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A practical design for a robust fault detection and isolation system

DAW-SHANG HWANGt, SHAO-KUNG CHANGt and PAu-Lo Hsut§

Based on a development for the unknown input observer (U I0) design, this paper
presents a straightforward method of designing a robust fault detection and isolation
(FDI) system for uncertain systems with unknown inputs. By exploiting the properties
of a nominal model structure, we form a basic set of residuals which is independent of
the unknown input but is dependent on the measurements. Then, with this basic residual
set, we append a dynamic weighting matrix to the residuals to increase the design
freedom for meeting the required detection and isolation performance. Additionally, a
generalized residual generator scheme (GRGS) is proposed to synthesize the parity
relations for the isolation offaulty sensors in an uncertain system. The proposed strategy
is verified throuqh simulation studies performed on the control of a vertical take-off and
landing (VTOL) aircraft in the vertical plane.

I. Introduction

The performance of a model-based fault detection and
isolation (FDI) system depends heavily on the accuracy
of the mathematical model. An accurate mathematical
model of the process, however, is never available because
the process is usually nonlinear in nature and its
parameters are varying with time. Moreover, the
characteristics of disturbances and noise of the system
are also unknown so they may not be modelled at all.
These difficulties in modelling certainly cannot be well
covered in a linear model with constant parameters
employed for model-based FDI design. The discrepancy
between the mathematical model and the actual process
is known as modelling error or model uncertainties, and
it may causes false alarms and deteriorate the performance
of the model-based FDI system to such an extent that,
the FDI system may even become totally useless.
Therefore, to design a robust FDI system in the sense
that the fuction of FDI can be insensitive to model
uncertainties is a key issue in model-based FDI
techniques. Recently, robust approaches to fault diag­
nostic systems have gained much attention, as reported
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by Watanabe and Himmelblau (1982), Viswannadham
and Srichander (1987), Frank and Wiinnenberg (1989),
Patton et al. (1989), Saifand Guan (1993), Frank (1994).

The 'unknown input decoupling' approach is an
important robust technique for FDI. In this approach,
according to structured uncertainty concepts, most
unknown uncertainties such as modelling error and the
disturbances to a system are modelled as unknown input,
and their structural characteristics are summarized in the
unknown input distribution matrix. Based on this
assumption, one desires to make the residual indpendent
of all unknown inputs to obtain a robust FDI. Unknown
input decoupling designs can be achieved by using the
unknown input observer (UIO) (Watanabe and Him­
melblau 1982, Viswannadham and Srichander 1987,
Frank and Wiinnenberg 1989, Saifand Guan 1993, Frank
1994, Chang and Hsu 1995) or eigenstructure assignment
(Patton and Kangethe 1989, Patton and Chen 1993,
1994). Such designs generally involve considerable
computational complexity. In this paper, by considering
a linear system with unknown inputs, we first derive an
equivalent system free of unknown inputs for residual
generator design. Then, based on the equivalent system
description, one can form a basic residual generator in
which unknown inputs are perfectly decoupled. With this
basic residual generator, we append a dynamic weighting
matrix to increase the design freedom and to meet the
required detection and isolation performance. The
proposed design is more straightforward and simpler
than methods based on UIO or eigenstructure assign-
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266 D.-S. Hwang et al.

where

system is

yes) = Gu(s)u(s) + Gis)d(s) + Gj(s)f(s), (2)

A residual generator is a dynamic system which can be
written in the following general form

(3)res) = H.(s)u(s) + H,(s)y(s),

Gu(s) = C(sl - A)-l B

Gis) = C(sl - A)-l E

Gf(s) = C(sl- A)-lK + G.

2.2. Robust parity relations[rom the state-space model

In the unknown input observer design, a necessary
condition for unknown input decoupling is that

(D1) r(t)=O iff(t)=O

(D2) r(t)"# 0 if f(t) "# 0

res) = [H,(s)G.(s) + Hu(s)]u(s) + Hy(s)Gd(s)d(s)

+ H,(s)Gf(s)f(s). (4)

Ideally, the residual is designed to satisfy

for all u(t) and d(t). To fulfil these requirements, Hu(s)
and H,(s) must satisfy

~W=-~W~~ (5~

Hy(s)Gis) = 0 (5 b)

[Hy(s)Gf(s)],,= [Hf(s)],"# 0, i = 1,2, ... , q, (5 c)

where [Hy(s)Gj(s)], denotes the ith column of H/s)Gj(s)
and Hf(s) is equal to H/s)Gf(s). Equation (5 a) ensures
that the residual generator is independent of the input
signal u(t). Equation (5 b) implies that the unknown input
is totally decoupled from the residual. If a residual
generator satisfies (5 b), we call it an 'unknown input
insensitive residual generator'. Equation (5 c) guarantees
that the residual is controllable by the fault vector f(t);
in other words, the fault is detectable by monitoring the
residual. Unknown input decoupling designs can be
achieved by using the unknown input observer or
eigenstructure assignment techniques. Alternatively, we
present a direct way in the following to synthesize an
unknown input insensitive residual generator using the
state-space relations.

where H.(s) and Hy(s) are transfer matrices that should
be 'realizable using stable linear systems. Note that (3) is
called the computation form of the residual generator,
since it contains the measurables. By substituting yes) of
(2) into (3), we have the following residual equation

2. Robust residual generation

2.1. Basic concepts oj robust residual generation

We consider the state-space model of a dynamic system
with input vector u (u E R") and output vector y (y E R'")
as

.i(t) = Ax(t) + Bu(t) + Ed(t) + Kf(t) (I a)

y(t) = ex(t) + Gf(t), (I b)

where x E R" is the state variable, f e Rq represents the
effect of actuator faults, component faults, and sensor
(instrument) faults, Kf(t) and Gf(t) model the actuator,
component, and sensor faults with the distribution matrix
K and G whose clements depend on how the actuators,
or the components, or the sensors are mounted in the
system. dE R' characterizes the uncertainties implicit in
the system. The term Ed(t) models the system disturbance
either in structured form or unstructured form (Watanabe
and Himmclblau 1982, Frank and Wiinnenberg 1989).
Recently, an identification procedure has been considered
to identify the constant E matrix and use the Ed(t) to
summarize the effect of unstructured modelling errors.
Patron and Chen (1993) proposed a useful method for
computing the unknown input distribution matrix E for
practical large-scale nonlinear plants by re-identifying
plant parameters from different operating points to
achieve the E matrix.

Based on (I) the input-output description of the

mcnt. In addition to fault detection, fault isolation is
also crucial in a diagnostic system when faults occur in
difTerent sectors of the system, e.g. in different sensors,
actuators, or components. It is desirable that the residuals
generated by the diagnostic system have a structured or
fixed-directional form to achieve fault isolation (Gertler
1993, Patton and Chen 1994). The associated isolation
problem is also treated in this paper. Here, we adopt the
proposed technique in accordance with the concept of a
fault identification filter (FIDF) (Chang et al. 1995) to
design an actuator fault detection filter for a vertical
take-off and landing (VTOL) aircraft, in which simul­
taneous isolation for multiple actuator failures is
achieved. In addition, a generalized residual generator
scheme (G RGS) to synthesis the parity relations for the
isolation of a faulty sensor for that aircraft is also used
to demonstrate the validity of the proposed strategies.

The following notation will be used in this paper:
II ,= b means II denotes b. R ,= the field of real numbers;
C ,= the field of complex numbers. R[s] ,= the ring of
polynomials in s with real coefficients. C + ,= {s E C I
Re (x) 2 O}; C_ ,= {s E C] Re (s) < O}; Z[P] ,= the zeros
of the polynomial P. J = LCM {g, h} ,= J(s) is the monic
least common multiplier of g(s) and h(s); i.e, J(s) has its
leading coefficient equal to I, glJ and hi!
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A robust fault detection and isolation system 267

where

e(s) = Ly(s)y(s) - L.(s)u(s) (14 a)

= LJ(s)f(s). (14 b)

Evidently, (12) must hold when it is evaluated using the
actual measurement data u(t) and yet). A basic unknown
input insensitive residual generator is then simply formed
as

Now, the residual generator design amounts to selecting
the transformation matrix W(s) so that the residual
generator is stable and the residual r(t) can possess
desirable properties for diagnostic performance. Rewrite
(15) in a scalar residual form

(15 a)

(15 b)

(15 c)

(16 a)

(16 b)

res) = W(s)e(s)

= W(s){Ly(s)y(s) - L.(s)u(s)}

= W(s)L J(s)f(s).

ri(s) = WTcs){ LyCs)y(s) - L.(s)u(s)}

= WTcs)LJ(s)f(s),

L.(s) = (1m - CE(CE)+) - Ctsl; - A)-IAE(CE)+

(13 a)

L.(s) = C(sI. - A)-1 B (13 b)

LJ(s) = (1m - CE(CE)+)G + C(sI. - A)-I

X (K - AE(CE)+G). (13 c)

Note that (14 a) is the computational form (containing
the measurables), while (14 b) is the internal form
(containing the faults). By (14), the derived parity
equations are now insensitive to the unknown input.
However, a drawback to the use of (14 a) is that it will
result in an unstable residual generator when the
monitored system is unstable. To increase the design
freedom and to meet the required isolation and robust
performance, we use a dynamic weighting matrix W(s)
to weight (or transform) the previous residual. That is,
further equations (residuals) can be generated from (14)
by applying a linear transformation as

where r, is the ith element of the residual vector res), and
Wi(s) E R 1Xm(s) is the ith row of W(s). We decompose
the denominators of the entry (i,j) of Ly(s), L.(s) and
LJ(s) into the following form

L = [ Nyu(s) ] L = [ N.ue.~) ]
y DYU-(s)Dyij+(s)' • D.u-(s)D.ij+(s)

where

Defining a new state vector as

x(t) = Ax(t) + Bu(t) + K.r(t) + E(CE)+j(t)

- E(CE)+Gj(t), (9)

A = A - E(CE)+CA, B = B - E(CE)+CB,

K = K - E(CE)+CK. (10)

Ed(t) = E(CE)+ {jet) - CAx(t) - CBu(t)

- CKf(t) - Gf(t)}. (8)

Thus, by (6), we can estimate the unknown input effect
Ed(t) by the following equation:

z(t) = x(t) - E(CE)+y(t) - E(CE)+Gf(t),

Substituting (8) into (I a), we arrive at the following state
equation independent of the unknown input

i(t) = Az(t) + Bu(t) + [K - AE(CE)+G]f(t)

+ AE(CE)+y(t) (II a)

yet) = Cz(t) + CE(CE)+y(t) + (1m - CE(CE)+)Gf(t).

(II b)

jet) = CAx(t) + CBu(t) + CEd(t) + CKf(!) + Gf(t).

(6)

rank (CE) = rank (E) (Yang and Wilde 1988). This
means that to implement an observer that is insensitive
to unknown input, specific state variables must be
measured or at least appear as a part of the output.
Therefore, in the following we assume that rank (CE) =
rank (E). We also assume that the number of sensor
output equations m is greater than the number of
unknown inputs I' in order to be sure a priori that the
system has at least one redundancy equation.

Consider the state-space model of (I). jet) is obtained
by substitution as

Since CE has full column rank, the Moore-Penrose
generalized inverse matrix (CE) + can be obtained by
(Campbell and Meyer 1979)

(CE)+ = [(CE)T(CElr'(CE)T. (7)

which leads to the following state-space equations free
of unknown inputs for the monitoring system

The input-output equation corresponding to (I I) can be
further obtained as

LyCs)y(s) = L.(s)u(s) + LJ(s)f(s), (12)

and

(17)
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268 D.-S. Hwang et al.

where N"ijl D,w I D)w E R[s] are mutually coprime, Dy,j­
and D"'j' are monic with Z[DyU-] E C_ and Z[Dy'j+] E C+,
and Nuu, Duu-, Duij+, NfiJ, Df,j- and Df,j+ are defined in
the similar way. By eomputing

o; (s) = LCM {D).u+(s), Du,k .(s), Dfil+(s),

i=I, ... ,m,k=I, ... ,p,/=I, ... ,q} (18)

Clearly, if the jth element of [Hf(s)J' is non-zero then the
jth fault can be detected by the ith residual. Using the
unknown input insensitive residual generator as pro­
posed above makes the FDI scheme robust for up to
m - I unknown inputs. That is, under certain conditions,
it is possible to achieve perfect decoupling with respect to
m - I unknown inputs.

[His)]i = wj(s)L).(s) and [Hu(S)]i = - W;(s)Lu(s)

(21 a)

are stable, where [Hy(s)J', [Hu(s)]' and [Hf(s)]i denote
the ith row of Hy(s), His) and Hf(s), respectively.
Moreover, (Xu(s) and Pu(s) can be designed to satisfy
requirements of realizability (filter matrices are required
to be proper), robustness issue and fast detection. The
above derivations for finding an unknown input
insenstive residual generator are summarized as in the
following algorithm.

If Lf(s) in (13 c) has full column rank, then residuals
can be generated in the fixed-direction form so that
mutual isolation of multiple faults becomes possible. In
this case, the method for designing a fault identification
filter (FIDF) in Chang et al. (1995) is adopted. Since
L f(s) has full column rank q, one can easily find a matrix
Wo E Rqx m so that

2.3. Techniques for fault isolation

By the above algorithm, an unknown input insensitive
residual generator has been designed for fault detection.
However, in general, faults may occur in different sectors
of the system, e.g. in different sensors, actuators or
components. To localize each individual fault uniquely,
residual sets are usually enhanced in one of the following
ways (Gertler 1993, Patton and Chen 1994).

(A) Structured residuals. In response to a single fault,
only a fault-specific subset of the residuals becomes
non-zero.

(B) Fixed-direction residuals. In response to a single fault,
the residual vector is confined to a fault specific
direction.

(20)

(19)

(21 b)

Pds)
(X,is)

we conclude that if

and denoting

Wr(s) = [iiil (s)
(Xii (s)

and (Xu(s) is Hurwitz, for j = 1,2, ... , m, then

Data Given system matrices A, B, C, E, K and G.

Step I. Comput (CE)+, A, Band R (Equation (10».

Step 2. Compute Lis), Lu(s) and Lf(s) (Equation (13»
and decompose Ly(s), Lu(s) and Lf(s) in the form
as (17).

Step 3. Find Di+(s) defined in (18).

Step 4. For j = 1,2, . . . ,m:

(a) choose Pu(s) and set Pu(s) as in (20);

(b) choose an adequate Hurwitz polynomial
(Xij(s) that satisfies proper requirements.

Step 5. Compute [Hy(s)]' and [Hu(s)]' according to
(21 a).

The ith residual is then generated by

ri(s) = [Hy(s)]'y(s) + [Hu(S)]iU(S)

and (he fault/residual map is given by

ri(s) = [Hf(s)]'l'(s) = wi(s)Lf (s)f(s).

[I¥oLAs)] E Rqxq

is square and of full rank, i.e. [WOLf(s)] is invertible.
Therefore, if we design the weighting matrix

where Hf(s) is in a diagonal form, mutual fault isolation
can be achieved in this proposed design. Detailed
procedures are outlined in Chang et al. (1995).

If Lf(s) in (13 c) is not offull column rank, then mutual
isolation of multiple faults is not achievable. Under such
a circumstance, one way of isolating different faults is to
generate a residual vector r(t) in structured form. A
structured set implies that each residual is completely
unaffected by other different subsets offaults. The number
of different residual generators to be designed is then
equal to the number of the fault subset. Each residual
generator is designed so that the generated residual signal
is insensitive only to one subset of faults. Typically,
observer schemes that employ a bank of observers are
adopted for fault isolation (e.g. Frank 1987, Frank and
Wiinnenberg 1989, Ge and Fang, 1989). Based upon a
similar concept of the generalized observer scheme
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A robust fault detection and isolation system 269

Yl

y ..

u
r, Alarm

r-th Dec;:bioD
Residual
Generator

~
Logic

u
moth

Residual '--
Generator r ..

Figure 1. Generalized residual generator scheme (GRGS).

!/J(t) is the magnitude of r(l) and can be further formed
as a flag function indicating whether any failure occurs.
When !/J(t) becomes large, it indicates the presence of
certain failures. The 8i(t) is the angle between the residual
vector and ith failure direction HJi where HJi is the ith
column of steady gain of HJ(O). If 8i (l ) is close to zero, C =

the ith sensor is then declared to be faulty, thus fault
isolation is achieved. However, as multiple faults occur,
its fault specific direction is changing with fault size

8lt) = cos- 1 «r(l), HJi» for i = 1,2, ... , m. (23 b)
Ir(t)IIHJil

(GaS-Frank 1987, Frank and Wiinnenberg 1989) with
the observer replaced by the residual generator, in the
following we use a generalized residual generator scheme
(GRGS) to generate structured residuals for sensor fault
isolation.

As illustrated in Fig. I, the ith residual generator is
driven by all but the ith sensor, so that a fault in the ith
sensor affects all but the ith residual. Moreover, a decision
logic is necessary to complete the task of fault isolation.
Here, we define two additional quantities used in the
decision logic for fault detection and isolation:

by the z-transforrn and the region on the left half s-plane
by the region inside the unit circle.

-0·0366 0·0271 0·0188 -0,4555

0·0482 -1·0100 0·0024 -4,0208

0·1002 0·3681 -0,7070 1·4200

0·0000 0·0000 1·0000 0·0000

0·4422 0'1761

3·5446 -7,5922

-5,5200 4·4900

0·0000 0·0000

a 0 0

a a 0

0 0 0

a

A=

B=

3. Numerical examples

A linearized dynamic model of the VTOL aircraft in the
vertical plane is considered here (Narendra and Tripathi
1973). For typical loading and flight conditions at an
airspeed of 135 Kt, the aircraft has the following nominal
system matrices

(23 a)[
I m J1/2

!/J(t) = ;;; I rNt)

and

m

r ss = L lfJi/;'
i= 1

where rss is the steady-state value of residual vector r.
This fault specific direction r" is no longer suitable for
fault isolation. Therefore, in this scheme, only a single
fault is permitted at a time for fault isolation. We remark
that all the derivations in this paper can also deal with
discrete-time cases by replacing the Laplace transform

where the state x and control input u are

horizontal velocity (Kt)

vertical velocity (Kt)
x=

pitch rate (deg s- 1)

pitch angle (deg)

[
collective pitch control J

u = longitudal cyclic pitch control

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

6:
25

 2
8 

A
pr

il 
20

14
 



270 D.-S. Hwang et al.

Consider that the variations in the plant parameters due
to thc change of airspeed are provided as

0 0 0 0

0 0 0 0
L\A =

0 0·5 0 2·0

0 0 0 0

is achievable. The FIDF design strategy can be used to
construct a decoupled map from fault to residual. In the
present design, a weighting matrix '¥o is simply selected as

In addition, the desired map from fault to residue is
selected as

where L\A is the modelling error in the system matrix A.
The unknown input term Ed can be thus represented as
E = [0 0 1 OJr and d = [0,0'5,0, 2]x.

Note that the eigenvalues of this unstable system
arc {-2'0729, -0'2325,0'2757 ± 0·2577j}. The unstable
plant is first stabilized by using a state feedback type
controller and the system matrix of the stabilized system
becomes

2
0--

Hf(s) =
(s + 2)

2
0 --

(s + 2)

By (22), the weighting matrix W(s) can be thus
determined as

where

res) = Hy(s)y(s) + HuCs)u(s) = Hf(s)f(s),

W(s) = Hf(s)(WoLf(s»-l Woo

Now, we have the residual generator insensitive to the
parameter variation in the following form:

0'0885(s + 3-8451)(s - 3,0970)

(s + 2)(s + 0'5)

-0'2221(s + 1'3309)(s - 0'3222)

(s + 2)(s + 0,5)

-0'0360(s - 29'1032)

(s + 2)(s + 0'5)

-0'0165(s + 2-4920)

(s + 2)(s + 0'5)

Hy(s) = W(s)Ly(s) =

3-8 138(s+ 0'0355)

(s + 2)

]'7805(s + 0'0426)

(s + 2)

-0'0360(s - 29'1032)

(s + 2)(s + 0'5)

-0'0165(s + 2-4920)

(s + 2)(s + 0'5)

-5'0817 0·0835 0·6464 ],9753

10'2660 -2,7417 -]·6492 -6'02388
A =c

25-4477 1·2858 -3,5767 -12-9620

0 0 0

The proposed strategy for detection of actuator fault and
sensor fault will then be discussed separately.

3.1. Actuator FDI

In the present actuator fault detection filter design, the
fault distribution matrices K and G are set as

K = Band G = 04 <2 '

Following (13)-( 14) the transfer matrices of Lf(s), Ly(s)
and Lu(s) of this residual generator can be determined.
In this example, the transfer matrix Lf(s) is of full rank,
implying that mutual isolation of multiple actuator faults

r.

109876

r2
'.-....._.-----' _.... -. --- .._._._.---_.. _-

5432

!-- ...J.. __ • __

0.5

-;;
":5! 0
~

"0::

-0.5

•t

0

Time (sec)

Figure 2. Residual responses for actuator fault detection.
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A robust fault detection and isolation system 271
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Figure 3. Responses of the decision logic to a HI bias fault on the first sensor: (a) flag function lIi(t); (b) decision function.

and

H.(s) = - W(s)Lis) = -HJ(s).

Figure 2 shows the diagnostic results of the proposed
actuator FDI, where bias faults of 1·0for the first actuator
and - 1·0 for the second actuator are issued at t = 2·0 s
and at t = 3·0 s separately. On this diagonal map, the
design is immune to the prescribed structured uncertainty,
and multiple failures occurring in the actuators can be
properly identified.

3.2. Sensor FDI

To achieve sensor fault detection of this VTOL aircraft,
the present design results will entail the LJ(s) to be
singular. That is, the requirement of simultaneous
isolation of multiple faults is not achievable here. The
proposed GRGS is adopted here to generate structured
residuals. Following the design procedure, we construct
four independent schemes for sensor fault isolation. The
designed FDI filter matrices for each scheme are the
following.
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Figure 4. Responses of the decision logic to a 1,0 bias fault on the second sensor: (a) flag function Ij/(I); (b) decision function.

Scheme I Scheme 2

, [5'1311(S+0'5) -S'324S(S+0'5)J
[H,,] = (s + I)(s + 2,1965) (s + I)(s + 2'1965) .

[H,.] ' = [0 - 1-446S(s - 0'6912)

(s + I)

0'0017($ - 1675)

(s + I)(s + 2,1953)
0'0017(s - 1675) J

(s + I)(s + 2'1953)

[H]2 = [-32-895S(S - 0'6912)(s + 0,0440) 0
Y (s + 1)2

0'3092(s - 24-4530)(s + 1'2377)

(s + I)(s + 2'1949)

0'3092(s - 24'4530)(s + 1.2377)J

(s + I)(s + 2'1949)
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Figure 5. Responses of the decision logic to a 1'0 bias fault on the third sensor: (a) nag function Ij/(t); (b) decision function.

Scheme 4

[H
y
]4 = [2-8363(S + 0,0353)

(s + 1)

[H
u]2

= [8'9918(S + 1'0282)(s + 0'1293)
(s + 1)2(s + 3'0101)

14'5399(fi + 1'3309)(s + 0.3222)J

(s + 1)2(s + 2'1965) .

Scheme 3

[H
y]3

= [-22'5541(S - 1'005~,)(s + 0'0440)
(s + 1)2

- 22·5541 (s - 1'0053)(s + 0'0440) 0

(s + 1)2

0'4781(s - 210'3661)(s + 0'1654)J

(s + 1)2(s + 3'0101)

[H.J3 = [8'9918(S + 1'0282)(s + 0'1293)
(s + 1)2(s + 3'0101)

-167'2638(s + 0·5104 + 0'5843j)J
(s + 1)2(S + 3,0101) .

9'5439(s + 0,0353)

(s + /)

-0'0304(s + 1220'6) oJ
(s+ l)(s+ 1'0113)

[H.J4 = [32'5752(S - 0'003) 32'5752(s - 0'003)J
(s + I)(s + 1'0113) (s + I)(s + 1'0113) .
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Figure 6. Responses of the decision logic to a ]'0 bias fault on the fourth sensor: (a) flag function Ij/(t); (b) decision function.

The fault/residual map for these schemes is

The norm of the residue is selected as a flag function for
fault detection as in (23 a). Moreover, the steady-state
gain matrix of this GRGS can be computed as

0 0 -1'2955 -1'2955

0 -4·2636 -4·2636
HI(O) =

I 0 - 5·5265

0·1 -0,3369 -36'6043 0

Each column of HI(O) is selected as the estimated failure
direction for single fault isolation. Figures 3-6 show the

responses of the flag function and the decision function
(fault angles e,(t» of the proposed GRGS FDJ scheme
for the four sensors, respectively. A bias fault of
magnitude 1·0 is issued at t = 2·0 s for each sensor
separately. As shown in the figures, the flag functions
provide good indication of fault occurrence and fault
isolation is achieved by monitoring fault angles as they
approach zero.

5. Conclusions

This paper proposes a robust FDI by constructing the
diagnostic system with a transfer matrix approach by
employing the inverse of the matrix CEo The unknown
inputs are thus perfectly decoupled from the fault residual
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signals in the present diagnostic system. The present
approach can be applied to systems under structured
uncertainties to achieve multiple fault isolation for
actuators. Furthermore, the syntheses of the obtained
parity relations forms the GRGS for isolating the sensor
fault. In the illustrated example of a VTOL aircraft,
simulation results indicate that the present FDI design
is immune to the external disturbance and that it
adequately identifies the fault occurrences.
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