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Abstract While several of researchers have proposed excellent protocols on resource
synchronization, little work has been done for processes that might suspend them-
selves for I/O access, especially when they tend to be more tolerant to multiple pri-
ority inversions. This paper presents research results extended from the concept of
priority ceilings with the objective of satisfying different priority-inversion require-
ments for different processes. We aim at practical considerations in which processes
might voluntarily give up CPU and be willing to receive more blocking time than
those in more traditional approaches. Extensions on the proposed scheduling proto-
cols for deadlock prevention are also considered.

Keywords Real-time systems · Resource synchronization protocol · Priority
ceiling · Deadlock prevention

1 Introduction

Real-time resource synchronization has been an important research topic over the
past decades. Resolving resource contention with a proper management of priority
inversion has usually been the main focus of the research. Among the many proposed
synchronization protocols, the Priority Ceiling Protocol (PCP) (Sha et al. 1990) is
one of the most well-known protocols in hard real-time task scheduling. It has been
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proven that no higher-priority task could be blocked by more than one lower-priority
task. The Stack Resource Policy (SRP) (Baker 1990) further extends PCP by allowing
multiple units per resource and could adopt dynamic priority assignment algorithms,
e.g., the Earliest Deadline First (EDF) algorithm (Liu and Layland 1973), where EDF
assigns the task with the closest deadline among ready tasks with the highest priority.

Although many excellent resource synchronization protocols have been proposed,
most are either for hard real-time task scheduling with the maximum priority in-
version number being one, e.g., (Sha et al. 1990; Baker 1990; Chen and Lin 1990;
Rajkumar et al. 1988), or for soft real-time task scheduling without any guarantee on
the maximum priority inversion number, e.g. (Liang et al. 2003; Kuo et al. 2001;
Han et al. 1996; Hsueh and Lin 1998; Kuo et al. 1999; Kuo et al. 2001; Liang
et al. 2003; Sides 1995; Spuri et al. 1995; Stoica et al. 1996; Waldspurger 1995;
Waldspurger and Weihl 1995; Wang and Lin 1994; Wu et al. 1999). Further, research
on hard or soft real-time task scheduling often considers computation-intensive tasks
only. When I/O operations are considered, research on real-time resource synchro-
nization is often based on heuristics without any schedulability guarantee. Neverthe-
less, tasks executing over modern computer systems often consist of CPU and I/O
bursts. While a task is pending on the completion of an I/O operation, the scheduler
usually performs a context switch to execute another task. Resource synchronization
which involves concurrent I/O operations and CPU executions is a difficult problem
(Stankovic et al. 1995). Tasks which might suspend themselves voluntarily for I/O
operations could suffer from a large number of priority inversions under many popu-
lar real-time resource synchronization protocols. This is because a lower-priority task
might lock a resource that later blocks a suspended higher-priority task. Such a task
model with I/O operations is not considered in many existing protocols. On the other
hand, one priority inversion seems overly conservative for many applications. In re-
ality, tasks could take different numbers of priority inversions, depending on their
natures. These observations motivate this research.

This paper proposes configurable resource synchronization protocols for engineers
to adjust the maximum number of priority inversions for each task and considers task
suspension. A table-based approach is first proposed to adjust the maximum number
of priority inversions for tasks without suspension. We then extend the approach to
considerations of task suspension. The ceilings of resources become configurable
to allow lower-priority tasks to grab resources while higher-priority tasks suspend
themselves to wait for I/O operations. System utilization is traded with the maximum
numbers of priority inversions for different tasks. A deadlock-prevention method with
low run-time overheads is proposed to avoid system deadlocks. Although PCP is
adopted to illustrate the configurable resource synchronization protocols, the idea
could be extended to other synchronization protocols.

The rest of this paper is organized as follows: The motivation of this work is illus-
trated in Sect. 2 based on several examples, with the process mode considered in this
paper and the necessary terminologies. A configurable resource synchronization pro-
tocol is proposed in Sect. 3. In Sect. 4, we present the idea of deadlock avoidance. An
off-line heuristic to resolve deadlocks with its on-line manipulation is then proposed.
Section 5 reports the performance evaluation of the proposed approach. This work is
concluded in Sect. 6.
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2 Motivation and problem definitions

The purpose of this section is to provide the motivation for this research. Observa-
tions of the behaviors of the well-known Priority Ceiling Protocol (PCP) (Sha et al.
1990) and Stack Resource Policy (SRP) (Baker 1990), when tasks might suspend
themselves, are illustrated. We then define terminologies and definitions for this pa-
per.

2.1 Motivation

We are interested in uniprocessor scheduling with I/O considerations, and every re-
source has only one instance. Let τH , τM , and τL be three tasks scheduled by a fixed-
priority scheduling algorithm, where τH and τL are the highest-priority task and the
lowest-priority task, respectively. Three resources R1, R2, and Ra are shared among
the tasks. R1, R2 are semaphores, and Ra is an I/O device which could operate in-
dependently when a particular task is running over the CPU. Let operations on Ra

be non-preemptible. Suppose that τH might access R1, R2, and Ra , τM might access
Ra , and τL might access R1 and R2. We use the following two scheduling examples
to serve as the motivation for this research: Note that tasks could be periodic or ape-
riodic. We call each instance of a task as a job, where a task is a template of its jobs.
For example, a periodic task has a corresponding job ready for each period.

Suppose that the task set is scheduled by PCP (Sha et al. 1990). The ceilings of R1
and R2 are both equal to the priority of τH , where the ceiling of a resource is equal
to the maximum priority of all tasks that might access the resource. Since Ra denotes
an I/O device, there are two cases to be considered: (1) There is no resource locking
needed for Ra so any task could access Ra whenever it is available. (2) A semaphore
is defined for the access synchronization of Ra .

Consider the first case, where no ceiling rule is applied to Ra . Suppose that τH , τM

and τL are all ready at time 0. At time 1, τH successfully issues a request on Ra and
suspends to wait for the I/O completion. Let τM be dispatched at time 1 because it is
the ready task with the highest priority. At time 2, τM issues an I/O request on Ra and
suspends its execution, where the suspension will continue until completing requests
from τH and τM because Ra is non-preemptive. Because τL is the only ready task, it
is dispatched at time 2. At time 3, τL locks R1 successfully because no other resource
is currently locked. Note that no ceiling rule is applied to Ra . At time 4, τH resumes
for execution because the request on Ra is completed. As a result, the request from
τM starts on Ra , and τH preempts τL at time 4. When τH issues a lock request on
R1 at time 5, τH is blocked by τL because the ceiling of R1 (that is locked by τL)
is not lower than the priority of τH . It is the first priority inversion suffered by τH .
τL inherits τH ’s priority and resumes its execution. At time 6, τL unlocks R1, and
τH preempts τL and locks R1 successfully. τH unlocks R1 at time 7. The I/O request
on Ra at time 8 is blocked because the request from τM is still under processing.
It is another priority inversion for τH . The blocking of a higher-priority task could
happen not only on the executions over the CPU but also on the requests serviced by
an I/O device.

We must point out that the blocking of τH occurs at time 5 because τH voluntarily
surrenders the CPU at time 1 such that τL has a chance to execute and block τH .
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Fig. 1 PCP not applied in Ra

Such a blocking could theoretically happen repeatedly without a bound (over CPU
and I/O devices). For example, the I/O request of τH at time 8 causes the suspension
of τH again such that τL successfully locks R2 at time 11. Such a lock on R2 let
τL later block τH again at time 14, as shown in Fig. 1. We conclude that a task
can experience a priority inversion every time when it resumes on the CPU, if PCP
is directly applied without a proper synchronization rule on Ra . However, we must
point out that one advantage for the absence of synchronization for I/O devices is a
higher system utilization.

Another scheduling alternative is to have a semaphore for the access synchroniza-
tion on Ra . For the purpose of discussions, we adopt another (maybe more) restric-
tive algorithm in access synchronization. Let SRP be adopted for the scheduling of
the task set, and a semaphore is adopted for the access synchronization of Ra . For
simplicity of presentation, the semaphore for Ra is referred to as Ra when there is
no ambiguity. Since there is only one unit per resource, and the number of units per
request is only one, we only need to define the preemption levels for resources R1,
R2, and Ra when there is no resource available. When there is not a single unit for
resource R1 (R2/R

a) available, the preemption level of R1 (R2/R
a) is equal to the

priority of the task τH (i.e., �R1�0 = �R2�0 = �Ra�0 = priority(τH )). SRP requires
no task being scheduled unless its priority is higher than the maximum preemption
level of resources in the system, i.e., the system preemption level. Figure 2 shows the
schedule under SRP. It is observed that τH suffers no priority inversion when it re-
quests any lock on R1, R2, or Ra . Such a strong synchronization requirement results
in the delay of the executions of τM and τL until time 16. Before time 16, either the
CPU or the I/O device is idle.
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Fig. 2 SRP applied in Ra

We must point out that I/O devices are very different from common resources
for synchronization, such as semaphores, in which their access requires the running
of the CPU. A tradeoff does exist between the system utilization and the maximum
number of priority inversions (or priority inversion time):

• Suppose that no PCP ceiling rule is adopted to manage an I/O device. Each lock
request of a task to the I/O device might introduce at most one priority inversion
when the task tries to lock a semaphore later (after the I/O request is satisfied).
Please see Fig. 1.

• Suppose that each I/O device is considered as a resource managed by SRP. The
maximum number of priority inversions per task is one. Please see Fig. 2.

• Suppose that each I/O device is considered as a resource managed by PCP. The
maximum number of priority inversions of a task is equal to one plus the number
of lock requests to I/O devices.1

The above observations motivate the design of a resource synchronization protocol
in which system engineers could trade the priority inversion time with the system
utilization.

1A lower-priority task could execute over the CPU when a higher-priority task suspends itself to access
an I/O device. Note that when the higher-priority task resumes from the I/O access, the lower-priority task
could access the I/O device and later block the higher-priority task.
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2.2 Process model, definitions, and terminologies

This section defines the process model and terminologies for this paper. We first
classify resources as active or passive as follows:

Definition 1 (Passive resources) A resource is passive if any accessing of the re-
source requires consumption of the CPU.

We say that a resource is active if it is not passive. Good examples of passive re-
sources include semaphores, mutex locks, event objects, and database locks. A task
must be executing while it is accessing a passive resource. Access over passive re-
sources could be either exclusive or shared among tasks, depending on the character-
istics of the resources and application logics, e.g., read and write locks on a piece of
data. Examples of active resources are such as disks, printers, network adaptors, and
transceivers. A task might issue a request on an active resource and resumes its exe-
cution if the request is asynchronous and granted. If the request is synchronous and
granted, then the task is suspended until the request is fulfilled. Access over active
resources could be preemptible or non-preemptible.

In this paper, we are interested in non-preemptible active resources, such as
disks (that are observed in most cases). All active resources in this paper are non-
preemptible unless they are explicitly identified as being preemptible. Let all active
resources in this paper be accessed synchronously, and no I/O buffering be consid-
ered. In other words, when an access request for an active resource is granted, it is
executed immediately. In this paper, we assume that a task voluntarily suspends its
CPU execution when it accesses an active resource. By the definition of passive re-
sources, a task can not lock any passive resources, before it can start accessing an
active resource. Note that an active resource can never be involved in a deadlock.
That is because (1) a task cannot lock another active resource when it is currently
locking an active resource and (2) a task must release any passive resource before it
suspends its CPU execution. Notably, for clearly explaining our protocol, we assume
that task priorities are distinct, and we are interested in uniprocessor scheduling.

Tasks could be periodic or aperiodic. We call each instance of a task as a job,
where a task is a template of its jobs. A task τi is a sequence of subtasks τi,j . A
subtask could be either a CPU execution or a period of time in accessing an active
resource. If a subtask is a CPU execution, then it might lock or unlock any pas-
sive resources. The duration of a subtask τi,j is denoted as ci,j , and the total exe-
cution time ci of τi is the sum of the CPU executions and the periods of time in
accessing active resources of all subtasks τi,j . Suppose that task τ1 first executes
some computation-intensive code (i.e., τ1,1) and then accesses active resource Ra

(i.e., τ1,2). After the access of Ra , τ1 executes some other computation-intensive
code (i.e., τ1,3) and then accesses Ra again (i.e., τ1,4). Finally, τ1 executes some
computation-intensive code (i.e., τ1,5) and completes, as shown in Fig. 3. The times
required for subtasks τ1,1, τ1,2, τ1,3, τ1,4, and τ1,5 are denoted as c1,1,c1,2,c1,3,c1,4,
and c1,5, where c1 = c1,1 + c1,2 + c1,3 + c1,4 + c1,5. Note that active resources are
accessed synchronously. While τ1 is accessing an active resource, it must suspend
its CPU execution until the access completes. No new lock could be obtained for a
suspending task.
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Fig. 3 A task execution which involves active resource access

All (passive or active) resources must be locked before they are accessed. An ac-
tive resource is released by a task when the access on the active resource by the task
completes, and the corresponding lock is released. When a task accesses and locks an
active resource several times in a period, the time point for the last releasing of the re-
source is called the dismissing point of the resource in the period. As shown in Fig. 3,
an active resource Ra is locked and released by task τ1 at time 3 and 5, respectively.
It is locked and released again at time 7 and 9, respectively. The dismissing point of
the active resource Ra for task τ1 is at time 9.

For the rest of this paper, we shall propose a resource synchronization protocol to
trade the priority inversion time with the system utilization.

3 A configurable synchronization protocol

3.1 Overview

Existing research results on resource synchronization are mainly concerned with min-
imizing priority inversion. PCP guarantees at most one priority inversion for any
higher-priority task in uniprocessor fixed-priority systems. SRP later extends the idea
to manage multiple resources and dynamic priority scheduling. Although various ex-
cellent resource synchronization protocols have been proposed, little work has been
done to adjust the numbers of priority inversions for tasks.

In this section, we shall propose two resource synchronization protocols with an
adjustment mechanism for priority inversion management. The basic protocol ex-
tends the ceiling rules of PCP so that higher-priority tasks could receive a larger
number of priority inversions to trade for the schedulability of lower-priority tasks.
A ceiling table is proposed to set up the maximum numbers of priority inversions
for tasks. Note that the table of preemption levels in SRP is proposed for a purpose
very different from that of the ceiling table proposed in this table.2 In the basic pro-
tocol, only passive resources are considered, and we are interested in uniprocessor

2The table of preemption levels in SRP is to check for the availability of resources before a task begins its
execution.
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task scheduling in this paper. We then extend the basic protocol in the considerations
of active resources such that tasks might suspend themselves for I/O operations (on
active resources). Guidelines are also proposed for the setup of the ceiling table based
on the priority-inversion requirements of tasks.

3.2 The basic configurable ceiling protocol

The basic protocol extends the ceiling rules of PCP to have a tradeoff between the
number of priority inversions of higher-priority tasks and the schedulability of lower-
priority tasks. A ceiling table is first defined for adjusting the maximum priority in-
version time for tasks. Protocol rules are then proposed for task scheduling based on
the ceiling table.

3.2.1 The ceiling table

Under PCP, the ceiling of a resource is defined as the maximum priority of tasks
which might access the resource. The lock request of a task could not be granted
unless the priority of the task is higher than the maximum ceiling of resources locked
by other tasks. Ceiling(Rp) denotes the ceiling of resource Rp . With a ceiling table,
the resource synchronization rule will be modified.

The purpose of a ceiling table is for adjusting the maximum priority inversion time
for tasks. CT(τi,Rp) is an entry in the ceiling table to represent the way in which task
τi might access resource Rp . When CT(τi,Rp) = 0, τi will not access Rp in any way.
If CT(τi,Rp) = 1, then τi might lock and access Rp . If CT(τi,Rp) = ∗, then τi could
tolerate priority inversion resulting from the access conflict of Rp . Guidelines for the
setup of the ceiling table are in Sect. 3.4.

With a ceiling table, the ceiling of each resource Rp (Ceiling(Rp)) is revised as
follows: Ceiling(Rp) is the maximum priority of tasks τi with CT(τi,Rp) = 1. The
lock request of a task τi on resource Rq is granted if the priority of τi is higher than
the maximum ceiling of resources locked by other tasks. Otherwise, τi is blocked.
Let Rp be a locked resource owning the maximum ceiling such that τi is blocked,
and task τj currently lock Rp . We say that τi is blocked by τj . We must point out
that the revised definition of Ceiling(Rp) does not consider the priorities of tasks τi

when CT(τi,Rp) = ∗. Such a modification virtually gives up some privileges of those
tasks with CT(τi,Rp) = ∗ when Rp is locked. That is, when Rp is locked, other tasks
might still have a possibility to lock other resources even though their priorities are
lower than the priorities of tasks with CT(τi,Rp) = ∗.

Consider a ceiling table in Table 1, based on the definition of Ceiling(Rp) in PCP,
Ceiling(R1) = Ceiling(R2) = Ceiling(R3) = the priority of τ1, and Ceiling(R4) =

Table 1 An example ceiling
table Task/Resource R1 R2 R3 R4 R5

τ1 1 1 * 0 0

τ2 0 0 * * 1

τ3 0 1 1 * 1

τ4 0 1 1 1 1
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Ceiling(R5) = the priority of τ2. Different from PCP, the revised ceiling definitions
for the ceiling table (i.e., Table 1) are as follow: Ceiling(R1) = the priority of τ1,
Ceiling(R2) = the priority of τ1, Ceiling(R3) = the priority of τ3, Ceiling(R4) = the
priority of τ4, Ceiling(R5) = the priority of τ2.

In the following section, we shall propose a resource synchronization protocol
based on the concept of the ceiling table.

3.2.2 Resource synchronization protocol

The purpose of this section is to propose a resource synchronization protocol called
the basic configurable ceiling protocol (BCCP) based on the concept of ceiling tables.
We are interested in uniprocessor scheduling with only access over passive resources
in the basic protocol. Since PCP is adopted to illustrate the idea, we adopt a fixed-
priority assignment policy, such as the Rate Monotonic Scheduling (RMS) algorithm
(Liu and Layland 1973), where RMS assigns a higher priority to a task with a smaller
period. The objective is to provide a tradeoff between the numbers of priority inver-
sions for higher-priority tasks and the deadline satisfaction of lower-priority tasks.
The ceiling table is to provide a way to adjust the maximum numbers of priority
inversions for tasks.

The scheduling protocol is defined as follows: The ceilings of all resources are
defined based on the given ceiling table, as described in Sect. 3.2.1. The ready task
with the highest priority is dispatched for execution. The lock request of a task τi

on resource Rp is granted if the priority of τi is higher than the maximum ceiling
of resources locked by other tasks, and Rp is free. Otherwise, τi is blocked. Two
conditions must be considered for the occurrence of a blocking: One possibility is
that the priority of τi is no higher than the maximum ceiling of resources locked by
other tasks. Let Rq be the locked resource owning the maximum ceiling such that τi

is blocked, and τj currently locks Rq . We say that τi is blocked by τj . Another possi-
bility is that Rp is locked by another task τj although the priority of τi is higher than
the maximum ceiling of resources locked by other tasks. In this case, τi is directly
blocked by τj . The occurrence of such direct blocking results from the lowering of
the priority ceiling of Rp (because CT(τi,Rp) = ∗). When τi is blocked by τj , τj

inherits the priority of τi . The priority inheritance is done transitively. When τi is
no longer blocked by τj , the priority of τj resumes at the priority when the priority
inheritance occurs.

The detailed definition of the protocol is as follows. Note that �(τi) denotes the
maximum ceiling of resources locked by other tasks except τi .

Task Scheduling:
(a) The current priority π(τi ) of task τi equals to the priority assigned to τi

when τi arrives. The current priority π(τi ) of task τi remains
unless priority inheritance is applied.

(b) Tasks are scheduled preemptively in a priority-driven manner
according to their current priorities.

Resource Allocation:
Let �(τi ) denote the maximum ceiling of resources currently locked by tasks
other than task τi . Whenever a task τi requests a resource Rp ,
the following two conditions are considered:
(a) If τi ’s current priority π(τi ) is higher than �(τi )
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(1) If Rp is free, then Rp is allocated to τi .
(2) If Rp is held by another task τj , then τi is blocked by τj

(b) If the current priority π(τi ) of τi is not higher than �(τi ) of the system, Rp is allocated to τi ,
only if τi is the task holding the resources whose priority ceiling equal to �(τi );
otherwise, τi is blocked by task τj which holds resource Rq ,
where the ceiling of resource Rq equals to �(τi ).

Priority Inheritance:
If τi is blocked by task τj , then τj inherits the current priority π(τi ) of task τi .
When τj no longer blocks τi , the priority inheritance ceases the existence.
That is, τj resumes the priority that it has right before it inherits a priority from τi
Priority inheritance is transitive.

3.2.3 Properties and protocol analysis

We could show the correctness of the following properties for BCCP: Note that no
active resources are considered for BCCP. Assume that tasks are sorted by their pri-
orities and τ0 is the highest priority task.

Before the properties of BCCP are proved, we revise a given ceiling table CT()
into a corresponding ceiling table CT′() as follows: CT′(τi,Rp) = CT(τi,Rp) for
any task τi and any resource Rp except the following cases: (1) CT′(τi,Rp) = 1 if
CT(τi,Rp) = ∗, and there is an entry CT(τa,Rp) = 1 and i > a. It is because the ceil-
ing of Rp would be higher than the priority of τi regardless of whether CT′(τi,Rp)

is equal to 1 or ∗. (2) CT′(τi,Rp) = 1 if CT(τi,Rp) = ∗, and CT(τk,Rp) = 0
for all k > i. It is because no lower-priority task will lock Rp . In other words,
τi would not be blocked by any lower-priority tasks because of Rp , regardless of
whether CT′(τi,Rp) is equal to 1 or ∗. As a result, we also set CT′(τi,Rp) = 1 if
CT(τi,Rp) = ∗, in which τi is the lowest-priority task in the system. Actually this
is a special case of case (2). CT′ is called the revised ceiling table of a given ceiling
table CT(). We could show the following lemma:

Lemma 1 A task is blocked by another task under BCCP with a given ceiling table
CT() if and only if the former task is blocked by the later task under BCCP with the
revised ceiling table CT′().

Proof The if-part of the lemma can be proved as follows: Suppose that a lock request
of a task τi on resource Rp is blocked under CT′(). Such a blocking could only occur
when the priority of τi is no higher than the maximum ceiling of resources currently
locked by other tasks under CT′(), or when Rp is locked by another task τk .

Suppose that τj is the task that locks the resource with the maximum ceiling
and blocks τi . Two cases are under consideration: (1) As mentioned in the previ-
ous paragraph, CT′(τi,Rp) is revised as 1 if CT(τi,Rp) = ∗, and there is an entry
CT(τa,Rp) = 1, where a < i. As a result, Ceiling(Rp) remains the same for both
CT() and CT′(), and it is equal to the priority of τa . A lock request of a task τi on
resource Rp will not be granted under CT() as well. (2) CT′(τi,Rp) is revised as 1
if CT(τi,Rp) = ∗, and there does not exist a non-zero entry CT(τk,Rp) where i < k.
In other words, any task which has a priority lower than τi would never lock Rp . The
revision of CT′(τi,Rp) would not introduce any new blocking. Even though the ceil-
ing of Rp is raised (i.e., to the priority of τi , the lowest priority among all the tasks
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that can lock Rp), no new blockings are introduced. If a task’s resource request can
not be immediately granted because of Rp’s revised ceiling, then the task’s priority
is never higher than any task that can lock Rp . So the revised ceiling introduces no
new priority inversion (i.e., blocking).

Suppose that a lock request of a task τi on resource Rp is not granted under CT′()
because Rp is locked by another task τj . It is obvious that the lock request of τi on
Rp will not be granted under CT() because Rp is locked already. The only-if-part of
the lemma can be proved in a similar way. �

Given a task τi , let φ(τi) denote the number of resources Rp with CT′(τi,Rp) = ∗.
Note that there is a n task set, and all tasks are reordered and renamed such that τi

has a priority higher than τi+1 does, for (n − 1) ≥ i ≥ 0.

Theorem 1 No task τi could be directly blocked by lower-priority tasks for more
than φ(τi) + 1 times in each of its period.

Proof The correctness of this theorem follows directly from Lemma 1 and the fol-
lowing observation (based on CT′()): First, no direct blocking would be introduced
to τi due to any access on a resource Rp if CT′(τi,Rp) = 0 because τi would not
access Rp . Each resource Rp with CT′(τi,Rp) = ∗ could introduce only one direct
blocking for τi because Ceiling(Rp) is lower than the priority of τi . Further, when
some task accesses a resource Rp with CT′(τi,Rp) = 1, the ceiling of Rp will pre-
vent any other task with a priority lower than that of τi from directly blocking τi

again. In other words, only one direct blocking would be possibly introduced to τi

for all resources with CT′(τi,Rp) = 1. As a result, the maximum number of direct
blocking of τi is no more than φ(τi) + 1. �

Based on Theorem 1, the maximum number of direct blocking for each task could
be derived from a given ceiling table. For example, the maximum number of direct
blocking for τ1 under BCCP with the ceiling table, as shown in Table 1, is 1 + 1 = 2.
Those of τ2 and τ3 are 2 + 1 = 3 and 1 + 1 = 2, respectively. Note that τ4 will
not suffer from any direct blocking because it is the task with the lowest priority.
Theorem 1 shows the maximum number of direct blocking suffered by a task in a
period. The rest of this section derives a bound on the maximum duration of priority
inversion time possibly suffered by a task in a period, where some of the priority
inversion time might come from transitive blocking.

Priority inversion could come from direct and/or indirect blocking. Since the ceil-
ings of resources could be lower than their corresponding PCP ceilings, indirect
blocking (i.e., transitive blocking) might occur. The possibility of transitive blocking
could be observed from a given ceiling table CT(): Let a symbol + denote some value
equal to ∗ or 1. Suppose that CT(τi,Rp) = + and CT(τj ,Rp) = + for some resource
Rp , where the priority of τi is higher than that of τj . Suppose that CT(τj ,Rq) = ∗ and
CT(τj+1,Rq) = + for some other resource Rq , as shown in Fig. 4(a). Let tasks be
sorted in increasing order of their priorities. (We first consider the case in which every
task has a distinct priority.) That is, the priority of τj+1 is lower than that of τj . Let Rq

be locked by τj+1 when τj locks Rp . The lock request of τj on Rp is successful be-
cause CT(τj ,Rq) = ∗. The lock request of τi on Rp later results in a direct blocking
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Fig. 4 The reason of transitive blocking

of τi by τj (i.e., the path + −→ +). As a result, τj resumes its execution. When τj re-
quests Rq , τj is directly blocked by τj+1 because Rq is already locked by τj+1 (i.e.,
the path ∗ −→ +). Such a transitive blocking τi − τj − τj+1 could occur because
CT(τj ,Rq) = ∗. As astute readers might notice, a transitive blocking might occur
when one of the tasks in the transitive blocking locks a resource Rq such that a higher-
priority task τj in the transitive blocking later request Rq , where CT(τj ,Rq) = ∗. On
the other hand, when the above observation does not exist, no transitive blocking will
occur. We use a counter example, as shown in Fig. 4(b), to provide an explanation: As
in the example shown in Fig. 4(a), CT(τi,Rp) = + and CT(τj ,Rp) = +, and the pri-
ority of τi is higher than that of τj . Now let CT(τj ,Rq) = 1, and CT(τj+1,Rq) = 1.
Let Rq be locked by τj+1 when τj requests Rp . The lock request of τj is blocked
because CT(τj ,Rq) = 1. As a result, τi is not blocked by τj on Rp , when τi later
requests Rp , compared to the former example (i.e., the path + −→ +). A transitive
blocking τi − τj − τj+1 does not occur.

A task can be transitively blocked only if it is directly blocked. Indirect blocking
also can be caused by priority inheritance and priority ceiling. In PCP, a task can be
blocked by another task in terms of priority inheritance only if it can be blocked by the
same task in terms of priority ceiling. In our approach, resource ceilings are not higher
than they are in PCP. Because each resource is only one instance, a task instance
cannot be blocked on a resource because of priority inheritance and priority ceiling.
Similarly, a task can be blocked on a resource because of either direct blocking or
indirect blocking.

Algorithm BCCP_MAX_BLOCKING_TIME (shown in Appendix) is presented
for computing the longest duration a task can be blocked in BCCP. This procedure is
in two steps. The first step is to check whether or not a task will be directly/indirectly
blocked on a resource. As mentioned in the last paragraph, if one task can be directly
or indirectly blocked by another task, then the two tasks can be blocked on the same
collection of resources. In the second step, the longest duration that a task instance
can be blocked is computed by summing all the longest locking durations of each
resource that the task can be blocked on. A task instance cannot be blocked on a
resource more than once because every resource has only one unit, and there is no
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Table 2 An example ceiling
table for the extended protocol Task/Resource R1 R2 R3 R4 R5

τ1 3 1 3 4 0

τ2 1 0 2 3 1

τ3 1 1 1 2 1

τ4 1 1 1 1 1

active resource in BCCP. The time complexity of this algorithm is O(n ∗ m), where
n is the number of tasks and m is the number of passive resources in the system.

Let the maximum duration in the locking of resource Rp of all tasks be denoted
as BRp . The maximum blocking time of τ1 under BCCP with the ceiling table, as
shown in Table 1, is max(BR1 ,BR2) + BR3 + BR4 , where max(BR1 ,BR2) comes
from “1” ’s, and BR3 comes from the asterisk symbols and “0” ’s in the table, and
BR4 comes from the transitive blocking. Those of τ2 and τ3 are BR5 + BR3 + BR4

and max(BR2 ,BR3 ,BR5) + BR4 , respectively. Note that τ4 will not suffer from any
blocking because it is the task with the lowest priority.

3.3 The extended configurable ceiling protocol

3.3.1 The Ceiling Table

In this section, we shall extend the basic configurable ceiling protocol (BCCP) for
systems with active resources. Since a task could voluntarily suspend its CPU exe-
cution until completing an active resource request, the tradeoff between the priority
inversion management and the system utilization becomes a critical issue. Under the
extended protocol, system designers are allowed to fill in the maximum number of
priority inversions for each task. Furthermore, each entry in the table denotes the
maximum number of priority inversions for the corresponding task caused by any
access conflicts over the corresponding resource (Please see Theorem 2). The ceiling
table for the extended protocol is called the extended ceiling table for the rest of this
paper.

During the on-line operations, the table could be used to manage the number of
priority inversions for each task and to derive a proper ceiling for each resource.
The main idea is as follows: The initial value of CT(τi,Rp) denotes the maximum
number of priority inversions for any access conflicts of resource Rp for task τi .
When CT(τi,Rp) = N at some time t , it means that τi could tolerate additional N

priority inversions over any access conflicts of resource Rp . Note that only passive
resources have corresponding entries in the extended ceiling table. The idea of the
extended ceiling table is to better manage of passive resources when active resources
are available in the system.

After setting the initial values for the extended ceiling table, the system dynami-
cally derives the ceiling of each resource in an on-line fashion: When CT(τi,Rp) = N

for some N > 1, and a direct blocking occurs for τi on Rp , CT(τi,Rp) is decre-
mented by one. The derivation of the ceiling for resource Rp only considers the en-
tries with CT(τi,Rp) = 1 (for any task τi ). The rationale behind this rule is that when
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CT(τi,Rp) > 1, τi could still tolerate priority inversion resulting from the access con-
flict of Rp . As a result, the setting of the ceiling of Rp does not need to consider the
priority of τi . It is similar to the case when CT(τi,Rp) = ∗ under BCCP. In the next
subsection, we shall extend BCCP with the extended ceiling table.

The ceiling derivation of passive resources is as presented in the previous para-
graph. The ceiling of an active resource is defined as the maximum priority of the
tasks that have already locked the resource and have not reached the dismissing point
of the resource. If there is no such task in the system, then the ceiling of the active
resource is the lowest priority in the system.

3.3.2 Resource synchronization protocol

This section extends BCCP by considering active resources and a more precise man-
agement of the number of priority inversions due to each resource.

Given a system with a collection of passive resources {. . . ,Rp, . . .}, the extended
ceiling table CT(), and a collection of active resources {. . . ,Ra

g, . . .}, the system al-
ways dispatches the ready task with the highest priority.

The lock request of a task τi on Ra
g is granted if the priority of τi is no less than

Ceiling(Ra
g), and Ra

g is currently not locked. If the lock request of task τi on Ra
g is

granted, then Ceiling(Ra
g) is replaced with the priority of τi . Otherwise, the request

is blocked. We say that τi is directly blocked by τj if Ra
g is currently locked by some

other task τj , and the priority of τi is no less than Ceiling(Ra
g) (i.e., the priority

of τj ). Note that if some higher-priority task τh once locks Ra
g and has not reached

its dismissing point, then Ceiling(Ra
g) is larger than the priority of τi . We say that τi

is directly obstructed by τh because the lock request of a task τi on Ra
g is not granted.

Let � and γ denote the maximum priority and the minimal priority of tasks which
are currently suspending themselves, respectively. Therefore, � and γ take all active
resources into account. The lock request of a task τi on a passive resource Rp is
granted if Rp is not locked, the priority of τi is higher than the maximum ceiling
of passive resources locked by other tasks, and one of the following two conditions
holds: (1) The priority of τi is higher than � (2) Ceiling(Rp) is less than γ . Note that
Ceiling(R) denotes the ceiling of resource R. Otherwise, the request is not granted
and postponed. The task that blocks τi is determined as follows:

If the priority of τi is not higher than the maximum ceiling of passive resources
locked by other tasks, then τi is blocked by the task locking the resource with the
maximum ceiling. If the priority of τi is higher than the maximum ceiling of passive
resources locked by other tasks, but Rp is locked, then τi is directly blocked by the
task locking Rp . If the priority of τi is higher than the maximum ceiling of passive re-
sources locked by other tasks, Rp is not locked, but if the two conditions presented in
the previous paragraph both fail, then we say that τi suffers from an active resource
obstructing. τi is said to be directly obstructed by some of the tasks that currently
suspend for accessing active resources such that the above two conditions both fail.
The occurrence of an active resource obstruction is to prevent a higher-priority but
suspending task from extra priority inversion when the task resumes from the suspen-
sion due to the access of the active resource. The side-effects of an active resource
obstructing might result in executing some task with a priority lower than that of τi .
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When a task τi is blocked by another task τj because of the requesting of a pas-
sive resource, τj inherits the priority of τi . Priority inheritance is transitive. When a
blocking no longer exists, the corresponding task resumes its priority when the prior-
ity inheritance occurs. Note that when τi is blocked by τj because of the requesting
of an active resource, the priority inheritance is not applied.

The detailed protocol definition of ECCP is summarized as follows.

Task Scheduling:
(a) The current priority π(τi ) of task τi equals to the priority

assigned to τi when τi arrives. The current priority π(τi )

of task τi remains unless priority inheritance is applied.
(b) Tasks are scheduled preemptively in a priority-driven manner

according to their current priorities.

Resource Allocation:
Let �(τi ) denote the maximum ceiling of resources currently locked by tasks
other than task τi .
Let � and γ denote the maximum priority and the minimal priority of tasks
which are currently suspending themselves, respectively.
Whenever a task τi requests a passive resource Rp , the following two conditions
are considered:
(a) If τi ’s current priority π(τi ) is higher than �(τi )

(1) If Rp is free
(A) If π(τi ) is higher than �, Rp is allocated to τi .
(B) If π(τi ) is no higher than � and Rp ’s current ceiling is less than γ ,

Rp is allocated to τi .
(C) If neither (A) nor (B) holds, the request is not granted

and τi is obstructed.
(2) If Rp is held by another task τj , then τi is blocked by τj

(b) If τi ’s priority π(τi ) is not higher than �(τi ) of the system,
Rp is allocated to τi ,
only if τi is the task holding the resources whose priority ceiling equal to �(τi );
otherwise, τi is blocked by task τj which holds resource Rq ,
where the ceiling of resource Rq equals to �(τi ).

Let Ceiling(Ra
g ) denote the current ceiling of the corresponding active resource.

Whenever a task τi requests an active resource Ra
g , the following two conditions

are considered:
(a) If τi ’s current priority π(τi ) is no less than Ceiling(Ra

g )

(1)If Ra
g is free, Ra

g is allocated to τi .
(2)If Ra

g is held by another task τj , then τi is blocked by τj
(b) If τi ’s current priority π(τi ) is less than Ceiling(Ra

g ),
the request is not granted and τi is obstructed.

Priority Inheritance:
If τi is blocked by task τj due to requesting a passive resource Rp , then τj inherits
the current priority π(τi ) of task τi .
When τj no longer blocks τi , the priority inheritance ceases the existence.
That is, τj resumes the priority that it has right before it inherits a priority from τi .
Priority inheritance is transitive.

3.3.3 Properties and protocol analysis

The purpose of this section is to derive the maximum number of blocking for each
task under ECCP. We shall comment on the value assignment of entry values in the
extended ceiling table in a later section.

We shall first show that each extended ceiling table CT() under ECCP has a
corresponding revised extended ceiling table CT′() so the schedules of task ex-
ecutions with either extended ceiling table are the same. Let θi denote the total
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number of accesses on all active resources by some task τi , and μi,p denote the
number of requests on a passive resource Rp by τi in each period. CT′(τi,Rp) =
CT(τi,Rp) for any task τi and any resource Rp except the following four cases:
(1) CT′(τi,Rp) = min(μi,p, θi) if CT(τi,Rp) > μi,p or CT(τi,Rp) > θi . It is be-
cause the number of priority inversions suffered by τi because of the requesting of
Rp is bound by μi,p and θi . (2) CT′(τi,Rp) = 1 if CT(τi,Rp) > 1, and there is an en-
try CT(τa,Rp) = 1 for i > a. It is because the ceiling of Rp would be higher than the
priority of τi , regardless of whether CT′(τi,Rp) is no less than 1. (3) CT′(τi,Rp) = 1
if CT(τi,Rp) > 1, and CT(τk,Rp) = 0 for all k > i. It is because no lower-priority
task will lock Rp . In other words, τi would not be blocked by any lower-priority
tasks because of Rp , regardless of whether CT′(τi,Rp) is no less than 1. We also
set CT′(τi,Rp) = 1 if CT(τi,Rp) > 1, in which τi is the lowest-priority task in the
system. It is a special case of case (3). CT′ is called the revised extended ceiling table
of a given extended ceiling table CT() based on the above revision rules. We could
show the following lemma:

Lemma 2 A task is blocked by another task under ECCP with a given extended
ceiling table CT() if and only if the former task is blocked by the later task under
ECCP with the revised extended ceiling table CT′().

Proof The proof is similar to that of Lemma 1. �

Theorem 2 Under ECCP, no task τi could be directly blocked by lower-priority tasks
for more than

M + 1 +
∑

CT′(τi ,Rp)>1

(
CT′(τi,Rp) − 1

)

times in each of its period, with the presence of M active resources.

Proof This theorem could be proved in a similar way to that of Theorem 1: No di-
rect blocking would be introduced to any task τi due to any access on a resource
Rp if CT′(τi,Rp) = 0 because τi would not access Rp . Only one direct blocking
could possibly be introduced to τi for all resources with CT′(τi,Rp) = 1 because
the ceiling of Rp will prevent any other task with a priority lower than that of τi

from directly blocking τi again. For any resource Rp with CT′(τi,Rp) > 1, a task τi

might be directly blocked once whenever τi resumes its execution due to the wait-
ing of the service over some active resource Ra

g . Since CT′(τi,Rp) is decreased by
one whenever a direct blocking occurs to τi due to access on Rp , there is no more
than (CT(τi,Rp) − 1) direct blocking for τi due to access on Rp . Note that when
CT(τi,Rp) becomes one, Ceiling(Rp) is set to the priority of τi .

An active resource could also contribute one potential direct blocking to τi , be-
cause the ceiling of the active resource is raised to the priority of τi until the dismiss-
ing point of the period is reached. As a result, no task τi could be directly blocked for
more than M + 1 + ∑

CT′(τi ,Rp)>1(CT′(τi,Rp) − 1) times in each of its period. �

Based on Theorem 2, the maximum number of direct blocking for each task could
be derived from a given extended ceiling table. For example, consider that there is
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only an active resource, the maximum number of direct blocking for τ1 under ECCP
with the extended ceiling table, as shown in Table 2, is 1 + 1 + (3 − 1) + (3 − 1)+
(4−1) = 9. Those of τ2 and τ3 are 1+1+ (2−1)+ (3−1) = 5 and 1+1+ (2−1) =
3, respectively. Note that τ4 will not suffer from any direct blocking because it is the
task with the lowest priority .

Similar to the basic protocol, some of the priority inversion time might come from
indirect blocking. We propose an algorithm ECCP_MAX_BLOCKING_TIME to de-
rive a bound on the maximum duration of priority inversion time possibly suffered by
a task in a period. This procedure is in two steps. The first step is to check whether
or not a task will be directly/indirectly blocked on a resource. As mentioned in the
above section, if one task can be directly or indirectly blocked by another task, then
the two tasks can be blocked on the same collection of resources. In the second step,
the longest duration that a task instance can be blocked is computed by summing all
the longest locking durations of each resource that the task can be blocked on. Note
that the potential blocking time contributed by an active resource Ra

g is the longest du-
ration of all sub-jobs in accessing Ra

g rather than the total duration of a job in access-
ing the active resource. The time complexity of ECCP_MAX_BLOCKING_TIME is
O(n ∗ max(m,M)) (Please see the Appendix), where n is the number of tasks, m is
the number of passive resources and M is the number of active resources in a given
task set.

Based on Algorithm ECCP_MAX_BLOCKING_TIME, the maximum blocking
time suffered by each task (in a period) could be derived from a given extended
ceiling table. Note that the maximum duration in the locking of resource Rp of all
tasks is denoted as BRp , and the longest duration of all sub-jobs in accessing Ra

g

is denoted as BRa
g
. For example, consider that there is only an active resource Ra

1 ,
the maximum blocking time of τ1 under ECCP with the extended ceiling table, as
shown in Table 2, is BRa

1
+ max(BR1 ,BR2,BR3 ,BR4) + 2 ∗ BR1 + 2 ∗ BR3 + 3 ∗ BR4 ,

Those of τ2 and τ3 are BRa
1
+ max(BR1 ,BR3 ,BR4 ,BR5) + BR3 + 2 ∗ BR4 and BRa

1
+

max(BR1 ,BR2 ,BR3 ,BR4,BR5) + BR4 , respectively. Note that τ4 will not suffer from
any blocking because it is the task with the lowest priority.

3.4 Remark: the setting of the BCCP and ECCP ceiling tables

In this section, we shall provide some guidelines to set up the ceiling table CT() for
a given system. Similar to the requirements of PCP, tasks scheduled by BCCP and
ECCP must have their resource requests known in advance. That is, which resource
will be used by which task, and the number of requests on each active or passive
resource in a period of each task. The information on the duration of each request
could further help in deriving the priority inversion time for each task and providing
schedulability analysis.

Let n be the number of tasks, m be the number of passive resources and M be the
number of active resources in a given task set. An algorithm with time complexity
O(n2 ∗ m ∗ M) is proposed for ECCP to set ceiling tables (Please see the Appendix).
The rationales behind the algorithm is: First, we run a schedulability analysis, such
as the Rate Monotonic Analysis, to derive the maximum blocking time tolerable to
each task. Initially, the maximum number of priority inversions for each task is set
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as 1 (i.e., CT(τi,Rp) = 0 if τi would not use Rp; otherwise, CT(τi,Rp) = 1). Start-
ing from the task with the highest priority, we try to increase the maximum number
of direct blocking due to the access of each resource for the task under considera-
tion. The increasing of the maximum number of direct blocking for a task τi due to
access over a resource Rp , i.e., CT(τi,Rp), can be done if the resulting amount for
priority inversion (because of direct or transitive blocking) is still no more than the
maximum blocking time tolerable to τi . Note that the proposed algorithm could be
simply modified to set up the ceiling table for BCCP by changing all entry values
over one into “*”.

4 Deadlock prevention

The flexibility of adjusting the maximum priority inversion number for each task
introduces potential transitive blocking and deadlocks. This section presents a simple
deadlock prevention approach for BCCP or ECCP.

A resource allocation graph (Fig. 5), is used to model the dependencies among
tasks. When a task may access a resource, then an edge exists between the corre-
sponding vertices in the graph. Notably, a resource allocation graph is a bipartite
graph, where vertices of the same type reside on the same side. A request edge
(τi → Rp) denotes that task τi is blocked in requesting of resource Rp . An allo-
cation edge (Rp → τi) indicates that task τi currently locks resource Rp . The ceiling
table settings of ECCP (and BCCP) did not prevent a run-time waiting cycle, such as
(τ1 → R1 → τ2 → R2 → τ4 → R3 → τ1), from occurring. No active resource should
be involved in the considerations of deadlocks, because a task that self-suspends it-
self to wait for service completion of some active resource could not issue another
request for some other resource. Notably, although this work focus on synchronous
I/O, the above characteristics of deadlocks remain even when an asynchronous I/O is
presented. An asynchronous I/O automatically releases the involved active resource
once the corresponding service is complete.

Fig. 5 The ceiling table and the corresponding resource allocation graph of an example system
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Deadlock avoidance in PCP is achieved by having a sufficiently high ceiling for
a resource in a potentially formed wait cycle such that no task could lock the last
resource needed in forming the wait cycle. An example shown in Fig. 6 is used to
illustrate. Let resource R1 be locked by task τ3 at time t , and τ3 requests R3. Under
PCP, task τ1 has no chance of locking resource R2 successfully after time t (because
the ceiling of R1 is not less than the priority of τ1) and later requests to lock R1. As
astute readers might point out, the ceiling of a resource under BCCP or ECCP might
be lower than that of the corresponding resource under PCP such that a deadlock
might be formed.

To prevent deadlocks, two naive approaches should be considered: (1) a dynamic
adjustment mechanism for resource ceilings to prevent any deadlock in an on-line
fashion; and (2) a proper and off-line setting for the ceiling tables for “critical re-
sources” such that no deadlocks could occur. The first approach is costly and may not
be suitable for BCCP and ECCP because it impacts on manipulations of the ceiling
table. This section focus on the second approach as it only involves off-line effort in
picking-up certain resources. After revising the ceiling table for selected resources,
BCCP and ECCP operate as defined in previous sections, and their properties remain.

The idea is to pick up two resources per cycle in a resource allocation graph (e.g.,
R1 and R3 in Fig. 6) as critical resources such that these two resources are not locked
by two different tasks at the same time. This could be achieved by setting the ceilings
of these two resources as the maximum priority of the tasks that might access these
two resources. However, two technical issues must be addressed: (1) how to revise
a given ceiling table for BCCP/ECCP to achieve the above objective; and (2) how
to select a minimum collection of resources such that two resources always appear
in a cycle in the graph. Notably, one should not try to identify every cycle in the
graph because the number of cycles may be an exponential number of the number of
vertices.

Theorem 3 If two distinct resources in each cycle are not locked by two different
tasks simultaneously, then the system has no deadlock.

Proof Since there would be no wait-for cycle of tasks, no deadlock exists. �

This work first address the first technical issue, i.e., how to revise a given ceiling
table for BCCP/ECCP: Let Rp and Rq be two resources selected in a cycle, and τi

and τj be the highest-priority tasks with CT(τi,Rp) ≥ 1 and CT(τj ,Rq) ≥ 1, respec-
tively. Without the loss of generality, let the priority of τi be higher than that of τj .
Revising the ceiling table can be accomplished simply by setting both CT(τi,Rp)

and CT(τi,Rq) as 1.
The second technical issue is minimizing the number of selected critical resources.

This issue could be further refined to consider the effects of selection because the ceil-
ing of each selected resource would be higher, compared to the original BCCP/ECCP
settings. An elevated resource ceiling can result in a low concurrency level in the sys-
tem. This issue can be refined to formally define a technical problem, where a weight
is given to each resource serving as a critical resource:
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Definition 2 (WEIGHTED 2-VERTEX FEEDBACK SET) Given an undirected
graph G = (V ,E), and a positive integer K , let w(v) ∈ Z+ for each v ∈ V . The
question is whether a subset V ′ ⊂ V exists, for each cycle in G which contains at
least two elements in V ′ and

∑
v∈V ′ w(v) ≤ K .

Lemma 3 WEIGHTED 2-VERTEX FEEDBACK SET is NP-hard.

Proof The NP-hardness is demonstrated by reducing any instance of the VERTEX
COVER problem to an instance of the WEIGHTED 2-VERTEX FEEDBACK SET
problem. The VERTEX COVER problem is defined as follows (Garey and Johnson
1979): Given a undirected graph G = (V ,E) and a positive integer N , does a set
V ′ ∈ V and |V ′| ≤ N exist such that V ′ contains at least one vertex for each edge in
E?

For the graph G = (V ,E) which is an instance of VERTEX COVER problem,
this study construct a new graph G∗ = (V ∗,E∗) for the instance of WEIGHTED 2-
VERTEX FEEDBACK SET problem as follows. One new vertices v∗

i,j is added with
two new edge to each edge (vi, vj ) ∈ E. Two new edges (v∗

i,j ,vi ) and (v∗
i,j ,vj ) are

added and let w(vi), w(vj ), and w(v∗
i,j ) be (|E| + 1), (|E| + 1), and 1, respectively.

In other words, each edge in E is now transformed into a triangle in E∗. Let the
cost constraint K for the WEIGHTED 2-VERTEX FEEDBACK SET problem be
N ∗ (|E| + 1) + |E|. Notably, N denotes the maximum number of vertices that can
be selected for the VERTEX COVER problem.3

Suppose that the algorithm can solve any problem instance of the WEIGHTED
2-VERTEX FEEDBACK SET (i.e., two vertices are selected for each cycle in G∗
and the total weight of the selected vertices does not exceed K). Each triangle in G∗
must then have at least two vertices selected. Thus, every edge in G will have at least
one vertex selected, and any cycle of length no shorter than 2 in G will have at least
2 vertices selected. Among all vertices in G∗ of weight |E| + 1 (which also present
in G), at most N can be selected because the cost constraint of the WEIGHTED 2-
VERTEX FEEDBACK SET is K = N ∗ (|E| + 1) + |E|. Thus, the corresponding
instance of VERTEX COVER with G and N is solved.

Conversely, if the algorithm can not find a set V ∗′ ∈ V ∗ such that each cycle in
G∗ has at least two vertices selected and the total cost of the selected vertices in V ∗′
exceeds K = N ∗ (|E| + 1) + |E|, then all newly added vertices for each triangle in
G∗ must be already included in V ∗′ because their cost is 1 (and their total cost is
|E|). Since every newly added vertex in G∗ is already selected, this study selects one
more vertex that already exists in G to ensure that every triangle in G∗ has at least two
vertices selected. In other words, one has to cover each edge in G and the total cost of
the selected vertices does not exceed N ∗ (|E| + 1). The conditional equivalents only
selecting N nodes in G to cover every edge in G. Consequently, the corresponding
VERTEX COVER with G and N cannot be solved, either. �

Apparently, the WEIGHTED 2-VERTEX FEEDBACK SET is NP-hard by reduc-
ing any instance of the VERTEX COVER problem to an instance of the WEIGHTED

3Without loss of generality, we ignore the graphs which contains cycles of length 1 and 2. In particular, a
cycle of length 2 can be treated as a single edge for VERTEX COVER problems.
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Fig. 6 The selection for critical resources and the removing of edges in a resource allocation graph

2-VERTEX FEEDBACK SET problem. Furthermore, since for a resource allocation
graph only has resources that can be selected as critical resources, it must be a bipar-
tite graph. Based on the NP-hardness of the WEIGHTED 2-VERTEX FEEDBACK
SET, this work defines the RESTRICTED WEIGHTED 2-VERTEX FEEDBACK
SET FOR BIPARTITE GRAPHS as follows:

Definition 3 (RESTRICTED WEIGHTED 2-VERTEX FEEDBACK SET FOR BI-
PARTITE GRAPHS) Given an undirected and bipartite graph G = (V1,V2,E), and
a positive integer K , let w(v) ∈ Z+ for each v ∈ V1 ∪ V2. Does a set V ′ ⊂ V1 exist,
for each cycle in G that contains at least two elements in V ′, and

∑
v∈V ′ w(v) ≤ K .

Theorem 4 RESTRICTED WEIGHTED 2-VERTEX FEEDBACK SET FOR BIPAR-
TITE GRAPHS is NP-hard.

Proof Consider an instance of the WEIGHTED 2-VERTEX FEEDBACK SET with
an undirected graph G = (V ,E) with a cost constraint K . This work transforms G

into an undirected bipartite graph G∗ = (V ∗
1 ,V ∗

2 ,E∗) as follows. Notably, V ∗
1 is an

exact copy of V , and each vertex in V ∗
1 weights the same as it does in V . For each

edge (vi, vj ) ∈ E and the corresponding vertices v∗
i and v∗

j in V ∗
1 , a new node v∗

i,j of
weight K + 1 is created in V ∗

2 for connecting nodes v∗
i and v∗

j . In other words, every
edge (vi, vj ) in E is transformed into two adjacent edges (v∗

i , v∗
i,j ) and (v∗

i,j , v
∗
j )

in E∗. Thus, the connectivity of vertices in V is exactly the same as that of vertices
in V ∗

1 . Let K∗ the cost constraint of the RESTRICTED WEIGHTED 2-VERTEX
FEEDBACK SET FOR BIPARTITE GRAPHS be K (which is the cost constraint
of the WEIGHTED 2-VERTEX FEEDBACK SET). Because selecting any vertex
in V ∗

2 violates the cost constraint, only vertices in V ∗
1 can be selected. Thus, an al-

gorithm solves any instance of the RESTRICTED WEIGHTED 2-VERTEX FEED-
BACK SET FOR BIPARTITE GRAPHS with graph G∗ = (V ∗

1 ,V ∗
2 ,E∗) and cost

constraint K∗ can solve the corresponding instance of the WEIGHTED 2-VERTEX
FEEDBACK SET with graph G = (V ,E) and cost constraint K . �
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The heuristics for selecting the critical resources can be done based on the span-
ning trees concept: Given a resource allocation graph G, the algorithm starts with
another graph G′ with the same set of vertices for G but without any edges. One edge
at a time is moved from G to G′ in the same manner as when growing a spanning tree.
Once a cycle is detected in G′, two arbitrary resources are selected for the cycle as
critical resources (Notably, only one cycle may exist because a spanning tree is under
construction). This work removes all edges in G′ and G and in the path between the
two selected resources. Any resource not in the path but connected to some task in
the path in G is also selected as a critical resource. Whenever such a critical resource
is selected, any edge connecting the newly selected critical resource and any task on
the path is removed from G′ and G (see example in Fig. 6). The above procedure is
repeated until no edges exist in G. The time complexity of this heuristics algorithm
is O(|V |2 ∗ |E| log |E|), where V is the number of vertices and E is the number of
edges in the given resource allocation graph.

5 Performance evaluation

5.1 Experimental setup

This section provides evaluation of the proposed BCCP/ECCP. We are to show that,
with proper settings of the ceiling table, tasks can have good response. We shall focus
our discussion on ECCP because active resources are considered in experiments. For
comparison, all the task sets generated are evaluated with PCP in a restrictive way.
With PCP, when a higher-priority task suspends itself to access an active resource, the
lower-priority task can not execute over the CPU, and active resources are managed
as if they were passive resources.

Synthesized workloads are used in our experiments. The number of tasks per task
set is randomly chosen between 5 and 10. Tasks are purely periodic, and task periods
are randomly picked form [2000 ms, 10000 ms]. The CPU utilization of each task is
between 8% and 10%, and the total CPU utilization of each task set is between 50%
and 70%. The first arrivals of tasks are arbitrary. The number of passive resources
a task set is between 5 and 10. The collection of resources that a task will request
is randomly chosen, but a task with a high CPU utilization will require a larger col-
lection of resources. If a task accesses an active resource, then the duration of the
access is between 5% and 10% of the length of its task period. The number of active
resources a task set has is between 0 to 9. A task with a long task period will try to
lock many active resource. In the experiments, 1000 task sets are generated for each
system configuration. Each simulation run of a task set stops by the end of the least
common multiple of all its task periods.

The ceiling table is configured with two different patterns, namely PATTERN-I
and PATTERN-II. For PATTERN-I, there are three different settings: 1/4, 1/2, and
1/1, each of which means that how many high-priority tasks sacrifice their privileges
of resource access by setting all their ceiling-table entries as “*” (or 2). 1/4 stands
for that the first one forth high-priority tasks are sacrificed. For PATTERN-II, there
are also three different settings: 1/4, 1/2, and 1/1, each of which means how many
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resources a task voluntarily gives up its access privileges by setting “*” (or 2) in the
corresponding table entry of those resources.

Our performance metrics are Average Response Ratio and Longest Response Ra-
tio. The Average Response Ratio of a task set and a ceiling table is defined as the ratio
of the average task response with BCCP/ECCP to that with PCP. The higher the sys-
tem utilization is, the smaller Average Response Ratio will be. The Longest Response
Ratio of a task set is accordingly defined with respect to the longest task response of
the task set. The Longest Response Ratio is to observe whether small degradation of
high-priority-task response can be effectively traded for significant improvement of
low-priority-task response.

5.2 Experimental results

Figures 7(a) and 7(b) show the Average Response Ratio of BCCP/ECCP with
PATTERN-I and PATTERN-II, respectively. The X axis is the number of shared ac-
tive resources, and the Y axis is the Average Response Ratio. The smaller Average
Response Ratio is, the higher the system utilization will be. Note that, if there is no
active resource, ECCP becomes BCCP. As shown in Fig. 7, when there are nine dif-
ferent active resources, the Average Response Ratio of BCCP/ECCP can reach 0.8,
which is 80% of the Average Response Ratio of PCP (which is 1.0).

In Fig. 7(a), we can see that curve “1/1” is always the lowest and curve “1/4”
is always the highest (please see the previous section for the definitions of “1/1”,
“1/2”, and “1/4” with respect to PATTERN-I). That is because system utilization is
improved if there are many high-priority tasks sacrifice their privileges of resource
access. It is also true when the number of active resources is large, and therefore
all the curves gradually drop as the total number of active resources increases. In
Fig. 7(b), it is shown that, curve “1/1” and curve “1/4” are always the lowest and
the highest, respectively. Which means, if access privileges of many resources are
voluntarily relinquished, then system utilization can be improved. However, as in
Fig. 7(b) the access privilege of a resource is not necessarily relinquished by a high-
priority task, performance improvement in Fig. 7(b) is not as good as that in Fig. 7(a).

Fig. 7 Average response ratio of BCCP/ECCP with different patterns for ceiling-table setting
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Fig. 8 Longest response ratio of BCCP/ECCP with different patterns for ceiling-table setting

Figures 8(a) and 8(b) show the Longest Response Ratio of BCCP/ECCP with
PATTERN-I and PATTERN-II, respectively. The X axis is the number of shared
active resources, and the Y axis is the Longest Response Ratio. The figure shows
that, with BCCP/ECCP, the Longest Response Ratio can achieve 0.75, which is
better than the achievable Average Response Ratio (i.e., 0.8). That is because, un-
der BCCP/ECCP, resource-access privileges of high priority tasks can be traded for
responsiveness of low-priority tasks. We can also noted that, even though there is
no active resource (in this case ECCP is BCCP), the Longest Response Ratio of
BCCP/ECCP is still smaller than 1.0 (recall that PCP is the baseline).

6 Conclusion

This paper is motivated by the needs of resource synchronization protocols to ac-
commodate different priority inversion requirements of different tasks. We consider
situations in which tasks might voluntarily give up the CPU and suspend themselves
until completing I/O operations. This paper proposes configurable resource synchro-
nization protocols for engineers to adjust the maximum number of priority inversions
for each task. A table-based approach is first proposed to adjust the maximum num-
bers of priority inversions for tasks without suspension. We then extend the approach
to considerations of task suspension. The ceilings of resources become configurable
to allow lower-priority tasks to grab resources while higher-priority tasks suspend
themselves to wait for I/O operations. An algorithm is proposed to assign values to
the ceiling table, given the maximum number of priority inversions for each task.
System utilization is traded with the maximum numbers of priority inversions for
different tasks. A deadlock-prevention method with low run-time overheads is pro-
posed to avoid deadlocks. The minimum cost problem in breaking deadlock cycles is
also proven to be NP-hard.

For the future research, we will further exploit resource synchronization issues
when the performance of processors and I/O devices might change over time (due to
technology advances or the adoption of different hardwares). We must point out that
when the performance of processors or I/O devices improves, a schedulable schedule
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might become unschedulable (Stankovic et al. 1995). Methodologies might be needed
to enforce the schedulability of tasks even if the advance of hardware technology
boosts the performance of processors or I/O devices.

Appendix: Algorithms

BCCP_MAX_BLOCKING_TIME

(Tasks are sorted by their priorities, let τ0 be the highest priority task.)
1: n: the number of tasks
2: m: the number of resources
3: CT′ : the revised ceiling table based on CT
4: BCCP_MAX_BLOCKING_TIME(τi )
5: {
6: Ui : a two-dimensional array: Ui [0..(n − i − 1)][1..m]
7: Ui [0] ←− CT′(τi ) // Ui [0] is set as the resource usage of τi
8: for (x = 1;x ≤ (i − 1);x + +) {
9: Ui [x] ←− Inheritance(Ui [x − 1], CT′(τx )) // find out all possible inheritance blocking
10: for (x = i;x ≤ n − 1;x + +) {
11: Ui [x] ←− Transitive(Ui [x − 1], CT′(τx+1)) // find out all possible transitive blocking
12: }
13: Bτi

= Blocking_time(Ui [x]) // calculate the maximum total blocking time
14:}

15:Blocking_time(Ui [z])
16:{
17: Bτi

: the maximum total blocking time imposed on τi (initially zero).
18: MB: the maximum blocking time imposed on τi in PCP.

// it could be derived from the total blocking time caused by direct blocking
// and priority ceiling blocking as same as that in PCP

19: BRp : the longest duration of all tasks on accessing Rp (constant).
20: for (p = 1;p ≤ m;p + +) { // p-th column corresponds to resource Rp

21: if Ui [z][p] = ∗
22: Bτi

= Bτi
+ BRp // For all entries marked as “1” we only have to find out the maximum blocking time

23: }
24: Bτi

= Bτi
+ MB

25: return Bτi
26:}

27:Inheritance(Ui [y], CT′(τa))
28:{
29: Qx : an one-dimension array of length m

30: Qx ←− [0...0]
31: for (q = 1;q ≤ m;q + +) {
32: if ( (Ui [y][q] == 0) and (CT′(τa ,Rq ) == ∗) )
33: Qx [q]=“*” // in this case, blocking imposed on τa could be a inheritance blocking to the current task.
34: else
35: Qx [q] = Ui [y][q]
36: } // for
37: return Qx

38 }

39:Transitive(Ui [y], CT′(τj ))
40:{
41: Qx : an one-dimension array of length m

42: Qx ←− [0...0]
43: intersection: a temporary flag
44: intersection = 0
45: for (p = 1;p ≤ m;p + +)

// check if τj and (τi ....τj−1) has some shared resource
46: if ((Ui [y][p] = 0) and (CT′(τj ,Rp) = 0))
47: intersection = 1
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48: if (intersection == 1) {
49: for (q = 1;q ≤ m;q + +) {
50: if ( (Ui [y][q] == 0) and (CT′(τj ,Rq ) == ∗) )
51: Qx [q] = “*” // in this case, blocking imposed on τj could be transitively propagated to the current task.
52: else
53: Qx [q] = Ui [y][q]
54: } // for
55: }// if
56: return Qx

57 }

ECCP_MAX_BLOCKING_TIME

(Tasks are sorted by their priorities and let τ0 be the highest priority task.)
1: n: the number of the tasks
2: m: the number of the passive resources
3: M : the number of the active resources
4: CT′ : the revised extended ceiling table based on CT
5: ECCP_MAX_BLOCKING_TIME(τi )
6: {
7: Ui : a two-dimensional array: Ui [0..(n − i − 1)][1..m]
8: Ui [0] ←− CT′(τi ) // Ui [0] is set as the resource usage of τi
9: for (x = 1;x ≤ (i − 1);x + +) {
10: Ui [x] ←− Inheritance(Ui [x − 1], CT′(τx )) // find out all possible inheritance blocking
11: for (x = i;x ≤ n − 1;x + +) {
12: Ui [x] ←− Transitive(Ui [x − 1], CT′(τx+1)) // find out all possible transitive blocking
13: }
14: Bτi

= Blocking_time(Ui [x]) // calculate the maximum total blocking time
15:}

16:Blocking_time(Ui [z])
17:{
18: Bτi

: the maximum blocking time imposed on task τi (initially zero).
19: MB: the maximum blocking time imposed on τi in PCP.

// it could be derived from the total blocking time caused by direct blocking
// and priority ceiling blocking as same as that in PCP

20: BRp :the maximum duration in the locking of passive resource Rp of all tasks(constant)
21: BRa

g :the maximum duration of accessing on active resource Ra
g

by corresponding sub-job among all tasks(constant)
22: for (p = 1;p ≤ m;p + +) { // p-th column corresponds to resource Rp

23: if (Ui [z][p] > 1)
24: Bτi

= Bτi
+ (Ui [z][p] − 1)∗BRp

// each entry with value larger than one could contribute CT′(τi ,Rp) − 1 priority inversions
25: }
26: Bτi

= Bτi
+MB

27: for (g = 1;g ≤ M;g + +)

28: if (τi uses Ra
g )

29: Bτi
= Bτi

+ BRa
g

30: return Bτi
// an active resource contributes one additional priority inversion

31:}

32:Inheritance(Ui [y], CT′(τa))
33:{
34: Qx : an one-dimension array of length m

35: Qx ←− [0...0]
36: for (q = 1;q ≤ m;q + +) {
37: if ( (Ui [y][q] == 0) and (CT′(τa ,Rq ) > 1) )
38: Qx [q] = CT′(τa ,Rq )

// in this case, blocking imposed on τa could be a inheritance blocking to the current task.
39: else
40: Qx [q] = Ui [y][q]
41: } // for
42: return Qx

43 }

44:Transitive(Ui [y], CT′(τj ))
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45:{
46: Qx : an one-dimension array of length m

47: Qx ←− [0...0]
48: intersection: a temporary flag
49: intersection = 0
50: for (p = 1;p ≤ m;p + +)

// check if τj and (τi ....τj−1) has some shared resource
51: if ((Ui [y][p] = 0) and (CT′(τj ,Rp) = 0))
52: intersection = 1
53: if (intersection == 1) {
54: for (q = 1;q ≤ m;q + +) {
55: if ( (Ui [y][q] == 0) and (CT′(τj ,Rq ) > 1) )
56: Qx [q] = CT′(τj ,Rq )

// In this case, blocking imposed on τj could be transitively propagated to the current task.
57: else
58: Qx [q] = Ui [y][q]
59: } // for
60: } // if
61: return Qx

62:}

SETTING_ECCP_CEILING_TABLE

(Tasks are sorted by their priorities and let τ0 be the highest priority task.)
1: n: the number of the tasks
2: m: the number of the passive resources
3: M : the number of the active resources
4: CT: the ceiling table(Initially all entries are zero)
5: FR[1..n][1..m]: FR[i][p] denotes how many times τi requests Rp in each its period
6: RU[1..n][1..m]: RU[i][p] denotes whether τi uses Rp or not.
7: RBT[1..n]: the remaining duration of tolerable blocking time for each task.

//the initial values in RBT are derived from a schedulability analysis.
8: BRp : the maximum duration in the locking of passive resource Rp of all tasks
9: BRa

g : the maximum duration of accessing on active resource Ra
g by the corresponding sub-job among all tasks

10:SETTING_ECCP_CEILING_TABLE
11:{
12: f ri [1..m], CRi [1..m];
13: MBi : the maximum blocking time imposed on τi in PCP.

// it could be derived from the total blocking time caused by direct blocking
// and priority ceiling blocking as same as that in PCP

14: for (i = 1; i ≤ n; i + +) {
15: CT(τi ) ←− RU[i]; CRi ←− FR[i];
16: f ri ←− Sum_Usage_Frequency(τi );

// for the entries marked as “1” ’s and the active resource
17: for (g = 1;g ≤ M;g + +)

18: if (τi uses Ra
g )

19: RBT[i] = RBT[i]− BRa
g

20: RBT[i] = RBT[i]− MBi ;
21: while ((RBT[i] > 0) and (f ri ! = [0...0])) {
22: Rp= the most frequently used resource in f ri ;
23: if ((CT(τi ,Rp) >= 1) and (RBT[i] > BRp ) and (CRi [p] > 0) and (f ri [p] > 0)) {

// τi could tolerate one more priority inversion on accessing Rp .
24: if (!∃ ((CT(τx ,Rp) == 0) and (RBT[x] <BRp)|x = 1...i − 1)) {

// check if all higher priority tasks could tolerate this blocking which is
transitively propagated to them.

25: subtract BRp from RBT[x] where (CT(τx ,Rp) == 0) for x = 1...i − 1;
26: CT(τi ,Rp) + + ; RBT[i] = RBT[i]- BRp ; f ri [p] − − ; CRi [p] − − ;
27: } // if (CT(τi ,Rp) >= 1)
28: else
29: fri [p] = 0;
30: }
31: else {
32: if ((RBT[i] <BRp ) or (CRi [p] == 0)) // no more blocking is allowed on accessing Rp

33: fri [p] = 0;
34: } // else
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35: }// while
36: }// for
37:}

38:Sum_Usage_Frequency(τi )
39:{ // calculate the number of requests on each resources made by low priority tasks (compared to τi )
40: fr[1..m] ←− [0...0];
41: for (p = 1;p ≤ m;p + +)

42: for (k = i;k ≤ n;k + +)

43: fr[p] = FR[k,p]+ fr[p];
44: return f r

45:}
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