
1008 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009

Realizing a Sub-Linear Time String-Matching
Algorithm With a Hardware Accelerator

Using Bloom Filters
Po-Ching Lin, Member, IEEE, Yin-Dar Lin, Senior Member, IEEE, Yuan-Cheng Lai, Yi-Jun Zheng, and

Tsern-Huei Lee, Senior Member, IEEE

Abstract—Many network security applications rely on string
matching to detect intrusions, viruses, spam, and so on. Since
software implementation may not keep pace with the high-speed
demand, turning to hardware-based solutions becomes promising.
This work presents an innovative architecture to realize string
matching in sub-linear time based on algorithmic heuristics,
which come from parallel queries to a set of space-efficient Bloom
filters. The algorithm allows skipping characters not in a match
in the text, and in turn simultaneously inspect multiple characters
in effect. The techniques to reduce the impact of certain bad situ-
ations on performance are also proposed: the bad-block heuristic,
a linear worst-case time method and a non-blocking interface
to hand over the verification job to a verification module. This
architecture is simulated with both behavior simulation in C and
timing simulation in HDL for antivirus applications. The simula-
tion shows that the throughput of scanning Windows executable
files for more than 10 000 virus signatures can achieve 5.64 Gb/s,
while the worst-case performance is 1.2 Gb/s if the signatures are
properly specified.

Index Terms—Algorithms, field-programmable gate arrays
(FPGAs), string matching.

I. INTRODUCTION

D EEP content inspection at the application layer to de-
tect proliferating intrusions and viruses on the Internet

is a known critical part to the performance. The inspection in-
volves string matching for multiple patterns of malicious signa-
tures. Numerous algorithms have been developed for efficiency
over the past decades [1]. Software implementation of string-
matching algorithms to handle the increasing Internet traffic be-
comes more challenging than ever. Extensive study thus turns
to specialized hardware accelerators to meet the high-speed de-
mand on the order of multi-gigabits per second.

Manuscript received November 23, 2006; revised July 06, 2007. First pub-
lished April 24, 2009; current version published July 22, 2009. This work was
supported in part by the Taiwan National Science Council’s Program of Excel-
lence in Research and by grants from Cisco and Intel.

P. C. Lin, Y. D. Lin, and Y. J. Zheng are with the Department of Com-
puter Science, National Chiao Tung University, Hsinchu 300, Taiwan (e-mail:
pclin@cis.nctu.edu.tw; ydlin@cs.nctu.edu.tw; yjzheng@cis.nctu.edu.tw).

Y. C. Lai is with the Department of Information Management, National
Taiwan University of Science and Technology, Taipei 106, Taiwan (e-mail:
laiyc@cs.ntust.edu.tw).

T. H. Lee is with the Department of Communication Engineering, National
Chiao Tung University, Hsinchu 300, Taiwan (e-mail: tlee@banyan.cm.nctu.
edu.tw).

Digital Object Identifier 10.1109/TVLSI.2008.2012011

Many FPGA accelerators hardwire signatures into logic cells
[2], [3], and match several characters in the text per cycle with
pipelining for high throughput. However, the gate count con-
strains the number of signatures that can be hardwired. Frequent
dynamic signature updating is also costly due to long repro-
gramming time. Implementing the designs in application-spe-
cific integrated circuit (ASIC) is infeasible since an ASIC chip is
not reconfigurable. Storing signatures in the memory simplifies
the updating [4], [5]. The size of external memory on the order
of GBs also increases the scalability of the number of signatures.

A common memory-based approach sequentially reads each
character in the text to track a finite automaton that accepts the
patterns in the pattern set, so its time complexity is linear [6].
Some designs can accelerate the process by tracking multiple
characters at once [7]–[9], but the hardware or space complexity
also increases with the number of characters under tracking.
Another approach moves a search window through the text to
check whether it contains a suspicious match or not [10]–[12].
Assuming most of the data is legitimate, this approach can
quickly exclude the legitimate data, and verifies only the sus-
picious matches. The window is generally advanced by only
one character at once for not missing any possible match.
Duplicating multiple copies of hardware engines can advance
the window faster, but the degree of parallelism is subject to
availability of hardware resources.

A class of algorithms can skip characters not in a match based
on algorithmic heuristics to inspect multiple characters at once
in effect, and have been widely implemented in practical soft-
ware [13]. This work borrows the idea of algorithmic heuris-
tics, instead of sheer relying on duplicating hardware engines or
high operating frequency. These algorithms are rarely realized
in hardware so far, perhaps due to the following two reasons.

1) Calculating algorithmic heuristics involves looking up a
large table, which may not fit in the embedded memory,
but accessing the table in the external memory is slow.

2) The worst-case performance of such algorithms may be
worse than that of linear-time algorithms.

Such algorithms are less resilient to some bad cases, such as
nonuniform character distribution that shortens the skipping dis-
tance and algorithmic attacks that attempt to exploit the worst
case. Despite the drawbacks, we believe sub-linear time algo-
rithms deserve the study since they are generally fast and do not
rely on massive hardware parallelism for their speed.

We propose an innovative architecture to realize a sub-linear
time algorithm, namely the bloom filter accelerated sub-linear

1063-8210/$26.00 © 2009 IEEE

LIN et al.: REALIZING A SUB-LINEAR TIME STRING-MATCHING ALGORITHM WITH A HARDWARE ACCELERATOR USING BLOOM FILTERS 1009

TABLE I
IMPORTANT NOTATIONS THROUGHOUT THIS PAPER

time (BFAST) algorithm. This architecture uses a set of Bloom
filters [14], each representing a group of strings in a space-effi-
cient bit vector for membership query. The algorithmic heuris-
tics are derived from simultaneous queries to the Bloom filters
to determine the shift distance of the search window. A suspi-
cious match is handed over to a verification engine for verifica-
tion without blocking the scan. Pipelining is also implemented
to further increase the throughput by four times. A heuristic sim-
ilar to the bad-character heuristic in the Boyer–Moore algorithm
[15], namely the bad-block heuristic, can reduce the verification
frequency and exploit larger shift values. A linear worst-case
time option is also proposed to guarantee the time complexity.

The rest of this paper is organized as follows. Section II re-
views typical string matching algorithms and hardware acceler-
ators. Section III presents the architecture of the BFAST algo-
rithm. Section IV presents the detailed hardware implementa-
tion. Section V evaluates this architecture and compares it with
existing works. Section VI concludes this work.

II. EXISTING WORKS AND LITERATURE BACKGROUND

A multiple-string matching algorithm searches the text
for occurrences of the patterns in a pattern set

on the same alphabet , where is the number
of patterns. We use to denote the shortest pattern length and
assume (number of values in a byte). Table I summa-
rizes the notations in this paper.

A. String Matching Algorithms

The Aho–Corasick (AC) algorithm [6] feeds a finite au-
tomaton that accepts the patterns in the pattern set with the
input characters one by one, so its time complexity is .
A match is claimed if one of the final states is reached. Such
automaton-based approaches, either deterministic finite au-
tomaton (DFA) or non-deterministic finite automaton (NFA),
are common due to their flexibility in representing the patterns
, and deterministic execution time for robustness to algorithmic
attacks. The transition table of an automaton is compressed to
reduce the memory requirement [16], [17]. Given the wide data
bus in modern architectures, tracking one character at a time is
inefficient. Several designs can determine the next state after
reading a block of characters to boost the performance [7], [8],
but they have two drawbacks: 1) compressing the transition
table may need tricky techniques, if feasible, as the table grows

with a large block and 2) because a signature may not start
from a block boundary, the match engine should be duplicated
several copies at the offset of one more character from the
block boundary [8].

The Boyer–Moore (BM) algorithm is the first that can skip
characters not in a match based on algorithmic heuristics [15],
which are illustrated in [18]. Among the heuristics of the BM
algorithm and its derivatives, we specifically mention the bad-
character heuristic for its relevance to our work. This heuristic
matches the characters backward from the suffix of the search
window one by one, until either a mismatched character is found
or the entire pattern is matched. If a mismatched character is
found, the heuristic looks up a table to decide the shift distance
of the window according to whether the character is in the pat-
tern or not, and its position. However, the heuristic will signifi-
cantly decrease the shift distance for a large pattern set due to the
high probability of a character appearing in one of the patterns.

The WM algorithm matches a block of characters instead of
a character to greatly reduce the chances that a block appears
in the patterns. The algorithm assumes equal pattern lengths.
If not, it considers only the first characters of each pattern
during preprocessing and scanning. The search window of
characters slides along the text during scanning according to the
heuristics: if the right-most block of characters in the search
window appears in none of the patterns, a window shift by a
maximum of characters is safe without missing any
match; otherwise, the shift value is , where the right-most
occurrence of the block in the patterns ends at position . If
the shift value is 0, i.e., the block is the suffix of some pat-
tern, the occurrence of a true match is verified. The algorithm
builds a shift table that keeps the shift values for indexing by
the right-most block. Different blocks may be mapped to the
same table entry, in which the minimum shift value of them is
filled. This mapping saves the table space at the cost of smaller
shift values. The worst performance of the WM algorithm may
be poor. For example, if a pattern is aaaaa and the text is all
a’s, the search window cannot skip any character. The time
complexity is because the verification takes in
every text position. Nonetheless, variants of the algorithm can be
found in popular software, such as ClamAV (www.clamav.net)
for anti-virus.

A Bloom filter compactly stores the patterns in a -bit
bit vector for membership queries [14]. For each pattern ,
the filter sets to 1 the bits addressed by the hash values

ranging from 0 to . When a
substring in the text is matched, a membership query looks
up the bits addressed by ’s hash values. If one of the bits is
unset, must not be in the pattern set; otherwise, verification
follows to see whether a true match occurs. The uncertainty
comes from different patterns setting checked bits. Properly
choosing and can control the false-positive rate.

B. Hardware Accelerators

String-matching hardware accelerators either hardwire the
patterns into logic cells on field-programmable gate array
(FPGA) or store them in memory. Updating the patterns in the
former may take hours to regenerate a bit-stream and a few
minutes to download it onto the chip. Partial reconfiguration

1010 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009

can reduce the cost [19]. Besides the reconfiguration cost, the
number of available gate counts limits the size of the pattern set.
Several examples use this approach. For example, four scanning
modules run in parallel to scan multiple packets concurrently
in [20], and the throughput is up to 1.184 Gb/s. Cho et al. de-
signed a pipelining architecture of discrete comparators [2]. A
pattern match unit involves four sets of four 8-bit comparators
to directly compare four consecutive characters in each stage.
The matching results from each stage are fed to the next in the
pipelining. The design was later enhanced by fully pipelining
the entire system [21], and the throughput can be up to 11 Gb/s
at 344 MHz, but its area cost is still high. Several following
studies were devoted to area reduction, such as [3].

Reconfiguration in memory-based accelerators involves only
updating the memory content, and the logics either remain in-
tact or experience only a slight change. The designs may uti-
lize an AC-style automaton [22]–[27], a filtering search window
[10]–[12], [28], or both [8]. Whatever approach they take, a
fundamental issue is that if the scanning proceeds by only one
character at once, it demands high operating frequency for high
speed. Some of them can advance several characters at once by
multiple parallel engines, but the available hardware resources
restrict the degree of parallelism.

III. BFAST ARCHITECTURE

A. Drawbacks of Using a Shift Table

The block size in the WM algorithm is critical to the perfor-
mance for a large pattern set. Given patterns, the verification
probability is , i.e., the probability that the
right-most block is a pattern suffix. Increasing can reduce the
probability, but also demands a larger shift table (e.g., en-
tries in an uncompressed table for). A block size larger
than three is impractical due to the huge table size. Mapping
multiple blocks to the same entry filled with the minimum shift
value of these blocks can compress the table, but the compres-
sion reduces the shift values and increases the verification fre-
quency [29].

The shift table keeps little information about the patterns but
the shift values. The information such as whether a block ap-
pears in a specific position or appears multiple times in the pat-
terns is lost, but the information is important to exploit larger
shift distance. Moreover, if a shift value is zero, nothing can be
done but moving the search window by one character after ver-
ification. We therefore abort using a shift table.

B. Deriving Shift Distance Using Bloom Filters

The BFAST algorithm enhances the heuristics from the WM
algorithm. Let denote a substring from the th char-
acter to the th character of . We define a function

if ,
otherwise.

(1)

The BFAST algorithm searches for patterns in during scan-
ning, where is the set of if , or the set of

otherwise. If any pattern in is found, whether a true
match in occurs is verified. Let be the rightmost block in
the search window. The heuristic for is described as follows.

Fig. 1. Blocks in the patterns are grouped for deriving the shift value from
querying Bloom filters in parallel. If a block is a member of some group � ,
�� �� � must report a hit. The priority encoder (PE) determines the shift value.

1) If neither appears in the patterns nor any suffix of
is a prefix of some pattern, the shift value is if ,
or otherwise.

2) If does not appear in the patterns, but it has a suffix
that is also the prefix of some pattern. Let be the longest
length of such a suffix. The shift value is if ,
or otherwise.1

3) is a substring of some pattern if , or a pattern is a
substring of . In the former, if the right-most occurrence
of ends at position of some pattern, the shift value is

. The bad-block heuristic depicted in Section III-C
then evaluates whether additional checks are worthwhile to
exploit a larger shift value. In the latter, a match is claimed
directly.

This heuristic considers not only but also its suffix so that the
maximum shift value can be rather than . Patterns
shorter than characters can be also handled.

The BFAST algorithm groups blocks in the patterns by their
positions, so we can derive the position of every block in the
search window by checking its membership in the groups. This
method retains more information than a shift table, so it can use
versatile heuristics. The shift value is derived by membership
queries to a set of parallel Bloom filters, each of which stores an
individual group.

Fig. 1 illustrates how to derive the shift value for in
a trivial example. The blocks in the pattern set
are grouped by position: is {efgh,mnop,vuts}, is
{defg,lmno,wvut}, and so on. Let denote the Bloom
filter storing . These Bloom filters are queried in parallel
for the membership of . Because cdef is a member
of , must report a hit. If no false positives occur
in or , the shift value is 2 according to the
aforementioned heuristic. If none of the Bloom filters report
a hit (i.e., neither appears in the patterns nor any suffix of

is the prefix of some pattern), the maximum shift of
characters is safe.

In general, when , the groups are defined by (2)
shown at the bottom of the next page. The queries check
in parallel whether is a member of and
whether the -character suffix of is a member of , for

1We noticed Liu et al. [30] had a similar observation, but their heuristic based
on the prefix rather than the suffix of the search window may skip over and over-
look a suspicious match.

LIN et al.: REALIZING A SUB-LINEAR TIME STRING-MATCHING ALGORITHM WITH A HARDWARE ACCELERATOR USING BLOOM FILTERS 1011

. Because and contain only one
or two characters, the Bloom filters of both are implemented
as directly mapped tables for simplicity. When , the
groups are defined by (3) shown at the bottom of the page.
The patterns in are further divided into , where

are patterns of characters. The queries check whether
each substring of characters in is in in parallel and
whether the -character suffix of is a member of .

More than one Bloom filter may report a hit if a block
makes multiple appearances in the patterns or false positives
occur. A priority encoder can arbitrate and determine the shift
value as follows. If at least one Bloom filter reports a hit,

reports a hit ; otherwise, . If no
false positives occur, is equal to that from the aforementioned
heuristic because the Bloom filters report the exact membership
of . Otherwise, the false positive reported from a Bloom
filter may make the shift shorter than it should be, but it is still
safe—no match will be missed.

C. Bad-Block Heuristic in the Search Window

In practice, some blocks may appear much more frequently
than the others. In the Windows executable files under our in-
vestigation, for example, the most frequent block “

” alone occupies 4.46% of the total blocks. If
the suffix of some happens to be a frequent block, the
verification will be also frequent, following immediately after a
hit in . A verification failure also tells nothing but shifts
the search window by only one character.

The BFAST algorithm avoids immediate verification by
checking additional blocks to exploit a
larger shift value if needed, where denotes the block that is
characters away from the last character backward in the search
window. A heuristic similar to the bad-character heuristic,
namely the bad-block heuristic, is described as follows.

1) Let be reports a hit and .
a) If , the shift value derived by checking is

, where is the smallest value in .
b) Otherwise, the shift value is . In (1), if

, more checks may be needed as described in the
following.

Theorem 1: The shift value derived here is safe.
Proof: Suppose a match occurs when the search window

is shifted by a shorter distance. This means that either or
a suffix of must be in one of the groups from to

(in the first rule) or from to (in the second rule), im-
plying that a Bloom filter between and or
between and will report a hit. This contra-
dicts either that is the smallest such that reports a hit
or that none of report a match for . Therefore, the
shift value will not miss a match. The heuristic in Section III-B
is a special case for .

Implementing the rules is simple. The priority encoder just
ignores the report from when is
checked. False positives in the Bloom filters may occur, but like
the query from , the shift is just shorter, but is still safe.

1) After has been checked, where , whether
should be checked next is evaluated based on the

cost of additional checks to exploit a larger shift value.
Let be the largest shift value derived since
was checked, and be the expected shift value when

is checked. The criterion

(4)

is evaluated (with integer division) to see if checking
is worthwhile. If the criterion is true, will be

checked next; otherwise, the search window will be moved
by characters.
The estimate of is precomputed for each ac-
cording to the analysis in Section III-F, and is
updated after each block is checked. Because every shift
value from to is safe, is surely safe. If every
Bloom filter from to reports a hit, a
match may occur, and the checks should go on. In this case,

because the shift values derived from to
are all zeros. The equation ensures the

checks will continue. Only the inequality on the left-hand
side is insufficient because might be zero
due to integer division, even if . The in-
equality may fail even though .

2) The verification procedure is invoked only if every
block from to gives rise to a hit in

, respectively. The verifica-
tion probability becomes only for , where

is the probability that reports a hit for . The
probability is normally low, particularly for long patterns
such as virus signatures.

if ,
if

(2)

if ,
if .

(3)

1012 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009

Fig. 2. Illustration of the bad-block heuristic.

Fig. 2 illustrates the bad-block heuristic with two trivial ex-
amples of only one pattern. In the upper example, we find MPLE
in , AMPL in , but XAMP is in . Then the shift distance
of characters is safe. In the lower example, because
neither XAMP nor its suffixes are in the groups from to ,
the shift distance can be characters.

D. Performance in the Worst Case

The worst time complexity is , when every block in
the search window must be queried after each shift by one char-
acter. Manipulating to the worst case is not always feasible in
practice. For example, an attacker knows a signature malicious
and generates a string nalicious in the search window to force
backward checks throughout the entire window. After the ver-
ification and the shift by one character, the right-most block in
the next window becomes ous , where . The next shift
distance will be at least characters according to the
heuristic in Section III-B. The manipulation fails, even though
a series of strings nalicious are in the text. Galil discussed the
general condition leading to the worst case in terms of the pe-
riodicity of a pattern [31]. Shortly put, properly specifying a
signature to avoid a short period (i.e., it is not a prefix of for

, where is a short string called a period) can reduce the
risk of an algorithmic attack, as demonstrated above.

Several methods can guarantee the linear worst-case time
complexity for a single fixed string or regular expression [31],
[32], but none of them can guarantee so for multiple strings
as far as we know. We thus suggest two alternatives to handle
this problem. First, the worst case of is easily detected
by calculating the average number of blocks that have been
checked in the last characters from the current text position,
say . (A block may be counted more than once if it is
revisited.) If the average is higher than a threshold, say ,
which is unusual in normal traffic, the available bandwidth of
that flow is constrained to avoid a possible algorithmic attack.
The approach has low cost, but may not work well when the
attacks are from multiple flows.

Second, the worst time complexity is resulted from revis-
iting the blocks in the text many times during scanning. In
Section V-A of [32], an approach of forward and backward
scanning can assure no blocks are revisited in either direction to
guarantee the linear time. This approach seems tantalizing, but
its space complexity exponential to the number of characters
in the patterns is prohibitively high for a large pattern set. We
propose to borrow its concept of forward and backward scan-
ning without revisiting in either direction, and use an assisting

Aho–Corasick automaton instead of its original data structure.
The procedure is described as follows.

1) The BFAST architecture searches the text until a suspicious
match is found. Let the first character of the search window
be the critical position.

2) The AC automaton tracks forward the characters from the
critical position until the end of the window. The tracking
will either: a) find the longest prefix of some pattern in the
window suffix or b) go back to the initial state of the au-
tomaton (if a failure occurs). In case a), if the entire window
is the pattern prefix, the tracking should be resumed beyond
the window until the entire pattern is matched or a failure
occurs somewhere. In both cases, the current automaton
state is recorded, and the current text position plus one be-
comes the new critical position.

3) The search window is aligned with the prefix found in step
2) (i.e., their first characters are aligned), or to begin at the
position where the failure occurs.

4) The BFAST architecture resumes its backward scanning in
the new window. Two possibilities may occur.

a) The backward scanning reaches the critical position
[see Fig. 3(a)]. The procedure then goes back to step
2), in which the AC automaton resumes forward scan-
ning from the critical position with the recorded state.

b) The backward scanning gets a shift value from the
heuristics before reaching the critical position, and the
search window is shifted accordingly [See Fig. 3(b)].
The AC automaton then tracks the overlapping part
of the new window and the last window. After the
tracking, the current automaton state is recorded,
and the current text position plus one becomes the
new critical position. The procedure then goes back
step 4).

Theorem 2: The procedure is correct, and its time complexity
is linear in the worst case.

Proof: Correctness. The search window is shifted ac-
cording to either forward scanning in Fig. 3(a) or bad-block
heuristics in Fig. 3(b). In the former, if a pattern starts within
the search window, its prefix must be in the window suffix, and
the AC tracking in step 2) will find it. After the search window
is shifted in step 3), the backward scanning in step 4) will reach
the critical position because the search window is now aligned
with the pattern. The AC tracking will be resumed from the
critical position and eventually match the entire pattern. The
shift thus will not miss a match. In the latter, we proved the
shift will not miss a match in Section III-C.

Linear time. In each shift, the forward scanning is resumed
either from or after the critical position where it is stopped last
time (see Fig. 3), so the scanning never revisits the blocks in the
text. Note that this algorithm looks for a non-overlapping match,
which is sufficient for most network security applications [33].
When a match is found, the forward scanning will not revisit
the blocks inside the match. Similarly, the backward scanning
traverses before or until reaching the critical point, which is be-
hind the end of the last window, so the backward scanning never
revisits the blocks in the last window. Since neither direction re-
visits the blocks in the text, the blocks are read at most times,
and the worst time complexity is .

LIN et al.: REALIZING A SUB-LINEAR TIME STRING-MATCHING ALGORITHM WITH A HARDWARE ACCELERATOR USING BLOOM FILTERS 1013

Fig. 3. Procedure to maintain the linear time performance.

Although the second alternative can guarantee linear worst-
case time and offer sub-linear time performance on average,
it has two overheads. First, it needs the space to store the AC
automaton for forward scanning. Second, it needs forwarding
scanning in each shift to exclude blocks from being revisited by
backward scanning, but the forward scanning is an overhead if
the backward scanning gets a shift value before reaching the crit-
ical position. This alternative will slow down the average perfor-
mance due to the overheads. We thus suggest it be used when the
linear time guarantee is a must. In this paper, we leave the second
alternative optional, and implement only the BFAST architec-
ture and the verification module to be introduced in Section IV.

E. Hash Functions and the Parameters in the Design

The hash functions in the Bloom filters are from a slight mod-
ification to a class of universal hash functions, namely the
class of functions. Let be a set of key
values in bits and be addresses of a bit
vector of bits. It is presented in [34] that the class has uni-
form mapping, meaning that the probability of a hash function
mapping a key to a specific position is . The implementa-
tion is also very simple.

Consider the block as a bit string of .
This work defines the hash function for the Bloom
filters by

(5)

where is an AND operator, is a bitwise XOR operator, and
is a random number ranging from 0 to . Each of the

hash functions in a Bloom filter chooses a different set of .

Fig. 4. False-positive rate with respect to � and the ratio of � � ���.

We add an extra term in this equation because if a block
contains all zeros, the hash functions will all map the block

to zero. Hence the false-positive rate will depend only on bit 0
of the bit vector, and the benefit of using hash functions will
be voided.

The modification keeps the uniform mapping of the class.
Let be a set of strings of bits. The hash function

, where

(6)

is a function in the class by definition, so the mapping to
is uniform. Since the key space of , i.e., , can be viewed as a
subset of , where is always 1, the mapping of is also
uniform.

Properly choosing and the ratio of can control the false-
positive rate of a Bloom filter, . Although set-
ting can minimize the probability to
[10], the hardware complexity and simultaneous memory ac-
cesses also increase with a large . Fig. 4 presents the false-pos-
itive rate with respect to and . Considering a good bal-
ance between the hardware complexity and the false-positive
rate, we arbitrarily choose and to be around 10 so
that is around 0.012, which is low enough in practice. If the
memory space is restricted, can be reduced at the cost of
higher false-positive rate.

If the block consists of only one or two characters, the prob-
ability that it is a pattern suffix is high, let alone the chances
of occurrence in other positions of the patterns. Therefore, the
Bloom filters are likely to report a hit, and the shift distance is
generally short. A larger block size can reduce the probability,
but it also complicates matching a pattern shorter than , as every
substring of the block should be matched against the patterns in

[See the discussion below (3)]. We arbitrarily choose
herein because it fits well on a 32-bit data bus and is a good bal-
ance. The probability is tiny for a block to appear in a specific
position of the patterns (or equivalently, a group), say around

for .

F. Analysis of the BFAST Algorithm

We consider the performance when the characters are uni-
formly distributed in the analysis. The probability that a block

1014 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009

is in a group is tiny, so the proba-
bility of a hit in a Bloom filter is approximately the false-pos-
itive rate . To simplify the analysis, we assume that an addi-
tional check for is performed only when reports
a hit for . The assumption will underestimate the shift value
because the bad-block heuristic is more aggressive, but it is suf-
ficient to show the time complexity of the BFAST algorithm.

Let denote the expected shift value for the shortest pat-
tern length , and denote the probability that the shift
value by querying from a single block is . can be recur-
sively derived by

for

for .
(7)

If , additional checks will determine the shift value; oth-
erwise, the search window is shifted by . We consider only the
case that for simplicity. The case that can be de-
rived similarly. is derived considering the following
three conditions.

1) is a factor of some pattern in . The shift value is de-
rived according to the position of the right-most occurrence
of , so

for (8)

2) is not a factor of any pattern in , but a suffix of is
the prefix of some pattern. Let the longest length of such a
suffix be

for (9)

where is the probability that reports no hit
from ’s suffix of characters, and

(10)

3) Neither is a factor of any pattern in nor its suffix is
a prefix of any pattern. In this case

(11)

If the false-positive rate is low enough, the probability in (8)
will be small, meaning most shifts can be at least . For
long patterns such that , the shift values are close to , so
the sub-linear time of can be expected for random text
and patterns. As mentioned earlier, the worst-case performance
is , but it is unusual in practice. One of the two options
we propose can ensure the linear time complexity in the worst
case.

Fig. 5. Overview of the modules in the BFAST architecture.

IV. IMPLEMENTATION DETAILS

A. Main Components in the BFAST Architecture

Fig. 5 presents the following three main components in the
BFAST architecture.

1) Scanning module reads the text into the buffer, selects the
block to query the Bloom filters, shifts the search window
according to the querying results, and requests for verifi-
cation of a suspicious match.

2) Verification interface receives a verification job packed in
a descriptor and fills an entry in the job queue.

3) Verification module reads a job from the queue and per-
forms the verification.

The sub-modules in the scanning module are described as
follows.

• Text buffer. The text buffer on the embedded memory
loads the text from the external memory in batch. Two
buffers are in the system to hide the latency in text transfer.
While one buffer is being scanned, the other is loaded with
the next batch of text. Because a pattern in may span
two contiguous batches, the last characters in the
last batch are prepended to the current batch in the buffer.
Therefore, a pattern will not be missed if this case occurs.

• Bloom filters plus priority encoder. Parallel queries to the
Bloom filters mean simultaneous access to the memory. In
our prototype system of Xilinx XC2VP30 are 136 dual-
port 18 kb memory blocks that can be accessed indepen-
dently [35]. Fig. 6 illustrates the layout of the memory
blocks to support multiple Bloom filters. Each memory
block is configured as a 16 k bit vector. The dual-port ar-
chitecture can support simultaneously accessing two hash
values, so two sets of memory blocks to simultaneously
access hash values in a Bloom filter. The priority
encoder determines the shift value according to the reports
from the Bloom filters and evaluates whether more checks
should be done. Fig. 6 skips the detail of the logics for in-
ferring the shift distance for simplicity.

• Text position controller. The text position controller keeps
the position of the search window and the block for the

LIN et al.: REALIZING A SUB-LINEAR TIME STRING-MATCHING ALGORITHM WITH A HARDWARE ACCELERATOR USING BLOOM FILTERS 1015

Fig. 6. Layout of memory block to support multiple Bloom filters and the pri-
ority encoder.

queries according to the feedback from the Bloom filters
and the current matching status.

A non-blocking interface is located between the scanning
module and the verification module. The scanning module can
offload verification and move on the scanning without blocking
when finding a suspicious match. This approach parallelizes the
scanning and the verification to better utilize the hardware com-
ponents. The detail of the verification module is left unspecified
as long as it can the match in real time.

Our implementation in the verification module is an An-
chored-AC algorithm that groups the patterns having the same
prefix of length into an individual trie. The prefixes serve
as the keys to store these tries in a hash table. When the
scanning module identifies a suspicious match, it instructs the
job dispatcher to enter a verification job descriptor, including
the starting position of the search window in the text, i.e.,
the anchor, and the window text into the job queue. If the
verification module is available for the non-empty queue, it
fetches a job to verify a match. The module then traverses the
trie(s) indexed by the window to identify a true match. If the
option to guarantee the linear worst-case time is implemented,
the verification module should be modified to work with the
scanning module as described in Section III-D.

B. Pipelining Design

The process of deriving the shift value and moving the search
window is divided into four phases for pipelining: text position
controlling (TP), block reading (BR), computing hash functions
(HA), and bit vector reading (BV). The text buffer is also log-
ically divided into four segments. Assume the buffer length is
, where is a multiple of 4. The four segments are located in

the ranges of , , ,
and . Every pair of two contiguous segments
overlap slightly to avoid missing a pattern in the boundary of
the two segments. The overlapping part of characters
can ensure the patterns in must completely fall inside a seg-
ment. Fig. 7 illustrates the pipelining operation for
and . The text position controller initializes the starting
positions to the th character of the four segments
in the beginning. The next position of the search window or the
next block to be queried in the first segment is derived in the

Fig. 7. Comparison of the operation without and with pipelining for � � ����

and � � ��. The four phases are text position controlling (TP), block reading
(BR), computing hash functions (HA), and bit vector reading (BV). � and �
denote the shift values of the first two segments.

fifth cycle, that in the second segment in the sixth cycle, and so
on.

V. EXPERIMENTAL RESULTS AND COMPARISONS

This work conducts a behavior simulation in C to estimate the
performance, and runs a timing simulation in HDL to estimate
the clock rate.

A. Simulation in C

The C simulation of the BFAST architecture was performed
in four cases: 1) random patterns and text; 2) random patterns
and text in Windows executable files; 3) patterns in ClamAV and
random text; and 4) patterns in ClamAV and text in Windows ex-
ecutable files. The Windows executable files come from typical
Windows applications without viruses. Because most practical
files are clean and a virus signature is much shorter than the
total file sizes even if it is present, using uninfected files is suf-
ficient to estimate the performance. The ratio of is set to 8
because it is close to the good compromise of 10 discussed in
Section III-E. Both and are 2 to the power of some integer.

1) Performance for Various Number of Patterns: Fig. 8
presents the average shift values for various numbers of pat-
terns. The values in the first three cases are all above 8, and
decrease only slightly for a large pattern set because the blocks
in the text are unlikely to appear in the patterns in the random
cases. The values in the fourth case are degraded significantly
for more than 10 000 patterns. A deep observation reveals that
the blocks near or in the suffix of the patterns in happen to
include the block “ ”, which is frequent
in some executable files. The shift values derived without the
bad-block heuristic is also compared. In this case, the values
start to drop significantly for more than 1000 patterns because

1016 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009

Fig. 8. Average shift values for various number of patterns in four cases. An
asterisk after the “Real text” denotes the shift values are derived without the
bad-block heuristic.

Fig. 9. Average number of characters per checked block for various number of
patterns in four cases.

the search window can advance only one character after a
verification failure without the heuristic.

Deciding a shift value may need to check more than one
block. Let be the average shift value and be the average
number of checked blocks to derive . The performance is esti-
mated by , which is the average number of characters
per checked block. Fig. 9 examines the values in the above
cases. In the first three cases, the values are close to those
in Fig. 8, meaning checking only one block can derive most
shift values. In the fourth case, the values are degraded with
increasing number of patterns. For example, 1.57 blocks are
checked on average to derive a shift value for , so
effectively 5.03 characters are inspected in parallel.

Another concern is the verification frequency. In the first
three cases, we did not find even a verification in our experi-
ment. After all, the probability that all the blocks in the search
window are in their corresponding groups (e.g., the right-most
block in) is tiny for . In the fourth case, Table II
lists the average number of characters that have been scanned
to meet a verification for various numbers of patterns. When

, for example, the verification module has a margin of
around 110 cycles (given 5.03 characters inspected in parallel
effectively) to verify a match without blocking.

2) Impact of the Length of the Bloom Filters: Fig. 10 com-
pares the shift values for various lengths of bit vectors in the
Bloom filters. Because the first three cases perform quite sim-
ilarly, we consider only random patterns and text. The ratio of

is the best compromise between the efficiency and the

TABLE II
AVERAGE NUMBER OF SCANNED CHARACTERS TO MEET A VERIFICATION FOR

VARIOUS NUMBERS OF PATTERNS IN THE FOURTH CASE

Fig. 10. Average shift values for various lengths of bit vectors in the Bloom
filters, where ��� � �, 8, 16, and 32.

memory space. This result coincides with the theoretical estima-
tion in Section III-E. Raising the ratio up to 16 and 32 helps little
to the performance, but increases the required memory space.
Reducing the ratio to 4 leads to noticeable degradation. This
observation justifies the choice of .

Except and that are stored for direct indexing
and demand 65 536 and 256 bits, respectively, each of the other
groups contain substrings of the patterns. Let . The
total memory space required is

(12)

For example, if and , the memory space in
the Bloom filters are only around 86 kB, which can be easily
accommodated in the embedded memory on a typical FPGA.
The tries in the Anchored-AC algorithm are compressed in the
fashion similar to that in [17]. They take 0.94 MB for 10 000
patterns, and had better be stored in the external memory.

B. HDL Simulation Result

The Xilinx XCVP30 FPGA on which the architecture is im-
plemented has 136 dual-port embedded memory blocks, each of
which can be configured as a 16 384-bit long bit vector. A set
of two memory blocks work together to support 4 hash func-
tions in a Bloom filter. Given , each set of memory
blocks can store pattern blocks in a
group. If , 8 Bloom filters store the groups from
to , and two more bit vectors of 65 536 bits and 256 bits
store and . In other words, a set of 4096 patterns takes

LIN et al.: REALIZING A SUB-LINEAR TIME STRING-MATCHING ALGORITHM WITH A HARDWARE ACCELERATOR USING BLOOM FILTERS 1017

TABLE III
COMPARISONS BETWEEN THE BFAST AND OTHER ARCHITECTURES

memory blocks for the groups from to , and
memory blocks for and

.
It is suggested that a BFAST scanning module handles around

10 000 patterns to keep high efficiency, so we allocate
memory blocks to store patterns since

12 288 is close to 10 000. We allocate 64 memory blocks to the
two text buffers, each of which takes 64 kB. The data struc-
ture in the verification module is stored in the external memory
to avoid the restriction in memory space. A larger pattern set
can be split into several subsets of 12 288 patterns, and multiple
BFAST scanning modules, each responsible for a subset, can
scan in parallel for the match. The strategy is feasible given a
large FPGA, say Xilinx XC2VP100, which has 444 embedded
memory blocks [35].

The system can operate at 150 MHz. The design utilizes 7560
logic cells, which amount to 24% of the available logic cells on
the XC2VP30 FPGA. Given an average of 4.7 characters in-
spected effectively in parallel for 12 288 patterns (see Fig. 9),
the throughput of the scanning module is up to
5.64 Gb/s. If the signatures are properly specified, as discussed
in Section III-D, the worst-case throughput is
1.2 Gb/s. It is suggested that long signatures of at least 15 char-
acters be used in virus-scanning applications to avoid false pos-
itives [36]. In that case, the throughput could be higher because
more characters are inspected per checked block for the long
signatures.

C. Comparisons With Other Works

We categorize existing designs into filtering-based and
automata-based architectures. Table III summarizes their
characteristics. Due to the limited table space, we leave the
comparisons with some designs only in the text, but do not list
them all in the table.

1) Compared With Filtering-Based Architectures: A fil-
tering-based architecture maps a search window in the text

using hash functions (including Bloom filters) to exclude the
characters not in a match and verify only suspicious matches.
In [10] and [37], inspecting positions in parallel needs sets
of Bloom filters, where the pattern lengths range
from to . Because the lengths may range from a few
characters to hundreds, implementing so many Bloom filters
is impractical. Splitting a long string into substrings of char-
acters and seeking the partial matches can solve the problem
[38], but the number of Bloom filters is still
(e.g., 96 Bloom filters for in [38]). is constrained
by reading so many strings from the text simultaneously for
parallel queries. The throughput is only around 2 Gb/s with
four parallel engines. The design also requires more logic cells
than the BFAST architecture.

Dharmapurikar and Lockwood combine Bloom filters with an
NFA representing the patterns2 [8], and use the pairs of
as keys to index a hash table for the next states and failure links,
where denotes the current state and denotes a string of at
most characters. Tracking the NFA by characters at once in-
volves looking for the longest match of the next characters in
the table. The design assumes real matches are rare and Bloom
filters can exclude unsuccessful searches. Because a match may
fall across a -character boundary, state machines are de-
ployed, each of which starts at the offset of one more character
from the beginning of the text. Generally, inspecting charac-
ters in parallel requires Bloom filters, and characters are
read from the text buffer simultaneously because each state ma-
chine reads characters at once. The number of Bloom filters
and the characters read in parallel will grow fast as increases,
while in the BFAST architecture, the number of Bloom filters is
linear to the number of characters effectively inspected in par-
allel and only characters are read in each iteration. The
design uses similar amount of memory to ours, even though only
around 2000 patterns are inside.

2The method is a combination of finite automata and filtering. We arbitrarily
discuss it in the filtering-based category.

1018 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009

Papadopoulos and Pnevmatikatos [11] use cyclic redundancy
check (CRC) functions generated from the patterns as the hash
functions. A replicated structure is in charge of each pattern
length. Splitting long patterns into several short ones and
reusing structures for the short patterns can reduce the number
of structures. This strategy may be rather complex for a pattern
set of many long patterns, such as that in ClamAV. Sourdis et
al. [12] select a unique substring from each pattern, and extract
only necessary bits from the substrings that can distinguish
themselves from others. The bits in the text are mapped with a
perfect hash function for information of a pattern. The perfect
hash functions exist by grouping the patterns so that each
pattern has unique bits to distinguish itself from the others
in the same group. This design avoids the problem with long
patterns, but the hash trees should be replicated as many copies
as the number of groups. Both designs can filter two characters
at once, but the replicated structures increase with the number
of characters. The required logic cells for filtering only two
characters at once are more than or slightly fewer than those
of the BFAST architecture, let alone more characters at once.
An ASIC implementation also could be a problem, as the hash
functions cannot be reconfigured with updated patterns.

The Trie Bitmap Content Analyzer (TriBiCa) that builds a
trie structure to identify whether a window of characters be-
long to a set or not [28]. TriBiCa features member identifica-
tion that can indicate the matched member if the window is in
the set, so the verification becomes trivial when a suspicious
match is found. Because the window advances only one char-
acter at once, a single matching engine achieves the throughput
of 2.5 Gb/s at 300 MHz. Four engines should work in parallel
can achieve 10-Gb/s throughput. The Snort signature set in this
design takes around 540 kb of memory.

2) Compared With Automata-Based Architectures: We com-
pare the BFAST architecture with the automata-based architec-
tures in terms of the solutions to inspecting multiple characters
at once. Tan and Sherwood [22] split an automaton into several
small ones in the bit level. Because the number of transitions
is greatly reduced with one or a few input bits, expanding the
automata to track multiple characters at once is facilitated. For
example, at most 16 transitions are from a state in an one-bit au-
tomaton when four input characters are read. This design is not
scalable to a large pattern set. Due to the length of state encoding
and the partial match vector, the patterns must be partitioned
into rule modules, each of which needs circuit overhead such
as decoders and multiplexers. Even though we use their sug-
gested values to minimize the memory space, i.e., 16 patterns
and 4 state machines per rule module, and 8 bits in state en-
coding, accommodating 12 288 patterns needs totally 768 rule
modules, meaning that the input characters will be simultane-
ously fed to so many modules. The total memory requirement
becomes 4.6 MB in their calculation method. When charac-
ters are tracked at once, the number of next state pointers in a
rule module will be exponential to . The rule modules should
be also duplicated copies for each character offset in the block
of characters. The overall cost is therefore prohibitively high
for large .

Sugawara et al. [7] proposed a compact data structure of the
transition table for tracking multiple characters at once with

hardware assistance. Their observation is that only a subset of
-character blocks and their suffixes suffice to determine the

next states after characters. However, the number of different
blocks and their suffixes still increases significantly for large
in a large pattern set, making the scalability a problem. They
tested the design on three rather small pattern sets of at most
180 patterns, and the table size is nearly 600 kb for only 180
patterns with , let alone a much larger pattern set.

Tseng et al. [24]–[27] build root-index tables to derive the
next state after several characters from the root state, and pre-
hashing tables to find a failure in the other states that leads to
the root state. However, it has two limitations in scalability.

1) Concatenating the addresses in the root-index tables may
lead to a long address to index the next table. For example,
if each index table takes 8 bits to encode the characters
in a given position, tracking four characters needs a 32-bit
address (from four index tables), meaning 4G entries in the
next table.

2) A failure in the tracking is unlikely to go back to the root
state for a large pattern set, since the input character leading
to a failure is likely to be the first character of some pattern,
and the state transition should go to the next state from the
root state according to the input character.

Therefore, the benefit of tracking multiple characters from the
root state diminishes.

The work of Lunteren [23] features high efficiency in storage
by compressing the AC automaton in a B-FSM data structure,
which contains transition rules for fast lookup, given the cur-
rent state and input character. Running from 100 to 125 MHz, a
single B-FSM that reads only one input character for each state
transition can achieve from 0.8 to 1 Gb/s. The design relies on
aggregating the processing rate from multiple data structures of
transition rules.

3) Linear Time vs. Sub-Linear Time: We do not intend to
compare with all of existing architectures over the years, but
discuss the pros and cons of realizing a sub-linear time algo-
rithm in hardware. The longer the patterns, the longer the dis-
tance that the search window can slide in a sub-linear time algo-
rithm, while the cost of a long shift distance is low. The antivirus
applications typically have long patterns [36], so they could be
a good target application. In applications such as Snort, the pat-
terns may be as short as only one character. The BFAST ar-
chitecture can still work for short patterns, but its performance
is not optimal. This is a general weakness of a sub-linear time
algorithm, which cannot skip longer than the shortest pattern
length without inspection, or it may miss a match. However, a
very short pattern has its own pitfall. An obvious problem is
that false positives are likely to occur. Although verifying the
context information in the rules can reduce the number of false
positives, an attacker can infuse the short patterns in the text to
force frequent verification. Therefore, we believe such perfor-
mance degradation is common for existing designs, and should
be addressed in research beyond string matching.

Another often criticized weakness is the worst-case per-
formance. An attacker can exploit the weakness with an
algorithmic attack. Although it is possible to implement a
design that normally performs in sub-linear time and keeps
in linear time in the worst case, as we have demonstrated

LIN et al.: REALIZING A SUB-LINEAR TIME STRING-MATCHING ALGORITHM WITH A HARDWARE ACCELERATOR USING BLOOM FILTERS 1019

in Section III-D, the design has additional overheads. Re-
ducing the overheads deserves future study. In comparison, a
linear-time algorithm can guarantee the worst performance,
but at the cost of replicated hardware components for parallel
matching and thus higher limitation in scalability. There is
a tradeoff between scalability and the need of deterministic
performance. For most ordinary traffic, BFAST has an edge
over other architectures. Unlike most of existing designs aiming
at 2000 3000 patterns in Snort, BFAST can support more
than 10 000 patterns in a single engine. In summary, we believe
such sub-linear time algorithms in hardware is promising, just
like those in some software packages.

VI. CONCLUSION AND FUTURE WORK

This work designs the BFAST architecture using Bloom fil-
ters to realize a sub-linear time algorithm in hardware. It can in-
spect multiple characters at once in effect based on algorithmic
heuristics to boost the throughput up to 5.64 Gb/s for more than
10 000 virus signatures, while the worst throughput is 1.2 Gb/s
with properly specified signatures. The architecture needs only

Bloom filters and reads a block of only characters
from the text per iteration, and features low hardware cost and
memory usage for high throughput. Although a method to guar-
antee linear worst-case time complexity is proposed, a more
lightweight solution to reduce the overheads deserves further
study in the future.

An increasing number of signatures are represented in regular
expressions. This architecture can support regular expressions
by filtering the text with necessary substrings in the regular ex-
pressions. The presence of a regular expression is verified only if
the substrings in it are all found. This filtration-then-verification
method is common in open-source packages such as Snort and
ClamAV. Supporting regular-expression matching all in hard-
ware is the next work we will pursue.

REFERENCES

[1] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings.
Cambridge, U.K.: Cambridge Univ. Press, 2002.

[2] Y. H. Cho, S. Navab, and W. H. Mangione-Smith, “Specialized hard-
ware for deep network packet filtering,” in Proc. 12th Int. Conf. Field
Program. Logic Appl. (FPL), La Grand Motte, France, Sep. 2002, pp.
452–461.

[3] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for efficient and
high-speed NIDS pattern matching,” in Proc. 12th Ann. IEEE Symp.
Field-Program. Custom Comput. Mach. (FCCM), Napa Valley, CA,
Apr. 2004, pp. 258–267.

[4] M. Aldwairi, T. Conte, and P. Franzon, “Configurable string matching
hardware for speeding up intrusion detection,” ACM SIGARCH
Comput. Arch. News, vol. 33, no. 1, pp. 99–107, Mar. 2005.

[5] Z. K. Baker and V. K. Prasanna, “A computationally efficient engine
for flexible intrusion detection,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 13, no. 11, pp. 1179–1189, Oct. 2005.

[6] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol. 18, no. 6, pp. 333–343, Jun.
1975.

[7] Y. Sugawara, M. Inaba, and K. Hiraki, “Over 10 Gbps string matching
mechanism for multi-stream packet scanning systems,” in Proc. 14th
Int. Conf. Field Program. Logic Appl. (FPL), Antwerp, Belgium, Sep.
2004, pp. 484–493.

[8] S. Dharmapurikar and J. W. Lockwood, “Fast and scalable pattern
matching for content filtering,” in Proc. Symp. Arch. for Netw.
Commun. Syst. (ANCS), Princeton, NJ, Oct. 2005, pp. 183–192.

[9] B. C. Brodie, R. K. Cytron, and D. E. Taylor, “A scalable architec-
ture for high-throughput regular-expression pattern matching,” in Proc.
33rd Int. Symp. Comput. Arch. (ISCA), Boston, MA, Jul. 2006, pp.
191–202.

[10] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. W. Lockwood,
“Deep packet inspection using parallel bloom filters,” IEEE Micro, vol.
24, no. 1, pp. 52–61, Jan. 2004.

[11] G. Papadopoulos and D. Pnevmatikatos, “������� � 	
	�� �

��� ����, exact pattern matching,” in Proc. 15th Int. Conf. Field Pro-
gram. Logic Appl. (FPL), Tampere, Finland, Aug. 2005, pp. 39–44.

[12] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis, “A recon-
figurable perfect-hashing scheme for packet inspection,” in Proc. 15th
Int. Conf. Field Program. Logic Appl. (FPL), Tampere, Finland, Aug.
2005, pp. 644–647.

[13] P.-C. Lin, Li Z.-X, Y.-D. Lin, Y.-C. Lai, and F. C. Lin, “Profiling and
accelerating string matching algorithms in three network content secu-
rity applications,” IEEE Commun. Surveys Tutorials, vol. 8, no. 2, pp.
24–36, 2nd Quarter 2006.

[14] B. H. Bloom, “Space/time tradeoffs in hash coding with allowable er-
rors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[15] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Commun. ACM, vol. 20, no. 10, pp. 762–772, Oct. 1977.

[16] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion detection,”
in Proc. 23th IEEE Infocom Conf., Hong Kong, China, Mar. 2004, pp.
333–340.

[17] M. Norton, “Optimizing pattern matching for intrusion detec-
tion,” Sourcefire, Inc., Columbia, MD, 2004. [Online]. Available:
http://www.snort.org/docs

[18] T. Lecroq, “Illustrations of the Boyer-Moore Algorithm,” Univ.
Rouen, Mont-Saint-Aignan, France, 1997. [Online]. Available:
http://www-igm.univ-mlv.fr/~lecroq/string/node14.html

[19] Xilinx Inc., San Jose, CA, “Two flows for partial reconfiguration:
Module based and difference based,” 2004.

[20] J. Moscola, J. W. Lockwood, R. Loui, and M. Pachos, “Implementation
of a content-scanning module for an internet firewall,” in Proc. IEEE
Symp. Field-Program. Custom Comput. Mach. (FCCM), Napa Valley,
CA, Apr. 2003, pp. 31–38.

[21] I. Sourdis and D. Pnevmatikatos, “Fast, large-scale string match for a
10 Gbps FPGA-based network intrusion detection system,” in Proc.
13th Int. Conf. Field Program. Logic Appl. (FPL), Lisbon, Portugal,
Sep. 2003, pp. 880–889.

[22] L. Tan and T. Sherwood, “Architectures for bit-split string scanning
in intrusion detection,” IEEE Micro, vol. 26, no. 1, pp. 110–117, Jan.
2006.

[23] J. van Lunteren, “High-performance pattern-matching for intrusion de-
tection,” presented at the 25th IEEE Infocom Conf., Barcelona, Spain,
Apr. 2006.

[24] K.-K. Tseng, Y.-C. Lai, T.-H. Lee, and Y.-D. Lin, “A fast scalable au-
tomaton matching accelerator for embedded content processors,” ACM
Trans. Embedded Comput. Syst., accepted for publication.

[25] Y.-D. Lin, K.-K. Tseng, T.-H. Lee, C.-C. Hung, and Y.-C. Lai, “A
platform-based soc design and implementation of scalable automaton
matching for deep packet inspection,” J. Syst. Arch., vol. 53, no. 12, pp.
937–950, Dec. 2007.

[26] Y.-D. Lin, K.-K. Tseng, C.-C. Hung, and Y.-C. Lai, “Scalable au-
tomaton matching for high-speed deep content inspection,” presented
at the 21th IEEE Adv. Inf. Netw. Appl. (AINA), Niagara Falls, Canada,
May 2007.

[27] K.-K. Tseng, Y.-D. Lin, T.-H. Lee, and Y.-C. Lai, “A parallel
automaton string matching with pre-hashing and root-indexing tech-
niques for content filtering coprocessor,” presented at the 16th IEEE
Int. Conf. Appl.-Specific Syst., Arch., Process. (ASAP), Samos,
Greece, 2005.

[28] N. S. Artan and H. J. Chao, “Tribica: Trie bitmap content analyzer for
high-speed network intrusion detection,” presented at the 26th IEEE
Infocom Conf., Anchorage, AL, May 2007.

[29] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,”
Dept. Comput. Sci., Univ. Arizona, Tempe, Tech. Rep. TR94-17, 1994.

[30] R.-T. Liu, N.-F. Huang, C.-H. Chen, and C.-N. Kao, “A fast pattern-
match engine for network processor-based network intrusion detection
system,” in Proc. Inf. Technol.: Coding Comput. (ITCC), Las Vegas,
NV, Apr. 2004, pp. 97–101.

[31] Z. Galil, “On improving the worst case running time of the Boyer-
Moore string matching algorithm,” Commun. ACM, vol. 22, no. 9, pp.
505–508, Sep. 1979.

1020 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009

[32] G. Navarro and M. Raffinot, “New techniques for regular expression
searching,” Algorithmica, vol. 41, no. 2, pp. 89–116, Nov. 2004.

[33] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and
memory-efficient regular expression matching for deep packet inspec-
tion,” in Proc. ACM/IEEE Symp. Arch. Netw. Commun. Syst. (ANCS),
San Jose, CA, Dec. 2006, pp. 93–102.

[34] M. V. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient hardware
hashing functions for high performance computers,” IEEE Trans.
Comput., vol. 46, no. 12, pp. 1378–1381, Dec. 1997.

[35] Xilinx Inc., San Jose, CA, “Virtex-II Pro and Virtex-II Pro X Platform
FPGAs: Complete data sheet,” 2005.

[36] J. O. Kaphart and W. C. Arnold, “Automatic extraction of computer
virus signatures,” in Proc. 4th Virus Bulletin Int. Conf., Abingdon, Eng-
land, Sep. 1994, pp. 178–184.

[37] M. Attig, S. Dharmapurikar, and J. Lockwood, “Implementation results
of bloom filters for string matching,” in Proc. 12th Annu. IEEE Symp.
Field-Program. Custom Comput. Mach. (FCCM), Napa Valley, CA,
Apr. 2004.

[38] H. Song and J. W. Lockwood, “Multi-pattern signature matching for
hardware network intrusion detection systems,” presented at the 48th
IEEE Globecom Conf., St. Louis, MO, Nov. 2005.

[39] Y. H. Cho and W. H. MangioneSmith, “A pattern matching copro-
cessor for network security,” in Proc. ACM/IEEE Des. Autom. Conf.
(DAC), Anaheim, CA, Jun. 2005, pp. 234–239.

Po-Ching Lin (M’05) received the B.S. degree in
computer and information education from National
Taiwan Normal University, Taipei, Taiwan, in 1995,
and the M.S. and Ph.D. degrees in computer science
from National Chiao Tung University, Hsinchu,
Taiwan, in 2001 and 2008, respectively.

His research interests include content networking,
algorithm designing and embedded hardware soft-
ware codesign.

Ying-Dar Lin (SM’06) received the B.S. degree in
computer science and information engineering from
National Taiwan University, Taipei, Taiwan, in 1988,
and the M.S. and Ph.D. degrees in computer science
from the University of California, Los Angeles
(UCLA), in 1990 and 1993, respectively.

He joined the faculty of the Department of Com-
puter and Information Science, National Chiao Tung
University (NCTU), Hsinchu, Taiwan, in August
1993 and has been a Professor since 1999. He was
the director of the Institute of Network Engineering

during 2005–2007. He is also the founder and director of Network Bench-
marking Lab (NBL), cohosted by Industrial Technology Research Institute
(ITRI) and NCTU since 2002, which reviews the functionality, performance,
conformance, and interoperability of networking products ranging from
switch, router, WLAN, to network and content security, and VoIP. In 2002, he
cofounded L7 Networks Inc., which addresses the content networking markets
with the technologies of deep packet inspection. At NCTU, he currently
directs, or codirects, Computer and Network Center (2007), NBL (2002),
Realtek-NCTU Joint Lab (2006), and D-Link NCTU Joint Lab (2007). His re-
search interests include design, analysis, implementation, and benchmarking of
network protocols and algorithms, wire-speed switching and routing, quality of
services, deep packet inspection, network processors and SoCs, and embedded
hardware software codesign. From 2008, he is on the editorial board of IEEE
Communications Magazine and IEEE Communications Surveys and Tutorials.
He was on the program committee of ICCCN’07 and a program cochair of
International Computer Symposium’07.

Yuan-Cheng Lai received the B.S. degree and the
M.S. degree in computer science and information en-
gineering from National Taiwan University, Taipei,
Taiwan, in 1988 and 1990, and the Ph.D. degree from
computer and information science, National Chiao
Tung University, Hsinchu, Taiwan, in 1997.

He joined the faculty of National Cheng-Kung
University, Tainan, Taiwan in 1998. He is an cur-
rently an Associate Professor with the Department
of Information Management, National Taiwan Uni-
versity of Science and Technology, Taipei, Taiwan.

His research interests include high-speed networking, wireless network and
network performance evaluation, and Internet applications.

Yi-Jun Zheng received the B.S. and M.S. degrees in
computer science from National Chiao Tung Univer-
sity, Hsinchu, Taiwan, in 2004 and 2006.

Her research interests include network security and
content networking.

Tsern-Huei Lee (S’86–M’87–SM’98) received
the B.S. degree from National Taiwan University,
Taipei, Taiwan, the M.S. degree from University
of California, Santa Barbara, and the Ph.D. degree
from the University of Southern California, Los
Angeles, in 1981, 1983, and 1987, respectively, all
in electrical engineering.

Since 1987, he has been a member of the faculty
of National Chiao Tung University, Hsinchu, Taiwan,
where he is a Professor with the Department of Com-
munication Engineering.

Dr. Lee was a recipient of an Outstanding Paper Award from Institute of
Chinese Engineers in 1991. During the past years, he served as consultant of
various companies to develop large scale QoS-enabled frame-based switches/
routers, integrated access devices, and unified threat management Internet appli-
ances. His current research interests are in communication protocols, broadband
switching systems, traffic management, wireless communications, and network
security.

