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SUMMARY

A new strategy to achieve chaos control by GYC partial region stability theory is proposed. By using
the GYC partial region stability theory, the Lyapunov function is a simple linear homogeneous function
of error states, the controllers are more simple and have less simulation error because they are in lower
degree than that of traditional controllers. Simulation results for a new Ikeda–Lorenz system show the
effectiveness of this strategy. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Chaos, as an interesting nonlinear phenomenon, has been intensively investigated. It is well known
that chaotic systems have sensitive dependence on initial conditions. A chaotic system is a nonlinear
deterministic system that displays complex dynamical behaviors [1].

The theory of chaos control has developed since 1990 [2–4] and today is at the forefront of
research in the field of nonlinear dynamics. Techniques have been experimentally implemented
in mechanical [5], chemical [6], electronic [7], laser [8], communication [9] and biological [10]
systems. Though there are now many different algorithms developed for the control of chaos for
specific cases, in general all make use of typical properties of chaotic systems, namely, multiple
coexisting solutions, sensitivity and ergodicity.

In this paper, a new chaos control strategy by GYC (Ge-Yao-Chen) partial region stability theory
is proposed [11–13]. By using the GYC partial region stability theory, the Lyapunov function is a
simple linear homogeneous function of error states and the controllers are more simple and have
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less simulation error because they are in lower degree than that of traditional controllers, for which
the Lyapunov function is a quadratic form of error states.

This paper is organized as follows. In Section 2, chaos control strategy by GYC partial region
stability theory is proposed. In Section 3, chaos of a new Ikeda–Lorenz system is given. In Section 4,
simulation results are given for three examples. In Section 5, the superiority of new strategy is
presented by the comparison between the simulation results of new strategy and that of traditional
method. In Section 6, conclusions are drawn. In Appendix, GYC partial region stability theory is
presented.

2. CHAOS CONTROL STRATEGY BY GYC PARTIAL REGION STABILITY THEORY

Consider the following chaotic systems:

ẋ= f(t,x) (1)

where x=[x1, x2, . . . , xn]T∈ Rn is a state vector, f : R+×Rn → Rn is a vector function.
The goal system, which can be either chaotic or regular, is

ẏ=g(t,y) (2)

where y=[y1, y2, . . . , yn]T∈ Rn is a state vector and g : R+×Rn → Rn is a vector function.
In order to make the chaos state x approach the goal state y, define e=x−y as the state error.

The chaos control is accomplished in the sense that [14–20]
lim
t→∞e= lim

t→∞(x−y)=0 (3)

i.e. the controlled system of chaotic state x is synchronized with the goal system of chaotic or
nonchaotic state y.

By using GYC partial region stability theory, the positive definite Lyapunov function is a
homogeneous linear function of error states and the controllers can be designed in lower order
than that of traditional controllers, for which the Lyapunov function is a quadratic form of error
states.

3. CHAOS OF A NEW IKEDA–LORENZ SYSTEM

A new Ikeda–Lorenz system is described as follows:

ẋ1 = −a1x1−b1 sin x1+�(x2−x1)

ẋ2 = −a2x1−b2 sin x1+r x1−x1x3−x2

ẋ3 = −a3x1−b3 sin x1+x1x2−cx3

(4)

which is a combination of Ikeda system [21–23] without time delay and Lorenz system. The
parameters a1=0.1, b1=1, �=16, a2=0.2, b2=0.3, r =45.92, a3=0.05, b3=1.8, and c=4 are
used. The phase portrait and Lyapunov exponents of the new Ikeda–Lorenz system are shown
in Figures 1 and 2.
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Figure 1. The phase portrait of new Ikeda–Lorenz system with parameters a1=0.1, b1=1, �=16, a2=0.2,
b2=0.3, r =45.92, a3=0.05, b3=1.8, c=4 and initial conditions x1(0)=1, x2(0)=2, x3(0)=3.

Figure 2. Lyapunov exponents of new Ikeda–Lorenz system with parameters a1=0.1, b1=1, �=16,
a2=0.2, b2=0.3, r =45.92, a3=0.05, b3=1.8, c=4 and initial conditions x1(0)=1, x2(0)=2, x3(0)=3.

4. SIMULATION RESULTS

The following chaotic system is the Ikeda–Lorenz system of which the old origin is translated
to (x1, x2, x3)=(150,150,150) and the chaotic motion always happens in the first quadrant of
coordinate system (x1, x2, x3):

ẋ1 = −a1(x1−150)−b1(sin(x1−150))+�((x2−150)−(x1−150))

ẋ2 = −a2(x1−150)−b2(sin(x1−150))+r(x1−150)−(x1−150)(x3−150)−(x2−150)

ẋ3 = −a3(x1−150)−b3(sin(x1−150))+(x1−150)(x2−150)−c(x3−150)

(5)
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This Ikeda–Lorenz system is presented as a simulated example where the initial conditions are
x1(0)=1, x2(0)=2, x3(0)=3, a1=0.1, b1=1, �=16, a2=0.2, b2=0.3, r =45.92, a3=0.05,
b3=1.8 and c=4.

In order to lead (x1, x2, x3) to the goal, we add control terms u1, u2 and u3 to each equation of
Equation (5), respectively.

ẋ1 = −a1(x1−150)−b1(sin(x1−150))+�((x2−150)−(x1−150))+u1

ẋ2 = −a2(x1−150)−b2(sin(x1−150))+r(x1−150)−(x1−150)(x3−150)−(x2−150)+u2

ẋ3 = −a3(x1−150)−b3(sin(x1−150))+(x1−150)(x2−150)−c(x3−150)+u3

(6)

Case I: Control the chaotic motion to zero.
In this case we will control the chaotic motion of the Ikeda–Lorenz system (5) to zero. The

goal is y=0. The state error is e=x−y=x and error dynamics becomes

ė1 = ẋ1=−a1(x1−150)−b1(sin(x1−150))+�((x2−150)−(x1−150))+u1

ė2 = ẋ2=−a2(x1−150)−b2(sin(x1−150))+r(x1−150)

−(x1−150)(x3−150)−(x2−150)+u2

ė3 = ẋ3=−a3(x1−150)−b3(sin(x1−150))+(x1−150)(x2−150)−c(x3−150)+u3

(7)

In Figure 3, we see that the error dynamics always exists in first quadrant.
By GYC partial region asymptotical stability theorem, one can choose a Lyapunov function in

the form of a positive definite function in first quadrant as

V =e1+e2+e3 (8)

Its time derivative is

V̇ = ė1+ ė2+ ė3

= −a1(x1−150)−b1(sin(x1−150))+�((x2−150)−(x1−150))+u1

−a2(x1−150)−b2(sin(x1−150))+r(x1−150)−(x1−150)(x3−150)−(x2−150)

+u2−a3(x1−150)−b3(sin(x1−150))+(x1−150)(x2−150)−c(x3−150)+u3 (9)

Figure 3. Phase portrait of error dynamics for Case I.
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Figure 4. Time histories of errors for Case I.

Choose

u1 = −[−a1(x1−150)−b1(sin(x1−150))+�((x2−150)−(x1−150))]−e1

u2 = −[−a2(x1−150)−b2(sin(x1−150))+r(x1−150)

−(x1−150)(x3−150)−(x2−150)]−e2

u3 = −[−a3(x1−150)−b3(sin(x1−150))+(x1−150)(x2−150)−c(x3−150)]−e3

(10)

We obtain

V̇ =−e1−e2−e3<0 (11)

which is a negative definite function in first quadrant. Simulation results are shown in Figure 4.
The motion trajectories approach the origin after 40 s.

If the traditional quadratic Lyapunov function

V = 1
2 (e

2
1+e22+e23) (12)

is used. Its time derivative is

V̇ = ė1e1+ ė2e2+ ė3e3 (13)

The three controllers u′
1, u

′
2, u

′
3 are chosen to make

V̇ =−e21−e22−e23 (14)

Comparing with Equation (10), we see that every term of u′
1, u

′
2, u

′
3 is of higher degree than the

corresponding term of u1, u2, u3. Therefore, u′
1, u

′
2, u

′
3 are more complex than u1, u2, u3. The

situation is the same for the following Cases II and III.
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Case II: Control the chaotic motion to a periodic function.
In this case, we will control the chaotic motion of the Ikeda–Lorenz system (5) to a periodic

function of time. The goal is y=F sin2�t . Error e becomes

e= x−F sin2�t (15)

It is demanded that

lim
t→∞ei = lim

t→∞(x−Fi sin
2�i t)=0, i=1,2,3 (16)

and ėi = ẋi −Fi�i sin2�i t , (i=1,2,3), where F1=F2=F3=10, �1=0.5, �2=2, �3=0.2.
The error dynamics is

ė1= ẋ1−F�1 sin2�1t = −a1(x1−150)−b1(sin(x1−150))+�((x2−150)

−(x1−150))−F�1 sin2�1t+u1

ė2= ẋ2−F�2 sin2�2t = −a2(x1−150)−b2(sin(x1−150))+r(x1−150)

−(x1−150)(x3−150)−(x2−150)−F�2 sin2�2t+u2

ė3= ẋ3−F�3 sin2�3t = −a3(x1−150)−b3(sin(x1−150))+(x1−150)(x2−150)

−c(x3−150)−F�3 sin2�3t+u3

(17)

Let the initial states be (x1(0), x2(0), x3(0))=(1,2,3) and system parameters be a1=0.1, b1=1,
�=16, a2=0.2, b2=0.3, r =45.92, a3=0.05, b3=1.8 and c=4. We find that the error dynamics
always exists in first quadrant as shown in Figure 5. By GYC partial region asymptotical stability
theorem, one can choose a Lyapunov function in the form of a positive definite function in first
quadrant as

V =e1+e2+e3 (18)

Its time derivative is

V̇ = ė1+ ė2+ ė3

= [−a1(x1−150)−b1(sin(x1−150))+�((x2−150)−(x1−150))−F ·�1 ·sin2�1t+u1]
+[−a2(x1−150)−b2(sin(x1−150))+r(x1−150)−(x1−150)(x3−150)

−(x2−150)−F ·�2 ·sin2�2t+u2]+[−a3(x1−150)−b3(sin(x1−150))

+(x1−150)(x2−150)−c(x3−150)−F ·�3 ·sin2�3t+u3] (19)

Choose

u1 = −[−a1(x1−150)−b1(sin(x1−150))+�((x2−150)−(x1−150))−F�1 sin2�1t]−e1

u2 = −[−a2(x1−150)−b2(sin(x1−150))+r(x1−150)−(x1−150)(x3−150)

−(x2−150)−F�2 sin2�2t]−e2

u3 = −[−a3(x1−150)−b3(sin(x1−150))+(x1−150)(x2−150)−c(x3−150)

−F�3 sin2�3t]−e3

(20)
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Figure 5. Phase portrait of error dynamics for Case II.

Figure 6. Time histories of errors for Case II.

We obtain

V̇ =−e1−e2−e3<0 (21)

which is a negative definite function in first quadrant. The numerical results are shown in Figures 6
and 7. After 40 s, the errors approach zero and the motion trajectories approach to the periodic
functions.

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:1564–1584
DOI: 10.1002/mma



CHAOS CONTROL OF NEW IKEDA–LORENZ SYSTEMS 1571

Figure 7. Time histories of errors for Case II.

Case III: Control the chaotic motion of Ikeda–Lorenz system to chaotic motion of a chaotic
Genesio system [24].

In this case we will control chaotic motion of Ikeda–Lorenz system (3) to that of a chaotic
Genesio system. The goal system is Genesio system

ż1 = z2

ż2 = z3

ż3 = z21−a4z1−b4z2−c4z3

(22)

For z1(0)=1, z2(0)=1, z3(0)=1, a4=6, b4=2.92, c4=1.2, the system is chaotic [21].
The error equation is e= x−z; our aim is limt→∞ e=0.
The error dynamics become

ė1= ẋ1− ż1 = −a1(x1−150)−b1(sin(x1−150))+�((x2−150)−(x1−150))−z2+u1

ė2= ẋ2− ż2 = −a2(x1−150)−b2(sin(x1−150))+r(x1−150)−(x1−150)(x3−150)

−(x2−150)−z3+u2

ė3= ẋ3− ż3 = −a3(x1−150)−b3(sin(x1−150))+(x1−150)(x2−150)−c(x3−150)

−(z21−a4z1−b4z2−c4z3)+u3

(23)

Let the initial states be (x1(0), x2(0), x3(0))=(1,2,3), (z1(0), z2(0), z3(0))=(1,1,1) and system
parameters a1=0.1, b1=1, �=16, a2=0.2, b2=0.3, r =45.92, a3=0.05, b3=1.8, c=4, a4=6,

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:1564–1584
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Figure 8. Phase portrait of error dynamics for Case III.

b4=2.92 and c4=1.2. We find that the error dynamics always exists in first quadrant as shown in
Figure 8.

By GYC partial region asymptotical stability theorem, one can choose a Lyapunov function in
the form of a positive definite function in first quadrant

V =e1+e2+e3 (24)

Its time derivative is

V̇ = ė1+ ė2+ ė3

= [−a1(x1−150)−b1(sin(x1−150))+�((x2−150)−(x1−150))−z2+u1]
+[−a2(x1−150)−b2(sin(x1−150))+r(x1−150)−(x1−150)(x3−150)

−(x2−150)−z3+u2]+[−a3(x1−150)−b3(sin(x1−150))+(x1−150)(x2−150)

−c(x3−150)−(z21−a4z1−b4z2−c4z3)+u3] (25)

Choose

u1 = −[−a1(x1−150)−b1(sin(x1−150))+�((x2−150)−(x1−150))−z2]−e1

u2 = −[−a2(x1−150)−b2(sin(x1−150))+r(x1−150)−(x1−150)(x3−150)

−(x2−150)−z3]−e2

u3 = −[−a3(x1−150)−b3(sin(x1−150))+(x1−150)(x2−150)−c(x3−150)

−(z21−a4z1−b4z2−c4z3)]−e3

(26)

We obtain

V̇ =−e1−e2−e3<0 (27)

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:1564–1584
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Figure 9. Time histories of errors for Case III.

Figure 10. Time histories of errors for Case III.

which is a negative definite function in first quadrant. The numerical results are shown in Figures 9
and 10. After 40 s, the errors approach zero and the chaotic trajectories of Ikeda–Lorenz system
approach to the chaotic trajectories of the Genesio system.
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Figure 11. Time histories of errors of using GYC partial region stability theory for Case I.

Figure 12. Time histories of errors of using traditional controller design method for Case I.
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Figure 13. Time histories of errors of using GYC partial region stability theory for Case II.

Figure 14. Time histories of errors of using traditional controller design method for Case II.

5. COMPARISON BETWEEN NEW STRATEGY AND TRADITIONAL METHOD

In the last part of Case I in Section 4, it is shown that in new strategy, V =e1+e2+e3 and V̇ =
−e1−e2−e3, while in traditional method, V = 1

2 (e
2
1+e22−e23) and V̇ =−e21−e22−e23; therefore,

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:1564–1584
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Figure 15. Time histories of errors of using GYC partial region stability theory for Case III.

Figure 16. Time histories of errors of using traditional controller design method for Case III.

the controllers u1, u2, u3 are more simple than the traditional controllers u′
1, u

′
2, u

′
3, and will give

less simulation errors. This conclusion can be proved by the following simulation results.
In Figures 11 and 12, it is presented clearly that the errors from traditional method are several

thousand times of that from new strategy. In Figures 13–16, the results are similar.
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Table I. Comparison between error data at 99.66, 99.67, 99.68,
99.69 s after the action of controllers.

Error for new strategy Error for traditional method

Case I: e1
0.000000000000001 0.016710430555974
0.000000000000001 0.016707638637622
0.000000000000001 0.016704847652041
0.000000000000001 0.016702057598765

Case I: e2
0.000000000001818 0.016730794379602
0.000000000001818 0.016727995653045
0.000000000001818 0.016725197862674
0.000000000001818 0.016722401008018

Case I: e3
0.000000000001807 0.016754609605322
0.000000000001807 0.016751802906143
0.000000000001807 0.016748997147152
0.000000000001807 0.016746192327877

Case II: e1−0.000000000000022 0.000038182369977
−0.000000000000022 0.000038182369978
−0.00000000000002 0.000038182369979
−0.000000000000019 0.00003818236998

Case II: e2
0.00000000000001 0.000468399999968
0.000000000000004 0.000468399999969
−0.000000000000007 0.00046839999997
0.000000000000012 0.000468399999971

Case II: e3
0.00000000000001 0.000517619999975
0.000000000000004 0.000517619999975
−0.000000000000007 0.000517619999977
0.000000000000012 0.000517619999978

Case III: e1
0.000000000000001 0.016721740924575
0.000000000000001 0.016718945225869
0.000000000000001 0.016716150461829
0.000000000000001 0.016713356631987

Case III: e2
0.000000000001761 0.016733574425884
0.000000000001758 0.016730774769236
0.000000000001761 0.01672797604924
0.000000000001776 0.016725178265425

Case III: e3
0.000000000001761 0.016751501937327
0.000000000001759 0.016748696279146
0.000000000001768 0.016745891560629
0.000000000001755 0.016743087781305

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:1564–1584
DOI: 10.1002/mma



1578 Z.-M. GE ET AL.

Furthermore, in Table I, comparison between error data is given. All data are picked from 99.66
to 99.69s with sampling time 0.01 s. From these data, the superiority of new strategy is obvious.

6. CONCLUSIONS

In this paper, a new strategy to achieve chaos control by GYC partial region stability is proposed. By
using the GYC partial region stability theory, the Lyapunov function is a simple linear homogeneous
function of error states, the controllers are more simple and have less simulation error because
they are in lower degree than that of traditional controllers. The new Ikeda–Lorenz system and
Genesio system are used as simulation examples that effectively confirm the chaos control scheme.
Comparison between the errors from new strategy and that from traditional method shows the
superiority of new strategy.

APPENDIX A: GYC PARTIAL REGION STABILITY THEORY [11–13]

Consider the differential equations of disturbed motion [25, 26] of a nonautonomous system in the
normal form

dxs
dt

= Xs(t, x1, . . . , xn) (s=1, . . . ,n) (A1)

where the function Xs is defined on the intersection of the partial region � (shown in Figure A1) and∑
s
x2s �H (A2)

and t>t0, where t0 and H are certain positive constants. Xs , which vanishes when the variables
xs are all zero, is a real-valued function of t , x1, . . . , xn . It is assumed that Xs is smooth enough

subregion 2

subregion 3

subregion 1

X1

O

X2

1

1

1

h

Figure A1. Partial regions � and �1.
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to ensure the existence, uniqueness of the solution of the initial value problem. When Xs does not
contain t explicitly, the system is autonomous.

Obviously, xs =0 (s=1, . . . ,n) is a solution of Equation (A1). We are interested in the stability
and asymptotical stability of this zero solution on partial region � (including the boundary) of the
neighborhood of the origin, which in general may consist of several subregions (Figure A1).

Definition A1
For any given number ε>0, if there exists a �>0 such that on the closed given partial region �
when

∑
s
x2s0�� (s=1, . . . ,n) (A3)

where xs0 (s=1, . . . ,n) are initial values of xs , for all t�t0, the inequality
∑
s
x2s <ε (s=1, . . . ,n) (A4)

is satisfied for the solutions of Equation (A1) on �, then the undisturbed motion xs =0 (s=1, . . . ,n)

is stable on the partial region �.

Definition A2
If the undisturbed motion is stable on the partial region �, and there exists a �′>0, so that on the
given partial region � when

∑
s
x2s0��′ (s=1, . . . ,n) (A5)

the equality

lim
t→∞

(∑
s
x2s

)
=0 (A6)

is satisfied for the solutions of Equation (A1) on �, then the undisturbed motion xs =0 (s=1, . . . ,n)

is asymptotically stable on the partial region �.

The intersection of � and region defined by Equation (A5) is called the region of attraction.

Definition of functions V (t, x1, . . . , xn)
Let us consider the functions V (t, x1, . . . , xn) given on the intersection �1 of the partial region �
and the region

∑
s
x2s �h (s=1, . . . ,n) (A7)

for t�t0>0, where t0 and h are positive constants. We suppose that the functions are single-valued
and have continuous partial derivatives and become zero when x1=·· ·= xn =0.

Definition A3
If there exists t0>0 and a sufficiently small h>0, so that on partial region �1 and t�t0, V�0
(or �0), then V is a positive (or negative) semidefinite, in general semidefinite, function on �1
and t�t0.

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009; 32:1564–1584
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Definition A4
If there exists a positive (negative) definitive function W (x1, . . . , xn) on �1, so that on the partial
region �1 and t�t0

V −W�0 (or −V −W�0) (A8)

then V (t, x1, . . . , xn) is a positive definite function on the partial region �1 and t�t0.

Definition A5
If V (t, x1, . . . , xn) is neither definite nor semidefinite on �1 and t�t0, then V (t, x1, . . . , xn) is an
indefinite function on the partial region �1 and t�t0. That is, for any small h>0 and any large
t0>0, V (t, x1, . . . , xn) can take either positive or negative value on the partial region �1 and t�t0.

Definition A6 (Bounded function V )
If there exist t0>0, h>0, so that on the partial region �1, we have

|V (t, x1, . . . , xn)|<L

where L is a positive constant, then V is said to be bounded on �1.

Definition A7 (Function with infinitesimal upper bound)
If V is bounded and for any �>0, there exists �>0, so that on �1 when

∑
s x

2
s �� and t�t0, we

have

|V (t, x1, . . . , xn)|��

then V admits an infinitesimal upper bound on �1.

Theorem A1
If there can be found for the differential equations of the disturbed motion (Equation (A1)) a
definite function V (t, x1, . . . , xn) on the partial region, and its derivative with respect to time based
on these equations as given by

dV

dt
= �V

�t
+

n∑
s=1

�V
�xs

Xs (A9)

is a semidefinite function on the partial region whose sense is opposite to that of V , or it becomes
zero identically, then the undisturbed motion is stable on the partial region.

Proof
Let us assume for the sake of definiteness that V is a positive definite function. Consequently,
there exists a sufficiently large number t0 and a sufficiently small number h<H , such that on the
intersection �1 of partial region � and

∑
s
x2s �h (s=1, . . . ,n)

and t�t0, the following inequality is satisfied:

V (t, x1, . . . , xn)�W (x1, . . . , xn)
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where W is a certain positive definite function, which does not depend on t . Besides this,
Equation (A9) may assume only negative or zero value in this region.

Let ε be an arbitrarily small positive number. We shall suppose that in any case ε<h. Let
us consider the aggregation of all possible values of the quantities x1, . . . , xn , which are on the
intersection �2 of �1 and ∑

s
x2s =ε (A10)

and let us designate by l>0, the precise lower limit of the function W under this condition. By
virtue of Equation (A8), we shall have

V (t, x1, . . . , xn)�l for (x1, . . . , xn) on �2 (A11)

We shall now consider the quantities xs as functions of time, which satisfy the differential
equations of disturbed motion. We shall assume that the initial values xs0 of these functions for
t= t0 lie on the intersection �2 of �1 and the region∑

s
x2s �� (A12)

where � is so small that

V (t0, x10, . . . , xn0)<l (A13)

By virtue of the fact that V (t0,0, . . . ,0)=0, such a selection of the number � is obviously
possible. We shall suppose that in any case the number � is smaller than ε. Then the inequality∑

s
x2s <ε (A14)

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently small t− t0,
since the functions xs(t) vary continuously with time. We shall show that these inequalities will
be satisfied for all values t>t0. Indeed, if these inequalities were not satisfied at some time, there
would have to exist such an instant t=T for which this inequality would become an equality. In
other words, we would have ∑

s
x2s (T )=ε

and consequently, on the basis of Equation (A11)

V (T, x1(T ), . . . , xn(T ))�l (A15)

On the other hand, since ε<h, the inequality (Equation (A7)) is satisfied in the entire interval
of time [t0,T ] and, consequently, in this entire time interval dV/dt�0. This yields

V (T, x1(T ), . . . , xn(T ))�V (t0, x10, . . . , xn0)

which contradicts Equation (A14) on the basis of Equation (A13). Thus, the inequality
Equation (A4) must be satisfied for all values of t>t0; hence, follows that the motion is stable.

�

Finally, we must point out that from the view-point of mathematics, the stability on partial
region in general should not be related logically to the stability on whole region. If an undisturbed
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solution is stable on a partial region, it may be either stable or unstable on the whole region. In
specific practical problems, we do not study the solution starting from �2 and going out of �.

Theorem A2
If in satisfying the conditions of Theorem A1, the derivative dV/dt is a definite function on the
partial region with opposite sign to that of V and the function V itself permits an infinitesimal
upper bound, then the undisturbed motion is asymptotically stable on the partial region.

Proof
Let us suppose that V is a positive definite function on the partial region and that consequently,
dV /dt is negative definite. Thus, on the intersection �1 of � and the region defined by Equation
(A7) and t�t0, there will be satisfied not only the inequality (Equation (A8)), but the following
inequality as well:

dV

dt
�−W1 (x1, . . . , xn) (A16)

where W1 is a positive definite function on the partial region independent of t .
Let us consider the quantities xs as functions of time that satisfy the differential equations

of disturbed motion assuming that the initial values xs0= xs(t0) of these quantities satisfy the
inequalities (Equation (A12)). Since the undisturbed motion is stable in any case, the magnitude �
may be selected so small that for all values of t�t0, the quantities xs remain within �1. Then, on
the basis of Equation (A16), the derivative of function V (t, x1(t), . . . , xn(t)) will be negative at all
times and, consequently, this function will approach a certain limit, as t increases without limit,
remaining larger than this limit at all times. We shall show that this limit is equal to some positive
quantity different from zero. Then for all values of t�t0, the following inequality will be satisfied:

V (t, x1(t), . . . , xn(t))>� (A17)

where �>0.
Since V permits an infinitesimal upper bound, it follows from this inequality that∑

s
x2s (t)�� (s=1, . . . ,n) (A18)

where � is a certain sufficiently small positive number. Indeed, if such a number � did not exist,
that is, if the quantity

∑
s x

2
s (t) were smaller than any preassigned number no matter how small,

then the magnitude V (t, x1(t), . . . , xn(t)), as follows from the definition of an infinitesimal upper
bound, would also be arbitrarily small, which contradicts Equation (A17).

If for all values of t�t0 the inequality (Equation (A18)) is satisfied, then Equation (A16) shows
that the following inequality will be satisfied at all times:

dV

dt
�−l1

where l1 is a positive number different from zero, which constitutes the precise lower limit of the
function W1(t, x1(t), . . . , xn(t)) under condition (Equation (A18)). Consequently, for all values of
t�t0 we shall have

V (t, x1(t), . . . , xn(t))=V (t0, x10, . . . , xn0)+
∫ t

t0

dV

dt
dt�V (t0, x10, . . . , xn0)−l1(t− t0)
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which is, obviously, in contradiction with Equation (A17). The contradiction thus obtained shows
that the function V (t, x1(t), . . . , xn(t)) approaches zero as t increases without limit. Consequently,
the same will be true for the functionW (x1(t), . . . , xn(t)) as well, from which it follows directly that

lim
t→∞ xs(t)=0 (s=1, . . . ,n)

which proves the theorem. �
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