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多工單等級之平行機台排程問題研究－以 IC 封裝廠為例 

The Study on Parallel Machine Scheduling Problem 

with Consideration of  Multiple-priority Jobs 

and Its Application on IC Assembly Scheduling 
 

學生：賴春美 指導教授：鍾淑馨博士 

 彭文理博士 

 

國立交通大學工業工程與管理系 

 

摘        要 

在競爭市場中，晶圓製造在追求利潤時，必須充分考慮產能有效率的被利用。本文

主要研究 IC 封裝排程問題，以最小化總工作負荷為衡量績效。IC 封裝製程的生產特色

為產品多樣少量且生產時間短。本文探討 IC 封裝實務因素之平行機台排程問題。此排

程問題具有多工單等級、工作產品群組、工作產品別相關之處理時間、順序相關之設置

時間及產能等限制，其求解比典型的平行機台排程問題更加困難。本文提出目標函數為

最小化總工作負荷之 IC 封裝製程排程問題的整數規劃模式。本文利用數學規劃軟體

CPLEX，結合有效的運算策略，則在可接受的時間內，可利用此模式求得實務問題的

可行解。此外，本文也提出一啟發式演算法，並測試啟發式演算法之求解品質及其在實

務上問題的應用。 

由於晶圓製造之製程複雜、週期時間長、再迴流生產及批次機台等生產特性，使得

生產週期時間估算困難。IC 封裝須待晶圓之實貨到臨才能加工，封裝之到貨預估模式

即為晶圓交期指派模式，因此本文先針對晶圓製造提出交期指派模式，利用此模式可在

產品組合隨時間改變之環境下求得符合目標達交率之交期，以作為 IC 封裝排程之依據。 

 

關鍵詞： 生產規劃、產品組合、交期指派、平行機台排程問題、整數規劃。 
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The Study on Parallel Machine Scheduling Problem 

with Consideration of  Multiple-priority Jobs 

and Its Application on IC Assembly Scheduling 

 

Student：Chun-Mei Lai Advisor： Dr. Shu-Hsing Chung 

 Dr. Wen Lea Pearn  

ABSTRACT 

In order to increase a company’s competition edge and profitability, an 

Integrated-Circuit (IC) manufacturer needs to utilize its existed capacity efficiently.  

This dissertation studies the IC assembly scheduling problem (ICASP) with the objective 

of  minimizing the total machine workload.  The IC assembly scheduling problem 

(ICASP) is a practical generalization of  the classical parallel-machine scheduling 

problem.  Since the ICASP involves constraints on precedence, job clusters, job-cluster 

dependent processing time, machine capacity, and sequence dependent setup times, it is 

more difficult to solve than the classical parallel machine scheduling problem.  In this 

dissertation, we formulate the ICASP as an integer programming problem with 

minimizing the total machine workload to simultaneously assign jobs to machines and 

sequence the jobs on each machine.  By using the powerful CPLEX with effective 

implementation strategies, the feasible solutions of  the real-world ICASP problem can be 

obtained within reasonable amount of  time.  An effective and efficient algorithm is also 

proposed for solving large scale problems.  

Wafer fabrication determines to a large extend the production plan of  the whole 

semiconductor manufacturing due to its high complexity and long manufacturing process 

time.  The accuracy of  due-date assignment for wafer fabrication strongly influences the 

efficiency of  the scheduling of  downstream (back-end) operations.  In this dissertation, 

we also proposed a due-date assignment model for wafer fabrication where the product 

mix periodically changes. 

Keywords : production planning, product mix, due date assignment, parallel-machine 

scheduling, integer programming. 
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Notation 

Due-Date Assignment for Wafer Fabrication: 

d  : index of  order; 

dD  : the due date of  order d ; 

dPT  : raw process time of  order d ; 

dr  : the release date of  the latest batch of  order d ; 

2S  : sample variance; 

)(1 δ−
dWTC

 
: the inverse of  the cumulative function of  the fitted contamination 

distribution of  order d ; 

)(1 δ−
dWTG

 
: the inverse of  the cumulative function of  the fitted gamma distribution of  

order d ; 

x  : sample average; 

α  : shape parameter of  gamma distribution; 

β  : scale parameter of  gamma distribution; 

µ  : population mean; 

2σ  : population variance; 

)(αΓ  : gamma function, ∫
∞ −−=Γ 0

1 dtet tαα )( . 

IC Assembly Scheduling Problem: 

i  : product type index, ,I,,i K10= ; 

j  : index of  job for product type i , iJj ,,, K10= ; 

k  : machine index, Kk ,,, K21= ; 

A  : the set of  job priority code; 

kG  : the total number of  jobs in the schedule kPS ; 

ijh  : the priority code associated with job ijr ; 
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I  :  the number of  job clusters in job set R; 

iJ  : the number of  jobs in job cluster Ri; 

K  : the number of  identical machines; 

M  : the set of  machine containing identical parallel machines; 

km  : the thk  machine; 

ijn  : lot size of  job ijr ; 

ikp  : the unit processing time for job ijr  in iR  on machine km ; 

kPS  : partial schedule of  machine km ; 

R  : the set of  jobs to be processed; 

iR  : job cluster containing iJ  jobs of  product type i  to be processed; 

ijr  : the job to be processed in cluster iR ; 

'iis  : the sequence dependent setup time between any two consecutive jobs from 

different job clusters; 

gu  : the job be scheduled at position g  on machine km , 

kW  : the predetermined machine capacity expressed in terms of  processing time 

unit; 

ijkx  : the variable indicating whether a specific job is scheduled on a machine, 

with ijkx =1 if  job ijr  is scheduled on machine km , and ijkx =0 otherwise; 

kjijiy ''  : the precedence variable defined on two jobs ijr  and '' jir  scheduled on 

machine km , with kjijiy '' =1 if  job ijr  precede job '' jir  (not necessarily 

directly), and kjijiy '' =0 otherwise; 

kjijiz ''  : the direct-precedence variable defined on two jobs ijr  and '' jir  scheduled 

on machine km , with kjijiz '' =1 if  job ijr  direct precede job '' jir , and 

kjijiz '' =0 otherwise. 
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1. Introduction 

1.1. Motivation 

Semiconductor companies must maintain high-level customer service to gain their 

competitive edge.  Facing the environment with volatile demand, how to deliver order 

on time justifies the efficiency of  the production planning and scheduling in 

semiconductor manufacturing.  Meanwhile, increasing throughput and minimizing 

setup times are among other managerial and strategic goals.  Finding practical 

scheduling methods that effectively include these sometimes conflicting objectives is a 

great challenge. 

Integrated circuit (IC) is the major product of  semiconductor industry.  Its process 

is very complicated and can be divided into four basic manufacturing steps: wafer 

fabrication, wafer probe, IC assembly, and final test.  The four stages of  the IC 

manufacturing are shown in Figure 1-1 [59], [81].  Wafer fabrication and wafer probe 

are referred as the “front-end”, while IC assembly and final testing are referred as the 

“back-end”.  In the front-end, silicon wafer are chemically processed, and then tested to 

generate a supply of  electronic devices.  In the back-end, the wafers are sawed into ICs, 

and the IC are packaged, branded, and tested. 

 

Figure 1-1. The four stages of  the IC manufacturing. 

Due to different product profit rates and the varied importance level of  customers, 

there often exists more than one priority level of  orders in most semiconductor 
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companies.  The multiple-priority job constraint should be included when developing 

the scheduling methods.  On the other hand, the more sophisticated devices being 

developed are leading to more complex assembly machinery, which is increasing the 

capital intensity of  the IC assembly operations [73].  In order to increase a company’s 

competition edge and profitability, an Integrated-Circuit (IC) manufacturer needs to 

utilize its existed capacity efficiently and effectively.  Therefore, developing efficient 

scheduling methods simultaneously considering multiple-processing priorities and 

minimizing the total bottleneck workload is essential.   

For the IC assembly scheduling problem (ICASP) investigated in this paper, the jobs 

are assigned processing priorities and are clustered by their product families with each 

family containing several product types, which must be processed on a group of  identical 

parallel machines.  Further, the job processing time may vary, depending on the product 

type (job cluster) of  the job process on.  Setup times for two consecutive jobs of  different 

product types (job clusters) on the same machine are sequence dependent.  Since the IC 

assembly scheduling problem involves constraints on multiple job priorities, job cluster, 

job-cluster dependent processing time, machine capacity, and sequentially dependent 

setup times, it is more difficult to solve than the classical parallel-machine scheduling 

problem. 

Wafer fabrication determines to a large extend the production plan of  the whole 

semiconductor manufacturing due to its high complexity and long manufacturing process 

time.  In order to quickly respond to customers’ fluctuating demand, companies make 

changes on the product mix periodically.  Because of  the complexity of  the wafer 

fabrication process, the due-date assignment problem in semiconductor companies is 

more difficult to solve compared to other manufacturing industries.  Since the accuracy 

of  due-date assignment for wafer fabrication strongly influences the efficiency of  the 
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scheduling of  downstream operations, a due-date assignment model for wafer fabrication 

would be required.  

1.2. Research Scope and Objectives 

Semiconductor companies can be successful if  they only focus on either of  the two 

types: mass manufacturing with high volume and low cost, or high level of  product mix 

that is flexible [81].  High-volume, low-cost fabs produce a few kinds of  products, such 

as memory products, in large quantity in order to have economies of  scale; while 

high-mix flexible fabs mainly produce Application-Specific Integrated Circuit (ASIC) and 

aim to leverage economies of  scope.  Hence, the manufacturing strategies and 

performance measurements of  these two types would be significantly different.   

This dissertation focuses on the scheduling problems for the manufacturers mainly 

producing memory products.  The purpose of  this dissertation is to develop methods for 

solving two problems that are crucial for efficient scheduling in IC assembly scheduling 

problem.  The objectives of  this dissertation include the following: 

1. Due-date assignment for the wafer fabrication. 

To present a due date assignment model consistent with the target on-time-delivery 

rate for the environment where product mix changes periodically.   

2. Scheduling model for the IC assembly operations. 

To design a scheduling model for ICASP with minimizing the total machine 

workload to simultaneously assign job to machines and to determine the processing 

sequence on each machine with considerations of  the multiple job-priority 

constraint, and the processing time and the setup time in the capacity constraints. 
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1.3. Organization of the Dissertation 

This dissertation includes five chapters that cover the conceptual bases of  the study, 

due-date assignment for wafer fabrication, scheduling of  IC assembly operations, and the 

conclusions.  This dissertation is organized as follows. 

Chapter 1 provides the background of  the research, defines the research domain, 

problem, and objectives. 

Chapter 2 reviews past research work done in the areas related to the study of  

due-date assignment for wafer fabrication and IC assembly scheduling problems. 

Chapter 3 considers the due-date assignment for wafer fabrication and presents a 

due-date assignment model to set manufacturing due date satisfying the target 

on-time-delivery rate.  Cycle times are first analyzed for each product type under single 

product mix.  A due-date assignment model for periodical product mix changes is then 

presented by taking the merit of  contamination model. 

Chapter 4 considers the IC assembly scheduling problem.  We first describe the IC 

assembly process in detail, and capture the characteristics of  the ICASP.  An integer 

programming formulation is then proposed to solve the ICASP with minimizing the total 

machine workload to simultaneously assign jobs to machines and sequence the jobs on 

each machine.  An efficient heuristic is also proposed to obtain the near-optimal solution 

for large scale problems. 

Chapter 5 gives a summary of  this research.  Conclusions will be drawn based on 

the results of  the research. 
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2. Literature Review 

The topic of  scheduling for Integrated-Circuit Assembly operations (ICASP) draws 

upon ideas from two different research areas.  As such, this literature review is divided 

into two areas which contribute to this dissertation.  The first subject area is to review 

the due-date assignment for wafer fabrication.  The second subject area is to review on 

the topics of  IC assembly scheduling problem. 

2.1. Due-Date Assignment for Wafer Fabrication 

Due-date assignment has always been an important research topic in production 

planning and control system, which has attracted abundant research interest.  Surveys 

on recent results of  specific aspects of  due-date assignment problems, such as Cheng and 

Gupta [11] and Gordon et al. [28] [29], confirm this continued interest.  Conway et al. 

[21] presented four due-date assignment rules to determine the allowances for cycle time 

(the difference between due-dates and arrival time) for each job in the following ways:  

Total-work due-dates (TWK) rule estimates the allowance for cycle-time as a proportion 

of  the expected total processing time of  a job.  Number-of-operation due-dates (NOP) 

rule assumes the allowance for cycle-time is proportional to the number of  operations.  

Constant-allowance due-dates (CON) rule assigns a constant cycle time allowance to all 

jobs.  The random-allowance due-dates (RDM) rule randomly assigns allowance within 

a given range. 

The traditional methods of  due-date assignment used in the related literature can be 

classified into two categories: analytical approaches and simulation approaches.  The 

analytical approach offers an exact way that determines mean and variance of  flow time 

estimates and further set due dates.  Seidmann and Smith [64] studied the constant 
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due-date (CON) assignment policy with the objective of  minimizing the expected 

aggregate cost per job subject to restrictive assumptions on the priority discipline and the 

penalty functions.  Cheng [10] proposed a method to assign optimal total work content 

(TWK) due-dates.  Enns [24] used dynamic cycle-time forecasting to set due dates with 

the objective of  minimizing related costs of  job shop scheduling.  Li and Cheng [42] 

analyzed the single machine due-date determination and resequencing problem with the 

objective of  minimizing the maximum weighted tardiness and the cost of  due-date 

assignment.  Hopp and Roofsturgis [32] developed a due-date quoting method to 

achieve a target service level by determining lead times as a function of  work in process 

and using a control chart method for adjusting the parameters in this function overtime.  

Ooijen and Bertrand [50] proposed a method to set the optimal due dates by considering 

work load, lead time-related and tardiness-related costs.  The other trend in analytical 

approach is to set due dates by determining cycle time prediction errors and distribution 

functions [25], [37], [39].  Table 2-1 displays the summary of  related literature on 

traditional analytical methods for the due-date assignment problem. 

For the simulation approaches, researchers examined the relative performance of  

various due-date assignment rules, dispatching rules, or sequencing procedures [1], [5], 

[79].  Other studies of  simulation approach are to develop effective cycle-time estimation 

and due-date assignment policies based on the simulation studies.  Weeks [80] proposed 

a method to assign due date based on expected job cycle time and shop congestion 

information, and concluded that such due dates were more attainable.  Vig and Dooley 

[75] proposed two new cycle-time estimation methods. They also evaluated relationships 

between several shop factors and effects on due-date performance via a simulation study.  

Vig and Dooley [76] further incorporated steady-state with dynamic cycle time estimates 

to develop cycle-time estimation and provided a regression-based approach for setting job 
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Table 2-1. Summary of  related literature on traditional analytical methods for the 

due-date assignment problem 

Literature Objective Major characteristics 

considered 

Solution approach 

Seidmann and 

Smith [64] 

Min. the expected 

aggregate cost per 

job 

due-date cost, 

tardiness cost,  

earliness cost. 

linear cost model 

and algorithm 

Cheng [10] Min. the average 

amount of missed 

due-dates 

dynamic job shop 

with assembly 

operations. 

queueing networks 

and Laplace 

transformation 

Enns [24] Min. job shop 

scheduling related 

costs 

earliness, 

tardiness, 

lead time penalty. 

dynamic flow-time 

forecasting model 

Li and Cheng [42] Min. the maximum 

weighted tardiness 

penalty 

and the due-date 

assignment cost. 

due-dates of the old 

jobs are treated as 

given parameters 

and those of the new 

jobs are decision 

variables 

algorithm 

Hopp and 

Roofsturgis [32] 

Achieving a target 

service level 

leadtimes as a 

function of WIP 

A control chart 

method 

Ooijen and 

Bertrand [50] 

the optimal 

lead-time related 

costs per order 

workload, lead-time 

related and tardiness 

related costs 

work-load 

dependent flow time 

distribution function 

Enns [25] due date setting rule 

selection 

delivery 

performance 

dynamic flow-time 

forecasting model 

Kaplan and Unal 

[37] 

Best tardiness 

probability of  the 

job 

WIP inventory and 

tardiness cost 

flow time prediction 

based on correlation 

analysis 

Lawrence [39] cost minimization, 

attainment of service 

level targets, and 

minimization of 

mean absolute 

lateness and mean 

squared lateness 

relevant costs 

 

modeling flowtime 

estimation as a 

forecasting problem 
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Table 2-2. Summary of  related literature on traditional simulation methods for the 

due-date assignment problem 

Literature Performance 

examined 

Major characteristics 

considered 

Solution approach 

Ahmed and 

Fisher [1] 

total cost due date assignment, 

order release, and 

sequencing interaction 

simulation model 

Chang [5] job completion 

time 

dispatching rule and 

shop utilization rate 

simulation model 

Weeks and Fryer 

[79] 

job flow-time cost, 

job lateness cost, 

job earliness cost, 

due date cost, and 

labor transfer cost 

dispatching rule, labor 

assignment, and due 

date assignment rules 

simulation model, 

regression model 

Weeks [80] job lateness cost, 

job earliness cost, 

and due date cost 

dispatching rule, due 

date assignment rules 

and shop size and 

structure 

simulation model 

Vig and Dooley 

[75] 

estimate job flow 

time 

Shop congestion 

condition 

regression analysis 

Vig and Dooley 

[76] 

job lateness Shop congestion 

condition, and 

dispatching heuristic 

flow time 

estimation, 

regression-based 

approach 

Raghu and 

Rajendran [60] 

job lateness  SA algorithm and 

regression analysis 

 

shop due dates.  Raghu and Rajendran [60] developed a due-date setting policy for a 

real-life job shop by incorporating the best performing dispatching rule which is selected 

by simulation.  Roman and del Valle [62] presented a rule for the due-date assignment 

problem of  reducing the tardiness and percentage of  delayed jobs through a combination 

of  the dispatch rule and assignation of  due date.  Chang [6] showed that statistical 

analysis of  a simulation model could give valuable insights into the cycle time behavior of  

jobs through workstations and proposed an approach to provide real-time estimates of  
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the queueing time for the remaining operations of  the jobs.  Table 2-2 displays the 

summary of  related literature on traditional simulation methods for the due-date 

assignment problem. 

Owing to the complexity of  wafer manufacturing process, the due-date assignment 

problem in semiconductor companies is more difficult to solve than the classical 

cycle-time estimation problem.  A product mix that varies periodically is an even more 

complicated problem compared to other manufacturing industries.  Chung et al. [19] 

presented a due date assignment model by using the simulation method and queueing 

theory.  They also proposed a methodology of  determining related parameter for cycle 

time control.  Chung and Huang [18], with the application of  queueing theory and the 

observation of  the characteristics of  material flow, developed a production cycle-time 

estimation formulation, the Block-Based Cycle Time (BBCT) estimation algorithm.  The 

BBCT algorithm has distinguishable performance in estimating mean cycle time where 

the product mix is fixed during all the time periods.  However, the BBCT model does not 

consider the product mix periodically changes, which might not be applicable in our 

planning environment. 

Recently, soft computing techniques have been widely applied in the studies of  

due-date assignment for semiconductor manufacturing.  Chang and Hsieh [7] identified 

influential variables related to the cycle time through regression analysis by using 

simulation data.  A backpropagation neural network model is then established to 

forecast the due date of  each order.  Chiu et al. [15] proposed a case based reasoning 

(CBR) approach which utilized the k-nearest-neighbors concept with dynamic feature 

weights and non-linear similarity functions.  Sha and Liu [66] presented a CBR with 

tree-indexing approach for numerical value prediction and illustrated using the due date 

assignment problem.  The approach applied the strength of  CBR as a prediction tool 
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and the tree-indexing approach as assistance in indexing and retrieving cases.  Chang et 

al. [8] applied the fuzzy modeling method proposed by Wang and Mendel [77] for 

generation of  fuzzy rules by using simulation data.  The fuzzy modeling method is 

further evolves by a genetic algorithm for due-date setting.  Chang and Liao [9] 

constructs fuzzy rule bases with the aid of  a self-organizing map (SOM) and genetic 

algorithm for cycle time prediction in semiconductor manufacturing factory.  Hsu and 

Sha [34] and Sha and Hsu [65] presented an artificial neural network (ANN) based due 

date assignment rule for cycle time prediction.  They examined the various 

combinations of  order review/release (ORR) and dispatching rules and concluded that 

ANN-based due date assignment rules have a better sensitivity and variance.  By 

integrating constraint-based reasoning with genetic algorithm, Hsu et al. [33] proposed an 

approach for cycle time prediction in consideration of  the work flow status.  This 

approach provides a chromosome-filtering mechanism before generating and evaluating a 

chromosome.  Table 2-3 displays the Summary of  related literature on soft computing 

approaches for the due-date assignment problem. 

In Chapter 3, we consider a more general version of  due-date assignment problem 

for wafer fabrication.  We present a due-date assignment model that is consistent with 

the target on-time-delivery rate where product mix changes periodically.  In the 

proposed model, the computations can be made manually.  In the mean time, quick 

response and satisfactory accuracy are the advantages of  the proposed model. 
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Table 2-3. Summary of  related literature on soft computing approach for due-date 

assignment problem 

Literature Performance 

measurement 

Result comparisons Solution approach 

Chang and Hsieh 

[7] 

The square root of  

mean square error 

due-date assignment 

rules: TWK, NOP, 

JIQ 

A backpropagation 

neural network model 

Chiu et al. [15] The square root of  

mean square error 

GA-CBR, BPN, 

TWK, NOP, JIQ 

GA-CBR 

Sha and Liu [66] The square root of  

mean square error 

T-CBR, CBR, BPN, 

JIQ, TWK 

CBR with 

tree-indexing 

Chang et al. [8] The square root of  

mean square error 

WM, EFR, 

MLPNN, CBR 

The fuzzy modeling 

method further evolves 

by a GA 

Chang and Liao 

[9] 

The square root of  

mean square error 

WM, WM&GA, 

SOM&WM, the 

multi-layer percetron 

Fuzzy rule bases with 

the aid of  a SOM and 

GA 

Hsu and Sha [34] Various 

performance 

measurement 

Regression-based, 

ANN-based, JIQ, 

TWK 

ANN based due date 

assignment rule 

Sha and Hsu [65] Various 

performance 

measurement 

ANN-based, SFM, 

KFM, TWK, JIQ, 

JIBQ  

ANN based due date 

assignment rule 

Hsu et al. [33] The square root of  

mean square error 

GA, BPN, CBR, 

TWK, NOP, JIQ 

CBR and GA 
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2.2. IC Assembly Scheduling Problem 

Parallel machine scheduling (PMS) is to schedule n jobs processed on m machines, 

with optimized objective.  Each job needs to be processed on one of  the machines 

during a given time interval.  Classical parallel-machine scheduling problems have been 

categorized into three types based on the job processing time characteristics, including the 

identical machines, uniform machines, and unrelated machines [12], [38], [48]: 

(1) Identical parallel-machine scheduling problem: each job requires only a single 

operation, which may be processed on any of  the parallel machines.  The 

processing times of  each job are independent of  the machine which the job 

processed on.  

(2) Uniform parallel-machine scheduling problem: the job processing times are 

determined by the efficiencies of  the machines.  The processing time for a job 

processed on one machine is the job processing time divided by that machine speed. 

(3) Unrelated parallel-machine scheduling problem: a generalization of  the uniform 

parallel-machine scheduling problem, the efficiency of  the machine depends on the 

type of  jobs processed and the processing times of  different jobs on the same 

machine may not be equal.  There is no particular relationship between the 

processing times for the same job being processed on different machines. 

Considering the characteristic of  the ICASP investigated in this dissertation, we 

focus on the identical parallel-machine scheduling problem in this literature review. 

A mathematical programming formulation is a natural way to solve machine 

scheduling problems [4] [61].  Mathematical programming formulations and algorithms 

are the most used methods for solving parallel-machine scheduling problems.  A number 

of  papers addressed the machine scheduling involving sequence-dependent setup times 
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[2].  Tahar et al. [70] presented a linear programming model for solving the identical 

parallel-machine scheduling problem with job splitting and sequence-dependent setup 

times.  Omar and Teo [49] presented a mix integer programming model for solving 

identical parallel-machine scheduling problem considering family setup-time constraints.  

Pearn et al. [53][54][55] presented integer programming model, network transformation, 

and algorithms for solving the identical parallel-machine scheduling problem with 

minimizing the total machine workload subject to sequence-dependent setup time and 

due date restrictions.  Lee and Pinedo [41] considered the identical parallel-machine 

problem with sequence-dependent setup times.  Schutten and Leussink [63] presented a 

branch-and-bound algorithm for solving the identical parallel machine problem with 

release date, due dates, and family setup times, with the objective of  minimizing the 

maximum lateness of  any job.  Webster and Azizoglu [78] presented two dynamic 

programming algorithms for solving the identical parallel machine problem with family 

setup times to minimize total weighted cycle time.  Dunstall and Wirth [23] proposed a 

branching scheme to the identical parallel machine problem with family setups to 

minimize the weighted sum of  completion times.  Chern and Liu [14] constructed five 

family-based scheduling rules, and built simulation model to examine these five rules.   

The survey papers [12], [48] provide a wide range of  parallel machine scheduling 

with precedence constraint.  However, the precedence relations studied in these papers 

can be presented by graphs in tree-types: in-tree type precedence (each job has at most 

one successor), out-tree type precedence (each job has at most one predecessor), and 

chain type precedence (each job has at most one predecessor and at most one successor).  

In the ICASP, the jobs are completely partitioned and a precedence relation defined by 

the job priority.  Therefore, the algorithms for solving scheduling problem with tree-type 

precedence constraint may not be applied to the ICASP.  
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Table 2-4. Summary of  related literature on identical PMS problems 

Literature Objective Major characteristics 

considered 

Solution approach 

Tahar et al. [70] Min. maximum 

completion time 

job splitting, 

sequence-dependent 

setup times 

linear programming 

Omar and Teo 

[49] 

Min. the sum of  

weighted earliness 

/ tardiness cost. 

family setup times mixed integer 

programming 

Pearn et al. [53] Min. total 

machine workload 

family setup times, 

due date restriction 

integer programming 

Pearn et al. [54]  Min. total 

machine workload 

family setup times, 

due date restriction 

Network 

transformation 

Pearn et al. [55] Min. total 

machine workload 

family setup times, 

due date restriction 

algorithms 

Lee and Pinedo 

[41] 

Min. the sum of  

weighted tardiness 

sequence-dependent 

setup times, 

due date restriction 

heuristics 

Schutten and 

Leussink [63] 

Min. the 

maximum lateness 

of  any job 

family setups,  

due dates, 

release dates 

branch and bound 

algorithm 

Webster and 

Azizoglu [78] 

Min. total 

weighted flowtime 

Family setups dynamic 

programming 

algorithms 

Dunstall and 

Wirth [23] 

Min. the weighted 

sum of  completion 

time 

family setups branching scheme 

Cheng and 

Diamond [13] 

Min. total cycle 

time 

two-class priority 

jobs 

dynamic 

programming 

algorithm 

 

Cheng and Diamond [13] considered the parallel machine scheduling problem for 

minimizing total cycle time, and provided a dynamic programming algorithm.  

Unfortunately, their model is developed only for two-class priority and does not consider 

the sequentially dependent setup times.  Table 2-4 displays the summary of  related 
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literature on identical parallel-machine scheduling problems.  In those research works, 

the constraint of  sequence-dependent setup times and multiple job priorities has never 

been considered simultaneously, therefore, their models may not be applicable to the 

ICASP. 

Most of  the studies have focused on the fab complexity and problems, since the 

wafer fabrication is the most capital intensive and complex part of  IC manufacturing 

process.  The recent increase in device complexity has led to the development of  

complex capital-intensive assembly systems.  The developments in the area of  planning 

and scheduling IC assembly operations, therefore, have seized more attention from the 

academic world than before.  In contrast to the front-end processes being highly 

reentrant, the back-end process follows a more linear, assembly-line type of  flow [56], 

[72].  Most of  the production planning and scheduling methods designed for front-end 

operations are not applicable for the fundamentally different back-end operations.  The 

IC Assembly Scheduling Problem (ICASP) is a variation of  the parallel machine 

scheduling problem.  Since the ICASP involves constraints on multiple-priority jobs, job 

cluster, job-cluster dependent processing time, machine capacity, and sequentially 

dependent setup times, a good scheduling model for the back-end operations must 

capture this complexity. 

Scheduling IC assembly operations has been the subject of  a series of  papers. Table 

2-5 displays summary of  the ICASP related papers.  Liu et al. [45] developed a 

computer-aided scheduling system for the IC packaging industry.  Potoradi et al. [58] 

developed a simulation-based scheduling to maximize demand fulfillment for the 

assembly facility.  Liu et al. [46] developed a lot release methodology for minimizing 

machine conversion for the back-end manufacturing.  Yin et al. [83] developed a 

rule-based finite capacity daily scheduling system for semiconductor back-end assembly.  
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Tovia et al. [72] considered a simple version of  the ICASP for the high production 

volume and high production mix environment, and provided a mathematical model for 

an IC assembly firm.  Tovia et al. [72] also presented a rule-based heuristic approach to 

solve the problem approximately.  However, their models do not consider 

sequence-dependent setup times and multiple job-priorities simultaneously, which may 

not reflect the real situation accurately. 

Since in those research works do not consider the sequence-dependent setup times 

and multiple job-priorities simultaneously, therefore, their models may not applicable to 

the ICASP.  In chapter 4, we formulate the ICASP as an integer programming problem 

for the complexity of  the IC assembly operations.  The programming model considers 

the job priority constraint, the processing time, and the setup times in the capacity 

constraint. 

Table 2-5. ICASP related papers 

Research Objective Solution approach 

Liu et. al. [45] Reduced scheduling time STEP enabling technology 

Potoradi et al. [58] Maximizing demand 

fulfillment 

Simulation based 

scheduling 

Yin et al. [83] Reduction setup times 

Improving on-time delivery 

Rule-based heuristic 

Liu et al. [46] Allocate capacity to lots 

based on finite capacity 

constraint 

Algorithm 

Tovia et al. [72] Maximizing throughput Mathematical formulation 

Two heuristics 
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3. Due-date Assignment for Wafer Fabrication 

Semiconductor companies must maintain high-level customer service to gain their 

competitive edge.  In order to quickly respond to customers’ fluctuating demand, 

companies often make changes on the product mix frequently and periodically.  In a 

semiconductor fab, machines are shared by plenty of  different products, resulting in a 

complex queue in the precious resource.  The product mix has considerable impact on 

production throughput, cycle time, and the capability of  meeting due dates.  Production 

throughput, cycle time, machine utilization, and work in process (WIP) inventory, are 

highly interrelated [16], [22].  Under different product mixes, the overall manufacturing 

performance of  the system would be different.  The cycle time distribution may shift 

with the changes in the product mix [35].  A product mix that varies periodically makes 

the system more complicate.  Thus, the effect of  product mix changes should be taken 

into consideration when estimating cycle times where the product mix periodically 

changes. 

In this chapter, we present a due-date assignment model for wafer fabrication.  An 

overview of  the wafer fabrication process is first presented.  Cycle times are then 

analyzed for each product type under single product mix.  The contamination model is 

applied to tackle the effect of  product mix changes in a periodical fashion.  A due-date 

assignment model is then presented for wafer fabrication where product mix changes 

periodically. 

3.1. The Wafer Fabrication Process 

The process of  wafer fabrication is a complicated sequence of  chemical and physical 

operations that are performed on a silicon wafer.  A designed IC is sent to a wafer fab 

and requires masking.  The basic procedure usually includes about 15-30 repetitive steps 
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such as the diffusion, photolithography, etch, thin films, ion implant, and polish, to 

complete the electric circuit on wafers [59], [73].  Through the semiconductor 

manufacturing process, the completed wafers have a full complement of  integrated 

circuits permanently etched into each silicon wafer, as shown in Figure 3-1.  Wafer 

fabrication determines to a large extend the production plan of  the whole semiconductor 

supply chain due to its high complexity and long manufacturing process time. 

 

Figure 3-1. Model of  Typical Wafer Flow [59]. 

3.1.1 The Characteristics of  Wafer Fabrication Process 

Typically, the production process has several unique characteristics.  First, the 

process comprises several hundreds of  steps on a single wafer.  Besides, the 

manufacturing flow of  different products may differ significantly, and the processing time 

required of  the machines for one product may be twice as much as that required for the 

other products [16].  Second, some of  the machines may be used for the same operation 

more than once as successive circuit layers are added in the production process, and this 

is termed re-entrant flow property.  One problem caused by this property is that different 
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layers of  a wafer have to go through the same machines and to compete with other wafers 

for the same resources.  Finally, based on the number of  lots being processed 

simultaneously, machines are usually categorized into serial or batch types.  Batch 

operations would cause wafer lots additional waiting time owing to batch size 

transformation.  As a result, these interrelated characteristics complicated cycle-time 

analysis and due-date assignment for the semiconductor fabs. 

Furthermore, a product mix that varies periodically makes the system more 

complicated.  The product mix has considerable impact on production throughput, cycle 

time, and the capability of  meeting due dates.  Production throughput, cycle time, 

machine utilization, and work in process (WIP) inventory, are highly interrelated [16], 

[22].  Under different product mixes, the overall manufacturing performance of  the 

system would be different.  The cycle time distribution may shift with the changes in the 

product mix [35]. Thus, the effect of  product mix changes should be taken into 

consideration when estimating cycle times where the product mix periodically changes. 

3.1.2 Cycle Time Analysis for Wafer Fabrication 

Cycle time is the time elapsed from the release of  a lot into the plant until its 

emergence as a finished product [47].  Cycle time for a wafer lot flowing through the 

entire production process includes raw process time (PT) and waiting time (WT) [18].  

PT consists the pure processing time, loading, and unloading times.  WT includes the 

following two parts [18]:  

1) Load factor waiting time (LFWT): 

The LFWT represents the time for a lot waiting for an available workstation.  

The load on a workstation reflects the utilization rate and influences the average 

waiting time of  a candidate lot. 
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2) Batch factor waiting time (BFWT): 

The BFWT represents the time for a release batch flowing through the whole 

process without considering PT and LFWT.  BFWT comprises the following 

two parts: 

a) Batch forming waiting time: 

The waiting time is caused by gathering lots to form a batch. 

b) Batch size transformation waiting time: 

The waiting time is caused from transferring lots from an upstream batch 

workstation to a downstream workstation when the downstream workstation 

processes a smaller batch size.  A temporary peak load thus occurs at the 

downstream workstation. 

The formation of  cycle time for lots is depicted in Figure 3-2.  PT is a known 

constant, while WT is the variable that needs to be estimated.  Due to the complexity of  

WT, a simulation-based WT distribution is used to estimate WT in this study. 

 

Figure 3-2. Formation of  cycle time for lots. 
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3.2. Production System Environment and System Input 

A modern fab requires a very high capital investment, usually to a billion dollars or 

more [31].  Generally, the wafer stepper machines are the most expensive machine in 

wafer fabrications and are treated as the bottleneck.  The tremendous amount of  

investment makes the manufacturers put emphasis on fully utilizing the bottleneck 

machine.  On the other hand, if  the utilization rate of  bottleneck machine is set too high, 

the system may be unstable because of  unforeseen disruptions [67].  Therefore, the 

strategy is to keep the utilization rate of  bottleneck in a given range with the 

consideration of  maximizing the utilization of  bottleneck while keeping the production 

system stable. 

The batch size of  wafer release is set to be six lots.  Such a setting could raise the 

throughput rate of  many workstations, which have a maximum batch size of  six lots.  

Wafer lots are released under a CONWIP (CONstant Work In Process) release 

policy [69].  By adopting the CONWIP policy, the WIP is kept reasonably constant.  

As such, the cycle-time distribution should also be reasonably stationary.  Based on 

CONWIP release policy, wafer lots are released into the plant only when WIP level is 

lower than the planned WIP level, L .  Once the WIP level is lower than L , six lots (the 

release batch size) of  a product type which has the largest accumulated unreleased 

quantity is released into the plant.  The calculation of  “accumulated unreleased 

quantity” is based on the planned daily release amount.  When the product is assigned 

to release, six lots are deducted from the corresponding unreleased quantity.  On the 

other hand, if  there are remaining quantities not released to the plant, the unreleased 

quantities will be accumulated to the next day. 
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3.3. Due-date Assignment for Single Product Mix 

We begin by considering the due-date assignment problem for product mix that is 

fixed throughout the time periods.  As mentioned in Section 3.1.2, owing to the 

complexity of  WT, a simulation-based WT distribution is used to estimate WT.  WT of  

each product type is first modeled by gamma distribution.  Due date can then be set 

based on release date, PT, and WT fitted distribution. 

3.3.1. WT Distribution Fitting for Single Product Mix 

The gamma distribution is a nonnegative-domain and right skewed probability 

distribution.  The gamma distribution is frequently used as the probability model for 

waiting times [30].  For instances, in life testing, the waiting time until “death” is the 

random variable which frequently modeled by a gamma distribution.  In addition, the 

gamma distribution is also a good model for many nonnegative random variables of  the 

continuous type, because the two parameters α  and β  provide a great deal of  

flexibility [30]. 

A random variable X  is said to have a gamma distribution with parameters 0>α  

and 0>β .  The probability density function of  X  is 
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where )(αΓ  is known as gamma function, defined by ∫
∞ −−=Γ 0

1 dtet tαα )( .  In this 

gamma distribution, αβµ == )(XE  and 22 αβσ == )(XV . 

Based on the historical data, WT of  each product type is always nonnegative and 

skewed to the right in the wafer fabrication process, and can be modeled satisfactorily by 



 

   23

the gamma distribution.  The method of  moments estimators is used for unknown 

parameters α  and β .  The first two moments of  the gamma distribution with 

parameters α  and β  are 

αβµµ ==1'  (3-2) 

22222
2' βααβµσµ +=+=  (3-3) 

Equate these quantities to their corresponding sample moments.  Thus, 

xm === 11 '' αβµ  (3-4) 
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From Equations (3-4) and (3-5), we can obtain 22 /ˆ Sx=α  and xS /ˆ 2=β , where the 

sample average nxx n
i i /1∑ ==  and the sample variance nxxS n

i i /)(1
22 ∑ = −=  are the 

estimators of  µ  and 2σ , respectively. 

3.3.2. Due-date Setting 

Like firms in other industries, semiconductor companies must meet customers’ 

fluctuating demands in order to survive.  Failure to deliver products on time, even with 

the right quality and quantity, can result in profit penalties or loss of  customers.  The 

on-time-delivery rate is an important determinant to measure customer service.  The 

target on-time-delivery rate is therefore chosen as our due-date performance measure.  

The advantage of  this policy is that it combines the competitive advantage of  short lead 

times with the requirement that target numbers of  due-date promises can be met [39]. 

The due date of  an order is assigned to the date that equals to release time of  the 

order plus raw process time (PT) and the δ -percentile waiting time, where δ  is the 
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target fraction of  on-time-delivery orders.  The δ -percentile waiting time can be 

obtained by taking the inverse of  the cumulative function of  the fitted gamma distribution.  

The due date of  order d  can then be assigned as 

)(1 δ−++= dddd WTGPTrD , (3-6) 

where dD  is the due date of  order d , dr  is the release date of  the latest batch of  order 

d , dPT  is PT of  order d , and )(δ1−
dWTG  is the inverse of  the cumulative function of  

the fitted gamma distribution of  order d .  Figure 3-3 illustrates the due-date assignment 

based on the target on-time-delivery rate. 

 

 

Figure 3-3. Due-date assignment based on target on-time delivery rate δ. 

Consider the following due-date assignment examples with two product types (L and 

M) being produced in the plant.  PT of  these two product types are known as: 120 hours 

for product L and 145 hours for product M.  Table 3-1 displays the estimated parameters 

for WT fitted distributions under product mix L:M=4:6 and L:M=6:4, respectively. The 

target on-time-delivery rate is set to 95%. 

In the situation where the product mix is L:M=4:6 throughout the planning horizon, 

due dates need to be assigned to these two orders.  Table 3-2 displays the information of  
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the orders.  Since the 95-percentile of  gamma(25.0, 2.0) is 67.5 and the 95-percentile of  

gamma(26.0, 2.3) is 80.31, based on (4-6), the due dates of  order 1 and order 2 (in days) 

can be obtained as 

1D = 3+120/24+67.5/24 =10.8 (day) (3-7) 

2D = 2+145/24+80.31/24 =11.39 (day) (3-8) 

We note that the solution will be different when the product mix is L:M=6:4 

throughout the planning horizon.  The 95-percentile of  gamma(22.0, 1.6) is 48.38.  The 

95-percentile of  gamma(28.0, 2.7) is 100.53.  The due dates of  order 1 and order 2 (in 

days) become 10.02 and 12.23, respectively. 

Table 3-1. Estimated parameters for WT distributions 

Product L Product M 
Product mix (L:M) 

α̂  β̂  α̂  β̂  

Mix(4:6) 25.0 2.0 26.0 2.3 

Mix(6:4) 22.0 1.6 28.0 2.7 

Table 3-2. Order Information 

Order No. Product type Order size (lot) Planned release date 

1 L 6 3 

2 M 6 2 

3.4. Due-date Assignment for Periodical Product Mix Changes 

To tackle the effect of  periodical changes on product mix, a contamination model is 

built for estimating WT of  each product type.  A due-date assignment model is then 

developed, by which the probability of  a job being delivered on-time can be controlled. 
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3.4.1. Contamination Model 

The contamination model, a mixture of  distributions, provides a rich class of  

distributions that can be used in modeling data from a population that is composed of  

several homogeneous subpopulations.  The contamination model is useful, particularly 

for cases with multiple manufacturing processes where the equipment or workmanship 

are not identical [52], or for cases where there are variable lead time demands in the 

inventory management function [40].  Such situations often result in production with 

inconsistent precision in production performances, and the contamination model can be 

used to characterize the population [40], [51], [52], [57]. 

Let the observations nxx ,,1 K  be a random sample from a contamination model 

with density function 

∑
=

=
m

k
kXkpxf

1
)()( θφ , (3-9) 

where )( kX θφ  is the density of  X  in the thk  subpopulation distribution having 

parameter kθ , and kp  is the probability of  belonging to the thk  subpopulation.  Thus, 

10 ≤≤ kp  and 11 =∑ =
m
k kp . 

Consider the contamination model of  three gamma populations, with probability 

1p  for population I distributed as gamma ),( 11 11 == βα , probability 2p  for population 

II distributed as gamma ),( 12 22 == βα , and probability 3p  for population III distributed 

as gamma ),( 13 33 == βα .  The probability density function of  the contamination 

gamma distributions may be expressed as 

)] ,([)] ,([)] ,([)( 333222111 βαφβαφβαφ XXX pppxf ++= , (3-10) 

where 10 1 ≤≤ p , 10 2 ≤≤ p , 10 3 ≤≤ p , 1321 =++ ppp , and 
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In this contamination model, if  11 =p , then the contamination gamma model 

reduces to the distribution gamma ),( 11 βα .  If  12 =p , then the contamination model 

reduces to the distribution gamma ),( 22 βα .  On the other hand, if  13 =p , then the 

contamination model reduces to the distribution gamma ),( 33 βα .  Figure 3-4 displays 

various distributions modeled by the contamination of  three gamma distributions 

gamma(1,1), gamma(2,1), and gamma(3,1) with six different combinations of  1p , 2p , 

and 3p .  We note that the shape of  the density differs for the different combinations of  

1p , 2p , and 3p . 
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Figure 3-4. The example of  contamination model of  three gamma distributions with 
different combinations of  1p , 2p , and 3p . 
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3.4.2. The Contamination Model for Periodical Product Mix Changes 

In wafer fabrication, the lot release time and lot completion time may not belong to 

the same time period due to the long cycle time.  Cycle time of  each lot thus may be 

affected by the product mix settings in successive periods.  When estimating the cycle 

time of  each lot, the number of  time periods for a lot being processed in the plant should 

be taken into account for determining the number of  components in a contamination 

model.  The number of  weeks required for determining the number of  components in a 

contamination model is depending on the type of  applications.  In the fab we study, the 

simulation output turns out to be three weeks.  Thus, the model of  the contamination of  

three distributions is appropriate for this application.  The probability tp  can be set to 1 

divided by numbers of  distributions.  In the case of  releasing job any day during week, 

the model can be refined by considering each single day. 

The contamination model for WT of  each product type may be expressed as, 

∑
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t
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1
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3.4.3. Due-date Setting 

For periodical product mix changes, the δ -percentile waiting time is determined by 

the fitted contamination model in order to incorporate the effect of  product mix changes.  

The due date of  order d  can be assigned as 
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)(δ1−++= dddd WTCPTrD , (3-14) 

where dD  is the due date of  order d , dr  is the release date of  the latest batch of  order 

d , dPT  is PT of  order d , and )(δ1−
dWTC  is the inverse of  the cumulative function of  

the fitted contamination distribution of  order d .  When the product mix is fixed 

throughout the time periods, the results obtained by (3-6) and (3-14) are identical. 

Consider the due-date assignment example described in Section 3.2.2 with two 

products, L and M.  Assume that the cycle times of  most lots released into the plant are 

affected for 2 weeks.  Then, the model of  the contamination of  two gamma distributions 

is appropriated for this example.  In the situation that the product mix is L:M=4:6 in 

week 1 and L:M=6:4 in week 2, the probability density function of  the WT 

contamination model for order 1 can be expressed as  
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The probability density function of  the WT contamination model for order 2 can be 

expressed as  
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The 95-percentile of  WT distribution of  orders can be obtained by taking the inverse 

of  the cumulative fitted contamination function.  Based on (3-15), the 95-percentile of  

WT of  order 1 is 63.23.  Based on (3-16), the 95-percentile of  WT of  order 2 is 94.83.  

According to (3-14), the due dates of  order 1 and order 2 (in days) can be solved as 10.63 

and 11.99, respectively. 
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3.5. Simulation Verifications 

To demonstrate the applicability of  the due-date assignment model in real situations, 

we consider the example taken from a wafer fabrication factory located in the 

Science-based Industrial Park in Hsinchu, Taiwan.  

3.5.1. Simulation Environment 

The fab consists of  83 workstations (w1 to w83), and each workstation consists of  a 

given number of  identical machines operated in parallel.  W46, a stepper in the 

photolithograghy area, is the bottleneck.  The planned bottleneck utilization rate is set to 

90% in this study.  The distribution of  mean time between failures (MTBF), mean time 

to repair (MTTR), mean time between preventive maintenance (MTBPM), and mean 

time to preventive maintenance (MTTPM) for each workstation are known. 

Five types of  products, namely, A, B, C, D, and E, are manufactured in the system.  

Each product contains the numbers of  circuit layers in a range of  17 to 20.  All product 

types have different process routes and each process route contains process steps in a 

range of  276 to 338 operations.  PT for each product is as follows: 186.8 hours for 

product A, 201.8 hours for product B, 187.12 hours for product C, 216.23 hours for 

product D, and 211.78 hours for product E. 

Based on CONWIP release policy, for each specific product mix, the planned WIP 

level, L , is set by using Little’s Law [43], WL ×= λ , where λ  is the average releasing 

rate and W  is the mean cycle time.  In this system, the average releasing rate, λ , is 

equal to the throughput rate because CONWIP is adopted and mean cycle time of  each 

product is estimated by the block-based cycle time estimation algorithm (BBCT) [18]. 
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Based on the system capacity limitation and market demand, seven product mixes 

are selected.  For each single product mix, simulation is run to collect PT and WT.  

The simulation program used in this work is eM-Plant [71].  Based on the pilot runs, for 

getting steady-state result, the simulation length is set to be 448 working days, in which 

the first 224 days are the warm-up period.  In order to eliminate simulation errors, 10 

replications with different random seeds are run to get adequate statistical results under 

each product mix.  The input data for each product mix is shown in Table 3-3 and the 

average ( x ) and variance ( 2S ) of  the collected WT of  each product type from running 

simulation for each product mix are shown in Table 3-4. 

 

Table 3-3. The simulation inputs for single product mix 

Mean cycle time estimated by BBCT algorithm (hour) Product mix 

(A:B:C:D:E) 

Weekly 

throughput 

target (lot) Product A Product B Product C Product D Product E 

WIP 

level (lot) 

Mix(8:3:3:3:3) 167 278.19 302.18 282.50 322.23 316.29 293 

Mix(6:6:2:5:1) 163 280.80 305.73 282.63 322.40 316.43 292 

Mix(6:6:2:2:4) 164 281.02 306.01 282.71 322.32 316.44 292 

Mix(5:6:4:4:1) 165 279.47 303.98 282.61 322.25 316.33 292 

Mix(5:5:5:3:2) 166 277.79 301.71 282.47 322.08 316.17 293 

Mix(5:5:5:1:4) 167 277.91 301.86 282.53 322.04 316.18 293 

Mix(3:6:5:2:4) 165 276.58 300.29 282.13 321.74 315.83 292 
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Table 3-4. Average and variance of  WT collected from simulation for single product mix 

Product A Product B Product C Product D Product E Product mix 

(A:B:C:D:E) x  2S  x  2S  x  2S  x  2S  x  2S  

Mix(8:3:3:3:3) 92.08 304.88 107.61 677.82 86.66 298.90 106.22 402.96 101.29 390.75 

Mix(6:6:2:5:1) 95.31 333.81 102.15 350.29 86.49 329.24 104.58 332.60 98.91 201.26 

Mix(6:6:2:2:4) 95.49 383.99 101.66 312.21 87.55 339.96 103.32 491.26 99.03 291.70 

Mix(5:6:4:4:1) 97.26 409.32 100.85 327.00 89.98 451.71 103.31 370.68 97.51 217.46 

Mix(5:5:5:3:2) 95.15 344.06 103.18 400.89 87.00 244.98 106.11 414.07 102.25 533.36 

Mix(5:5:5:1:4) 95.80 404.42 102.35 411.94 88.23 307.18 100.91 184.76 100.74 339.70 

Mix(3:6:5:2:4) 102.27 984.04 99.84 390.44 87.12 302.58 105.82 581.61 99.55 369.08 

 

Table 3-5. Estimated parameters for fitted WT distributions for single product mix 

Product A Product B Product C Product D Product E Product mix 

(A:B:C:D:E) α̂  β̂  α̂  β̂  α̂  β̂  α̂  β̂  α̂  β̂  

Mix(8:3:3:3:3) 27.81 3.31 17.08 6.30 25.13 3.45 28.00 3.79 26.26 3.86 

Mix(6:6:2:5:1) 27.21 3.50 29.79 3.43 22.72 3.81 32.89 3.18 48.61 2.03 

Mix(6:6:2:2:4) 23.74 4.02 33.10 3.07 22.55 3.88 21.73 4.76 33.62 2.95 

Mix(5:6:4:4:1) 23.11 4.21 31.10 3.24 17.92 5.02 28.79 3.59 43.73 2.23 

Mix(5:5:5:3:2) 26.31 3.61 26.56 3.89 30.89 2.82 27.19 3.90 19.60 5.22 

Mix(5:5:5:1:4) 22.69 4.22 25.43 4.03 25.34 3.48 55.16 1.83 29.88 3.37 

Mix(3:6:5:2:4) 10.63 9.62 25.53 3.91 25.08 3.47 19.25 5.50 26.85 3.71 
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3.5.2. Data Distribution Fitting 

By using 22 /ˆ Sx=α  and xS /ˆ 2=β , we estimate the parameters for gamma 

distributions fitted to WT of  each product type under each product mix.  The estimated 

parameters are listed in Table 3-5.  The theoretical 95-percentile WT of  each fitted 

gamma distribution and the corresponding percentage of  number of  collected data are 

shown in Table 3-6.  Comparing the 95% on-time-delivery rate with the percentage of  

collect data less than theoretical 95-percentile of  the fitted distribution, we can see from 

Table 3-6 that the gamma distribution appears to fit the collected WT satisfactorily. 

Table 3-6. Comparison of  fitted gamma distribution and collected data 

Product A Product B Product C Product D Product E Product mix 

(A:B:C:D:E) %95T * %** %95T  % %95T  % %95T  % %95T  % 

Mix(8:3:3:3:3) 122.52 96.52 153.70 94.12 116.97 95.23 141.12 95.79 135.94 96.82 

Mix(6:6:2:5:1) 127.22 96.28 134.75 95.17 118.34 96.38 136.28 96.62 123.34 96.15 

Mix(6:6:2:2:4) 129.84 96.65 132.36 96.02 119.92 95.43 142.27 95.51 128.69 95.16 

Mix(5:6:4:4:1) 132.75 95.96 132.32 96.75 127.55 96.07 136.88 96.04 122.97 95.07 

Mix(5:5:5:3:2) 127.57 95.38 138.17 96.21 114.24 96.47 141.65 95.55 142.97 96.39 

Mix(5:5:5:1:4) 131.10 95.56 137.86 95.64 118.90 96.99 124.26 95.98 132.85 95.55 

Mix(3:6:5:2:4) 158.73 94.18 134.41 96.98 116.76 95.68 148.36 95.09 133.11 95.82 

* %95T : theoretical 95-percentile WT of  the fitted gamma distribution. 

** %: percentage of  number of  collected data %95T≤ . 

 

 

 



 

   34

3.5.3. Periodical Product Mix Changes 

In this section, three experiments are used to demonstrate the effectiveness and 

accuracy of  the due-date assignment model for the environment where the product mix 

changes periodically.  For the experiments, product mix compositions are listed in Table 

3-7.  Using the input data as displayed in Table 3-3 and Table 3-7, and the release policy 

described in Section 3.2, the simulation model is run to collect WT of  each product type 

for each experiment.   

For each experiment, the contamination model for each product type can be derived 

from Equations (3-12) and (3-13).  The fitted contamination model and collected data 

distributions for experiment 1, experiment 2, and experiment 3 are plotted in Figure 3-5, 

Figure 3-6, and Figure 3-7, respectively.  The contamination model appears to fit the 

collected data reasonably well. 

In this study, the target on-time-delivery rate is set to 95%.  After deriving the 

contamination model, we can obtain the 95-percentile cycle time by summing up PT and 

95-percentile WT by taking the reverse of  the cumulative function of  the contamination 

model.  Table 3-8 displays the 95-percentile cycle times and the on-time-delivery rate 

from the simulation data.  Since the on-time-delivery rate can meet the target 

on-time-delivery rate, the due-date assignment model provides a quite good solution. 

 

Table 3-7. Product mix composition for the experiments 

Experiment Week 1 Week 2 Week 3 

Experiment 1 Mix(5:5:5:3:2) Mix(5:5:5:1:4) Mix(6:6:2:5:1) 

Experiment 2 Mix(5:6:4:4:1) Mix(6:6:2:2:4) Mix(3:6:5:2:4) 

Experiment 3 Mix(5:5:5:1:4) Mix(8:3:3:3:3) Mix(3:6:5:2:4) 
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Histogram of  the collected data for Product E 

Figure 3-5. Fitted contamination model versus histogram of  the collected data for experiment 1. 
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Figure 3-6. Fitted contamination model versus histogram of  the collected data for experiment 2. 
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Figure 3-7. Fitted contamination model versus histogram of  the collected data for experiment 3. 
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Table 3-8. Performance summary for the experiments 

Experiment Product type 95-percentile cycle time (hours) %* 

Product A 315.45 96.75% 

Product B 338.76 96.83% 

Product C 304.33 94.79% 

Product D 352.02 95.25% 

 

 

Experiment 1 

Product E 345.63 95.42% 

Product A 328.53 97.12% 

Product B 334.81 96.56% 

Product C 309.04 97.37% 

Product D 358.97 94.41% 

 

 

Experiment 2 

Product E 340.40 96.71% 

Product A 326.69 97.39% 

Product B 344.83 94.70% 

Product C 304.89 96.78% 

Product D 355.90 96.78% 

 

 

Experiment 3 

Product E 345.79 96.68% 

* %: percentage of  number of  collected data %95T≤ . 
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4. Scheduling IC Assembly Operations 

In order to increase a company’s competition edge and profitability, the main focus 

of  manufacturing strategies for an Integrated-Circuit (IC) manufacturer is to improve 

delivery time performance while minimizing production costs.  Because of  different 

product profit rates and the varied importance level of  customers, there often exists more 

than one priority level of  orders.  Better on-time delivery would be the main concern of  

corporate level.  However, ignoring setup considerations in scheduling decisions can 

result in loss of  capacity.  Therefore, any successful scheduling system needs to take the 

sequence-dependent nature of  the setups into account [74]. 

In this chapter, we consider the IC assembly scheduling problem (ICASP) involves 

constraints on multiple job-priorities, job cluster, job-cluster dependent processing time, 

machine capacity, and sequentially dependent setup times.  We first formulate the 

ICASP as an integer programming problem.  The programming model considers the 

multiple job-priority constraint, and the processing time and the setup time in the 

capacity constraints.  An efficient heuristic is also proposed to obtain the near-optimal 

solution for large scale problems. 

4.1. The IC Assembly Process 

In the IC assembly stage, materials, such as plastics and ceramic, are used to pack 

the good dies by forming a protective layer on electric circuits to avoid them suffering 

from scoring or heat punctures.  Four main functions for the packaging are: to provide 

physical protection for each chip, to provide a barrier layer against chemical impurities 

and moisture, to ensure each chip connecting to electric circuit with sturdy leads, and to 

dissipate heat generated during chip operation.  Many packaging variations exist in the 

industry.  The IC package is selected so that the above four functions are optimized to 
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meet certain design constraints: performance, size, weight, reliability, and cost objectives 

[59]. 

 
Figure 4-1. The process flows of  plastic packaging products. 
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In this stage, wafers are first coated with a protective layer on the surface and 

mechanically polished on the back side to reduce thickness.  Then, each wafer is taped on 

a solid frame from the back with a sticky, flexible material to hold it in one piece during 

die separation.  Good chips are next picked up in the die-sorting process and attached to 

a lead frame in a thermal process.  A wire bonding process makes the connection 

between bonding pads on the chip and lead pins on the lead frame with thin metal wires.  

Another common used technology is flip chip technology that forms metal bumps instead 

of  bonding pads on the chip surface.  Materials, such as plastics and ceramic, are used to 

seal the chip by forming a protective layer on electric circuits to avoid them suffering from 

scoring or heat punctures. 

There are two types of  IC packaging, namely the ceramic and the plastic.  Most of  

the commercial IC chips use plastic packaging.  For the IC assembly factory mainly 

producing memory product, the conventional packages and TSOP2 (Thin Small Outline 

Package, type 2) package dominant the production lines. The process flows of  

conventional package and TSOP2 package are the same.  Actually, in the floor shop, the 

machines at each stage can process the operations for these two packages, except for at 

the die bonding stage.  For conventional package, the die bonding process is to position 

the good dies on the paddle of  the leadframe (using epoxy).  While, for TSOP2 package, 

the die bonding process is lead on chip (LOC), which the device is fixed with a LOC tape 

underneath the leadframe, no curing needed.  Therefore, due to the machine difference 

and cost consideration, the capacity expansion of  die bonder is usually carefully 

evaluated.  Though the critical resources in most IC assembly factories are die bonder 

and wire bonder [45], [58], [72], for memory products, the package lead count of  each die 

is relatively small and the throughput of  the wire bonders is satisfied.  Therefore, in the 

assembly facility mainly producing memory products, the die bonders are treated as the 
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bottleneck.  Developing efficient scheduling methods to minimize the total die bonder 

workload and enhance the utilization of  the die bonder is essential. 

In contrast to the front-end processes are highly reentrant, the back-end process 

follows a more linear, assembly-line type of  flow [56], [72].  In the IC assembly 

scheduling problem, the bottleneck, the die-bonders, is scheduled to be utilized as 

efficiently as possible, and this implies the reduction of  number of  setups is crucial.  

After completing the scheduling on the bottleneck, the lot release time and the scheduling 

on all the non-bottlenecks facilitate the feeding of  the bottleneck. 

 

4.2. The IC Assembly Scheduling Problem (ICASP) 

For the ICASP investigated in this research, the jobs are assigned processing 

priorities and are clustered by their product families with each family containing several 

product types, which must be processed on a group of  identical parallel machines.  

Further, the job processing time may vary, depending on the product type (job cluster) of  

the job process on.  Setup times for two consecutive jobs of  different product types (job 

clusters) on the same machine are sequentially dependent.  The objective of  the ICASP 

is to find a schedule for the jobs, which satisfies the priority processing restrictions 

without violating the machine capacity constraints, while the total machine workload is 

minimized.  Minimizing the total setup time is equivalent to the minimization of  the 

total machine workload. 

The IC assembly scheduling problem is to seek a schedule for the jobs to be 

processed in the time horizon, which minimizes the total die bonder workload, satisfying 

the job priority without violating the machine capacity constraint.  In IC assembly 

scheduling problem, the jobs are processed on groups of  identical die bonders and the 
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total processing time is constant.  Thus, reducing the total setup time is essential to the 

minimization of  the total machine workload.  Process characteristics modeled include 

sequence dependent setup times, multiple job-priority consideration, and machine 

capacity constraint. 

These integrated circuits, or dies, are formed on wafers that are typically grouped 

into lot sizes of  25.  The size of  each lot may vary which depends on the design of  dies 

and die yield.  Note that, at die bonding stage, a lot flowing into the die bonding area is 

in the form of  complete wafer, and it flows out of  this area in the form of  die on 

leadframe. 

4.2.1. Sequence Dependent Setup Times 

Since different types of  dies must be operated on the LOC die bonder with some 

specific size of  chop table, mount head and mount stage, and some parameter setting on 

the machines, some setup operations may be required.  Figure 4-2 shows the die bonding 

on the LOC die bonder.  The required for parameter settings can be regarded as a fixed 

constant.  In the situation, where the current job is formed on 12-inch wafer and the 

next job is formed on 8-inch wafer, and vice versa, the next job would have to put on hold 

until the chop table is changed.  Furthermore, in the situation, where the current job is 

performed with small mount head and mount stage and the die size of  next job is large, 

the next job would have to put on hold until the mount stage and mount head is changed. 

Thus, the setup time required for switching one product type to another depends on 

the size of  wafer and die.  As the jobs come from several product families with each 

family including a few product types, switching a job to another among different product 

type within the same product family only require the parameter setting operations on the 

machine.  In other cases, switching a job from one to another among different product 
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type from different product families must consider the total corresponding setup time 

occurring due to changing chop table, changing mount stage and mount head, and the 

parameter setting operations on the machine. 

 
Figure 4-2. Die bonding on the LOC die-bonder. 

 

4.2.2. Multiple job-Priorities Consideration 

Because of  different product profit rates and the varied importance level of  

customers, there often exists more than one priority levels of  orders in most 

semiconductor companies [26], [74].  Based on the job priority, for any two jobs 

scheduled on the same machine, job A with higher job priority must be completed before 

job B with lower job priority can be begun.  Throughout this dissertation, we assume 

that each lot is assigned a value of  job priority, which is known at the beginning of  the 

planning horizon.  The assignment of  job priority method is beyond the scope of  this 

dissertation, and we refer the interested reader to [46], [58] for approaches to assign 

priority value.  
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4.2.3. Machine Capacity Constraint 

Normally, the lead time for the total assembly portion is 4 to 6 days.  By deducting 

the setup times and processing times on the non-bottleneck machines, the time horizon of  

the bottleneck is set to 2 days.  Due to the variety of  lot size and the importance of  the 

process lot in the initial status, a rolling horizon approach is used in the ICASP.  In 

real-life applications, the capacity for each machine can be set based on the available 

capacity in the time horizon, and the processing time unit can be “minute” or “hour”.  

Throughout this dissertation, we have set the “minute” as the unit of  the processing time, 

setup time, machine workload, and machine capacity in our investigation. 

Problem Complexity 

The ICASP is NP-hard.  Even without the multiple job-priority constraint, the 

ICASP special case which minimizes makespan on a single machine in the presence of  

sequence-dependent setup times is equivalent to the Traveling Salesman Problem, and it 

has been shown to be NP-hard [26] [44].  

4.3. An Integer Programming Formulation for ICASP 

A mathematical programming formulation is a natural way to solve machine 

scheduling problems [4] [61].  The IP formulations for ICASP have been investigated, 

but our IP formulation includes both sequentially dependent setup times and multiple job 

priority conditions at the same time, therefore, is considerably more complicated than 

those in [72]. 

We first define },...,,,{ IRRRRR 210=  containing 1+I  clusters of  jobs, each job 

cluster }210 iiji JjrR ,...,,,{ ==  containing iJ  ( iJj ,,, K21= ) jobs to be processed and 

one pseudo-job 0ir  ( 0=j ) which is used as the initial status of  a machine.  Thus, job 
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cluster }{ 000 rR =  contains one pseudo-job, job cluster },...,,,{
111211101 JrrrrR =  contains 

11 +J  jobs, job cluster },...,,,{
iiJiiii rrrrR 210=  contains 1+iJ  jobs, and job cluster 

},...,,,{
IIJIIII rrrrR 210=  contains 1+IJ  jobs. We also define },,,,{ HA  2 1 0 K=  as the 

set of  job priority code containing 1+H  priority levels.  Let ijh  )( Ahij ∈  be the job 

priority code of  job ijr .  This code is in the form of  a non-negative integer, in such a way, 

a smaller priority code of  job indicates that this job has a higher job priority.  Thus, set 

'' jiij hh <  ),( '' Ahh jiij ∈  if  job ijr  has a higher priority than job '' jir .  

We also define },...,,{ kmmmM 21=  as the group of  machines containing a set of  K  

identical machines.  Let kW  be the predetermined machine capacity expressed in terms 

of  processing time unit.  Further, let ijn  be the lot size of  job ijr , and ikp  be the unit 

processing time for each job ijr  in cluster iR  ( iij Rr ∈ ) on machine K .  Therefore, the 

job processing time for job ijr  is ikij pn .  Let 'iis  be the sequence dependent setup time 

between any two consecutive jobs )( iij Rr ∈  and )( ''' iji Rr ∈  from different job clusters 

)'( ii ≠ .  Note that, the priority codes and lot size for the job 0ir  should be set to zero so 

that these pseudo-jobs should be scheduled as the first jobs on each machine, which 

indicates the initial status of  each machine. 

Let ijkx  be the variable indicating whether the job ijr  is scheduled on machine km , 

with 1=ijkx  if  job ijr  is scheduled on machine km , and 0=ijkx  otherwise.  Let 

kjijiy ''  be the precedence variable defined on two jobs ijr  and '' jir  scheduled on 

machine km , with kjijiy '' =1 if  job ijr  precede job '' jir  (not necessarily directly), and 
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kjijiy '' =0 otherwise.  Let kjijiz ''  be the direct-precedence variable defined on two jobs ijr  

and '' jir  scheduled on machine km , with kjijiz '' =1 if  job ijr  direct precede job '' jir , and 

kjijiz '' =0 otherwise. 

To find a schedule for the jobs which minimize the total machine workload without 

violating the machine capacity and job priority constraints, we consider the following 

integer programming model.  Although the first summation term (the total processing 

time) in the objective function of  the integer programming model is constant, it is 

necessary to be used to provide the information of  total machine workload in the 

solutions because managers prefer to know the total machine workload instead of  only 

the total setup times.  In addition, with the processing time included in the objective 

function, the integer programming model can be used to solve a more general ICASP 

problem, where the machines are unrelated. 

Minimize ∑ ∑ ∑ ∑ ∑∑ ∑
= = = = == = ⎭
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subject to 

10 =kikx , for all k , (4-1) 
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0 =∑
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i
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'
, for all k , (4-4) 

 0,   )  ( ≤−+ ijkijkjikjiji xyy ''''  for all kjiji ,',',, , '' jiij rr ≠ , (4-5) 

  0,     )  ( ≤−+ kjiijkjikjiji xyy ''''''  for all kjiji ,',',, , '' jiij rr ≠ , (4-6) 
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 0,  1)    (   )  ( ≥−+−+ kjiijkijkjikjiji xxyy ''''''  for all kjiji ,',',, , '' jiij rr ≠ , (4-7) 

0)()( ≤−×− i'j'ijkiji'j'kjiij yyhh '' , for all kjiji ,',',, , '' jiij rr ≠ , (4-8) 

 1,  )2 Q(    ≥−+−   yyy i'j'i*j*kkjijikjiji ''**  for all kjijiji ,','*,*,,, , ''** jijiij rrr ≠≠ , (4-9) 

,   kjijikjiji zy '''' ≥  for all kjiji ,',',, , '' jiij rr ≠ , (4-10) 

,1
0 0

 z x
jiij

i

rr
kjiji

I

i

J

j
ijk =− ∑∑ ∑

≠= = ''
''  for all k , (4-11) 

,1 z
jiij rr

kjiji ≤∑
≠ ''

''  for all kjiji ,',',, , (4-12) 

,1 z
jiij rr

ijkji ≤∑
≠ ''

''  for all kjiji ,',',, , (4-13) 

 1}, {0,∈ijkx  for all kji ,, , (4-14) 

 1}, {0,∈kjijiy ''  for all kjiji ,',',, , '' jiij rr ≠ , (4-15) 

 1}, {0,∈kjijiz ''  for all kjiji ,',',, , '' jiij rr ≠ . (4-16) 

The objective function seeks to minimize the sum of  the total processing time 

∑ ∑= =
I
i

J
j ikijijk
i pnx0 0  and the total setup time ( )∑ ∑ ∑ ∑= = = =

I
i

J
j

I
i

J
j iikjiji

i i sz0 0 0 0' ' '''
'  over the K  

identical machines.  The constraints in (4-1) assigns the initial status of  each machine 

km .  For example, in the situation, where the initial status of  machine 1m  is pseudo-job 

30r , we will assign 1i =3 and 301x =1.  The constraints in (4-2) guarantee that only one 

pseudo-job 0ir  is scheduled on a machine.  Constraints in (4-3) guarantee that job ijr  is 

processed by one machine exactly once.  The constraints in (4-4) state that each machine 

workload does not exceed the machine capacity.  

The constraints in (4-5), (4-6), and (4-7) ensure that one job should precede another 

 1)   =+ ijkjikjiji yy ''''(  if  two jobs ijr  and '' jir  are scheduled on the same machine km  
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( 1=ijkx  and 1=kjix '' ), while 0   ≤+ ijkjikjiji yy ''''  if  two jobs ijr  and '' jir  are not 

scheduled on the same machine km  ( 0=ijkx  or 0=kjix '' ).  The constraints in (4-8) 

ensure that job with smaller or equal priority code (higher or equal job priority) should 

precede the other job with larger or equal priority code (lower or equal job priority) when 

two jobs are scheduled on the same machine km  ( 1 =kjijiy ''  and 0  =ijkjiy '' , if  

'' jiij hh ≤ ) or ( 0 =kjijiy ''  and 1  =ijkjiy '' , if  '' jiij hh ≥ ).  The constraints in (4-9) ensure 

that the job ijr  precedes job ** jir  ( 1 =kjijiy ** ) when the job ijr  precedes job '' jir  

( 1 =kjijiy '' ) and the job '' jir  precedes job ** jir  ( 1 =kjijiy **'' ). 

The constraints in (4-10) ensure that job ijr  could precede job '' jir  directly 

)( '' 1=kjijiz  only when 1 =kjijiy ''  and job ijr  could not precede job '' jir  directly 

)( '' 0=kjijiz  if  job ijr  is scheduled after '' jir  ( 0 =kjijiy '' ).  The constraints in (4-11) state 

that there should exist 1−n  direct-precedence variables, which are set to one, on the 

schedule with n  jobs.  The constraints in (4-12) guarantee that at most one job '' jir  

could be scheduled after job ijr  directly for all the jobs scheduled on the same machine 

km .  The constraints in (4-13) guarantee that at most one job '' jir  could be scheduled 

precede job ijr  directly for all the jobs scheduled on the same machine km . 

In the integer programming formulation above, the total number of  variables and 

equations increase as the number of  machines or the number of  jobs increase.  The 

computational complexity of  the integer programming model is as follows.  For a 

parallel-machine problem with I  job clusters and K  machines, containing a total of  

)()()( 1111 21 +++++++= II JJJN L  jobs, the integer programming model contains 
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KNI  variables of  ijkx , )( 1−II NKN  variables of  kjijiy '' , and )( 1−II NKN  variables of  

kjijiz '' .  Further, the constraint sets in (4-1), (4-2), (4-4) and (4-12) each contains K  

equations, the constraint set in (4-3) contains )( 1+− INI  equations, constraint sets in 

(4-5)~(4-8), and (4-10) each contains )( 1−II NKN  equations, the constraint sets in (4-9) 

contains ))(( 21 −− III NNKN  equations, and the constraint sets in (4-12) and (4-13) 

contains KNI .  Thus, the total number of  variables is KNKN II −22 , and the total 

number of  equations is )( 142 23 +−++−+ IKNKNKNKN IIII . 

To accelerate the execution in solving the integer programming problem, we use 

both a depth-first search strategy by choosing the most recently created node [26][36], 

and a strong branching rule causing variable selection based on partially solving a 

number of  sub-problems with tentative branches to find the most promising branch [36].  

By using the depth-first search strategy, when the tree size or the number of  fully 

developed branches exceeds limitations induced by computation time or memory 

requirements, the program terminates and returns the best solution achieved.  The 

implementation thus allows us to set various limits on the number of  memory nodes so 

that feasible solutions may be obtained efficiently within reasonable amount of  computer 

time.  The node limit is set to determine the maximum number of  nodes solved before 

the program terminates, without reaching optimality [36]. 

4.4. An Illustrative Example 

Consider the following ICASP example with two parallel machines (m1 and m2), two 

job priority levels (1 and 2, in which a job with priority 1 has a higher priority than the 

jobs with priority 2), and three clusters of  jobs ( 1R , 2R , and 3R ) ready for processing 

initially, as shown in Figure 4-3. Job cluster 1R  contains three jobs, 11r  with priority 1 
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and both 12r  and 13r  with priority 2.  Job cluster 2R  contains four jobs, both 21r  and 

22r  with priority 1 and both 23r  and 24r  with priority 2.  Job cluster 3R  contains three 

jobs, 31r  with priority 1 and both 32r  and 33r  with priority 2. 

 

Figure 4-3. The ICASP example with two parallel machines, two priority levels, and 

three job clusters. 

Table 4-1. Setup times required for switching one product type to another for 1R , 2R , 

and 3R  

 To 

From U 1R  2R  3R  

U － 6 6 10 

1R  0 0 6 10 

2R  0 10 0 6 

3R  0 10 3 0 

 

Table 4-2. Job processing times for 1R , 2R , and 3R  on the machines m1 and m2 

 1R  2R  3R  

m1 25 12 15 

m2 25 12 15 
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Table 4-1 displays the setup times required for switching one product type to another 

for the three types 1, 2, and 3.  In Table 4-1 the label U denotes that the machine is in 

idle status.  Table 4-2 displays the job processing times for job clusters 1R , 2R , and 3R  

on the machines m1 and m2.  Note that the setup times and the processing times are 

associated with the product types, regardless of  job priority levels.  The capacity of  each 

machine is set to 100 minutes in this example.  The initial status of  machine m1 is 10r , 

and that of  machine m2 is 20r . 

To solve the integer programming problem for the ICASP example, we adopt ILOG 

OPL [20] to generate the constraints and variables of  the model.  For the ICASP 

example with two machines, two job priority levels, three job clusters, and ten jobs, as 

shown in Figure 4-3, the model contains 756 variables and 6262 equations.  We run the 

integer programming model using the IP software ILOG OPL 3.6 on a Pentium IV 3.0 

GHz PC.  The optimal solution for this example is shown in Figure 4-4.  The total 

machine workload is 183.  For machine m1, the total machine workload is 93 with setup 

time 6 and processing time 87.  For machine m2, the total machine workload is 90 with 

setup time 9 and processing time 81.  We note that the job priority constraints and the 

machine capacity constraints are satisfied for the solution. 

 

 

Figure 4-4. The optimal solution on the ICASP example. 
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Table 4-3. The integer programming solution (optimal) for the ICASP example by 

CPLEX 8.0 

The objective value and the solution time 

Integer optimal solution: Objective = 183 

Solution time = 13.13 seconds   Iterations = 7390   Nodes = 145   

The statistics of  the model      

Constraints: 6262 [Less: 1150 Greater: 5096, Equal: 16] 

Variables: 756 [Binary: 756] 

The values for all variables 

Name Value Name Value Name Value Name Value 

X101 1 Y11131 1 Z22312 1 Y21332 1 

X111 1 Y11241 1 Z31332 1 Y22232 1 

X121 1 Y12241 1 Z32232 1 Y22312 1 

X131 1 Y13121 1 Z33322 1 Y22322 1 

X241 1 Y13241 1 Y20212 1 Y22332 1 

Z10111 1 X202 1 Y20222 1 Y31232 1 

Z11131 1 X212 1 Y20232 1 Y31322 1 

Z12241 1 X222 1 Y20312 1 Y31332 1 

Z13121 1 X232 1 Y20322 1 Y32232 1 

Y10111 1 X312 1 Y20332 1 Y33232 1 

Y10121 1 X322 1 Y21222 1 Y33322 1 

Y10131 1 X332 1 Y21232 1   

Y10241 1 Z20212 1 Y21322 1   

Y11121 1 Z21222 1 Y21322 1   

All other variables in the range 1-756 are zero 

Table 4-3 displays output solution of the integer programming model.  The 

variables X101=1, X111=1, X121=1, X131=1, and X241=1 indicate that the jobs 10r , 

11r , 12r , 13r , and 24r  are scheduled on machine 1m .  The variables Z10111=1, 

Z11131=1, Z12241=1, and Z13121=1 imply that job 10r  precedes job 11r  directly, 11r  

precedes job 13r  directly, job 12r  precedes job 24r  directly, and job 13r  precedes job 

12r  directly.  Thus, there is one product type changes, from 1R ( 12r ) to 2R ( 24r ). 

The variables X202=1, X212=1, X222=1, X232=1, , X312=1, X322 and X332=1 

indicate that the jobs 20r , 21r , 22r , 23r , 31r , 32r  and 33r  are scheduled on machine 
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2m .  The variables Z20212=1, Z21222=1, Z22312=1, Z31332=1, Z32232=1, and 

Z33322=1 imply that job 20r  precedes job 21r  directly, job 21r  precedes job 22r  

directly, job 22r  precedes job 31r  directly, job 31r  precedes job 33r  directly, job 32r  

precedes job 23r  directly, and job 33r  precedes job 32r  directly.  Thus, there are two 

product type changes, from 2R ( 22r ) to 3R ( 31r ) and from 3R ( 32r ) to 2R ( 23r ). 

Note that the solution will be different when the initial statuses of  machines are 

different.  When the initial status of  machine m1 is idle ( 00r ) and that of  machine m2 is 

30r , the optimal solution will become 189, as shown in Figure 4-5.  For machine m1, the 

total machine workload is 99 with setup time 12 and processing time 87.  For machine 

m2, the total machine workload is 90 with setup time 9 and processing time 81. 

 

Figure 4-5. The optimal solution on the ICASP example with initial status of  r00 and r30. 

4.5. A heuristic algorithm 

For large scale problems, the depth-first strategy can solve the problem with more 

computation effort.  However, if  the computational run time is primary concern, a 

heuristic algorithm may be considered.   

In this section, we extend the savings algorithms investigated by Clark and Wright 

[20], Golden [27], Christofides et al. [17], and Altinkemer and Gavish [3] to solve the 

ICASP.  The main concept of  our algorithm is as follows. 
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1. Considering the initial status of  each machine may differ, creates a multiple of  K 

machine schedules simultaneously at the initial stage, where K is the number of  

machines.  

2. Selecting a feasible job resulting the smallest setup times to extend the partial 

schedule k. 

3. A job is feasible if  it does not violate the machine capacity constraints and the 

priority restrictions. 

4. If  there is a tie for the feasible jobs, choose the job with the highest priority. 

The proposed algorithm essentially consists of  two phases.  Phase I creates a 

multiple of  K  machine schedules simultaneously by finding the feasible job with the 

smallest setup times to add it to the end of  partial schedule kPS .  Note that a job is 

feasible and is added to the machine schedule only if  the capacity constraint and the job 

priority restrictions are not violated.  After Phase I, partial schedules like 

kGggik kk
uuuurPS ),, ,,, ,( 110 KK −=  should be generated, in which 0kir  represents the 

initial status of  machine km , gu  represents the job be scheduled at position g  on 

machine km , and kG  represents the total number of  jobs in the schedule kPS . 

For the jobs left unscheduled in Phase I due to the job priority constraint, in Phase II, 

we calculate the insertion cost of  every unscheduled job ijr  at every possible position of  

each partial schedule kPS  to insert the job to the lowest insertion cost position.  Note 

that a job is inserted into the machine schedule only if  the capacity constraint and the job 

priority restrictions are not violated.  Let ) , ,( ij1 ggk uru −λ  be the additional setup cost 

when job ijr  is inserted between position 1−g  and g  in schedule kPS .  Note that 

the setup time )()( 1 gg uIuIS
−

 is determined by the product types, )( 1−guI  and )( guI , of  job 

1−gu  and gu . 
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The procedures of  the proposed heuristic algorithm are described as follows. 

Phase I- Schedule construction 

Step 1: For each machine km , let partial schedule kik k
rPS )( 0=  initially. 

Step 2: Sort the setup times for all pairs of  job type i  and 'i  and create a list in 

ascending order of  magnitude. 

Step 3: Starting from the top of  the setup time list, find the first feasible link in the list, 

which can be used to extend the end of  *kPS  without violating the machine 

capacity constraints and the priority restrictions.  If  there is a tie for the feasible 

jobs, choose the job with the highest priority. 

Step 4: Repeat Step 3 until no feasible job can be added to extend the end of  any kPS .  

If  there are jobs left unscheduled, proceed to Phase II.  Otherwise, stop. 

Phase II- Job Insertion 

Step 1: For each unscheduled job ijr , first compute its best feasible insertion position, by 

),,(*
ggk uru   ij1−λ  in each machine’s partial schedule kPS : 

)()()()(),,(
gggg uIuIuiIiuIggk SSSuru

11
  ij1 −−

−+=−λ . 

Step 2: The job ijr  is inserted into the lowest insertion cost position of  the machine 

*km  determined by the lowest insertion cost ) , ,( ij1
*

* ggk uru −λ . 

)] , ,([min) , ,( ij1
*

,,1
ij1

*
* ggk

Kk
ggk uruuru −

=
− = λλ

K
. 

Step 3: Repeat Step 1-2 until all jobs are scheduled. 
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4.6. Computational test 

In this section, three computational tests are presented.  The purpose of  the first test 

is to show the results for the problems of  small or moderate size.  The second test 

focuses the computational efficiency for the heuristic algorithm for the problems of  larger 

size.  The third test focuses on solving the scheduling problem based on real-world 

applications. 

4.6.1. Computational test 1 

In this test, computational results were presented by a set of  randomly generated test 

problems, with similar characteristics to industrial data.  12 jobs are to be completed 

within two days.  Thus, the machine capacity is set to 2880 minutes.  Table 4-4 shows 

the data set used to generate the test problems.  We consider two values of  number of  

job clusters (I=3, 6), two sets of  level of  priority (H=3, 5), and three values of  number of  

machines (K=3, 4, 5).  The unit processing time for the product types are 40, 45, and 50.  

The lot size of  each job was generated using uniform[10, 15] for 3 machines, uniform[14, 

19] for 4 machines, and uniform[18, 23] for 5 machines.  Thus, we have a total of  12 

combinations of  problem parameters.  For each combination, we generate 10 instances, 

yielding a total of  120 problems. 

Table 4-4. Data Set 

Factor Values considered Total values 

Number of  job clusters ( I ) 3, 6 2 

Levels of  job priority ( H ) 3, 5 2 

Number of  machines ( K ) 3, 4, 5 3 

Number of  jobs (∑ iJ ) 12 1 

The IP model was tested using a computer program coded in ILOG OPL language 

and solved with ILOG CPLEX on a Pentium IV 3.0 GHz PC.  The heuristic algorithm 
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was coded in Compaq Visual Fortran 6.6.  For evaluating the solution quality, 

percentage error 100×−= ]/)[( optopth SSSe  is employed, where hS  is the average setup 

time of  the heuristic solution and optS  is the optimal average setup time obtained from 

the IP model.  Table 4-5 lists the results.  The proposed heuristic is effective and each 

percentage error is less than 3%.  The efficiency of  the models is also reported based on 

the average CPU time (in seconds).  For the IP model, the computation time increases 

with increasing the number of  machines, while the heuristic algorithm is able to obtain 

the solutions within almost instant time for every problems in this test.  

Table 4-5. Summary Results 

IP model Heuristic I H K 

optS  
Avg. run 

time (sec) 

 

hS  
Avg. run 

time (sec) 

e * (%) 

3 3 3 93 839.41  93 0.0015 0.00 

6 3 3 240 38.23  240 0.0015 0.00 

3 5 3 81 133.51  81 0.0015 0.00 

6 5 3 267 39.31  273 0.0015 2.25 

3 3 4 93 1974.55  93 0.0015 0.00 

6 3 4 186 65.61  186 0.0015 0.00 

3 5 4 120 1225.81  120 0.0015 0.00 

6 5 4 201 41.85  204 0.0015 1.49 

3 3 5 96 1722.96  96 0.0015 0.00 

6 3 5 168 247.97  171 0.0015 1.79 

3 5 5 117 2110.11  120 0.0015 2.56 

6 5 5 177 65.48  177 0.0015 0.00 

*: 100×−= ]/)[( optopth SSSe  

Using the combination of  depth-first search strategy and strong branching rule 

showed to be powerful.  For every test problems of  3 machines and 4 machines in the 

data set, the optimal solution was reached within the 15,000 nodes created (within 5 

minutes of  execution time).  For every test problem of  5 machines in the data set, the 
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optimal solution was reached within the 17,000 nodes created (within 10 minutes of  

execution time). 

4.6.2. Computational test 2 

In this test, computational results were presented by six larger-size problems, with 

similar characteristics to industrial data.  The jobs are to be completed within two days.  

Thus, the machine capacity is set to 2880 minutes.  We consider two values of  number 

of  job clusters (I=8, 10), two sets of  level of  priority (H=3, 5), and three values of  number 

of  machines (K=8, 9, 10). 

The IP model with the combination of  depth-first search strategy and strong 

branching rule (IP_DFS) was tested using a computer program coded in ILOG OPL 

language and solved with ILOG CPLEX on a Pentium IV 3.0 GHz PC.  The heuristic 

algorithm was coded in Compaq Visual Fortran 6.6.  For evaluating the solution quality, 

percentage error 100]/)[( ×−= dfsdfsh SSSe  is employed, where hS  is the average setup 

time of  the heuristic solution and dfsS  is the average setup time obtained from the 

IP_DFS model.   

For the six problems, the solution values obtained by the heuristic algorithm were 

compared with those obtained by IP_DFS.  According to the computational results, the 

heuristic algorithm outperformed IP_DFS both in solution quality and runtime 

consumed.   
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Table 4- 6 Summary Results for larger-size problem 

IP_DFS Heuristic 
I H K 

dfsS  Run time 

(sec) 

 

hS  Run time 

(sec) 

e * (%) 

10 3 8 660 43953.80  360 0.0015 -45.45 

8 3 9 1200 45894.81  540 0.0015 -55.00 

8 5 9 1560 47395.84  660 0.0015 -57.69 

10 3 9 1740 51290.69  630 0.0015 -63.79 

10 5 9 1320 52408.55  750 0.0015 -43.18 

8 5 10 2340 61162.38  420 0.0015 -82.05 

*: 100]/)[( ×−= dfsdfsh SSSe  

4.6.3. Computational test 3 

In this section, we consider the following example taken from an IC assembly 

shop-floor in an IC manufacturing factory located in the Science-based Industrial Park at 

Tainan, Taiwan.  For the case we investigated, there are 20 product types of  TSOP2 

packaging being processed on 33 parallel LOC die bonders.   

This real example contains 105 wafer lots with job priority, lot size, and unit 

processing time, which would be die bonding under certain size of  chop table, mount 

stage and mount head, as shown in Table 4-6.  These jobs are to be completed on the 33 

parallel die bonders within two days.  Therefore, the machine capacity is set to 2880 

minutes. 

The setup time required for switching one product type to another depends on the 

chop table changes, mount stage and mount head changes, and parameter settings is 

shown in Table 4-5.  The time to change chop table is 240 minutes, the time to change 

mount stage and mount head is 120 minutes, and parameter settings is 30 minutes in this 

case. 
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Solving the real-world ICASP by our proposed algorithm (the program codes of  the 

algorithm are written in Compaq Visual Fortran 6.6), the sets of  machine schedule are 

generated.  The proposed algorithm takes only 0.07 CPU seconds to obtain the solution 

with total machine workload 87602 with setup time 6480 and processing time 81122 on 

33 die bonders, as shown in Figure 4-6. 
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Table 4-7. The product types, processing time, and job priority code in the real-world 

example 

Job 

ID 

Product 

type 

Lot size Unit 

processing 

time 

job 

priority 

code 

Job 

ID 

Product 

type 

Lot size Unit 

processing 

time 

Job 

priority 

code 

1 01 8 42 2 31 06 8 42 3 

2 01 8 42 2 32 07 20 42 1 

3 01 7 42 3 33 07 20 42 1 

4 02 7 42 2 34 07 19 42 2 

5 02 7 42 3 35 07 19 42 2 

6 03 22 40 1 36 07 19 42 3 

7 03 23 40 1 37 07 18 42 3 

8 03 21 40 2 38 07 18 42 3 

9 03 20 40 2 39 08 20 42 2 

10 03 20 40 3 40 08 20 42 2 

11 03 20 40 3 41 08 19 42 2 

12 03 18 40 3 42 08 19 42 3 

13 03 18 40 4 43 08 19 42 3 

14 04 20 40 2 44 08 18 42 3 

15 04 22 40 2 45 08 18 42 3 

16 04 22 40 2 46 08 18 42 4 

17 04 20 40 3 47 08 18 42 4 

18 04 20 40 3 48 09 19 45 2 

19 04 18 40 3 49 09 19 45 2 

20 04 18 40 4 50 09 18 45 3 

21 04 18 40 4 51 09 18 45 3 

22 05 16 40 2 52 09 18 45 3 

23 05 18 40 2 53 09 18 45 3 

24 05 16 40 3 54 10 20 45 2 

25 05 16 40 3 55 10 20 45 3 

26 05 17 40 3 56 10 20 45 3 

27 05 16 40 3 57 10 20 45 3 

28 06 9 42 2 58 10 19 45 3 

29 06 9 42 2 59 10 19 45 3 

30 06 8 42 2 60 10 19 45 3 



 

   63

Table 4-6. The product types, processing time, and job priority code in the real-world 

example (continued) 

Job 

ID 

Product 

type 

Lot size Unit 

processing 

time 

Job 

priority 

code 

Job 

ID 

Product 

type 

Lot size Unit 

processing 

time 

Job 

priority 

code 

61 10 18 45 4 84 13 20 45 3 

62 10 18 45 4 85 14 20 50 1 

63 11 23 40 1 86 14 20 50 1 

64 11 23 40 1 87 14 19 50 2 

65 11 23 40 2 88 14 19 50 3 

66 11 22 40 2 89 14 19 50 3 

67 11 22 40 3 90 15 20 50 2 

68 11 22 40 3 91 15 20 50 2 

69 11 21 40 3 92 15 20 50 3 

70 11 21 40 3 93 15 20 50 4 

71 12 20 40 1 94 15 20 50 4 

72 12 20 40 2 95 16 18 42 4 

73 12 20 40 2 96 16 18 42 4 

74 12 20 40 3 97 16 17 42 5 

75 12 20 40 3 98 17 15 50 3 

76 12 20 40 3 99 17 15 50 4 

77 12 19 40 4 100 18 12 50 4 

78 12 19 40 4 101 18 12 50 4 

79 13 23 45 2 102 19 16 45 3 

80 13 22 45 2 103 19 16 45 4 

81 13 22 45 2 104 20 7 45 5 

82 13 20 45 3 105 20 7 45 5 

83 13 20 45 3      
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Table 4-8. Setup times required for switching one product type to another in the real-world example 

           To           

From U 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 

U 0 270 270 150 150 150 270 150 150 150 150 150 150 150 150 150 270 150 150 150 270 

01 0 0 30 270 270 270 30 270 270 270 270 270 270 270 270 270 150 390 270 270 150 

02 0 30 0 270 270 270 30 270 270 270 270 270 270 270 270 270 150 390 270 270 150 

03 0 390 390 0 30 30 390 30 30 30 30 150 150 150 150 150 390 150 150 150 390 

04 0 390 390 30 0 30 390 30 30 30 30 150 150 150 150 150 390 150 150 150 390 

05 0 390 390 30 30 0 390 30 30 30 30 150 150 150 150 150 390 150 150 150 390 

06 0 150 150 270 270 270 0 270 270 270 270 270 270 270 390 390 150 390 390 390 150 

07 0 390 390 30 30 30 390 0 30 30 30 150 150 150 150 150 390 150 150 150 390 

08 0 390 390 30 30 30 390 30 0 30 30 150 150 150 150 150 390 150 150 150 390 

09 0 390 390 30 30 30 390 30 30 0 30 150 150 150 150 150 390 150 150 150 390 

10 0 390 390 30 30 30 390 30 30 30 0 150 150 150 150 150 390 150 150 150 390 

11 0 390 390 30 30 30 270 30 30 30 30 0 30 30 150 150 390 150 150 150 390 

12 0 390 390 30 30 30 270 30 30 30 30 30 0 30 150 150 390 150 150 150 390 

13 0 390 390 30 30 30 270 30 30 30 30 30 30 0 150 150 390 150 150 150 390 

14 0 270 270 30 30 30 270 30 30 30 30 30 30 30 0 30 390 150 30 30 390 

15 0 270 270 30 30 30 270 30 30 30 30 30 30 30 30 0 390 150 30 30 390 

16 0 30 30 270 270 270 30 270 270 270 270 270 270 270 270 270 0 270 270 270 30 

17 0 270 270 30 30 30 270 30 30 30 30 30 30 30 30 30 270 0 30 30 270 

18 0 270 270 30 30 30 270 30 30 30 30 30 30 30 30 30 390 150 0 30 390 

19 0 270 270 30 30 30 270 30 30 30 30 30 30 30 30 30 390 150 30 0 390 

20 0 30 30 270 270 270 30 270 270 270 270 270 270 270 270 270 30 270 270 270 0 
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Figure 4-6. The schedule for the real-world ICASP application example. 
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Figure 4-5. The schedule for the real-world ICASP application example (continued). 
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5. Conclusions and Future Research 

5.1. Conclusions 

Semiconductor companies must maintain high-level customer service to gain their 

competitive edge.  Facing the environment with volatile demand, how to deliver order 

on time justifies the efficiency of  the production planning and scheduling in 

semiconductor manufacturing.  At the same time, minimizing production cost is the 

other managerial goal.  Finding practical scheduling methods with the consideration of  

multiple processing-priorities and reducing setup costs simultaneously is a great 

challenge. 

Wafer fabrication determines to a large extend the production plan of  the whole 

semiconductor manufacturing due to its high complexity and long manufacturing process 

time.  The accuracy of  due-date assignment for wafer fabrication strongly influences the 

efficiency of  the scheduling of  downstream (back-end) operations.  In this dissertation, 

we first considered the due-date assignment problem for wafer fabrication, which has 

many real-world applications.  We modeled the due-date assignment problem for wafer 

fabrication under two environments.  For the one with single product mix, waiting time 

of  each product type is modeled by gamma distribution and the due dates are set to be 

consistent with the target on-time-delivery rate.  The other is where product mix changes 

periodically, the contamination model is applied to tackle the effects of  product mix 

changes and the due dates can then be set.  A real-world example taken from a wafer 

fabrication factory is also provided to demonstrate the effectiveness and accuracy of  the 

proposed model.  The results show that the due-date assignment model provides a quite 

good solution. 
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For the back-end site, this dissertation is the first attempt to capture distinct 

production characteristics of  the IC assembly operations in a scheduling model.  The 

ICASP is described in detail and then formulate the ICASP as an integer programming 

model to minimize the total machine workload.  An effective and efficient heuristic 

algorithm is also proposed for solving large-scale problems.  From the computational 

tests, the performances of  the proposed model and heuristic algorithm are quite 

satisfactory.  For the problems of  small or moderate size in the test problems, the 

proposed heuristic is effective and each percentage error is less than 3%.  A real-world 

example taken from an IC assembly shop-floor in an IC manufacturing factory, where 

105 jobs to be processed on 33 machines, is solved by the proposed algorithm to obtain 

the near optimal solution within 0.07 CPU seconds.  

5.2. Future Research 

There are some avenues to pursue in the future development of  scheduling models 

for IC assembly operations.  The first practical extension concerns the unrelated 

parallel-machine scheduling.  When the capacity expansion of  bottleneck-machines 

proceeded at different timing, the machines could be unrelated.  As our integer 

programming model can also be used to solve the unrelated-parallel-machine ICASP, the 

part of  this development could be to modify the proposed heuristic algorithm of  Section 

4.5 for solving the more general ICASP, where the machines are unrelated.  

Another practical extension concerns the mixture-priority jobs in ICASP.  In some 

cases companies have two types of  orders, in which one type of  orders are for specific 

customer and the other type of  orders are for spot market.  The customer orders are 

assigned with job priority, while the spot-market orders are not.  Extension of  the 

proposed models to the more general ICASP with the consideration of  mixture-priority 

jobs could be our interest of  research. 
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Finally, research can be pursued to solve the ICASP where the production system 

has more than one bottlenecks.  A complete analysis of  the relationships between those 

bottlenecks and the processing flow of  jobs would be desirable. 
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Appendix 

Appendix A. Product Process Data1 

Table A-1. Sequence and Processing Time for Product A          (unit: minute) 

Sequence Workstation 
Processing 

Time 
Sequence Workstation 

Processing 
Time 

1 W43 3.00 81 W26 346.00 
2 W45 3.00 82 W37 3.00 
3 W79 1.00 83 W04 3.00 
4 W67 12.00 84 W29 346.00 
5 W24 346.00 85 W37 3.00 
6 W37 3.00 86 W44 2.00 
7 W46 42.00 87 W35 247.00 
8 W01 3.00 88 W42 3.00 
9 W20 8.00 89 W81 21.00 

10 W07 32.00 90 W69 10.00 
61 W40 38.00 121 W46 42.00 
62 W39 6.00 122 W01 3.00 
63 W39 6.00 123 W22 8.00 
64 W07 32.00 124 W38 77.00 
65 W71 11.00 125 W07 32.00 
66 W02 3.00 126 W71 11.00 
67 W46 42.00 127 W02 3.00 
68 W01 3.00 128 W46 42.00 
69 W48 82.00 129 W01 3.00 
70 W40 38.00 130 W22 8.00 
71 W40 38.00 131 W38 77.00 
72 W39 6.00 132 W07 32.00 
73 W39 6.00 133 W71 11.00 
74 W07 32.00 134 W02 3.00 
75 W71 11.00 135 W46 42.00 
76 W02 3.00 136 W01 3.00 
77 W67 12.00 137 W22 8.00 
78 W37 3.00 138 W38 77.00 
79 W67 12.00 139 W07 32.00 
80 W04 3.00 140 W71 11.00 

                                                 

 1 Due to the confidentiality of the product process data which is obtained from anonymous wafer 

production companies, only a partial of the process data of product A is given here for reference.  
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Table A-1. Sequence and Processing Time for Product A (continued)  (unit: minute) 

Sequence Workstation 
Processing 

Time 
Sequence Workstation 

Processing 
Time 

141 W02 3.00 251 W59 17.00 
142 W69 10.00 252 W37 3.00 
143 W41 48.00 253 W21 8.00 
144 W31 247.00 254 W46 42.00 
145 W76 25.00 255 W57 5.00 
146 W55 41.00 256 W01 3.00 
147 W66 3.00 257 W52 6.00 
148 W41 48.00 258 W21 8.00 
149 W77 25.00 259 W08 27.00 
150 W41 48.00 260 W13 120.00 
191 W78 2.00 261 W37 3.00 
192 W46 42.00 262 W02 3.00 
193 W57 5.00 263 W08 27.00 
194 W01 3.00 264 W73 13.00 
195 W52 6.00 265 W02 3.00 
196 W47 82.00 266 W55 41.00 
197 W18 96.00 267 W37 3.00 
198 W02 3.00 268 W78 2.00 
199 W73 13.00 269 W63 32.00 
200 W02 3.00 270 W37 3.00 
201 W53 6.00 271 W62 48.00 
202 W59 17.00 272 W54 36.00 
203 W37 3.00 273 W37 3.00 
204 W59 1.00 274 W78 2.00 
205 W37 3.00 275 W46 42.00 
206 W64 120.00 276 W57 5.00 
207 W37 3.00 277 W01 3.00 
208 W58 40.00 278 W52 6.00 
209 W59 17.00 279 W47 82.00 
210 W37 3.00 280 W18 96.00 
211 W46 42.00 301 W73 13.00 
212 W57 5.00 302 W36 346.00 
213 W01 3.00 303 W82 72.00 
214 W52 6.00 304 W05 24.00 
215 W21 8.00 305 W83 3.00 
216 W08 27.00    
217 W13 120.00    
218 W37 3.00    
219 W02 3.00    
220 W08 27.00    
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Appendix B. Workstation Data 

Table B-1. Relevant data for each workstation2 

Workstation 
Number 

W01 W04 W07 W10 W13 W16 W19 W22 W25 W28 

Processing Batch 1 1 2 1 2 1 1 1 6 6 
Machine Number 3 2 7 1 3 2 2 2 3 5 

MTBF（hr） 200 – 300 250 200 – 200 500 500 108.6 

MTTR（hr） 4 – 8 4 4 – 4 4 8 12.2 

MTBPM（hr） 716 – 240 330 60 – – 168 4320 480 

MTPM（hr） 4 – 1 2 6 – – 0.5 72 24 

Workstation 
Number 

W31 W34 W37 W40 W43 W46 W49 W52 W55 W58 

Processing Batch 6 6 1 4 1 1 1 1 1 1 
Machine Number 3 3 5 2 1 13 2 3 4 4 

MTBF（hr） 500 500 – 70 – 24 70 100 100 400 

MTTR（hr） 8 8 – 6 – 1.5 2 4 5 8 

MTBPM（hr） 4320 4320 – 168 – 163 162 716 96 710 

MTPM（hr） 72 72 – 8 – 5 4 4 8 10 

Workstation 
Number 

W61 W64 W67 W70 W73 W76 W79 W81   

Processing Batch 1 1 2 2 2 2 1 2   
Machine Number 1 7 1 2 2 1 2 1   

MTBF（hr） 100 105 1400 1400 1400 1400 400 –   

MTTR（hr） 8 10 5.5 5.5 5.5 5.5 8 –   

MTBPM（hr） 20 10 2160 2160 2160 2160 710 –   

MTPM（hr） 5 1.5 4 4 4 4 10 –   

 

 

                                                 

 2Due to the confidentiality of the workstation data, only a partial of the workstation data is given 

here for reference. 




