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Abstract

In the thesis, true hardware implementation~of an on-line intelligent adaptive TSK
FNN controller is performed to. control the ‘planetary inverted pendulum. The
hardware platform is dSPACE DS 1104 R&D control board under Windows 2000
running with MatLab. Excellent agreements have been obtained between theoretical
simulation and hardware implementation. The effects of computational time delay for
controller is also investigated through both software simulation and hardware
emulation and by building SimuLink blocks in MatLab. The estimated maximum
computational time delay can be quite practical for the industrial applications to
choose cheaper hardware platform with less cost.
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CHAPTER 1

Introduction

When we want to control a system, it usually has to be identified to have a
mathematical model. But, in fact, it is often difficult to get the mathematical model,
because the mathematical models of most systems are complex. Fuzzy neural network
such as Takagi-Sugeno(TS)-Type FNN Model can simplify the process of
identification of a system, and then the identified model can be controlled by the
control technique. An on-line intelligent adaptive control was proposed in [1], which
uses optimally trained TS-type FNN model [2] to identify an uncertain nonlinear
system and then designs the controller with pole placement technique. Theoretically,
applying the approach can obtain the TS-type FNN model of an uncertain nonlinear
system in real-time environment and get a good controller to achieve the control
specifications. The results of simulating some examples in [1] are good. But, it needs
a large amount of computation to accomplish the training model, even though the
optimal training [3] and the least.square initialization [4] have shortened the process
of training. In the implementation, computational delay will be an important factor in
time delay.

For example, in comparison with the PID control method, it is easy to design
controller using on-line intelligent adaptive control with TS-type FNN models. For a
PID control system, the transfer function has to be found [11]. It is usually difficult to
find the transfer function of an uncertain nonlinear system.

The theme of the thesis is to implement a controller to control a system with on-line
intelligent adaptive control for uncertain nonlinear system using TS-type FNN models.
The planetary inverted pendulum [7] will be controlled within the hardware platform,
DS 1104 R&D control board. As the excellent results of some examples presented in
the thesis [1], our simulation for the planetary inverted pendulum controlled by the
on-line intelligent adaptive control approach is fine, too. For implementation of the
on-line optimal training controller, the design of on-line training process and the
estimation for initial matrices for TS-type FNN model are the two major problems.
The first one is how to train TS-type FNN model on-line. We use the “memory” and
“pulse generator” blocks to build a training block to achieve the on-line training. We
can determine the re-training time instant by setting the “pulse generator” block. For
the second problem, it will be explained in the real-control in chapter 3.
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There are three parts in the thesis:

I. Introduction to the on-line adaptive intelligent control for uncertain
nonlinear system using TS-type FNN model.

Il. Real-time control of planetary inverted pendulum

I11. Conclusion

Part | consisting of Chapter 2 includes the identification of an uncertain nonlinear
system with TS-type FNN model and the application of pole placement technique in
design of the controller. For the training of TS-type fuzzy model, dynamic optimal
training [3] is used to guarantee the fastest convergence of the training process. And
we applied least square estimation-technique [4] to estimate the initial weighting
matrices for TS-type FNN model. The proper initial weighting number can guarantee
the convergence. The simulation of the mass-spring-damper control system using this
control approach is involved in the part. We make the output of the nonlinear
uncertain control system to track a sinusoidal signal. Part Il consisting of Chapter 3
presents the real-time control of planetary -inverted pendulum. We introduce the
planetary inverted pendulum [7].and the.hardware platform, DS 1104 R&D control
board [7] [8]. We present the simulation for the planetary inverted pendulum system
in SimuLink and then implement the on-line optimal-training controller to control the
inverted pendulum in the dSPACE system:-The time delay for the planetary inverted
pendulum system is studied. Finally,iin Part 111,-we give a conclusion.
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CHAPTER 2

Theoretical Foundation

In this chapter, on-line intelligent adaptive control for uncertain nonlinear systems by
using optimally trained TS-type FNN models [1] will be reviewed first. The SimuLink
simulation of mass-spring-damper system with the design algorithm proposed in [1]
will be presented first. The computational time delay, or the control input delay, will
also be simulated in this example.

2.1 TS-Type FNN Model for Uncertain Systems
A system can be represented by the following rules of TS-type FNN model [2], where

Fjis the FNN set.

Rule 1
If z (1) is £, and3iiand z, (1) is F,
then x, (1)= Ax,(¢) + B,ui(t)
1)
Rule 7:
If z (1) is F,; and...and z,(¢)is F,,
then x, (1) =4,x,(6)+B,u(?)
The above FNN system should be inferred as [1]:
x,(1) = Zr‘,ﬂ,- (z)[4:x (1) + Byu(1)] = Ay x (1) + B u(t) )
where
z2(t) =[z () z,(0) .. z, O]
[+ r
uz0)=—"— > Zﬂi (z()) =1 ©)
> (17

and r is the number of rules for the uncertain nonlinear systems. Equation (2) shows
that the system can be represented by a linear dynamical equation at any time instant,
which can be inferred from the TS-type FNN model.
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The following Figure 2-1 shows the TS-type FNN model explained above.

o
(1) = 4, x()F Buu()

Xf(t) = A/l/(t)JrBfli(t)

i
i,(t) = 4,x(1))£ B,u(t)

pod
i, (1) = 4,x()¥B,u(r)

Figure 2-1. TS-type FNN model for Uncertain Systems

InFig. 2-1, z (), z,(¢),..., z,(¢) are the premise variables and r is the number

of if-then rules and the 4; and B; matrices.are the locally linearized well-specified
systems. The 4,and B, matrices+n Fig. 1 are called Jacobian matrices [1] with

x,(1) = 45(0) + B,u(1) (4)

In the on-line intelligent adaptive control method in [1], the TS-type FNN model will
be trained, so that the matrices 4, and "B, "will be different at different time instants.
Furthermore if better initial 4, and B, matrices are chosen, it can take less time to

converge. Hence, the least square estimation-technique [4] is chosen to estimate the
initial value of the 4 and B, [1]. Assume the order of the linear subsystems of

TS-type FNN model is » and the number of input is m, then we must measure n+m
outputs to get the estimated initial matrices [1].

Y = 6, (0)+¢ (5)
w,(0)=(0"6)*0"Y

Where the ¢ is the noise matrix, and & and the set of outputs Y are presented as
follows.
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2.2 On-Line Optimal Training

The TS-type FNN model for uncertain systems can be trained by using the on-line
optimal training [1]. Because the dynamic optimal training [3] is very powerful for
on-line disturbance rejection, it will be utilized in the on-line optimal training of
TS-type FNN model for uncertain nonlinear systems.

Let the input training matrix R be
R=[x@) x,{@) .. %@ w (). u,()]" eR""" (8)
And the output matrix of the TS-type ENN model 1S
Y=x,(0)=[x, ) %,0) .. & (] eR™ 9)
And the output matrix of the uncertain nonlinear system is
D=i()=[i(1) %) .. % (O]eR™ (10)

The overall weighting matrix to include the uncertain 4; and B; matrices can be shown
as [1]:

Z ILll AIT r AT
W=\ =>» uW, and W, = { [T} (11)
Z y.BT =1 B,
— [
Therefore the output of TS-type FNN model Y can be shown as:
Y=R"W (12)

It is therefore the purpose of on-line training to obtain the weighting matrix .
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First, the squared error J and the error function £ have to be defined:
1

J=o ik (13)
E=x,()-x(t)=R'"W-D (14)
From (13) and (14), we can have
J=_t Tr(EE") (15)
mn

Then the dynamical learning rates f,,, for each iteration k& can be determined by the
dynamical optimal training in [3]. Define

Jk+l_Jk=aﬁ2+bﬁ (16)

where
a= %(mn)_3 Tr[R"RE,EIR"R]> 0 (17)
b =—(mn) *TrlET R"RE, |< 0 (18)

The roots of a8 + b= 0 are (f4;,/3). The-optimal. learning rate 3, will be
Bop: = (BAB2 = B, (19)

This learning rate will not only guarantee thestability of the training process, but also
have the fastest speed of convergence. Then; the on-line training rule for each
subsystem is shown as

W (D) = W,(6)~ B, — RE, (20)

mn

The 4;and B; matrices for each subsystem of TS-type FNN model can be updated
simultaneously by using (20) at the beginning of each time interval.

The final linear dynamic equation, (4 By), of the uncertain nonlinear system has been
inferred from (2) at the beginning of any time interval. Then, the pole placement
technique can be used to design the controller [1]. The overall design process can be
seen from the following Figure 2-2, which is from [1].
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Uncertain Nonlinear

Reference Input — f System x(t)
u,(?) £(t) | Confroller - =\
I Gin K, (1) = f (x(0),u())
/ T
x(0)

Design of tracking On-line Optimal <
controller < Trained TS-type <

FNN Model

A
» Adaptive Rules

Figure 2-2. Overall design process

2.3 Design Algorithm for Computer Simulation

If we ignore the inevitable computationalitime delay, which includes the training time,
the pole-placement and signal transmission, a design algorithm from [1], which is
based on Figure 2-2, can be summarized as follows:

Step (1)  Specify desired stable poles.

Step (2) Define the » nominal operating pointsand the corresponding membership
functions for x(¢) and x(¢) . Use ‘any input u(f) to excite the uncertain
nonlinear system and measure sufficient data information of x(z) and x(z) .

In real implementation, it is easier to use step commands to trigger the

system to get sufficient response data. This will be explained later in

the real-time control of planetary inverted pendulum in Chapter 3.
Apply (5) to find the initial weighting matrix #,(0)of each subsystem for

=1, ..., r

Step (3) Apply pole placement to design the controller.

Step (4) If the norm of tracking error > e, a specified threshold, GOTO Step (2),
Else GOTO Step (5).

Step (5) Measure on-line x(z) and x(¢) . For i=1,..., r, applying (19) to find the optimal
learning rates to train the weighting matrix of each subsystem. The optimal
training must continue until relative errors of W; are less than another
pre-defined threshold e,.

Step (6) GOTO Step (3)
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Adaptive Rules for updating the closed-loop system in Figure 2-2

If || £(¢) ||> Threshold

Apply all Steps to update the TS-type FNN model, u(7) and K,
Else

Stand Still
End.

The above design algorithm can be best illustrated by the following example.

Example 1. The Mass-Spring-Damper System

Consider the mass-spring-damper system [1] of which the mathematical equation
is¥=-0.1¢" -0.02x-0.67x" +u and let[x(r) x(r)] =[x, x]. In this example,

the objective of the control system is to make the position, x,, and the velocity, x, ,

trace the reference signal. Now, follow: ithe: design flow and rule to implement the
controller.

Step (1) Specify the closed-loop poles as -2-and -1.5

Step (2) According to the distribution ofrtheoutput signal, define the membership
function. Then, use the equation (5) to.estimate the initial value.

Step (3) Design the controller (Figure 2-6).

Step (4) Apply Adaptive Rules to update the TS-type FNN model and the
controller to stabilize the closed-loop system.

We run the simulation of the above system using SimuLink with on-line optimal
training and controller design. SimuLink is a graphic extension of MATLAB for
modeling and simulation of systems. Figure 2-3 shows the overall SimuLink
blocks for the mass-spring-damper system. The “Trained TK-Model” (which
includes model description and on-line optimal training) and “Design Controller”
blocks are placed in Figure 2-3.
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Figure 2-3. Blocki‘diagrarﬁ*"djf ﬂmaés-sp‘r]:ng-damper system
The “Trained TK-Model” block brodhéés the“inferred (4, By) system matrices to
represent the uncertain system. The details of the “Tralned TK-Model” block with
nine training blocks for ((4,, B)) i, i=1~ 9) is shown in Figure 2-4.

Figure 2-4. Block diagram of “Trained TK-Model” in Figure 2-3

Figure 2-5 shows the details of the training block in Figure 2-4. The objective of

Page 9



the “Memory” block in Figure 2-5 is to memorize the training results from
previous training and the “Pulse Generator” block is to set the training time

interval.
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Figure 2-6. Block diagram of “Design Controller” in Figure 2-3

The details of “Design Controller” block in Figure 2-3 can be seen from Figure
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2-6. After the training process, the “Design Controller” block collects the
system’s mathematical model and applies pole placement technique to design the

controller.

In conclusion, the on-line intelligent adaptive control involves two steps:

1. System identification using on-line optimal training
2. Design of controller using pole-placement technique

The simulation results are shown in Figure 2-7 with initial state,

[x, x,]=[02 0.2].

I:|3 T T T T T T T T T
— 1
o2k + x1 reference |4
— 0.1 .
04 i
_|:|1 | | | | | | | | |
2 4 b g 10 12 14 16 18 20
Time(zec)
|:|3 T T T T T T T T T
— %2
0z s ¥2reference |

w2

0.1

|
2 4 ) =] 10 12 14 16 18 20
Time(sec)

Figure 2-7. Trajectories for x; and x, in Example 1

2.4 Simulation with Computational Time Delay

In real life, the system has the inevitable time delay associated with it, which includes
the training time, the pole-placement and signal transmission [10]. Time delay often
occurs in electronic, mechanical, chemical, etc., systems. They may be due to some
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the following causes:
1. Measurement of system variable.
2. Physical properties of the equipment used in the system.
3. Signal transmission.
4. Computational delay.

The effect of time delay depends on the size of the delay and the system
characteristics. In Example 1, it will need a lot of time to train the TS-type model and
to design the controller. To understand the effects of real time-delay on the real system,
a “Transport Delay” block is added to Figure 2-3, which is shown in Figure 2-8. The
“Transport Delay” block enumerates the time delay associated with “Trained
TK-Model” and “Controller Design”. Figure 2-9 and 2-10 show the responses of
Example 1 with time delay = 0.35s and 0.37s respectively. It is obvious that the longer
is the delay time, the more oscillatory the response will be.

¥

Transport

Delay

Figure 2-8. Mass-spring-damper system with time delay
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Figure 2-9. Time response of Example T.with delay time = 0.35s.
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Figure 2-10. Time response of Example 1 with delay time = 0.37s.
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Figure 2-11. Time response of Example 1 with delay time = 0.39s.

It is also obvious from Figure 2-10 that time delay of 0.37s, by trial process, is almost
the maximum allowable time delay for Example 1 with on-line optimal trained
controller. This implies that the total inevitable computational time delay of “Trained
TK-Model” and “Design Controller” cannot exceed 0.37s. It is therefore a future
research topic to find the maximum allowable delay time, theoretically, for the
closed-loop system with on-line optimal trained controller to be stable.
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CHAPTER 3

Real-Time Control of Planetary Inverted Pendulum

In the preceding chapter, we have reviewed the on-line intelligent adaptive control for
uncertain nonlinear systems by using optimally trained TS-type FNN models. We
have also presented the SimuLink simulation for the mass-spring-damper system with
the design algorithm in [1]. In this chapter, we will employ the same methodology to
design the planetary inverted pendulum control system. According to the design flow,
we will estimate the initial weighting matrices and then train the model and design the
on-line controller. The amount of computation of training the TS-type FNN model is
large, so the incurred computational time delay will influence the performance of the
controller. In the following, there are four parts in the chapter:

I.  Introduction to the planetary inverted pendulum

Il.  Simulation without computational delay

I11.  Simulation with time delay

IV. Hardware implementation

3.1 Planetary Inverted Pendulum

The planetary inverted pendulum [7]/is:shown in Figure 3-1. A PID controller was
designed to control the system in [7]:"In this chapter, the control approach, on-line
intelligent adaptive control for uncertain nanlinear systems using optimally trained
TS-type FNN models, is applied to control the planetary inverted pendulum system.

Figure 3-1. Planetary inverted pendulum.
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From Figure 3-1, electric motor 29 drives the fixed-star gear, gear 9, to give it an
angular acceleration. Then gear 9 drives gear 3, the planetary gear, so that gear 3
would orbit gear 9. We use a bearing and shaft 2 to fix gear 3 with pendulum 1 so that
pendulum 1 will orbit gear 9. Therefore, pendulum 1 is drove by electric motor 29,
and the angular position of pendulum 1 can be detected by sensor 30. Figure 3-2

shows the coupling of gear 1 and gear 2, which steers pendulum 1.

Figure 3-2. The fixed-star gear.and the planetary gear

The dynamic equation of the planetary train type-inverted pendulum is shown in (21)
[7].
eI+,

(:]Pm(q+g)+én%]g~ﬂnaf+g
1

n+r
el 1112

h

(21)

b, =

2 2
er1+r211— el +1, KT, -Il+ml(r1+r2)2+1molz
H (q+g} n 3
el —= |1

Where
7, . Torque of driving the pendulum
7, . Torque of electric motor driving the fixed - star gear
0, 6> 0,:The angle of the fixed - star gear, the planetary gear and the pendulum with
respect to vertical
N> N, :The number of teeth of the planetary gear and the fixed - star gear
my> m> my . The mass of the fixed - star gear, the planetary gear and the pendulum
1~ 1,: The moment of inertia of the planetary gear and the fixed - star gear
K> 1, - The radius of the planetary gear and the fixed - star gear
[ The distance of the pendulum
&z

e=—-—=
h
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3.2 Simulation
Before the hardware implementation of the controller for the planetary inverted
pendulum system, we perform the simulation for the inverted pendulum system in
SimuLink. The control objective of this control system is to stabilize the inverted
pendulum after the pendulum has been flung upward. The process includes two stages
[7]:

1. Flinging the pendulum upward

2. Stabilization of the pendulum in the upward direction
In the first stage, we give a small torque to make the pendulum oscillate slightly and
then control the electric motor’s output according to the oscillation frequency of the
pendulum to enlarge the pendulum’s swing amplitude. When 6, is smaller than 10°,
the second stage begins. In the second stage, we apply on-line intelligent adaptive
control with the optimally trained TS-type FNN model to stabilize the inverted
pendulum system in dynamic equilibrium point (&)=0).

The control method is applied in the second stage, so we will run the simulation for
the second stage with the initial condition, 6, =1(rad/s) and g, =0.17(rad). The

following parameters are assumed.in [7]; whichrwill be applied in (21):
my, m, :0.08kg
m, :0.08kg
%, 1, 10.013m
[:0.12m
1,,1,:6.76e—6 kg —m’
e.—1
Thus, we have the dynamical equation:

g, =149.3003sin 6, + 2214.3u (22)

Step (1) Specify the closed-loop poles as -2 and -1.5

Step (2) The mathematical equation of the inverted pendulum system has been
described in (22). We apply u=0.03sin (1) to the inverted pendulum system
for measurements of éo(t)and 6,(t). According to the distribution of the
measured data, the membership functions for €,andé, can be defined as the
follows:
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Figure 3-3. MF of 6, (rad/s)
rmif mf2
|
05} -
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02 015 04 005 0 005 01 045 02

Figure 3-4. MF of 1 ¢,  (rad)

The order of the TS-type FNN madel for.the inverted pendulum system is
two and the number of input-is.one; S0 We measure three outputs to get the
estimated initial value. We choose four nominal operating points, i.e., r=4.
The nominal operating points and the initial weighting matrices are shown in
the Table 3-1.

Table 3-1. Four nominal operating points with initial weighting matrices

AT
R [ 6, 6 ] W,.°=[B:T}
1.06+003 *

-0.0002 0.0010
1 [-2,-0.17] 00873 0
22139 0
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1.0e+003 *
0.0002 0.0010
2 [-2,0.17] 0.0873 0

2.2144 0

1.0e+003 *
0.0007 0.0010
3 [2,-0.17] 0.0879 0

2.2113 0

1.0e+003 *
0.0001 0.0010
4 [2,017] 00870 0

2.2145 0

Step (3): Design controller with pole placernent technique for the closed-loop
polesas-2and-1.5. - -,
Step (4): Apply Adaptive Rules to updat%‘the Ts type FNN model and the controller
to stabilize the closedAIoop system )l -

::“,‘.1'-‘._ 18E

The control system model and the oontroller are. shown in Figures 3-5~3-7. Figure 3-8

illustrates the trajectory for &, with the |n|t|al condltlon[e 6, |=[-2 017].

e e e ]
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[rgonometiz
Fenction

§\‘%

Design
Controller

Figure 3-5. Simulation model of the planetary inverted pendulum system
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Figure 3-7. Block diagram of “Design Controller” in Figure 3-5
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Figure 3-8. Trajectories:for 6, in Figure 3-5

3.3 Simulation with Computational Time Delay

In this section, we consider the-effect of time delay on the angular control system of
planetary inverted pendulum. We add-the “Fransport Delay” block into the Figure 3-5,
which is shown in Figure 3-9. Figure 3=10.and 3-11 show the responses of the control
system with time delay = 0.015s and 0.022s respectively. We can find that €, and
g, are always oscillatory and the longer is the delay time, the more oscillatory the
responses will be. From Figure 3-11, the time delay of 0.022s is almost the maximum
time delay for the inverted pendulum system with the on-line optimal trained
controller.
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Figure 3-9. The inverted pendulum system with time delay
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Figure 3-10. Trajectories of ¢, with delay time = 0.015s in Figure 3-9

o

Page 22



radl

racl

Figure 3-12. Trajectories of

L L L L 1 1 L 1
(1 .5 1.5 z 25 3 35 4 4.5 5
Timelzac)
1 1 1 1 1 1 1 1
.5 1.5 2 25 3 35 4 4.5 5
Time(sec)

wwith.delay time = 0.022s in Figure 3-9

25
Time{sac)

£
L
i

0.5

O

25
Timedsec)

with delay time = 0.023s in Figure 3-9



3.4 Hardware Implementation

I. Hardware platform DS 1104 R&D control board

We will implement a controller to control this uncertain nonlinear system by using
on-line intelligent optimally adaptive control method. In the beginning, we design the
controller in SimuLink and generate the control program and then sent it into the
hardware platform, DS 1104 R&D control board, to control the inverted pendulum
system. The overall control process is shown in Figure 3-13.

Voltage _| Eleetric Targque
" Widor

¥

i e R o H Planetary Type
——— ‘:> <]:L'> Inverted Pendulum
Build control block - Bystem
in SimuLink % 1104 RED dSPACE System
Controller Board Interface

L3

Angle

Sensor

Figure 3-13. Overall hardware:configuration using DS 1104

SimuLink is an interactive environmentfor-modeling an off-line simulation with
easy-to-use diagram. In MATLAB, Real-Time. Workshop can automatically generate
C code from SimuLink block diagrams. Together with dSPACE’s Real-Time Interface,
these tools can transfer the C code generated from our block diagram to dSPACE’s
Real-Time hardware. Here, DS 1104 R&D Controller Board is selected.

dSPACE system is the platform for electronic control unit (ECU) development. It
provides the V-cycle concept in the development process, in which control design is
involved. In dSPACE system, control design is model-based so that we can work with
a single model of a complete system in an integrated software environment, as
SimuLink. dSPACE hardware includes a powerful processor and numerous 1/O
interfaces. The processor can calculate our models in real time, and these 1/0
interfaces can connect to outside world. The hardware, DS 1104 R&D Controller
Board, can run directly in the PC.

For the implementation of the controller for the planetary inverted pendulum system,

we build the control block in SimuLink and generate the C code, and then sent the C
code into the dSPACE hardware. We will operate the hardware to control the
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planetary inverted pendulum through the dSPACE system interface.

II. Design flow

We have presented the simulation for the inverted pendulum system via the on-line
intelligent adaptive control approach. The control block for the planetary inverted
pendulum system has been built in SimuLink. But, from (22), the input of the system
is torque. In the real planetary inverted pendulum system, the input is voltage. The
mathematical relation between torque and voltage is unknown, so that the
mathematical relation between the voltage and the angle of inverted pendulum is
uncertain and nonlinear.

Step (1) Specify the closed-loop poles as -2 and -1.5.

Step (2) Define the membership function and estimate the initial weighting matrices.
Because the order of the TS-type FNN model is two and the number of
input is one, we have to measure three outputs to estimate the initial
matrices. The controller is applied in the second stage, so we have to get the
estimated initial matrices when-@y-is:between 10° and -10°. But, when 6, is
between 10" and -10% it-is difficult-to apply u = 10sin (¢) to the inverted
pendulum system to;measure 90 and 6‘0. Therefore we apply three step
commands (u = 10 volts) as the inputs to the system to get sufficient data
( 90 and 6‘0 ) to estimate ‘the initial matrices with least square
estimation-technique. For this uncertain nonlinear system, when 6, equals to
10°(= 0.1745rad), 15°(= 0.2018rad), 20°(= 0.3491rad) respectively, we
apply u = =£10V to electric motor 29 to drive the pendulum for
measurements of €, and d,. The membership functions for 4, and 6, can be

defined as the follows:

mii mf2

0.5 .

Figure 3-14. MF of 6, (rad/s)
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Figure 3-15. MF of 6, (rad)

There are four nominal operating points. The nominal operating points and

the initial weighting matrices are shown in the Table 3-2.

Table 3-2. Four nominal operating points with initial weighting matrices

R [9000]

0
AT
0 r

I

1 [-2,-0.2]

-0.9817 1
103.1952 0
-3.1467 0

2 [-2,02]

0.4661 1
152.4319 0O
2.2814 O

3 [2,-0.2]

02178 1
-130.6724 0O
29839 0

4 [2,02]

-0.5134 1
173.9211 0O
18731 O




Step (3): Design controller with pole placement technique for the closed-loop
poles as -2 and -1.5.
Step (4): Apply Adaptive Rules to update the TS-type FNN model and the controller
to stabilize the closed-loop system.

ITI. Building the control block

According to the two stages mentioned in section 3.2 for the overall control of this
system, we create the dSPACE inverted pendulum control block (Figure 3-16) which
can fling and stabilize the pendulum.

FAN cminal

Figure 3-16. The dSPACE control block diagram for inverted pendulum

Figure 3-17 shows the blocks with proper timings [7] to fling the pendulum upward in
the first stage.

000N

— . >

Integer Delay ’-’ .

i Relatiomal ;
AN >
@ Diperanin D
.
Inl : » . Logical O]
—.,. ?-}:l‘:l] —.. i Operator
Relaticmal
Integer Delay | Operater]

Figure 3-17. Block diagram of “Select output timing” in Figure 3-16

From Figure 3-18, we can see that the angles of the pendulum (8,), starts at 180° and
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the swing amplitude is enlarged gradually.

154 o

S0F

Ny 2 3 4 5 f 7
Timeadsac)

Figure 3-18. Trajectory of gy for flinging:pendulum upward in Figure 3-16

When 6, is smaller than 10°, the inverted pendulum system is controlled by the “FNN
controller”. Figure 3-19 shows the detail of the “FNN controller” block.

¢

Figure 3-19. Block diagram of “FNN controller” in Figure 3-16
In Figure 3-19, the “Trained TK-Model” block produces the inferred (45 By) system
matrices to represent the inverted pendulum system and the “Design Controller”
block applies pole placement technique to design the controller. Figure 3-20 shows
the detail of the “Trained TK-Model” block and the detail of the “Design Controller”
block can be seen in Figure 3-21. Figure 3-22 shows the trajectory for 6,.
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Figure 3-20. Block diagram of “Trained TK-Model” in Figure 3-19
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Figure 3-21. Block diagram of “Design Controller” in Figure 3-19
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Figure 3-22. Trajectory for 7 in Figure 3-16
Figure 3-23 shows the partial tr;erljéctory:‘"gilt éo_Lifrom* "l:'_igure 3-22 after the stabilization

of the pendulum. ~ M >
Lo

| -

degree
| o]
T
1

_.l:.. 1 1 1 1 1
f 0.5 7 1.5 B B3 9
Time(sec)

Figure 3-23 Trajectory of 6, during the stabilization of the pendulum in Figure 3-22
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We let the on-line intelligent optimal controller control the inverted pendulum, when
6y is smaller than 15°. The on-line intelligent adaptive control is also able to control
the inverted pendulum. Figure 3-24 shows the trajectory of 6, during the stabilization
of the pendulum with the application of the control method as 6,<15°.

1

_E 1 1 1 I 1
. o & &5 Q a4 il

Timelsoo)

Figure 3-24. Trajectory of 6y during the:stabilization of the pendulum with the
application of the control method as 6,<15°

As the result presented in Figures:3=23 and 3-24; we have achieved the objective to
apply on-line intelligent adaptive control 'method to stabilize the planetary inverted
pendulum. Then, in order to consider the time delay in the real system, we add the
“Integer Delay” block to Figure 3-16. Figure 3-24 shows the dSPACE inverted
pendulum control block with “Integer Delay” block.

=gy o
=l

Figure 3-25. The dSPACE inverted pendulum control block diagram with “Integer
Delay” block.
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Figure 3-25 shows the trajectory of 8, for the stabilization of the pendulum with time
delay = 0.014s.

depree

B 7 75 8 8.5 g 95 10
Time(sec)

Figure 3-26. Trajectory of 610 stabilize the pendulum with time delay = 0.014s

Figure 3-26 shows the trajectory of 4; for therstabilization of the pendulum with time
delay = 0.019s. ‘ ‘
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Figure 3-27. Trajectory of 6, to ‘stabi“lize the pendulum with time delay = 0.019s

o= I.I. : .
Figure 3-27 shows the trajectory of @, for the stabilization of the pendulum with time
delay =0.020s. A Ner—T
1

0

-10)

20k

degroc

-40)

-5l

A0k

-':"l:l L 1 ] 1 L 1 ]
7.1 172 73 74 7.5 6 7.7 T8 T
Time(sec)

Figure 3-28. Trajectory of 6, to stabilize the pendulum with time delay = 0.020s
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From Figure 3-26, 0.019s is almost the maximum allowed time delay for the real
inverted pendulum control system with on-line optimal trained controller in the
dSPACE control platform. The maximum allowed delay time for the inverted
pendulum control system in simulation is about 0.022s. If we assume the maximum
time delay from simulation is correct, then the computational time for the on-line
controller is less than 0.003s (=0.022s-0.019s). This will change when different
hardware platform is applied. Thus it is obvious that we can still use slower

hardware platform to control the planetary inverted pendulum system to reduce

the cost.
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CHAPTER 4

Conclusion

The on-line adaptive intelligent control for uncertain nonlinear systems by using
TS-type FNN models proposed in [1] has been fully implemented using real hardware
platform, i.e., DS 1104 R&D control board, under MatLab SimuLink. The planetary
inverted pendulum was adopted as the real example to be controlled. The initial
perturbation was done by various step commands to get the initial TS-type FNN
model matrices. Then the on-line optimal training algorithm was implemented in
SimuLink to drive the DS 1104 R&D control board to control the planetary inverted
pendulum. Excellent results have been obtained to show the feasibility of hardware
implementation of the control algorithm in [1]. The computational time delay to
obtain the control signal has also been studied using real hardware emulations. The
computational time delay of the planetary inverted pendulum using DS 1104 R&D
control board has been estimated to_be10:003.seconds. This is within the maximum
allowable computational time of 0.022 seconds, which is assumed to be correct by a
pure computer simulation. This result| can be' very meaningful for industrial
applications by choosing cheaper hardware platform with less cost to achieve the
same control purpose.

Page 35



REFERENCES

[1] Shi-Hao Ker, “On-Line Intelligent Adaptive Control for Uncertain Nonlinear
Systems using Optimally Trained TS-Type Fuzzy Models”, MS Thesis,
Department of Electrical and Control Engineering, National Chiao-Tung
University, Hsin-Chu, Taiwan, 2002.

[2] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to
Modeling and control,” IEEE Trans. Syst., Man, Cybern., Vol. 15, pp. 116-132,
Jan./Feb., 1985.

[3] Chi-Hsu Wang, Han-Leih Liu, Chin-Teng Lin, “Dynamic optimal learning rates of
a certain class of fuzzy neural networks and its applications with genetic
algorithm”, IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 31,
p.p. 467 -475 June 2001.

[4] T. C. Hsia, “System Identification”, Lexington Books, 1977.

[5] Shing-Jen Wu and Chin-Teng Lin, “Optimal Fuzzy Controller Design: Local
Concept Approach,” IEEE Trans, On Fuzzy Systems, Vol. 8, No. 2, pp. 171-183,
April 2000.

[6] Shing-Jen Wu and Chin-Teng Lin, =*Optimal Fuzzy Controller Design in
Continuous Fuzzy System: Global Concept Approach,” IEEE Trans. On Fuzzy
Systems, Vol. 8, No. 6, pp. 713-729,:Deci2000.

[7] Shuang-Yuan Chen and Chen-Ren.Lin, “Design and Control System Simulation of
a Planetary Train Type Inverted Pendulum Mechanism,” 7+ fﬂﬁf}“”ﬁ?ﬁ%ﬁ%‘?f
;5’5‘/157771/57[5? f@ﬁjf%/ﬁyﬁé/ﬁ}*ﬁéﬁﬁ%ﬁﬂfjﬁ, Nov. 2003.

[8] “DS1104 R&D Controller Board, Installation and Configuration Guide”, dSPACE,
July 2001.

[9] “DS1104 R&D Controller Board, ControlDesk Experiment Guide”, dSPACE, July
2001,

[10] M. Malek-Zavarei and M. Jamshidi, “Time-Delay Systems, Analysis,
Optimization and Applications,” Elsevier Science Publishers B.V., 1987

[11] R. N. Bateson, “Introduction to Control System Technology,” Prentice Hall
International, Inc, 2002

[12] HREE, “F VP TR MATLAB 17, " 2 % RIR I 10 ¢4 il
1999

[13] William J. Palm 111, “Introduction to MATLAB 6 for Engineers,” McGraw-Hill
Education, Jan. 2003.

[14] Simon Haykin, “Neural Networks, A Comprehensive Foundation, Second
Eedition,” Prentice Hall International, Inc, 1999.

Page 36



	Abstruct.pdf
	Abstruct.pdf
	非線性不確定系統模糊類神經網路控制器的硬體實作
	國立交通大學電機與控制學系
	摘要



