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Abstract—GaInP–AlGaInP strained quantum-well lasers with
emission wavelength at 630-nm band are theoretically analyzed
in detail and then optimized. The valence band structure of
quantum wells is obtained by evaluating the6�6 Luttinger–Kohn
Hamiltonian including the coupling among the heavy hole, the
light hole, and the spin-orbital split-off hole bands. The effect of
optical transition from/to continuum states not confined to the
quantum well is studied. It is found that the optical transition
from/to the continuum states is serious as the band gap of the
confining layers is close to the quasi-Fermi level separation,
leading to considerable radiative current. This radiative current
is undesirable since the corresponding optical transition does not
contribute significantly to the threshold gain. The gain-radiative
current characteristic is therefore poor for confining layers con-
taining a low Al content. To avoid unreasonable gain/absorption,
the non-Markovian convolution lineshape is used instead of the
conventional Lorentzian lineshape. The leakage current is high
for single quantum-well lasers with wide bandgap confining
layers. It can be reduced by increasing the quantum-well number,
the dopant concentration, and the band gap of cladding layers.
The calculated threshold current agrees well with the observation.
The band gap shrinkage due to the carrier-carrier interaction is
considered to obtain an emission wavelength consistent with the
experimental result.

Index Terms—Quantum well lasers, quantum wells, semicon-
ductor device modeling, semiconductor lasers, spontaneous emis-
sion, visible lasers.

I. INTRODUCTION

T HERE have been growing interests in GaInP–AlGaInP
strained quantum-well (QW) lasers emitting at 630-nm

band as a light source for optical-disk memory system, laser
printers, bar-code readers, and pointers, and as a replacement
for He–Ne lasers. However, this kind of lasers generally has
a high threshold current. The leakage current is serious due
to the inherent limit of band gap for this material system. It
is therefore important to comprehend the laser characteristics
and then to optimize the laser structure. The laser performance
depends on the strain and the thickness of the QW, the
material and the thickness of the confining layers, the dopant
concentration and the material of the cladding layers, and so
on. It has been demonstrated that introducing0.7% tensile
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strain into the QW can effectively improve the threshold
current for lasers with 633-nm emission wavelength [1]–[3].
Reduced threshold current has been achieved by using a highly
doped p-cladding layer [4]–[6] and AlInP cladding layers [7],
[8]. There have been several works on theoretical analysis
of the lasers [3], [6], [9]–[11]. The attentions were mainly
focused on the QW’s and the cladding layers. However, the
dependence of the laser performance on confining layers has
not yet correctly analyzed.

The confining layers are generally designed to provide a
tight confinement of optical mode. To obtain a large con-
finement factor, the refractive index and the thickness of the
confining layers have to be properly chosen. If the refrac-
tive index is too low, the optical confinement will not be
enough. But if the refractive index is too high, the required
narrow bandgap will cause a high carrier concentration in
the confining layers. Undesired electron-hole recombination
in the confining layers may be therefore serious. In this
paper, theoretical analysis of 630-nm GaInP–AlGaInP tensile-
strained QW lasers is carried out. The effect of optical tran-
sition involving continuum states not confined to the QW is
included. The Luttinger–Kohn Hamiltonian containing
deformation potentials is used for calculating the valence band
structure of strained QW’s [3], [10], [12], [13]. It considers
the mixing of the heavy hole, the light hole, and the spin-
orbital split-off hole bands. Since the transition from/to the
continuum states is considered, the gain/absorption spectrum
becomes sensitively dependent on the convolution lineshape
function. The non-Markovian lineshap [14]–[16] is adopted
to avoid an unreasonable gain/absorption which is obtained
if the conventional Lorentzian lineshape is used. To obtain
an emission wavelength consistent with the experiment, we
consider the bandgap shrinkage due to the carrier-carrier
interaction. The material parameters such as theand
band gaps and the band offsets are taken from the newly
reported data [11], [17], [18]. The gain and the radiative
current are both divided into four components corresponding
to the transitions: 1) from bound states to bound states, 2)
from continuum states to bound states, 3) from bound states to
continuum states, and 4) from continuum states to continuum
states. The leakage current is taken into account and divided
into the diffusion and the drift components to give a detailed
interpretation of the leakage mechanism. We then investigate
the gains, the radiative currents, the leakage currents, and the
emission wavelength by varying the bandgap and the thickness
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of the confining layers for different QW numbers. The effects
of the dopant concentration and the bandgap of the cladding
layers on the laser performance are also studied. The structures
are then optimized for single and double QW lasers.

This paper is organized as follows. In the next section, we
present the theory used for calculating the band structures,
the gains, the radiative currents, and the leakage currents.
The calculated results and their interpretation are discussed
in Section III. In the final section, the conclusion is drawn.

II. THEORY

We consider GaInP–AlGaInP strained QW lasers with a
conventional step separate-confinement heterostructure (SCH).
The total current of the laser is assumed to be composed of
two components: the radiative current and the leakage current.
The nonradiative Auger recombination current is neglected.
This is justified for this wide bandgap material system where
the small split-off energy suppresses the Auger recombination.
Only the electron leakage current over the p-cladding layer is
considered since it is much larger than the hole leakage current
over the n-cladding layer.

In calculating the threshold condition, we consider the gains
or losses due to: 1) the bound-to-bound , 2) the bound-
to-continuum , 3) the continuum-to-bound ,
and 4) the continuum-to-continuum transitions in the
waveguide region. The threshold condition is written as

(1)

where , and are the gain coefficients
arising from the four different transitions. is the internal
loss due to other loss mechanisms and is the mirror loss.

is the optical confinement factor of the QW region. (For
multiquantum well lasers, the QW region also includes the
barriers between the wells.) is the confinement factor of
the waveguide region which is defined here to be composed
of the confining layers and the QW region. Since the gains are
functions of the quasi-Fermi levels for the conduction and the
valence bands, the quasi-Fermi levels can be found by solving
the threshold condition (1). Once the quasi-Fermi levels are
found, one can calculate the four components of the radiative
current due to the four kinds of transitions. Since the electric
field in the cladding layer depends on the majority carrier
flow which supplies the radiative recombination current in the
waveguide region, one can calculate the drift leakage current
only after the total radiative current is obtained.

A. Bound Subband Structures

The method is used to calculate the band structures.
For the valence subbands bound in the QW’s, we use the

Luttinger–Kohn Hamiltonian which includes the coupling
among the six hole bands [3], [10], [12], [13]. The strain effect
is also included in the Hamiltonian. It is necessary to consider
the spin-orbital split-off bands for accurate band structures
since the split-off energy is small for the wide gap material
considered here. Under the axial approximation and assuming
the layers are grown along the direction ( axis), the

Luttinger–Kohn Hamiltonian is block-diagonalized into
two blocks [12], [13]:

(2)

where

(3)

(4)

(or ) is the index for the two blocks. The upper
(or lower) signs in (3) are for (or ). and are
the unstrained valence band edges. The split-off energyis
therefore equal to . . , and
are the Luttinger parameters. is the hydrostatic deformation
potential of the valence band andis the shear deformation
potential. , and are the diagonal elements of the
strain tensor and are given by

(5)

and are the lattice constants of the strained layer material
and the substrate, respectively. and are the elastic
stiffness constants.

The wave function in the valence bands can be expressed as

(6)

where are the envelope functions, is the subband
index, is the area of the QW, , and

are the new transformed Bloch functions
given by [12], [13]
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(7)

where and (or ) for the upper
(lower) signs. The subband energy dispersion and the envelope
functions can then be obtained by solving the effective-mass
equation

(8)

If the spatial varying potential has reflection symmetry, then
, and

.
To obtain the energy dispersion and the wave functions of

the conduction band, we solve the one-band effective-mass
equation

(9)

where and are the electron effective masses in the-
plane and in the direction, respectively, is the unstrained
conduction band edge, is the hydrostatic potential of the
conduction band, is the envelope function, andis the
subband index. If the transverse effective mass is weakly
dependent on or the envelope function is tightly bound in
the well, the solution of (9) can further approximate to

(10)

The actual electron wave function is

(11)

where is the spin index which can be eitheror .
and are the Bloch functions at for spin up and spin
down, respectively.

B. Continuum States Above the Barriers

The spontaneous emission due to optical transitions in-
volving continuum states above the barriers is sometimes
important. It is however not easy to include this effect in
theoretical analysis. When a laser is at threshold, the band
profile around the active region is nearly flat [19], [20]. This
situation is illustrated in Fig. 1. Because one side of the system
is open, the states with-component energy higher than the
barrier are continuum. To make the problem solvable, one can
impose a fictitious infinite potential barrier on the open side
which is far away from the active region. In this case, the
states become discrete but the problem is still cumbersome.
For a large bound domain, a large number of subbands have
to be treated. The computation can be further simplified by
changing the asymmetric potential profile in Fig. 1(a) to a
symmetric one in Fig. 1(b). This model has been used in

(a)

(b)

Fig. 1. The illustration for band profile at threshold. (a) Fictitious infinite
potentials are imposed at the two boundaries for discretizing the continuum
states. (b) The potential profile is modified to be symmetric.

calculating the bound-to-free intersubband transition [21]. Due
to the reflection symmetry of the potential, the envelope wave
functions now have clear parity and one needs only to perform
the overlap integral of envelope wave functions with the same
parity.

Note that the discrete states in the Fig. 1(b) model are used
only for the carriers in the waveguide region but not for the
carriers in the cladding layers. The use of the discrete states
in Fig. 1(b) to replace the continuum states is reasonable if
the domain size is large enough. In the calculation, the
domain size is chosen to be large enough to make sure that
the discrete states are dense enough to resemble the continuum
states. In this situation, the physical quantities of the bound
system are close to those of the open system. Furthermore,
for a large , the physical quantities of the bound system
should not significantly depend on whether the system is
symmetric or not. In other word, the physical quantities of the
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symmetric system should be close to those of the asymmetric
one. However, as will be shown later, the computation for the
former is much easier than that for the latter.

For continuum states in the conduction band, the approxima-
tion (10) is also used. The electron wave functions can also be
expressed in the form of (11). In the following, we will denote
the envelope wave function as and the eigenenergy as

using the bar for continuum states to avoid confusion
with the bound states.

For continuum states in the valence band, we neglect the
band coupling. Only the diagonal elements of the effective
Hamiltonian in (3) are used:

(12)
The effective mass equation is decoupled to three one-band
effective-mass equations for the heavy hole, the light hole,
and the spin-orbital split-off hole bands. The parabolic ap-
proximation similar to (10) is also used to obtain the envelope
functions and the energy dispersion of each band. The wave
functions are no longer mixed and can be expressed as

for and

(13)
with the eigenenergy of , where is the ro-
tated cell-periodic function defined in the Appendix. Because

, we have and
.

C. Carrier Density and Quasi-Fermi Level

In the calculation, we assume that the electrons in the
conduction bands (including theand the valleys) and the
holes in the valence bands (including various hole bands) reach
their own quasi-equilibrium condition. The carrier distribution
satisfies the Fermi–Dirac distribution in each band and can be
determined by the corresponding quasi-Fermi level. This is a
good approximation in calculating the threshold current of a
laser in which the stimulated emission is not significant.

Because the gain coefficients are functions of two variables,
the quasi-Fermi levels of the conduction, and the valence
bands, it requires an additional condition to solve the threshold
condition (1). Assuming the active region is undoped and the
charge neutrality condition holds in the QW region, we have

(14)

where

(15)

is the electron density in the QW region and

(16)

is the hole density in the QW region. and are the
densities of electrons in the bound states and the continuum
states, respectively. is the density of electrons which
populate the valleys in the QW region. and

are the densities of holes in the bound states and the continuum
states, respectively. These carrier densities can be related to
their corresponding quasi-Fermi levels, or [22].

D. Optical Gain and Momentum Matrix Element

The optical gain is calculated based on the standard time-
dependent perturbation theory (the Fermi’s Golden Rule).
Including the effect of lifetime broadening, the gain coeffi-
cients for transitions to bound valence states, and ,
can be written as [13]

(17)

where is the electronic charge, , and are the electron
mass, the velocity of light, and the permittivity in free space,
respectively, and is the refractive index averaged over
the QW region. is the width of the QW region.
and are the occupation probabilities forelectrons in
the conduction and the valence bands, respectively.

is the broadening lineshape function for the
inclusion of intraband relaxation effects and will be discussed
in the following subsection.

(18)

is the transition energy and is the carrier-density-
dependent bandgap shrinkage energy.

is the momentum matrix element and
is the polarization vector. Using the wave functions in (6)
and (11), one can obtain the TE and TM squared momentum
matrix elements [13]:

(19)

and

(20)

with the average bulk momentum matrix element

(21)

where is the Kane’s energy parameter. For structures with
reflection symmetry, we have the properties of

, and having a clear parity. This
makes and independent of the indexesand

. The summations over and in (17) can thus be replaced
by the factor 4, implying that we need to treat only one of the
two blocks when calculating the optical gain. This is
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why we use the symmetric potential in Fig. 1(b) to calculate
the continuum states.

For the transition, the optical gain can be
written as

(22)

where the electron occupation probability in the valence bands
and the transition energy have the same defini-

tions described earlier except that the bound state energy
is replaced by the continuum state energy . For the
momentum matrix elements ,
we use the polarization dependent formula [22]–[25] (see the
Appendix):

(23)

(24)

(25)

for TE polarization waves and

(26)

(27)

(28)

for TM polarization waves, where . Strictly
speaking, there is no clearly defined because is not a
good quantum number in the layer structure without translation
symmetry in the direction. However, a clear can be found
in each layer by using the one-band effective-mass equation
(12). We average of each layer over the QW region
to obtain the squared momentum matrix element since the

transition mainly occurs in the QW region. Again, the
squared momentum matrix elements here are independent of
the indexes and and we have replaced the summations
over and by 4 in (22).

For the transition, the gain can also be
expressed as (22) but the integral of envelope wave functions
in the momentum matrix element is carried out over the entire
domain defined in Fig. 1(b) and the average length in
(22) has to be changed to the entire domain size. The

is here averaged over the waveguide region because
the transition occurs only in the waveguide region.

The TE and the TM gains are both calculated. The lasing
mode and the emission wavelength are obtained when the
carrier density reaches the threshold condition (1). The quasi-
Fermi levels are then obtained by solving (1) and (14). We

assume the quasi-Fermi levels are flat throughout a wide range.
This assumption is valid and often used in calculation [22].

E. Lineshape Function

To include the effect of the intraband relaxation, a broaden-
ing lineshape function is generally used in the gain calculation.
There have been many reports on the gain analysis using the
Lorentzian lineshape function [3], [9]–[11], [13]. However,
in spite of its simplicity, the Lorentzian lineshape may cause
unnatural results. The slow decay of the lineshape in the long
wavelength range may cause an unreasonably large absorption
of photons with energy well below the bangap, inconsistent
with the observed result. In this study, the choice of the
lineshape function is especially important since the effect of
the transition in the confining layers is included. A poorly
chosen lineshape function will result in a large absorption loss
in the confining layers. This problem can be avoided by using
more accurate lineshapes by considering the non-Markovian
process in the intraband relaxation [14]–[16]. It is, however,
difficult to calculate the non-Markovian lineshape function
from the first principle in device simulation. Fortunately, it
is found that the non-Markovian lineshape can be well fitted
by the simple form

(29)

with

(30)

where is chosen so that the lineshape function is
normalized. Only three fitting parameters, , and ,
are needed. These parameters are functions of the carrier
density, temperature, and the band structures. However, in
the interesting range of carrier density and temperature for
QW lasers, the lineshape is not sensitively dependent on these
factors. So, in this study, we assume that the fitting parameters
are all constant. Fig. 2 shows the non-Markovian lineshape
with 0.005 eV, 10 eV , and 30 eV and
the conventional Lorentzian lineshape with a 0.1-ps relaxation
time. One can see that the non-Markovian lineshape has a low-
energy tail steeper than the high-energy one. The unnatural
low-energy absorption due to the Lorentzian lineshape can
therefore be avoided.

Note that in (17) and (22), we have considered the bandgap
shrinkage due to the carrier-carrier exchange. This effect
causes red shift of the spectrum and is important to be included
in order to obtain an emission wavelength consistent with the
experiment. We use the 1/3-power formula for the bandgap
shrinkage [22]:

(31)

where is chosen to be 3.2. This 1/3-power relation has been
demonstrated to be valid at high carrier densities [26]–[28].

F. Radiative Recombination Current

We have considered four kinds of optical transitions which
result in four gain coefficients. At the same time, the transitions
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Fig. 2. The non-Markovian lineshape function (the solid line) withC =

0.005 eV,K1 = 10 eV�1, andK2 = 30 eV�1 and the Lorentzian lineshape
function (the dashed line) with a 0.1-ps scattering time.

also cause radiative currents. The radiative current density is
also composed of four components:

(32)

Each component of radiative current densities is calculated”

(33)

where , and are the sponta-
neous emission rates due to the four corresponding transitions
and is the width of the waveguide region (see Fig. 1).
Note that for , and , the size of the QW region,

, is used since the three recombination processes occur
mainly in the QW region. However, for the radiative
current density , the recombination occurs throughout the
waveguide region and we multiply by . The
spontaneous emission rates for transitions to bound states,

and , can be calculated by the formula

(34)

where the squared momentum matrix element of the sponta-
neous emission

(35)

is the average of two TE polarization components and one
TM polarization component. Again, summations overand
have been replaced by 4 in formula (34). For the spontaneous

emission rate , the formula is

(36)

where the squared momentum matrix elements of spontaneous
emission

(37)

for , and . The spontaneous emission rate
can be expressed by (36) except that is replaced by
and the integrals of the wave functions for momentum matrix
elements are over the entire domain, similar to the case in the
gain formula .

G. Leakage Current

The formulas for the leakage current are derived following
the conventional method [22], [29]. The total current density is

(38)

The hole leakage current over the n-cladding layer is neglected.
In the p-cladding layer, the total current density is

(39)

where and are the hole and the electron current densities
in the p-cladding layer, respectively, and is the same as

. Comparing (38) with (39), we have

(40)

where is the hole mobility, is the hole density (near
the waveguide region), and is the electric field, respectively,
in the p-cladding layer. The leakage current density is further
divided into

(41)

where

(42)

is the drift current density and

(43)

is the diffusion current density. , and are the
electron mobility, the electron density near the waveguide
region, and the electron diffusion length, respectively, in the
p-cladding layer. is the thickness of the p-cladding layer,
and is the effective field length defined as .
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The carrier densities, and , are calculated by using
the quasi-Fermi level difference obtained from the previous
calculation and requiring the charge neutrality in the cladding
layer

(44)

where is the doping concentration in the p-cladding layer,
includes the electrons in the and the valleys, and
contains holes in the split-off bands as well as in the

heavy-hole and the light-hole bands.

H. Material Parameters

The material parameters of the AlGaInP system lattice-
matched to GaAs are not as well known as those of the AlGaAs
system. Recently, several measurements on this material sys-
tem have given some reliable results [11], [17], [18], [30]–[34].
The material parameters used in this work are mainly taken
from the data reported recently by Meneyet al. [11], [17],
[18]. The and bandgaps of (AlGa ) In P at 300
K are given by

eV (45)

eV (46)

The band discontinuities for unstrained GaIn P in
(Al Ga ) In P barrier are assumed to be

eV (47)

eV (48)

where is the bandgap difference between GaIn P
and GaIn P:

Ga In Ga In P (49)

and the bandgap of GaIn P is given by fitting to those
of InP, Ga In P, and GaP. These data are considerably
different from those reported in the earlier years [35]. How-
ever, as will be seen in the following section, our calculated
results using the new parameters agree well with the measured
results. The other parameters for (AlGa ) In P used
in the calculation are obtained by linear interpolation among
InP, GaP, and AlP, which are listed in Table I. The refractive
index for calculating optical modes is obtained from [35]. The
mobilities of electrons and holes in the p-cladding layer are
assumed to be 100 cm /V s and 10 cm /V s,
respectively, and the electron diffusion length is 0.6

m. In calculating the band structures of strained wells, we
assume the deformation potential .

III. RESULTS AND DISCUSSION

In the section, we analyze the laser characteristics in detail
by investigating the performance as a function of the confining
layer thickness, the Al content of the confining layers, and
the QW number. The laser structures are composed of 1-m
(Al Ga ) In P cladding layers ( 1 m) and 80-̊A
Ga In P tensile-strained QW’s. The doping concentration
in the p-cladding layer is 1 10 cm and that in the
n-cladding layer is assumed to be sufficiently high so that

TABLE I
MATERIAL PARAMETERS OFInP, GaP,AND AlP

the hole leakage current over the n-cladding layer can be
neglected. The internal loss is assumed to be 10 cm
and the cavity length is 500m long, leading to a mirror loss
of 24 cm . The temperature is 300 K.

A. Single QW

In this subsection, single QW lasers are considered. Fig. 3
shows the TM peak gain versus the radiative current density
for three different Al contents of the confining layer material
(Al Ga ) In P , and . The confining
layers are taken to be 100 nm. The TE peak gain is smaller
than the TM peak gain for the tensile-strained lasers. As can be
seen, the transparency current density is lower for lasers with
a higher Al content in the confining layers. This is because
a smaller number of carriers spill over the barriers when the
Al content is high. On the other hand, when the confining
layers have a low Al content, a large amount of spilled-
over carriers cause a considerable radiative current which,
as will be seen later, does not contribute to the TM gain
efficiently. As a result, to reach the transparency condition,
the radiative current is lower for the confining layers with
a higher Al content. The spilled-over carriers also cause
another disadvantage which can be clearly seen from Fig. 3
that the differential gain is poorer for devices with
lower Al barriers. These results cannot be obtained without
considering the recombination of the spilled-over carriers,
or recombinations due to the optical transition from/to the
continuum states. Note that the differential gain for is
poorer than for . This is because there is only a light-
hole subband confined to the shallower QW but
there are two subbands (one light-hole and one heavy-hole
subbands) confined to the deeper QW . Since the
optical transition to the heavy-hole subband contributes nearly
no TM gain, the differential gain is poorer for .
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Fig. 3. The peak gain versus the radiative current density characteristic for
single QW lasers.Three different Al contents of the (AlxGa1�x)0:5In0:5P
confining layers are considered,x = 0:4; 0:5, and0:6.

Lasers with high-Al-content confining layers have a draw-
back. Because of the high Al content, the refractive index of
the confining layers is closer to that of the cladding layers.
It results in a small confinement factor. So a higher gain is
needed for such devices to reach threshold. Since a larger
quasi-Fermi level separation is required to obtain a higher gain,
the leakage current over the cladding layers becomes higher.

To understand the properties of the lasers, it is necessary
to analyze in detail the behaviors of the gain, the radiative
current, the leakage current. Fig. 4 shows and at
threshold versus the confining layer thickness for the three
different Al contents in confining layers , and

. One can see that is higher when the confining
layers are thinner. is also higher for higher Al content in
the confining layers. These are all caused by the reduction in
the confinement factor as a result of such structure changes.
One can find that a deep QW (with a highin the confining
layers) has a smaller . There are two reasons. First, for
a deep well, the difference of the occupation probabilities,

, is small. Secondly, the detuning energy
is far apart from zero so that the gain after

convolved by the lineshape function becomes very small. As
a result, for devices with high-Al confining layers (such as

), can be totally neglected. Even for those with
low-Al confining layers, is still very small compared to

. The gain has a negative value and is much
smaller than . The reason is because there are more holes
in the continuum states than electrons in the continuum states
due to the fact that the conduction-band QW is much deeper
than the valence-band QW [see (47) and (48)]. The
gain is the smallest of the four components of the gain
because the transition energy is much higher than the
emission energy .

The gain coefficients mentioned above are all very depen-
dent on the convolution lineshape function. We have calculated
the gains using the conventional Lorentzian lineshape. Absorp-
tion larger than 100 cm were obtained for both and

. This is in conflict with the experimental observation.

Fig. 4. The bound-to-bound gaingb!b (the solid lines) and the
bound-to-continuum gaingb!c (the dashed lines) versus the thickness
of confining layers for single QW lasers at threshold. Three different Al
contents of the (AlxGa1�x)0:5In0:5P confining layers are considered,
x = 0:4; 0:5; and 0:6.

The use of the non-Markovian lineshape function alleviates
this problem and the results agree with the observation.

The radiative current densities and are shown
in Fig. 5(a) as functions of the thickness of the confining
layer and its Al content. Similar to the gain , higher Al
contents or smaller thicknesses of the confining layers lead
to higher . Unlike the behavior of is higher
for devices with a lower Al content in the confining layers.
The reason is similar to the case for , shown in Fig 4.
However, different from , which is much smaller than

’s are comparable to ’s. This difference is
due to the lineshape function. The gain is very sensitive to the
detuning energy of the convolution lineshape function but the
total spontaneous emission rate is independent of the lineshape
function. As a result, a small gain does not necessarily mean
a low radiative current. Fig. 5(b) shows the radiative
current density and the total radiative current density

. One can see that ’s are almost linearly dependent
on the confining layer thickness. This is because the
transition occurs throughout the whole waveguide region. To
demonstrate the validity of our model, we have calculated
the bimolecular recombination coefficient by the empirical
formula

(50)

We found that the coefficient is 1.0 1.5 10 cm s ,
which is in excellent agreement with the experimental result
[36]. The radiative current can be neglected
compared with the other components of the radiative current
since the transition occurs only within the QW region
and the factor is small. Note that for devices
with a shallow QW and are higher
compared with those for devices with a deep QW. Since, as
described above, and do not contribute very much
to the gain, the gain-radiative current characteristics should be
better for devices with deep wells. This is in agreement with
the result shown in Fig. 3. It is noteworthy that lasers with
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(a)

(b)

Fig. 5. (a) The bound-to-bound radiative current densityJb!b (the solid
lines) and the bound-to-continuum radiative current densityJb!c (the dashed
lines) and (b) the continuum-to-continuum radiative current densityJc!c

(the dashed lines) and the total radiative current densityJrad (the solid lines)
versus the thickness of confining layers for single QW lasers at threshold.
Three different Al contents of the (AlxGa1�x)0:5In0:5P confining layers are
considered,x = 0:4; 0:5, and0:6.

higher Al content confining layers have a lower
radiative current than those with . This result is quite
different from that without considering the optical transition
from/to the continuum states [see in Fig. 5(a)].

Fig. 6 shows the curves for the diffusion current density
and the drift current density at threshold.

As can be seen, is higher than . In addition,
and are higher for devices with higher Al

confining layers. The diffusion current depends on the electron
carrier density in the p-cladding layer, which is related
to the quasi-Fermi level separation . For lasers with
a high Al content in the confining layers, due to the large
separation between quantized levels in the conduction and the
valence bands and the high gain required to reach threshold,
the quasi-Fermi level separation is large. Compared
with in Fig. 5(b), is comparable to . Since
depends on , as expressed in (42), it increases with the

Fig. 6. The diffusion leakage current densityJdi�usion (the solid lines)
and the drift leakage current densityJdrift (the dashed lines) versus the
thickness of confining layers for single QW lasers at threshold. Three different
Al contents of the (AlxGa1�x)0:5In0:5P confining layers are considered,
x = 0:4; 0:5, and 0:6.

Fig. 7. The total leakage current densityJleakage (the dashed lines) and
the total threshold current densityJth (the solid lines) versus the thickness of
confining layers for single QW lasers at threshold. Three different Al contents
of the (AlxGa1�x)0:5In0:5P confining layers are considered,x = 0:4; 0:5,
and 0:6.

power level and may become serious above threshold. This
may result in a poor light–current characteristic if the laser is
improperly designed.

Fig. 7 shows the total leakage current density and
the threhsold current density as functions of the confining
layer thickness for the three Al contents in confining layers. As
can be seen, the leakage current is serious and dominates over
the radiative current. is very high for devices with

, resulting in a very high . But for devices with
is slightly higher than that for devices with .

The emission wavelengths for devices with different struc-
tures are shown in Fig. 8. The emission wavelength depends
on the quasi-Fermi level separation and the bandgap
shrinkage energy . Since the separation is larger
for higher barriers (having a larger), the emission wavelength
is generally shorter for higher Al content in the confining
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Fig. 8. The emission wavelength versus the thickness of confining lay-
ers for single QW lasers at threshold. Three different Al contents of the
(AlxGa1�x)0:5In0:5P confining layers are considered,x = 0:4; 0:5, and
0:6.

layers. The effect of the bandgap shrinkage is also important.
For example, as the confining layer thickness is small, the
emission wavelength is generally red-shifted. This is because
higher gains and higher carrier densities are needed to reach
the threshold condition, resulting in more serious band gap
shrinkage [see (31)]. Another example is that the emission
wavelength for is shorter than for This is
because the bandgap shrinkage is more serious for
although its quasi-Fermi level separation is larger.

According to the above analysis, we can now obtain an
optimized single QW laser structure which has 100150-nm
(Al Ga ) In P confining layers. The threshold current
density is 1.3 kA/cm and the emission wavelength is634
nm. Single QW lasers have some drawbacks. They are all
caused by the narrow gain region. The narrow gain region
gives rise to a small confinement factor and therefore a high
gain is needed to reach threshold. The quasi-Fermi level
difference is large and a high leakage current results.
In addition, the threshold carrier density is high for such lasers,
resulting in serious bandgap shrinkage. An undesired long
emission wavelength may be obtained. To obtain a low leakage
current and a short emission wavelength, multiple QW lasers
with a wide gain region are necessary.

B. Double QW’s

In this subsection, we consider lasers with double QW’s.
The QW thickness is again 80̊A and the barrier sandwiched
between the wells is 40̊A. The other parameters are the same
as those described before.

Fig. 9 shows the curves for and at threshold.
A remarkable difference between the curves and those shown
in Fig. 4 for single QW lasers is that the gain ’s of the
double QW lasers are about three times smaller than those of
the single QW lasers. This is because the confinement factors
for are about three times larger than those for .
The threshold carrier density in the QW region is therefore
greatly reduced and the quasi-Fermi-level separation

Fig. 9. The bound-to-bound gaingb!b (the solid lines) and the
bound-to-continuum gaingb!c (the dashed lines) versus the thickness
of confining layers for double QW lasers at threshold. Three different
Al contents of the (AlxGa1�x)0:5In0:5P confining layers are considered,
x = 0:4; 0:5, and 0:6.

Fig. 10. The total radiative current densityJrad versus the thickness of
confining layers for double QW lasers at threshold. Three different Al contents
of the (AlxGa1�x)0:5In0:5P confining layers are considered,x = 0:4; 0:5,
and 0:6.

becomes small. ’s for are smaller compared
with those for . This is because the reduced quasi-
Fermi-level separation leads to the decrease in the occupation
probability difference . Similar to the case for

is much smaller than , and and
can be totally ignored. So, in general, when calculating

the gain, one can actually only consider the gain.
For , the spontaneous emission rate is lower since

the carrier densities are reduced. However, due to the increase
in the thickness of the QW region, the radiative current
is not expected to have a significant change. The calculted
total radiative current densities are shown in Fig. 10.
Compared with the curves for shown in Fig. 5(b),
the values are typically larger for .

Although the radiative current increases, the leakage current
is improved significantly. Shown in Fig. 11 is the plot for
the diffusion current density and the drift current
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Fig. 11. The diffusion leakage current densityJdi�usion (the solid lines)
and the drift leakage current densityJdrift (the dashed lines) versus the
thickness of confining layers for double QW lasers at threshold. Three different
Al contents of the (AlxGa1�x)0:5In0:5P confining layers are considered,
x = 0:4; 0:5, and 0:6.

density . Compared with Fig. 6 for
is reduced considerably, especially for confining layers with
high Al content . is not improved as much as

since is dependent on which rises when
the number of QW’s increases. Different from the case for

(see Fig. 6), becomes higher than
for . The total leakage current density
and the threshold current density are shown in Fig. 11.
Compared with Fig. 7 for , the leakage current is
reduced significantly, especially for largevalues. Note that
the leakage current still dominates over the radiative current
for (compared with Fig. 10). The threshold current for

is reduced significantly by adding an additional QW.
But for low Al content , the threshold currents
are not improved very much.

Shown in Fig. 13 is the plot for the emission wavelength.
Compared with Fig. 8 for , the wavelength becomes
shorter for . This is because the threshold carrier
density in the gain region is reduced. The band gap shrinkage
is thus not as serious as that for . For and

, the emission wavelength reaches a low value of632 nm.
Different from the case for , the emission wavelength
for devices with is longer than that for devices with

. These calculated results are in good agreement with
the experimental results. So the effect of bandgap shrinkage is
very important while analyzing such a kind of lasers.

Now we can conclude that the optimum structure for
is the one with -nm (Al Ga ) In P confining

layers if the other parameters are kept the same as before. The
threshold current density is 1.2 kA/cm and the emission
wavelength is 632 nm. Comparing the threshold current and
the emission wavelength between the optimum structures for

and , one can find that the double QW laser
is superior to the single QW laser since the short wavelength
of 632 nm is desirable.

Further increasing the QW number does not significantly
improve the threshold current and the emission wavelength.

Fig. 12. The total leakage current densityJleakage (the dashed lines) and
the total threshold current densityJth (the solid lines) versus the thickness of
confining layers for double QW lasers at threshold. Three different Al contents
of the (AlxGa1�x)0:5In0:5P confining layers are considered,x = 0:4; 0:5,
and 0:6.

Fig. 13. The emission wavelength versus the thickness of confining layers
for double QW lasers at threshold. Three different Al contents of the
(AlxGa1�x)0:5In0:5P confining layers are considered,x = 0:4; 0:5, and
0:6.

We have studied the triple QW lasers. The results showed
that the radiative current densities are typically650 A/cm
for both and . The diffusion current is slightly
improved but the drift current basically remains the same as
that for . As a result, the threshold current becomes
slightly lower for but slightly higher for ,
compared with the threshold current for . The emission
wavelength for is slightly longer ( 632 nm) but
slightly shorter for ( 631.2 nm) than the wavelength
for .

C. Dopant Concentration in p-Cladding Layer

From the previous analysis, one can find that the leakage
current is still high for double QW lasers. In fact, due to
the inherent limitation of available material for such lasers,
the leakage current is sensitively dependent on the doping
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Fig. 14. The total leakage current densityJleakage versus the dopant con-
centration in the p-cladding layer for single QW lasers at threshold. Three
different Al contents of the (AlxGa1�x)0:5In0:5P confining layers are con-
sidered,x = 0:4; 0:5, and 0:6.

concentration in the p-cladding layer. For a higher p-dopant
concentration, the quasi-Fermi levels and are both
closer to the valence band. As a result, the electron density
is reduced and the hole density rises. The diffusion and
the drift currents are therefore reduced. Fig. 14 shows the
leakage current density at threshold as a function of the
dopant concentration of the p-cladding layer for single QW
lasers. Three Al contents of confining layers are considered,

, and . The confining layer thickness is taken to
be 100 nm. As can be seen, the leakage current is very sensitive
to the dopant concentration when the doping concentration

1.5 10 cm . The improvement on the leakage current
is effective by increasing the dopant in the p-cladding layer.
So, the dopant concentration should be as high as possible.
However, in reality, it is difficult to obtain a very high p-
doping concentration in (AlGa ) In P with .

D. Al Content of Cladding Layers

To further reduce the leakage current density, one can utilize
the cladding layers with a higher Al content. A higher Al
content in cladding layers gives rise to two advantages. Since
the band gap becomes wider, the leakage of the minority car-
rier is suppressed. In addition, the refractive-index difference
between the cladding and the confining layers is larger, and the
optical mode is more tightly confined so the confinement factor
becomes larger. This results in a lower threshold gain and
a reduced separation of the quasi-Fermi levels, which again
reduces the leakage current. Fig. 15 shows the leakage current
density at threshold versus the Al content of cladding layers
for different p-doping concentrations. The lasers have a single
QW. The Al content and the thickness of confining layers are
taken to be 0.5 and 100 nm, respectively. The cavity
length is still assumed to be 500m. It can be seen from
the figure that the leakage current is reduced considerably
by increasing the Al content in the cladding layers with a
low doping concentration. Low leakage current can therefore
be obtained by using the AlInP cladding layers with a high

Fig. 15. The total leakage current densityJleakage versus the Al content of
the (AlxGa1�x)0:5In0:5P cladding layers for single QW lasers at threshold.
Four different dopant concentrations in the p-cladding layer are considered,
NA = 0.5, 1, 1.5, and 2�1018 cm�3.

dopant density. Our calculation shows that a low threshold
current density of 620 A/cmcan be obtained for lasers with
AlInP cladding layers with 1 10 cm . This result is
consistent with the observation [7]. However, in practice, the
high-Al cladding layers may cause other problems. Heavily
p-doped cladding layers are difficult to be obtained as the
Al content increases. Additionally, tight confinement of the
optical mode may lead to a poor beam divergence. These
problems have to be considered in designing the lasers.

IV. CONCLUSION

We have theoretically analyzed in detail the 630-nm
GaInP–AlGaInP tensile-strained QW lasers. The
Luttinger–Kohn Hamiltonian has been used for calculating
the valence band structure including the coupling effect
of spin-orbital split-off bands. The effect of the optical
transitions from/to the continuum states has also been taken
into account. The results show that although the gains due to
the optical transitions from/to the continuum states are small
compared to the gain due to the bound-to-bound transition, the
radiative currents arising from the optical transitions from/to
the continuum states are significant and cannot be neglected.
To avoid unreasonable absorption below the band gap, a more
practical lineshape function, the non-Markovian lineshape,
should be adopted for gain calculation. It has been shown that
the use of such lineshape is very important for the correct
gain calculation. The band-gap shrinkage effect due to carrier-
carrier interaction has been considered. The results indicate
that the bandgap-shrinkage effect plays an important role in
obtaining a correct emission wavelength.

The problem of leakage current is serious for single QW
lasers. It can be improved by increasing the QW number, the
p-cladding layer dopant concentration, and the band gap of
the cladding layers. We have optimized the laser structures
to achieve a low threshold current and a short emission
wavelength. For single QW lasers with (AlGa ) In P
cladding layers, the optimized confining layers have been



YEN AND LEE: THEORETICAL ANALYSIS OF 630-nm BAND GaInP–AlGaInP STRAINED QW LASERS 455

found to be 100 150-nm (Al Ga ) In P. The calculated
threshold current density is 1.3 kA/cm and the emis-
sion wavelength is 634 nm for a 500-m-long cavity. For
double QW lasers, the optimized confining layers are 50150-
nm (Al Ga ) In P. The corresponding threshold current
density is 1.2 kA/cm and the emission wavelength is

632 nm for a 500-m-long cavity. The double QW laser
is preferred due to its shorter emission wavelength. Fur-
ther increasing the QW number does not make significantly
improvement on the threshold current and the emission wave-
length.

APPENDIX

The polarization dependent matrix elements in (23)–(28)
are derived in this appendix. Based on Kane’s theory [37],
the wave functions with small vector’s have the following
set of transformed cell-periodic functions for the effective
hamiltonian in (12):

(A1)

(A2)

(A3)

where (or ) is the index for the upper (lower) signs.
The transformed , and are related to ,
and at by

(A4)

(A5)

where and . The trans-
formation is taken so that the new axis is along the wave
vector . Using the basis functions (A1)–(A3) and relation
(A4), the squared momentum matrix element

(A6)

Taking average over and using (25), we have

(A7)

which is just the squared momentum matrix element in (23).
The average over is associated with the axial approximation
of the band structure in the gain calculation.

Similarly, the other squared matrix elements in (24)–(28)
can also be deduced by the same procedure.
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