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以 FPGA 為基礎之車輛側向模糊控制系統設計

與實現 

 
 
研究生: 林宜甲                   指導教授: 李祖添 博士  

 

國立交通大學電機與控制工程系 碩士班 

摘要 

   本篇論文是以 FPGA 為基礎設計車輛側向控制器，並整合周邊電路與感測器以完成

車輛側向控制系統之實現。我們所設計的控制器分成兩個部分: PD 控制器與模糊控制

器。PD 控制器乃是控制方向盤的轉動，使其能夠依照模糊控制器所給定的命令(包含了

方向以及角度)動作。而模糊控制器乃是以車輛側向偏移率作為我們的控制目標。車輛

側向偏移率同時受到車速以及方向盤轉角的影響。此外在轉角感測器方面，使用控制區

域網路傳輸資料，可以快速且準確的得知方向盤轉角的資訊。而為了實現 FPGA 與控制

區域網路之間資料的傳輸，我們亦完成了一組單晶片系統以進行設定傳輸參數與資料收

發的動作。實驗結果顯示，在低速行駛下，藉由控制器對方向盤轉角提供修正角度，車

輛側向偏移率確實能夠到達我們的要求。 
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ABSTRACT 

   A vehicle lateral controller, which integrates peripheral circuits and sensors to accomplish 

the implementation, is designed on FPGA. The controller consists of two parts: a PD 

controller and a fuzzy logic controller. The PD controller is to control the rotations of the 

steering wheel in according to the commands which contain the directions and angles from 

the fuzzy logic controller. The fuzzy logic controller controls the yaw rate as the target. Yaw 

rate is affected by speed and steering angles. Besides, we use a CAN-BUS based sensor to 

transmit data so that we can obtain the information of steering angle fast and precisely. In 

addition, a 8951 single chip is employed to set the parameters for transmission and reception 

of data. The experimental results indicate that the controller modulates the steering angles so 

that the yaw rate can reach the required values at low speed. 
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Chapter 1  
Introduction 

1.1 Overview   

   In advanced vehicle control system, steering control plays an important role. It should take 

appropriate actions in according to the inputs such as speed, yaw rate and steering angle. The 

reason why we choose FPGA to be the experimental platform is that FPGA can be 

implemented for real-time applications. 

   To implement real-time control, we also need sensitive sensors for measuring steering 

angle and yaw rate. We usually do some modification of steering angle while driving so that 

the steering angle sensor would be effective and precise enough to transmit data.  

   Lateral velocity and yaw rate are the central in lateral control systems [1]. In this thesis, 

we consider the relationship between yaw rate and the steering actuator. The basic 

architecture we use for the lateral control system is composed of a fuzzy logic controller, a 

steering actuator and a vehicle for our experiment [2]. The input of the system is the desired 

path and the output is the real path. The steering actuator is treated as a subsystem of a lateral 

control system, it contains a motor, driving circuits and the steering wheel. 

    Steer-by-wire system [3] has big advantages of packaging flexibility, advanced vehicle 

control system and superior performance. Steer-by-wire system has no mechanical linkage 

between the steering gear and the steering column. It’s possible to control the steering wheel 

and the front-wheels independently [6, 7]. 

  The fuzzy logic controller (FLC) for lateral control has been proposed in [4, 5]. The 

parameters of FLC are tuned manually according to human experience in driving. The FLC 

deals the useful information, such as yaw rate, and then sends commands to the steering 

actuator. In this thesis, FLC receives the feedback data of yaw rate, calculates the error and 

error rate, determines what actions the steering actuator should take, and then transmits the 
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commands to the actuator. Hence, the output from the actuator will change with the yaw rates 

and the steering angles [8].  

   In addition to the actuator and the controller, the CAN-BUS (Controller Area Network 

BUS) based sensor for measuring steering angles is important. In order to receive the data 

from this sensor we use several devices such as 8951, CAN-BUS stand-alone controller, and a 

transceiver [8-12] for implementation. 

      

1.2 Organization of the thesis   

   Decoding the data through CAN-BUS is the first important part of this work because it 

can transmit a lot of data in a short period of time. The details of CAN BUS and other 

peripheral circuits will be mentioned in Chapter 2. 

   The next important step is controller design. After studying previous literatures, we know 

that it is necessary to control the steering angle first and then to determine the method to 

control the yaw rates. In the first step, we will use PD controller which can modulate both the 

speed and directions of steering. And then, we choose fuzzy logic for yaw rate control. Details 

will be discussed in Chapter 3. 

  How to implement the system is described in Chapter 4. In previous literatures [15, 19-24], 

there are some ways for implementation. For convenience, we will use sequential circuits to 

do the work in FLC step by step. 

  After designing the system, we must test and verify it in our experimental car. The results 

will be shown in Chapter 5. 

  In Chapter 6, conclusions and future researches will be addressed. 
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Chapter 2  
Peripheral Circuits  

  The steering control system is composed of a motor, a motor’s driver, two sensors (steering 

angle sensor and yaw rate sensor), and 8951 subsystem for CAN-BUS steering angle 

decoding [8]. The external input is pre-defined yaw rate, which is the reference command 

used for controlling the steering behavior. The steering angle and yaw rate are the feedback 

data we obtained by the two sensors. The motor is controlled with three control signals and 

the steering wheel is its load. In order to control the motor, the controller transmits three 

signals to motor’s driver with the feedback data. As the steering wheel is turning, we can get 

the steering angle and yaw rate immediately and reduce the difference between the output and 

our target. 

  The steering controller, implemented by FPGA development board, receives the sensor’s 

data as the feedback. The 8951 subsystem is composed of a 89C51, a stand-alone CAN-BUS 

controller (SJA1000) [10] and a transceiver (PCA82C251) [11]. They convert the CAN-BUS 

signal to 16-bit value and transmit it to the controller with communication to the FPGA board. 

The A/D converter transfers the analog data to digital ones as the feedback to the controller. 

We use the steering angle sensor and gyro to obtain the steering wheel angle and yaw rate of 

the experimental car. 
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2.1 Introduction to CAN-BUS protocol 

 

Figure 2-1 Layer’s architecture  

 

Figure 2-2 CAN’s physical structure [10] 

  CAN defines a physical layer and data link layers as shown in Figure 2-1 [9]. Physical 

layer includes the definition of transmission medium and logic level. In general, CAN 

network uses two signals named CANH and CANL to access the information, and the 

terminals should be two 120Ω resistors shown in Figure 2-2. 

  Since it transmits data by two serial streams, the definition of logic level is different .It can 

be expressed as the binary values, 1/0. 

  Binary ‘1’ is called recessive bit (CANH= CANL=2.5V) and binary ‘0’ is called dominant 

bit (CANH=3.5V; CANL=1.5V). Since the binary value is presented with the difference, bit 

level = (CANH+δ)-(CANL+δ), it has good capability of EMI noise rejection.  

  Data link layers define the format, message filter, bit rate and arbitration. Here is some brief 

introduction of CAN’s characteristics.  
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Data frame: 

 
Figure 2-3 Data frame format 

As shown in Figure 2-3, arbitration field includes CAN’s ID (ex. the steering angle sensor 

is 0C0) and RTR bit. Every message has an identifier, which is unique within the whole 

network since it defines content and also the priority of the message. The identifier with the 

lowest binary number has the highest priority. 

Arbitration: 

Whenever the bus is free, any node may start to transmit a message. If two or more nodes 

start transmitting messages at the same time, the bus access conflict is resolved by bit-wise 

arbitration using the identifier. The mechanism of arbitration guarantees that neither 

information nor time is lost. All nodes with lower priorities do not re-attempt transmission 

until the bus is available again. 

2.2 8951 subsystem [9-11] 

  In order to receive the CAN BUS signal and covert it to 16-bit data, 8951 system is 

composed of a transceiver (PCA82C251), a stand alone controller (SJA1000), and a 89C51. 

2.2.1 Transceiver 

  Transceiver is the interface between stand-alone controller and the physical layers of CAN 

network which converts CANH and CANL from physical layers to serial stream signals as the 

input of the stand–alone controller. So the host controller must access the data via the 
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transceiver.  

  Figure 2-4 shows the transceiver’s pins and its internal blocks. The most important ones are 

CANH (Pin 7), CANL (Pin 6) and RXD (Pin 4). Because we use it only for receiving data, 

only these three pins should connect to the stand alone controller. The receiver’s comparator 

converts the differential bus signal to a logic level signal which is the output at RXD. The 

serial receive data stream is provided to the bus protocol controller for decoding.   

 Figure 2-5 [9] shows the bus state: When CANH and CANL are both 2.5V, the bus is 

recessive (logic‘1’). When CANH is 3.5V and CANL is 1.5V respectively, the bus is 

dominant (logic‘0’).         

 

Figure 2-4 CAN Transceiver 

 

Figure 2-5 CAN BUS state 
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2.2.2 Stand-alone controller and 89C51 

 

Figure 2-6 Block diagram of SJA1000 

Figure 2-6 shows the block diagram of SJA1000 [10]. The CAN Core Block controls the 

transmission and reception of CAN frames according to the CAN. 

The Interface Management Logic block performs a link to the external host controller 

which can be a microcontroller or any other device. Every register access SJA1000 

multiplexed address/data bus and controlling of the read/write strobes is handled in this unit. 

When receiving a message, the CAN Core Block converts the serial bit stream into parallel 

data for the Acceptance Filter. With this programmable filter, SJA1000 decides which 

messages actually are received by the host controller. 

All received messages accepted by the acceptance filter are stored within a Receive FIFO. 

Depending on the mode of operation and the data length up to 32 messages can be stored. 

Figure 2-7 shows the 8951 subsystem circuit [10]. Port 0 of 8951(address/data bus) is used 

to communicate with the stand alone controller SJA1000. We can set the register value in 

SJA1000 via this address/data bus. Since 8951 treats SJA1000 as the external memory, the 

address/data bus should cooperate with /RD and /WR signals.  

To set the register value, we should notice the mode of SJA1000 (reset mode or operation 

mode), this will be mentioned later. 
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Figure 2-7 8951 subsystem 

Pin 11 of SJA1000: select the host controller family with Intel or Motorola mode.  

Intel mode: Mode=high 

Motorola mode: Mode=low 

   The SJA1000 can operate with an on-chip oscillator or with external clock sources. 

Additionally CLK OUT (Pin 7) can be enabled to output the clock frequency for the host 

controller. 

 

2.2.3 Set the registers of SJA1000 

When power on (SJA1000 is reset mode), we can set the registers: 

(a) Acceptance code. (b) Acceptance mask 

They can set the acceptance filter. The received data is compared bitwise with the value 

contained in the Acceptance Code register (ACR). The Acceptance Mask Register (AMR) 

defines the bit positions, which are relevant for the comparison (0 = relevant, 1 = not relevant). 

For accepting a message, all relevant received bits have to match the respective bits in ACR. 

In other words, if we set the AMR as “11111111”, all identifiers can be accepted.  
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Figure 2-8 An example of acceptance filter 

Figure 2-8 explains how the acceptance filter works. 

 The registers shown below are set in reset mode. 

(1) Bus-timing registers (2) Output control register (3) Command register   

When Pin 17 is low, SJA1000 enters operation mode. It starts receiving data and 

transmitting the 16-bit value to host controller. Figure 2-9 shows the flow diagram of data 

reception [10, 12]. 

  The host controller reads the Status Register of the SJA1000 on a regular basis, checking if 

the Receive Buffer Status flag (RBS) indicates that at least one message has been received. 

The Receive Buffer Status flag indicates “empty” means no message has been received. The 

host controller continues with the current task until a new request for checking the Receive 

Buffer Status is generated. The Receive Buffer Status flag indicates “full” denotes one or 

more messages have been received.  

 

Figure 2-9 Flow diagram of reception of a message [10,12] 
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Figure 2-10 Timing diagram of transmit data to controller 

  Tx2 is a control signal generated by host controller. At its negative edge, host controller 

transmits high-8 bits steering angle data from Port 1. At its positive edge, host controller 

transmits low-8 bits steering angle data from Port 1. 

 

2.3 Steering angle sensor  

This sensor transmits signed 16-bit data (range:-7800~7800) and its identifier is 0C0 (hex), 

so the acceptance code of SJA1000 is 0C0 (“00001100000”). 

The sensor is Basic-CAN (CAN 2.0A) mode since it has 11-bit identifier. 

Table 2-1 Information of steering angle sensor 

Value in the message 

(hex) 

Value in the message 

(decimal) 

Angle value in° remark 

E188 -7800 -780° Negative limit angle 

range 

1E78 7800 780° Positive limit angle 

range 

7FFF 32768 3276.8° invalid 
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Figure 2-11 Steering angle sensor 

It is put around the steering wheel. When the steering wheel is turning, the sensor is also 

turning and measuring the steering angle. Figure 2-11 shows the steering angle sensor which 

mainly uses 4 pins: (1) GND, (2) +12V, (3) CANH, (4) CANL. 

 

2.4 Sketch of the yaw rate sensing system 

 

Figure 2-12 Yaw rate sensor 
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   Figure 2-12 shows the yaw rate sensor. The red wire is connected to +5V, the green wire is 

connected to GND and the white one is connected to output. It should be fixed to sense the 

yaw rate of the vehicle. 

 

Figure 2-13 Peripheral circuits of yaw rate sensor 

 

 

 
Figure 2-14 Comparison 
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Figure 2-13 shows yaw rate sensor peripheral circuits. Two OP amplifiers form a low pass 

filter. Since the signal from yaw rate sensor is easily disturbed by high frequency noises, the 

filter can reduce them. The output of low pass filter is treated as the input of ADC0804. 

Figure 2-14 shows the results with and without low pass filter. The upper signal is processed 

by low pass filter and the lower one is the original signal from yaw rate sensor.  

  ADC0804 converts the analog sensor output to 8-bit digital input of FPGA, the pins /CS 

and /RD are tied at ground, and /WR control signal is fed by FPGA. At negative edge of 

/INTR, FPGA receives data from Pin 11 to Pin 18.  

 

2.5 Actuator 

  Figure 2-15 is the block diagram of actuator which is composed of a motor, motor’s driving 

circuit and the steering wheel. This can implement the concept of steering by wire technique. 

The steering wheel is the load of motor, which is driven by the motor.  

Figure 2-16 shows the motor with its driving circuit and the steering wheel, there are 

several pins used for control. The most important is the switch which is directly operated by 

users so that the motor rotates if we press the switch. 

 

Figure 2-15 Block diagrams of actuator 
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Figure 2-16 The Actuator 

Our plant (motor) is associated with its driving circuit. In order to control the motor, we 

should transmit control signals to this driving circuit such as pulses. There are several 

methods to control the motor, the one we choose is to control rotation speed and rotation 

directions.    

Figure 2-17 shows the control signals of motor, which include the pulses and direction 

control signals. The higher frequency makes the steering wheel rotate faster. Sign 1 and sign 0 

control the direction of rotation. But the frequency should be in the range of [0, 20khz]. High 

frequency may cause the motor damage. 

 

Figure 2-17 Control signals of motor 
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Chapter 3 
 Design of Vehicle Lateral Control Systems 

  Figure 3-1 describes the block diagram of proposed lateral control system. The FLC 

decides the desired steering angle. The inputs of FLC are error of yaw rate and the change of 

error. The output is treated as the command of the PD controller. It can not only reduce the 

difference between the actual steering angle and the desired one but also tune the speed of 

rotation. The desired yaw rate is predefined with the fixed path (ex: circle-path, s-path, etc.), 

at the low speed (ex: 20 km/h). The device “dSPACE” used to record the yaw rate.  

 

Figure 3-1 The block diagram of proposed lateral control system 

3.1 PD controller 

 

Figure 3-2 PD controller 
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Figure 3-2 shows the PD controller [13], where kp is proportional gain and kd is derivative 

gain. As mentioned in Chapter 2, the direction and speed are two most important behaviors 

we should consider. 

 First, we make the motor rotate in positive direction if the error is positive. (i.e. actual angle 

< desired angle ) and vise versa.  

 Second, we make the motor rotate smoothly. In general, human rotates the steering wheel 

faster when the change of steering angle is larger. P control can implement this action. We 

must notice that the change of rotation speed should not be too large since the steering wheel 

will not rotate smoothly. In other words, D control produces little regulation to make the 

speed not too fast. When the error is positive, the regulation is negative. Otherwise, when the 

error is negative, the regulation is positive. It can improve the transient performance. For the 

whole system, the PD controller can be viewed as time delay since it just affects the yaw rate 

by means of controlling the steering wheel. And it ensures the steering angle is identical to the 

output of FLC. 

 

3.2 Introduction to FLC 

 

Figure 3-3 Basic architecture of FLC 
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 As shown in Figure 3-3, FLC is composed of four important parts [14]. 

(1) Fuzzifier: a fuzzifier performs the function of fuzzification which is a subjective 

valuation to transform measurement data into valuation of a subjective value. 

Hence, it can be defined as a mapping from an observed input space to labels 

of fuzzy sets in a specified input universe of discourse. 

            Ex: 

               NB (negative big); NM (negative medium); NS (negative small); 

               ZE (zero) 

               PB (positive big) ; PM (positive medium); PS (positive small). 

(2) Fuzzy rule base: fuzzy control rules are characterized by a collection of fuzzy IF-THEN 

rules in which the preconditions and consequents involve linguistic variables. 

The general form of fuzzy control rules in the case of 

multi-input-single-output systems (MISO) is: 

            Ri: IF x is A, AND y is B THEN z=C                           (3.1) 

            i =1,2,3,…,n 

            where x, y and z are linguistic variables representing the process state 

variables and the control variables, respectively. A, B and C are the linguistic 

values of the linguistic variables x, y, and z in the universe of discourse U, V 

and W, respectively. 

(3) Inference engine: this is the kernel of the FLC in modeling human decision making 

within the conceptual framework of fuzzy logic and approximate reasoning. 

This is an example:  

IF x is A, THEN y is B. 

x is A1. 

Conclusion => y is B1. 

Fuzzy relation: A  B. 
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There are four operations usually used: 

a. Max-min operation. 

b. Max product operation. 

c. Max bounded product operation. 

d. Max drastic product operation. 

(4) Defuzzifier: it is a mapping from a space of fuzzy control actions defined over an output 

universe of discourse into a space of nonfuzzy (crisp) control actions. This 

process is necessary because in many practical applications crisp control 

actions is required to actuate the control. There is no systematic procedure for 

choosing a defuzzification strategy. Two common used methods of 

defuzzification are the center of area (COA) method and the mean of 

maximum (MOM) method. 

                             ZCOA = 1
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3.3 Fuzzification 

   Equations (3.4) and (3.5) are definitions of error and change of error for yaw rates. 

                          e (k)=r(k)-y(k)                               (3.4)          

( )e k∆ = e(k) – e(k-1) ,                           (3.5) 

  where ( )r k is pre-defined yaw rate data, ( )y k  is the actual data feedback via yaw rate 

sensor and ( )e k  is the error. 

   Because we get the feedback data via 8-bit A/D (ADC0804), the original yaw rate is in the 

range [0,255]. Where 0(“00000000”) represents -100°/s and 255(“11111111”) represents 

+100°/s.  
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Figure 3-4 Fuzzification. 

 In our experiments, we don’t turn the steering wheel to extreme angles (i.e. too positive or 

too negative angles.) because we don’t drive the cars like this. So the error and change of 

error won’t be too large. (-100°/s~+100°/s)    

  First, the inputs e(k) and ( )e k∆  must be normalized into the range [0,255] for 

convenience. If e(k) or ( )e k∆  is positive, it will be normalized into the range [128,255], and 

if e(k) or ( )e k∆  is negative, it will be normalized into the range [0,127]. Figure 3-4 is the 

diagram of fuzzification. 

 

3.4 Rule base 

In Section 3.3, the inputs e(k) and ( )e k∆  both have 7 linguistic variables {NB, NM, NS, ZE, 

PS, PM, PB}. There are 49 rules. Let u(k) be output linguistic variable. 

Rule (1): IF e(k) is PB and ( )e k∆  is NB THEN u(k) is ZE. 

. 

Rule (25): IF e(k) is ZE and ( )e k∆  is ZE THEN u(k) is ZE. 

. 

. 

Rule (49): IF e(k) is NB and ( )e k∆  is PB THEN u(k) is ZE. 

  These rules can be represented with a look-up table and listed in Table 3-1. 
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Table 3-1 Look-up table 

 

3.5 Inference engine 

   The method we use is singleton mechanism which is modified from max-min operation. 

Figure 3-5 shows singleton inference mechanism which is similar to max-min operation [15]. 

It is more convenient to store the centers of all triangles with lower membership values of min 

product so that it can reduce the complexity when defuzzyfing. 

 

 

Figure 3-5 Singleton inference mechanism 
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3.6 Defuzzification 

  The output of fuzzy inference is a linguistic value. For control, we need to transfer it to a 

crisp value which is treated as a command of motor-steering wheel system. In our 

experiments, this crisp value must be mapped to the desired steering angle as shown in Figure 

3-6. 

   Use (3.2), we can derive the center of gravity so that the linguistic output of FLC can be 

obtained.  

   In Section 3.5, we use singleton of inference mechanism to reduce the complexity in 

defuzzyfication. It is more convenient since the modified mechanism uses less point than 

max-min operation to calculate the crisp output. Also, it saves operation time when the 

implementation is done with FPGA. 

 

Figure 3-6 Relationship between FLC output and motor-steering wheel desired angle 
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Chapter 4 
Implementation of Vehicle Lateral Control Systems  

    FPGA (Field Programmable Gate Array) is the kernel of the system because of its speed 

of process and flexibility. We must write the functions with VHDL and then download them to 

the development board. If we will change the contents of the functions, we only re-write and 

download the new functions again after compiling. 

    In Figure 4-1, ALTERA Stratix EP1S25 DSP development board is included with the 

DSP Development Kit, Stratix Edition. This board is a powerful development platform for 

digital signal processing designs, which features the Stratix EP1S25 device in the fastest 

speed grade 780-pin package. And we use Quartus4.0 as software for testing functions, 

downloading configurations to board and simulation.  

 

 

 

Figure 4-1 Stratix development board. (EP1S25F780) 
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In FPGA, logic ‘1’ is 3.3V and logic ‘0’ is 0V. 

When connecting the I/O pins to external circuit (ex. 8951), we must adhere to the voltage 

restrictions. Specifically, the I/O pins are not 5V tolerant and should not be directly connected 

to logic powered from a 5V supply. 

 

4.1 8951 subsystem 

  Besides CAN stand-alone controller (SJA1000), transceiver (PCA82C250) and the steering 

angle sensor, it is important that 8951 communicates with FPGA. It is impossible to decode 

the data or control the vehicle without communication. 

  Hence, Port 1 (Port 0, and some pins such as /WR, /RD, are used for communication with 

CAN stand-alone controller) and some other pins of 8951 are used for communication with 

FPGA, the role they play is transmitting control signals and sensing data.  

 

 

 

Figure 4-2 Communication with FPGA 
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  As shown in Figure 4-2, 8951 communicates to FPGA with 10 pins. (Port 1, P3.1, P3.5 ) 

Port 1 is treated as data bus which is controlled by control signal tx2. It must transmit 8-bit 

data twice since the sensing data is 16-bit. The high 8-bit data is transmitted when tx2 is at 

negative edge and the low 8-bit data is transmitted when tx2 is at positive edge. Finally, 

another control signal “start” requests FPGA to convert the original 16-bit data to signed 

decimal angle value when it is at positive edge. 

  Figure 4-3 shows these control signals and their waveforms. The upper one is “start” and 

the other is “tx2”. It is important that “start” signal activates after 8951 finishes transmitting 

data (i.e. FPGA finishes receiving data). In other words, “start” enables when “tx2” is high in 

order to avoid transmitting transient values. It takes about 3.5ms to transmit 16-bit data and 

FPGA converts the data every 7ms. 

 

Figure 4-3 Control signals 
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Figure 4-4 Block diagram for converting angle value 

    Figure 4-4 shows the block diagram of FPGA for decoding sensing data of steering angle. 

FPGA stores the 16-bit data after receiving 8-bit data twice and converting it to signed 

decimal value. Finally, FPGA shows the results with three 7-segment LEDs. Another LED 

shows the sign of data, it illuminates when the value is negative. 

 

4.2 Communication with yaw rate sensor 

    As mentioned in Chapter 2, FPGA should obtain yaw rate data through A/D (ADC0804) , 

the reason is not only receiving data but also transmitting control signal to ADC0804’s /WR 

pin. As the result, ADC0804’s pin /INTR transmits signal to FPGA. ADC0804 finishes 

converting analog data to digital data when /INTR=’0’. So we set FPGA to receive data from 

yaw rate sensor at /INTR’s negative edge. It is important that the frequency of /WR must be 

less than 10MHZ. 

  Figure 4-5 shows the relationship between /INTR and /WR. For the purpose of control, we 

let ADC0804 transmit data every 0.13s. 
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Figure 4-5 /WR and /INTR 

  After receiving sensing data from yaw rate sensor, FPGA determines the degree of yaw rate 

and shows the result in several LEDs which illuminate when yaw rate reaches some values 

such as +10° or -10° ,etc. At the same time, FPGA calculates the error of yaw rate and the 

change of error which will be treated as the inputs of FLC. 

 

4.3 Implementation of PD controller [16, 17] 

   This controller is used for controlling the motor which drives our steering wheel. It 

controls not only the directions but also the speed of rotation. 

Figure 4-6 shows the block diagram of FPGA for implementation of a PD controller. The 

most important part is “control block” which contains several control signals playing 

important roles. PD parameters, kp and kd, are labeled pgain and dgain, respectively. 
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Figure 4-6 Block diagram of a PD controller in FPGA 

 

 

Figure 4-7 Timing diagram of control block 
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As Figure 4-6 shows, the reference angle is the stream “target” which comes from FLC 

or from user when testing. The stream “ch” is feedback data through steering angle sensor. 

The stream cerr1 is the difference with previous error and new error.  

   The control block generates signals tem1, sub1, load1 and mul1 with input signals of clk 

and start from 8951.When signal “start” activates, the PD controller gets reference input and 

actual angle output in order to calculate error and change of error. The register nxt loads err1 

at tem1’s positive edge; the register cer1 loads nxt-pre (change of error) at sub1’s positive 

edge; the register pre loads last nxt at load1’s positive edge. Finally, when mul1 is at positive 

edge, the multiplier enables so that it uses pgain and dgain to obtain pd as (4.1). 

pd= ( pgain*err1) + ( dgain*cerr1).                     (4.1) 

  where pgain is kp of the PD controller, dgain is kd of the PD controller, err1 is the error of 

rotation angle and cerr1 is the change of error. The first bit of the stream pd (it has 17 bits) 

indicates the sign of direction and the others indicate the absolute values of speed.      

Table 4-1 Directions of rotation 

pd(16)=’0’   (positive) Left (direction of rotation) 

pd(16)=’1’   (negative) Right (direction of rotation ) 

 

  As Table 4-1 shows, the steering wheel will turn left if the sign (the first) bit is’0’ and turn 

right if it is ‘1’. Table 4-2 indicates the relationship between speed and the absolute value of 

the stream pd. The output frequency becomes large when the absolute value of pd in (4.1) is 

increased but the output frequency is zero when the absolute value of pd is very small. At this 

time, the motor doesn’t rotate and the steering angle holds at fixed value. Since the range of 

frequency (motor’s input) is less than 20KHZ, we set the frequency less than 19.53KHZ. The 

frequency is determined by division factor, which depends on the range of the absolute value 

of pd. And the base frequency is 39.06KHZ generated in FPGA. 
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Table 4-2 Speed of rotation 

pd(15 downto 0) Division factor Output frequency 

(speed) 

>800 2 19.53KHZ 

600~800 4 9.77KHZ 

400~600 6 6.51KHZ 

200~400 8 3.91KHZ 

100~200 12 3.26KHZ 

40~100 20 1.95KHZ 

10~40 26 1.5KHZ 

0~10 -- 0 

   

  For example, if sign bit of pd is ‘1’ and the absolute value of pd is 500, then the direction is 

right and division factor is 6, the output frequency (input of driver) is 39.06 / 6 = 6.51 KHZ.   

 

4.4 Implementation of FLC [16, 17] 

  The basic architecture of the FLC contains fuzzifier unit, inference unit, deffuzifier unit and 

control unit. 

  The specifications of proposed FLC are listed below: 

(1) 2 inputs (error of yaw rate, change of error.) and 1 output. 

(2) Universe of discourse is 8-bit (0~255). 

(3) Membership values are 3-bit (0~7).   

(4) Each universe of discourse is divided into seven subsets: NB (negative big), NM 

(negative medium), NS (negative small), ZE (zero), PS (positive small), PM (positive 

medium), and PB (positive big). 
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(5) Overlapping = 2. 

(6) There are 49 fuzzy rules. 

(7) The membership functions are stored in ROM. 

 

4.4.1 Design of fuzzifier unit 

   The main work of fuzzifier unit is converting the crisp input values to corresponding 

membership functions and determining activation rules, their membership values and the 

center of output membership functions. 

   We use two ROMs to store these data, the crisp input value are directly treated as the 

address of ROMs so that it is convenient to accomplish fuzzification. 

   Figure 4-8 illustrates how the fuzzifier unit stores the input vales as fuzzy set. As 

mentioned in Chapter 3, the two inputs e and ce are normalized to the range [0,255] (8-bit), 

and there are 7 membership functions and the overlapping =2. 

   The input membership functions are divided into 6 orders (000~101) in according to the 

overlapping. And each order has two parts: high and low (low has non-increasing slopes and 

high has non-decreasing slopes in each order), which represent the membership values 

belong to two adjacent membership functions. Tables 4-3 to 4-5 illustrate how the above data 

will be stored. 
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Figure 4-8 Input membership functions 

 

Table 4-3 Storage of inputs e and ce (order) 

Order 000 001 010 011 100 101 

Address(input) 0~101 102~114 115~126 127~139 140~151 152~255

 

Table 4-4 Storage of inputs e and ce (low) 

Stored 
data(low) 

  111 110 101 100 011 010 001 000 

Address 
(input) 

0~70 71~74 75~78 79~82 83~87 88~92 93~97 98~ 
101 

Address 
(input) 

102~ 
103 

104~ 
105 

106~ 
107 

108~ 
109 

110 111~ 
112 

113~ 
114 

-- 

Address 
(input) 

115~ 
116 

117~ 
118 

119~ 
120 

121~ 
22 

123 124~ 
125 

126 -- 

Address 
(input) 

127~ 
128 

129~ 
130 

131~ 
132 

133~ 
134 

135 136~ 
137 

138~ 
139 

-- 

Address 
(input) 

140~ 
141 

142~ 
143 

144~ 
145 

146 147~ 
148 

149 150~ 
151 

-- 

Address 
(input) 

152~ 
154 

155~ 
159 

160~ 
164 

165~ 
168 

169~ 
172 

173~ 
176 

177~ 
181 

182~ 
255 
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Table 4-5 Storage of input e and ce (high) 

 

Notice that high and low only have the values “000” or “111” when the order is “000” or 

“101”, because in these orders, the values are more positive or negative than those in the 

other orders, the weight (high or low) can take extreme values (“000”). 

   Figures 4-9 and 4-10 indicate the block diagrams of fuzzification units for two inputs, e 

and ce , respectively. Each fuzzification unit is composed of multiplexers, ROMs, and control 

units. 

 

Figure 4-9 Fuzzification unit for input e 

Stored 
data 
(high) 

000 001 010 011 100 101 110 111 

Address 
(input) 0~70 71~74 75~78 79~82 83~87 88~92 93~97 98~101

Address 
(input) -- 102~ 

103 
104~ 
105 

106~ 
107 

108~ 
109 110 111~ 

112 
113~ 
114 

Address 
(input) -- 115~ 

116 
117~ 
118 

119~ 
120 

121~ 
122 123 124~ 

125 126 

Address 
(input) -- 127~ 

128 
129~ 
130 

131~ 
132 

133~ 
134 135 136~ 

137 
138~ 
139 

Address 
(input) -- 140~ 

141 
142~ 
143 

144~ 
145 146 147~ 

148 149 150~ 
151 

Address 
(input) 

152~
154 

155~ 
159 

160~ 
164 

165~ 
168 

169~ 
172 

173~ 
176 

177~ 
181 

182~ 
255 
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Figure 4-10 Fuzzification unit for input ce 

    The control unit generates a control signal for each multiplexer and it selects e or ce as 

the address bus of ROM. At the same time, control unit sends a trigger signal to ROM for 

reading data. The data read from ROM consists of “order”, “high” and “low”. “Order” 

generates “order_1” with an increment circuit. 

    Hence, “order” and “order_1” represent the activated membership functions. And the two 

values, “high” and “low” represent membership values in “order” and “order_1”, respectively. 

These data are prepared for inference.     

 

4.4.2 Design of inference unit  

   Table 4-6 illustrates the output gravities (8-bit). The first 3 bits of address come from 

order1 or order1_1 and the others come from order2 or order2_1.  

 It is output gravities that the inference unit only stores since we use the method of 

singleton mechanism. And each gravity value needs 8 bits for storage, so it takes 49*8=392 

bits of ROM for these data. 
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Table 4-6 Gravities of inference 

Gravity 00000010 00000111 00001100 00010010 00011000 00011110 00100100

Address 000000 000001 000010 000011 000100 000101 000110 

Gravity 00011010 00110000 00110110 00111100 01000010 01001000 01010001

Address 001000 001001 001010 001011 001100 001101 001110 

Gravity 01011010 01100001 01101001 01101111 01110101 01110111 01111001

Address 010000 010001 010010 010011 010100 010101 010110 

Gravity 01111011 01111101 01111111 10000000 10000001 10000010 10000100

Address 011000 011001 011010 011011 011100 011101 011110 

Gravity 10000110 10001000 10001010 10010000 10010110 10011100 10100010

Address 100000 100001 100010 100011 100100 100101 100110 

Gravity 10101001 10110000 10111000 11000011 11001001 11001111 11010101

Address 101000 101001 101010 101011 101100 101101 101110 

Gravity 11011100 11100001 11100111 11101100 11110010 11111000 11111101

Address 110000 110001 110010 110011 110100 110101 110110 

 

 

Figure 4-11 Inference unit 
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   Inference unit is shown in Figure 4-11. The inputs of the multiplexers are order1, order1_1, 

order2, and order2_1 (all of them are 3-bit) which generates four addresses since the 

controller is two inputs and overlapping =2 (a maximum of 4 rules can be activated at any 

time.). The gravities will be stored in ROM and the output gravity (gi) will be send to 

defuzzifier unit. 

   At the same time, the other multiplexer selects corresponding “low” and “high” value. The 

next step is to find the minimum membership (or fire strength, fi.) between the two 

antecedents of each active rule and the rule consequent. The minimum circuit compares the 

antecedents of each active rule and outputs the minimum membership value whereas 

linguistic labels of the antecedents address the position in the rule memory storing the 

corresponding consequent for each rule. A ROM enable signal, clk_2, from the control unit, 

enables the ROM. The selections of multiplexers are controlled by the 2-bit signal (s1 and s0) 

as shown in Table 4-7. 

Table 4-7 The combinations of inference output 

S1 S0 Address MIN 

0 0 order1&order2 low1 & low2 

0 1 order1&order2_1 low1 & high2 

1 0 order1_1&order2 high1 & low2 

1 1 order1_1&order2-1 high1 & high2 

 

4.4.3 Design of defuzzification unit 

   Defuzzification unit processes the outputs of inference unit, output gravities and fire 

strength in order to generate a crisp output value u (command). There are at most 4 active 

rules since the system has two inputs and one output. And the method for defuzzification is 

“center of gravity” which is derived from center of area (COA) and singleton inference 

mechanism since the output of inference is gravity instead of area. 
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    Figure 4-12 is the block diagram of fuzzy mean module for defuzzification. The inputs, 

gi (output gravity) and fi (fire strength) are both from inference unit. This module uses an 

accumulator which accumulates the numerator by adding the new product with the previous 

product. Another accumulator adds the fire strength of antecedents with the new fire strength 

as the denominator of (4.2). 

Each accumulator is composed of an adder and a register, and the signal “ld” controls the 

actions of accumulation. After accumulating four times, another signal “div” enables the 

divider to operate with its inputs, numerator and denominator. Finally, we can get the crisp 

output value u. 

 

Figure 4-12 Defuzzification unit 
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4.4.4 Design of control unit 

   This unit is a sequential circuit which generates control signals. Figure 4-13 is the timing 

diagram of these signals producted by Quartus4.0 software. The inputs are clock signal (clk) 

and reset signal (rst); the outputs are control signals such as clk_1, clk_2, ld, div, and s.  

  

 

Figure 4-13 Simulation of control unit 

4.4.5 Lookup table for fuzzy output 

   In order to transform the output of FLC to reference angle for controlling steering wheel, 

we use a lookup table. 

   The yaw rate becomes “positive large” when the steering wheel is turned right, but the 

steering angle becomes “negative large” at the same time. Hence, the sign of these sensors are 

different so that it is necessary to build a lookup table to overcome this problem. 

    As Table 4-8 shows, we have a “dead-zone” when u is in the range of [123, 133]. In this 

region, modification angle is zero to avoid oscillation of steering wheel. In other words, the 

steering wheel is out of action at this time. Besides dead-zone, the modification of steering 

angle is negative when the output of FLC u is larger than 134 (it means that we should turn 

right). And the “value” of modification becomes larger when u leaves dead-zone more. In 

other words, like driven by a human, vehicle needs more “strength” to desired behavior when 

the offset is larger. For example, modification is -50° when u is 135.   

And there is a restriction to modification angle: the value should be less than 120° to 
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avoid the reference angle getting more than the extreme value of steering wheel.    

The reference angle of steering wheel is controlled by the modification. Like the 

accumulator of defuzzifier, another accumulator controlled by another control signal “an” 

adds previous reference angles with new signed modification angle as new ones. Figure 4-14 

and (4.3) can explain how this accumulator works.   

( ) ( 1) ( )k k kθ θ θ= − + ∆                           (4.3) 

   In (4.3), ( )kθ  is the new reference angle, ( 1)kθ −  is the previous reference angle, and 

( )kθ∆ is modification angle. 

Table 4-8  Lookup table for u and modification angle 

Fuzzy output u Modification angle (to steering wheel) 

>177 -120° 

134~177 -2.5° * (u-133) 

123~133 0° 

78~122 2.5° * (123-u) 

<77 120° 

 

 

Figure 4-14 Block diagram for modification and reference steering angles 
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Chapter 5 
Experimental Results 

   The experiments are divided into two parts: static part and dynamic part .The former tests 

steering wheel including CAN BUS decoding system (8951 subsystem), motor driving, and a 

PD controller. The latter includes not only static part but yaw rate system and a FLC. Hence, 

dynamic experiments show real vehicle behaviors with low speed (about 20km/h.). 

    

5.1 Experimental platform 

  As mentioned in Chapters 2 and 4, we use two sensors to obtain the data of the steering 

angle and the yaw rate. The platform of our experiment includes 8951 subsystem (Peripheral 

circuit is shown in Figure 5-1.) for receiving CAN BUS data, FPGA for control and signal 

process, a motor and its driving circuit as the actuator, dSPACE in Figure 5-2 for recording 

data, and the experimental car, TAIWAN iTS-1 (Figure 5-3.) for experiment. 

 
Figure 5-1 Peripheral circuit 
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Figure 5-2 dSPACE for recording data 

 

Figure 5-3 Experimental car, TAIWAN iTS-1 

5-2 Results of rotating the steering wheel to reference angle 

  Case 1: Test of the angle (+80°) 

   Figure 5-4 (a) is the reference of the steering angle, the command is like a step function 

with “height” of +80°. 

   Figure 5-4 (b) is the response of steering angle, notice that the steering wheel can reach 

desired angle (+80°) within 1s and the PD controller can modulate the speed of rotation. The 

oscillation after 1.5s is relatively small so that it won’t affect the behavior of vehicle 

(rotational angle of the front tires).  
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        Steering angle (degree) 

 

                                           Time (sec) 

Figure 5-4 (a) Reference angle (+80°) 

Steering angle (degree) 

   

                                              Time (sec) 

Figure 5-4 (b) Response of the steering angle 
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Case 2: Test of bidirectional reference angles (±80°) 

        Steering angle (degree) 

 
                                            Time (sec) 

Figure 5-5 (a) Reference angle of ±80° 

         Steering angle (degree) 

 

                                           Time (sec) 

Figure 5-5 (b) Response of the steering angle 

  As Figure 5-5 (a) shows, the command is composed of several step functions, and the 

reference angles are +80°, -80°, and 0°. 

  Figure 5-5 (b) is the response of steering angle. The steering wheel rotates to desired angles 
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and then locked by the controller at those angles.   

Case 3: Test of bidirectional reference angles (±200°) 

           Steering angle (degree) 

 

                                      Time (sec) 

Figure 5-6 (a) Reference angle of ±80° 

           Steering angle (degree) 

 

                                      Time (sec) 

Figure 5-6 (b) Response of the steering angle 

  In order to prepare for “dynamic” experiments that control yaw rate of the car, it is 

necessary to test the bidirectional reference angles of ±200°. 



 44

  Figure 5-6 (a) is the reference angles including +200° (t=1s) and -200° (t=5s). Figure 5-6 (b) 

shows the result. Obviously, the delay time is longer if the difference between actual angles 

and reference ones is larger.  

5-3 Results of controlling the yaw rate  

   After examining the steering wheel and ensuring that it can be controlled at desired angles, 

we need to test the behavior of our experimental car. 

   Yaw rate is the dynamic property we emphasis on. Hence, the response of yaw rate will be 

represented later. 

   However, yaw rate not only depends on steering angle but also speed, so we will consider 

the effects of speed and steering angles. 

Case 1: Lower speed (Turn right) 

  The steering angle is negative and the yaw rate is positive when we turn right. Figures 

5-7(a), 5-7(b) and 5-7(c) verifies that both speed and the steering angle affect the yaw rate. 

  At lower speed (Figure 5-7 (a),about 5km/h ~ 11km/h), the reference yaw rate is about 

14°/s (Figure 5-7 (c)), but the steering angle reaches the extreme value (Fgure 5-7 (b),-420°) 

to maintain the reference yaw rate.   

In Figure 5-7 (c), the output is close to 14°/s, it means that the lateral control system controls 

the yaw rate as we wish. Although there is error caused by DC offset of the sensor, the 

controller can modulate them to the reference values. 
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Speed (km/h)  

 
                                                            Time (sec) 

Figure 5-7 (a) Speed 

   Steering angle (degree) 

 

                                                           Time (sec) 

Figure 5-7 (b) Steering angle 
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   Yaw rate (°/s) 

 
                                                           Time (sec) 

Figure 5-7 (c) Yaw rate 

 Case 2: At about 18km/h (Turn right) 

  In Figure 5-8 (a), we will drive the experimental car at the speed about 18km/h. The 

steering angle shown in Figure 5-8 (b) will no longer need to rotate to extreme value for 

vehicle to reach the reference yaw rate (20°/s.).  

   Figures 5-8(a), 5-8(b) and 5-8(c) verifies that both speed and the steering angles affect the 

yaw rate again. The controller can modulate the error of the yaw rate by modifying the 

steering angles. In experiments, the steering wheel modulated the angle and the rotational 

speed like driven by human, and the experimental car moved in a circle as expected.   
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 Speed (km/h) 

 

                                                        Time (sec) 

Figure 5-8 (a) Speed 

   Steering angle (degree) 

 

                                                           Time (sec) 

Figure 5-8 (b) Steering angle 
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Yaw rate (°/s) 

 

                                                         Time (sec) 

Figure 5-8 (c) Yaw rate 

Case 3: At about 18km/h (Turn left) 

  Similar to Case 2, this case tests for turn to left and the reference yaw rate is -20°/s. Results 

are shown in Figures 5-9(a), 5-9(b) and 5-9(c). With the stable speed, the steering angle had a 

little change to maintain the steady value of yaw rate. This verifies that the controller can 

handle well regardless of turning right or left at low speed.      
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Speed (km/h) 

 
                                                            Time (sec) 

Figure 5-9 (a) Speed 

Steering angle (degree) 

 

                                                            Time (sec) 

Figure 5-9 (b) Steering angle 
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Yaw rate (°/s) 

 

                                                         Time (sec) 

Figure 5-9 (c) Yaw rate 

 
5-4 Required resource of hardware 
   Table 5-1 indicates the resource of hardware (FPGA) used for this system. We use about 
7% LE (logic element), 124 pins and 1024 bits of memory (less than 1% of total memory) to 
implement the lateral control system.  

Table 5-1 Required resource of FPGA 
Total logic elements 1780/25660(7%) 

Total pins 124/598 (21%) 
Total memory bits 1024/1944576(<1%) 
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Chapter 6 
Conclusions and Future Researches 

  In this work, we have developed a FPGA based fuzzy and lateral control method to design a 

steering controller which mainly regulates yaw rates to reference ones by means of controlling 

steering angles. This is antecedent to the work of lane change. Besides, we have accomplished 

a 8951 subsystem to receive and decode the data from the CAN-BUS based steering angle 

sensor 

  The speed is as important as steering angles to control yaw rates. With the same reference 

yaw rates, the steering angle is larger if we drive the car at lower speed. And the reference 

yaw rates are user-defined.  

  In future researches, the speed may be an input of the controller, and another input should 

be added is the vision information, this can replace the reference yaw rates because we could 

design a controller to decide the reference yaw rates instead of user-defined ones in according 

to the vision based input.   

  To insure safety and avoid damage of devices such as steering wheel, there are some 

restrictions. For example, the modification angle of steering wheel should not be too large 

since this may change the yaw rate a lot in a short period of time and may cause discomfort. 

Hence, in future work, not only performance but also safety and comfort need to be 

considered.  
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