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Capability measure for processes yield with single characteristic has been investigated extensively, but is
still comparatively neglected for processes with multiple characteristics. Wu and Pearn [Wu, C.W., Pearn,
W.L., 2005. Measuring manufacturing capability for couplers and wavelength division multiplexers
(WDM). International Journal of Advanced Manufacturing Technology 25(5/6), 533–541] proposed a
capability index for multiple characteristics called CT

PU , which provides an exact measure on process yield
for multiple characteristics with each characteristic normally distributed. However, the exact sampling
distribution of CT

PU (multiple characteristics) is analytically intractable. In this paper, we apply the boot-
strap method for calculating the lower confidence bounds of the index CT

PU , and determine the sample size
for a specified estimation accuracy. In order to obtain a desired estimation quality assurance, the sample
size determination is essential as it provides the accuracy of the lower bound obtained from the bootstrap
method. For convenience of applications, we tabulate the sample size required for various designated
accuracy for the engineers/practitioners to use. A real-world example from manufacturing process with
multiple characteristics is investigated to illustrate the applicability of the proposed approach.

� 2008 Published by Elsevier B.V.
1. Introduction

Process capability indices (PCIS) are effective tools for quality
assurance and process improvement. Numerous capability indices
quantifying process potential and process performance are essen-
tial to any successful quality improvement activities and quality
program implementation. Several basic capability indices have
been widely used in manufacturing industry as follows:
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USL� LSL

6r
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where USL and LSL are the upper and the lower specification limits,
l is the process mean, r is the process standard deviation, and T is
the target value.

In order to calculate the estimator, data must be collected. A
great degree of uncertainty may be introduced into the capability
assessments due to sampling errors. As the sampling errors have
been ignored, the approach, simply by the calculated values of
the estimated indices and then making a conclusion on whether
the given process is capable, is highly unreliable. A reliable ap-
proach for estimating the true value of process capability is to
determine the sample size for desired estimation accuracy. The
sample size is directly related to the estimation accuracy and the
cost of the data collection plan. The capability measurements for
processes with single characteristic have been investigated exten-
sively (see Kane, 1986; Pearn et al., 1992; Chen, 1998; Chen and
Hsu, 2004; Cheng et al., 2006; Flaig, 2006; Vännman, 2006; Vänn-
man and Albing, 2007). However, the lacks of these studies associ-
ated with analyzing the quality and efficiency of a process, are, so
far, limited by discussing one single quality specification. In this
paper, we consider the process capability with multiple character-
istics to determine the sample size for desired estimation accuracy.

For process with multiple characteristics, several approaches
have been suggested (see e.g. Bothe, 1992; Chen et al., 2003a,b;
Castagliola and Castellanos, 2005; Huang et al., 2005; Wu and
Pearn, 2005). For example, Bothe (1992) considered a simple
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Table 2
Minimal requirement for each single characteristic of various capability levels for
multiple characteristics

c0 cL

1.000 1.33

1 1.000 1.330
2 1.068 1.383
3 1.107 1.414
4 1.133 1.436
5 1.153 1.452

Table 3
The total rank of the four bootstrap methods as CT

PU ¼ 1; 1:33 and v = 2(1)5

n CT
PU ¼ 1 CT

PU ¼ 1:33

SB PB BCPB PT SB PB BCPB PT

v = 2
30 3 2 1.006 3.994 2.996 1.996 1.008 4.000
40 2.996 2.004 1.004 3.996 2.982 2.008 1.034 3.974
50 2.992 2.002 1.024 3.982 2.99 2.012 1.030 3.968
60 2.982 2.014 1.042 3.962 2.984 2.010 1.056 3.950
70 2.994 2.004 1.018 3.984 2.984 2.020 1.030 3.966
80 2.988 2.012 1.026 3.974 2.972 2.028 1.072 3.928
90 2.994 2.016 1.022 3.968 2.970 2.026 1.084 3.920

100 2.980 2.020 1.026 3.974 2.992 2.002 1.072 3.934
125 3.000 2.010 1.018 3.972 2.968 2.040 1.104 3.888
150 2.988 2.012 1.040 3.960 2.974 2.056 1.094 3.876
200 3.004 2.018 1.036 3.942 2.972 2.018 1.148 3.858

v = 3
30 2.966 2.028 1.1 3.906 2.942 2.048 1.112 3.896
40 2.95 2.04 1.106 3.904 2.954 2.046 1.132 3.868
50 2.97 2.034 1.1 3.896 2.946 2.044 1.15 3.86
60 2.942 2.07 1.124 3.864 2.922 2.094 1.216 3.768
70 2.954 2.052 1.12 3.874 2.916 2.112 1.29 3.678
80 2.944 2.062 1.172 3.818 2.904 2.108 1.332 3.656
90 2.94 2.078 1.166 3.816 2.836 2.168 1.428 3.568

100 2.934 2.072 1.162 3.828 2.894 2.136 1.352 3.61
125 2.964 2.06 1.124 3.852 2.832 2.172 1.59 3.406
150 2.97 2.044 1.136 3.848 2.804 2.176 1.62 3.398
200 2.918 2.114 1.2 3.768 2.784 2.23 1.636 3.344

v = 4
30 2.97 2.052 1.116 3.856 2.94 2.076 1.17 3.814
40 2.912 2.084 1.208 3.796 2.882 2.11 1.3 3.708
50 2.922 2.094 1.224 3.76 2.826 2.186 1.508 3.478
60 2.91 2.096 1.222 3.772 2.798 2.188 1.53 3.478
70 2.882 2.126 1.254 3.736 2.822 2.186 1.664 3.328
80 2.916 2.108 1.26 3.716 2.79 2.274 1.666 3.268
90 2.892 2.12 1.318 3.668 2.742 2.272 1.784 3.196

100 2.886 2.124 1.28 3.706 2.73 2.308 1.85 3.11
125 2.922 2.126 1.308 3.644 2.634 2.4 2.054 2.912
150 2.92 2.1 1.328 3.648 2.684 2.412 2.034 2.868
200 2.88 2.152 1.394 3.57 2.632 2.434 2.322 2.606

v = 5
30 2.938 2.084 1.222 3.756 2.86 2.15 1.398 3.59
40 2.878 2.118 1.314 3.688 2.786 2.216 1.652 3.344
50 2.892 2.148 1.326 3.63 2.792 2.24 1.648 3.316
60 2.85 2.16 1.408 3.582 2.758 2.254 1.828 3.156
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measurement by taking the minimum measure of each single char-
acteristic. For example, considering a v-characteristics product
with v-yield measures P1,P2, . . . ,Pv, the overall process yield is mea-
sured as P = min{P1,P2, . . . ,Pv}. Furthermore, Chen et al. (2003a)
provided the process capability index with multi-characteristics as

ST
pk ¼

1
3

U�1
Yv

j¼1

ð2Uð3SpkjÞ � 1Þ þ 1

" #,
2

( )
; ð6Þ

where U(�) is the cumulative distribution of the standard normal
distribution N(0,1), U�1 is the inverse function of U(�), Spkj denotes
the Spk value of the jth characteristic for j = 1,2, . . . ,v, and v is the
number of characteristics. This index, which provides an exact mea-
surement on the process yield, establishes the relationship between
the manufacturing specification and the actual process performance
(Pearn and Cheng, 2007). Wu and Pearn (2005) discussed the pro-
cess with multi-characteristics for one-sided specification and pro-
posed a capability index as

CT
PU ¼

1
3

U�1
Yv

j¼1

Uð3CPUjÞ
( )

; ð7Þ

where CPUj denotes the CPU value of the jth characteristic for
j = 1,2, . . . ,v, and v is the number of characteristics. A one-to-one
correspondence relationship between the index CT

PU and the overall
process yield P can be established as

P ¼
Ym
j¼1

Pj ¼
Ym
j¼1

Uð3CPUjÞ ¼ Uð3CT
PUÞ: ð8Þ

Bootstrap approach seems to be a reasonable method for tackling
the problem that the sampling distribution of CT

PU (multiple charac-
teristics) is analytically intractable. Since lower confidence bound
estimates the minimum process capability conveying critical infor-
mation regarding product quality, Wu and Pearn (2005) estimated
the confidence bound by percentile bootstrap (PB) method. How-
ever, there are four types of bootstrap methods to estimate confi-
dence bound, including the standard bootstrap confidence interval
(SB), the percentile bootstrap confidence interval (PB), the biased-
corrected percentile bootstrap confidence interval (BCPB), and the
bootstrap-t (BT) method. And the engineers/practitioners would
want to know which one is recommended. In this paper, we com-
pare the performance of confidence bound for the one-sided index
CT

PU with multiple characteristics by using these four bootstrap
methods. The modified index CT

PU proposed by Wu and Pearn
(2005) are calculated. Furthermore, we find that the BCPB method
would be the recommended method to estimate confidence bound
in the general cases. We also provide the tables about the sample
sizes required for various designated estimation accuracy for the
engineers/practitioners to use in their factory applications. A real-
world example from manufacturing process with multiple charac-
teristics is investigated to illustrate the applicability of the proposed
approach.
Table 1
Various CT

PU values and the corresponding process yield

CT
PU Process yield

1.00 0.9986501020
1.25 0.9999115827
1.33 0.9999669634
1.45 0.9999931931
1.50 0.9999966023
1.60 0.9999992067
1.67 0.9999997278
2.00 0.9999999990

70 2.846 2.158 1.45 3.542 2.686 2.336 2.026 2.942
80 2.902 2.18 1.382 3.528 2.654 2.4 2.11 2.83
90 2.876 2.172 1.5 3.452 2.572 2.432 2.288 2.702

100 2.83 2.192 1.56 3.406 2.582 2.478 2.384 2.55
125 2.904 2.156 1.514 3.42 2.56 2.482 2.6 2.354
150 2.856 2.228 1.572 3.342 2.466 2.524 2.648 2.346
200 2.834 2.244 1.578 3.34 2.426 2.614 2.878 2.074
2. Capability measures for multiple characteristics

Capability measure for processes with single characteristic has
been investigated extensively. For normally distributed processes
with a one-sided specification limit, USL or LSL, the process yield
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Fig. 1a. The total rank of the four bootstrap methods as CT
PU ¼ 1, v = 2.
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Fig. 1d. The total rank of the four bootstrap methods as CT
PU ¼ 1, v = 5.
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Fig. 2a. The total rank of the four bootstrap methods as CT
PU ¼ 1:33, v = 2.
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Fig. 1b. The total rank of the four bootstrap methods as CT
PU ¼ 1, v = 3.
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Fig. 2b. The total rank of the four bootstrap methods as CT
PU ¼ 1:33, v = 3.
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Fig. 1c. The total rank of the four bootstrap methods as CT
PU ¼ 1, v = 4.
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is listed in the following, where Z follows the standard normal dis-
tribution N(0,1)

PðX < USLÞ ¼ P
X � l

r
<

USL� l
r

� �
¼ PðZ < 3CPUÞ ¼ Uð3CPUÞ; ð9Þ

PðX > LSLÞ ¼ P
X � l

r
>

LSL� l
r

� �
¼ Pð�Z < 3CPLÞ ¼ Uð3CPLÞ: ð10Þ

For easier presentation, we denote CI as either CPU or CPL. Thus, pro-
cess capability index CI provides an exact measure of the potential
process yield for processes with a one-sided manufacturing specifi-
cation. The corresponding process yield for a well controlled nor-
mally distributed process is easily calculated as U (3CI).

Considering processes with v-characteristics (assuming charac-
teristics are mutually independent) and v yield measures
P1,P2, . . . ,PV, Wu and Pearn (2005) suggested that the overall pro-
cess yield should be calculated as P = P1 � P2 � . . . � PV which is
significantly less than the calculated one. From the definition of
one-sided yield index in (9), the process yield index with single
characteristic can be rewritten as

CPU ¼
1
3

U�1 UðUSL� l
r

Þ
� �

; ð11Þ

where U(�) is the cumulative distribution of the standard normal
distribution N(0,1), and U�1 is the inverse function of U(�). For
the process with multiple quality characteristics, a simple measure
by taking the minimum of the measure of each single characteristic
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Fig. 2c. The total rank of the four bootstrap methods as CT
PU ¼ 1:33, v = 4.
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Fig. 2d. The total rank of the four bootstrap methods as CT
PU ¼ 1:33, v = 5.

Table 4
Sample size n required for Rc P RPU, with quality characteristics v = 3,
RPU = 0.75(0.01)0.95, c = 0.9, 0.95, 0.975, 0.99, and CT

PU ¼ 1

RPU c = 0.90 c = 0.95 c = 0.975 c = 0.99

n Rc n Rc n Rc n Rc

0.75 – – – – – – 16 0.7518
0.76 – – – – 6 – 21 0.7609
0.77 – – – – 7 0.7776 24 0.7731
0.78 – – – – 14 0.7832 28 0.7807
0.79 – – – – 18 0.7904 31 0.7901
0.80 – – 6 – 22 0.8005 36 0.8012
0.81 – – 12 0.8119 26 0.8107 40 0.8103
0.82 – – 17 0.8222 32 0.8226 49 0.8201
0.83 – – 23 0.8316 38 0.8304 56 0.8305
0.84 – – 28 0.8414 44 0.8403 65 0.8414
0.85 6 – 35 0.8536 52 0.8502 75 0.8502
0.86 18 0.8608 41 0.8600 63 0.8613 88 0.8609
0.87 26 0.8708 51 0.8710 73 0.8700 105 0.8710
0.88 33 0.8805 60 0.8802 88 0.8800 124 0.8812
0.89 44 0.8909 76 0.8912 105 0.8908 146 0.8610
0.90 54 0.9005 93 0.9004 128 0.9000 176 0.9005
0.91 71 0.9107 115 0.9102 158 0.9103 213 0.9101
0.92 92 0.9205 146 0.9201 197 0.9204 268 0.9202
0.93 121 0.9306 188 0.9303 253 0.9300 339 0.9302
0.94 164 0.9400 251 0.9402 337 0.9400 451 0.9400
0.95 231 0.9500 350 0.9502 473 0.9505 634 0.9500

Table 5
Sample size n required for Rc P RPU, with quality characteristics v = 3,
RPU = 0.75(0.01)0.95, c = 0.9, 0.95, 0.975, 0.99, and CT

PU ¼ 1:33

RPU c = 0.90 c = 0.95 c = 0.975 c = 0.99

n Rc n Rc n Rc n Rc

0.75 – – – – 6 – 19 0.7533
0.76 – – – – 8 0.7608 22 0.7600
0.77 – – – – 14 0.7721 24 0.7719
0.78 – – – – 17 0.7820 28 0.7813
0.79 – – – – 21 0.7923 33 0.7914
0.80 – – 6 0.8074 24 0.8008 38 0.8019
0.81 – – 16 0.8119 28 0.8109 41 0.8101
0.82 – – 19 0.8200 33 0.8209 50 0.8219
0.83 – – 24 0.8310 40 0.8334 57 0.8320
0.84 6 – 31 0.8421 44 0.8406 65 0.8400
0.85 12 0.8518 35 0.8519 54 0.8506 77 0.8524
0.86 21 0.8615 42 0.8613 62 0.8602 88 0.8603
0.87 26 0.8700 51 0.8705 73 0.8704 102 0.8705
0.88 34 0.8807 62 0.8817 89 0.8814 122 0.8814
0.89 43 0.8910 74 0.8902 104 0.8904 145 0.8906
0.90 55 0.9010 91 0.9009 129 0.9017 174 0.9010
0.91 72 0.9118 113 0.9101 157 0.9109 213 0.9101
0.92 89 0.9202 144 0.9211 196 0.9201 269 0.9204
0.93 118 0.9303 184 0.9301 254 0.9301 348 0.9301
0.94 159 0.9400 249 0.9400 340 0.9400 501 0.9421
0.95 226 0.9501 353 0.9501 481 0.9500 658 0.9500
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has been considered. Wu and Pearn (2005) proposed the following
overall capability index is referred to as:

CT
PU ¼

1
3

U�1
Yv

j¼1

Uð3CPUjÞ
( )

; ð12Þ
where CPUj denotes the CPU value of the jth characteristic for
j = 1,2, . . . ,v, and v is the number of characteristics. The index, CT

PU ,
can be a generalization of the single characteristic yield index. Let
CT

PU ¼ c, we haveYv

j¼1

Uð3CPUjÞ
( )

¼ Uð3cÞ: ð13Þ

In fact, Wu and Pearn (2005) showed that the one-to-one corre-
spondence relationship between the index CT

PU and the overall pro-
cess yields P can be established as follows:

P ¼
Yv

j¼1

Pj ¼
Yv

j¼1

Uð3CPUjÞ ¼ Uð3CT
PUÞ: ð14Þ

Hence, the new index CT
PU provides an exact measure on the overall

process yield when the characteristics are mutually independent.
For example, if CT

PU ¼ 1:00, the entire process yield would be exactly
99.865%, and each single characteristic yield is no less than
(0.9986501)1/5 = 0.9997299 (equivalent to 270 NCPPM). Table 1 dis-
plays various commonly used capability requirement and the corre-
sponding overall process yield.

Wu and Pearn (2005) also showed that for process with v char-
acteristics, if the requirement for the overall process capability is
CT

PU P c0, a sufficient condition (which is minimal) for the require-
ment to each single characteristic can be obtained by the following.
Let c0 be the minimum CPUj required for each single characteristic,
then

1
3

U�1
Yv

j¼1

Uð3CPUjÞ
( )

P
1
3

U�1
Yv

j¼1

Uð3c0Þ
( )

P c0: ð15Þ

We can obtain the lower bound of each single characteristic to be

cL ¼
1
3

U�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uð3c0Þv

p� �
: ð16Þ

Table 2 displays the minimum cL of CPUj for the required overall pro-
cess capability CT

PU are 1.00 and 1.33 for m = 1(1)5 characteristics. For
example, if the overall capability requirement CT

PU P1.00 would be
satisfied, it means each single characteristic yield is no less than
(0.9986501)1/5 = 0.9997299 (equivalent to 270 NCPPM), and the
capability for all the five characteristics is the following, for
j = 1,2, . . . ,5.
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Fig. 3. Deposited layers on TFT-LCD.
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Fig. 4. Exposure process on panel window.

Table 6
Specifications for thin film transistor liquid crystal display

Parameter Specifications

Overlay 60.1 lm
Critical dimension 60.3 lm
Uniformality 60.03
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CPUj ¼
1
3

U�1
ffiffiffiffiffiffiffiffiffiffiffi
Uð3Þ5

p� �
¼ 1:153 for j ¼ 1;2; . . . ;5: ð17Þ
3. Bootstrap methods for calculating the lower bounds of CT
PU

3.1. Lower confidence bounds on CT
PU

For each single characteristic, the CPUj
values can be estimated

by their natural estimators bCPUj
¼ ðUSLj � �xjÞ=sj, j = 1,2, . . . ,v, where

�xj and sj are the sample mean and the sample standard deviation of
the jth characteristic, respectively. Thus, the estimator of bCT

PU are
defined as

bC T
PU ¼

1
3

U�1
Ym
j¼1

Uð3bCPUjÞ
( )

: ð18Þ

In order to calculate the estimator of CT
PU , however, sample data

must be collected. Therefore, due to sampling errors, a great degree
of uncertainty may be introduced into capability assessments. It is
highly unreliable simply by the calculated values of the estimated
indices and then making a conclusion on whether the given process
is capable. Since the sampling errors have been ignored, a reliable
Table 7
Calculations for process capability of the overlay, critical dimension and uniformality

Characteristics USL �x s bCPUj LC

Overlay 0.1 0.0795 0.0065 1.0499 0.9394
Critical dimension 0.1 0.2693 0.0083 1.2298 1.1016
Uniformality 0.03 0.0267 0.00097 1.1404 1.0215
approach for estimating the true value of process index is to con-
struct the lower confidence bound.

Determination of the lower confidence bound on the actual pro-
cess capability is essential for quality assurance. The lower confi-
dence bound can not only be essential to production yield
assurance, but also be used in capability testing for decision mak-
ing. Since the sample size provides the accuracy of the lower
bound, for the given desired estimation accuracy RPU (RPU ¼ CTðLBÞ

PU

=bCT
PU , where CTðLBÞ

PU is the lower confidence bound on CT
PUÞ and the

confidence level c (ensures that the risk of making incorrect deci-
sions will be no larger than the preset Type I error 1 � c), the
approximate sample size must be obtained. Before estimating the
sample size, it is necessary to determine a desired lower confi-
dence bound for CT

PU , depending on the ratio of RPU ¼ CTðLBÞ
PU =bC T

PU .
Hence, we need to compute the lower confidence bound to deter-
mine sample sizes required for specified estimation accuracy of the
CT

PU .
While the sampling distribution of the estimator bCT

PU for multi-
ple samples is unknown, we use the nonparametric bootstrap
method and the following to estimate the lower confidence bound
CTðLBÞ

PU . Efron (1981) introduced a nonparametric, computational
intensive but effective estimation method, called the ‘‘Bootstrap”,
which is a data-based simulation technique for statistical infer-
ence. The merit of the nonparametric bootstrap approach is that
it does not rely on any assumptions regarding the underlying dis-
tribution. The bootstrap sampling is equivalent to sampling (with
replacement) from the empirical probability distribution function.
The essence of bootstrapping is that, without any knowledge about
a population, the distribution found in a random sample of size n
from the population is the best guide to the distribution in the pop-
ulation. By resampling observations from the observed data, the
population that consists of the n observed sample values is used
to model the unknown real population.

In the bootstrap, B new samples, each of the same size as the ob-
served data n, are drawn with replacement from the population.
Efron and Tibshirani (1986) developed four types of bootstrap con-
fidence interval, including the standard bootstrap confidence inter-
val (SB), the percentile bootstrap confidence interval (PB), the
biased-corrected percentile bootstrap confidence interval (BCPB),
and the bootstrap-t (BT) method. Franklin and Wasserman
(1992) investigated the lower confidence bounds for the capability
indices, Cp, Cpk and Cpm using these bootstrap methods. Some sim-
ulations results indicate that for normal processes the bootstrap
confidence limits perform equally well (see Chou et al., 1990 and
Bissell, 1990). In the following, we give an overview of four Boot-
strap confidence intervals. These are employed to determine the
lower confidence bounds of the index.

3.2. Bootstrap methods

3.2.1. Standard bootstrap (SB)
From the B bootstrap estimator bCT�

PU , the sample average and the
sample standard deviation are calculated as follows:

bCT�
PU ¼

1
B

XB

i¼1

bC T�
PUðiÞ; ð19Þ

S�CT
PU
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B� 1

XB

I¼1

½bCT�
PUðiÞ � bCT�

PU �
2

vuut ; ð20Þ
Table 8
Calculations for overall yield index

Characteristic bCT
PU NCPPM CTðLBÞ

PU NCPPM

LCD 1.0085 1241 0.9277 2692



Table 9
The 150 sample observations for three quality characteristics

Overlay (lm): USL = 0.1 lm
0.0779 0.0697 0.0764 0.0763 0.0834 0.0860 0.0778 0.0849 0.0846 0.0649
0.0853 0.0801 0.0711 0.0847 0.0817 0.0747 0.0886 0.0777 0.0889 0.0716
0.0802 0.0776 0.0800 0.0811 0.0873 0.0804 0.0810 0.0729 0.0782 0.0794
0.0711 0.0712 0.0724 0.0839 0.0831 0.0846 0.0803 0.0851 0.0701 0.0741
0.0706 0.0826 0.0665 0.0843 0.0862 0.0824 0.0810 0.0804 0.0838 0.0693
0.0757 0.0842 0.0765 0.0742 0.0838 0.0832 0.0837 0.0745 0.0820 0.0911
0.0786 0.0751 0.0738 0.0801 0.0853 0.0667 0.0778 0.0888 0.0890 0.0638
0.0796 0.0859 0.0718 0.0799 0.0637 0.0789 0.0878 0.0926 0.0674 0.0745
0.0859 0.0913 0.0863 0.0695 0.0878 0.0753 0.0790 0.0798 0.0801 0.0736
0.0746 0.0885 0.0788 0.0746 0.0862 0.0787 0.0753 0.0793 0.0776 0.0945
0.0833 0.0709 0.0804 0.0780 0.0888 0.0842 0.0794 0.0793 0.0771 0.0835
0.0691 0.0806 0.0805 0.0735 0.0843 0.0837 0.0727 0.0834 0.0752 0.0877
0.0771 0.0850 0.0755 0.0826 0.0776 0.0833 0.0669 0.0740 0.0839 0.0743
0.0781 0.0754 0.0840 0.0840 0.0962 0.0780 0.0801 0.0742 0.0781 0.0908
0.0911 0.0849 0.0764 0.0932 0.0783 0.0732 0.0722 0.0775 0.0787 0.0715

Critical dimension (lm): USL = 0.1 lm
0.2559 0.2627 0.2717 0.2656 0.2756 0.2747 0.2645 0.2671 0.2588 0.2703
0.2689 0.2633 0.2694 0.2573 0.2691 0.2776 0.2550 0.2632 0.2624 0.2605
0.2783 0.2623 0.2691 0.2571 0.2616 0.2759 0.2670 0.2688 0.2598 0.2620
0.2788 0.2507 0.2661 0.2726 0.2807 0.2735 0.2673 0.2478 0.2831 0.2653
0.2691 0.2792 0.2718 0.2791 0.2770 0.2581 0.2731 0.2660 0.2612 0.2718
0.2657 0.2711 0.2579 0.2649 0.2760 0.2707 0.2769 0.2605 0.2648 0.2723
0.2657 0.2650 0.2764 0.2827 0.2734 0.2676 0.2757 0.2662 0.2758 0.2753
0.2514 0.2654 0.2754 0.2842 0.2524 0.2734 0.2687 0.2743 0.2631 0.2719
0.2726 0.2828 0.2750 0.2721 0.2633 0.2608 0.2877 0.2628 0.2894 0.2638
0.2700 0.2654 0.2819 0.2728 0.2713 0.2670 0.2580 0.2730 0.2652 0.2794
0.2656 0.2850 0.2735 0.2774 0.2730 0.2757 0.2640 0.2707 0.2564 0.2634
0.2638 0.2727 0.2681 0.2647 0.2720 0.2687 0.2627 0.2828 0.2838 0.2700
0.2638 0.2640 0.2797 0.2708 0.2704 0.2475 0.2713 0.2710 0.2870 0.2610
0.2651 0.2729 0.2698 0.2702 0.2694 0.2586 0.2619 0.2790 0.2723 0.2833
0.2709 0.2592 0.2740 0.2598 0.2557 0.2790 0.2714 0.2874 0.2656 0.2789

Uniformality: USL = 0.03
0.0272 0.0264 0.0255 0.0267 0.0248 0.0272 0.0270 0.0267 0.0257 0.0265
0.0264 0.0265 0.0252 0.0278 0.0263 0.0272 0.0252 0.0264 0.0264 0.0247
0.0271 0.0276 0.0268 0.0293 0.0283 0.0265 0.0269 0.0275 0.0277 0.0257
0.0255 0.0269 0.0259 0.0271 0.0273 0.0256 0.0278 0.0283 0.0267 0.0277
0.0254 0.0265 0.0280 0.0283 0.0262 0.0269 0.0267 0.0266 0.0263 0.0261
0.0269 0.0270 0.0262 0.0279 0.0252 0.0255 0.0277 0.0254 0.0262 0.0279
0.0265 0.0271 0.0286 0.0252 0.0261 0.0266 0.0278 0.0270 0.0255 0.0274
0.0244 0.0272 0.0279 0.0259 0.0266 0.0265 0.0256 0.0274 0.0266 0.0282
0.0268 0.0260 0.0256 0.0253 0.0268 0.0287 0.0270 0.0294 0.0265 0.0258
0.0275 0.0265 0.0282 0.0270 0.0266 0.0267 0.0254 0.0270 0.0277 0.0257
0.0278 0.0255 0.0274 0.0260 0.0273 0.0269 0.0256 0.0293 0.0256 0.0274
0.0249 0.0265 0.0269 0.0269 0.0268 0.0267 0.0262 0.0266 0.0271 0.0269
0.0252 0.0257 0.0286 0.0267 0.0265 0.0270 0.0270 0.0261 0.0264 0.0263
0.0280 0.0271 0.0267 0.0274 0.0266 0.0277 0.0252 0.0268 0.0267 0.0257
0.0264 0.0273 0.0244 0.0263 0.0264 0.0258 0.0268 0.0260 0.0276 0.0256
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where bCT�
PUðiÞ is the ith bootstrap estimate. The quantity S�CT

PU
is actu-

ally an estimator of the standard deviation of bCT
PU , and if C

_
T
PU is

approximately normal distribution, the (1 � 2a) 100% SB confidence
interval can be obtained as

½bCT
PU � ZaS�CT

PU
�; ð21Þ

where Za is the upper a quantile of the standard normal
distribution.

3.2.2. The percentile bootstrap (PB)
From the ordered collection of bCT�

PUðiÞ, select the a percent and
the (1 � a) percent points as the end points, and the PB confidence
interval is

½bCT�
PUðaBÞ�: ð22Þ
3.2.3. Biased-corrected percentile bootstrap (BCPB)
The bootstrap distribution may be biased while the percentile

confidence interval is possible due to sampling errors. In other
words, that bootstrap distributions obtained using only a sample
of the complete bootstrap distribution may be shifted higher or
lower than expected. Thus, a three steps procedure has been devel-
oped to correct for this potential bias Efron (1982). First, using the
ordered distribution of bCT�

PU , calculate the probability of

P0 ¼ P½bCT�
PU 6 ĉT

PU �: ð23Þ

Second, calculate

Z0 ¼ U�1ðP0Þ; ð24Þ
PL ¼ Uð2Z0 � ZaÞ; ð25Þ
PU ¼ Uð2Z0 þ ZaÞ; ð26Þ

where U(�) is the standard normal cumulative distribution function.
Finally, the BCPB confidence is obtained as

½bCT�
PUðPLBÞ�: ð27Þ
3.2.4. Bootstrap-t (BT)
While the distribution of the statistic is skewed, the percen-

tile bootstrap confidence interval is probably lower. Thus, the



Table 10
The average rank of the four bootstrap methods as CPU = 1,1.33 and v = 2

n CT
PU ¼ 1 CT

PU ¼ 1:33

N1 N2 N3 N4 R N1 N2 N3 N4 R

30 SB 0 1 498 1 3 1 0 499 0 2.996
PB 2 497 0 1 2 2 498 0 0 1.996
BCPB 498 1 1 0 1.006 497 2 1 0 1.008
PT 0 1 1 498 3.994 0 0 0 500 4

40 SB 1 0 499 0 2.996 2 6 491 1 2.982
PB 0 499 0 1 2.004 3 491 5 1 2.008
BCPB 499 0 1 0 1.004 493 1 2 4 1.034
PT 0 1 0 499 3.996 3 1 2 494 3.974

50 SB 1 3 495 1 2.992 2 3 493 2 2.99
PB 2 495 3 0 2.002 2 493 2 3 2.012
BCPB 495 1 1 3 1.024 492 4 1 3 1.03
PT 2 1 1 496 3.982 4 0 4 492 3.968

60 SB 1 7 492 0 2.982 3 6 487 4 2.984
PB 1 492 6 1 2.014 4 488 7 1 2.01
BCPB 492 1 1 6 1.042 487 5 1 7 1.056
PT 6 0 1 493 3.962 6 1 5 488 3.95

70 SB 1 2 496 1 2.994 1 8 489 2 2.984
PB 0 498 2 0 2.004 2 488 8 2 2.02
BCPB 497 0 0 3 1.018 493 2 2 3 1.03
PT 2 0 2 496 3.984 4 2 1 493 3.966

80 SB 0 7 492 1 2.988 4 9 484 3 2.972
PB 1 492 7 0 2.012 3 482 13 2 2.028
BCPB 495 1 0 4 1.026 485 4 1 10 1.072
PT 4 0 1 495 3.974 8 5 2 485 3.928

90 SB 1 4 492 3 2.994 5 11 478 6 2.97
PB 0 494 4 2 2.016 4 482 11 3 2.026
BCPB 495 1 2 2 1.022 483 3 3 11 1.084
PT 4 1 2 493 3.968 8 4 8 480 3.92

100 SB 1 10 487 2 2.98 3 6 483 8 2.992
PB 2 488 8 2 2.02 8 484 7 1 2.002
BCPB 494 2 1 3 1.026 484 5 2 9 1.072
PT 3 0 4 493 3.974 5 5 8 482 3.934

125 SB 1 2 493 4 3 5 14 473 8 2.968
PB 1 494 4 1 2.01 3 478 15 4 2.04
BCPB 495 3 0 2 1.018 480 2 4 14 1.104
PT 3 1 3 493 3.972 12 6 8 474 3.888

150 SB 1 8 487 4 2.988 4 22 457 17 2.974
PB 2 490 8 0 2.012 6 465 24 5 2.056
BCPB 492 1 2 5 1.04 480 5 3 12 1.094
PT 5 1 3 491 3.96 10 8 16 466 3.876

200 SB 0 8 482 10 3.004 7 15 463 15 2.972
PB 3 487 8 2 2.018 12 469 17 2 2.018
BCPB 492 3 0 5 1.036 466 11 6 17 1.148
PT 5 2 10 483 3.942 16 5 13 466 3.858
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bootstrap-t is developed and that the generated distribution will mi-
mic the distribution of T. First, approximate the distribution of a sta-
tistic of T ¼ ðbCT

PU � CT
PUÞ=SCT

PU
by using bootstrap. By taking bootstrap

samples from the original data values the bootstrap approximation
in this case can be obtained, calculate the corresponding estimatesbCT�

PUðiÞ and their standard error, and then find the T-values
T ¼ ðbCT�

PU � bCT
PUÞ=S�CT

PU
. The (1 � 2a) 100% BT confidence interval can

be obtained as

½bCT
PU � t�aS�CT

PU
�; ð28Þ

where t�a and t�1�a are the upper a and 1 � a quantile of the boot-
strap T-distribution respectively.
4. Performance comparisons of bootstrap methods

We use bootstrap methods to calculate the lower confidence
bound of CT

PU , used to demonstrate the estimation accuracy
RPU ¼ CTðLBÞ

PU =bCT
PU . Then we can determine the required sample sizes
for specified estimation accuracy on CT
PU . We also rank the four

bootstrap methods according to RPU for ascertaining their
performance.

Considering the data generated by MATLAB program with mul-
tiple independent characteristics from normal distribution, the
assumption of normality for each single characteristic is required
for the process yield calculation. But the bootstrap approach, which
does not require any assumption, is a general nonparametric meth-
od. Let the capability CPUj

of each single characteristic satisfy the
minimal value (see Table 2) required for overall process capability
CT

PU . For example, if a process has a capability requirement
CT

PU P 1:00 with m = 5, i.e., the capability for all the five character-
istics is the following CPUj P 1.153 for j = 1,2, . . . ,5. We repeated
500 simulations and then obtained each rank of the four bootstrap
methods. The calculation of the total weighted average rank R of
each bootstrap method is as follows:

R ¼ 1
500

X4

i¼1

Ni � i; ð29Þ



Table 11
The average rank of four bootstrap methods as CPU = 1,1.33 and v = 3

n CT
PU ¼ 1 CT

PU ¼ 1:33

N1 N2 N3 N4 R N1 N2 N3 N4 R

30 SB 5 11 480 4 2.966 5 19 476 0 2.942
PB 3 482 13 2 2.028 3 473 21 3 2.048
BCPB 480 4 2 14 1.1 479 3 1 17 1.112
PT 12 3 5 480 3.906 14 4 2 480 3.896

40 SB 7 12 480 1 2.95 4 20 471 5 2.954
PB 3 477 17 3 2.04 5 470 22 3 2.046
BCPB 479 4 2 15 1.106 473 6 3 18 1.132
PT 11 7 1 481 3.904 18 4 4 474 3.868

50 SB 2 15 479 4 2.97 2 25 471 2 2.946
PB 3 478 18 1 2.034 5 469 25 1 2.044
BCPB 481 3 1 15 1.1 472 4 1 23 1.15
PT 14 4 2 480 3.896 21 2 3 474 3.86

60 SB 9 16 470 5 2.942 8 34 447 11 2.922
PB 3 468 20 9 2.07 6 451 33 10 2.094
BCPB 473 6 7 14 1.124 456 9 6 29 1.216
PT 15 10 3 472 3.864 30 6 14 450 3.768

70 SB 5 19 470 6 2.954 5 47 433 15 2.916
PB 2 473 22 3 2.052 7 439 45 9 2.112
BCPB 475 6 3 16 1.12 444 9 5 42 1.29
PT 18 2 5 475 3.874 45 5 16 434 3.678

80 SB 8 24 456 12 2.944 12 42 428 18 2.904
PB 7 462 24 7 2.062 9 438 43 10 2.108
BCPB 463 8 9 20 1.172 436 8 10 46 1.332
PT 23 5 12 460 3.818 43 12 19 426 3.656

90 SB 8 24 458 10 2.94 15 69 399 17 2.836
PB 3 465 22 10 2.078 12 407 66 15 2.168
BCPB 466 6 7 21 1.166 415 9 23 53 1.428
PT 23 5 13 459 3.816 58 15 12 415 3.568

100 SB 9 23 460 8 2.934 15 49 410 26 2.894
PB 4 463 26 7 2.072 12 423 50 15 2.136
BCPB 465 7 10 18 1.162 428 13 14 45 1.352
PT 22 7 6 465 3.828 46 16 25 413 3.61

125 SB 6 18 464 12 2.964 19 79 369 33 2.832
PB 5 467 21 7 2.06 18 386 88 8 2.172
BCPB 471 11 3 15 1.124 386 19 9 86 1.59
PT 18 4 12 466 3.852 77 16 34 373 3.406

150 SB 3 22 462 13 2.97 25 85 353 37 2.804
PB 9 467 17 7 2.044 25 377 83 15 2.176
BCPB 470 7 8 15 1.136 378 18 20 84 1.62
PT 19 3 13 465 3.848 72 20 45 363 3.398

200 SB 15 42 412 31 2.918 26 97 336 41 2.784
PB 8 436 47 9 2.114 30 350 95 25 2.23
BCPB 456 10 12 22 1.2 364 34 22 80 1.636
PT 21 12 29 438 3.768 82 18 46 354 3.344
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where Ni is the total number of rank i (i = 1,2, . . . , 5) during the sim-
ulations. For example, if a process has a capability requirement
CT

PU P 1:00 with m = 2 and sample size n = 30, we can obtained the
weighted average rank R of the SB method to be

R ¼ ð0� 1þ 1� 2þ 498� 3þ 1� 4Þ=500 ¼ 3: ð30Þ

In Table 3, the weighted average rank R of four bootstrap method is
illustrated with various sample size n = 30(10)100, 125, 150, 200,
and v = 2(1)5 as CT

PU ¼ 1 and 1.33. For example, if the sample size
n is 60, v = 2 and the CT

PU is 1.33, the weighted average rank R of
the four bootstrap methods are 2.984, 2.010, 1.056, 3.950, respec-
tively (see Table 3).

From Table 3, the BCPB (biased-corrected percentile bootstrap)
method performs better than other ones when CT

PU ¼ 1. For the
fixed values of CT

PU and n, the weighted average rank of each meth-
od gets closer to each other as v increases. This fact indicates that
the performances of four methods are not much different when v is
large.

It is shown in Figs. 1a–1d, 2a–2d that the BCPB method is dis-
tinctly better when sample size n < 125. However, as the sample
size is greater than 125, the performances of four methods are
not much different. Furthermore, as CT

PU ¼ 1:33 and the quality
characteristic v = 5, the weighted average rank R of BCPB method
is larger than others. This indicates that BCPB method performs
worse than the other ones when n > 125, v = 5 and CT

PU ¼ 1:33
(see Fig. 2d). Actually, the estimation of the four methods is similar
in this situation. As a result of this fact, we recommend the BCPB
method is the best one to calculate bCT

PU when the sample size
n < 125. In the following section, we use BCPB method to evaluate
the estimator bCT

PU .
5. Sample size required for designated estimation accuracy

The sample size determination is important, as it directly re-
lates to the cost of data collection plan. We develop a MATLAB pro-
gram to compute the required sample size n. The BCPB method is
the recommended one to calculate the estimator bCT

PU . In Section
5, we use the simulation data which is randomly generated from
normal distribution to determine the required sample size n.



Table 12
The average rank of four bootstrap methods as CPU = 1,1.33 and v = 4

n CT
PU ¼ 1 CT

PU ¼ 1:33

N1 N2 N3 N4 R N1 N2 N3 N4 R

30 SB 2 21 467 10 2.97 4 30 458 8 2.94
PB 3 470 25 2 2.052 2 465 26 7 2.076
BCPB 478 3 2 17 1.116 469 1 6 24 1.17
PT 18 5 8 469 3.856 25 4 10 461 3.814

40 SB 6 35 456 3 2.912 8 49 437 6 2.882
PB 3 457 35 5 2.084 7 438 48 7 2.11
BCPB 461 4 5 30 1.208 442 7 10 41 1.3
PT 30 4 4 462 3.796 43 6 5 446 3.708

50 SB 7 31 456 6 2.922 18 73 387 22 2.826
PB 1 458 34 7 2.094 13 395 78 14 2.186
BCPB 458 4 6 32 1.224 400 16 14 70 1.508
PT 34 7 4 455 3.76 69 16 22 393 3.478

60 SB 11 30 452 7 2.91 17 80 390 13 2.798
PB 6 450 34 10 2.096 15 391 79 15 2.188
BCPB 457 6 6 31 1.222 399 13 12 76 1.53
PT 26 14 8 452 3.772 70 16 19 395 3.478

70 SB 16 38 435 11 2.882 16 91 359 34 2.822
PB 4 444 37 15 2.126 21 371 102 6 2.186
BCPB 447 9 14 30 1.254 372 20 12 96 1.664
PT 33 10 13 444 3.736 91 18 27 364 3.328

80 SB 8 39 440 13 2.916 12 112 345 31 2.79
PB 8 438 46 8 2.108 18 351 107 24 2.274
BCPB 450 7 6 37 1.26 370 19 19 92 1.666
PT 34 16 8 442 3.716 101 17 29 353 3.268

90 SB 12 45 428 15 2.892 23 114 332 31 2.742
PB 12 428 48 12 2.12 26 330 126 18 2.272
BCPB 435 12 12 41 1.318 343 32 15 110 1.784
PT 41 15 13 431 3.668 110 23 26 341 3.196

100 SB 14 46 423 17 2.886 25 122 316 37 2.73
PB 11 427 51 11 2.124 27 317 131 25 2.308
BCPB 440 16 8 36 1.28 332 28 23 117 1.85
PT 37 9 18 436 3.706 116 34 29 321 3.11

125 SB 9 47 418 26 2.922 34 152 277 37 2.634
PB 18 416 51 15 2.126 28 281 154 37 2.4
BCPB 434 19 6 41 1.308 292 31 35 142 2.054
PT 39 18 25 418 3.644 146 36 34 284 2.912

150 SB 7 55 409 29 2.92 30 155 258 57 2.684
PB 29 409 45 17 2.1 28 275 160 37 2.412
BCPB 424 26 12 38 1.328 295 33 32 140 2.034
PT 42 8 34 416 3.648 147 37 51 265 2.868

200 SB 21 55 387 37 2.88 35 187 205 73 2.632
PB 24 397 58 21 2.152 45 232 184 39 2.434
BCPB 412 24 19 45 1.394 240 37 45 178 2.322
PT 44 23 37 396 3.57 182 42 67 209 2.606
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Based on the procedure above, a Matlab algorithm for calculat-
ing the required sample size is developed as follows:

Algorithm for the required sample size

Step 1. Input the value of characteristics v, the designated esti-
mation accuracy RPU and the initial sample size values
of Lo and Hi. Compute RPU(Hi) and RPU(Lo) to ensure that
RPU(Hi) > RPU and RPU(Lo) < RPU.

Step 2. Let n = (Lo + Hi)/2. Compute RPU(n). If —Hi � Lo— 6 1, stop
and choose n ¼ x MinjRPUðxÞ � RPU j; x 2 ðHi; LoÞjf g, and
then return n (always rounding up if n is not an integer)
as the required sample size.

Step 3. If RPU(n) > RPU, Hi n; otherwise, Lo n. Go back to Step
2.We implement the algorithm and develop a MATLAB
program to compute the required sample size. Tables 4,
5 tabulate the required sample size for RPU = 0.75(0.01)
0.95 and c = 0.9,0.95,0.975,0.99.
Let the desired estimation accuracy be RPU and the confidence
level be c, and then the minimum sample size n(always rounding
up if n is not an integer) can be calculated. Tables 4, 5 display
the sample size n required for Rc P RPU with quality characteristic
v = 3, RPU = 0.75(0.01)0.95 and c = 0.9, 0.95, 0.975, and 0.99 when
CT

PU ¼ 1 and 1.33. For example, if RPU is set to 0.89, CT
PU ¼ 1, and

c = 0.95, the sample size needed is n = 76. We conclude that a min-
imum sample size of n = 76 is required to be 95% so that the true
CPU is no less than Rc = 89.12% of the sample estimate bCPU . Thus,
if the sample estimate bCT

PU ¼ 1:2, the true value of CT
PU is no less

than 1.2 � 89.12% = 1.069, with 95% confidence.
From Tables 4 and 5, we can find that as RPU and c increase, the

required sample size n increases. However, some values of sample
size can not be obtained (see the sign ‘‘�” in the column of the
sample size n) when the values of RPU and confidence level c are
small. This is due to the problem of the bootstrap resampling
procedure.



Table 13
The average rank of four bootstrap methods as CPU = 1,1.33 and v = 5

n CT
PU ¼ 1 CT

PU ¼ 1:33

N1 N2 N3 N4 R N1 N2 N3 N4 R

30 SB 4 33 453 10 2.938 8 64 418 10 2.86
PB 4 455 36 5 2.084 5 422 66 7 2.15
BCPB 458 5 5 32 1.222 425 10 6 59 1.398
PT 34 7 6 453 3.756 62 4 11 423 3.59

40 SB 7 50 440 3 2.878 19 87 376 18 2.786
PB 7 438 44 11 2.118 16 372 100 12 2.216
BCPB 441 5 10 44 1.314 376 19 8 97 1.652
PT 45 7 7 441 3.688 90 21 16 373 3.344

50 SB 11 51 419 19 2.892 14 101 360 25 2.792
PB 4 429 56 11 2.148 13 372 97 18 2.24
BCPB 436 10 9 45 1.326 376 15 18 91 1.648
PT 50 10 15 425 3.63 97 13 25 365 3.316

60 SB 12 65 409 14 2.85 17 117 336 30 2.758
PB 4 421 66 9 2.16 20 347 119 14 2.254
BCPB 425 6 9 60 1.408 344 20 14 122 1.828
PT 59 8 16 417 3.582 121 14 31 334 3.156

70 SB 9 75 400 16 2.846 14 156 303 27 2.686
PB 12 407 71 10 2.158 30 297 148 25 2.336
BCPB 415 9 12 64 1.45 302 31 19 148 2.026
PT 65 9 16 410 3.542 158 12 31 299 2.942

80 SB 12 59 395 34 2.902 27 159 274 40 2.654
PB 6 414 64 16 2.18 17 289 171 23 2.4
BCPB 427 8 12 53 1.382 290 26 23 161 2.11
PT 57 18 29 396 3.528 168 24 33 275 2.83

90 SB 8 82 374 36 2.876 28 195 240 37 2.572
PB 25 381 77 17 2.172 33 249 187 31 2.432
BCPB 396 25 12 67 1.5 259 28 23 190 2.288
PT 71 12 37 380 3.452 182 27 49 242 2.702

100 SB 19 83 362 36 2.83 24 217 203 56 2.582
PB 25 368 93 14 2.192 37 219 212 32 2.478
BCPB 384 25 18 73 1.56 235 31 41 193 2.384
PT 76 20 29 375 3.406 206 31 45 218 2.55

125 SB 11 73 369 47 2.904 25 225 195 55 2.56
PB 30 378 76 16 2.156 42 207 219 32 2.482
BCPB 388 30 19 63 1.514 197 38 33 232 2.6
PT 72 18 38 372 3.42 236 30 55 179 2.354

150 SB 24 84 332 60 2.856 45 233 166 56 2.466
PB 22 364 92 22 2.228 52 170 242 36 2.524
BCPB 382 25 18 75 1.572 186 43 32 239 2.648
PT 72 27 59 342 3.342 222 50 61 167 2.346

200 SB 26 88 329 57 2.834 40 252 163 45 2.426
PB 28 350 94 28 2.244 49 146 254 51 2.614
BCPB 372 37 21 70 1.578 137 54 42 267 2.878
PT 74 27 54 345 3.34 278 44 41 137 2.074
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6. Application

We consider the following case from a manufacturing factory
located on the Science-Based Industrial Park in Taiwan, making
the thin film transistor liquid crystal display (TFT-LCD). There are
three major process groups in TFT-LCD manufacturing process, ar-
ray process; cell process and module assemble process. The array
process is similar to the semiconductor manufacturing process, ex-
cept that transistors are fabricated on a glass substrate instead of a
silicon wafer. Photolithography (one of the array process) is a crit-
ical step within LCD manufacturing process since the panel quality
depends on the entire pattern formation. Film deposition is done
before photolithography. Overlay is a key parameter in deposition
process and uniformality is a key parameter in coating and expo-
sure, which are two processes in photolithography. We focus on
these key parameters, such as overlay, critical dimension and
uniformality.

In Fig. 3, between one deposited layer and another, a distance
called overlay may be existed. There are three steps in photolithog-
raphy process, coating, exposure, and development. It might result
deviation as exposure on panel window, called critical dimension
(see Fig. 4). In addition, coating photoresist on panel has to be uni-
form. The specifications of these three key parameters are shown
in Table 6. Since the assumption of normality for each single char-
acteristic is required for the process yield calculation, the historical
data of each key characteristic indicates the process being pretty
approximate to a normal distribution. Thus, we can conclude that
each characteristic data collected from the process is in control
and normally distributed.

To obtain the sample size required n under the desired estima-
tion accuracy RðPSÞ

pm , we can find it in Table 4. If the practitioners set
RðPSÞ

pm to be 0.92, and c = 0.95 the sample size needed is n = 146. We
conclude that a minimum sample size of n = 146 is required to be
95% so that the true CT

PU is no less than Rc = 92.11% of the sample
estimator bCT

PU . Thus, if the sample estimator bCT
PU ¼ 1:3, the true va-

lue of CT
PU is no less than 1.3 � 92.11% = 1.197, with 95% confidence.

Hence, sample data collected from 150 LCD is displayed in Table 9
of the Appendix. And the upper specification limit, the calculated
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sample mean, location departure, sample standard deviation, the
estimated CPUj

and the lower confidence bound LC for each charac-
teristic are summarized in Table 7.

6.1. Overall process yield analysis

The sample estimators of CT
PU and the BCPB method lower con-

fidence bound of CT
PU for the single characteristic overlay, critical

dimension and uniformality coupler can be summarized in Table 8.
Table 8 displays the manufacturing capability and its corre-

sponding NCPPM for the LCD process using the estimated bCT
PU val-

ues (uncorrected) and the lower confidence bounds CTðLBÞ
PU

(corrected). The CTðLBÞ
PU (the LCB of CT

PUÞ obtained using BCPB method
is certainly more reliable than the estimated bCT

PU index values (an
approach widely used in current industrial applications), since the
sampling errors are considered in the LCB approach. In fact, as the
sample estimate bCT

PU may overestimate the true capability (overall
process yield), it conveys unreliable and misleading information,
which should be avoided in factory applications. Based on the va-
lue of CTðLBÞ

PU , we thus can assure that the production yield is
99.7308%, and the number of the nonconformities is less than
2692 PPM.

7. Conclusions

In this paper, we considered the problem of finding the lower
confidence bound and sample sizes required for specified estima-
tion accuracy for the CT

PU . Since the sampling distribution of CT
PU

is analytically intractable, we applied the bootstrap method to cal-
culate the estimator of CT

PU and compared the estimation accuracy
of the four bootstrap methods. The results indicated that the BCPB
method has good performance when the sample size is smaller
than 125. The lower confidence bounds present a measure on the
minimum capability of the process based on the sample data. We
also investigated the lower confidence bound values and sample
sizes required for specified estimation accuracy using BCPB meth-
od. The proposed approach ensures that the risk of making incor-
rect decisions is no larger than the preset Type I error 1 � c. We
also provided tables for the engineers/practitioners to use for their
in-plant applications. A real-world example from TFT-LCD manu-
facturing process is investigated to illustrate the applicability of
our approach. In the future, we can consider same approach for
indices with two-sided specifications, such as Cpk, Cpm and Cpmk.
We also consider multiple characteristics with some correlations.
Appendix

See Tables 9–13.
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