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A Study of EEG Correlates of Unexpected Obstacle
Dodging Task and Driving Style

Student : Hsing-Wei Tung Advisor : Prof. Chin-Teng Lin

Institute of Electrical and Control Engineering

National Chiao-Tung University

ABSTRACT

In this thesis, we want to study the EEG relates of surprising status and driving style.
Accidents usually caused by lack of alertness and awareness have a high fatality rate
especially in night driving environments. It becomes extremely dangerous in some situations
such as the appearance of an unexpected obstacle in the middle of the road. Combining the
technology of virtual reality (VR), a realistic driving environment is developed to provide
stimuli to subjects in our research. The VR scene designed in our experiment is driving a car
on the freeway at nighttime. Independent Component Analysis (ICA) is used to decompose
the sources in the EEG data. ICA combined with power spectrum analysis and correlation
analysis is employed to investigate the EEG activity related to surprising level and driving
style. According to our experimental results, the appearance of ERP at CPz is highly
correlated to the surprising status. Furthermore, the level of surprising status can be evaluated
with the amplitude of the ERP. An extension analysis of driving style has also been further
studied in the experiments. It is observed that the magnitudes of ERP power spectrum at 10Hz

and 20Hz are different respecting to different driving styles.
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Chapter 1 Introduction

Throughout the world in countries where is a substantial volume of vehicular traffic, the
incidence of road collisions, and the resulting deaths, injuries and property damage, is
regarded as a significant social problem. In many instances, the traffic accidents often occur
from late at night to early morning, and especially when the driver is distracted. Driving at
night is one of the most hazardous situations commonly faced by the driver. It is now well
established that the rate of fatal traffic accidents is 3 to 4 times higher at night than at daytime .
It is established that under nighttime conditions many visual abilities such as spatial
resolution, contrast discrimination, stereoscopic depth perception, accommodation, response
and reaction time are degraded [1]. So that nighttime driving is a serious issue for more
investigations, especially for the appearance of unexpected obstacles. This critical issue
motivates us to discover what reactions happened in the human brain when a driver
encountered the unexpected obstacle. Driver reactions to the sudden incidental appearance of
an object such as a child rushing out may differ depending on the driver’s attention to the
peripheral scene. A more complete understanding of the attentive mechanisms of the brain
will improve driver responses and increase driving safety.

For mental workload studies, when assessing workload in driving, as well as task
demand, is an important loading factor. For example, the workload of freeway driving when
operating a high-speed car should be assessed in terms of information processing load and
time on nighttime driving. It must be noted that the consequences of task performance over a
period, such as fatigue increment and vigilance decrement, has a complex relationship with
the effects of task demand, when the demand is mainly mental.

There are many studies in 1960s and 1970s dealing with the effects of time-on-task on



vigilance or sustained attention [2]. Some of these studies manipulated task demand such as
event rate and described the change in performance over time-on-task [3].

In recent mental workload studies, on the other hand, the effects of time-on-task have
been neglected. Jex defined mental workload as “the operator’s evaluation of the attentional
load margin”’[4]. Eggemeier defined it as “the degree of process capacity that is expanded
during task performance”[5]; and Wickens wrote that “the concept of workload is
fundamentally defined by this relationship between resource supply and task demand”[6].
There are several measures and assessment techniques that are said to be sensitive to mental
workload. Among them are heart rate variability (HRV), event-related potentials (ERP),
dual-task methods, and the two major rating scales known as the SWAT (the Subjective
Workload Assessment Technique) and the NASA-TLX(Task Load Index). We take ERPs as an
important measure for our investigation.

K.Eba et al. introduced a real driving experiment to observe the brain activities related
to driving situation [7]. In a car driving task with and without an unexpected dummy doll
rushing out, they recorded the homodynamic activities of the frontal lobe by near infrared
spectroscopy (NIRS). As a result, they concluded that the right rostromedial prefrontal cortex
plays an important role in spatial attentive recognition of driving scene. By the improvement
of driving simulation technology, we can use the driving simulation to save the time and costs.

The use of driving simulation for vehicle design and driver perception studies is
expanding rapidly. This is largely because how applicable driving simulation is to the real
world is unclear, however analyses of perceptual criteria carried out in driving simulation
experiments are controversial. Keneny and Panerai [8] suggested that, in driving simulators
with a large field of view, longitudinal speed can be estimated correctly from visual
information. On the other hand, recent psychophysical studies have revealed an unexpectedly
important contribution of vestibular cues in distance perception and steering, prompting a
re-evaluation of the role of visuo—vestibular interaction in driving simulation studies.

For the event related subjects, some specific features of EEG are expected to occur in the

brain activities respecting to different situations. Moreover, the Event-Related Potential [9-11]



analysis has widely used for the EEG data processing. The interested target is called a single
event within the experiments, thus the brain activities related to the event were extracted for
further analysis. The key problem to perform such a work is the inability to dynamically
quantify cognitive changes in the human capacity. A way to determine the relationship
between different stimuli and human cognitive responses accompanying correct, incorrect and
absent motor responses is the use of event-related brain potential (ERP) signals. Moreover, we
concern about the unexpected obstacle dodging task related to the ERP response.

There are some similar studies about incongruent cognitive state. In these studies, they
proposed an incongruent situation to induce negative brain activities by visual or auditory
stimulus [11]. The broad negative wave peaks in the surface EEG around 400 ms after a
semantically incongruous word in a meaningful sentence [12, 13]. And there are also many
studies proposed that the waveform can be elicited in response to semantic processing of
non-verbal stories [14].

In our study, we want to investigate the EEG dynamics related to the unexpected obstacle
dodging task. With combining the technology of virtual reality (VR), a realistic stimuli
environment is provided to subjects in our research. A surprising task is provided to the
subjects with a broken-down car appears in the middle of the road. The subjects are requested
to dodge the broken-off car as soon as possible and dodge collision in the experiments. One of
the main purpose of our research is to investigate EEG changes relate to surprising status by
anglicizing the subjects’ EEG features corresponding to the With-Cue task and the
Without-Cue task. Another is the classification of different driving style in unexpected

obstacle dodging tasks.

This thesis is organized as follow. In Chapter 2, the experimental design is introduced in
first section, and the following section is about the experimental setup of hardware and
software. In section three, the subjects and data acquisition are introduced here. In Chapter 3,
we explore the analysis procedure by applying ICA, power spectrum analysis, and correlation

coefficient. The experimental results of EEG signals are described in Chapter 4. Detailed



discussions of our experimental results are given in Chapter 5. Finally, the conclusions are

summarized in Chapter 6.



Chapter 2 Experimental Design and Setup

The main purpose of our research is to investigate the EEG features correlated surprising
status. As we have mentioned in Chapter 1, the previous studies of incongruent context were
focused on semantics [11-18]. With combining the technology of virtual reality (VR), a
realistic stimuli environment is provided to subjects in our research. The experimental setup is
shown in Fig. 2-1. In our experiments, subjects are asked to sit in front of a monitor with their
hands on the steering wheel to control the car in the VR scene. A 30-channel EEG electrode
cap was mounted on the subject’s head and a 2-channel electrodes was put at the middle of the
chest to record the physiological EEG, EOG and EKG signals. The physiological signals and
the event data from the scene are then send through the Neuroscan biomedical signal

amplifier to the data acquisition laptop.

VR Server il ‘
Driving trajectory

and Steering Deviation

Data
Acquisition

_______

Experimental Scene

e
daaE e |
(IR :
LT R
seeienen
LR RS

)

fi

If

30-Channel EEG
2-Channel EKG

Fig. 2-1. Block diagram of the virtual-reality (VR)-based driving simulation environment and

physiological signal acquisition.



2.1 Virtual Reality(VR)-Based Environmental Setup

In this study, the VR scene was generated by the Virtual- Reality technology with a WTK
library as showing in Fig. 2-2. Firstly, the 3DS-max is used to build three-dimensional models
accurately for a true system (such as the road) and to define the parameters of each model
(such as the width of the road). Then, the C program including the WTK library is used and its
library function is called up to move the three-dimensional models. The 3DS-man software is
popular graphic software to create a three-dimensional model. The WTK library is an
advanced cross-platform development environment for high-performance, real-time and

three-dimensional graphics applications.

Build 3D Model | | Virtual-Reality Scene

- WTK
Create Parameter Lib rary
Model
Dynamic
Model

Fig. 2-2. Flowchart of the VR-based highway scene development environment. The dynamic
models and shapes of the 3D objects in the VR scene are created and linked to the WTK

library to form a complete interactive VR simulated scene.

The VR scene was displayed on a color XVGA 42” Plasma Display Panel (PDP) to
simulate a night driving scene on freeway. The subjects are asked to sit in front of the PDP
with the distance 60cm between subject and displayer.

The freeway VR scene we used in this research includes four lanes from left to right of the

road. The distance from the left side to the right side of the road is equally divided into 256
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points (digitized into values 0-255), where the width of each lane and the car are 60 units and
32 units, respectively. The frame rate of the scene changes as the driver is driving at a fixed
velocity of 120 km/hr on freeway. The subjects are asked to keep the car in the VR scene in
the middle of the third lane (left-counting). Furthermore, the angle of the steering wheel is
considered as an important issue in this research, which indicates the dynamic response of
subjects. The steering angle is recorded at the same time. The angle range of the steering

wheel we used in the experiments is -120 “ ~120 °, as shown in Fig. 2-3.

Fig. 2-3. The range of steering angle.



2.2 EEG Signals Acquisition

2.2.1 Subjects

Ten healthy volunteers (including seven males and three females) with no history of
gastrointestinal, cardiovascular, or vestibular disorders participated in the experiment of the
motion-sickness study. They were requested not to smoke, drink caffeine, use drugs, or drink
alcohol, all of which could influence the central and autonomic nervous system for a week
prior to the main experiment. Screening confirmed that subjects were free of past or current
psychiatric and neurological disorders. Three subjects’ EEG data were excluded for further
analysis because of the unexpected artifacts (ex: severe head shaking) within the data. A total
of seven subjects (one female and six males, ages from 21 to 26, all right-handed) with
normal or corrected normal vision participated in the VR-based unexpected-incident driving

experiment where EEG signals were simultaneously recorded.

2.2.2 EEG Signals Acquisition

An electrode cap is mounted on the subject’s head for signal acquisition on the scalp. A
standard for the placement of EEG electrodes was proposed by Jasper in 1958, which is
known as the 10-20 International System of Electrode Placemen was used in one experimental

cap. An illustration of the 10-20 system is shown in Fig. 2-4.



Parietal
L argp? ¥l

D-:‘P:

Cacd Do o3
Cf:nl:tjral[ﬂ] G

ST =
Frontal[F]

[_IFP2
Frontal Pole[Fp

Fig. 2-4. The scalp map of 10-20 International System of Electrode Placement.

All channels were referenced to the reference channel (behind the right ear) with the
input impedance 5 kQ. The EEG data were recorded with 16-bit quantization level at a
sampling rate (SR) of 500 Hz. The data is recorded by the Scan NuAmps Express system
(Compumedics Ltd., VIC, Australia). A 500-pt high pass filter with a cut-off frequency at 1
Hz is used to remove breathing artifacts. The width of the transition band of the high pass
filter is 0.2 Hz. A 30-pt low pass filter is then applied to the signal with the cut-off frequency
at 50 Hz to remove muscle artifacts and line noise. The transition band width of the low pass
filter is 7 Hz. The Independent Component Analysis (ICA) [19-26, 27-28] is also applied to
the EEG signal to remove the artifacts including eye movement or blinking more detailed will

be discussed in Section 3.4..



2.3 Experimental design

Fig. 2-5. The experimental scene.

The fatality rate of nighttime driving accidents is much higher than that in daytime
because the driver’s abilities of vision, vehicle control are obviously declined in nighttime.
The response time of the drivers will also be slow due to the range of visibility is diminished
in nighttime. It becomes extremely dangerous in some situations, such as the appearance of an
unexpected obstacle in the middle of the road. The VR scene in our experiment is design on

the freeway in nighttime, as shown in Fig. 2-5.

The subject is asked to control the simulated car in the VR scene with the steering
wheel and keep the car in the middle of the third lane. A surprising task is provided to the

subjects with a broken-down car appears in the middle of the road. The subjects are requested

10



to dodge the broken-off car as soon as possible and dodge collision in the experiments. Two
different tasks are designed for the further EEG investigation; they are the Without-Cue task
and With-Cue task. In the Without-Cue task, the unexpected broken-off cars will appear
randomly in front of the simulated car appeared without any cue. By contrast, an exclamation
mark will appear before the broken-off car in the With-Cue task, to reduce the surprising level
to subjects. One of the main purpose of our research is to investigate EEG changes relate to
surprising status by anglicizing the subjects’ EEG features corresponding to the With-Cue task

and the Without-Cue task.

As long as the status of surprising which is a natural response without any expecting
effect will be investigated in this study,. Thus, the Inter-trial intervals (ITIs) are set from 10 to
30 seconds, and differ from trial to trial randomly to dodge the anticipating effect of subjects.

The experimental setting is given in Fig. 2-6.

Start Inter-Trial Interval Inter-Trial Interval End

|_ With-Cue " ith-Cuc] _---_l
" Time Line _ >

Fig. 2-6. Experimental setting.

Each subject participated in three nighttime driving experiments in three different days.
The experiments start from a 1~5 minutes training session and follows by two 30-min
sessions including a 5 min break between these two experiments . The EEG signals as well as

the steering angle trajectory are recorded synchronously during the experiments.

The exclamation mark is designed to provide a simple hint to subjects before the

broken-off car appears in the With-Cure task. The position of the exclamation mark is shown

in Fig. 2-7(a).

11



-7. The VR scene in the With-Cue task.

Fig. 2

(e)

(d)

(©)

(b)

(a)

(©) (d) (&) —nuPp
- ="

-1000ms

®

Fig. 2-8. Ground plane representation of the ” with-cue” task.
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The durations of the cue and the unexpected obstacle appearance are 1 sec and 600ms,
respectively. The sketch map of the With-Cue task is given in Fig. 2-8. The green cars in the
figure are the simulated car which control led by the subjects, and the red cars are the
broken-off car park on the road. The subjects are asked to control the car with the steering

wheel to dodge the broken-off car and to keep the car in the middle of the third lane.

In Fig. 2-8(a), the cue appears on the VR scene to provide a hint. After the appearance of
the cue, a broken-off car appears in the middle of the road it lasting and last for 600 ms as
shown in Fig. 2-8(b). The subjects are asked to dodge the broken-off car and to drive the car
back to the third lane after dodging, as shown in Figs. 2-8(c), (d) and (e). The schema of the

time arrangement is shown in Fig. 2-8(f).
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Fig. 2-9. Ground plane representation of the ” without-cue” task.
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By contrast, there is no hint for the obstacle in the Without-cue task. The subjects have to
response to the situation immediately when they see the broken-off car. The design of the
experiment protocol is given in Fig. 2-9. The surprise-related ERPs are expected to occur in
the Without-Cue task. Thus the EEG signal within the green broken line in Fig. 2-9 is the

interested target which is extracted for further analysis procedure.

In a view of different personalities of drivers, let us then consider the different driving
styles of drivers. In our experiments, the driving trajectory and steering angle are also
recorded. According to these driving indices, we can take this advantage to identify the
driver’s driving trajectory. And the driving style of one driver, moreover, can be classified

into two standard styles as following figure.

Driving Trajectory

7

Fig. 2-10. Driving Trajectory Types
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Chapter 3 EEG Data Analysis

Two analysis procedures are proposed in this thesis to investigate the EEG relates of
surprising status and driving style. The analysis methods which used in the procedure are
firstly introduced in this chapter, followed by the proposed analysis produces. Independent
Component Analysis (ICA) is used to decompose the sources in the EEG data. ICA combined
with power spectrum analysis and correlation analysis is employed to investigate EEG

activity related to surprising level and driving style.

3.1 Independent Components Analysis (ICA)

The joint problems of EEG source segregation, identification, and localization are very
difficult since the EEG data collected from any point on the human scalp includes activity
generated within a large brain area, and thus, problem of determining brain electrical sources
from potential patterns recorded on the scalp surface is mathematically underdetermined [26].
Although the resistivities between the skull and brain are different, the spatial smearing of
EEG data by volume conduction does not involve significant time delay and suggests that the
ICA algorithm is suitable for performing blind source separation on EEG data by source
identification from that of source localization. We attempt to completely separate the twin

problems of source identification and source localization by using a generally applicable ICA.
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Thus, the artifacts including the eye-movement (EOG), eye-blinking, heart-beating (EKG),
muscle-movement (EMG), and line noises can be successfully separated from EEG activities.

The ICA is a statistical “latent variables” model with generative form:

where A is a linear transform called a mixing matrix and the S, are statistically mutually

independent. The ICA model describes how the observed data are generated by a process of

mixing the components S, . The independent components S, (often abbreviated as I1Cs) are

latent variables, meaning that they cannot be directly observed. Also the mixing matrix A are
assumed to be unknown. All we observed are the random variables X;, and we must estimate

both the mixing matrix and the ICs S; using theX;.

Therefore, given time series of the observed data X(t) =[X,(t) X,(t) --- X, ()] in
N-dimension, the ICA is to find a linear mapping W such that the unmixed signals u(t) are

statically independent.

Supposed the probability density function of the observations X can be expressed as:

p(x)=|det(W ) p(u) , 3)

the learning algorithm can be derived using the maximum likelihood formulation with the

log-likelihood function derived as:

L(uW ) = log|det(W )|+ZN:Iog pi(y;)
- ’ (4)

Thus, an effective learning algorithm using natural gradient to maximize the log-likelihood

with respect to W gives:

AW o HIW Dy 1~ guya v
oW )
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where the nonlinearity

op(u) ap(u, ) op(uy) T
¢(u):_ au | _ ou; _ ouy
u u u
p(u) p(u,) p(uy) ’ ©)

and W'W  ip Eq. (5) rescales the gradient, simplifies the learning rule and speeds the

convergence considerably. It is difficult to know a priori the parametric density function p(u),
which plays an essential role in the learning process. If we choose to approximate the
estimated probability density function with an Edgeworth expansion or Gram-Charlier
expansion for generalizing the learning rule to sources with either sub- or super-gaussian

distributions, the nonlinearity ¢(u) can be derived as:

u—tanh(u): for super - gaussian sources,

co(U):{

u-+tanh(u): for sub - gaussian sources, %

Then,

W [I —tanh(u)u’ - uuT}N - Super - gavssian ,
[I +tanh(u)u” —uu’ }N : sub - gaussian, )

Since there is no general definition for sub- and super-gaussian sources, we choose
=1 - _ 2

p(u)=3 (N (LD+NCL 1)) and P(U)=N@O.Dsech’(U) g up. and super-gaussian,

respectively, where N(u,0”) is a normal distribution. The learning rules differ in the sign

before the tanh function and can be determined using a switching criterion as:

T T K = 1: super - gaussian,
AW o [I —Ktanh(u)u —uu }N,Where :
Kk, =—1: sub - gaussian,

)
where

K, = sign(E fsech?(u, )JE{u? |- E ftanh(u, Ju,}) (10)

is repeats the elements of N-dimensional diagonal matrix K. After ICA training, we can obtain
30 ICA components u(t) decomposed from the measured 30-channel EEG data X(t).
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Fig. 3-1 shows the scalp topographies of ICA weighting matrix W corresponding to each
ICA component by spreading each w;; into the plane of the scalp, which provides spatial
information about the contribution of each ICA component (brain source) to the EEG
channels, e.g., eye activity was projected mainly to frontal sites, and the drowsiness-related
potential is on the parietal lobe to occipital lobe, etc. We can observe that the most artifacts
and channel noises included in EEG recordings are effectively separated into ICA components

1 and 3 in Fig. 3-1.

Eye-blinkin Eye-movement

Fig. 3-1. The scalp topographies of ICA weighting matrix W.
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3.2 Power Spectrum Analysis

Analysis of changes in spectral power and phase can characterize the perturbations in the
oscillatory dynamics of ongoing EEG. Applying such measures to the activity time courses of
separated independent component sources avoids the confounds caused by misallocation of
positive and negative potentials from different sources to the recording electrodes, and by
misallocation to the recording electrodes activity that originates in various and commonly
distant cortical sources. The spectral analysis for each ICA component decomposed from 30
channels of the EEG signals. The FFT processes for each ICA component data decomposed
from 30 channels of the EEG signals and the processes are described as following. The
sampling rate of EEG is 250Hz. The power spectrum density (PSD) of each ERP is evaluated
with the spectral analysis process. The activity power spectrum of the ERP is calculat by
averaging the PSDs. The ICA data power spectrum time series for each session consisted of
ICA data power estimates at 50 frequencies (from 1 to 50 Hz). The same procedure of power

spectrum analysis was applied to 30 EEG channels for comparisons.

The input EEG signal is X[n]. And we can consider computing X[k] by separating
X[n] into two (N/2)-point sequences consisting of the even-numbered points in X[n] and the

odd-numbered points in x[n]. n
WNz _ @ 2i@a/N) _ g-j27(N/2) :WN/Z (12)

The PSDs was calculated as following equations:

)-1

(N/2 /2)-1
X[kl= Sdar, S der + 1w,

r=0 r=0

Glk]+WEH[k], k=0,...,N -1, (13)
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3.3 Correlation Analysis

In order to find the EEG dynamic between different subjects’ ICA components and EEG
channel distribution, we computed the correlation coefficient between the time course of EEG
channel signals and the concurrent changes in the ICA spectrum of EEG signals by using the

Pearson Correlation Coefficient:

Corr, Y (x-%)*(y-9) "
I x=%*Y (y-y)*

where Corryy is defined as a statistical measure of the linear relationship between two random

variables Xandy, X and VY is the expected value of X and Yy, respectively.

3.4 The Procedures of EEG Data Analysis

The main purpose of this research is to investigate the subject’s EEG response related to
the unexpected obstacle dodging tasks. The unexpected obstacle is also called a single event
within the experiments. Thus, the single-trial Event-related potential (ERPs) in with-cue tasks

and without-cue tasks are extracted and collected for the further analysis ( Fig. 3-2).

There are two analysis procedures designed for two different research topics: (1) the
surprising status feature in the EEG signal. (2) The EEG features related to driving style of the

driver when dodging the obstacle. The analysis procedures are given in the following sections.
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The main purpose of this analysis procedure is to investigate the feature of

Without-Cue tasks.

The proposed EEG analysis procedure to investigate the EEG changes related to

With-Cue ERPs

Fig. 3-2. ERP Extraction from EEG Raw Data.
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3.4.1 Data Processing of Unexpected Obstacle Dodging

surprise-related in human brain according to the ERP difference between the With-Cue and

different surprising status through analysis the ERP difference between the with-cue and
without-cue tasks is shown in Fig. 3-3. The sampling rate of the 30-ch EEG signals is 250Hz.
The EEG signals were filtered with a 1~50Hz band-pass filter for line noise and artifacts
removal. The ERP extraction process in this study is -100 ms to 1000 ms respected to the
onset of obstacle appearance. The extracted ERP are further send to the independent
component analysis (ICA) for the source (or component) decomposition. The decomposed

ICA components are used for artifact-component rejection, as shown in Fig.3-4.




30 Channel
Filtered EEG data
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l ERPs

Independent
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Component Selection

|
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EEG Feature

Fig. 3-3. Signal processing flowchart of surprise status analysis.

The averaged With-Cue ERP and the averaged Without-Cue ERP are then calculated,
respectively, as shown in Fig. 3-4. A subtraction operation is applied to evaluate the difference
between the averaged With-Cue ERP and the averaged Without-Cue ERP. The surprise-related

components can be evaluated according to the averaged ERP difference, as shown in Fig.3-5.
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Fig. 3-4. Independent component analysis and artifact-component rejection.
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Fig. 3-5. Surprise-Related Components Selection.

3.4.2 Data Processing of Driving Style Analysis

The main purpose of this study is to distinguish the ERP responses related to a different
driving style. The over-driving subjects are more nervous than under-driving subjects. A
steering wheel can be well designed to compensate the over-driving drivers’ control for safety.

The angle variations of steering wheel and the trajectories of car movement are used to
identify drivers’ driving style in this study. Two typical driving trajectories are shown in

Fig.3-6, including the over-driving trajectory and the under-driving trajectory.
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Fig. 3-6. Two Typical Driving Styles.

The data analysis procedure is given in Fig. 3-7. The driving trajectory and the steering
deviation are first used for driving style identification. Then, the subjects are divided into two
groups: (1) the under-driving drivers, (2) the over-driving drivers. The subjects’ EEG data
computing to the Without-Cue tasks are used for this experiment. The Without-Cue ERPs
respecting to the two types of driving style are extracted with is the [-500ms, 3000ms] interval
respected the appearance of broken-off car. The ERPs are merged and analyzed with the
independent component analysis (ICA) to decomposed ICA components for the feature

analysis of subject’s driving style.

In Fig. 3-8, for each subject, power spectrum of each ICA component in each epoch
is first calculated. The averaged power spectrum of each ICA component is then obtained by
averaging the computing ICA power spectrum in all epochs. A total of 30 averaged power
spectrum respecting to the 30 ICA components can be evaluated for each single subject as
shown in Fig. 3-9. The significant component related to the driving style can be extracted

according to the results presented in Fig. 3-9.
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Chapter 4 Experimental Results

This chapter presents the experimental results observed in our study. Ten subjects
participated in our experiments but only the EEG signals of seven subjects were analyzed
following the proposed procedures. Since we reject three subjects’ recorded EEG signals due

to noise influence.

4.1 EEG Correlates of Surprising Status

Many artifacts including eye movements, muscle activities, and line noise often distract
the EEG recordings and should be removed to obtain the pure EEG signals. Here, independent
component analysis (ICA) algorithm was used to separate artifacts in EEG signals based on it
blind source separation capability. Fig.4-1 (a) shows all ICA component of subject 6 and
Fig.4-1(b) shows all ICA component of subject 10 respectively. Artifact ICA components are
circled in Fig.4-1(a) and Fig.4-1(b). The red circle relates eye blinking, the yellow circle
relates channel noise, the green circle relates muscle movements, and the blue circle relates

the eyes movements respectively.
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(a) ICA components of Subject 6 (b) ICA components of Subject 10

Fig. 4-1. ICA components of subjects 6 and 10. Red circle: Eye blinking; Yellow circle: Channel

noise; Green circle: Muscle movements; Blue circle: Eyes movements.

4.1.1 Results of ICA Decomposition Analysis

From the time course condition analysis the ICA components in without-cue tasks, we
may find common component of the seven subjects and the component areas are closely
located in the CPz as shown in Fig.4-2. The scale map of ICA components presented in
Fig.4-2 shows that six subjects 1, 6, 7, and 8 have the same ICA component located at CPz

and the other subjects have the similar component at the near areas Cz and Pz.

The contributions of the common ICA sources were then projected back to CPz EEG
channel of Fig.4-3 shows the projection result of subjects. The projection amplitude of CPz
has negative peak at about 300 ms for without-cue tasks and the projection amplitude of CPz

has a negative peak at about 360 ms for the without-cue tasks.

29



Subject 1 (CPz) Subject 5 (Cz) Subject 6 (CPz) Subject 7 (CPz)

Subject 8 (CPz) Subject 9 (Pz) Subject 10 (Pz)

Fig. 4-2. The seven subjects have a common ICA component located at around CPz

correlated to the without-cue tasks.

4.1.2 Within-Subject Analysis

Fig.4-4 plots the ERP image of subject 5 where common ICA component was projected

to CPz channel. The ERP image is a rectangular colored image in which every horizontal line
represents activity occurring in a single experimental trial (or a vertical moving average of
adjacent single trials). Instead of plotting activity in single trials such as left to right traces, we
encode their values with color codes. The color value indicates the potential value at each
time point in the trial. By stacking above each other the color-sequence lines for all trials in a
dataset, the ERP image is produced. The trace below the ERP image shows the average of the
single trial activity, i.e. the ERP average of the imaged data epochs. The black line of this

figure is reaction time of the subject. We define the reaction time as the moment when subject
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starts to steer the wheel dodge the unexpected obstacle. Fig.4-4 shows the projection
amplitude of CPz corresponding to with- and without-cue tasks and we may find the major
differences occurred at around 350 to 400 ms. From the ERP image, the EEG activity of each
trial locked on the stimulus onset with negative potential we called this negative potential as
N400. Since the source location is evoked at CPz channel not at occipital region. In addition,
according to Fig.4-4(a), the magnitude of N400 at around 350 to 400 ms is proportional to the

reaction time. These ERPs are not evoked by visual stimulus. It can be inferred that when the
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Fig. 4-3. Results of the common ICA component on CPz channel.
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Fig. 4-4. The ERP images of subject 5 in without- and with-cue tasks at CPz channel.

31



surprising level is higher( reaction time is lonfer), the magnitude of N400 at around 350 to

400 ms will larger.

Fig.4-5 shows the EEG power spectrum activities of subject 5 at CPz channel. The above
left scalp map shows the channel location on the cortex. The above right sub figure shows the
overlapping ERP averages of subject 5. The blue line in it is the ERP average of without-cue
tasks and red line for with-cue tasks. The below sub figure is the power spectrum of the ERPs.
The magnitudes of corresponding to the without-cue tasks are higher than the magnitudes
corresponding to with-cue tasks, this effects can also be observed in all subjects more

discussions will be presented in the next chapter.
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Fig. 4-5. The EEG power spectrum of subject 5 at CPz channel corresponding to

without-cue tasks and with-cue tasks.
Fig.4-6 shows that the reaction time of average ERPs is 375 ms and amplitude is smaller

with-cue, the reaction time of average ERPs is 433 ms and amplitude is larger with-cue. The

reaction time was presented larger without-cue than with-cue from the same subject 5.
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Fig. 4-6. The relationship between reaction time and amplitude in without-cue task.

4.1.3 Cross-Subjects Analysis

Statistical analysis was used in this study for all experiment to analyze N400 of CPz, Pz, or
Cz from all subjects. The significant ERPs appeared on CPz, Cz, or Pz during simulation
stimulus of obstacle on the scene. This phenomenon of subject responses demonstrated that the
subjects drive in a monotonic simulation environment to run into an unexpected obstacle on the
driving environment and respond in brain cognition from subject. The consistent of brain
cognition N400 were appeared in this driving simulation experiment of without-cue task and

the level of brain cognitions were different for every subject.

The global difference in N400 peaking time is measured as average and is shown as
Fig.4-7 The rectangle bar with blue color shows the average of three experimental periods of
without-cue for each subject. This simple figure seeks to capture the fact that the peaking time
of N400 in the with-cue task is slightly shorter (about 30~50ms) than in the without-cue task.

It is clear that all subjects have the same phenomenon in our experiments.

The Fig.4-8 shows the amplitude of trough wave without-cue and with-cue from fives

subjects during driving simulation and the larger amplitude without-cue than with-cue is. On
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account of the cue was presented in the simulation scene, it advantaged the driver reduce the

surprising status level.

| @ Without-Cue B With-Cue |

Time (ms)

5 6 7 8 9
subjects

Fig. 4-7. The peaking time changes between without- and with-cue tasks on source channel.
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Fig. 4-8. The amplitude changes between without- and with-cue tasks on source channel.

4.2 EEG Correlates of Driving Styles

In this section, we focus on the relationship between the EEG activity and the behavior
of each subject’s driving style. Since the driving style is difficult to define; we indicate the

driving style by the steering pattern of the subjects. Then we analysis the cross subjects EEG

34



characteristics related to the driving style corresponding to the different steering patterns.

4.2.1 The Category of Driving Styles

First of all, define the steering deviation pattern as the index of the driving style.
According to the driving index (steering deviation) recorded in experiments, we can easily
categorize two different driving styles. These two driving style are, (1) Over-driving and (2)
Under-driving. Here we define the “over” as that the subject steer the wheel excessively as
shown in Fig.4-9(a). He/she probably steers the wheel several times to direct the vehicle on
the correct lane. This kind of subjects is called “Over-driving driver.”” The “Under-driving
driver”, however, can steer the wheel much more careful, and the vehicle will go smoothly

toward the correct lane as shown in Fig.4-9(b).

PR — Driving trajectory

/ (a)

Unexpected obstacle

—~ I
(b)

Fig. 4-9. Different driving styles in unexpected obstacle dodging task : (a) Over-driving, (b)

Under-driving.

4.2.2 Results of ICA decomposition Analysis

The driving trajectory and the steering deviation are first used for driving style
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classification. Thus, the subjects are divided into two groups: (1) the under-driving drivers, (2)
the over-driving drivers. The Without-Cue ERPs respecting to the two types of driving style
are extracted with the [-500ms, 3000ms] interval respected the appearance of broken-off car.
The ERPs are merged and analyzed with the independent component analysis (ICA) to
decomposed same ICA components (see Fig.4-10). The ICA components are further applied
for the analysis of subject’s driving style. The averaged power spectrum is calculated by
averaging the power spectrum. A total of 30 averaged power spectrum respecting to the 30

ICA components can be evaluated for a single subject, as shown in Fig. 4-11.

ICA components

Fig. 4-10. The weighting matrix of ICA analysis for driving style classification.
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Fig. 4-11. The component average power comparison.

Then we calculate the correlation coetficient of the power spectrum of different ICA
components corresponding to two different subjects for under-driving and over-driving,

respectively,

RJ'

under—driving

= corrcoef (PSD/, PSD,) (14)

RJ'

over—driving

= corrcoef (PSD., PSD,) (15)

where j indicate the independent component, PSD/ represents subject i’s power spectrum of
ICA component j. The averaged power spectrum of different ICA component

Eqgs.((16)and(17)) can be calculated by:

PSDjnder—driving = an(PSDIj , PSDéJ ) (16)
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PSnger—driving = an(F)SD5J 5 PSng) (17)

For component j, if R/

i j . .
under—ariving > 0-8 and R g > 0.8 and the correlation coefficient

between PSDLdeer—driving and PSD;ver—driving is smaller than 0.5, this component is selected as
an significant component related to driving style. According to the analysis, the 4™ component

shown in Fig.4-10 is selected as the significant component.
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Chapter 5 Discussions

Some significant properties and observation of surprise-related ERP are further discussed
in this chapter, including the level of surprising status driving style and the corresponding

inference source regions.

5.1 The Relationship between EEG Changes and
Surprising Status

In the present study, we measure brain potentials while subjects drive a car on the
freeway with an unexpected incoming incident as an obstacle. It was expected that the
subjects were being surprised. In our investigation, we observed that the surprising status is
similar to the incongruently cognitive processing in the human brain. In many other studies,
an N400 was evoked by the semantic incongruent experiment [12-15, 17]. Several studies
have shown that incongruent words elicit a negative ERP component peaking around 400 ms
after stimulus presentation [14-18]. Normally, N400s to words are reduced in amplitude upon

repetition thus indicating the generating cerebral structures participate in memory processes.

ERPs have been examined to pictures in sentence contexts using the anomalous sentence
task in which the N400 was originally observed. In addition to this, there are also many
studies shown that anomalous final pictures and anomalous final words generated a larger
N400 than congruous final pictures and words. Also, the time courses of the effects were
similar for both pictures and words. The effects for pictures displayed a different scalp
distribution than the effects for words. Specifically, the N400 congruity effects at occipital and

parietal sites were larger for words than for pictures. Conversely, the N400 congruity effects
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at frontal sites were larger for pictures than for words. These results suggest that the N400
reflects a semantic processing mechanism that is functionally similar for pictures and words.
However, the brain regions responsible for the storage and processing of semantic
representations for pictures and words may be partially non-overlapping, resulting in slightly

different scalp distributions.

In our study, the N400 was evoked by an unexpected obstacle dodging task. The
simulation that a subject drives on the freeway with unexpected obstacle’s appearance is
similar to a subject listen to a sentence with incongruous final word. Therefore it is reasonable
that the N400 potentials will occur in our experiments. This also leads us to consider the
relationship between N400 potential and surprising status. The level of surprising status can
be measured by the power of N400 potential? More discussion will be presented in the

following sections.

5.1.1 Surprising Status Influence Region on Human Cortex

So far, we have seen how the N400 potential occurs in various categories of investigation.
The time course of these N400 effects closely paralleled the N400 effects observed in
analogous with the word tasks. However, the scalp distributions are different. The N400
relatedness effect for pictures was largest over the frontal midline site (Fz) rather than
posterior sites and showed no difference between related and unrelated targets over occipital
sites as shown in Fig.5-1(a). In contrast, the N400 for words typically has a centro-parietal
maximum as shown in Fig.5-1(b), but has occasionally been found to have a more anterior
distribution. These discoveries corroborate the hypothesis that words and pictures are
activating at least partially non-overlapping semantic systems. In our experiments, among all
seven subjects, the N400 for unexpected obstacle dodging task was largest over the

centro-parietal midline site (CPz), but has a more anterior for subject 5 and posterior for
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subject 9 and 10 as shown in Fig.5-2.
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Fig. 5-1. The N400 Distribution in Incongruent Experiments
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Fig.5-1. The N400 Distribution on Scalp Map Induced by Our Experiment.

The functional and temporal similarities but spatial variability of the N400 suggests that

the N400 may involve contributions from multiple brain areas that perform analogous
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cognitive operations on different types of input. The hypothesis that the N400 has multiple
underlying subcomponents is supported by findings from intracranial recordings that show
N400-like modulations in multiple brain areas, including medial and lateral temporal lobe,
hippocampus, and ventrolateral prefrontal cortex. The N400 may, in fact, reflect an modal
semantic process in which information from a variety of sources is integrated into a

higher-level conceptual representation.

5.1.2 Surprising Level Correlates Without-Cue Condition

We can represent the potential of the N400 diagrammatically in Fig.5-2. It reveals all the
experimental results of the conditions in total 15 time experiments (three experiments for each
subject). For the present, we shall confine our attention to the potential changes between with-
and without-cue tasks. As shown in this figure, the amplitude of each experimental result
indicates the potential level for each subject. The higher amplitude represents more significant

in level of the surprising effects.
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Fig. 5-2. The average power change between subjects.
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According to the statistics from upon table, the N400 potentials of the without-cue tasks
are marked higher level than with-cue tasks with a percentage of 71.4% in all experiment. It is
not too far from the truth to say that the driver is in a higher surprising level in the
without-cue tasks than the subject is in the with-cue tasks. We have sufficient reason to think
that the level of surprising status can be reduce by a simple warning signal or sign just like the
cue we presented in the with-cue tasks. And then the driver could drive more safely and
control the vehicle steadily. Another result shows that the variation of surprising level of the

same subject in different experiment about 23%.

5.1.3 Reaction Time Variations in Subject’s Surprising Level

The surprising status differed between without- and with-cue tasks, and once that is
understood, we are in a better position to evaluate the internal differences in both tasks. Now
we are also interested in the relationship between the surprising status and subjects’ reaction
time. This will lead us to consider the mutual mechanism between surprise and reaction. We
assume that the higher surprising level will cause the subject in shock, such that the reaction
time delayed. This was the general opinion from our experimental design in the beginning,
and we had some prove for this in the Table 1. First we separated all the trials of one subject
equally into two parts. One is the fast reacting part with half of the trials, and the other is slow
reacting part includes the remaining trials. We called the first part as “Short-RT” and the other
part as “Long-RT”. In this table, it shows it N400 amplitude increase directly, the reaction
time will delay in reaction. In a 71.4% of sessions shows a positive correlation of trend. We
can say with fair certainty that the surprising status influence the subjects’ reaction speed. It
should be concluded, from what has been said above, that the level of surprising status can be

measured through N400 potential.
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Table 1 : The Relationship between Surprising Status and Reaction Time

N400 Amplitudes (V) | Trend | N400 Amplitudes (V) | Trend
Without-Cue With-Cue

Short-RT | Long-RT Short-RT | Long-RT
Subject 1 8.9 9.2 + X X X
Subject 5 10.08 12.1 + 7.1 12.2 +
Subject 6 5.1 94 + 4.9 6.1 +
Subject 7 33 6.2 + 2.2 7.3 +
Subject 8 4 2.3 - 2.1 3 +
Subject 9 7.5 4.8 - 1.9 2.2 +
Subject 10 -3.9 -6.2 + X X X

+ : positive correlation ; - : negative correlation ; X : Undefined

5.1.4 The Power Increasing of 2Hz and 6Hz at Centro-Parietal
Midline

Having observed the differences of EEG signals between the two tasks, we go on to the
EEG power spectrum analysis. We calculated the power spectrum of the CPz channel where
was projected from the N400 ICA component. According to Table 2, some of the frequency
bands 2~3 Hz and 6~7 Hz had power increasing in higher surprising status such as the
without-cue task. It can also be found that the power of 6~7Hz band has increased in all
subjects as shown in Table 2. According to the results, it is possible to build up a hypothesis

about the measurement of surprising level my taking the power increasing as a useful index

for the driver’s surprising status estimation.
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Table 2 : The Power Increase of Specific Band

Power Increase at CPz Channel

2~3Hz 6~7Hz others
Subject 1 + + 10Hz
Subject 5 + 10Hz
Subject 6 - +
Subject 7 X +
Subject 8 X + 30Hz
Subject 9 + + 20Hz ,30Hz,40Hz
Subject 10 + + 10Hz

+ : power increase ; X : no significant changes

5.2 Driving Style Classification by EEG Signal Analysis

We also attempt to observe the relationship between driving style and driver’s EEG.
Although a large number of studies have been made on driving behavior, little is known about
the relationship to the EEG signals [29]. As we mentioned before, the driving style is
complicated to signify. We would like to focus attention on the steering style of subjects. In
our investigation, the principal task of experimental design is to dodge the unexpected
obstacle. At the same time the behavior data has been recorded as steering deviation per frame.
After the comparison between steering deviation and driving trajectory, we can easily
recognize as two type of driving styles shown in Fig.4-13. We can see the power difference at
10Hz and 20Hz between Over- and Under-Driving drivers as shown in Fig.5-3. The blue line
shows the power increase of over-driving drivers at l0Hz and not increase at 20Hz. However,
the under-driving drivers are totally different, the power increase at 20Hz instead of 10Hz that
we can observe from the following figure. Moreover, there is a detail power spectrum as

shown in Fig.5-4.
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Chapter 6 Conclusions and Future Work

Driving safety is concerned as an important issue in nowadays. Driving at night is one
of the most hazardous situations commonly faced by the driver. It becomes extremely
dangerous in some situations, such as the appearance of an unexpected obstacle in the middle
of the road. The surprise-related feature of ERP signals were successfully discovered
according to our experimental results. The N400 component has been observed in without-cue
tasks and with-cue tasks. Furthermore, the level of surprising status can be evaluated with the
amplitude of the averaged surprise-related ERP. The length of the reaction time is also
proofed highly related to the level of surprising status. An extension analysis of driving style
was further applied to the experiment. The difference of ERP power spectrum was resulted
respecting to different driving styles. The driving style of the over-driving subjects is much
unstable when comparing with the under-driving subjects. A well-designed steering wheel can

be designed to compensate the over-driving drivers’ control for the sake of safety.
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