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摘要 

 

本篇論文是針對三層類神經網路提出一個動態最佳訓練法則，其中網路的隱藏層

和輸出層都有經過一個 S型激發函數。這種三層的網路可以被運用於處理分類的

問題，像是蝴蝶花的品種分類。我們將對這種三層神經網路的動態最佳訓練方法

提出一個完整的証明，用來說明這種動態最佳訓練方法保證神經網路能在最短的

迭代次數下達到收斂的輸出結果。這種最佳的動態訓練方法不是使用單一固定的

學習速率，而是在每一次的迭代過程中不斷的更新，來取得下一次迭代過程所需

要的最佳學習速率，以保證最佳的收斂的訓練結果。我們可以由 XOR 和蝴蝶花的

測試例子得到良好的結論。 
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ABSTRACT 
 
This thesis proposes a dynamical optimal training algorithm for a three layer neural 
network with sigmoid activation functions in the hidden and output layers. This three 
layer neural network can be used for classification problems, such as the classification 
of Iris data. Rigorous proof has been presented for the dynamical optimal training 
process for this three layer neural network, which guarantees the convergence of the 
training in a minimum number of epochs. This dynamical optimal training does not 
use fixed learning rate for training. Instead, the learning rates are updated for next 
iteration to guarantee the optimal convergence of the training result. Excellent results 
have been obtained for XOR and Iris data set. 
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CHAPTER 1 

Introduction 
Artificial neural network (ANN) is the science of investigating and analyzing the 
algorithms of the human brain, and using the similar algorithm to build up a powerful 
computational system to do the tasks like pattern recognition [1], [2], identification 
[3], [4] and control of dynamical systems [5], [6], system modeling [7], [8] and 
nonlinear prediction of time series [9]. The artificial neural network owns the 
capability, to organize its structural constituents, the same as the human brain. So the 
most attractive character of artificial neural network is that it can be taught to achieve 
the complex tasks we just experienced before by using some learning algorithms and 
training examples. The learning algorithms here can be roughly divided into two parts: 
one is the supervised learning and the other is the unsupervised learning. One most 
popular algorithm of artificial neural network for classification is the Error 
Back-Propagation Algorithm [10], [11], which is the supervised learning. The 
well-known error back-propagation algorithm, or simply the back-propagation 
algorithm, for training multi-layer perceptrons was proposed by Rumelhart in 1986 
[12]. The back-propagation algorithm is a generalized form of the delta learning rule, 
which is actually based on the least-mean square algorithm. The topic of the training 
process is to minimize the standard mean-square error. Although the way to adjust the 
weights of network, i.e., the method of steepest descent, is easy to understand, there 
are several flaws in the back-propagation algorithm. One of them is that we don’t 
have a suitable way to find the stable and optimal learning rate. For smaller learning 
rate, we may have a convergent result. But the speed of the output convergence is 
very slow and need more number of epochs to train the network. For larger learning 
rate, the speed of training can be accelerated, but it will cause the training result to 
fluctuate and even leads to divergent result. Actually the dynamical optimal training 
was proposed in [13] for a simple two layer neural network (without hidden layers) 
without any activation functions in the output layer. The basic theme in [13] is to find 
a stable and optimal learning for the next iteration in back propagation algorithm. 
Moreover a more complicated three layer neural network (with one hidden layer) with 
sigmoid activation functions in the hidden and output layers is very useful in 
performing the classification problems, such as the XOR [14] and Iris data [15], [16].  
However its learning process has been very slow in terms of the classical back 
propagation algorithm. In other words, the dynamical optimal learning algorithm has 
never been proposed for this type of neural network. Therefore the major purpose of 
this thesis is to find a proper way to achieve the dynamical optimal training of the 

 1



three layer neural network with sigmoid activation functions in hidden and output 
layers. Rigorous proof will be proposed and the popular XOR and Iris data 
classification benchmarks will be fully illustrated. Excellent results have been 
obtained by comparing our optimal training results with previous results using fixed 
small learning rates. 
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CHAPTER 2 

The Perceptron as A Neural Network 
 
In this chapter, the multi-layer feed-forward perceptrons will be introduced. First the 
single layer perceptron will be explained and it will lead to the multi-layer 
perceptrons in later sections. Also the back propagation algorithm for multi-layer feed 
forward perceptrons will be explained in section 2.4. 
 
2.1. Single Layer Perceptron 
The first model of the feed-forward network, perceptron, was proposed by F. 
Rosenblatt in 1958 [17]. He hoped to find a suitable model to simulate the animal’s 
brain and the visual system so that he proposed the “perceptron” model, which is a 
supervised learning model. The supervised learning is also referred to as learning 
with a teacher, and the teacher here means the input-output data sets for training. It 
also means that the perceptron can be trained by the given input-output data. The 
perceptron is a neuronal model consists of two parts. In the first part, the neural model 
combines all the input signals apply to its corresponding weights. And in second part, 
there comes the linear combiner followed by a hard limiter. The structure of the 
perceptron is depicted in Figure 2-1-1 (or Figure 2-1-2). The hard limiter is shown in 
Figure 2-2. 
 
 

1x

2x
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1w

2w

mw

v ( )vϕ y

 

Figure 2-1-1. Single layer perceptron 
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Figure 2-1-2. Another model of single layer perceptron 
 
 

 
Figure 2-2. The hard limiter for perceptron 

 
In Figure 2-1-1, the input data set of the perceptron is denoted by {x1, x2,…, xm} and 
the corresponding synaptic weights of the perceptron are denoted by{w1, w2,…, wm}. 
The external bias is denoted by b. The first part of the percpetron computes the linear 
combination of the products of input data and synaptic weight with an externally 
applied bias. So the result of the first part of the perceptron, v, can be expressed as 

1

m

i i
i

v b w x
=

= +∑                           (2.1) 

Then in the second part, the resulted sum  is applied to a hard limiter. Therefore, 
the output of the perceptron equals +1 or 0. The output of perceptron equals to +1 if 
the resulted sum v is positive or zero; and the output of perceptron equals to 0 if v is 
negative. This can be simply expressed by (2.2). 

v
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m

i=1
m

i=1

1  if     + 0

 0  if     + 0 

i i

i i

b x w
y

b x w

⎧+ ≥⎪⎪= ⎨
⎪ <
⎪⎩

∑

∑

，

，

                    (2.2) 

The goal of the perceptron is to classify the input data point represents by the set {x1, 
x2,…, xm} into one of two classes, C1 and C2. If the output of the perceptron equals to 
+1, the input data point represented by the set {x1, x2,…, xm}will be assigned to class 
C1. Otherwise, the input data point will be assigned to class C2. Since the 
classification depends on the output of the perceptron, y, and the output y is decided 
by the resulted sum v. If we only consider the simplest form of the perceptron, the 
m-dimensional space can only be divided into two decision regions by the hyper-plane, 
which is defined as 

m

i=1
+ i ib x w 0=∑                          (2.3) 

One simple example is shown in Figure 2-3. In this case, there are only two input 
variables x1 and x2 for single layer perceptron, for which the decision hyper-plane is a 
straight line. The hyper-plane can be shown as: 

1 1 2 2 0b x w x w+ + =                        (2.4) 
Note that the shift distance of the decision line away from the origin is decided by the 
parameter b in (2.4) (and (2.3)).  

X1

X2

Class 1

Class 2

Hyperplane

 
Figure 2-3. The decision boundary for 2-demensional plane 

 
For convenience, we can consider the architecture of single layer perceptron in 
another form as depicted in Figure 2-1-2 and (2.1) can be rewritten as 

0

m

i i
i

v w
=

= x∑                            (2.5) 
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In which, we substitute w0 for the term b in (2.3) and x0 = 1. The other results are all 
the same [18]. 
 
2.2. The Simple Examples 
Example 1. The AND Problem 
The AND logic problem, which can be solved by the single layer perceptron easily. 
The truth table for AND is shown in Table 2.1. 

Table 2.1 The truth table for AND 
A B A  AND  B 

0 0 0 (Class 0) 
0 1 0 (Class 0) 
1 0 0 (Class 0) 
1 1 1 (Class 1) 

The input data set of the AND logic is shown in Figure 2-4, which is obviously a 
linearly separable problem. For solving this problem, we can build the single layer 
perceptron by assigning the suitable synaptic weights with external bias for. The 
architecture of the network is illustrated in Figure 2-5, in which the synaptic weights 
are assigned as w1 = w2 = 1 and the external bias b= -1.5. 
 
Besides the AND logic, the OR and NOT logic problems are also linear separable. So 
these three logic problems can be solved by the same way easily. The only difference 
is the choice of the synaptic weights w1, w2 and external bias b.  
 
 

0, 0

0, 1

1, 0

1, 1

X1

X2

Class 0

Class 1

Hyperplan
e

 
Figure 2-4. The input data of AND 
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Figure 2-5. The architecture of the network for solving AND logic problem 
 
Example 2. The XOR Problem 
The Exclusive OR (XOR) logic problem can’t be solved by single layer perceptron 
because the XOR logic is with nonlinear separable input data set. The truth table for 
XOR is shown in Table 2.2. 

Table 2.2 The truth table for XOR 
A B A  XOR  B 

0 0 0 (Class 0) 
0 1 1 (Class 1) 
1 0 1 (Class 1) 
1 1 0 (Class 0) 

 
From Figure 2-6, we can see that the input data is not linear separable. So, the single 
layer perceptron can not work for this problem. We can not find the suitable 
parameters w1, w2 and b to classify the output y in Figure 2-6. 
 

The input data of XOR

0, 0

1, 1

1, 0

0, 1

X1

X2
Class 0

Class 1

 
Figure 2-6. The input data of XOR 
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From the statements of section 2.1 and 2.2, we know that the single layer perceptron 
can only solve the problems which are linear separable. Besides this, another serious 
defect is that we have no proper learning algorithm to adjust the synaptic weights for 
the single layer perceptron, and all the parameters can only be assigned by 
try-and-error method. Until 1985, this problem was solved when the 
Back-Propagation algorithm was proposed. So the single layer perceptron was 
gradually replaced by Back-Propagation algorithm in the present day. 
 
2.3. Multi-layer Feed-Forward Perceptrons 
In this section we will introduce the multi-layer feed-forward network, an important 
class of neural network. The difference between single layer perceptron and 
multi-layer feed-forward perceptrons is the “hidden layer”. The multi-layer network 
consists of a set of input nodes (input layer), one or more hidden layers, and a set of 
output nodes that constitute the output layer. The input signals will propagate through 
the network in the forward direction. A multi-layer feed-forward fully-connected 
network is shown in Figure 2-7 with only one hidden layer. 

1x

2x

3x

1y

2y

3y

 
Figure 2-7. A three layer feed-forward network 

 
The major characters of the multi-layer network are as follow: 
(1) Besides the neurons of input layer, every neuron of the network has a nonlinear 

activation function. Note that the activation function used in the multi-layer 
network is smooth, means the activation function is differentiable everywhere, 
which is different from the activation function for single layer perceptron, the 
hard limiter shown in Fig. 2-2. The most popularly activation function is the 
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sigmoid function, whose graph is s-shaped, as shown in Figure 2-8 with 
1

1 exp( )
y

ax
=

+ −
                        (2.6) 

where y is the output signal of the neuron and v is the input signal. And the 
parameter a is the slop parameter of the sigmoid function. We can get different 
sigmoid functions by varying the slop parameter a, but we usually choose the 
sigmoid function with a = 1. Equation (2.6) is defined as a strictly increasing 
function that exhibits a graceful balance between linear and nonlinear behaviors. 

(2) The multi-layer network contains at least one hidden layer which is between input 
layer and output layer. The hidden layers enable the multi-layer networks to deal 
with more complex problems which can not be solved by single layer perceptron. 
The number of hidden layers for different problems is also an open question. We 
choose only one hidden layer with sigmoid activation functions in the hidden and 
output layers to solve the classification problem in this paper. This three layer 
perceptrons is also the most popular neural network adopted for many 
engineering applications. 

 
Figure 2-8. The sigmoid function 

 
2.4. The Back-Propagation Algorithm (BPA) 
The most serious problem of the single layer perceptron is that we don’t have any 
proper learning algorithm to adjust the synaptic weights of the perceptron. But the 
multi-layer feed-forward perceptrons don’t have this problem. The synaptic weights 
of the multi-layer perceptrons can be trained by using the highly popular algorithm 
known as the error back-propagation algorithm (EBP algorithm). We can view the 
error back-propagation algorithm as the general form of the least-mean square 
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algorithm (LMS). The error back-propagation algorithm (or the back-propagation 
algorithm) consists of two parts, one is the forward pass and the other is the backward 
pass. In the forward pass, the effect of the input data propagates through the network 
layer by layer. During this process, the synaptic weights of the networks are all fixed. 
On the other hand, the synaptic weights of the multi-layer perceptrons are all adjusted 
in accordance with the error-correction rule during the backward pass. Before using 
error-correction rule, we have to define the error signal of the learning process. 
Because the goal of the learning algorithm is to find one set of weights which makes 
the actual outputs of the network equal to the desired outputs, so we can define the 
error signal as the difference between the actual output and the desired output. 
Specifically, the desired response is subtracted from the actual response of the 
network to produce the error signal. In the backward pass, the error signal propagates 
backward through the network from output layer. During the backward pass, the 
synaptic weights of the multi-layer perceptrons are adjusted to make the actual 
outputs of the network move closer to the desired outputs. This is why we call this 
algorithm as “error back-propagation algorithm”. Now, we will consider the learning 
process of the back-propagation algorithm. First, the error signal at the output node j 
at the tth iteration is defined by  

( ) ( ) ( )m
j j je t y t d t= −                    (2.7)               

where dj is the desired output of output node j and ym
j is the actual output of output 

node j. The ym
j can also be represented as:  

1( )
1 exp( )

m m
j j m

j

y net
net

ϕ= =
+ −

                 (2.8) 

Where the term ψ(．) is the activation function, which is the sigmoid function, and 
netm

j is the output of node j in output layer. We can rewrite (2.8) as a more general 
form: 

( ) 1
1 exp( )

k k
j j k

j

y net
net

ϕ= =
+ −

                  (2.9) 

where yk
j is the output of node j in the kth layer and netk

j is the linear combination 
output of node j in the kth layer, which can be expressed as  

1k k k
j ji i

i
net w y b− k

j= −∑                      (2.10) 

In (2.10), the term wk
ji is the synaptic weight between the jth neuron in the kth layer 

and the ith neuron in the (k-1)th layer, and bk
j is the external bias of the jth neuron in the 

kth layer. Then we can define the square error of neuron j in output layer by:  

( )21=
2j je tζ                         (2.11) 
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By the same way, we can define the total square error J of the network as: 
21

2j
j j

jJ eζ= =∑ ∑                      (2.12) 

The goal of the back-propagation algorithm is to find one set of weights so that the 
actual outputs can be as close as possible to the desired outputs. In other words, the 
purpose of the back-propagation algorithm is to reduce the total square error J, as 
described in (2.12). In the method of steepest descent, the successive adjustments 
applied to the weight matrix W are in the direction opposite to the gradient 
matrix . The adjustment can be expressed as: /J W∂ ∂

( )
t

JW t
W

η ∂
∆ = −

∂
                     (2.13) 

where η is the learning rate parameter of the back-propagation algorithm. It decides 
the step-size of correction of the method of steepest descent [18]. Note that the 
learning rate is a positive constant. By using the chain rule, the element of 

matrix J W∂ ∂  , i.e. k
jiJ w∂ ∂ , can be represented as 

k k
j

k k k
ji j j ji

y netJ J
w y net w

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂
j

k                    (2.14) 

We can rewrite k
jy net∂ ∂ k

j  by using (2.9) to have 

( ) (1' 1
1 exp( )

k
j k k

j jk k k
j j j

y
net y y

net net net
ϕ

⎛ ⎞∂ ∂
= = = −⎜ ⎟⎜ ⎟∂ ∂ + −⎝ ⎠

)k
j         (2.15) 

We can also rewrite k k
j jinet w∂ ∂  by using (2.10) to have 

1
k
j k k k

ji i j ik k
iji ji

net
w y b y

w w
1− −∂ ∂ ⎛ ⎞= −⎜ ⎟∂ ∂ ⎝ ⎠

∑ =               (2.16) 

The item  in (2.14) can be discussed separately for two cases: / k
jJ y∂ ∂

1. If kth layer is the output layer, then k = m and yk
j = ym

j. So we can substitute (2.12) 

into  to have / k
jJ y∂ ∂

( ) (21
2

m m
j j j jk k

jj j

J y d y d
y y

⎡ ⎤∂ ∂
= − =⎢ ⎥∂ ∂ ⎣ ⎦

∑ )−               (2.17) 

2. If the kth layer is not output layer which means the kth layer is one of the hidden 
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layers. So, by using the chain rule we can rewrite / k
jJ y∂ ∂  as 

1

1

k
l

k k
lj l

netJ J
y net y

+

+

⎛ ⎞∂∂ ∂
= ⎜⎜∂ ∂ ∂⎝ ⎠
∑ k

j
⎟⎟                     (2.18) 

By using (2.10), the term 1k k
l jnet y+∂ ∂  

1
1 1

k
k k k kl
li i l ljk k

ij j

net w y b w
y y

+
1+ +∂ ∂ ⎛ ⎞= −⎜ ⎟∂ ∂ ⎝ ⎠

∑ +=               (2.19) 

where wk+1
lj is the synaptic weight between the jth neuron in the (k+1)th layer and the 

lth neuron in the kth layer. For simplicity, we assume the item  in (2.18) to 

have the following form: 

1/ k
lJ net +∂ ∂

1
1

k
lk

l

J
net

δ +
+

∂
=

∂
                        (2.20) 

 
Substitute (2.19) and (2.20) into (2.18), we have 

   ( 1 1k k
l ljk

lj

J w
y

δ + + )∂
=

∂ ∑                      (2.21) 

 
From (2.14) to (2.21), we have the following observations: 
1. If the synaptic weights are between the hidden layer and output layer, then 

( ) ( ) 11m k k
j j j j ik

ji

J y d y y y
w

k−∂
= − −

∂
               (2.22) 

          ( ) ( ) 11k m k k k
ji j j j jw y d y yη iy −∆ = − − −               (2.23) 

2. If the synaptic weights are between the hidden layers or between the input layer 
and the hidden layer, then  

( ) ( )1 1 1k k k k k
l lj j j ik

lji

J w y y y
w

δ 1+ +∂ ⎛ ⎞= ⎜ ⎟∂ ⎝ ⎠
∑ −−

1ky y

           (2.24) 

         ( ) ( )1 1 1k k k k k
ji l lj j j i

l

w w yη δ + +⎛ ⎞∆ = − −⎜ ⎟
⎝ ⎠
∑ −           (2.25) 

 
Equation (2.23) and (2.25) are the most important formulas of the back-propagation 
algorithm. The synaptic weights can be adjusted by substituting (2.23) and (2.25) into 
the following (2.26): 
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( ) ( ) ( )1k k
ji ji jiw t w t w t+ = + ∆ k                 (2.26) 

The learning process of Back-Propagation learning algorithm can be expressed by the 
following steps: 
Step1: Decide the structure of the network for the problem.  
Step2: Choosing a suitable value between 0 and 1 for the learning rate η. 
Step3: Picking the initial synaptic weights from a uniform distribution whose value is 

all, like between -1 and 1. usually sm
Step4: Calculate the output signal of the network by using (2.9). 
Step5: Calculate the error energy function J by using (2.12). 
Step6: Using (2.26) to update the synaptic weights. 
Step7: Back to step4 and repeat step4 to step6 until the error energy function J is 

small enough. 
 
Although the network with BPA can deal with more complex problems which can not 
be solved by single layer perceptron, the BPA still has the following problems: 
1. Number of hidden layers 
According to the result of theoretical researches, the number of hidden layer does not 
need over two layers. Although nearly all problems can be solved by two hidden 
layers or even one hidden layer, we really have no idea to choose the number of 
hidden layers. Even the number of neurons in the hidden layer is an open question. 
2. Initial synaptic weights 
One defect of the method of steepest descent is the “local minimum” problem. This 
problem relates to the initial synaptic weights. How to choose the best initial weights 
is still a topic of neural network. 
3. The most suitable learning rate 
The learning rate decides the step-size of learning process. Although smaller learning 
rate can have a better chance to have convergent results, the speed of convergence is 
very slow and need more number of epochs. For larger learning rate, it can speed up 
the learning process, but it will create more unpredictable results. So how to find a 
suitable learning rate is also an important problem of neural network. 
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CHAPTER 3 

Dynamic Optimal Training of A Three-Layer Neural 

Network with Sigmoid Function 
 
In this chapter, we will try to solve the problem of finding the suitable learning rate 
for the training of a three layer neural network. For solving this problem, we will find 
the dynamic optimal learning rate of every iteration. The neural network with one 
hidden layer is enough to solve the most problems in classification. So the dynamical 
optimal training algorithm will be proposed in this Chapter for a three layer neural 
network with sigmoid activation functions in the hidden and output layers in this 
chapter. 
 
3.1. The Architecture of A Three-Layer Network 
Consider the following three layer neural network, as shown in the Figure 3-1, which 
has only one hidden layer. The architecture of the neural network is M-H-N network. 
There are M neurons in the input layer and H neurons in the hidden layer and N 
neurons in the output layer.  

1x

2x

ix

Mx

1
y

2
y

k
y

N
y

HW YW

1
1

1

2
2

2
3

i
j

k

M

H

N

∑ ( )f i

 
Figure 3-1. The three layer neural network 
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There is no activation function in the neurons of the input layer. And the activation 
function for the neurons in the hidden and output layers is defined by 

1( )
1 exp( )

f x
x

=
+ −

                         (3.1) 

Note that we don’t consider the bias in this chapter. 
 
3.2. The Dynamic Optimal Learning Rate 
Suppose we are given the following training matrix and the desired output matrix: 

11 12 1

21 22 2

1 2

P

P
M P

M M MP M P

x x x
x x x

X

x x x

×

×

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % #
"

⎥
⎥

                    (3.2) 

11 12 1

21 22 2

1 2

P

P

N N NP N P

d d d
d d d

D

d d d
×

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % #
"

⎥
⎥

                    (3.3) 

There are P columns in (3.2) and (3.3) which implies that there are P sets of training 
examples. And the weighting matrix between the input layer and the hidden layer is 
expressed as: 

11 12 1

21 22 2

1 2

hidden hidden hidden
M

hidden hidden hidden
M

H

hidden hidden hidden
H H HM H M

w w w
w w w

W

w w w
×

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % #
"

⎥
⎥

                 (3.4) 

The weighting matrix between the hidden layer and the output layer is expressed as: 

11 12 1

21 22 2

1 2

H

H
Y

N N NH N H

w w w
w w w

W

w w w
×

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % #
"

⎥
⎥

                    (3.5) 

Then, we can get the linear combiner output of the hidden layer due to (3.2) and (3.4) 
which is expressed as: 

11 12 1

21 22 2

1 2

hidden hidden hidden
P

hidden hidden hidden
P

H H

hidden hidden hidden
H H HP H P

s s s
s s s

S W X

s s s
×

⎡ ⎤
⎢ ⎥
⎢= ⋅ =
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % #
"

⎥
⎥

               (3.6) 
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And by using (3.1) and (3.6), the output matrix of the hidden layer is expressed as 
below. 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 1
11 12 1

21 22 221 22 2

1 2
1 2

hidden hidden hidden
P

P
hidden hidden hidden

Pp

hidden hidden hiddenH H HP H P H H HP H P

f s f s f sv v v
f s f s f sv v v

V

v v v f s f s f s×
×

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

""
""

# # % # # # % #
" "

     

11 12 1

21 22 2

1 2

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

hidden hidden hidden
P

hidden hidden hidden
P

hidden hidden hidden
H H HP

s s s

s s s

s s s
H P

e e e

e e e

e e e

− − −

− − −

− − −
×

⎡ ⎤
⎢ ⎥+ + +⎢ ⎥
⎢ ⎥
⎢ ⎥= + + +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

"

"

# # % #

"

           (3.7) 

The linear combiner output of the output layer due to (3.5) and (3.7) is expressed as: 

11 12 1

21 22 2

1 2

P

P
Y Y

N N NP N P

s s s
s s s

S W V

s s s
×

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⋅ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % #
"

                  (3.8) 

And the output of the output layer, which is also the actual output of the network: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 12 111 12 1

21 22 221 22 2

1 21 2

PP

PP

N N NPN N NP N P N P

f s f s f sy y y
f s f s f sy y y

Y

f s f s f sy y y
× ×

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
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⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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# # % ## # % #
""

        

11 12 1

21 22 2

1 2

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

P

P

N N NP

s s s

s s s

s s s
N P

e e e

e e e

e e e

− − −

− − −

− − −
×

⎡ ⎤
⎢ ⎥+ + +⎢ ⎥
⎢ ⎥
⎢ ⎥= + + +
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

"

"

# # % #

"

               (3.9) 

 
Substituting (3.8) into (3.1) then we can get (3.9). 
The most important parameter of the BP algorithm is the error signal. And the error 
signal is the difference between the actual output of the network and the desire output. 
So, we define the error function E as: 
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11 12 1

21 22 2

1 2

P

P

N N NP N P

e e e
e e e

E Y D

e e e
×

⎡ ⎤
⎢ ⎥
⎢ ⎥= − =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % #
"

                     

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

P P

P P

N N N N NP NP N P

y d y d y d
y d y d y d

y d y d y d
×

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥
⎢ ⎥− − −⎢ ⎥⎣ ⎦

"
"

# # % #
"

          (3.10) 

Finial, we define the total squared error, the energy function of the network, J as 
follows: 

( ) (
2

1 1

1 1
2 2

P N
T

kp kp
p k

J y d Tr E
= =

= − =∑∑ i )E              (3.11) 

The topic of the learning process is to minimize the total square error J. According to 
Back-propagation algorithm, we use the method of steepest descent to adjust the 
synaptic weights. And we apply formula (3.12) and (3.14) to update the weighting 
matrixes WH and WY. Equation (3.12) and (3.14) are expressed as follow. 

( ) ( )1H H H
H t

JW t W t
W

β ∂
+ = −

∂
                       (3.12) 

or   ( ) ( )1hidden hidden
ji ji Y hidden

ji t

Jw t w t
w

β ∂
+ = − ⋅

∂
 ， ( )1,2, ,   1,2, ,j H i M= =" "；   

(3.13) 

( ) ( )1Y Y Y
Y t

JW t W t
W

β ∂
+ = −

∂
                       (3.14) 

or         ( ) ( )1kj kj Y
kj t

Jw t w t
w

β ∂
+ = − ⋅

∂
 ， ( )1,2, ,   1,2, ,k N j= =" "； H      

(3.15) 
Where t denotes the tth iteration and βH and βY are the learning rate of WH and WY 
respectively. 
Now, let us consider the derivative of (3.15) only, 

1 1 2 2

1 1 2 2

k k k k kP k

kj k k kj k k kj kP kP kj

y s y s y sJ J J J
w y s w y s w y s w

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂
= ⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
" P          
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1

P
kp kp

p kp kp kj

y sJ
y s w=

∂ ∂∂
= ⋅ ⋅

∂ ∂ ∂∑                      (3.16) 

In which,  

( ) (
2

1 1

1
2

P N

kp kp kp kp
p kkp kp

J y d y d
y y = =

⎡ ⎤∂ ∂
= − =⎢ ⎥

∂ ∂ ⎢ ⎥⎣ ⎦
∑∑ )−            (3.17) 

( ) ( ) (
1 2

1 1 1kp kp kps s skp
kp kp

kp kp

y
e e e y

s s
− −− − −∂ ∂

= + = + ⋅ = −
∂ ∂

)y        (3.18) 

( )1 1 2 2
kp

k p k p kH Hp jp
kj kj

s
w v w v w v v

w w
∂ ∂

= + + +
∂ ∂

" =            (3.19) 

Accordingly, the use of (3.17)、(3.18) and (3.19) in (3.16) yields 

( ) ( )
1

1
P

kp kp kp kp jp
pkj

J y d y y v
w =

∂
= − ⋅ − ⋅

∂ ∑               (3.20) 

So, we can rewrite (3.15) as 

( ) ( ) ( ) ( )
1

1 1
P

kj kj Y kp kp kp kp jp
p t

w t w t y d y y vβ
=

+ = − ⋅ − ⋅ − ⋅∑             

( 1,2, ,   1,2, ,k N j= =" "； )H                  (3.21) 

Equation (3.21) is the formula that we use to adjust the synaptic weights WY. 
Furthermore, let us consider the weighting matrix WH between the input layer and the 
hidden layer, as expressed in (3.13): 

( ) ( )1hidden hidden
ji ji Y hidden

ji t

Jw t w t
w

β ∂
+ = − ⋅

∂
                (3.13) 

For the convenience, we just discuss the derivative of (3.13) in the beginning. 

1 2

1 2

j j
hidden hidden hidden hidden
ji j ji j ji jP ji

v vJ J J J
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∂ ∂∂ ∂ ∂ ∂
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" jPv∂

 

1111 21
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" +  

2212 22
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………                     +              
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jPNPP P
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P jP P jP NP jP ji

vyJ y J y J
y v y v y v w
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v s yJ
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In which,  

( )1kp kp kp
kp kp kj

jp kp jp

y y s
y y

v s v
∂ ∂ ∂

= = −
∂ ∂ ∂

w⋅                   (3.23) 

In which we substitute (3.18) into (3.23).  

( ) ( ) (
1 2

1 1 1
hidden hidden hidden
jp jp jps s sjp

jp jphidden hidden
jp jp

v
e e e v

s s

− −
− − −∂ ∂
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( )1 1 2 2

hidden
jp hidden hidden hidden

j p j p jM Mp jphidden hidden
ji ji

s
w x w x w x x

w w
∂ ∂

= + + +
∂ ∂

" =         (3.25) 

Accordingly, the use of (3.17)、(3.23)、(3.24) and (3.25) in (3.22) yields 

( ) ( ) ( )( )
1 1

1 1
P N

jp jp ip kp kp kp kp kjhidden
p kji

J v v x y d y y w
w = =

∂ ⎡ ⎤= − ⋅ ⋅ − ⋅ − ⋅⎢ ⎥∂ ⎣ ⎦
∑ ∑      (3.26) 

So, we can rewrite (3.13) as 

( ) ( ) ( ) ( ) ( )( )
1 1

1 1 1
P N

hidden hidden
ji ji H jp jp ip kp kp kp kp kj

p k

w t w t v v x y d y y wβ
= =

⎧ ⎫⎡ ⎤+ = − ⋅ − ⋅ ⋅ − ⋅ − ⋅⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑ ∑  

，    ( )1,2, ,   1,2, ,j H i M= =" "；                    (3.27) 

Equation (3.27) is the formula that we use to adjust the synaptic weights WH. By using 
(3.21) and (3.27), we can adjust the synaptic weights of the network. 
 
3.3. Dynamical Optimal Training via Lyapunov’s Method  
In control system, we know that we can use the Lyapunov function to consider the 
stability of the system. The basic philosophy of Lyapunov’s direct method is the 
mathematical extension of a fundamental physical observation: if the total energy of a 
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mechanical (or electrical) system is continuously dissipated, then the system, whether 
linear or nonlinear must eventually settle down to an equilibrium point [19]. So by the 
same meaning, we define the Lyapunov function as 

V J=                          (3.28) 
Where the item J is total square error, defined in (3.11). And Equation (3.28) is 
positive definite, which means that V = J > 0. The difference of the Lyapunov function 
is  

1tV J J+ t∆ = −                       (3.29) 
Where Jt+1 expresses the total square error of the (t+1)th iteration. If Equation (3.29) is 
negative, the system is guaranteed to be stable. Then, for △V < 0 we have 

1 0t tJ J+ − <                         (3.30) 
So, by using (3.11) we can get 

( )( ) ( )( )
2 2

1
1 1 1 1

1 11
2 2

P N P N

t t kp kp kp kp
p k p k

J J y t d y t d+
= = = =

− = + − − −∑∑ ∑∑  

( )( ) ( )( )2 2

1 1

1 1
2

P N

kp kp kp kp
p k

y t d y t d
= =

⎡ ⎤= + − − −⎢ ⎥⎣ ⎦∑∑  

( ) ( )( ,H YG t tβ β= )                                  (3.31) 

In Equation (3.31), the item Jt is already known and the Jt+1 is the function of βH(t) 
and βY(t), so Jt+1-Jt can be expressed as a new function G of βH(t) and βY(t). For 
simplification, we can assume that βH(t) = βY(t) = β(t), then the function G only has 
one parameter G(β(t)). The Equation (3.31) can be rewritten as 

( )( )1t tJ J G tβ+ − =                    (3.32) 

If the parameter β(t) satisfies Jt+1 - Jt = G(β(t)) <0, then the set of β(t) is the stable 
range of the learning rate of the system at the tth iteration. In this stable range, if the 
βopt(t) satisfies that Jt+1 - Jt  is at its minimum, we call βopt(t) the optimal learning rate 
at the tth iteration. The optimal learning rate βopt(t) will not only guarantee the stability 
of the training process, but also has the fastest speed of convergence. 
In order to find the optimal learning rate βopt(t) from the function Jt+1 - Jt analytically, 
we need to have an explicit form of Jt+1 - Jt, like the simplest form of Jt+1 - Jt (for a 
simple two layer neural network) in [13]. But the function Jt+1 - Jt here is a very 
complicated nonlinear algebraic equation, it is nearly impossible to have a simple 
explicit form. However we have also defined the function Jt+1 - Jt in (3.31) by 
progressively evolving the equations from the beginning of this Chapter. Therefore we 
can indeed defined (3.31) implicitly in Matlab coding. In this case, we can apply the 
Matlab routine fminbnd to find the optimal learning rate βopt(t) from Jt+1 - Jt. The 
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calling sequence of fminbnd is: 
 
FMINBND Scalar bounded nonlinear function minimization. 
X = FMINBND(FUN,x1,x2) starts at X0 and finds a local minimizer X of the function 
FUN in the interval x1 <= X <= x2. FUN accepts scalar input X and returns a scalar 
function value F evaluated at X. 
 
The capability of the Matlab routine “fminbnd” is to find a local minimizer βopt of the 
function G(β), which has only one independent variable β, in a given interval. So we 
have to define an interval when we use this routine. For the following two examples 
in Chapter 4, we set the interval as [0.01, 100] to set the allowable learning rates 
between 0.01 and 100. Note that for simplicity, we assume that βH(t) = βY(t) = β(t) in 
(3.31), therefore there is only one variable in (3.31). So we use the routine “fminbnd” 
to find the optimal learning rate. However, we can also find the learning rate βH(t) and 
βY(t) respectively by using another Matlab routine “fminunc”. But this routine 
“fminunc” can only find the minimizer βH(t) and βY(t) around one specific point, not 
around an interval. Therefore it is very limited in application and is not appropriate 
for this case. 
 
Algorithm 1: Dynamic optimal training algorithm for a three-layer neural network 
Step 0: The following WH(t), WY(t), G(β(t)), βopt(t) and Y(t) denote their respective 
values at iteration t. 

Step 1: Given the initial weighting matrix WH(1), WY(1), the training input matrix X 
and the desired output matrix D then we can find the actual output matrix of the 
network Y(1) and the nonlinear function G(β(1)). 

Step 2: Using Matlab routine “fminbnd” with the interval [0.01, 100] to solve the 
nonlinear function G(β(1)) and find the optimal learning rate βopt(1). 

Step 3: Iteration count t=1. Start the back propagation training process. 
Step 4: Find if the desired output matrix D and the actual output matrix of the 
network Y(1) are close enough or not? If Yes, GOTO Step 9. 

Step 5: Update the synaptic weights matrix to yield WH(t+1) and WY(t+1) by using 
(3.27) and (3.21) respectively. 

Step 6: Find the actual output matrix of the network Y(t+1) and the nonlinear function 
G(β(t+1)). 

Step 7: Use Matlab routine “fminbnd” to find the optimal learning rate βopt(t+1) for 
the next iteration. 

Step 8: t=t+1 and GOTO Step 4. 
Step 9: End. 
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CHAPTER 4 

Experimental Results 
 

In this chapter, the classification problems of XOR and Iris data will be solved via our 
new dynamical optimal training algorithm in Chapter 3. The training results will be 
compared with the conventional BP training using fixed learning rate. 
 
4.1. Example 1: The XOR Problem 
The task is to train the network to produce the Boolean “Exclusive OR” (XOR) 
function of two variables. The XOR operator yields true if exactly one (but not both) 
of two conditions is true, otherwise the XOR operator yields false. We need only 
consider four input data (0,0), (0,1), (1,1), and (1,0) in this problem. The first and 
third input patterns are in class 0, which means the XOR operator yields “False” 
when the input data is (0,0) or (1,1). The distribution of the input data is shown in 
Figure 4-1. Because there are two variables of XOR function, we choose the input 
layer with two nodes and the output layer with one node. Then we use one hidden 
layer with two neurons to solve XOR problem [14], as shown in Figure 4-2. The 
architecture of the neural network is 2-2-1 network. 
 
 

The input data of XOR

0, 0

1, 1

1, 0

0, 1

X1

X2
Class 0

Class 1

 
Figure 4-1. The distribution of XOR input data sets 
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Figure 4-2. The neural network for solving XOR 
 

First, we use the standard BP algorithm with fixed learning rates (β = 1.5, 0.9, 0.5 and 
0.1) to train the XOR, and the training results are shown in Figure 4-3-1 ~ 4-3-4. The 
result of using BP algorithm with dynamic optimal learning rates to train the XOR is 
shown Figure 4-4. 
 
 
 

 
Figure 4-3-1. The square error J of the standard BPA with fixed β = 1.5 
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Figure 4-3-2. The square error J of the standard BPA with fixed β = 0.9 

 
 
 

 
Figure 4-3-3. The square error J of the standard BPA with fixed β = 0.5 
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Figure 4-3-4. The square error J of the standard BPA with fixed β = 0.1 

 
 

 
Figure 4-4. The square error J of the BPA with dynamic optimal training 

 
 

The following Figure 4-5 shows the plot of (3.32) for -1 < β < 100, which is G(β) = 
∆J(β) = Jt+1 - Jt, at iteration count t = 1. The Matlab routine fminbnd will be invoked 
to find βopt with the constraint that G(βopt) < 0 with maximum absolute value. This βopt 
is the learning rate for iteration count t = 2.The βopt is found to be 7.2572 for iteration 
count 2. The dynamic learning rate of every iteration is shown in Figure 4-6. 
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Figure 4-5. The difference equation G(β(n)) and βopt = 7.2572  

 
 
 

 
Figure 4-6. The dynamic learning rates of every iteration 
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The comparison of these cases is shown in Figure 4-7. In Figure 4-7, it is obvious that 
our dynamical optimal training yields the best training results in minimum epochs. 

 

Figure 4-7. Training errors of dynamic optimal learning rates and fixed learning rates 
 

 
Table 4-1 shows the training result via dynamical optimal training for XOR problem. 
 

Table 4.1. The training result for XOR using dynamical optimal training 
Iterations

Training Results 
1000 5000 10000 15000 

W1 (after trained) 6.5500 7.7097 8.8191 8.4681 
W2 (after trained) 6.5652 7.7145 8.1921 8.4703 
W3 (after trained) 0.8591 0.9265 0.9473 0.9573 
W4 (after trained) 0.8592 0.9265 0.9473 0.9573 
W5 (after trained) 14.9536 26.2062 33.0393 37.8155 
W6 (after trained) -19.0670 -32.9550 -41.3692 -47.2513 

 Actual Output Y for (x1, x2) = (0,0) 0.1134 0.0331 0.0153 0.0089 
 Actual Output Y for (x1, x2) = (0,1) 0.8232 0.9300 0.9616 0.9750 
 Actual Output Y for (x1, x2) = (1,0) 0.8232 0.9300 0.9616 0.9750 
 Actual Output Y for (x1, x2) = (1,1) 0.2291 0.0925 0.0511 0.0334 

J 0.0639 0.0097 0.0029 0.0012 
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Table 4-2 shows the training result via the standard BP with fixed β = 0.9 for XOR 
problem. 
 

Table 4.2. The training result for XOR using fixed learning rate β = 0.9 
Iterations

Training Results 
1000 5000 10000 15000 

W1 (after trained) 4.7659 7.2154 7.6576 7.8631 
W2 (after trained) 4.8474 7.2228 7.6624 7.8670 
W3 (after trained) 0.7199 0.8996 0.9234 0.9331 
W4 (after trained) 0.7228 0.8996 0.9234 0.9331 
W5 (after trained) 6.2435 20.6467 25.5617 28.2288 
W6 (after trained) -8.1214 -26.1034 -32.1610 -35.4456 

 Actual Output Y for (x1, x2) = (0,0) 0.2811 0.0613 0.0356 0.0264 
 Actual Output Y for (x1, x2) = (0,1) 0.6742 0.8885 0.9263 0.9415 
 Actual Output Y for (x1, x2) = (1,0) 0.6745 0.8885 0.9263 0.9415 
 Actual Output Y for (x1, x2) = (1,1) 0.4192 0.1479 0.0982 0.0781 

J 0.2334 0.0252 0.0109 0.0068 
 
To compare Table 4.1 with Table 4.2, we can see that the training result via dynamical 
optimal training is faster with better result than other approaches.  
 
Now, we will use another method, the back-propagation algorithm with momentum, 
to solve XOR problem again. Then we will compare its training errors with that of 
dynamic optimal training and see if dynamic optimal training is indeed better. The 
back-propagation algorithm with momentum is to modify the Equation (2.13) by 
including a momentum term as follows: 

( ) ( 1
t

JW t W t
W

η α∂
∆ = − + ⋅∆ −

∂
)                  (4.1) 

where α is usually a positive number called the momentum constant and usually in the 
range [0, 1). The training results of the BPA with momentum for XOR problem are 
shown in Figure 4-8-1 ~ 4-8-3. The comparison of these cases is shown in Figure 4-9. 
In Figure 4-9, we can see that some training results of BPA with momentum are as 
well as the dynamic training but the most results of BPA with momentum are 
unpredictable. The training results still depend on the chosen learning rates and 
momentum. 
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Figure 4-8-1. The square error J of the BPA with variant momentum(β = 0.9) 

 
 

 

 

Figure 4-8-2. The square error J of the BPA with variant momentum(β = 0.5) 
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Figure 4-8-3. The square error J of the BPA with variant momentum (β = 0.1) 

 
 

 

Figure 4-9. Total square errors of dynamic training and the BPA with different learning 
rates and momentum 

 30



4.2. Example 2: Classification of Iris Data Set 
In this example, we will use the same neural network as before to classify Iris data 
sets [15], [16]. Generally, Iris has three kinds of subspecies, and the classification will 
depend on the length and width of the petal and the length and width of the sepal. The 
total Iris data are shown in Figure 4-10-1 and 4-10-2. And the training data sets, the 
first 75 samples of total data, are shown in Figures 4-11-1 and 4-11-2. The Iris data 
samples are available in [20]. There are 150 samples of three species of the Iris 
flowers in this data. We choose 75 samples to train the network and using the other 75 
samples to test the network. We will have four kinds of input data, so we adopt the 
network which has four nodes in the input layer and three nodes in the output layer for 
this problem. Then the architecture of the neural network is a 4-4-3 network as shown 
in Figure 4-12. In which, we use the network with four hidden nodes in the hidden 
layer. 
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Figure 4-10-1. The total Iris data set (Sepal) 
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Figure 4-10-2. The total Iris data set (Petal) 
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Figure 4-11-1. The training set of Iris data (Sepal) 
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Figure 4-11-2. The training set of Iris data (Petal) 
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Figure 4-12. The neural network for solving Iris problem 
 

First, we use the standard BPA with fixed learning rates (β = 0.1, 0.01 and 0.001) to 
solve the classification of Iris data sets, and the training results are shown in Figure 
4-13-1 ~ 4-13-3. The result of BPA with dynamic optimal learning rates is shown in 
Figure 4-14. 
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Figure 4-13-1. The square error J of the standard BPA with fixed β = 0.1 

 
 
 

 
Figure 4-13-2. The square error J of the standard BPA with fixed β = 0.01 
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Figure 4-13-3. The square error J of the standard BPA with fixed β = 0.001 

 
 
 

 
Figure 4-14. The square error J of the BPA with dynamic optimal training 
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Figure 4-15 shows that the convergence speed of the network with dynamic learning 
rate is absolutely faster than the network with fixed learning rates. Because the 
optimal learning rate of every iteration is almost in the range [0.01, 0.02], so the 
convergence speed of the fixed learning rate β = 0.01 is similar to the convergence 
speed of the dynamic learning rate. But dynamic learning rate approach still performs 
better than those of using fixed learning rates. 
 
 

 
Figure 4-15. Training errors of dynamic optimal learning rates and fixed learning rates 

 
After 10000 training iterations, the resulting weights and total square error J are 
shown below.  
 

H

1.2337 -0.5033 1.3225 1.3074
-0.3751 3.4714 -2.6777 -1.6052

W =
3.7235 5.1603 -4.0019 -10.4289
1.9876 -2.7186 4.6171 4.3400

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Y

-2.2947 7.8444 3.4765 -5.0185
W -2.5365 -8.5464 9.3797 -2.1300

2.0822 -3.7674 -10.4114 3.0220

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Total square error J = 0.1582 
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The actual output and desired output of 10000 training iteration are shown in Table 
4.3 and the testing output and desired output are shown in Table 4.4. After we 
substitute the above weighting matrices into the network and perform real testing, we 
find that there is no classification error by using training set (the first 75 data set). 
However there are 5 classification errors by using testing set (the later 75 data set), 
which are index 34, 51, 55, 57, 59 in Table 4-4. 
 

Table 4.3. Actual and desired outputs after 10000 iterations 
Actual Output Desired Output  

Index Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

1 0.9819 0.0216 0.0001 1.0000 0.0000 0.0000 
2 0.9807 0.0233 0.0001 1.0000 0.0000 0.0000 
3 0.9817 0.0220 0.0001 1.0000 0.0000 0.0000 
4 0.9810 0.0229 0.0001 1.0000 0.0000 0.0000 
5 0.9821 0.0215 0.0001 1.0000 0.0000 0.0000 
6 0.9819 0.0215 0.0001 1.0000 0.0000 0.0000 
7 0.9819 0.0218 0.0001 1.0000 0.0000 0.0000 
8 0.9817 0.0219 0.0001 1.0000 0.0000 0.0000 
9 0.9804 0.0237 0.0001 1.0000 0.0000 0.0000 
10 0.9810 0.0228 0.0001 1.0000 0.0000 0.0000 
11 0.9820 0.0215 0.0001 1.0000 0.0000 0.0000 
12 0.9816 0.0221 0.0001 1.0000 0.0000 0.0000 
13 0.9810 0.0229 0.0001 1.0000 0.0000 0.0000 
14 0.9821 0.0222 0.0001 1.0000 0.0000 0.0000 
15 0.9822 0.0213 0.0001 1.0000 0.0000 0.0000 
16 0.9822 0.0213 0.0001 1.0000 0.0000 0.0000 
17 0.9821 0.0214 0.0001 1.0000 0.0000 0.0000 
18 0.9819 0.0217 0.0001 1.0000 0.0000 0.0000 
19 0.9818 0.0216 0.0001 1.0000 0.0000 0.0000 
20 0.9821 0.0215 0.0001 1.0000 0.0000 0.0000 
21 0.9811 0.0226 0.0001 1.0000 0.0000 0.0000 
22 0.9819 0.0216 0.0001 1.0000 0.0000 0.0000 
23 0.9829 0.0218 0.0001 1.0000 0.0000 0.0000 
24 0.9800 0.0240 0.0001 1.0000 0.0000 0.0000 
25 0.9808 0.0231 0.0001 1.0000 0.0000 0.0000 
26 0.0214 0.9910 0.0049 0.0000 1.0000 0.0000 
27 0.0215 0.9908 0.0049 0.0000 1.0000 0.0000 
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28 0.0211 0.9909 0.0050 0.0000 1.0000 0.0000 
29 0.0174 0.9846 0.0090 0.0000 1.0000 0.0000 
30 0.0205 0.9902 0.0055 0.0000 1.0000 0.0000 
31 0.0202 0.9895 0.0058 0.0000 1.0000 0.0000 
32 0.0210 0.9903 0.0052 0.0000 1.0000 0.0000 
33 0.0243 0.9895 0.0046 0.0000 1.0000 0.0000 
34 0.0213 0.9910 0.0049 0.0000 1.0000 0.0000 
35 0.0189 0.9861 0.0076 0.0000 1.0000 0.0000 
36 0.0208 0.9899 0.0055 0.0000 1.0000 0.0000 
37 0.0213 0.9902 0.0052 0.0000 1.0000 0.0000 
38 0.0212 0.9910 0.0049 0.0000 1.0000 0.0000 
39 0.0203 0.9898 0.0057 0.0000 1.0000 0.0000 
40 0.0251 0.9892 0.0045 0.0000 1.0000 0.0000 
41 0.0216 0.9909 0.0049 0.0000 1.0000 0.0000 
42 0.0172 0.9836 0.0095 0.0000 1.0000 0.0000 
43 0.0218 0.9907 0.0049 0.0000 1.0000 0.0000 
44 0.0072 0.8555 0.1140 0.0000 1.0000 0.0000 
45 0.0216 0.9907 0.0049 0.0000 1.0000 0.0000 
46 0.0058 0.7622 0.2006 0.0000 1.0000 0.0000 
47 0.0218 0.9907 0.0049 0.0000 1.0000 0.0000 
48 0.0090 0.9154 0.0618 0.0000 1.0000 0.0000 
49 0.0210 0.9908 0.0051 0.0000 1.0000 0.0000 
50 0.0215 0.9909 0.0049 0.0000 1.0000 0.0000 
51 0.0007 0.0093 0.9940 0.0000 0.0000 1.0000 
52 0.0007 0.0101 0.9934 0.0000 0.0000 1.0000 
53 0.0007 0.0119 0.9920 0.0000 0.0000 1.0000 
54 0.0008 0.0162 0.9888 0.0000 0.0000 1.0000 
55 0.0007 0.0095 0.9939 0.0000 0.0000 1.0000 
56 0.0007 0.0103 0.9933 0.0000 0.0000 1.0000 
57 0.0007 0.0102 0.9933 0.0000 0.0000 1.0000 
58 0.0011 0.0330 0.9752 0.0000 0.0000 1.0000 
59 0.0007 0.0108 0.9929 0.0000 0.0000 1.0000 
60 0.0007 0.0099 0.9936 0.0000 0.0000 1.0000 
61 0.0024 0.2245 0.7853 0.0000 0.0000 1.0000 
62 0.0008 0.0131 0.9912 0.0000 0.0000 1.0000 
63 0.0008 0.0138 0.9906 0.0000 0.0000 1.0000 
64 0.0007 0.0094 0.9939 0.0000 0.0000 1.0000 

 38



65 0.0007 0.0093 0.9940 0.0000 0.0000 1.0000 
66 0.0007 0.0100 0.9935 0.0000 0.0000 1.0000 
67 0.0016 0.0894 0.9242 0.0000 0.0000 1.0000 
68 0.0013 0.0511 0.9596 0.0000 0.0000 1.0000 
69 0.0007 0.0093 0.9940 0.0000 0.0000 1.0000 
70 0.0010 0.0291 0.9785 0.0000 0.0000 1.0000 
71 0.0007 0.0102 0.9933 0.0000 0.0000 1.0000 
72 0.0007 0.0098 0.9936 0.0000 0.0000 1.0000 
73 0.0007 0.0103 0.9933 0.0000 0.0000 1.0000 
74 0.0017 0.1066 0.9075 0.0000 0.0000 1.0000 
75 0.0008 0.0164 0.9887 0.0000 0.0000 1.0000 

 
 

Table 4.4. Actual and desired outputs in real testings 
Actual Output Desired Output  

Index Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

1 0.9794 0.0249 0.0001 1.0000 0.0000 0.0000 
2 0.9812 0.0224 0.0001 1.0000 0.0000 0.0000 
3 0.9818 0.0218 0.0001 1.0000 0.0000 0.0000 
4 0.9818 0.0218 0.0001 1.0000 0.0000 0.0000 
5 0.9810 0.0229 0.0001 1.0000 0.0000 0.0000 
6 0.9804 0.0236 0.0001 1.0000 0.0000 0.0000 
7 0.9813 0.0223 0.0001 1.0000 0.0000 0.0000 
8 0.9823 0.0214 0.0001 1.0000 0.0000 0.0000 
9 0.9823 0.0213 0.0001 1.0000 0.0000 0.0000 
10 0.9810 0.0228 0.0001 1.0000 0.0000 0.0000 
11 0.9818 0.0219 0.0001 1.0000 0.0000 0.0000 
12 0.9820 0.0216 0.0001 1.0000 0.0000 0.0000 
13 0.9810 0.0228 0.0001 1.0000 0.0000 0.0000 
14 0.9813 0.0226 0.0001 1.0000 0.0000 0.0000 
15 0.9817 0.0219 0.0001 1.0000 0.0000 0.0000 
16 0.9820 0.0216 0.0001 1.0000 0.0000 0.0000 
17 0.9650 0.0442 0.0002 1.0000 0.0000 0.0000 
18 0.9819 0.0220 0.0001 1.0000 0.0000 0.0000 
19 0.9813 0.0224 0.0001 1.0000 0.0000 0.0000 
20 0.9816 0.0219 0.0001 1.0000 0.0000 0.0000 
21 0.9804 0.0236 0.0001 1.0000 0.0000 0.0000 
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22 0.9820 0.0215 0.0001 1.0000 0.0000 0.0000 
23 0.9816 0.0222 0.0001 1.0000 0.0000 0.0000 
24 0.9820 0.0215 0.0001 1.0000 0.0000 0.0000 
25 0.9817 0.0220 0.0001 1.0000 0.0000 0.0000 
26 0.0215 0.9909 0.0049 0.0000 1.0000 0.0000 
27 0.0210 0.9909 0.0051 0.0000 1.0000 0.0000 
28 0.0170 0.9839 0.0095 0.0000 1.0000 0.0000 
29 0.0196 0.9886 0.0064 0.0000 1.0000 0.0000 
30 0.0239 0.9898 0.0046 0.0000 1.0000 0.0000 
31 0.0215 0.9907 0.0050 0.0000 1.0000 0.0000 
32 0.0219 0.9907 0.0049 0.0000 1.0000 0.0000 
33 0.0220 0.9906 0.0049 0.0000 1.0000 0.0000 
*34 0.0019 0.1415 0.8726 0.0000 1.0000 0.0000 
35 0.0140 0.9710 0.0179 0.0000 1.0000 0.0000 
36 0.0217 0.9901 0.0051 0.0000 1.0000 0.0000 
37 0.0212 0.9909 0.0050 0.0000 1.0000 0.0000 
38 0.0201 0.9897 0.0058 0.0000 1.0000 0.0000 
39 0.0224 0.9903 0.0049 0.0000 1.0000 0.0000 
40 0.0199 0.9889 0.0061 0.0000 1.0000 0.0000 
41 0.0197 0.9889 0.0062 0.0000 1.0000 0.0000 
42 0.0210 0.9905 0.0052 0.0000 1.0000 0.0000 
43 0.0215 0.9907 0.0050 0.0000 1.0000 0.0000 
44 0.0232 0.9900 0.0047 0.0000 1.0000 0.0000 
45 0.0206 0.9899 0.0055 0.0000 1.0000 0.0000 
46 0.0223 0.9905 0.0048 0.0000 1.0000 0.0000 
47 0.0216 0.9905 0.0050 0.0000 1.0000 0.0000 
48 0.0215 0.9908 0.0049 0.0000 1.0000 0.0000 
49 0.0300 0.9869 0.0042 0.0000 1.0000 0.0000 
50 0.0215 0.9905 0.0050 0.0000 1.0000 0.0000 
*51 0.0060 0.7787 0.1866 0.0000 0.0000 1.0000 
52 0.0026 0.2674 0.7388 0.0000 0.0000 1.0000 
53 0.0032 0.3974 0.5942 0.0000 0.0000 1.0000 
54 0.0007 0.0095 0.9938 0.0000 0.0000 1.0000 
*55 0.0159 0.9807 0.0117 0.0000 0.0000 1.0000 
56 0.0009 0.0230 0.9835 0.0000 0.0000 1.0000 
*57 0.0165 0.9827 0.0104 0.0000 0.0000 1.0000 
58 0.0007 0.0094 0.9939 0.0000 0.0000 1.0000 
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*59 0.0133 0.9690 0.0199 0.0000 0.0000 1.0000 
60 0.0018 0.1281 0.8862 0.0000 0.0000 1.0000 
61 0.0007 0.0106 0.9930 0.0000 0.0000 1.0000 
62 0.0007 0.0095 0.9939 0.0000 0.0000 1.0000 
63 0.0018 0.1130 0.9011 0.0000 0.0000 1.0000 
64 0.0033 0.4128 0.5766 0.0000 0.0000 1.0000 
65 0.0011 0.0335 0.9748 0.0000 0.0000 1.0000 
66 0.0007 0.0094 0.9939 0.0000 0.0000 1.0000 
67 0.0008 0.0166 0.9885 0.0000 0.0000 1.0000 
68 0.0007 0.0101 0.9934 0.0000 0.0000 1.0000 
69 0.0007 0.0096 0.9938 0.0000 0.0000 1.0000 
70 0.0007 0.0094 0.9939 0.0000 0.0000 1.0000 
71 0.0007 0.0105 0.9931 0.0000 0.0000 1.0000 
72 0.0007 0.0123 0.9917 0.0000 0.0000 1.0000 
73 0.0010 0.0284 0.9791 0.0000 0.0000 1.0000 
74 0.0007 0.0099 0.9935 0.0000 0.0000 1.0000 
75 0.0011 0.0370 0.9717 0.0000 0.0000 1.0000 
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CHAPTER 5 

Conclusions 
Although the back propagation algorithm is a useful tool to solve the problems of 
classification, optimization, prediction etc, it still has many defects. One of those 
defects is that we don’t know how to choose the suitable learning rate to get 
converged training results. But by using the dynamical training algorithm for three 
layer neural network that we proposed in the end of Chapter 3, we can find the 
dynamic optimal learning rate very easily. And the dynamic learning rate guarantees 
that the total square error J is a decreasing function. This means that actual outputs 
will be closer to desired outputs for more iterations. The classification problems of 
XOR and Iris data are proposed in Chapter 4. They are solved by using the dynamical 
optimal training for a three layer neural network with sigmoid activation functions in 
hidden and output layers. Excellent results are obtained in the XOR and Iris data 
problems. Therefore the dynamic training algorithm is actually very powerful for 
getting better results than the other conventional back propagation algorithm with 
unknown fixed learning rates. So the goal of removing the defects of the back 
propagation algorithm with fixed learning rate is achieved by using the dynamical 
optimal training algorithm.
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