
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 17, NO. 4, AUGUST 2009 777

Possibilistic Shell Clustering of
Template-Based Shapes

Tsaipei Wang, Member, IEEE

Abstract—In this paper, we present a new type of alternating-
optimization-based possibilistic c-shell algorithm for clustering-
template-based shapes. A cluster prototype consists of a copy of the
template after translation, scaling, rotation, and/or affine transfor-
mations. This extends the capability of shell clustering beyond a
few standard geometrical shapes that have been in the literature
so far. We use a number of 2-D datasets, consisting of both syn-
thetic and real-world images, to illustrate the capability of our
algorithm in detecting generic-template-based shapes in images.
We also describe a progressive clustering procedure aimed to relax
the requirements for a known number of clusters and good initial-
ization, as well as new performance measures of shell-clustering
algorithms.

Index Terms—Alternating optimization (AO), object detection,
possibilistic clustering, progressive clustering, shape detection,
shell clustering, template matching.

I. INTRODUCTION

PROTOTYPE-based fuzzy and possibilistic clustering algo-
rithms have had broad applications in many pattern recog-

nition problems. In these algorithms, each cluster is represented
by a prototype, and the clustering procedure usually involves
the iterative minimization of an objective function through the
adjustment of the prototype parameters and the memberships
of the feature points in individual clusters. Fuzzy c-means
(FCM) [1], [2] and possibilistic c-means (PCM) [3]–[6] are
well-known and widely used representatives of these algorithms.
The most common algorithms of this class, including FCM and
PCM, are intended for detecting “compact” or “filled” clusters
in the data, such as filled hyperspheres, filled hyperellipsoids [7],
or filled convex polytopes [8]. Although the resulting clusters
can have different shapes, they all correspond to regions of high
data concentration in the feature space.

Shell clustering is a category of prototype-based clustering
algorithms that use prototypes that are “shells” in the feature
space. The earliest shell clustering algorithms involve the de-
tection of lines [9] or circles [10] through fuzzy clustering.
One of the difficulties of the clustering of circles is the need
to numerically solve coupled nonlinear equations for updating
the prototypes. This usually results in a significantly increased
computational cost. An analysis of this issue is given in [11].
A computationally simpler approach by separating the update
equations for the centers and radii of hyperspherical clus-
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ters is given in [12]. Later, a more efficient approach us-
ing a non-Euclidean algebraic distance measure is described
in [13], although the results are not as satisfactory with highly
scattered data. Shell clustering has since been studied exten-
sively for general quadratic shells such as ellipses and hyper-
bola [14]–[19]. Later additions to shell-clustering algorithms
include proposed methods for clustering rectangles [20] and
template-based shapes [21].

The ability to efficiently detect shell-like structures of partic-
ular shapes is useful in many image processing and computer-
vision applications. There have been an increasing number
of applications of shell clustering in analyzing real-world im-
ages [22]–[26]. According to [17], fuzzy and possibilistic shell
clustering has a number of advantages compared with the gener-
alized Hough transform [27], [28] in detecting particular shapes;
it is more computationally efficient without the large memory
requirement of Hough transform, it is less sensitive to noise and
zigzagged edges, and the parameter resolution is not limited by
the predefined bin sizes. These properties make shell clustering
a very useful option for shape and object detection.

A major limitation on the applicability of existing shell-
clustering algorithms is that they are mostly specifically de-
signed for particular shapes. The only one exception is in [21],
which attempted to cluster shells of generic-template-based
shapes. However, instead of the more efficient and commonly
used alternating optimization (AO) approach, [21] relies on a
genetic algorithm (GA) to optimize the prototypes. The reason
presumably is because GA does not require update equations of
the prototype parameters, as the derivation of these equations
is intrinsically more difficult for generic-template-based proto-
types than for prototypes of simple geometric shapes. This is
similar to the use of GA for clustering shell prototypes with
even nondifferentiable distance measures [29]. A performance
comparison of FCM with point prototypes using only either AO
or GA can be found in [30].

Our main contribution in this paper includes new AO-based
clustering algorithms for the detection of generic-template-
based shell clusters. This extends the applicability of efficient
AO-based shell clustering beyond the detection of just a few ba-
sic geometric shapes. The prototypes are obtained through geo-
metric transformations of the template. By relaxing the usual re-
quirement for updating all prototype parameters simultaneously,
we are able to obtain closed-form update equations, making the
process very efficient. This approach is more similar to [12] and
differs from those relying on numerical methods (e.g., [10]) or
non-Euclidean distance measures (e.g., [13]) in order to solve
their prototype update equations. In this paper, we only focus
on 2-D clustering data that has object and shape detection in
images as the target application.

1063-6706/$26.00 © 2009 IEEE
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The rest of this paper is organized as follows. In Section II,
we briefly review the common prototype-based fuzzy and pos-
sibilistic clustering procedures. Section III contains the main
definitions of template-based shell clustering and the derivation
of the prototype update equations for three types of prototype
transformations. Section IV describes our progressive cluster-
ing procedure, which is important to make the clustering results
robust against unknown number of clusters and initialization.
We present our experimental results in Section V, including
synthetic datasets and real images. A measure for quantify-
ing cluster-detection performances is also described. Section VI
concludes the paper.

II. OVERVIEW OF FUZZY AND POSSIBILISTIC CLUSTERING

The following is the most commonly used objective function
for various types of FCM and fuzzy c-shells clustering algo-
rithms [1]:

J =
C∑

j=1

N∑
i=1

um
ij d2

ij +
C∑

j=1

ηj

N∑
i=1

(1 − uij )m (1)

where N is the number of data points, C is the number of clusters,
m is the fuzzification factor, uij is the membership of xi (the ith
sample point, 1 ≤ i ≤ N) in the jth cluster, and dij is the distance
between xi and the jth cluster prototype. The memberships need
to satisfy the condition that

∀i,
C∑

j=1

uij = 1. (2)

The standard AO scheme involves iteratively solving the
equations that correspond to the necessary conditions of lo-
cal minima of (1): solving ∂J/∂uij = 0 for the update equation
for uij and solving ∂J/∂θj = 0 for the update equation for
θj . Here, θj represents the set of parameters that define the jth
cluster prototype included in the objective function through dij .
The solution for uij is given by

uij =

[
C∑

k=1

(
dij

dik

)2/(m−1)
]−1

. (3)

The solutions for the prototype parameters depend on the type
of prototypes and the distance measure used.

The following is the most common objective function used
for various types of possibilistic c-means and c-shell clustering
algorithms [3]:

J =
C∑

j=1

N∑
i=1

um
ij d2

ij +
C∑

j=1

ηj

N∑
i=1

(1 − uij )m . (4)

Here, the first term is the same as the objective function of
FCM, but the memberships no longer need to satisfy (2). The
new parameter in the second term, ηj , is termed the “bandwidth”
or “zone of influence” in [3] and controls the dependence of uij

on dij . This term has the effect of preventing the trivial solution
of all zero memberships if we try to minimize (1) without the

constraints (2). According to [3], the solution for uij is given by

uij =


1 +

(
d2
ij

ηj

)1/(m−1)


−1

. (5)

Since the second term in (4) does not involve the prototype
parameters θj , both fuzzy and possibilistic versions will result
in the same update equations for the prototype parameters.

Some comparisons between fuzzy and possibilistic clustering
results for quadratic shell clusters are given in [17]. In general,
possibilistic clustering has the advantage of being more robust
against noise or outliers and, for shell clustering, can yield better
clusters in noisy datasets. However, possibilistic clustering is
also very sensitive to initialization. The approach in [17] is to
use the fuzzy version to initialize the possibilistic version of the
clustering algorithm.

The general form of prototype-based fuzzy and possibilistic
clustering with AO is given as follows:

Initialize the prototypes
Repeat

Update the membership values
Update the prototype parameters

Until convergence or the maximal allowed iterations

We do not use the common form that starts with the initialization
of the partition (memberships) mainly because the derivation of
prototype parameters from memberships alone is a complex task
for shell clusters of generic shapes. The general form proposed
here allows us to include the prototype parameters of the previ-
ous iteration in the computation of their values for the current
iteration. The detail is covered in Section III.

The previous general form requires a prespecified number of
clusters (i.e., a fixed C), which, for many applications, is un-
known initially. For compact clusters, this is usually handled by
clustering using a range of different C. However, this approach
is not reliable for shell clustering mainly because of the higher
tendency of the algorithm to converge to local optima, making
it more difficult to meaningfully compare the results obtained
with different C. This issue is handled with progressive clus-
tering in [13] and [18], which only requires an over-specified
Cmax to start with. We use a completely possibilistic version of
progressive clustering discussed in Section IV that handles both
initialization and the unknown number of clusters simultane-
ously.

III. TEMPLATE-BASED SHELL CLUSTERING

A. Definition of Templates

We start here by first defining the templates themselves. We
present two ways of defining a template: point-based and edge-
based. A point-based template consists of only a set of Np points
(referred to as “template points” later):

T = {v1 ,v2 , . . . ,vNp
}. (6)
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Fig. 1. Examples of templates. (a) Point-based templates. (b) Edge-based
templates.

An edge-based template is defined as a set of vertices and
edges that connect them:

T = {v1 ,v2 , . . . ,vNv
;e1 ,e2 , . . . ,eNe

}. (7)

Here, each vk (1 ≤ k ≤ Nv ) is a vertex, each ek (1 ≤ k ≤
Ne ) is an edge, and Nv and Ne are the numbers of vertices
and edges, respectively. Fig. 1 displays a few examples of both
point-based and edge-based templates of different shapes.

The prototype of a cluster is a transformed version of the
template. Therefore, the prototype parameter set θj actually
consists of the parameters that define the transformation. Let us
state this relation as

Pj = H(T ;θj ) (8)

with Pj being the jth cluster prototype. Here H represents the
transformation that is actually applied to the template points of
point-based templates or the vertices of edge-based templates.
A point p on Pj is related to its corresponding point in the
template p∗ according to

p = H(p∗;θj ) and p∗ = H−1(p;θj ). (9)

The distance between any point q and Pj is defined as the
following:

1) Point-based templates:

dist(q, Pj ) ≡ min
v∈Pj

dist(q,v) = min
v∈T

dist(q,H(v;θj )).

(10)
2) Edge-based templates:

dist(q, Pj ) ≡ min
e∈Pj

dist(q,e) = min
e∈T

dist(q,H(e;θj )).

(11)
These are just the shortest distances between q and any of

the transformed template points or edges of Pj , respectively.
The transformation of an edge is just the edge that connects the
corresponding transformed vertices. We use Euclidean distance
for all the subsequent derivations.

We also define the concept of the matching point of q in Pj

as the point in Pj that is closest to q. For point-based templates,
the matching point is always one of the transformed template
points. For edge-based templates, the matching point can be
a transformed vertex or a point on an edge. For both types
of templates, dist(q,Pj ) is just the distance between q and its
matching point in Pj . The computation of matching points is a
required but most time-consuming step in our algorithms. Since
there are usually far less edges in an edge-based template than
there are points in a point-based template that represents the
same shape, our experiments are focused on cases with edge-
based templates. Even so, all the derivations in this section are
still applicable if point-based templates are used.

In addition, we also define difference measures between two
prototypes. Such difference measures can be used in, for exam-
ple, the test of convergence. For point-based templates, this is
given by

diff(Pi, Pj ) = max
v∈Pi

min
v′∈Pj

dist(v,v′). (12)

The difference measure for edge-based templates is more
complicated. Our previous version in [31] is given by

diff(Pi, Pj )

= max

[
max
v∈Pi

min
e∈Pj

dist(v,e), max
v∈Pj

min
e∈Pi

dist(v,e)
]

(13)

with dist(v,e) being the Euclidean distance between a vertex
v and an edge e. We later discovered that, while this formula
works most of the time, it can fail in rare cases for some particu-
lar templates, resulting in much smaller than actual differences.
Since in the subsequent algorithms, the computed prototype-
prototype differences are always compared with some thresh-
olds (tests for convergence and for prototype merging as dis-
cussed in Section IV), we continue to use (13) as a screener.
If the difference given by (13) is less than the given threshold,
we compose a corresponding point-based prototype of the same
shape for each of the two prototypes. This is implemented by
placing points along the edges such that the distances between
adjacent points are not larger than the given threshold. Let Pj( p )

represent the corresponding point-based prototype of an edge-
based prototype Pj . A new difference measure is now computed
according to

diff(Pi, Pj )

= max

[
max

v∈Pi ( p )

min
e∈Pj

dist(v,e), max
v∈Pj ( p )

min
e∈Pi

dist(v,e)
]

(14)

and again checked against the threshold. While (14) is much
more time-consuming to compute than (13) due to the increased
number of points, it is only used sparingly and, therefore, does
not add significantly to the computational requirement.

While there are many possible transformations to derive a
cluster prototype from a template, to limit the complexity of the
problem, in this paper, we present three types of transformations,
termed types I, II, and III, next.

1) Type I: A Type I transformation is a shape-preserving
transformation consisting of translation, rotation, and a
single scalar scaling factor. A point p on Pj is related to
its corresponding point p∗ in the template according to

p = H(p∗;θj ) = Rj sjp
∗ + tj . (15)

Here, sj , Rj , and tj are the scalar scaling factor, rotation
matrix, and translation vector of Pj , respectively. For 2-D
data, this means that there are four adjustable parameters
for each prototype. The variable Rj is the 2 × 2 rotation
matrix determined by the rotation angle ϕj :

Rj =
(

cos ϕj − sin ϕj

sin ϕj cos ϕj

)
. (16)

2) Type II: As an extension of type I transformations, type
II transformations allow a separate scaling factor for each
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dimension in the coordinate system in which the template
is defined. A point p on Pj is related to its corresponding
point p∗ in the template according to

p = H(p∗;θj ) = RjSjp
∗ + tj . (17)

Here, Rj and tj are the rotation matrix and translation
vector of Pj , respectively. Sj , the “scaling matrix,” is a
diagonal matrix with its kth diagonal element represent-
ing the scaling factor for the kth dimension in the template
coordinates. This allows, for example, rectangular proto-
types of various aspect ratios, given a square template.
For 2-D data, there are five adjustable parameters for each
prototype.

3) Type III: Type III transformations allow more flexibility
by replacing rotation and scaling transformations with a
single affine transformation. A point p on Pj is related to
its corresponding point p∗ in the template according to

p = H(p∗;θj ) = Ajp
∗ + tj . (18)

Here, Aj and tj are the affine transform matrix and trans-
lation vector of Pj , respectively. For 2-D data, there are
six adjustable parameters for each cluster prototype.

In order to simplify notation, we do not distinguish between
the different types of transformations in terms of the notations
used before. The correct transformation type referred to later in
this paper should always be clear from the context. More details
and derivations of the respective prototype update equations of
the three types of transformations are provided in the next three
sections. The update equation for the cluster memberships uij

is the same as (5) for all three types of transformations.

B. Clustering Procedure for Type I Transformations

Our first goal here is to derive the update equations of the
prototype parameters. Let pij be the matching point of xi on
Pj , and let dij be the distance between xi and Pj . For type I
transformations, dij is given by

d2
ij =

∥∥xi − pij

∥∥2 =
∥∥xi −

(
Rj sjp

∗
ij + tj

)∥∥2
. (19)

The necessary conditions for minimizing J with respect to
the cluster parameters are obtained by setting to zero the partial
derivatives of J with respect to ϕj , sj , and tj , using (19) as the
distance measure. The resulting equations are as follows:

∂J

∂tj
=

N∑
i=1

(2um
ij )(Rj sjp

∗
ij + tj − xi) = 0 (20)

∂J

∂sj
=

N∑
i=1

(2um
ij )(Rj sjp

∗
ij + tj − xi)T (Rjp

∗
ij ) = 0 (21)

and

∂J

∂ϕj
=

N∑
i=1

(2um
ij )sj (Rj sjp

∗
ij + tj − xi)T

(
dRj

dϕj
p∗

ij

)
= 0.

(22)

It is difficult to find analytical solutions of all three parameters
that simultaneously satisfy (20)–(22). However, we can find
closed-form expressions if we choose to update one parameter
at a time. Specifically, this means that we solve (20) for tj , (21)
for sj , and (22) for ϕj .

It is straightforward to obtain the following solution of tj

from (20):

tj =

∑N
i=1 um

ij (xi − pij )∑N
i=1 um

ij

. (23)

An interesting observation is that when there is only one vertex
and no edge in the template, resulting in p∗

ij = 0, (23) reduces
to the update equation for point prototypes in the standard FCM
and PCM algorithms.

It is straightforward to obtain the following solution for sj

from (21):

sj =

∑N
i=1 um

ij (xi − tj )T (Rjp
∗
ij )∑N

i=1 um
ij (Rjp∗

ij )T (Rjp∗
ij )

=

∑N
i=1 um

ij (xi − tj )T (Rjp
∗
ij )∑N

i=1 um
ij

∥∥p∗
ij

∥∥2 . (24)

The solutions for ϕj require more derivation. First, we can
separate (22) into two terms:

N∑
i=1

(um
ij )sj (Rjp

∗
ij )

T

(
dRj

dϕj
p∗

ij

)

+
N∑

i=1

(um
ij )(tj − xi)T

(
dRj

dϕj
p∗

ij

)
= 0. (25)

Here, the common multiplication factor 2sj has been dis-
carded. Since

(Rjp
∗
ij )

T

(
dRj

dϕj
p∗

ij

)

= (p∗
ij )

T

(
cos ϕj sin ϕj

− sin ϕj cos ϕj

) (
− sin ϕj − cos ϕj

cos ϕj − sin ϕj

)
p∗

ij

= (p∗
ij )

T

(
0 −1
1 0

)
p∗

ij = 0 (26)

this leaves us with only

N∑
i=1

(um
ij )(tj − xi)T

(
dRj

dϕj
p∗

ij

)
= 0. (27)

Next, let us assume for now that

(tj − xi) = [ ai1 ai2 ]T (28)

and

p∗
ij = [ bi1 bi2 ]T . (29)
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We can now rewrite (27) as

N∑
i=1

(um
ij ) [ ai1 ai2 ]

(
− sin ϕj − cos ϕj

cos ϕj − sin ϕj

) [
bi1
bi2

]

=
N∑

i=1

(um
ij )

[
−ai1bi1 sin ϕj + ai2bi1 cos ϕj

−ai1bi2 cos ϕj − ai2bi2 sin ϕj

]T

= 0. (30)

After reorganizing the terms, we obtain

sin ϕj

cos ϕj
=

N∑
i=1

(um
ij )(ai2bi1 − ai1bi2)

N∑
i=1

(um
ij )(ai1bi1 + ai2bi2)

=

N∑
i=1

(um
ij )(tj − xi)T

(
0 −1
1 0

)
p∗

ij

N∑
i=1

(um
ij )(tj − xi)T p∗

ij

. (31)

The solutions for ϕj are now given by the following equation:

ϕj = tan−1




N∑
i=1

um
ij (xi − tj )T

(
0 −1
1 0

)
p∗

ij

N∑
i=1

um
ij (xi − tj )T p∗

ij


 . (32)

Equation (32) gives two values for ϕj over a range of 2π. We
handle this by computing the objective function J using both
values of ϕj , and choose the one that gives the lower J.

The resulting clustering algorithm has the same form as the
general form in Section II, with the part within the loop replaced
by the following statements:

Find all pij and corresponding p∗
ij

Compute dij using (19)
Update uij using (5)
Update tj using (23)
Update sj using (24)
Update ϕj using (32)

We use the name PCT-I to collectively represent these state-
ments for later reference.

Within each iteration of AO, the task of updating the prototype
parameters is divided into three separate steps for updating tj ,
sj , and ϕj . In addition to making closed-form update equations
possible, another advantage of this decomposition is the added
flexibility to, say, “disable” a type of transformation. For exam-
ple, if we are looking for circles, we can simply skip the step for
updating ϕj because there is no need to rotate the prototypes.

Another issue regarding this algorithm is that, by definition,
the points pij themselves are also dependent on the prototype
parameters. However, we are unable to express this dependence
in a differentiable function. Our solution is to keep the points
pij unchanged while updating the prototype parameters and
recalculate pij in a separate step within each iteration of AO.

Since pij is selected to minimize dij , this step is consistent with
our goal of minimizing J.

C. Clustering Procedure for Type II Transformations

Update equations for type II transformations are mostly sim-
ilar to those for type I transformations, and therefore, we will
focus on what are actually different in this subsection. The dis-
tance measure here is given by

d2
ij =

∥∥xi − pij

∥∥2 =
∥∥xi −

(
RjSjp

∗
ij + tj

)∥∥2
. (33)

This is very similar to (19), with the only difference being
the scalar scaling factor sj being replaced by the scaling matrix
Sj . As a matter of fact, since the update equations [(23) and
(32)] for tj and ϕj for type I transformations do not involve
scaling factors, they can be used for updating tj and ϕj for type
II transformations without change.

To update Sj , we actually derive the equation for updating
each of its diagonal elements. Let sjk be the kth diagonal element
of Sj . The necessary condition for minimizing J relative to sjk

becomes

∂J

∂sjk
=

N∑
i=1

um
ij

∂

∂sjk

∥∥RjSjp
∗
ij + tj − xi

∥∥2

=
N∑

i=1

2um
ij

[
RjSjp

∗
ij + tj − xi

]T
[
Rj

∂(Sjp
∗
ij )

∂sjk

]
= 0.

(34)

Let us define p∗
ij (k) as a vector of the same length as p∗

ij , where
its kth element is equal to the kth element of p∗

ij (denoted as
p∗ijk ) and all the other elements being zero. Then, we have

∂(Sjp
∗
ij )

∂sjk
= p∗

ij (k) = [0 · · · 0 p∗ijk 0 · · · 0]T . (35)

After substituting (35) into (34) and some rearrangement, we
end up with

N∑
i=1

um
ij (xi − tj )T Rjp

∗
ij (k) =

N∑
i=1

um
ij (RjSjp

∗
ij )

T Rjp
∗
ij (k)

=
N∑

i=1

um
ij (p∗

ij )
T SjR

T
j Rjp

∗
ij (k)

=
N∑

i=1

um
ij (p∗

ij )
T Sjp

∗
ij (k) = sjk

N∑
i=1

um
ij (p∗ijk )2 (36)

which gives the following update equation for sjk :

sjk =

N∑
i=1

um
ij (xi − tj )T Rjp

∗
ij (k)

N∑
i=1

um
ij (p∗ijk )2

. (37)

The resulting clustering algorithm has the same form as the
general form in Section II, with the part within the loop replaced
by the following statements:
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Find all pij and corresponding p∗
ij

Compute dij using (33)
Update uij using (5)
Update tj using (23)
Update sjk using (37)
Update ϕj using (32)

We use the name PCT-II to collectively represent these state-
ments for later reference.

D. Clustering Procedure for Type III Transformations

Again our focus in this section is on what is different from
the previous two types of transformations. The distance measure
now is given by

d2
ij =

∥∥xi − pij

∥∥2 =
∥∥xi −

(
Ajp

∗
ij + tj

)∥∥2
. (38)

The update equation (23) for tj continues to be applicable
here.

We derive the following update equation for Aj by setting
the partial derivative of J to Aj to zero:

∂J

∂Aj
=

N∑
i=1

um
ij

∂

∂Aj

[
(Ajp

∗
ij + tj − xi)T (Ajp

∗
ij + tj − xi)

]

=
N∑

i=1

um
ij

∂

∂Aj

×
[

(Ajp
∗
ij )

T (Ajp
∗
ij )

+2(tj − xi)T (Ajp
∗
ij ) + (tj − xi)T (tj − xi)

]

=
N∑

i=1

um
ij

[
2Ajp

∗
ij (p

∗
ij )

T + 2(tj − xi)(p∗
ij )

T
]

= 0.

(39)

Rearrangement of the last step in (39) yields the following up-
date equation for Aj :

Aj =

[
N∑

i=1

um
ij (tj − xi)(p∗

ij )
T

] [
N∑

i=1

um
ij p∗

ij (p
∗
ij )

T

]−1

.

(40)
The resulting clustering algorithm has the same form as the

general form in Section II, with the part within the loop replaced
by the following statements:

Find all pij and corresponding p∗
ij

Compute dij using (38)
Update uij using (5)
Update tj using (23)
Update Aj using (40)

We use the name PCT-III to collectively represent these state-
ments for later reference.

Fig. 2. Demonstration of the convergent prototypes of the same dataset using
different η values.

E. Issues of Convergence

One interesting question in possibilistic shell clustering is
this: When a prototype converges, how likely and how closely
does it converge to an actual cluster? For shell clusters of
template-based shapes, the answer can vary widely for different
shapes. This is because different shapes have different proba-
bilities that incorrect combinations of data points from one or
multiple actual clusters can lead to local minimums of the cost
function. While it is impossible to analyze this issue for all pos-
sible shapes, there is a common factor, the “zone of influence”
η, that significantly affects this effect. This is discussed in more
detail here.

One important property of η, as previously pointed out in [32],
is that it plays the role of “resolution” of the feature space.
Larger η values correspond to lower resolutions and smoother
energy surfaces because the contribution from each data point
now spans a larger range. This again leads to generally smaller
numbers of local optima. However, if η is too large, these local
optima may not correspond to actual clusters because the con-
tribution from data points that belong to different actual clusters
are blended together. This is illustrated in Fig. 2 where the same
dataset (the noiseless five-circle dataset also shown in Fig. 5)
is clustered using different fixed values of η and 25 randomly
initialized prototypes. We can see that for η = 32, all the pro-
totypes tend to converge to the same “global optima,” which is
not our intended result. On the other hand, when η = 1, many
prototypes converge to different local optima, implying a rela-
tively complex energy surface. A good compromise here seems
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to be η = 4, where 23 out of 25 prototypes converge to actual
clusters. However, this observation still does not tell us how to
choose the best value of η in general. Instead, we describe in the
next section a coarse-to-fine strategy that continuously adjusts
the value of η during the clustering process.

All the clustering algorithms described in this section have
Gauss–Seidel type iterations. This means that, while different
parameters are updated separately, the computation of the new
value of each parameter always utilizes the most recent values
of the other parameters. This is the case for the FCM, PCM,
and many other clustering algorithms derived from them. As
pointed out in [33], because of faster convergence in practice
(at least for nonparallel implementations), Gauss–Seidel type
iterations are often preferred over Jacobi-type iterations, where
the update of all the parameters occurs simultaneously in each
iteration. Another reason of this choice is that it ensures that the
cost function decreases monotonically after each update.

IV. PROGRESSIVE CLUSTERING PROCEDURE

The strong dependence of clustering results on
initialization—including the number of clusters and ini-
tial prototype parameters—is a very challenging issue for
any type of shell clustering. To deal with this challenge, we
implement a progressive clustering procedure that enables the
detection of an uncertain number of clusters and the estimation
of their parameters. The basic idea of progressive clustering
is to progressively remove prototypes that appear to represent
good clusters as well as the data points belonging to these
clusters. The partial removal of data reduces the complexity of
the remaining problem and increases the likelihood of finding
good clusters in the remaining data. The use of progressive
clustering for clustering hyperspherical and hyperquadratic
shells has been described in [13] and [18]. Another GA-based
detection algorithm of hyperquadratic shells [34] employs a
similar idea.

Our method incorporates a few ideas from the progressive
clustering algorithm for spherical and quadratic shells described
in [18], including the detection and deletion of spurious clusters,
the merging of similar prototypes, the use of surface density to
determine the “goodness” of individual prototypes, and a re-
finement stage at the end of the main clustering loop. There
are also a few elements of our algorithm that are different. The
main problem with the procedure in [18] is that it employs the
fuzzy version of the clustering algorithm to initialize the pos-
sibilistic clustering procedure. While this approach works fine
with quadratic shells, the results with more general shapes have
been much less satisfactory. We find that such an initialization
method often produces prototypes that overlap with parts of one
or more actual clusters, such that they contain too many data
points to be considered spurious and too few data points to be
considered good. Mostly such prototypes remain after the pro-
gressive clustering procedure and become part of the incorrect
final result.

For the reason stated before, we employ a completely possi-
bilistic approach that allows randomly initialized prototypes to
search for their local optima individually. Instead of focusing on
determining “the correct number of clusters,” our approach is to

find “as many good clusters as possible in a reasonable amount
of time.” The additional steps are the coarse-to-fine searching
process through the adjustment of η values and the reinitial-
ization of prototypes. The pseudocode listing next summarizes
our progressive clustering procedure, followed by more detailed
explanations.

Randomly initialize C0 prototypes
/∗ The main loop ∗/
REPEAT

FOR each prototype
Run one iteration of PCT-I, -II, or -III based on the type

of prototype transformation
END-FOR
Merge similar prototypes
Discard spurious or bad convergent prototypes
Detect good convergent prototypes, extract them to a

separate list, and remove the data points that are within
a small distance from these good prototypes

Adjust η for each prototype
Replace discarded, merged, and extracted prototypes with

new randomly initialized prototypes
UNTIL there are few data points left or the maximum

allowed number of iterations is reached
/∗ The refinement loop ∗/
Replace the removed data points into the dataset
Add the extracted good prototypes to the remaining

prototypes at the end of the main loop
FOR a predefined number (typically 5) of iterations

FOR each prototype
Run one iteration of PCT-I, -II, or -III based on the type

of prototype transformation
Adjust η for each prototype

END-FOR
END-FOR
/∗ The final selection loop ∗/
WHILE there is at least one prototype with a density of at

least a given threshold, ρselect

Extract the prototype with the highest density to a separate
list, and remove the data points that are within a
small distance from this prototype

Recalculate the densities of the remaining prototypes
based on the remaining data points

END-WHILE

There are three separate loops in the aforementioned pseu-
docode: the main loop, the refinement loop, and the final se-
lection loop. The prototypes that are deemed likely to represent
actual clusters are extracted during the main loop. The purposes
of the two subsequent loops are given as follows.

Within the main loop, the update of a prototype is terminated
when it is determined to have converged. However, if the con-
vergence is slow, it is possible that the prototype is still slightly
off its optimal location. The refinement loop allows the proto-
type update to proceed for several additional iterations without
checking for convergence in an attempt to move the prototypes
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Fig. 3. Example of the effect of the refinement loop. (a) and (b) Prototypes
before and after the refinement loop, respectively.

Fig. 4. Example of the effect of the final selection loop. (a) and (b) Prototypes
before and after the final selection loop, respectively.

closer to their optimal locations. This is illustrated in Fig. 3,
where plots (a) and (b) display two rectangular prototypes be-
fore and after the refinement loop, respectively. We are able to
see that the prototypes match to the data points better after the
refinement loop.

The final selection loop is designed to handle the cases when
multiple extracted prototypes partially overlap with on another,
meaning that they share some common data points. In this case,
we consider the prototype with the highest density as the one
most likely to be correct. Removing this prototype and its as-
sociated data points lowers the density of the other prototypes.
Since we only retain prototypes with densities of at least ρselect

(currently 0.6) in this loop, some prototypes that are not correct
clusters can be discarded here. Fig. 4 displays an example of
this effect. Here, one incorrect prototype (dark red) in Fig. 4(a)
that is due to a local optimum is discarded through this selection
process, and the final selected prototypes are shown in Fig. 4(b).

More details of the various components in the pseudocode
are explained next.

Prototype density: This is similar to the surface density used
in [18] as a single-cluster validity measure in shell clustering.
This density is defined as

ρj =
1
Lj

∑
dij≤δw

uij (41)

where Lj is the total edge length of the jth prototype. Lj replaces
the effective arc length used in [18], where its purpose is to allow
the density calculation and extraction of, say, a partial circle.
This is because we are not interested in detecting objects that
do not contain at least most of the template. The value used for
the distance threshold δw is 1.0 and 2.5 for synthetic and image
datasets, respectively.

Prototype initialization: Each prototype is initialized with its
parameters randomly selected from within a predefined allowed
parameter range (which will be explained later).

Prototype convergence test: This is done separately for each
prototype. A sequence of prototypes is considered to have con-
verged if the difference between the same prototype at consec-
utive iterations is within a predefined threshold δc (which is
currently set to 0.25).

Prototype merging: When two prototypes whose difference
according to (14) is within a predefined threshold δm (which is
currently set to 1.0), the prototype with lower density is consid-
ered merged into the other prototype and is therefore marked
for deletion.

Good prototype extraction: Prototypes with density above a
threshold ρgood is considered a “good” one and is moved to a
separate list. Data points within δw of this prototype are also
removed. The value of ρgood is set to a high value (currently
0.8) in the beginning and reduced by a small amount (currently
0.1%) after each iteration. This gradually relaxes the require-
ment of good prototypes and allows less-than-perfect clusters
to be detected at later stages of the process. An example of
such clusters in computer vision applications is objects that are
somewhat obscured.

Discarding Spurious and bad prototypes: Prototypes with
densities below a given threshold ρmin (currently 0.3) at con-
vergence are marked for deletion. Also marked for deletion
are prototypes whose parameters fall outside of some prede-
fined bounds, which are given based on prior knowledge of
the data. In addition, during the main loop, “stuck” proto-
types (defined as convergent prototypes whose densities are
between ρmin and ρgood) are deleted with a probability of rstuck

(which is currently 0.2).
Adjustment of η: The parameter ηj is updated in a coarse-

to-fine manner. In the main loop, its value is set to a relatively
large value η(0) [η1/2

(0) ≈ (total range of data)/10 has worked
well for our datasets] for a newly initialized prototype to make
sure that it is able to move toward nearby data efficiently. It is
reduced by a multiplicative factor rη [0< rη < 1, currently 0.7]
according to

ηj (t+1) = max[ηmin, rη ηj (t) ], (42)

so that the prototype can gradually converge. Here t is the itera-
tion counter, and ηmin, currently set to be equal to δ2

w , is a lower
bound of η. The values of η are all reset to 4ηmin at the begin-
ning of the refinement loop because we do not want η values
to be so large that they cause the prototypes to move too much
here. In addition, during the main loop, the η values for “stuck”
prototypes that are not selected for deletion are increased by a
factor of 4 to increase the likelihood of them moving out of the
local minimums of the cost function.

Prototype replacement: At the end of each iteration of the
main loop, prototypes marked for deletion are replaced with new
randomly initialized prototypes. This keeps the total number of
prototypes constant. One advantage of this step is that we do not
need to over-specify the number of initial prototypes as in [13]
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and [18], which requires at least an upper bound on the total
number of clusters present in the data.

Termination criterion: The main loop terminates after the
ratio between the amounts of remaining and total data is less
than a threshold rT . This threshold is set to a prespecified value
rT (0) (which is currently 5%) in the beginning and after each
good prototype extraction, and is multiplied by a factor slightly
larger than 1 (which is currently 1.02) after each iteration. This
effectively ensures that the main loop will eventually terminate
even when no prototype is extracted at all.

A number of thresholds and other parameters are used in this
progressive clustering procedure. To estimate the sensitivity of
the clustering results on the parameter values, we include in
Section V a series of experimental results for this purpose. We
find that the clustering results do not exhibit strong sensitivity to
most of the parameters. Among the parameters, choices related
to η (rη and η(0)) are found to have stronger influence on the
clustering performance, even though our method of selecting
their values work in most of our experiments. This is discussed
in more detail in Section V.

Currently, the main purpose of prototype parameter range
constraints (as for the removal of “bad” prototypes) is only to
remove prototypes that have become too large or too elongated
because the procedure is trapped in local optima that include data
points from multiple actual clusters or too small because it is
trapped by a few individual data points. As a result, we actually
use only constraints that correspond to scaling. For an affine
transformation, we obtain its two corresponding scaling factors
according to its effect on a unit circle. We employ constraints
on 1) the mean scaling factor (geometric mean of the scaling
factors in two directions for types II and III transformations) and
2) the aspect ratio (for types II and III transformations only). In
order to make sure that the constraints are not overly limiting,
we keep the ratio between the upper and lower bounds of the
mean scaling factor to at least 3. The typical allowed range of
the aspect ratio is between 1 and 3 or 4. Our experiences have
indicated that prototype parameter range constraints that are
too tight can actually worsen the efficiency of the progressive
clustering procedure by causing too many reinitializations of
bad clusters.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results using var-
ious datasets. Section V-A includes synthetic datasets consisting
of data points that form various shapes. We include synthetic
datasets with and without noise points and minor scatters. Sec-
tion V-B includes results using edge pixels that are extracted
from real images. Section V-C describes how we measure the
efficiency of our overall algorithm. Section V-D describes ex-
periments designed to measure the sensitivity of the clustering
performance on parameter choices. For all the results presented,
unless noted otherwise, the progressive clustering procedure de-
scribed in Section IV is employed. For each dataset, we only
look for clusters of one particular shape, i.e., with all the pro-
totypes derived from the same template. Edge-based templates
are used throughout the experiments.

A. Results for Synthetic Data

Figs. 5–7 display the clustering results of synthetic datasets
obtained by using algorithms based on type I, type II, and
type III transformations, respectively. Each of these figures
demonstrates the detection of several different shapes. For each
shape, we show clustering results for both noiseless data with
no scatter, and for data that contain noise and minor scatter.
Detected prototypes are plotted with the data as solid lines.
The datasets shown in Figs. 5–7 are not identical because we
have selected in each case only the datasets with shapes that
are within the capability of the prototype transformation be-
ing used. For example, we do not use data that contain ellip-
tic shapes for type I transformation when the prototypes are
derived from a circular template, which yields only circular
prototypes.

For the synthetic datasets in Figs. 5–7, each square corre-
sponds to a size of 50 × 50, while the distances between adja-
cent data points in noiseless datasets are approximately equal to
1. The numbers of nonnoise data points in these datasets range
approximately from 140 to 300. For the datasets with noise, we
always place 50 noise points randomly within the 50 × 50 area,
and each data point is displaced by an amount around ±0.5 from
its location in the corresponding noiseless dataset. The results
indicate that the algorithm is capable of detecting the desired
shapes in the presence of minor scatter and noise and of detect-
ing the correct number of clusters. We also demonstrate that the
same template (such as a square) can be used for the detection
of several different shapes through different types of prototype
transformations.

Figs. 5 and 6 include examples that involve open shapes (the
“U” and “S” shapes, respectively). This demonstrates that our
algorithm does not require the templates to have closed shapes.
However, we want to note that there are some open shapes that
are not suitable for our algorithm. An example of such a shape
is the cross “+.” The problem here results from the difference
between the cost function used to derive the prototype parame-
ters and the validity measure used to determine the goodness of
prototypes. This is illustrated with the examples in Fig. 8, where
we have two “cross” prototypes with different sizes. Both are
matched perfectly with the same set of data points, resulting in
the same values of the cost function J. However, the larger pro-
totype has lower validity [the surface density in (41)] due to the
factor Lj , and may be rejected based on the low density. Dur-
ing the progressive clustering procedure, it is quite possible that
prototypes that do converge and match well to the data points
are rejected due to low density. Our current method of updating
prototype parameters will not reduce the scaling factor for such
cases (to increase validity) because this does not further lower
J. The overall consequence is that our clustering procedure will
have difficulty and much worse efficiency in identifying such
clusters. Other than the cross shape, shapes that have this prob-
lem include line segments, “X,” “V,” “T,” and any shape that
can “contain a smaller version of itself” after some translation
and rotation. In addition to the “U” and “S” shapes in Figs. 5
and 6, other open shapes that can be clustered with our current
algorithms include “C,” “W,” “Z,” etc.
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Fig. 5. Clustering results of synthetic datasets using type I prototype transformations. For each shape, there are three plots. From left to right: the template, the
clustering result with a noiseless and scatterless dataset, and the clustering result with a similar dataset with noise and minor scatter.

Fig. 6. Clustering results of synthetic datasets using type II prototype transformations. For each shape, there are three plots. From left to right: the template, the
clustering result with a noiseless and scatterless dataset, and the clustering result with a similar dataset with noise and minor scatter.
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Fig. 7. Clustering results of synthetic datasets using type III prototype transformations. For each shape there are three plots. From left to right: the template, the
clustering result with a noiseless and scatterless dataset, and the clustering result with a similar dataset with noise and minor scatter.

Fig. 8. Example of the same dataset matched perfectly to two prototypes with
different scaling.

B. Results for Image Data

This section contains examples that demonstrate the detec-
tion of generic shapes in real images using our algorithms. All
these datasets contain some scatter and noise/clutter, as would
be expected from real-world images. Figs. 9–11 display exam-
ples of clustering with the algorithm based on type I, type II,
and type III transformations, respectively. Again, in each fig-
ure, we include only datasets with shapes that are within the
capability of the particular type of transformations. Each row of
these figures, from left to right, shows the template, the original
image, the extracted edge points used as the data points for clus-
tering, and the original image overlaid with the final extracted
prototypes, respectively. The images are all 160 × 120 in size.
The steps of edge point extraction include smoothing, gradient
computation (on either the intensity, saturation, or a single RGB
component), thresholding, and thinning. We do not explain the
detail of edge point extraction for each image here as this is
intrinsically application dependent and is not the focus of this
paper.

C. Correctness and Time Complexity

In this section, we focus on an important issue in a lot of
practical problems: the tradeoff between correctness and time

complexity. Shell clustering has been known for its tendency to
be trapped in suboptimal solutions, and this is exactly the rea-
son for the various robust shell clustering procedures described
in Section IV and in the literature [13], [18], [34], and [35].
Even with progressive clustering or the use of other near global
optimization techniques such as GA, the final result is not guar-
anteed to be globally optimal. However, there has been little
analysis in the literature regarding this aspect of shell cluster-
ing. We provide a framework that should be useful for analyzing
and comparing the performances of various shell-clustering al-
gorithms.

Let us consider the synthetic data first. Since we know the
actual locations of all the shell clusters (called the “target clus-
ters” later) used for generating the data, we just compute their
distances to the detected cluster prototypes using (13) and (14).
We use the following formula to calculate a “grade of detection”
gd for each target cluster:

gd(PT ) =




1, d ≤ δw

(3 − d/δw )
2

, δw < d ≤ 3δw

0, otherwise.

(43)

Here, PT represents the target cluster prototype, and d is its
distance to the closest prototype generated by the clustering
algorithm:

d = min
j

diff(PT , Pj ). (44)

Let C∗ be the number of target clusters in a given dataset.
When C∗ > 1, the overall gd is just the average gd of all the
target clusters. This measure for evaluating clustering results
is more intuitive and meaningful for shell clustering than the
objective function, which is the measure used in [30] for point-
prototype clusters.

One performance measure we propose here is the amount of
computation (which is denoted as kc below) required to reach
a given gd . We define kc as the number of dij computations
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Fig. 9. Clustering results of image datasets using type I prototype transformations. From left to right, each row contains the template, the original image, the
edge points to be clustered, and the original image overlaid with the extracted prototypes.

Fig. 10. Clustering results of image datasets using type II prototype transformations. From left to right, each row contains the template, the original image, the
edge points to be clustered, and the original image overlaid with the extracted prototypes.

(including matching point determination) per data point. This
is because this step is the most computationally expensive of
the whole algorithm and consumes the majority (above 80%)
of the total execution time. This unit of computation provides
a mechanism for comparing and optimizing algorithms (except
for the part on dij computation) that are independent of the
computer system used.

For each given set of data and parameters, we always do
20 runs with the only difference being the seed of the random
number generator. For each run, we can obtain a curve by using
the cumulative amount of computation after each main-loop
iteration as the horizontal axis and the gd value based on the
extracted good clusters up to that iteration as the vertical axis.
The resulting curves of the 20 runs are then averaged. Where a
horizontal line (corresponding to a reference gd ) first intersects
this average curve is used as the expected amount of computation

required to reach that grade of detection [which is denoted as
kc(gd)]. This process is illustrated in Fig. 12.

Analyzing gd as a function of kc allows us to observe the
dynamic evolution of gd as the algorithm proceeds. However,
since it is possible that in some of the runs, kc(g∗d) may not exist
because the final gd is less than g∗d , we cannot reliably compute
the standard deviation of kc(g∗d) over multiple runs for stability
analysis. To facilitate the analysis of performance stability over
multiple runs, we also use a second performance measure ∆gd ,
defined as the ratio gd(end)/kc(end). Here, the subscript “(end)”
indicates that we are using the values of kc and gd when the pro-
gressive clustering procedure terminates. This ratio represents
the mean grade of detection achieved per unit of computation.
We want to note that these performance measures are not tied
to the particular algorithms in Sections III and IV. Comparisons
of the performance measures across datasets may indicate their
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Fig. 11. Clustering results of image datasets using type III prototype transformations. From left to right, each row contains the template, the original image, the
edge points to be clustered, and the original image overlaid with the extracted prototypes.

Fig. 12. Computation of kc (gd ). (a) Individual gd versus kc plots of the 20
runs. (b) Average gd versus kc plot. The dashed lines illustrate how kc (g∗d ), g∗d
being a reference gd , is determined.

relative levels of difficulty for the same algorithm. For the same
dataset, these performance measures are useful for parameter
optimization or even the choice among different algorithms for
the same purpose.

Table I lists the performance for all the synthetic data experi-
ments shown in Figs. 5–7. The results for gd(end), time, and ∆gd

are their mean values and standard deviations over 20 runs. The
program is implemented in Matlab 7.0 and run on a computer
with a 3.0-GHz Pentium IV processor and 1 GB of memory.

For the noiseless datasets, we can see that we can achieve
over 80% of correct cluster detection (i.e., gd(end) ≥ 0.8) for
most of the datasets except for ellipses and rectangles. This
is partly due to the fact that these datasets involve significant
overlap between target clusters. Closer examination also reveals
some shape-dependent difficulties. For example, a rectangular
prototype that has only three sides correctly matched to the data
may have a high enough density to be extracted as a good cluster,
especially at later stages of the main loop when the density
threshold for good clusters is lower. Another observation is that
when the same shape can be modeled by two transformations
(for example, ellipses can be derived from a circular template
through either type II or type III transformations), the one with

more degrees of freedom (type III here) usually performs worse.
This can be explained by the fact that more degrees of freedom
usually lead to more complicated energy surfaces and, therefore,
a higher probability for a prototype to converge to local optima,
which is an effect that is directly related to the cost function
and does not result from the progressive clustering procedure.
For the noisy datasets, it always takes longer time than the
corresponding noiseless datasets. The degradation of gd(end) due
to noise is quite dataset-dependent.

Table II lists the performance measures using the image
datasets in Figs. 9–11. We can see that good clustering re-
sults can be achieved in the order of 10 s for a variety of
shapes.

Next, we present an example of the ability of our algorithm
in handling cluttered data, i.e., data that also contain shapes dif-
ferent from the template. In Fig. 13(a) is a synthetic dataset that
contains three different shapes: two each of squares, hearts, and
stars, as well as some noise. We run our clustering algorithm
on this dataset three times, each time using just the template
of one shape. We use only type I transformations in this ex-
periment. The detected clusters are shown in Fig. 13(b)–(d).
It is clear that we are able to extract only the clusters of the
correct shape each time. For further analysis, we also test on
three additional (uncluttered) datasets, each consisting of only
the points in Fig. 13(a) that correspond to one of the three
shapes. The performance comparison (averaged over 20 runs
in each case) with identical parameter settings is given in Ta-
ble III. We can see that the clutter increases the execution time
by approximately a factor of 2 (approximately proportional to
N) and somewhat decreases the probability of detection with
the gd(end) value dropping from 0.9 to 0.63 for “hearts,” which
is the most difficult of the three shapes. On the other hand, we
have no false detection (identification of shapes where they do
not exist) throughout this experiment. This is a clear evidence
of the ability of our algorithm to distinguish among different
shapes.
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TABLE I
CLUSTERING PERFORMANCE MEASURE FOR SYNTHETIC DATASETS

TABLE II
CLUSTERING PERFORMANCE MEASURE FOR IMAGE DATASETS

Fig. 13. Clustering results for datasets containing multiple shapes. (a) Data
points. (b)–(d) Extracted clusters using heart, square, and star templates, respec-
tively.

We also repeat the experiments using the same datasets and
type II transformations, and the results are not as robust as when
using type I transformations. With the multishape dataset, the
gd(end) values drop to 0.32, 0.28, and 0.84 for squares, hearts,
and stars, respectively. In addition, there is an average of 1.0

TABLE III
CLUSTERING PERFORMANCE FOR MULTISHAPE DATA

false detection per run (20 total for the 20 runs) when clustering
squares but zero false detection when clustering hearts and stars.
While the worse performance with type II transformations is
expected, as more degrees of freedom lead to more possibilities
of wrong matches to the data, the significance of this effect varies
a lot for different shapes: reduced true detection and increased
false detection for squares/rectangles, reduced true detection but
no effect on false detection for hearts, and virtually no effect for
stars. We believe that this can also lead to an interesting research
question regarding what characteristics of the target shape can
affect the robustness of clustering results.

It may appear from the earlier observation that the type II
version of our algorithm generally performs worse compared
with the type I version. We want to note that this phenomenon
only occurs to cases when the shapes to be detected can be de-
rived from the template through type I transformations, which
is the case here. For example, with a square template, the type
I version can only be used for detecting squares, while the type
II version is required for detecting rectangles of various as-
pect ratios. Similar arguments apply to the observation from
Table I where the type III version performs worse than the
type II version when detecting ellipses. Overall, for best perfor-
mance, we should always select the simplest (i.e., with the least
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TABLE IV
DEPENDENCE OF CLUSTERING PERFORMANCE ON PARAMETER CHOICES

degrees of freedom) of the three versions that is applicable to
the shape being detected. However, the versions with higher
degrees of freedom are applicable to a much broader variety of
shapes.

D. Effects of Parameter Choices

Our clustering procedure involves a number of parameter
choices. It is always desirable that the clustering results are
not highly sensitive to these parameter choices. This section
describes our experiments aimed at investigating how the clus-
tering results depend on the various parameters. These experi-
ments are preformed on three synthetic datasets in Table I and
Figs. 5–7: set A, the “squares+X” for type I; set B, the “arrows”
for type II; set C, the “stars” for type III.

We start with the parameter values given in Section IV and
used for the experiments in Section V-A as our baseline. For
simplicity, in each set of experiments here, we vary only one pa-
rameter value from the baseline at a time. Table IV summarizes
the experiments and resulting clustering performances. We do
not include δw and δm (they are always the same in our exper-
iments) here because their values should be set to the expected
amount of scatter in the data and, therefore, are application-
dependent.

Other than the last three parameters in Table IV [C0 , η(0) ,
and rη ], we can see that the clustering performance is very
stable over the tested parameter ranges. In most cases, the
variations are less than 10%. For C0 , there appears to be a
trend of generally higher gd(end) but lower ∆gd when C0 is
increased, although the difference is most significant between
C0 = 2 and C0 = 4. This observation can be explained with
the following arguments: By keeping more prototypes at the
same time (larger C0), the probability of having some of them
converging to the target clusters is higher, resulting in higher

Fig. 14. Demonstration of the convergent prototypes of the same dataset using
different η values.

gd(end). On the other hand, it is also more likely that multi-
ple prototypes can converge to the same target cluster. This
translates into a “waste” of computation and, therefore, lower
∆gd because the program is detecting the same thing several
times.

One other interesting observation from Table IV is that
the performance is lower when rstuck is zero. This observa-
tion supports the benefit of reinitializing prototypes that ap-
pear to be trapped at local optima in our progressive clustering
procedure.

As mentioned in Section IV and also evident in Table IV, the
two parameters [η(0) and rη ] related to the “zone of influence”
(η) of possibilistic clustering have the most influence to the
clustering performance. The most serious degradation appears
to occur when η(0) is too large and the drop-off is actually quite
steep. Additional examination of the intermediate clustering
results indicates that the cause is similar to the effect of large
η, illustrated in Fig. 2. In Fig. 14, we plot the simulation results
that are similar to those in Fig. 2 with ten randomly initialized
prototypes. Here, we use no progressive clustering, except for
the baseline rη = 0.7 for adjusting η values, and only five
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iterations of the main loop. For the plot with η(0) = 64, we can
see that the prototypes are converging to the “global optimum”
even though η is already down to about 16 at the fifth iteration.
On the other hand, the plot with η(0) = 16 seems to show good
results with most of the prototypes already quite close to the
actual clusters. The performance degradation due to larger rη

can be explained with a similar argument that the prototypes
are allowed to look at most of the data points for too long (due
to the slower decrement of η) and, therefore, are more likely to
move toward the global optimum or a local optimum that spans
several actual clusters.

The degradation of clustering performance for smaller η(0)
and rη is not nearly as serious and is actually evident only for
one (set B) of the three datasets tested here. This observation
seems to indicate that it is safer to select smaller η(0) and rη

when we are not sure of the optimal values. The only drawback,
which is somewhat lower performance and slower convergence
for some datasets, is preferred over the performance breakdown
by using η(0) and rη values that are too large.

VI. CONCLUSION

This paper describes the algorithms that facilitate possibilis-
tic c-shell clustering with generic-shape template-based proto-
types. We present three different types of transformations for
obtaining cluster prototypes from a given template with dif-
ferent degrees of complexity and flexibility. All the algorithms
employ the efficient AO scheme that has been common in many
existing c-means-based clustering algorithms. The separation of
prototype update equations provides two advantages: First, this
makes possible the derivation of closed-form update equations
for various prototype parameters, hence saving us from the com-
plexity and uncertainty in computational time associated with
iterative numerical methods. Second, we have more flexibil-
ity in taking advantage of known properties of the templates.
We also describe an entirely possibilistic progressive cluster-
ing procedure that allows the detection of clusters without prior
knowledge of the number of clusters or good initialization of
prototypes.

We have presented clustering results of a large variety of
shapes using both synthetic and real-world image datasets. Our
algorithm has proved to have high probabilities of correctly
detecting the desired shapes/objects of various degrees of com-
plexity within seconds. As a result, we believe that this approach
has great potential for use in this area. Overall, we believe that
further study and understanding of this technique will help ex-
pand the application of shell clustering to more image analysis
problems.

We have also identified a number of research questions and
topics that we will continue to pursue. First, for practical ap-
plications, it is important to devise more efficient methods for
the task of locating the matching points to improve the overall
speed. We are also interested in investigating possible modifica-
tions to the algorithms to enable the clustering of shapes such as
“X,” “V,” and “T,” as discussed in Section V-A. Another pos-
sible future topic is to investigate shell clustering approaches
that first group the data points into short line segments, which

are then used as the unit of data in the clustering algorithm.
This allows the use of not only the location but the direction
information of the data points as well, and we believe it is in-
teresting to see whether this can lead to better performance in
high-noise scenarios. In addition, we would also like to try us-
ing our algorithm for initializing more flexible shape detection
techniques, such as deformable-template-based algorithms [36].
Another useful enhancement will be to allow the simultaneous
clustering of several different shapes.
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