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駕駛員閃避突發障礙物及不同駕駛風格 

之腦波反應研究

研究生：董行偉     指導老師：林進燈 教授 

 

國立交通大學電機與控制工程學系碩士班 

 

摘  要 

 

本論文探討當駕駛員夜間開車，閃避前方突如其來的障礙物時，受到

不預期刺激的腦波反應。我們使用虛擬實境結合腦波量測分析來研究夜間

駕車之腦波特性，此為本論文之一大創新；實驗場景為夜間直線高速公路

之駕車環境，並有不預期之障礙物突然出現在駕駛員前方車道，使其產生

一不預期差異之認知狀態，紀錄並觀察腦波訊號，此外另設計有警示標誌

出現來提醒駕駛員將出現障礙物，進而來觀察有警示與無警示下兩者之腦

波差異。我們探討兩個主題，首先是觀察駕駛員看到障礙物時的認知狀態。

透過獨立成分分析將原始腦波分離為數個獨立之成分，進而使用交叉相關

性分析比較各個駕駛員之間獨立成分之關聯性，實驗結果發現與心理負荷

相關之腦波獨立成分來源在顱頂中央(CPz)，且於 6~7Hz 頻帶有功率增強之

情形。其次，我們藉由駕駛員閃避障礙物之行為模式，從其駕駛車輛之行

進軌跡以及方向盤轉向之資訊，辨別出不同之駕駛風格，分為過度駕駛與

適當駕駛以分析不同駕駛風格之腦波特性，經由獨立成分分析後，找到可

用於駕駛風格鑑別之腦波特徵，其在顱頂(Cz)位置之 10Hz,20Hz 頻帶中具

有能量上的差異，可藉此來估測駕駛員之駕駛特性。 
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ABSTRACT 
 

In this thesis, we want to study the EEG relates of surprising status and driving style. 

Accidents usually caused by lack of alertness and awareness have a high fatality rate 

especially in night driving environments. It becomes extremely dangerous in some situations 

such as the appearance of an unexpected obstacle in the middle of the road. Combining the 

technology of virtual reality (VR), a realistic driving environment is developed to provide 

stimuli to subjects in our research. The VR scene designed in our experiment is driving a car 

on the freeway at nighttime. Independent Component Analysis (ICA) is used to decompose 

the sources in the EEG data. ICA combined with power spectrum analysis and correlation 

analysis is employed to investigate the EEG activity related to surprising level and driving 

style. According to our experimental results, the appearance of ERP at CPz is highly 

correlated to the surprising status. Furthermore, the level of surprising status can be evaluated 

with the amplitude of the ERP. An extension analysis of driving style has also been further 

studied in the experiments. It is observed that the magnitudes of ERP power spectrum at 10Hz 

and 20Hz are different respecting to different driving styles. 
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Chapter 1  Introduction 

 
Throughout the world in countries where is a substantial volume of vehicular traffic, the 

incidence of road collisions, and the resulting deaths, injuries and property damage, is 

regarded as a significant social problem. In many instances, the traffic accidents often occur 

from late at night to early morning, and especially when the driver is distracted. Driving at 

night is one of the most hazardous situations commonly faced by the driver. It is now well 

established that the rate of fatal traffic accidents is 3 to 4 times higher at night than at daytime . 

It is established that under nighttime conditions many visual abilities such as spatial 

resolution, contrast discrimination, stereoscopic depth perception, accommodation, response 

and reaction time are degraded [1]. So that nighttime driving is a serious issue for more 

investigations, especially for the appearance of unexpected obstacles. This critical issue 

motivates us to discover what reactions happened in the human brain when a driver 

encountered the unexpected obstacle. Driver reactions to the sudden incidental appearance of 

an object such as a child rushing out may differ depending on the driver’s attention to the 

peripheral scene. A more complete understanding of the attentive mechanisms of the brain 

will improve driver responses and increase driving safety.  

For mental workload studies, when assessing workload in driving, as well as task 

demand, is an important loading factor. For example, the workload of freeway driving when 

operating a high-speed car should be assessed in terms of information processing load and 

time on nighttime driving. It must be noted that the consequences of task performance over a 

period, such as fatigue increment and vigilance decrement, has a complex relationship with 

the effects of task demand, when the demand is mainly mental. 

There are many studies in 1960s and 1970s dealing with the effects of time-on-task on 
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vigilance or sustained attention [2]. Some of these studies manipulated task demand such as 

event rate and described the change in performance over time-on-task [3]. 

In recent mental workload studies, on the other hand, the effects of time-on-task have 

been neglected. Jex defined mental workload as “the operator’s evaluation of the attentional 

load margin”[4]. Eggemeier defined it as “the degree of process capacity that is expanded 

during task performance”[5]; and Wickens wrote that “the concept of workload is 

fundamentally defined by this relationship between resource supply and task demand”[6]. 

There are several measures and assessment techniques that are said to be sensitive to mental 

workload. Among them are heart rate variability (HRV), event-related potentials (ERP), 

dual-task methods, and the two major rating scales known as the SWAT (the Subjective 

Workload Assessment Technique) and the NASA-TLX(Task Load Index). We take ERPs as an 

important measure for our investigation. 

K.Eba et al. introduced a real driving experiment to observe the brain activities related 

to driving situation [7]. In a car driving task with and without an unexpected dummy doll 

rushing out, they recorded the homodynamic activities of the frontal lobe by near infrared 

spectroscopy (NIRS). As a result, they concluded that the right rostromedial prefrontal cortex 

plays an important role in spatial attentive recognition of driving scene. By the improvement 

of driving simulation technology, we can use the driving simulation to save the time and costs.  

The use of driving simulation for vehicle design and driver perception studies is 

expanding rapidly. This is largely because how applicable driving simulation is to the real 

world is unclear, however analyses of perceptual criteria carried out in driving simulation 

experiments are controversial. Keneny and Panerai [8] suggested that, in driving simulators 

with a large field of view, longitudinal speed can be estimated correctly from visual 

information. On the other hand, recent psychophysical studies have revealed an unexpectedly 

important contribution of vestibular cues in distance perception and steering, prompting a 

re-evaluation of the role of visuo–vestibular interaction in driving simulation studies.  

 For the event related subjects, some specific features of EEG are expected to occur in the 

brain activities respecting to different situations. Moreover, the Event-Related Potential [9-11] 
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analysis has widely used for the EEG data processing. The interested target is called a single 

event within the experiments, thus the brain activities related to the event were extracted for 

further analysis. The key problem to perform such a work is the inability to dynamically 

quantify cognitive changes in the human capacity. A way to determine the relationship 

between different stimuli and human cognitive responses accompanying correct, incorrect and 

absent motor responses is the use of event-related brain potential (ERP) signals. Moreover, we 

concern about the unexpected obstacle dodging task related to the ERP response.  

There are some similar studies about incongruent cognitive state. In these studies, they 

proposed an incongruent situation to induce negative brain activities by visual or auditory 

stimulus [11]. The broad negative wave peaks in the surface EEG around 400 ms after a 

semantically incongruous word in a meaningful sentence [12, 13]. And there are also many 

studies proposed that the waveform can be elicited in response to semantic processing of 

non-verbal stories [14].  

 In our study, we want to investigate the EEG dynamics related to the unexpected obstacle 

dodging task. With combining the technology of virtual reality (VR), a realistic stimuli 

environment is provided to subjects in our research. A surprising task is provided to the 

subjects with a broken-down car appears in the middle of the road. The subjects are requested 

to dodge the broken-off car as soon as possible and dodge collision in the experiments. One of 

the main purpose of our research is to investigate EEG changes relate to surprising status by 

anglicizing the subjects’ EEG features corresponding to the With-Cue task and the 

Without-Cue task. Another is the classification of different driving style in unexpected 

obstacle dodging tasks. 

This thesis is organized as follow. In Chapter 2, the experimental design is introduced in 

first section, and the following section is about the experimental setup of hardware and 

software. In section three, the subjects and data acquisition are introduced here. In Chapter 3, 

we explore the analysis procedure by applying ICA, power spectrum analysis, and correlation 

coefficient.  The experimental results of EEG signals are described in Chapter 4. Detailed 
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discussions of our experimental results are given in Chapter 5. Finally, the conclusions are 

summarized in Chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5

 

Chapter 2  Experimental Design and Setup 

 

The main purpose of our research is to investigate the EEG features correlated surprising 

status. As we have mentioned in Chapter 1, the previous studies of incongruent context were 

focused on semantics [11-18]. With combining the technology of virtual reality (VR), a 

realistic stimuli environment is provided to subjects in our research. The experimental setup is 

shown in Fig. 2-1. In our experiments, subjects are asked to sit in front of a monitor with their 

hands on the steering wheel to control the car in the VR scene. A 30-channel EEG electrode 

cap was mounted on the subject’s head and a 2-channel electrodes was put at the middle of the 

chest to record the physiological EEG, EOG and EKG signals. The physiological signals and 

the event data from the scene are then send through the Neuroscan biomedical signal 

amplifier to the data acquisition laptop. 

Fig. 2-1. Block diagram of the virtual-reality (VR)-based driving simulation environment and 

physiological signal acquisition. 

30-Channel EEG 
2-Channel EKG 

Data 
Acquisition

VR Server 
Driving trajectory 
and Steering Deviation 

Experimental Scene 
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2.1  Virtual Reality(VR)-Based Environmental Setup 

In this study, the VR scene was generated by the Virtual- Reality technology with a WTK 

library as showing in Fig. 2-2. Firstly, the 3DS-max is used to build three-dimensional models 

accurately for a true system (such as the road) and to define the parameters of each model 

(such as the width of the road). Then, the C program including the WTK library is used and its 

library function is called up to move the three-dimensional models. The 3DS-man software is 

popular graphic software to create a three-dimensional model. The WTK library is an 

advanced cross-platform development environment for high-performance, real-time and 

three-dimensional graphics applications. 

 

Fig. 2-2. Flowchart of the VR-based highway scene development environment. The dynamic 

models and shapes of the 3D objects in the VR scene are created and linked to the WTK 

library to form a complete interactive VR simulated scene. 

The VR scene was displayed on a color XVGA 42” Plasma Display Panel (PDP) to 

simulate a night driving scene on freeway. The subjects are asked to sit in front of the PDP 

with the distance 60cm between subject and displayer.  

The freeway VR scene we used in this research includes four lanes from left to right of the 

road. The distance from the left side to the right side of the road is equally divided into 256 
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points (digitized into values 0-255), where the width of each lane and the car are 60 units and 

32 units, respectively. The frame rate of the scene changes as the driver is driving at a fixed 

velocity of 120 km/hr on freeway. The subjects are asked to keep the car in the VR scene in 

the middle of the third lane (left-counting). Furthermore, the angle of the steering wheel is 

considered as an important issue in this research, which indicates the dynamic response of 

subjects. The steering angle is recorded at the same time. The angle range of the steering 

wheel we used in the experiments is -120 ﾟ~120 ﾟ, as shown in Fig. 2-3. 

 

 

 

 

 

 

Fig. 2-3. The range of steering angle. 
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2.2  EEG Signals Acquisition 

2.2.1 Subjects 

Ten healthy volunteers (including seven males and three females) with no history of 

gastrointestinal, cardiovascular, or vestibular disorders participated in the experiment of the 

motion-sickness study. They were requested not to smoke, drink caffeine, use drugs, or drink 

alcohol, all of which could influence the central and autonomic nervous system for a week 

prior to the main experiment. Screening confirmed that subjects were free of past or current 

psychiatric and neurological disorders. Three subjects’ EEG data were excluded for further 

analysis because of the unexpected artifacts (ex: severe head shaking) within the data. A total 

of seven subjects (one female and six males, ages from 21 to 26, all right-handed) with 

normal or corrected normal vision participated in the VR-based unexpected-incident driving 

experiment where EEG signals were simultaneously recorded. 

 

2.2.2 EEG Signals Acquisition 

An electrode cap is mounted on the subject’s head for signal acquisition on the scalp. A 

standard for the placement of EEG electrodes was proposed by Jasper in 1958, which is 

known as the 10-20 International System of Electrode Placemen was used in one experimental 

cap. An illustration of the 10-20 system is shown in Fig. 2-4. 
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Fig. 2-4. The scalp map of 10-20 International System of Electrode Placement. 

 

 

All channels were referenced to the reference channel (behind the right ear) with the 

input impedance 5 kΩ. The EEG data were recorded with 16-bit quantization level at a 

sampling rate (SR) of 500 Hz. The data is recorded by the Scan NuAmps Express system 

(Compumedics Ltd., VIC, Australia). A 500-pt high pass filter with a cut-off frequency at 1 

Hz is used to remove breathing artifacts. The width of the transition band of the high pass 

filter is 0.2 Hz. A 30-pt low pass filter is then applied to the signal with the cut-off frequency 

at 50 Hz to remove muscle artifacts and line noise. The transition band width of the low pass 

filter is 7 Hz. The Independent Component Analysis (ICA) [19-26, 27-28] is also applied to 

the EEG signal to remove the artifacts including eye movement or blinking more detailed will 

be discussed in Section 3.4.. 
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2.3  Experimental design 

 

The fatality rate of nighttime driving accidents is much higher than that in daytime 

because the driver’s abilities of vision, vehicle control are obviously declined in nighttime. 

The response time of the drivers will also be slow due to the range of visibility is diminished 

in nighttime. It becomes extremely dangerous in some situations, such as the appearance of an 

unexpected obstacle in the middle of the road. The VR scene in our experiment is design on 

the freeway in nighttime, as shown in Fig. 2-5.  

 The subject is asked to control the simulated car in the VR scene with the steering 

wheel and keep the car in the middle of the third lane. A surprising task is provided to the 

subjects with a broken-down car appears in the middle of the road. The subjects are requested 

Fig. 2-5. The experimental scene. 
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to dodge the broken-off car as soon as possible and dodge collision in the experiments. Two 

different tasks are designed for the further EEG investigation; they are the Without-Cue task 

and With-Cue task. In the Without-Cue task, the unexpected broken-off cars will appear 

randomly in front of the simulated car appeared without any cue. By contrast, an exclamation 

mark will appear before the broken-off car in the With-Cue task, to reduce the surprising level 

to subjects. One of the main purpose of our research is to investigate EEG changes relate to 

surprising status by anglicizing the subjects’ EEG features corresponding to the With-Cue task 

and the Without-Cue task.  

As long as the status of surprising which is a natural response without any expecting 

effect will be investigated in this study,. Thus, the Inter-trial intervals (ITIs) are set from 10 to 

30 seconds, and differ from trial to trial randomly to dodge the anticipating effect of subjects. 

The experimental setting is given in Fig. 2-6. 

Fig. 2-6. Experimental setting. 

 

    Each subject participated in three nighttime driving experiments in three different days. 

The experiments start from a 1~5 minutes training session and follows by two 30-min 

sessions including a 5 min break between these two experiments . The EEG signals as well as 

the steering angle trajectory are recorded synchronously during the experiments.  

The exclamation mark is designed to provide a simple hint to subjects before the 

broken-off car appears in the With-Cure task. The position of the exclamation mark is shown 

in Fig. 2-7(a). 
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(a) (b) 

Fig. 2-7. The VR scene in the With-Cue task. 

  

(a) (b) (c) (d) (e) 

 

(f) 

Fig. 2-8. Ground plane representation of the ” with-cue” task. 

! 
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The durations of the cue and the unexpected obstacle appearance are 1 sec and 600ms, 

respectively. The sketch map of the With-Cue task is given in Fig. 2-8. The green cars in the 

figure are the simulated car which control led by the subjects, and the red cars are the 

broken-off car park on the road. The subjects are asked to control the car with the steering 

wheel to dodge the broken-off car and to keep the car in the middle of the third lane.  

In Fig. 2-8(a), the cue appears on the VR scene to provide a hint. After the appearance of 

the cue, a broken-off car appears in the middle of the road it lasting and last for 600 ms as 

shown in Fig. 2-8(b). The subjects are asked to dodge the broken-off car and to drive the car 

back to the third lane after dodging, as shown in Figs. 2-8(c), (d) and (e). The schema of the 

time arrangement is shown in Fig. 2-8(f). 

     

(a) (b) (c) (d) (e) 

(f) 

Fig. 2-9. Ground plane representation of the ” without-cue” task. 
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By contrast, there is no hint for the obstacle in the Without-cue task. The subjects have to 

response to the situation immediately when they see the broken-off car. The design of the 

experiment protocol is given in Fig. 2-9. The surprise-related ERPs are expected to occur in 

the Without-Cue task. Thus the EEG signal within the green broken line in Fig. 2-9 is the 

interested target which is extracted for further analysis procedure. 

In a view of different personalities of drivers, let us then consider the different driving 

styles of drivers. In our experiments, the driving trajectory and steering angle are also 

recorded. According to these driving indices, we can take this advantage to identify the 

driver’s driving trajectory. And the driving style of one driver, moreover, can be classified 

into two standard styles as following figure.  

 

 

Fig. 2-10. Driving Trajectory Types 
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Chapter 3  EEG Data Analysis 

 

Two analysis procedures are proposed in this thesis to investigate the EEG relates of 

surprising status and driving style. The analysis methods which used in the procedure are 

firstly introduced in this chapter, followed by the proposed analysis produces. Independent 

Component Analysis (ICA) is used to decompose the sources in the EEG data. ICA combined 

with power spectrum analysis and correlation analysis is employed to investigate EEG 

activity related to surprising level and driving style. 

 

3.1  Independent Components Analysis (ICA) 

The joint problems of EEG source segregation, identification, and localization are very 

difficult since the EEG data collected from any point on the human scalp includes activity 

generated within a large brain area, and thus, problem of determining brain electrical sources 

from potential patterns recorded on the scalp surface is mathematically underdetermined [26]. 

Although the resistivities between the skull and brain are different, the spatial smearing of 

EEG data by volume conduction does not involve significant time delay and suggests that the 

ICA algorithm is suitable for performing blind source separation on EEG data by source 

identification from that of source localization. We attempt to completely separate the twin 

problems of source identification and source localization by using a generally applicable ICA. 



 16

Thus, the artifacts including the eye-movement (EOG), eye-blinking, heart-beating (EKG), 

muscle-movement (EMG), and line noises can be successfully separated from EEG activities. 

The ICA is a statistical “latent variables” model with generative form: 

)t()t( sAx = ,                                 (1) 

where A is a linear transform called a mixing matrix and the iS  are statistically mutually 

independent. The ICA model describes how the observed data are generated by a process of 

mixing the components iS  . The independent components iS  (often abbreviated as ICs) are 

latent variables, meaning that they cannot be directly observed. Also the mixing matrix A are 

assumed to be unknown. All we observed are the random variables ix , and we must estimate 

both the mixing matrix and the ICs iS  using the ix . 

    Therefore, given time series of the observed data T
N txtxtxtx ])()()([)( 21 ⋅⋅⋅=  in 

N-dimension, the ICA is to find a linear mapping W such that the unmixed signals u(t) are 

statically independent. 

                           )t()t( xWu = ,                                  (2) 

Supposed the probability density function of the observations x can be expressed as: 

                          )(p)det()(p uWx =  ,                           (3) 

the learning algorithm can be derived using the maximum likelihood formulation with the 

log-likelihood function derived as: 
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Thus, an effective learning algorithm using natural gradient to maximize the log-likelihood 

with respect to W gives: 
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where the nonlinearity 
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and WW T
 in Eq. (5) rescales the gradient, simplifies the learning rule and speeds the 

convergence considerably. It is difficult to know a priori the parametric density function )(up , 

which plays an essential role in the learning process. If we choose to approximate the 

estimated probability density function with an Edgeworth expansion or Gram-Charlier 

expansion for generalizing the learning rule to sources with either sub- or super-gaussian 

distributions, the nonlinearity )(uϕ  can be derived as: 
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Since there is no general definition for sub- and super-gaussian sources, we choose 

( )1) (-1,1) (1,2
1 NN)(p +=u  and )(hsecN)(p uu 2(0,1)=  for sub- and super-gaussian, 

respectively, where ),( 2σµN  is a normal distribution. The learning rules differ in the sign 

before the tanh function and can be determined using a switching criterion as: 

 
[ ]

⎩
⎨
⎧

−=
=

−−∝
 gaussian  -sub : 1

gaussian-super : 1   
 where,

i

i

κ
κ

∆ WuuuuKIW TT)tanh(
             (9) 

where 

 { } { } { }( )iiiii u)utanh(EuE)u(hsecEsign −= 22κ                       (10) 

is repeats the elements of N-dimensional diagonal matrix K. After ICA training, we can obtain 

30 ICA components u(t) decomposed from the measured 30-channel EEG data x(t). 
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            (11) 

Fig. 3-1 shows the scalp topographies of ICA weighting matrix W corresponding to each 

ICA component by spreading each wi,j into the plane of the scalp, which provides spatial 

information about the contribution of each ICA component (brain source) to the EEG 

channels, e.g., eye activity was projected mainly to frontal sites, and the drowsiness-related 

potential is on the parietal lobe to occipital lobe, etc. We can observe that the most artifacts 

and channel noises included in EEG recordings are effectively separated into ICA components 

1 and 3 in Fig. 3-1. 

 

Fig. 3-1. The scalp topographies of ICA weighting matrix W. 

 

Eye-blinkin Eye-movement

, 
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3.2  Power Spectrum Analysis 

Analysis of changes in spectral power and phase can characterize the perturbations in the 

oscillatory dynamics of ongoing EEG. Applying such measures to the activity time courses of 

separated independent component sources avoids the confounds caused by misallocation of 

positive and negative potentials from different sources to the recording electrodes, and by 

misallocation to the recording electrodes activity that originates in various and commonly 

distant cortical sources. The spectral analysis for each ICA component decomposed from 30 

channels of the EEG signals. The FFT processes for each ICA component data decomposed 

from 30 channels of the EEG signals and the processes are described as following. The 

sampling rate of EEG is 250Hz. The power spectrum density (PSD) of each ERP is evaluated 

with the spectral analysis process. The activity power spectrum of the ERP is calculat by 

averaging the PSDs. The ICA data power spectrum time series for each session consisted of 

ICA data power estimates at 50 frequencies (from 1 to 50 Hz). The same procedure of power 

spectrum analysis was applied to 30 EEG channels for comparisons.  

The input EEG signal is [ ]nx . And we can consider computing [ ]kX  by separating 

[ ]nx  into two (N/2)-point sequences consisting of the even-numbered points in [ ]nx  and the 

odd-numbered points in [ ]nx . n 

     2/
)2/(2)/2(22

N
NjNj

N WeeW === −− ππ       (12) 

The PSDs was calculated as following equations: 
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3.3  Correlation Analysis 

    In order to find the EEG dynamic between different subjects’ ICA components and EEG 

channel distribution, we computed the correlation coefficient between the time course of EEG 

channel signals and the concurrent changes in the ICA spectrum of EEG signals by using the 

Pearson Correlation Coefficient: 

 ∑ ∑
∑

−−

−−
=

22 )(*)(

)(*)(

yyxx

yyxx
Corrxy   ,                    (14) 

where Corrxy is defined as a statistical measure of the linear relationship between two random 

variables x and y, x  and y  is the expected value of x and y, respectively. 

 

3.4  The Procedures of EEG Data Analysis 

The main purpose of this research is to investigate the subject’s EEG response related to 

the unexpected obstacle dodging tasks. The unexpected obstacle is also called a single event 

within the experiments. Thus, the single-trial Event-related potential (ERPs) in with-cue tasks 

and without-cue tasks are extracted and collected for the further analysis ( Fig. 3-2). 

There are two analysis procedures designed for two different research topics: (1) the 

surprising status feature in the EEG signal. (2) The EEG features related to driving style of the 

driver when dodging the obstacle. The analysis procedures are given in the following sections. 
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Fig. 3-2. ERP Extraction from EEG Raw Data. 

 

3.4.1 Data Processing of Unexpected Obstacle Dodging  

The main purpose of this analysis procedure is to investigate the feature of 

surprise-related in human brain according to the ERP difference between the With-Cue and 

Without-Cue tasks.  

The proposed EEG analysis procedure to investigate the EEG changes related to 

different surprising status through analysis the ERP difference between the with-cue and 

without-cue tasks is shown in Fig. 3-3. The sampling rate of the 30-ch EEG signals is 250Hz. 

The EEG signals were filtered with a 1~50Hz band-pass filter for line noise and artifacts 

removal. The ERP extraction process in this study is -100 ms to 1000 ms respected to the 

onset of obstacle appearance. The extracted ERP are further send to the independent 

component analysis (ICA) for the source (or component) decomposition. The decomposed 

ICA components are used for artifact-component rejection, as shown in Fig.3-4. 
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The averaged With-Cue ERP and the averaged Without-Cue ERP are then calculated, 

respectively, as shown in Fig. 3-4. A subtraction operation is applied to evaluate the difference 

between the averaged With-Cue ERP and the averaged Without-Cue ERP. The surprise-related 

components can be evaluated according to the averaged ERP difference, as shown in Fig.3-5. 

 

 

Fig. 3-3. Signal processing flowchart of surprise status analysis. 
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Fig. 3-4. Independent component analysis and artifact-component rejection. 
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Fig. 3-5. Surprise-Related Components Selection. 

 

 

3.4.2 Data Processing of Driving Style Analysis 

The main purpose of this study is to distinguish the ERP responses related to a different 

driving style. The over-driving subjects are more nervous than under-driving subjects. A 

steering wheel can be well designed to compensate the over-driving drivers’ control for safety. 

The angle variations of steering wheel and the trajectories of car movement are used to 

identify drivers’ driving style in this study. Two typical driving trajectories are shown in 

Fig.3-6, including the over-driving trajectory and the under-driving trajectory.  
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Fig. 3-6. Two Typical Driving Styles. 

 

The data analysis procedure is given in Fig. 3-7. The driving trajectory and the steering 

deviation are first used for driving style identification. Then, the subjects are divided into two 

groups: (1) the under-driving drivers, (2) the over-driving drivers. The subjects’ EEG data 

computing to the Without-Cue tasks are used for this experiment. The Without-Cue ERPs 

respecting to the two types of driving style are extracted with is the [-500ms, 3000ms] interval 

respected the appearance of broken-off car. The ERPs are merged and analyzed with the 

independent component analysis (ICA) to decomposed ICA components for the feature 

analysis of subject’s driving style. 

    In Fig. 3-8, for each subject, power spectrum of each ICA component in each epoch 

is first calculated. The averaged power spectrum of each ICA component is then obtained by 

averaging the computing ICA power spectrum in all epochs. A total of 30 averaged power 

spectrum respecting to the 30 ICA components can be evaluated for each single subject as 

shown in Fig. 3-9. The significant component related to the driving style can be extracted 

according to the results presented in Fig. 3-9. 
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Fig.3-7. The Flowchart of Driving Style analysis (Process I). 
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Fig. 3-8. Evaluation procedure of averaged power spectrum for subject i of component j 

(Process II). 

 

 

Fig. 3-9. The evaluated averaged power spectrum. 
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Chapter 4  Experimental Results 

 

This chapter presents the experimental results observed in our study. Ten subjects 

participated in our experiments but only the EEG signals of seven subjects were analyzed 

following the proposed procedures. Since we reject three subjects’ recorded EEG signals due 

to noise influence. 

  

4.1  EEG Correlates of Surprising Status 

Many artifacts including eye movements, muscle activities, and line noise often distract 

the EEG recordings and should be removed to obtain the pure EEG signals. Here, independent 

component analysis (ICA) algorithm was used to separate artifacts in EEG signals based on it 

blind source separation capability. Fig.4-1 (a) shows all ICA component of subject 6 and 

Fig.4-1(b) shows all ICA component of subject 10 respectively. Artifact ICA components are 

circled in Fig.4-1(a) and Fig.4-1(b). The red circle relates eye blinking, the yellow circle 

relates channel noise, the green circle relates muscle movements, and the blue circle relates 

the eyes movements respectively. 
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(a) ICA components of Subject 6 (b) ICA components of Subject 10 

Fig. 4-1. ICA components of subjects 6 and 10. Red circle: Eye blinking; Yellow circle: Channel 

noise; Green circle: Muscle movements; Blue circle: Eyes movements. 

4.1.1 Results of ICA Decomposition Analysis  

From the time course condition analysis the ICA components in without-cue tasks, we 

may find common component of the seven subjects and the component areas are closely 

located in the CPz as shown in Fig.4-2. The scale map of ICA components presented in 

Fig.4-2 shows that six subjects 1, 6, 7, and 8 have the same ICA component located at CPz 

and the other subjects have the similar component at the near areas Cz and Pz.  

The contributions of the common ICA sources were then projected back to CPz EEG 

channel of Fig.4-3 shows the projection result of subjects. The projection amplitude of CPz 

has negative peak at about 300 ms for without-cue tasks and the projection amplitude of CPz 

has a negative peak at about 360 ms for the without-cue tasks. 
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4.1.2 Within-Subject Analysis 

Fig.4-4 plots the ERP image of subject 5 where common ICA component was projected 

to CPz channel. The ERP image is a rectangular colored image in which every horizontal line 

represents activity occurring in a single experimental trial (or a vertical moving average of 

adjacent single trials). Instead of plotting activity in single trials such as left to right traces, we 

encode their values with color codes. The color value indicates the potential value at each 

time point in the trial. By stacking above each other the color-sequence lines for all trials in a 

dataset, the ERP image is produced. The trace below the ERP image shows the average of the 

single trial activity, i.e. the ERP average of the imaged data epochs. The black line of this 

figure is reaction time of the subject. We define the reaction time as the moment when subject 

   

       

      

 

Subject 1 (CPz)  Subject 5 (Cz)  Subject 6 (CPz)  Subject 7 (CPz) 

       

 

  

 

     
Subject 8 (CPz)  Subject 9 (Pz)  Subject 10 (Pz)   

Fig. 4-2. The seven subjects have a common ICA component located at around CPz 

correlated to the without-cue tasks. 
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starts to steer the wheel dodge the unexpected obstacle. Fig.4-4 shows the projection 

amplitude of CPz corresponding to with- and without-cue tasks and we may find the major 

differences occurred at around 350 to 400 ms. From the ERP image, the EEG activity of each 

trial locked on the stimulus onset with negative potential we called this negative potential as 

N400. Since the source location is evoked at CPz channel not at occipital region. In addition, 

according to Fig.4-4(a), the magnitude of N400 at around 350 to 400 ms is proportional to the 

reaction time. These ERPs are not evoked by visual stimulus. It can be inferred that when the  

 

 

Fig. 4-3. Results of the common ICA component on CPz channel.  

 

(a) (b) 

Fig. 4-4. The ERP images of subject 5 in without- and with-cue tasks at CPz channel.
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surprising level is higher( reaction time is lonfer), the magnitude of N400 at around 350 to 

400 ms will larger. 

Fig.4-5 shows the EEG power spectrum activities of subject 5 at CPz channel. The above 

left scalp map shows the channel location on the cortex. The above right sub figure shows the 

overlapping ERP averages of subject 5. The blue line in it is the ERP average of without-cue 

tasks and red line for with-cue tasks. The below sub figure is the power spectrum of the ERPs. 

The magnitudes of corresponding to the without-cue tasks are higher than the magnitudes 

corresponding to with-cue tasks, this effects can also be observed in all subjects more 

discussions will be presented in the next chapter. 

 

Fig. 4-5. The EEG power spectrum of subject 5 at CPz channel corresponding to 

without-cue tasks and with-cue tasks. 

Fig.4-6 shows that the reaction time of average ERPs is 375 ms and amplitude is smaller 

with-cue, the reaction time of average ERPs is 433 ms and amplitude is larger with-cue. The 

reaction time was presented larger without-cue than with-cue from the same subject 5. 
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(a) (b) 

Fig. 4-6. The relationship between reaction time and amplitude in without-cue task. 

 

4.1.3 Cross-Subjects Analysis 

Statistical analysis was used in this study for all experiment to analyze N400 of CPz, Pz, or 

Cz from all subjects. The significant ERPs appeared on CPz, Cz, or Pz during simulation 

stimulus of obstacle on the scene. This phenomenon of subject responses demonstrated that the 

subjects drive in a monotonic simulation environment to run into an unexpected obstacle on the 

driving environment and respond in brain cognition from subject. The consistent of brain 

cognition N400 were appeared in this driving simulation experiment of without-cue task and 

the level of brain cognitions were different for every subject. 

The global difference in N400 peaking time is measured as average and is shown as 

Fig.4-7 The rectangle bar with blue color shows the average of three experimental periods of 

without-cue for each subject. This simple figure seeks to capture the fact that the peaking time 

of N400 in the with-cue task is slightly shorter (about 30~50ms) than in the without-cue task. 

It is clear that all subjects have the same phenomenon in our experiments.  

The Fig.4-8 shows the amplitude of trough wave without-cue and with-cue from fives 

subjects during driving simulation and the larger amplitude without-cue than with-cue is. On 
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account of the cue was presented in the simulation scene, it advantaged the driver reduce the 

surprising status level. 

 

Fig. 4-7. The peaking time changes between without- and with-cue tasks on source channel. 

 
Fig. 4-8. The amplitude changes between without- and with-cue tasks on source channel.  

 

 

4.2  EEG Correlates of Driving Styles 

In this section, we focus on the relationship between the EEG activity and the behavior 

of each subject’s driving style. Since the driving style is difficult to define; we indicate the 

driving style by the steering pattern of the subjects. Then we analysis the cross subjects EEG 
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characteristics related to the driving style corresponding to the different steering patterns.  

4.2.1 The Category of Driving Styles 

First of all, define the steering deviation pattern as the index of the driving style. 

According to the driving index (steering deviation) recorded in experiments, we can easily 

categorize two different driving styles. These two driving style are, (1) Over-driving and (2) 

Under-driving. Here we define the “over” as that the subject steer the wheel excessively as 

shown in Fig.4-9(a). He/she probably steers the wheel several times to direct the vehicle on 

the correct lane. This kind of subjects is called “Over-driving driver.”  The “Under-driving 

driver”, however, can steer the wheel much more careful, and the vehicle will go smoothly 

toward the correct lane as shown in Fig.4-9(b).  

 

Fig. 4-9. Different driving styles in unexpected obstacle dodging task : (a) Over-driving,  (b) 

Under-driving. 

4.2.2 Results of ICA decomposition Analysis 

The driving trajectory and the steering deviation are first used for driving style 

(a) 

Driving trajectory 

Unexpected obstacle 

(b) 
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classification. Thus, the subjects are divided into two groups: (1) the under-driving drivers, (2) 

the over-driving drivers. The Without-Cue ERPs respecting to the two types of driving style 

are extracted with the [-500ms, 3000ms] interval respected the appearance of broken-off car. 

The ERPs are merged and analyzed with the independent component analysis (ICA) to 

decomposed same ICA components (see Fig.4-10). The ICA components are further applied 

for the analysis of subject’s driving style. The averaged power spectrum is calculated by 

averaging the power spectrum. A total of 30 averaged power spectrum respecting to the 30 

ICA components can be evaluated for a single subject, as shown in Fig. 4-11. 

 

Fig. 4-10. The weighting matrix of ICA analysis for driving style classification. 
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Fig. 4-11. The component average power comparison. 

 

 

    Then we calculate the correlation coefficient of the power spectrum of different ICA 

components corresponding to two different subjects for under-driving and over-driving, 

respectively, 

),( 61
jjj

drivingunder PSDPSDcorrcoefR =−                      (14) 

),( 85
jjj

drivingover PSDPSDcorrcoefR =−                       (15) 

where j indicate the independent component, j
iPSD  represents subject i’s power spectrum of 

ICA component j. The averaged power spectrum of different ICA component 

Eqs.((16)and(17)) can be calculated by: 

),( 61
jjj

drivingunder PSDPSDavgPSD =−                        (16) 
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),( 85
jjj

drivingover PSDPSDavgPSD =−                         (17) 

For component j, if 8.0>−
j

drivingunderR  and 8.0>−
j

drivingoverR  and the correlation coefficient 

between 
j

drivingunderPSD −  and 
j

drivingoverPSD −  is smaller than 0.5, this component is selected as 

an significant component related to driving style. According to the analysis, the 4th component 

shown in Fig.4-10 is selected as the significant component. 
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Chapter 5  Discussions 

 

Some significant properties and observation of surprise-related ERP are further discussed 

in this chapter, including the level of surprising status driving style and the corresponding 

inference source regions.  

5.1  The Relationship between EEG Changes and 
Surprising Status 

In the present study, we measure brain potentials while subjects drive a car on the 

freeway with an unexpected incoming incident as an obstacle. It was expected that the 

subjects were being surprised. In our investigation, we observed that the surprising status is 

similar to the incongruently cognitive processing in the human brain. In many other studies, 

an N400 was evoked by the semantic incongruent experiment [12-15, 17]. Several studies 

have shown that incongruent words elicit a negative ERP component peaking around 400 ms 

after stimulus presentation [14-18]. Normally, N400s to words are reduced in amplitude upon 

repetition thus indicating the generating cerebral structures participate in memory processes.  

ERPs have been examined to pictures in sentence contexts using the anomalous sentence 

task in which the N400 was originally observed. In addition to this, there are also many 

studies shown that anomalous final pictures and anomalous final words generated a larger 

N400 than congruous final pictures and words. Also, the time courses of the effects were 

similar for both pictures and words. The effects for pictures displayed a different scalp 

distribution than the effects for words. Specifically, the N400 congruity effects at occipital and 

parietal sites were larger for words than for pictures. Conversely, the N400 congruity effects 
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at frontal sites were larger for pictures than for words. These results suggest that the N400 

reflects a semantic processing mechanism that is functionally similar for pictures and words. 

However, the brain regions responsible for the storage and processing of semantic 

representations for pictures and words may be partially non-overlapping, resulting in slightly 

different scalp distributions. 

In our study, the N400 was evoked by an unexpected obstacle dodging task. The 

simulation that a subject drives on the freeway with unexpected obstacle’s appearance is 

similar to a subject listen to a sentence with incongruous final word. Therefore it is reasonable 

that the N400 potentials will occur in our experiments. This also leads us to consider the 

relationship between N400 potential and surprising status. The level of surprising status can 

be measured by the power of N400 potential? More discussion will be presented in the 

following sections. 

5.1.1 Surprising Status Influence Region on Human Cortex  

So far, we have seen how the N400 potential occurs in various categories of investigation. 

The time course of these N400 effects closely paralleled the N400 effects observed in 

analogous with the word tasks. However, the scalp distributions are different. The N400 

relatedness effect for pictures was largest over the frontal midline site (Fz) rather than 

posterior sites and showed no difference between related and unrelated targets over occipital 

sites as shown in Fig.5-1(a). In contrast, the N400 for words typically has a centro-parietal 

maximum as shown in Fig.5-1(b), but has occasionally been found to have a more anterior 

distribution. These discoveries corroborate the hypothesis that words and pictures are 

activating at least partially non-overlapping semantic systems. In our experiments, among all 

seven subjects, the N400 for unexpected obstacle dodging task was largest over the 

centro-parietal midline site (CPz), but has a more anterior for subject 5 and posterior for 
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subject 9 and 10 as shown in Fig.5-2.  

  

(a) (b) 

Fig. 5-1. The N400 Distribution in Incongruent Experiments  

 

 

Fig.5-1. The N400 Distribution on Scalp Map Induced by Our Experiment. 

 

The functional and temporal similarities but spatial variability of the N400 suggests that 

the N400 may involve contributions from multiple brain areas that perform analogous 

Subject 1, 6, 7, 8
Subject 5 
Subject 9, 10 
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cognitive operations on different types of input. The hypothesis that the N400 has multiple 

underlying subcomponents is supported by findings from intracranial recordings that show 

N400-like modulations in multiple brain areas, including medial and lateral temporal lobe, 

hippocampus, and ventrolateral prefrontal cortex. The N400 may, in fact, reflect an modal 

semantic process in which information from a variety of sources is integrated into a 

higher-level conceptual representation. 

5.1.2 Surprising Level Correlates Without-Cue Condition 

We can represent the potential of the N400 diagrammatically in Fig.5-2. It reveals all the 

experimental results of the conditions in total 15 time experiments (three experiments for each 

subject). For the present, we shall confine our attention to the potential changes between with- 

and without-cue tasks. As shown in this figure, the amplitude of each experimental result 

indicates the potential level for each subject. The higher amplitude represents more significant 

in level of the surprising effects.  

 

Fig. 5-2. The average power change between subjects. 

Experiment 3 

Experiment 2 

Experiment 1 
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According to the statistics from upon table, the N400 potentials of the without-cue tasks 

are marked higher level than with-cue tasks with a percentage of 71.4% in all experiment. It is 

not too far from the truth to say that the driver is in a higher surprising level in the 

without-cue tasks than the subject is in the with-cue tasks. We have sufficient reason to think 

that the level of surprising status can be reduce by a simple warning signal or sign just like the 

cue we presented in the with-cue tasks. And then the driver could drive more safely and 

control the vehicle steadily. Another result shows that the variation of surprising level of the 

same subject in different experiment about 23%.  

 

 

5.1.3 Reaction Time Variations in Subject’s Surprising Level 

The surprising status differed between without- and with-cue tasks, and once that is 

understood, we are in a better position to evaluate the internal differences in both tasks. Now 

we are also interested in the relationship between the surprising status and subjects’ reaction 

time. This will lead us to consider the mutual mechanism between surprise and reaction. We 

assume that the higher surprising level will cause the subject in shock, such that the reaction 

time delayed. This was the general opinion from our experimental design in the beginning, 

and we had some prove for this in the Table 1. First we separated all the trials of one subject 

equally into two parts. One is the fast reacting part with half of the trials, and the other is slow 

reacting part includes the remaining trials. We called the first part as “Short-RT” and the other 

part as “Long-RT”. In this table, it shows it N400 amplitude increase directly, the reaction 

time will delay in reaction. In a 71.4% of sessions shows a positive correlation of trend. We 

can say with fair certainty that the surprising status influence the subjects’ reaction speed. It 

should be concluded, from what has been said above, that the level of surprising status can be 

measured through N400 potential.  
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Table 1 : The Relationship between Surprising Status and Reaction Time 

 N400 Amplitudes (μV) Trend N400 Amplitudes (μV) Trend 

 Without-Cue   With-Cue   

 Short-RT Long-RT  Short-RT Long-RT  

Subject 1 8.9 9.2 + X X X 

Subject 5 10.08 12.1 + 7.1 12.2 + 

Subject 6 5.1 9.4 + 4.9 6.1 + 

Subject 7 3.3 6.2 + 2.2 7.3 + 

Subject 8 4 2.3 - 2.1 3 + 

Subject 9 7.5 4.8 - 1.9 2.2 + 

Subject 10 -3.9 -6.2 + X X X 

+ : positive correlation ;  - : negative correlation ;  X : Undefined    

 

 

5.1.4 The Power Increasing of 2Hz and 6Hz at Centro-Parietal 
Midline 

Having observed the differences of EEG signals between the two tasks, we go on to the 

EEG power spectrum analysis. We calculated the power spectrum of the CPz channel where 

was projected from the N400 ICA component. According to Table 2, some of the frequency 

bands 2~3 Hz and 6~7 Hz had power increasing in higher surprising status such as the 

without-cue task.  It can also be found that the power of 6~7Hz band has increased in all 

subjects as shown in Table 2. According to the results, it is possible to build up a hypothesis 

about the measurement of surprising level my taking the power increasing as a useful index 

for the driver’s surprising status estimation.  
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Table 2 : The Power Increase of Specific Band 

 Power Increase at CPz Channel 

 2~3Hz 6~7Hz others 

Subject 1 + + 10Hz 

Subject 5 + + 10Hz 

Subject 6 + +  

Subject 7 X +  

Subject 8 X + 30Hz 

Subject 9 + + 20Hz ,30Hz,40Hz 

Subject 10 + + 10Hz 

+ : power increase ;  X : no significant changes 

 

 

5.2  Driving Style Classification by EEG Signal Analysis 

We also attempt to observe the relationship between driving style and driver’s EEG. 

Although a large number of studies have been made on driving behavior, little is known about 

the relationship to the EEG signals [29]. As we mentioned before, the driving style is 

complicated to signify. We would like to focus attention on the steering style of subjects. In 

our investigation, the principal task of experimental design is to dodge the unexpected 

obstacle. At the same time the behavior data has been recorded as steering deviation per frame. 

After the comparison between steering deviation and driving trajectory, we can easily 

recognize as two type of driving styles shown in Fig.4-13. We can see the power difference at 

10Hz and 20Hz between Over- and Under-Driving drivers as shown in Fig.5-3. The blue line 

shows the power increase of over-driving drivers at 10Hz and not increase at 20Hz. However, 

the under-driving drivers are totally different, the power increase at 20Hz instead of 10Hz that 

we can observe from the following figure. Moreover, there is a detail power spectrum as 

shown in Fig.5-4.  
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Fig. 5-3. The comparison waveform of ERP power spectrum 

  
(a) subject 1 (b) subject 6 

  

 (c) subject 5               (d) subject 8 

Fig. 5-4. Power spectrum of the ICA component 4 
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Chapter 6  Conclusions and Future Work 

 
Driving safety is concerned as an important issue in nowadays. Driving at night is one 

of the most hazardous situations commonly faced by the driver. It becomes extremely 

dangerous in some situations, such as the appearance of an unexpected obstacle in the middle 

of the road. The surprise-related feature of ERP signals were successfully discovered 

according to our experimental results. The N400 component has been observed in without-cue 

tasks and with-cue tasks. Furthermore, the level of surprising status can be evaluated with the 

amplitude of the averaged surprise-related ERP. The length of the reaction time is also 

proofed highly related to the level of surprising status. An extension analysis of driving style 

was further applied to the experiment. The difference of ERP power spectrum was resulted 

respecting to different driving styles. The driving style of the over-driving subjects is much 

unstable when comparing with the under-driving subjects. A well-designed steering wheel can 

be designed to compensate the over-driving drivers’ control for the sake of safety.  
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