Set

In this example, we will use the same neural network as before to classify Iris data
sets [15], [16]. Generally, Iris has three kinds of subspecies, and the classification will
depend on the length and width of the petal and the length and width of the sepal. The
total Iris data are shown in Figure 4-10-1 and 4-10-2. And the training data sets, the
first 75 samples of total data, are shown in Figures 4-11-1 and 4-11-2. The Iris data
samples are available in [20]. There are 150 samples of three species of the Iris
flowers in this data. We choose 75 samples to train the network and using the other 75
samples to test the network. We will have four kinds of input data, so we adopt the
network which has four nodes in the input layer and three nodes in the output layer for
this problem. Then the architecture of the neural network is a 4-4-3 network as shown
in Figure 4-12. In which, we use the network with four hidden nodes in the hidden

layer.

IRIS Data-Sepal
¢ (Class 1-setosa ® Class 2-versicolor ~ Class 3-virginica
5
45 F o
E 4 - ¢ 'S
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= 25 F ml. li"' A
= ¢ ~m n gl
& 2 F _
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15 |
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Sepal length (in cm)

Figure 4-10-1. The total Iris data set (Sepal)
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IRIS Data-Petal
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Figure 4-11-1. The training set of Iris data (Sepal)
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IRIS Data-Petal

¢ (Class 1-setosa ® Class 2-versicolor  Class 3-virginica

3

Petal width (in cm
tn

Figure 4-12. The neural network for solving Iris problem

First, we use the standard BPA with fixed learning rates (5 = 0.1, 0.01 and 0.001) to
solve the classification of Iris data sets, and the training results are shown in Figure
4-13-1 ~ 4-13-3. The result of BPA with dynamic optimal learning rates is shown in
Figure 4-14.
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The square error J of the standard BP Algorithm (the fixed learning rate=0.1)
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Figure 4-13-1. The square errorJiof the standard BPA with fixed f= 0.1

The square error J of the standard BF Algorithm (the fixed learming rate=0.01)
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Figure 4-13-2. The square error J of the standard BPA with fixed = 0.01
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The square error J of the standard BP Algorithrn (the fixed learning rate=0.001)
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Figure 4-13-3. The square error Jof the standard BPA with fixed f=0.001

The square error J of the BF Algorithm with dynamic optimal learning rate
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Figure 4-14. The square error J of the BPA with dynamic optimal training
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Figure 4-15 shows that the convergence speed of the network with dynamic learning
rate is absolutely faster than the network with fixed learning rates. Because the
optimal learning rate of every iteration is almost in the range [0.01, 0.02], so the
convergence speed of the fixed learning rate f = 0.01 is similar to the convergence
speed of the dynamic learning rate. But dynamic learning rate approach still performs
better than those of using fixed learning rates.

The square error J of the BP Algorithm with dynamic optimal leaming rate
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Figure 4-15. Training errors of dynamic optimal learning rates and fixed learning rates

After 10000 training iterations, the resulting weights and total square error J are

shown below.

1.2337 -0.5033 1.3225 1.3074
-0.3751 3.4714 -2.6777 -1.6052
3.7235 5.1603 -4.0019 -10.4289
1.9876 -2.7186 4.6171  4.3400

-2.2947 7.8444 34765 -5.0185
W, =|-2.5365 -8.5464 9.3797 -2.1300
2.0822 -3.7674 -10.4114 3.0220

Total square error J = 0.1582
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The actual output and desired output of 10000 training iteration are shown in Table
4.3 and the testing output and desired output are shown in Table 4.4. After we
substitute the above weighting matrices into the network and perform real testing, we
find that there is no classification error by using training set (the first 75 data set).
However there are 5 classification errors by using testing set (the later 75 data set),
which are index 34, 51, 55, 57, 59 in Table 4-4.

Table 4.3. Actual and desired outputs after 10000 iterations

Actual Output Desired Output
Index Class1l | Class2 | Class3 | Class1 | Class2 | Class3
1 0.9819 | 0.0216 | 0.0001 1.0000 0.0000 0.0000
2 0.9807 | 0.0233 | 0.0001 1.0000 0.0000 0.0000
3 0.9817 | 0.0220 | 0.0001 1.0000 0.0000 0.0000
4 0.9810 | 0.0229 | 0.0001 1.0000 0.0000 0.0000
5 0.9821 | 0.0215 | 0.0001 1.0000 0.0000 0.0000
6 0.9819 | 0.0215 | 0.0001 1.0000 0.0000 0.0000
7 0.9819 | 0.0218.4:0.0001 1.0000 0.0000 0.0000
8 0.9817 | 0.0219 | 0:0001 1.0000 | 0.0000 | 0.0000
9 0.9804 | 0.0237 | 0.0001 1.0000 | 0.0000 | 0.0000
10 0.9810 | 0.0228 | '0:0001 1.0000 | 0.0000 | 0.0000
11 0.9820 | 0.02%5 .| 0.0001 1.0000 | 0.0000 | 0.0000
12 0.9816 | 0.0221 [70.0001 1.0000 | 0.0000 | 0.0000
13 0.9810 | 0.0229 | 0.0001 1.0000 | 0.0000 | 0.0000
14 0.9821 | 0.0222 | 0.0001 1.0000 0.0000 0.0000
15 0.9822 | 0.0213 | 0.0001 1.0000 0.0000 0.0000
16 0.9822 | 0.0213 | 0.0001 1.0000 0.0000 0.0000
17 0.9821 | 0.0214 | 0.0001 1.0000 0.0000 0.0000
18 0.9819 | 0.0217 | 0.0001 1.0000 0.0000 0.0000
19 0.9818 | 0.0216 | 0.0001 1.0000 0.0000 0.0000
20 0.9821 | 0.0215 | 0.0001 1.0000 | 0.0000 | 0.0000
21 0.9811 | 0.0226 | 0.0001 1.0000 | 0.0000 | 0.0000
22 0.9819 | 0.0216 | 0.0001 1.0000 | 0.0000 | 0.0000
23 0.9829 | 0.0218 | 0.0001 1.0000 | 0.0000 | 0.0000
24 0.9800 | 0.0240 | 0.0001 1.0000 | 0.0000 | 0.0000
25 0.9808 | 0.0231 | 0.0001 1.0000 | 0.0000 | 0.0000
26 0.0214 | 0.9910 | 0.0049 0.0000 1.0000 0.0000
27 0.0215 | 0.9908 | 0.0049 0.0000 1.0000 0.0000
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28 0.0211 | 0.9909 | 0.0050 | 0.0000 1.0000 0.0000
29 0.0174 | 0.9846 | 0.0090 | 0.0000 1.0000 0.0000
30 0.0205 | 0.9902 | 0.0055 | 0.0000 1.0000 0.0000
31 0.0202 | 0.9895 | 0.0058 | 0.0000 1.0000 0.0000
32 0.0210 | 0.9903 | 0.0052 | 0.0000 1.0000 0.0000
33 0.0243 | 0.9895 | 0.0046 | 0.0000 1.0000 0.0000
34 0.0213 | 0.9910 | 0.0049 | 0.0000 1.0000 0.0000
35 0.0189 | 0.9861 | 0.0076 | 0.0000 1.0000 0.0000
36 0.0208 | 0.9899 | 0.0055 | 0.0000 1.0000 0.0000
37 0.0213 | 0.9902 | 0.0052 | 0.0000 1.0000 0.0000
38 0.0212 | 0.9910 | 0.0049 | 0.0000 1.0000 0.0000
39 0.0203 | 0.9898 | 0.0057 | 0.0000 1.0000 0.0000
40 0.0251 | 0.9892 | 0.0045 | 0.0000 1.0000 0.0000
41 0.0216 | 0.9909 | 0.0049 | 0.0000 1.0000 0.0000
42 0.0172 | 0.9836 | 0.0095 | 0.0000 1.0000 0.0000
43 0.0218 | 0.9907 | 0.0049 | 0.0000 1.0000 0.0000
44 0.0072 | 0.8555,4f 0.1140 | +0.0000 1.0000 0.0000
45 0.0216 | 0.9907 | 0:0049 }. 0.0000 1.0000 0.0000
46 0.0058 | 0.7622 | 0.2006 | 0.0000 1.0000 0.0000
47 0.0218 | 0.9907 |.'0:0049 "+ 0.0000 1.0000 0.0000
48 0.0090 | 09154 | 0.0618 | :0.0000 1.0000 0.0000
49 0.0210 | 0.9908 [“0.0051+1" 0.0000 1.0000 0.0000
50 0.0215 | 0.9909 | 0.0049 | 0.0000 1.0000 0.0000
51 0.0007 | 0.0093 | 0.9940 | 0.0000 0.0000 1.0000
52 0.0007 | 0.0101 | 0.9934 | 0.0000 0.0000 1.0000
53 0.0007 | 0.0119 | 0.9920 | 0.0000 0.0000 1.0000
54 0.0008 | 0.0162 | 0.9888 | 0.0000 0.0000 1.0000
55 0.0007 | 0.0095 | 0.9939 | 0.0000 0.0000 1.0000
56 0.0007 | 0.0103 | 0.9933 | 0.0000 0.0000 1.0000
57 0.0007 | 0.0102 | 0.9933 | 0.0000 0.0000 1.0000
58 0.0011 | 0.0330 | 0.9752 | 0.0000 0.0000 1.0000
59 0.0007 | 0.0108 | 0.9929 | 0.0000 0.0000 1.0000
60 0.0007 | 0.0099 | 0.9936 | 0.0000 0.0000 1.0000
61 0.0024 | 0.2245 | 0.7853 | 0.0000 0.0000 1.0000
62 0.0008 | 0.0131 | 0.9912 | 0.0000 0.0000 1.0000
63 0.0008 | 0.0138 | 0.9906 | 0.0000 0.0000 1.0000
64 0.0007 | 0.0094 | 0.9939 | 0.0000 0.0000 1.0000
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65 0.0007 | 0.0093 | 0.9940 0.0000 0.0000 1.0000
66 0.0007 | 0.0100 | 0.9935 0.0000 0.0000 1.0000
67 0.0016 | 0.0894 | 0.9242 0.0000 0.0000 1.0000
68 0.0013 | 0.0511 | 0.9596 0.0000 0.0000 1.0000
69 0.0007 | 0.0093 | 0.9940 0.0000 0.0000 1.0000
70 0.0010 | 0.0291 | 0.9785 | 0.0000 | 0.0000 1.0000
71 0.0007 | 0.0102 | 0.9933 | 0.0000 | 0.0000 1.0000
72 0.0007 | 0.0098 | 0.9936 | 0.0000 | 0.0000 1.0000
73 0.0007 | 0.0103 | 0.9933 | 0.0000 | 0.0000 1.0000
74 0.0017 | 0.1066 | 0.9075 | 0.0000 | 0.0000 1.0000
75 0.0008 | 0.0164 | 0.9887 | 0.0000 | 0.0000 1.0000
Table 4.4. Actual and desired outputs in real testings
Actual Output Desired Output
Index Class1 | Class2 | Class3 | Class1l | Class2 | Class3
1 0.9794 | 0.0249+]0.0001 |-7.0000 | 0.0000 | 0.0000
2 0.9812 | 0.0224 [ 00001 |[1.0000 | 0.0000 | 0.0000
3 0.9818 | 0.0218" | 0.0001 1.0000 0.0000 0.0000
4 0.9818 | 0.0218 |[10:0001 1.0000 0.0000 0.0000
5 0.9810 | 0.0229 { 0.0001 1.0000 0.0000 0.0000
6 0.9804 | 0.0236 | 0.0001 1.0000 0.0000 0.0000
7 0.9813 | 0.0223 | 0.0001 1.0000 0.0000 0.0000
8 0.9823 | 0.0214 | 0.0001 | 1.0000 0.0000 0.0000
9 0.9823 | 0.0213 | 0.0001 | 1.0000 0.0000 0.0000
10 0.9810 | 0.0228 | 0.0001 | 1.0000 0.0000 0.0000
11 0.9818 | 0.0219 | 0.0001 | 1.0000 0.0000 0.0000
12 0.9820 | 0.0216 | 0.0001 | 1.0000 0.0000 0.0000
13 0.9810 | 0.0228 | 0.0001 | 1.0000 0.0000 0.0000
14 0.9813 | 0.0226 | 0.0001 1.0000 0.0000 0.0000
15 0.9817 | 0.0219 | 0.0001 1.0000 0.0000 0.0000
16 0.9820 | 0.0216 | 0.0001 1.0000 0.0000 0.0000
17 0.9650 | 0.0442 | 0.0002 1.0000 0.0000 0.0000
18 0.9819 | 0.0220 | 0.0001 1.0000 0.0000 0.0000
19 0.9813 | 0.0224 | 0.0001 1.0000 0.0000 0.0000
20 0.9816 | 0.0219 | 0.0001 | 1.0000 0.0000 0.0000
21 0.9804 | 0.0236 | 0.0001 | 1.0000 0.0000 0.0000
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22 0.9820 | 0.0215 | 0.0001 1.0000 0.0000 0.0000
23 0.9816 | 0.0222 | 0.0001 1.0000 0.0000 0.0000
24 0.9820 | 0.0215 | 0.0001 1.0000 0.0000 0.0000
25 0.9817 | 0.0220 | 0.0001 1.0000 0.0000 0.0000
26 0.0215 | 0.9909 | 0.0049 | 0.0000 1.0000 0.0000
27 0.0210 | 0.9909 | 0.0051 | 0.0000 1.0000 0.0000
28 0.0170 | 0.9839 | 0.0095 | 0.0000 1.0000 0.0000
29 0.0196 | 0.9886 | 0.0064 | 0.0000 1.0000 0.0000
30 0.0239 | 0.9898 | 0.0046 | 0.0000 1.0000 0.0000
31 0.0215 | 0.9907 | 0.0050 | 0.0000 1.0000 0.0000
32 0.0219 | 0.9907 | 0.0049 | 0.0000 1.0000 0.0000
33 0.0220 | 0.9906 | 0.0049 | 0.0000 1.0000 0.0000
*34 0.0019 | 0.1415 | 0.8726 | 0.0000 1.0000 0.0000
35 0.0140 | 0.9710 | 0.0179 | 0.0000 1.0000 0.0000
36 0.0217 | 0.9901 | 0.0051 | 0.0000 1.0000 0.0000
37 0.0212 | 0.9909 | 0.0050 | 0.0000 1.0000 0.0000
38 0.0201 | 0.9897.4 0.0058 | 0.0000 1.0000 0.0000
39 0.0224 | 0.9903 | 0.0049 | 0:0000 1.0000 0.0000
40 0.0199 | 0.9889 | 0.0061~ 0.:0000 1.0000 0.0000
41 0.0197 | 0.9889 |.0.0062" - 0.0000 1.0000 0.0000
42 0.0210 | 0.9905 | 0.0052 | 0.60000 1.0000 0.0000
43 0.0215 | 0.9907 |0.0050. " 0.0000 1.0000 0.0000
44 0.0232 | 0.9900 | 0.0047 | 0.0000 1.0000 0.0000
45 0.0206 | 0.9899 | 0.0055 | 0.0000 1.0000 0.0000
46 0.0223 | 0.9905 | 0.0048 | 0.0000 1.0000 0.0000
47 0.0216 | 0.9905 | 0.0050 | 0.0000 1.0000 0.0000
48 0.0215 | 0.9908 | 0.0049 | 0.0000 1.0000 0.0000
49 0.0300 | 0.9869 | 0.0042 | 0.0000 1.0000 0.0000
50 0.0215 | 0.9905 | 0.0050 | 0.0000 1.0000 0.0000
*51 0.0060 | 0.7787 | 0.1866 | 0.0000 0.0000 1.0000
52 0.0026 | 0.2674 | 0.7388 | 0.0000 0.0000 1.0000
53 0.0032 | 0.3974 | 0.5942 | 0.0000 0.0000 1.0000
54 0.0007 | 0.0095 | 0.9938 | 0.0000 0.0000 1.0000
*55 0.0159 | 0.9807 | 0.0117 | 0.0000 0.0000 1.0000
56 0.0009 | 0.0230 | 0.9835 | 0.0000 0.0000 1.0000
*57 0.0165 | 0.9827 | 0.0104 | 0.0000 0.0000 1.0000
58 0.0007 | 0.0094 | 0.9939 | 0.0000 0.0000 1.0000
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*59 0.0133 | 0.9690 | 0.0199 | 0.0000 0.0000 1.0000
60 0.0018 | 0.1281 | 0.8862 | 0.0000 0.0000 1.0000
61 0.0007 | 0.0106 | 0.9930 | 0.0000 0.0000 1.0000
62 0.0007 | 0.0095 | 0.9939 | 0.0000 0.0000 1.0000
63 0.0018 | 0.1130 | 0.9011 0.0000 0.0000 1.0000
64 0.0033 | 0.4128 | 0.5766 | 0.0000 0.0000 1.0000
65 0.0011 | 0.0335 | 0.9748 | 0.0000 0.0000 1.0000
66 0.0007 | 0.0094 | 0.9939 | 0.0000 0.0000 1.0000
67 0.0008 | 0.0166 | 0.9885 | 0.0000 0.0000 1.0000
68 0.0007 | 0.0101 | 0.9934 | 0.0000 0.0000 1.0000
69 0.0007 | 0.0096 | 0.9938 | 0.0000 0.0000 1.0000
70 0.0007 | 0.0094 | 0.9939 | 0.0000 0.0000 1.0000
71 0.0007 | 0.0105 | 0.9931 | 0.0000 0.0000 1.0000
72 0.0007 | 0.0123 | 0.9917 | 0.0000 0.0000 1.0000
73 0.0010 | 0.0284 | 0.9791 | 0.0000 0.0000 1.0000
74 0.0007 | 0.0099 | 0.9935 | 0.0000 0.0000 1.0000
75 0.0011 | 0.0370.40.9717 . 0.0000 0.0000 1.0000

41




CHAPTER S

Conclusions

Although the back propagation algorithm is a useful tool to solve the problems of
classification, optimization, prediction etc, it still has many defects. One of those
defects is that we don’t know how to choose the suitable learning rate to get
converged training results. But by using the dynamical training algorithm for three
layer neural network that we proposed in the end of Chapter 3, we can find the
dynamic optimal learning rate very easily. And the dynamic learning rate guarantees
that the total square error J is a decreasing function. This means that actual outputs
will be closer to desired outputs for more iterations. The classification problems of
XOR and Iris data are proposed in Chapter 4. They are solved by using the dynamical
optimal training for a three layer neural network with sigmoid activation functions in
hidden and output layers. Excellent results are obtained in the XOR and Iris data
problems. Therefore the dynamic training algorithm is actually very powerful for
getting better results than the other conventional back propagation algorithm with
unknown fixed learning rates. So the .goal .of femoving the defects of the back
propagation algorithm with fixed learning rate is achieved by using the dynamical

optimal training algorithm.
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