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摘要 

    本篇論文中，以 TS 形式的模糊類神經網路模型為基礎的即時智慧型適應控

制方法，用硬體實作出來，控制行星倒單擺系統。這個硬體平臺是 dSPACE DS 
1104 R&D control board，可以搭配 MatLab 在 Windows 2000 下運作。在模擬與

實作上都獲得很好的結果。並且經由模擬與實作，探討了運算的時間延遲對這個

控制器效能的影響。從實作探討出來的運算時間延遲來看，我們可以使用更經濟

的硬體平台來實踐這個控制方法，應用到工業上。 
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Abstract 

 
In the thesis, true hardware implementation of an on-line intelligent adaptive TSK 
FNN controller is performed to control the planetary inverted pendulum. The 
hardware platform is dSPACE DS 1104 R&D control board under Windows 2000 
running with MatLab. Excellent agreements have been obtained between theoretical 
simulation and hardware implementation. The effects of computational time delay for 
controller is also investigated through both software simulation and hardware 
emulation and by building SimuLink blocks in MatLab. The estimated maximum 
computational time delay can be quite practical for the industrial applications to 
choose cheaper hardware platform with less cost. 
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CHAPTER 1 

Introduction 
 
When we want to control a system, it usually has to be identified to have a 
mathematical model. But, in fact, it is often difficult to get the mathematical model, 
because the mathematical models of most systems are complex. Fuzzy neural network 
such as Takagi-Sugeno(TS)-Type FNN Model can simplify the process of 
identification of a system, and then the identified model can be controlled by the 
control technique. An on-line intelligent adaptive control was proposed in [1], which 
uses optimally trained TS-type FNN model [2] to identify an uncertain nonlinear 
system and then designs the controller with pole placement technique. Theoretically, 
applying the approach can obtain the TS-type FNN model of an uncertain nonlinear 
system in real-time environment and get a good controller to achieve the control 
specifications. The results of simulating some examples in [1] are good. But, it needs 
a large amount of computation to accomplish the training model, even though the 
optimal training [3] and the least square initialization [4] have shortened the process 
of training. In the implementation, computational delay will be an important factor in 
time delay. 
 
For example, in comparison with the PID control method, it is easy to design 
controller using on-line intelligent adaptive control with TS-type FNN models. For a 
PID control system, the transfer function has to be found [11]. It is usually difficult to 
find the transfer function of an uncertain nonlinear system.  
 
The theme of the thesis is to implement a controller to control a system with on-line 
intelligent adaptive control for uncertain nonlinear system using TS-type FNN models. 
The planetary inverted pendulum [7] will be controlled within the hardware platform, 
DS 1104 R&D control board. As the excellent results of some examples presented in 
the thesis [1], our simulation for the planetary inverted pendulum controlled by the 
on-line intelligent adaptive control approach is fine, too. For implementation of the 
on-line optimal training controller, the design of on-line training process and the 
estimation for initial matrices for TS-type FNN model are the two major problems. 
The first one is how to train TS-type FNN model on-line. We use the “memory” and 
“pulse generator” blocks to build a training block to achieve the on-line training. We 
can determine the re-training time instant by setting the “pulse generator” block. For 
the second problem, it will be explained in the real-control in chapter 3. 
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There are three parts in the thesis: 
 

I. Introduction to the on-line adaptive intelligent control for uncertain 
nonlinear system using TS-type FNN model. 

II. Real-time control of planetary inverted pendulum 
III. Conclusion 

 
Part I consisting of Chapter 2 includes the identification of an uncertain nonlinear 
system with TS-type FNN model and the application of pole placement technique in 
design of the controller. For the training of TS-type fuzzy model, dynamic optimal 
training [3] is used to guarantee the fastest convergence of the training process. And 
we applied least square estimation-technique [4] to estimate the initial weighting 
matrices for TS-type FNN model. The proper initial weighting number can guarantee 
the convergence. The simulation of the mass-spring-damper control system using this 
control approach is involved in the part. We make the output of the nonlinear 
uncertain control system to track a sinusoidal signal. Part II consisting of Chapter 3 
presents the real-time control of planetary inverted pendulum. We introduce the 
planetary inverted pendulum [7] and the hardware platform, DS 1104 R&D control 
board [7] [8]. We present the simulation for the planetary inverted pendulum system 
in SimuLink and then implement the on-line optimal training controller to control the 
inverted pendulum in the dSPACE system. The time delay for the planetary inverted 
pendulum system is studied. Finally, in Part III, we give a conclusion. 
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CHAPTER 2 

Theoretical Foundation 
In this chapter, on-line intelligent adaptive control for uncertain nonlinear systems by 
using optimally trained TS-type FNN models [1] will be reviewed first. The SimuLink 
simulation of mass-spring-damper system with the design algorithm proposed in [1] 
will be presented first. The computational time delay, or the control input delay, will 
also be simulated in this example. 
 
 
2.1 TS-Type FNN Model for Uncertain Systems 
A system can be represented by the following rules of TS-type FNN model [2], where 
Fij is the FNN set. 
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The above FNN system should be inferred as [1]: 

)()()]()())[(()(
1

tuBtxAtuBtxAtztx fff

r

i
ifiif +=+= ∑

=

µ&           (2) 

where  

T
g tztztztz ])(....)()([)( 21=  

∑ ∏

∏

= =

==
r

i

g

j
ij

g

j
ij

i

F

F
tz

1 1

1

)(
))((µ   1))((

1

=∑
=

r

i
i tzµ                (3) 

and r is the number of rules for the uncertain nonlinear systems. Equation (2) shows 
that the system can be represented by a linear dynamical equation at any time instant, 
which can be inferred from the TS-type FNN model. 
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The following Figure 2-1 shows the TS-type FNN model explained above. 
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Figure 2-1. TS-type FNN model for Uncertain Systems 

 

In Fig. 2-1, , , . . . ,  are the premise variables and r is the number 

of if-then rules and the A

)(1 tz )(2 tz )(tzg

i and Bi matrices are the locally linearized well-specified 
systems. The andiA iB  matrices in Fig. 1 are called Jacobian matrices [1] with 

( ) ( ) ( )i i ix t A x t B u t= +&% % %                         (4) 

In the on-line intelligent adaptive control method in [1], the TS-type FNN model will 
be trained, so that the matrices  and iA iB  will be different at different time instants. 
Furthermore if better initial  and iA iB  matrices are chosen, it can take less time to 
converge. Hence, the least square estimation-technique [4] is chosen to estimate the 
initial value of the  and iA iB  [1]. Assume the order of the linear subsystems of 
TS-type FNN model is n and the number of input is m, then we must measure n+m 
outputs to get the estimated initial matrices [1].   
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Where the ε is the noise matrix, and θ and the set of outputs Y are presented as 
follows. 
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2.2 On-Line Optimal Training 
 
The TS-type FNN model for uncertain systems can be trained by using the on-line 
optimal training [1]. Because the dynamic optimal training [3] is very powerful for 
on-line disturbance rejection, it will be utilized in the on-line optimal training of 
TS-type FNN model for uncertain nonlinear systems. 
 
Let the input training matrix R be 

1)(
2121 ])(...)()(...)()([ ×+ℜ∈= nmT

n tututxtxtxR       (8) 

And the output matrix of the TS-type FNN model is 
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ffff txtxtxtxY
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And the output matrix of the uncertain nonlinear system is 
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The overall weighting matrix to include the uncertain Ai and Bi matrices can be shown 
as [1]: 
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Therefore the output of TS-type FNN model Y can be shown as: 

WRY T=                              (12) 
 
It is therefore the purpose of on-line training to obtain the weighting matrix W . 
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First, the squared error J and the error function E have to be defined: 

2||||
2

1 xx
mn
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DWRtxtxE T
f −=−= )()( &&                       (14) 

From (13) and (14), we can have 

                    )(
2

1 TEETr
mn

J =                          (15) 

Then the dynamical learning rates βopt for each iteration k can be determined by the 
dynamical optimal training in [3]. Define

bβaβJJ kk +=−+
2

1                          (16) 

where 

[ ] 0)(
2
1 3 >= − RRERERTrmna TT

kk
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[ ] 0)( 2 <−= −
k

TT
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The roots of aβ2 + bβ = 0 are (βu ,βl). The optimal learning rate βopt will be 

βopt = (βu+βl)/2 =  βt                      (19) 
This learning rate will not only guarantee the stability of the training process, but also 
have the fastest speed of convergence. Then, the on-line training rule for each 
subsystem is shown as 

,
1( 1) ( )i i opt kW k W k RE

mn
β+ = − k                   (20) 

The Ai and Bi matrices for each subsystem of TS-type FNN model can be updated 
simultaneously by using (20) at the beginning of each time interval. 
 
The final linear dynamic equation, (Af, Bf), of the uncertain nonlinear system has been 
inferred from (2) at the beginning of any time interval. Then, the pole placement 
technique can be used to design the controller [1]. The overall design process can be 
seen from the following Figure 2-2, which is from [1]. 
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Figure 2-2. Overall design process 

 
2.3 Design Algorithm for Computer Simulation 
 
If we ignore the inevitable computational time delay, which includes the training time, 
the pole-placement and signal transmission, a design algorithm from [1], which is 
based on Figure 2-2, can be summarized as follows: 
 
Step (1) Specify desired stable poles. 
Step (2) Define the r nominal operating points and the corresponding membership 

functions for )(tx and )(tx& . Use any input u(t) to excite the uncertain 
nonlinear system and measure sufficient data information of )(tx and )(tx& . 
In real implementation, it is easier to use step commands to trigger the 
system to get sufficient response data. This will be explained later in 
the real–time control of planetary inverted pendulum in Chapter 3. 
Apply (5) to find the initial weighting matrix ( )0iW of each subsystem for 
i=1, …, r. 

Step (3) Apply pole placement to design the controller. 
Step (4) If the norm of tracking error > e1, a specified threshold, GOTO Step (2),    

Else GOTO Step (5). 
Step (5) Measure on-line )(tx and )(tx& . For i=1,…, r, applying (19) to find the optimal 

learning rates to train the weighting matrix of each subsystem. The optimal 
training must continue until relative errors of Wi are less than another 
pre-defined threshold e2. 

Step (6) GOTO Step (3) 
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Adaptive Rules for updating the closed-loop system in Figure 2-2 
 
If Thresholdt >||)(|| ε  

        Apply all Steps to update the TS-type FNN model, us(t) and Kp

Else 
Stand Still 

End. 
 
The above design algorithm can be best illustrated by the following example. 
 
Example 1. The Mass-Spring-Damper System 
 
Consider the mass-spring-damper system [1] of which the mathematical equation 

is  and letuxxxx +−−−= 33 67.002.01.0 &&& [ ] [ ]2 1( ) ( )
r

x t x t x x=& . In this example, 

the objective of the control system is to make the position, 2x , and the velocity, 1x , 
trace the reference signal. Now, follow the design flow and rule to implement the 
controller. 
 
Step (1) Specify the closed-loop poles as -2 and -1.5 
Step (2) According to the distribution of the output signal, define the membership 

function. Then, use the equation (5) to estimate the initial value. 
Step (3) Design the controller (Figure 2-6). 
Step (4) Apply Adaptive Rules to update the TS-type FNN model and the 

controller to stabilize the closed-loop system. 
 
We run the simulation of the above system using SimuLink with on-line optimal 

training and controller design. SimuLink is a graphic extension of MATLAB for 

modeling and simulation of systems. Figure 2-3 shows the overall SimuLink 

blocks for the mass-spring-damper system. The “Trained TK-Model” (which 

includes model description and on-line optimal training) and “Design Controller” 

blocks are placed in Figure 2-3. 
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Figure 2-3. Block diagram of mass-spring-damper system 

 

The “Trained TK-Model” block produces the inferred (Af, Bf) system matrices to 

represent the uncertain system. The details of the “Trained TK-Model” block with 

nine training blocks for ((Ai, Bi) i, i=1~9) is shown in Figure 2-4. 

 
Figure 2-4. Block diagram of “Trained TK-Model” in Figure 2-3 

 

Figure 2-5 shows the details of the training block in Figure 2-4. The objective of 
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the “Memory” block in Figure 2-5 is to memorize the training results from 

previous training and the “Pulse Generator” block is to set the training time 

interval. 

 
Figure 2-5. Training block in Figure 2-4. 

 

 
Figure 2-6. Block diagram of “Design Controller” in Figure 2-3 

 

The details of “Design Controller” block in Figure 2-3 can be seen from Figure 
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2-6. After the training process, the “Design Controller” block collects the 

system’s mathematical model and applies pole placement technique to design the 

controller. 

 

In conclusion, the on-line intelligent adaptive control involves two steps: 

 
1. System identification using on-line optimal training 
2. Design of controller using pole-placement technique 

 
The simulation results are shown in Figure 2-7 with initial state, 

[ ] [ ]1 2 0.2 0.2x x = . 

 

Figure 2-7. Trajectories for x1 and x2 in Example 1 
 

 
2.4 Simulation with Computational Time Delay 
 
In real life, the system has the inevitable time delay associated with it, which includes 
the training time, the pole-placement and signal transmission [10]. Time delay often 
occurs in electronic, mechanical, chemical, etc., systems. They may be due to some 
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the following causes: 
1. Measurement of system variable. 
2. Physical properties of the equipment used in the system. 
3. Signal transmission. 
4. Computational delay. 

 
The effect of time delay depends on the size of the delay and the system 
characteristics. In Example 1, it will need a lot of time to train the TS-type model and 
to design the controller. To understand the effects of real time-delay on the real system, 
a “Transport Delay” block is added to Figure 2-3, which is shown in Figure 2-8. The 
“Transport Delay” block enumerates the time delay associated with “Trained 
TK-Model” and “Controller Design”. Figure 2-9 and 2-10 show the responses of 
Example 1 with time delay = 0.35s and 0.37s respectively. It is obvious that the longer 
is the delay time, the more oscillatory the response will be.  
 

 
Figure 2-8. Mass-spring-damper system with time delay 
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Figure 2-9. Time response of Example 1 with delay time = 0.35s. 
 

 

Figure 2-10. Time response of Example 1 with delay time = 0.37s. 
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Figure 2-11. Time response of Example 1 with delay time = 0.39s. 
 

It is also obvious from Figure 2-10 that time delay of 0.37s, by trial process, is almost 
the maximum allowable time delay for Example 1 with on-line optimal trained 
controller. This implies that the total inevitable computational time delay of “Trained 
TK-Model” and “Design Controller” cannot exceed 0.37s. It is therefore a future 
research topic to find the maximum allowable delay time, theoretically, for the 
closed-loop system with on-line optimal trained controller to be stable. 
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CHAPTER 3 
 

Real-Time Control of Planetary Inverted Pendulum 
 
In the preceding chapter, we have reviewed the on-line intelligent adaptive control for 
uncertain nonlinear systems by using optimally trained TS-type FNN models. We 
have also presented the SimuLink simulation for the mass-spring-damper system with 
the design algorithm in [1]. In this chapter, we will employ the same methodology to 
design the planetary inverted pendulum control system. According to the design flow, 
we will estimate the initial weighting matrices and then train the model and design the 
on-line controller. The amount of computation of training the TS-type FNN model is 
large, so the incurred computational time delay will influence the performance of the 
controller. In the following, there are four parts in the chapter: 

I. Introduction to the planetary inverted pendulum 

II. Simulation without computational delay 

III. Simulation with time delay 

IV. Hardware implementation 
 
3.1 Planetary Inverted Pendulum 
The planetary inverted pendulum [7] is shown in Figure 3-1. A PID controller was 

designed to control the system in [7]. In this chapter, the control approach, on-line 

intelligent adaptive control for uncertain nonlinear systems using optimally trained 

TS-type FNN models, is applied to control the planetary inverted pendulum system. 

 
Figure 3-1. Planetary inverted pendulum. 
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From Figure 3-1, electric motor 29 drives the fixed-star gear, gear 9, to give it an 

angular acceleration. Then gear 9 drives gear 3, the planetary gear, so that gear 3 

would orbit gear 9. We use a bearing and shaft 2 to fix gear 3 with pendulum 1 so that 

pendulum 1 will orbit gear 9. Therefore, pendulum 1 is drove by electric motor 29, 

and the angular position of pendulum 1 can be detected by sensor 30. Figure 3-2 

shows the coupling of gear 1 and gear 2, which steers pendulum 1. 

 
Figure 3-2.  The fixed-star gear and the planetary gear 

 
The dynamic equation of the planetary train type inverted pendulum is shown in (21) 
[7].  

( )
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⎜ ⎟
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⎝ ⎠

&&     (21) 

Where 

0 :      Torque of driving the pendulumτ  

2 : -        Torque of electric motor driving the fixed star gearτ  

2 1 0 : - ,            
                    

The angle of the fixed star gear the planetary gear and the pendulum with
respect to vertical

θ θ θ、 、

1 2 : -           N N The number of teeth of the planetary gear and the fixed star gear、

 

 

2 1 0 : - ,            m m m The mass of the fixed star gear the planetary gear and the pendulum、 、

1 2 : -            I I The moment of inertia of the planetary gear and the fixed star gear、

1 2 : -         r r The radius of the planetary gear and the fixed star gear、  
: tan     l The dis ce of the pendulum  

 2

1

re
r

= −
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3.2 Simulation 
Before the hardware implementation of the controller for the planetary inverted 

pendulum system, we perform the simulation for the inverted pendulum system in 

SimuLink. The control objective of this control system is to stabilize the inverted 

pendulum after the pendulum has been flung upward. The process includes two stages 

[7]: 

1. Flinging the pendulum upward 

2. Stabilization of the pendulum in the upward direction 

In the first stage, we give a small torque to make the pendulum oscillate slightly and 

then control the electric motor’s output according to the oscillation frequency of the 

pendulum to enlarge the pendulum’s swing amplitude. When θ0 is smaller than 10°, 

the second stage begins. In the second stage, we apply on-line intelligent adaptive 

control with the optimally trained TS-type FNN model to stabilize the inverted 

pendulum system in dynamic equilibrium point (θ0=0). 

 
The control method is applied in the second stage, so we will run the simulation for 

the second stage with the initial condition, 
0θ& =1(rad/s) and 0θ =0.17(rad). The 

following parameters are assumed in [7], which will be applied in (21): 

1 2

0

1 2

2
1 2

, : 0.08
: 0.08

, : 0.013
: 0.12
, : 6.76 6
: 1

 

m m kg
m kg
r r m
l m
I I e kg
e

− −
−

m

 

Thus, we have the dynamical equation: 

                    (22) 0 0149.3003sin 2214.3uθ θ= +&&

Step (1) Specify the closed-loop poles as -2 and -1.5 

Step (2) The mathematical equation of the inverted pendulum system has been 

described in (22). We apply u=0.03sin (t) to the inverted pendulum system 

for measurements of ( )0 tθ& and . According to the distribution of the 

measured data, the membership functions for 
0 ( )tθ&&

0θ& and 0θ  can be defined as the 

follows: 
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Figure 3-3. MF of 0θ&  (rad/s) 

 
Figure 3-4. MF of 0θ  (rad) 

 

The order of the TS-type FNN model for the inverted pendulum system is 

two and the number of input is one, so we measure three outputs to get the 

estimated initial value. We choose four nominal operating points, i.e., r=4. 

The nominal operating points and the initial weighting matrices are shown in 

the Table 3-1. 

 

Table 3-1. Four nominal operating points with initial weighting matrices 

R [ 0θ&  0θ  ]  
0

0
T
r

r T
r

A
W

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

1 [ -2 , -0.17 ] 

1.0e+003 * 
-0.0002 0.0010
0.0873 0
2.2139 0

  
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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2 [ -2 , 0.17 ] 

1.0e+003 * 
0.0002 0.0010
0.0873 0
2.2144 0

  
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

3 [ 2 , -0.17 ] 

1.0e+003 * 
0.0007 0.0010
0.0879 0
2.2113 0

  
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

4 [ 2 , 0.17 ] 

1.0e+003 * 
0.0001 0.0010
0.0870 0
2.2145 0

  
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Step (3): Design controller with pole placement technique for the closed-loop 

poles as -2 and -1.5. 
Step (4): Apply Adaptive Rules to update the TS-type FNN model and the controller 

to stabilize the closed-loop system. 
 
The control system model and the controller are shown in Figures 3-5~3-7. Figure 3-8 

illustrates the trajectory for 0θ with the initial condition [ ]0 0 2 0.17θ θ⎡ ⎤ = −⎣ ⎦
& . 

 
Figure 3-5. Simulation model of the planetary inverted pendulum system 
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Figure 3-6. Block diagram of “Trained TK-Model” in Figure 3-5 

 

 
Figure 3-7. Block diagram of “Design Controller” in Figure 3-5 
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Figure 3-8. Trajectories for 0θ  in Figure 3-5 
 
3.3 Simulation with Computational Time Delay  
In this section, we consider the effect of time delay on the angular control system of 

planetary inverted pendulum. We add the “Transport Delay” block into the Figure 3-5, 

which is shown in Figure 3-9. Figure 3-10 and 3-11 show the responses of the control 

system with time delay = 0.015s and 0.022s respectively. We can find that 0θ&  and 

0θ  are always oscillatory and the longer is the delay time, the more oscillatory the 

responses will be. From Figure 3-11, the time delay of 0.022s is almost the maximum 

time delay for the inverted pendulum system with the on-line optimal trained 

controller. 
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Figure 3-9. The inverted pendulum system with time delay 

 
Figure 3-10. Trajectories of 0θ  with delay time = 0.015s in Figure 3-9 
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Figure 3-11. Trajectories of 0θ  with delay time = 0.022s in Figure 3-9 

 

 
Figure 3-12. Trajectories of 0θ  with delay time = 0.023s in Figure 3-9 
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3.4 Hardware Implementation 
 
I. Hardware platform DS 1104 R&D control board 
We will implement a controller to control this uncertain nonlinear system by using 
on-line intelligent optimally adaptive control method. In the beginning, we design the 
controller in SimuLink and generate the control program and then sent it into the 
hardware platform, DS 1104 R&D control board, to control the inverted pendulum 
system. The overall control process is shown in Figure 3-13. 

 
Figure 3-13. Overall hardware configuration using DS 1104 

 
SimuLink is an interactive environment for modeling an off-line simulation with 
easy-to-use diagram. In MATLAB, Real-Time Workshop can automatically generate 
C code from SimuLink block diagrams. Together with dSPACE’s Real-Time Interface, 
these tools can transfer the C code generated from our block diagram to dSPACE’s 
Real-Time hardware. Here, DS 1104 R&D Controller Board is selected. 
 
dSPACE system is the platform for electronic control unit (ECU) development. It 
provides the V-cycle concept in the development process, in which control design is 
involved. In dSPACE system, control design is model-based so that we can work with 
a single model of a complete system in an integrated software environment, as 
SimuLink. dSPACE hardware includes a powerful processor and numerous I/O 
interfaces. The processor can calculate our models in real time, and these I/O 
interfaces can connect to outside world. The hardware, DS 1104 R&D Controller 
Board, can run directly in the PC. 
 
For the implementation of the controller for the planetary inverted pendulum system, 
we build the control block in SimuLink and generate the C code, and then sent the C 
code into the dSPACE hardware. We will operate the hardware to control the 
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planetary inverted pendulum through the dSPACE system interface. 
 
II. Design flow 
We have presented the simulation for the inverted pendulum system via the on-line 
intelligent adaptive control approach. The control block for the planetary inverted 
pendulum system has been built in SimuLink. But, from (22), the input of the system 
is torque. In the real planetary inverted pendulum system, the input is voltage. The 
mathematical relation between torque and voltage is unknown, so that the 
mathematical relation between the voltage and the angle of inverted pendulum is 
uncertain and nonlinear. 
 
Step (1) Specify the closed-loop poles as -2 and -1.5.  

Step (2) Define the membership function and estimate the initial weighting matrices. 

Because the order of the TS-type FNN model is two and the number of 

input is one, we have to measure three outputs to estimate the initial 

matrices. The controller is applied in the second stage, so we have to get the 

estimated initial matrices when θ0 is between 10° and -10°. But, when θ0 is 

between 10° and -10°, it is difficult to apply u = 10sin (t) to the inverted 

pendulum system to measure 0θ& and 0θ&& . Therefore we apply three step 

commands (u = 10 volts) as the inputs to the system to get sufficient data 

( 0θ& and 0θ&& ) to estimate the initial matrices with least square 

estimation-technique. For this uncertain nonlinear system, when θ0 equals to 

10°(= 0.1745rad), 15°(= 0.2018rad),  20°(= 0.3491rad) respectively, we 

apply u = ±10V to electric motor 29 to drive the pendulum for 

measurements of 0θ& and 0θ&& . The membership functions for 0θ& and θ0 can be 

defined as the follows: 

 

Figure 3-14. MF of 0θ&  (rad/s) 
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Figure 3-15. MF of 0θ  (rad) 

 

There are four nominal operating points. The nominal operating points and 

the initial weighting matrices are shown in the Table 3-2. 

 
Table 3-2. Four nominal operating points with initial weighting matrices 

R [ 0θ&  0θ  ]  
0

0
T
r

r T
r

A
W

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

1 [ -2 , -0.2 ] 
0.9817 1

103.1952 0
3.1467 0

  
−⎡ ⎤

⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

2 [ -2 , 0.2 ] 
0.4661 1

152.4319 0
2.2814 0

  
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

3 [ 2 , -0.2 ] 
0.2178 1
130.6724 0
2.9839 0

  
⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 

4 [ 2 , 0.2 ] 
0.5134 1

173.9211 0
1.8731 0

  
−⎡ ⎤

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Step (3): Design controller with pole placement technique for the closed-loop 
poles as -2 and -1.5. 

Step (4): Apply Adaptive Rules to update the TS-type FNN model and the controller 
to stabilize the closed-loop system. 

 

III. Building the control block  

According to the two stages mentioned in section 3.2 for the overall control of this 

system, we create the dSPACE inverted pendulum control block (Figure 3-16) which 

can fling and stabilize the pendulum. 

 

Figure 3-16. The dSPACE control block diagram for inverted pendulum 

 

Figure 3-17 shows the blocks with proper timings [7] to fling the pendulum upward in 

the first stage.  

 
Figure 3-17. Block diagram of “Select output timing” in Figure 3-16 

 

From Figure 3-18, we can see that the angles of the pendulum (θ0), starts at 180° and 
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the swing amplitude is enlarged gradually. 

 
Figure 3-18. Trajectory of θ0 for flinging pendulum upward in Figure 3-16 

 
When θ0 is smaller than 10°, the inverted pendulum system is controlled by the “FNN 
controller”. Figure 3-19 shows the detail of the “FNN controller” block. 

 
Figure 3-19. Block diagram of “FNN controller” in Figure 3-16 

In Figure 3-19, the “Trained TK-Model” block produces the inferred (Af, Bf) system 

matrices to represent the inverted pendulum system and the “Design Controller” 

block applies pole placement technique to design the controller. Figure 3-20 shows 

the detail of the “Trained TK-Model” block and the detail of the “Design Controller” 

block can be seen in Figure 3-21. Figure 3-22 shows the trajectory for 0θ . 
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Figure 3-20. Block diagram of “Trained TK-Model” in Figure 3-19 

 
Figure 3-21. Block diagram of “Design Controller” in Figure 3-19 
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Figure 3-22. Trajectory for θ0 in Figure 3-16 

 
Figure 3-23 shows the partial trajectory of θ0 from Figure 3-22 after the stabilization 
of the pendulum. 

 
Figure 3-23 Trajectory of θ0 during the stabilization of the pendulum in Figure 3-22 
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We let the on-line intelligent optimal controller control the inverted pendulum, when 
θ0 is smaller than 15°. The on-line intelligent adaptive control is also able to control 
the inverted pendulum. Figure 3-24 shows the trajectory of θ0 during the stabilization 
of the pendulum with the application of the control method as θ0<15°. 

 
Figure 3-24. Trajectory of θ0 during the stabilization of the pendulum with the 

application of the control method as θ0<15° 
 

As the result presented in Figures 3-23 and 3-24, we have achieved the objective to 
apply on-line intelligent adaptive control method to stabilize the planetary inverted 
pendulum. Then, in order to consider the time delay in the real system, we add the 
“Integer Delay” block to Figure 3-16. Figure 3-24 shows the dSPACE inverted 
pendulum control block with “Integer Delay” block. 

 

Figure 3-25. The dSPACE inverted pendulum control block diagram with “Integer 
Delay” block. 
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Figure 3-25 shows the trajectory of θ0 for the stabilization of the pendulum with time 
delay = 0.014s. 

 
Figure 3-26. Trajectory of θ0 to stabilize the pendulum with time delay = 0.014s 

 
Figure 3-26 shows the trajectory of θ0 for the stabilization of the pendulum with time 
delay = 0.019s. 
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Figure 3-27. Trajectory of θ0 to stabilize the pendulum with time delay = 0.019s 

 
Figure 3-27 shows the trajectory of θ0 for the stabilization of the pendulum with time 
delay =0.020s. 

 
Figure 3-28. Trajectory of θ0 to stabilize the pendulum with time delay = 0.020s 
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From Figure 3-26, 0.019s is almost the maximum allowed time delay for the real 
inverted pendulum control system with on-line optimal trained controller in the 
dSPACE control platform. The maximum allowed delay time for the inverted 
pendulum control system in simulation is about 0.022s. If we assume the maximum 
time delay from simulation is correct, then the computational time for the on-line 
controller is less than 0.003s (=0.022s-0.019s). This will change when different 
hardware platform is applied. Thus it is obvious that we can still use slower 
hardware platform to control the planetary inverted pendulum system to reduce 
the cost. 
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CHAPTER 4 

Conclusion 
The on-line adaptive intelligent control for uncertain nonlinear systems by using 
TS-type FNN models proposed in [1] has been fully implemented using real hardware 
platform, i.e., DS 1104 R&D control board, under MatLab SimuLink. The planetary 
inverted pendulum was adopted as the real example to be controlled. The initial 
perturbation was done by various step commands to get the initial TS-type FNN 
model matrices. Then the on-line optimal training algorithm was implemented in 
SimuLink to drive the DS 1104 R&D control board to control the planetary inverted 
pendulum. Excellent results have been obtained to show the feasibility of hardware 
implementation of the control algorithm in [1]. The computational time delay to 
obtain the control signal has also been studied using real hardware emulations. The 
computational time delay of the planetary inverted pendulum using DS 1104 R&D 
control board has been estimated to be 0.003 seconds. This is within the maximum 
allowable computational time of 0.022 seconds, which is assumed to be correct by a 
pure computer simulation. This result can be very meaningful for industrial 
applications by choosing cheaper hardware platform with less cost to achieve the 
same control purpose. 
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