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ABSTRACT 

Many approaches to acquire knowledge automatically have been developed 

recently. A popular and efficient method for decision tree induction from symbolic 

data is ID3 algorithm. A proposed fuzzy ID3 algorithm, which is tightly connected 

with characteristic features of the ID3 algorithm and is extended to apply a data set 

containing continuous attribute values. But fuzzy ID3 algorithm can only deal with 

continuous data and it is often criticized to result in poor learning accuracy. 

In this thesis, we proposed a genetic algorithm based fuzzy ID3 method to 

construct fuzzy classification system, which can accept continuous, discrete, or 

mixed-mode data sets. Furthermore, we proposed CAIM algorithm to deal with the 

best partitions of the feature of data sets. Next, we formulated a rule pruning method 

to obtain a more efficient rule base. We have tested our method on some famous data 

sets, and the results of a two-fold cross validation are compared to those by C5.0. The 

experiments show that our method works better in practice. The performance of the 

testing accuracy by our method with CAIM algorithm is better averagely than that 

without CAIM algorithm. 
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Chapter 1. Introduction 

 

 

1.1. Research Background 

 

Learning process is a very important element that why the natural organism or 

artificial system is intelligent. There are two essential kinds of learning, one is 

acquisition of new knowledge and the other is getting new skills. With learning, 

system can get experience or get some knowledge from processing. It is not enough to 

take down experience, the more important is that how to build program to improve 

their performance or adapt it at some task trough experience.  

 

Learning is very important for human being. An infant learn how to eat and how 

to speak. Without learning, people are incapable to profit from their experience or to 

adapt to changing conditions. We observe exponential growth of the amount of data 

and information available on the Internet and in database systems. But the data is 

always disorganized and difficult to understand. Researchers often use machine 

learning (ML) algorithm to automate the processing and extraction of knowledge 

from data. Inductive ML algorithms are used to generate classification rules from 

class-labeled examples that are described by a set of numerical (e.g., 1, 2, 4), nominal 

(e.g., black, white), or continuous attributes. With analysis of the data, we can get the 

information or the regulations from it.    

  

Machine learning is a burgeoning new technology with a wide range of 

applications. It has the potential to become one of the key components of intelligent 
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information systems, enabling compact generalizations, inferred from large databases 

of recorded information, to be applied as knowledge in various practical ways–such as 

being embedded in automatic processes like expert systems, or used directly for 

communicating with human experts and for educational purposes. 

 

The meaning of machine learning is to develop techniques to allow computers to 

“learn.” Recent years, it has a great advancement on the computer capability, so it is 

more imperative for us to use the machine learning method. Briefly, machine learning 

is a method for analyzing of data sets by computer programs, it is better than the 

intuition of users if not possible. The purpose of system is to get knowledge form the 

data set, and it is often shown in the form of decision trees [1], which are the most 

popular choices for learning and reasoning from feature-based examples. 

 

Machine learning has two phases, which finds the common properties between 

the set of examples in the database and classifies them into different classes, 

according to the model as shown in Fig. 1.1. In the first phase, we analyze the data set 

by the algorithm. We will get knowledge in the process which is in the form of 

decision rules or mathematical formulae. In the second phase, we use testing data to 

estimate the accuracy of the decision rules which generated previously. If the testing 

accuracy is considered acceptable, the decision rules or mathematical formulae can be 

built as rule-base. We can use it to classify the testing data or new data examples 

which the categories are not known. 
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Fig. 1.1.  Machine learning process. 

 

Machine learning algorithms can be categorized in several ways. In general, they 

are divided into supervised and unsupervised algorithms [2]. The supervised learning 

algorithm is told to which class each training example belongs. In case where there is 

no a priori knowledge of classes, supervised learning can be still applied if the data 

has a natural cluster structure. Then a clustering algorithm [2] has to be run first to 

reveal these natural groupings. In unsupervised learning, the system learns the classes 

on its own. This type of learning does the classification by searching trough common 

properties existing among the data.  

 

There are many ways to acquire knowledge automatically. Decision tree 
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induction [1], has been widely used in extracting knowledge from feature-based 

examples for classification. A decision tree based classification method is a supervised 

learning method that constructs decision trees from a set of examples. The quality of a 

tree depends on both the classification accuracy and the size of the tree. One of the 

most significant developments in this domain is the ID3 algorithm, which is a popular 

and efficient method of making a decision tree for classification from symbolic data 

without much computation.  

ID3 stands for “Iterative Dichotomizer (version) 3,” and is a decision tree 

induction algorithm, developed by Quinlan [3], and later versions including C4.5 [4] 

and C5.0 [5]. In the ID3 approach, we make use of the labeled examples and 

determine how features might be examined in sequence until all the labeled examples 

have been classified correctly. However, in the case of dealing with numerical data, 

ID3 cannot work without further modifications. If the attributes of the training set has 

continuous values, the algorithms must be integrated with a discretization algorithm 

like CART [6] and C4.5, which transforms them into several intervals. How many 

intervals we have to divide and the size of the decision tree is a problem to be solved 

because it will affect the performance of the classification. Another problem is that 

these decision trees are not easy to understand because we cannot know how a range 

of attribute is divided into intervals, and moreover most knowledge associated with 

human’s thinking and perception has imprecision and uncertainty. On the other hand, 

Umano [7] proposed Fuzzy ID3 to generate a fuzzy decision tree from fuzzy sets and 

applied it to diagnosis of potential transformers by analyzing gas in oil.  
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1.2. Motivation 

 

Umano [7] and Janikow [8] have proposed fuzzy ID3 algorithms, which derive a 

modified information evaluation, however, adopt almost the same steps as what is 

done in traditional ID3. It is tightly connected with characteristic features of the ID3 

algorithm and is extended to apply a data set containing continuous attribute values 

instead of symbolic attributes and generates a fuzzy decision tree using fuzzy sets 

defined by a user. To increase comprehensibility and avoid the misclassification due 

to sudden class change near the cut points of attributes, fuzzy ID3 represents attributes 

with linguistic variables and partitions continuous attributes into several fuzzy sets.  

 

The construction of a fuzzy ID3 consists of three main steps: 1) generating the 

root node having the set of all data, 2) generating and testing new nodes to see if they 

are leaf nodes by some criteria, and 3) breaking the non-leaf nodes into branches by 

best selection of features according to feature ranking. For feature ranking, ID3 

algorithm selects the feature based on the maximum information gain, which is 

computed by the probability of training data, but fuzzy ID3 by the degree of 

membership values of the training data. 

 

Fuzzy ID3 is a typical algorithm of fuzzy decision tree induction, and from fuzzy 

ID3, one can extract a set of fuzzy rules, which possess many advantage such as 

simplicity of the rules, moderate computational effort, and easy manipulation of fuzzy 

reasoning. But fuzzy ID3 algorithm can only deal with continuous data and it is often 

criticized to result in poor learning accuracy. 
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In this thesis, we propose an algorithm to generate a fuzzy decision tree, which 

can accept continuous, discrete, or mixed-mode data sets [9], using fuzzy sets and it is 

tuned by genetic algorithm (GA) [10]. We improve the fuzzy ID3 algorithm in both 

the accuracy and the size of the tree through two key steps. First, we optimize the 

thresholds of leaf nodes and the mean and variance of fuzzy numbers involved by GA. 

Second, we prune the rules of the tree by evaluating the effectiveness of the rules, and 

then the reduced tree is retrained by the same GA. We can directly classify any kind 

of attribute included mixed-mode data by our proposed fuzzy ID3 schemes and 

achieves high accuracy rate due to the genetic tuning algorithm. For many famous 

data sets, we compare our proposed method with others to estimate the classification 

accuracy. 

 

For some data sets, the classification accuracy tested by our fuzzy ID3 algorithm 

is not good enough. To improve the learning accuracy, we further use the 

discretization algorithm as a front-end tool to discretize the continuous attributes of 

the data sets. Here, we use the class-attribute interdependence maximization as the 

discretization algorithm [11] to deal with this problem. It helps us improve the 

performance and decrease the number of the fuzzy rules.  

 

1.3. Thesis Outline 

 

The organization of this thesis is structured as follows. Chapter 1 introduces the 

role of machine learning and the motivation of this research is explained. In Chapter 2, 

the attribute types will be described, then we introduce genetic algorithm based fuzzy 

ID3 method for learning problem, and give an example to illustrate the learning 

process. Chapter 3 introduces the class-attribute interdependence maximization 
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algorithm as the front-end tool to discretize the data set for our method. For Chapter 4, 

the experiment of computer simulations on some famous data sets is conducted.  

Finally, conclusion is presented in Chapter 5. 
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Chapter 2. Genetic Algorithm Based Fuzzy ID3 Method 

 

 

2.1.  Introduction to Attributes Learning 

     

Knowledge acquisition from data is very important in knowledge engineering. 

The data sets are characterized by a set of attributes. There are three types of the 

attributes: 

 

1 )  Continuous attributes: Continuous attributes mean that any two values of 

the data can be inserted with another value and it always mean the real 

number. In other words, continuous attributes include infinite values. For 

example, height and weight of human, and scores of exam are continuous 

attributes. 

2 )  Discrete attributes: Discrete attributes are nonnumeric and are unsuitable 

for proximity distance based analysis. For example, a man’s occupation is 

teacher, public servant or engineer that cannot be instead of ordinal 

number here. 

3)   Mix-mode attributes: The attributes include both continuous attributes and 

discrete attributes. 

 

    A popular and efficient method is ID3 algorithm [3]. The ID3 approach to 

classification consists of a procedure for synthesizing an efficient decision tree for 

classifying pattern that has non-numeric feature values. Fuzzy ID3 (FID3) algorithm 

[7], [12] extended from ID3 to incorporate fuzzy notation. The decision tree using 
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fuzzy ID3 algorithm is similar to that of ID3 algorithm. Fuzzy ID3 algorithm is 

extended to apply to a data set containing numeric feature values instead of symbolic 

feature and generates a fuzzy decision tree using fuzzy sets. Our algorithm is designed 

to handle both continuous and discrete attributes. It combines the methods of ID3 and 

fuzzy ID3. In the traditional fuzzy ID3 algorithm, the fuzzy sets of all continuous 

attributes and the threshold values of leaf node condition are user defined. A good 

selection of fuzzy sets and leaf node thresholds would greatly improve the accuracy of 

decision tree. In this thesis, we introduce genetic algorithm (GA) [13] to find out an 

optimal solution of the parameters of fuzzy ID3 algorithm. But the discrete attributes 

are divided into crisp sets, thus they have no membership functions. When deal with 

discrete attributes, our method is similarly to ID3. The details are described in the 

following sections. 

 

2.2.  Feature Ranking 

 

When we start to construct decision tree, we have to choose the order of features. 

The process is called the Feature Ranking problem [7], [14], [15].�We can use any 

arbitrary order of the features, but the order of features to construct decision tree is an 

important issue to be investigated. With a good feature ranking, important features 

will be considered in the higher levels of the tree and can construct a decision tree 

with high accuracy and small size.� The order of features is evaluated using 

information gain [4] here.  

The fundamental premise of information theory [16] is that the generation of 

information can be modeled as a probabilistic process that can be measured in a 

manner that agrees with intuition. In accordance with this supposition, a random event 

E  that occurs with probability )(EP  is said to contain )(log2 EP−  units of 
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information. If 1)( =EP  (that is, the event always occurs), 0)(log2 =− EP  and no 

information is attributed to it. That is because no uncertainty is associated with the 

event, no information would be transferred by communicating that the event has 

occurred. When one of two possible equally likely events occurs, the information 

conveyed by any one of them is )2/1(log2−  or 1 bit. A simple example of such a 

situation is flipping a coin and communicating the result.                                                         

 

Assume that we have a set of training data D , where each data has �  attributes 

  ..., , , 21 lAAA and� one classified class } ..., , ,{ 21 nCCCC =  and fuzzy sets 

  ..., , , 21 imii FFF  for the attribute iA . We assign each example a unit membership 

value. Let kCD  to be a fuzzy subset in D  whose class is kC and D  is the sum of 

the membership values in a fuzzy set of training data D � 

        

The information gain �������  for the i-th attribute iA  by a fuzzy set of 

training data D  is defined by 

      ) ,()() ,( DAEDIDAG ii −= ,                      (2.1) 

where 

 �
=

⋅−=
n

k
kk ppDI

1
2 )log()(                          (2.2) 

������� �
�

���

	

�
�� � ������
���                       (2.3) 

.

 �  D

D kC

,                                    (2.4) 

.
�� �
�

���
	

����

�

�

�

�

����

�

�

�

�

�                                        ..(2.5) 

 

    )(DI  stands for the initial entropy for the system consisting of membership 
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values of D  labeled examples, and ) ,( DAE i  means the entropy of each branch 

according to the feature ��. We will select the feature with maximum information 

gain for constructing the decision tree at root. According to ) ,( DAG i  of features in 

decreasing order, we decide the order of features from the top to the bottom of the 

decision tree. The feature ranking procedure will affect the performance and size of 

the decision tree. 

 

    We will use a training set as example to illustrate the learning process. The 

training set is shown in Table I. The data set contains two continuous attributes which 

are “age” and “income,” and one discrete attribute called “sex.” The classified classes 

are “have car” and “have no car.” The fuzzy sets of the continuous attributes are 

defined by genetic algorithm [13] that will be described in the following section. The 

training set with fuzzy representation based on the membership function is shown in 

Table II. 

  

TABLE I 

EXAMPLES OF TRAINING SET 

ID Class sex age income 

1 have car male 27 700 K 
2 have car male 31 600 K 
3 have no car female 35 500 K 
4 have no car male 28 600 K 
5 have no car female 25 650 K 
6 have car female 33 650 K 
7 have car male 37 560 K 
8 have car female 36 580 K 
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TABLE II 

EXAMPLES WITH FUZZY REPRESENTATION OF TRAINING SET  

sex age income 
ID class 

male female young old low high 
� 

1 have car 1 0 0.882 0.001 0 0.134 1 

2 have car 1 0 0.054 0.094 0.031 0.323 1 
3 have no car 0 1 0 0.822 0.753 0 1 
4 have no car 1 0 0.618 0.004 0.031 0.323 1 
5 have no car 0 1 0.901 0 0 0.969 1 
6 have car 0 1 0.003 0.375 0 0.969 1 
7 have car 1 0 0 0.990 0.440 0.015 1 
8 have car 0 1 0 0.971 0.144 0.088 1 

 

From the theory we discuss above, we have =D 8, ������ ���

�

�

�

� =5 and 

������ �� ���

�

�

�

�=3, we have 

�����
8
3

log
8
3

8
5

log
8
5

22 −−  

        �0.954.  

For “sex,” we have 

�����	���� ��4, �
���� ���

����	���

�

�

�

�

�

�

�3, ����� �� ���

����	���

�

�

�

�

�

�

�1,  

and � ������	���� �0.811; 

�������	���� � �4, �
���� ���

������	���

�

�

�

�

�

�

�2, ����� �� ���

������	���

�

�

�

�

�

�

=2, 

and ���������	���� �1. 

Now we can calculate the entropy of the branch “sex” as 

�������� � 1
8
4

811.0
8
4 ×+×  

                �0.906. 
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For “age,” we have 

=youngageD , 2.458, ������ ���
�����������0.939, ������ �� ���

��������� ��1.519,  

and ������������� �0.960 

�����������3.257, ������ ���

�������
��2.431, ������ �� ���

�������
� �0.826,  

and ����������� �0.817 

We can calculate the entropy of the branch “age” as 

�������� � 817.0
715.5
257.3

960.0
715.5
458.2 ×+× . 

         =0.879.  

For “income,” we have 

������	������ �1.399, ������ ���

����	�����
� �0.615, ������ �� ���

����	�����
� �0.784,  

and �������	������ �0.989; 

������	������� �2.821, ������ � �

����	������
� �1.529, ������ �� ���

����	������
� �1.292,  

and �������	������� �0.9949; 

������	���� �0.995. 

Thus we have the information gain for the attribute “sex” as 

) ,()() ,( DsexEDIDsexG −=  

=0.954�0.906 

=0.048. 

By the same method for “age” and “income,” we have 

�������� �0.075, ������	���� ��0.041.  

 

We will decide the order of features from the top to the bottom of the decision tree 

according to ������� of features in decreasing order. Then the order of features is 

{age, sex, income}. 
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2.3. Tree Construction 

 

Assume that we have a set of training data � , where each data has �  

continuous attributes lAAA  ..., , , 21  and one classified class } ...,  ,{ ,21 nCCCC =  and 

fuzzy sets imii FFF  ..., , , 21  for the attribute iA . We assign each example a unit 

membership value. Let ��
 be a fuzzy subset in � whose class is �
  and ��� is 

the sum of the membership values in a fuzzy set of training data �. An algorithm to 

generate a fuzzy decision tree [1], [8] is shown in the following: 

 

1 ) Generate the root node and that has a set of all data, i.e., a fuzzy set of all 

data point with the unit membership value. 

2 ) If a node !  with a fuzzy set of data � satisfies the following conditions: 

2.1 )  the proportion of a data set of a class �
  is greater than or equal to 

a threshold "�, that is, 

     ���

��
�

�

 � "� ,                                        (2.6) 

2.2 )  the number of a data set is less than a threshold "� , that is, 

. ��� # "�,                                          (2.7)    � � � � � � � � � � � � �

2.3 )  there are no attributes for more classifications, then it is a leaf node, 

and we record the certainties 
���

��
�

�

 with all classes at the node.  

3 ) If it does not satisfy the above conditions, it is not a leaf node, and the 

branch node is generated as follows: 

3.1 ) Divide �  into fuzzy subsets� mDDD  ..., , , 21  according to the 

feature �� which has next large ) ,( DAG i � that will generate son 
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nodes. The membership value of example in �� is the product of 

the membership value in � and the value of ��� of the value of 

�� in �. 

3.2 ) Generate new nodes mttt  ..., , , 21  for fuzzy subsets mDDD  ..., , , 21  

and�label the fuzzy sets� ���  to edges that connect between the nodes 

jt  and t . 

3.3 ) Select the next feature for generating the son nodes by the result of 

feature ranking. 

3.4) Replace � by �� and repeat from step 2 ) recursively until the end 

of all paths are leaf nodes. 

 

Now, we make the first layer of decision tree with the attribute “age” as shown in 

Fig. 2.1. Note that we assign each example a unit membership value first. There are 

two branches “young” and “old” from the root. We continue the construction process 

to produce the full fuzzy decision tree with other attributes until it satisfies the leaf 

node criterions above. For this training data, the fuzzy decision tree is shown in Fig. 

2.2.  
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Fig. 2.1.  The first layer of fuzzy decision tree. 
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Fig. 2.2.  The full fuzzy decision tree of this example.�

 

2.4. Inference of Fuzzy Decision Tree 

 

From the fuzzy decision tree we get from the training data �, we need a method 

to test the classification of training examples or to predict the classification of other 

examples. Note that we have recorded the certainties 
���

��
�

�

�

of each class at leaf 

nodes as mentioned above, and it means the certainty of each class of the 

corresponding rule. The rule produced by each leaf node which can classify the data 

point to each class with the certainty value. Then the inference by fuzzy decision tree 

can be converted into a set of fuzzy rules. For example, the fuzzy rule extracted from 

the leaf node can be described as 
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IF age is young AND sex is female 

THEN have car with certainty 0.004 and have no car with certainty 0.996. 

 

For the fuzzy decision tree, there are one or more membership values between 

root and each leaf node because a continuous attribute value has a membership value 

according to the corresponding membership function. Assume that the fuzzy decision 

tree contains r  leaf nodes, and n  decision class. The steps to classify a data using 

obtained fuzzy rule base are described as follows: 

 

1 ) For each �  (� � �� � ), the certainty of class �  of the leaf node � 

multiplied by the membership values which are on the path �. Sum the � 

terms to get ( )jP  which is the possibility of the class �. 

2 ) Repeat from step 1 ) for each � (� � � � �) such that all the ( )jP  have 

been computed. 

3 ) The example � is assigned to the class which has the maximum value in 

step 2 ). 

 

An illustration is shown in Fig. 2.3, where the 2-th example of Table I is tested 

by the fuzzy rule-base. Thus we can use these 4 rules to classify the 2-th example of 

Table I as follows: 

( )carhaveP   

= 0.054�0�0.004 + 0.054�1�0.031�0.080 + 0.094�0�0.323�1 + 0.094�1�0.996 

= 0.0934, 

( )carnohaveP    

= 0.054�0�0.996 + 0.054�1�0.031�0.920 + 0.094�0�0.323�0 + 0.094�1�0.004 

= 0.002. 
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The ( )carhaveP   is maximum between all the ( )jP , we assign the 2-th example 

to the class “have car.” Note that each rule has influence on the testing, so we use all 

rules to classify an example but not just depend on a single rule.  

 

 

Fig. 2.3.  Inference of the example by fuzzy decision tree.  

 

2.5. The Optimization of FID3 

 

From the description above, the structure of FID3 scheme is determined by the 

thresholds "�� "�, and the membership functions of all the continuous features. A 

good selection of fuzzy rule base, "�� "�, and the membership functions are best 

matched to the database to be processed, would greatly improve the accuracy of the 
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decision tree. To this end, any optimization algorithms seem appropriate for this 

purpose. In particular, genetic algorithm (GA) based scheme is highly recommended 

since a gradient computation for conventional optimization approach is usually not 

feasible for a decision tree. This is because condition-based decision path is nonlinear 

in nature, and hence its gradient is not defined. With this concept in mind, we will 

introduce in this section, genetic algorithm to search best "�� "� , and the 

membership functions of all the continuous features for the design of fuzzy ID3.  

 

GA is an optimization search mechanism based natural selection process. Its 

essential mind is to imitate the criterion “survival of the fittest” of the biology. It can 

choose the last generation which has the better property of the species to exchange bit 

information mutually to hope to generate greater son generation.  

 

The advantage of GA is in their parallelism. GA is considering many individuals 

instead of an individual in a search space. It gets the global optimum rapidly, 

furthermore avoids the chance to fall into the local optimum. 

  

There are several encoding of GA which depends on the problem heavily. The 

most common one is binary encoding which manipulate strings of binary digits (1s 

and 0s) called chromosomes. In this thesis, we use 6-bits to represent a parameter. We 

use GA to tune the thresholds "�� "� , and the parameters of the membership 

functions of feature values. The membership function of each sub-attribute is assumed 

to be Gaussian-type and is given by  

	��� � ����� �$�

���%��
� ,                                (2.8) 

where � is the corresponding feature value of the data point with mean %  and 
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standard deviation $. Thus for each membership function, we have two parameters 

%  and $ to tune. For example, assume we have a data set, which has 4 continuous 

attributes and 3 classes such that there are 12 membership functions. Each 

membership function has 2 parameters and there are 2 thresholds of leaf condition in 

addition. Thus we have 26 parameters to be tuned, and the length of a binary 

chromosome is 156. There are three operators of genetic algorithm which are 

reproduction, crossover, and mutation. We briefly describe how to perform these three 

operators. The flowchart of GA is shown in Fig. 2.4. 
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Fig. 2.4.  Flowchart of genetic algorithm. 

 

Reproduction is a process according to the fitness degree of each individual to 

decide which will be eliminated or copied at next generation, the individual with 

higher fitness value will be copied in a large number; the individual with lower fitness 

value will be eliminated. The potential chromosomes of the population are copied into 

a mating pool depending on their fitness values. The operator is shown in Fig. 2.5.  
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Fig. 2.5.  Reproduction. 

 

To minimize the rule number and maximize the accuracy, let the fitness function  

( ) ( )( )iavgworsti RRAAf +−= 2100100 ,                            (2.9) 

where iA  is the learning accuracy of the individual i , and worstA  is the worst 

learning accuracy of all individuals. avgR  is the average number of the rules of all 

individuals, and iR  is the number of the rules of the individual i .  

 

    Crossover is a process with selecting two potential chromosomes randomly from 

the matching pool, and exchange bit information mutually to produce two new 

individuals. Roughly speaking, it hopes to generate greater filial generation by 

accumulating the superior bit information of parents. An example for crossover is 

shown as Fig. 2.6.  
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Fig. 2.6.  Crossover. 

    Although reproduction and crossover produce many new strings, they do not 

introduce any new information into the population at the bit level. Mutation is 

introduced here, and it is the process that selects randomly string of an individual and 

selects randomly the mutation point to change the bit information of the string. The 

probability of this process is controlled by the mutation probability. For binary string, 

“0” is changed to “1,” and “1” is changed to “0.” The mutation is shown as Fig. 2.7.  

 

 

Fig. 2.7.  Mutation. 

 After the genetic algorithm above, the system will generate two parameters of 

Gaussian-type membership function %  and $, and we get the parameters "� �0.827, 

and "� �0.001 of the criterions for tree construction. The membership functions of 

each continuous attribute for the training set are illustrated in Fig. 2.8.  
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(a) 
 

(b) 

Fig. 2.8.  The membership functions of each attribute for the training set. (a) The 

membership functions of “age.” (b) The membership functions of “income.” 
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2.6. Pruning the Rule Base 

 

We have used the GA to improve the performance of the classification task and 

decrease the rule number as well. Here we propose a rule pruning method to further 

minimize the number of rules as follows: 

 

1 ) Foe each rules, when any data point is classified, we maintain the production 

value of the membership value and the certainty of each class, )(nJ �  

2 ) )(nJ  corresponding to the correct class of the data point gets positive sign 

and the others get negative sign. 

3 ) Sum ... ),2( ),1( JJ for all classes of )(nJ , and then we get the credit of the 

rule to classify this data point. 

4 ) Repeat from 1) until all data points are classified by this rule and we get the 

final credit of this rule. 

5 ) Remove the rules whose final credits are less than certain threshold and/or 

have big drops. 

 

The final credit of each rule computed above represents the effectiveness of the 

rule in performing the classification task. If the rule is essential in classification, then 

it would get high credit value. On the contrary, if the credit is low, for example, less 

than zero, this rule could be an insignificant or redundant rule. The reason is explained 

as follows. The rule that classifies the data to the true class or to the wrong class will 

be cumulatively counted. In this way, we can prune the insignificant or inconsistent 

rules to obtain a smaller and efficient rule base set. After finishing rule pruning, we 

retune the parameters again by GA according to the pruned rule-base constructs.  
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For example, after we getting the credit of each rule of the training set as shown 

in Table I, we sort and plot the total credit of all rules as shown in Fig. 2.9. We find 

that the credit of the 4-th rule is much smaller than others. It suggests that the 4-th rule 

may be bad or redundant rule. Hence we can select a threshold between 0.449 and 

0.015 and remove the redundant rule. The Pruned fuzzy decision tree of the training 

set as shown in Table I is shown in Fig. 2.10. The flowchart of our genetic algorithm 

based fuzz ID3 method is illustrated as Fig. 2.11. 

 

 

�

�

Fig. 2.9.  The credit of each rule. 
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Fig. 2.10.  Fuzzy decision tree after pruning. 
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Fig. 2.11.  Flowchart of genetic algorithm base fuzzy ID3 method. 
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Chapter 3. Classification with CAIM Discretization 

algorithm   

 

 

We use the class-attribute interdependence maximization (CAIM) [11] as a 

front-end tool for our proposed GA based fuzzy ID3 method. CAIM is a process of 

transforming the continuous attributes into a finite number of intervals and associating 

with each interval a discrete value. It helps to reduce the size of the data and improves 

the accuracy and the number of subsequently generated rules. First, it is instructive to 

explain them in detail. 

   

3.1. Introduction to CAIM Discretization algorithm 

 

For continuous attributes, the learning accuracy of fuzzy decision tree is usually 

poor when the number of linguistic terms for attributes is very small. To improve the 

learning accuracy, we can increase the number of linguistic terms for attributes and 

tuning the membership functions of these terms; but it will result in the increase of the 

number of extracted fuzzy rules. Thus an important role to improve the performance 

of our method depends largely on the choice of the number of linguistic terms of 

continuous attributes. We can refer to the discretization algorithm, such as CAIM [11]. 

 

Discretization [17] transforms a continuous attribute’s values into a finite number 

of intervals and associates with each interval a numerical, discrete value. For 

mixed-mode (continuous and discrete) data, discretization is usually performed prior 

to the learning process. Discretization is a two-step process. The first process is to 
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find the number of discrete intervals. Only a few discretization algorithms execute 

this automatically; on the other hand, the user must designate the number of intervals 

or provide a heuristic rule [10]. The second process is to find the width or the 

boundaries of the intervals given the range of values of a continuous attribute. Our 

proposed CAIM algorithm performs both tasks by automatically selecting a number 

of discrete intervals and finding the width of every interval based on the 

interdependency between classes and attribute values at the same time.    

 

The CAIM algorithm not only discretizes an attribute into the small number of 

interval but also make it much easier for the subsequent machine learning task by 

maximizing the class-attribute interdependency. The algorithm does not require user 

supervision since it automatically select proper number of discrete intervals. The 

CAIM algorithm uses class-attribute interdependency as defined in [10]. 

  

3.2. Class-Attribute Interdependent Discretization 

  

The goal of our proposed CAIM algorithm is to find the minimum number of 

discrete intervals and minimum loss of the class-attribute interdependency. The 

algorithm uses the class-attribute interdependency information as the criterion for the 

optimal discretization. We introduce several basic definitions for the criterion. 

 

For a certain classification task, assume that we have a training data set 

consisting of M examples, and that each example belongs to only one of the S classes. 

F indicates any of the continuous attributes from the mixed-mode data. Then, there 

exists a discretization scheme D on F, which discretizes the continuous domain of 

attribute F into n discrete intervals bounded by the pairs of numbers: 
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D:{ ],( ..., ],,( ],,[ 12110 nn dddddd − }                         (3.1) 

where 0d  is the minimal value and nd  is the maximum value of attribute F, and the 

values in (3.1) are organized in ascending order. These values constitute the boundary 

set   } , ,..., , ,{ 121 0 nn ddddd − for the discretization D . 

 

Each value of attribute F can be classified into only one of the n  intervals 

defined in (3.1). With the change of discretization D , the membership value of each 

value within a certain interval for attribute F  may also change. The class variable 

and the discretization variable of attribute F  can be treated as two random variables, 

thus a two-dimensional frequency matrix (called quanta matrix) can be set up as 

shown in Table III. 

 

TABLE III 

QUANTA MATRIX FOR ATTRIBUTE F AND DISCRETIZATION SCHEME D 

Interval 
Class [ ]10  , dd  �  ( ]rr dd  ,1−  �  ( ]nn dd  ,1−  

Class Total 

1C  11q  �  
rq1  �  

nq1  +1M  

�  �  �  �  �  �  �  

iC  1iq  �  
irq  �  

inq  +iM  

�  �  �  �  �  �  �  

SC  1Sq  �  
Srq  �  

Snq  +SM  

Interval Total 1+M  �  
rM +  �  

nM +  M 

 

In Table III, irq  is the total number of continuous values belonging to the thi  

class that are within interval ]  ,( 1- rr dd . +iM  is the total number of object belonging 

to the i-th class and rM +  is the total number of continuous values of attribute F  

that are within the interval ](  ,1 rr dd − , for Si  ..., ,2 ,1=  and nr  ..., ,2 ,1= .  
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3.3. Discretization Criterion 

 

Given the quanta matrix as shown in Table III, the Class-Attribute 

Interdependency Maximization (CAIM) criterion that measures the dependency 

between the class variable C  and the discretization variable D  for attribute is 

defined as:               

          
n
M

FDCCAIM

n

r r

r�
= += 1

2max

  )  ,( , 

where n  is the number of intervals, r  iterates through all intervals, i.e., 

, 2,..., 1,  nr =  rmax  is the maximum value among all irq  values (maximum value 

within the r-th column of the quanta matrix), , 2,..., ,1  Si =  rM +  is the total number 

of continuous values of attribute F  that are within the interval ( ]rr dd ,1− . 

 

The CAIM criterion is a heuristic measure that quantifies the interdependence 

between classes and the discretized attribute. The criterion is independent of the 

number of classes and the number of the continuous attributes. It has the following 

properties: 

 

1 )  The larger the value of CAIM, the higher the correlation between the class 

labels and the discrete intervals. The bigger the number of values 

belonging to class iC  within a particular interval, the higher the 

interdependence between iC  and the interval. The number of values 

belonging to iC  within the interval is the largest, and then iC  is called 

the leading class within the interval. The CAIM criterion accounts for the 

trend of maximizing the number of values belonging to a leading class 

within each interval by using rmax . The value of CAIM grows when 
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values of rmax  grow, which relates to the increase of the 

interdependence between the class labels and the discrete intervals. The 

highest interdependence between the class labels and the discrete intervals 

(and, at the same time, the highest value of CAIM) is achieved when all 

values within a particular interval belong to the same class for all intervals. 

In this case, rr M +=max , and nMCAIM /= . 

 2 )  It takes on real values from the interval ] [0, M , where M  is the number 

of values of the continuous attribute F . 

3 )  The squared rmax  value is divided by the rM +  for the reason: To 

eliminate the negative impact that the values belonging to classes other 

than the class with the maximum number of values within an interval have 

on the discretization scheme. The more such values the bigger the value of 

rM +  will decrease the value of CAIM. 

4 )  Because the criterion favors discretization schemes with smaller number of 

intervals, the summed value is divided by the number of intervals n . 

5 )  The +iM  values from the quanta matrix are not used because they are 

defined as the total number of objects belonging to the i-th class, which    

does not change with different discretization schemes. 

 

The value of the CAIM criterion is calculated with a single pass over the quanta 

matrix. The CAIM criterion maximizes the class-attribute interdependency. 
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3.4. The CAIM Algorithm 

 

The optimal discretization scheme can be found by searching over the space of 

all possible discretization schemes to find the one with the highest value of the CAIM 

criterion. Such a search for a scheme with the globally optimal value of CAIM is 

highly combinatorial and time consuming. Thus, the CAIM algorithm uses greedy 

approach, which finds local maximum values of the criterion for the approximate 

optimal value of the criterion. Although the method does not guarantee finding the 

global maximum, it is computationally efficient and effective finding the 

discretization scheme. The algorithm has these two tasks: 

 

1 )  Initialize the candidate interval boundaries and the initial discretization 

scheme. 

2 )  Constructive additions of a new boundary that results in the locally highest 

value of the CAIM criterion. 

   

The pseudocode of the CAIM algorithm follows.  

 

Given: Data consisting of M  examples, S  classes, and continuous attributes iF . 

For every iF  do:  

Step 1. 

1.1 Find minimum ( 0d ) and maximum ( nd ) values of iF . 

1.2 Form a set of all distinct values of iF  in ascending order, and initialize all 

possible interval boundaries B  with minimum, maximum and all the 

midpoints values of all the adjacent pairs in the set. 

1.3 Set the initial discretization scheme as ]} ,{[: 0 nddD , set GlobalCAIM=0. 
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Step 2.  

2.1 Initialize 1=k . 

2.2 Tentatively add an inner boundary from B  which is not already in D , and 

calculate corresponding CAIM value. 

2.3 After all the tentative additions have been tried, we accept the one with the 

highest value of CAIM. 

2.4 If (CAIM > GlobalCAIM or Sk < ) then update D  with the boundary 

accepted in Step 2.3 and set GlobalCAIM=CAIM, else terminate. 

2.5 Set 1+= kk  and go to Step 2.2 

Output: Discretization scheme D  

 

The CAIM algorithm works in a greedy top-down manner. It starts with a single 

interval that covers all possible values of a continuous attribute and divides it 

iteratively. From all possible division points that are tried (with replacement) in Step 

2.2, it chooses the division boundary that gives the highest value of the CAIM 

criterion. The algorithm assumes that every discretized attribute needs at least number 

of intervals equal to the number of classes because this guarantees the discretized 

attribute that can improve subsequent classification. The CAIM algorithm uses 

trade-off between finding a discretization with the highest possible class-attribute 

interdependency, and a reasonable computational cost. The main advantage of this 

algorithm is that it finds small number of discretization intervals which gives the low 

computational cost, and at the same time high class-attribute interdependency. The 

flowchart of CAIM algorithm is shown in Fig. 3.1. 
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Fig. 3.1.  The CAIM algorithm flowchart. 
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3.5. GA Based Fuzzy ID3 Method With CAIM Algorithm 

    

The algorithm we proposed in Chapter 2 can accept continuous, discrete, or 

mixed-mode data sets. For the continuous attributes, the learning accuracy of fuzzy 

decision tree is sometimes poor when the number of linguistic term for attributes is 

very small. We use the CAIM algorithm as a front-end tool for our method. It 

discretizes the continuous attributes of the training data, and get the discretized data 

set which will replace the original training data for GA based fuzzy ID3 scheme. Fig. 

3.2 gives a schematic description of our system. 

 

 

Fig. 3.2.  Our GA based fuzzy ID3 method with CAIM. 
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We use a training set which is shown in Table I as an example to illustrate the 

processing. There are two continuous attributes “age” and “income” will be 

discretized with CAIM algorithm and two class labels in this example. For the 

attribute “age,” we can find that the maximum value 37 and minimum value 25. Next 

we form a set of all the values of “age” in ascending order, and add all the midpoints 

of all the adjacent pairs in the set. The CAIM algorithm will be used to get the 

discretization scheme. The result is shown in Fig. 3.3. We can find that the continuous 

attribute “age” is discretized into two discrete intervals bounded by the pairs of 

numbers: 

]}37,26( ],26,25{[:D , 

where the value 26 is the only one cut point for this scheme. By the same process for 

another continuous attribute “income,” we have the discretization scheme: 

}(53,70] ],53,50{[:D . 

 

 

Fig. 3.3.  CAIM discretization result. 
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After discretization, we use the new training data for the method as mentioned in 

Chapter 2. With the same processing, feature ranking and tree construction, the 

generated decision tree is shown in Fig. 3.4. From the fuzzy decision tree, we can 

make the rule-base which other examples can be tested by it. The optimization and 

rule base pruning are also used in our proposed system.  

 

 

Fig. 3.4.  Generated fuzzy decision after CAIM discretization. 
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Chapter 4. Simulation and Experiment 

 

 

    As mentioned in Chapter 2, we introduce a fuzzy ID3 algorithm to construct a 

fuzzy classification system whose membership functions and leaf conditions are tuned 

by GA. In this chapter, we apply the algorithm to classify some data sets, which 

include continuous, discrete, and mixed-mode data sets [9], [11]. We also use this 

method with the class-attribute interdependence maximization algorithm to classify 

these data sets and compare the results. This simulation was done on Pentium 4 3.4 G 

personal computers. 

 

4.1. Description of The Data Sets 

 

    The ten well known data sets employed for experiments are obtained from the 

University of California, Irvine, Repository of Machine Learning databases (UCI) 

[18]. We provide brief descriptions of these data sets. 

 

1 ) Crude_oil: Gerrid and Lantz analyzed Crude_oil samples from three 

zones of sandstone. The Crude_oil data set with 56 examples has five 

attributes and three classes named wilhelm, submuilinia, and upper. The 

attributes are vanadium (in percent ash), iron (in percent ash), beryllium 

(in percent ash), saturated hydrocarbons (in percent area), and aromatic 

hydrocarbons (in percent area). 

2 ) Glass Identification Database: The data set represents the problem of 

identifying glass samples taken from the scene of an accident. The 214 

examples were originally collected by B. German of the Home Office 
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Forensic Science Service at Aldermaston, Reading, Berkshire in the UK. 

The nine attributes are all real valued and fully known, representing 

refractive index and the percent weight of oxides such as silicon, sodium, 

and magnesium. The six classes are named as building windows float 

processed, building windows not float processed, vehicle windows float 

processed, containers, tableware, and headlamps 

3 ) Iris Plant Database: The Iris data set, Fisher’s classic test data (Fisher, 

1936), has three classes with four-dimensional data consisting of 150 

examples. The four attributes are: sepal length, sepal width, petal length, 

and petal width. This data set gives good results with almost all classic 

learning methods and has become a sort of benchmark data. 

4 ) Myo_electric: The Myo_electric data set is extracted from a problem in 

discriminating between electrical signals observed at the human skin 

surface. This is a four-dimensional data set consisting of 72 examples 

divided into two classes. 

5 ) Norm4: The data set has 800 examples consisting of 200 examples each 

from the four components of a mixture of four class 4-variate normals. 

6 ) BUPA liver disorders: This UCI data set was donated by R. S. Forsyth. 

The problem is to predict whether or not a male patient has a liver disorder 

based on blood tests and alcohol consumption. There are two classes, six 

continuous attributes, and 345 examples. 

7 ) Promoter Gene Sequences Database: Promoters have a region where a 

protein (RNA polymerase) must make contact and the helical DNA 

sequence must have a valid conformation so that the two pieces of the 

contact region spatially align. The data set with 106 examples has 57 

attributes and two classes. All attributes are discrete. 



 43

 

8 ) StatLog Project Heart Disease dataset: This UCI data set is from the 

Cleveland Clinic Foundation, courtesy of R. Detrano. The problem 

concerns the prediction of the presence or absence of heart disease given 

the results of various medical tests carried out on a patient. There are two 

classes, seven continuous attributes, six discrete attributes, and 270 

examples.  

9 ) Golf: The data set with 28 examples has four attributes and two classes 

named play, and don’t play. There are 2 continuous and 2 discrete 

attributes. The attributes are outlook, temperature, humidity, and windy. 

10) StatLog Project Australian Credit Approval: This credit data originates 

from Quinlan. This file concerns credit card applications. All attribute 

names and values have been changed to meaningless symbols to protect 

confidentiality of the data. The Australian data set with 690 examples has 

14 attributes and two classes. There are 6 continuous and 8 discrete 

attributes. 

 

These characters are described above. In older to clearly summarize the ten data 

sets, we list the properties of them in Table IV and the partial examples of our testing 

data sets are illustrated in Fig. 4.1.    
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TABLE IV   

PROPERTIES OF THE DATA SETS 

Data set # of examples # of attributes 
# of continuous 

attributes 
# of classes 

Crude oil  56  5 5 3 

Glass 214  9 9 6 

Iris 150  4 4 3 

Myo_electric  72  4 4 2 

Norm4 800  4 4 4 

Bupa 345  6 6 2 

Promoters 106 57 0 2 

Heart 270 13 6 2 

Golf  28  4 2 2 

Australian 690 14 6 2 

 

 

 

Fig. 4.1.  The partial examples of the Crude oil. 
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4.2. Simulation and Results 

  

    We use all the data sets to be the training data and the same examples to be the 

testing data for the performance evaluation with our proposed GA based fuzzy ID3 

method. The performance includes the testing accuracy and the number of fuzzy rules. 

We record the accuracy and the number of fuzzy rules after testing. As mentioned in 

Sec. 2.6, we know it is necessary to prune the redundant rules to get an efficient rule 

base both in terms of size and quality, and we proposed a method to prune the rule 

base. On rules that can significantly reduce the learning accuracy in case we remove it. 

We take down the accuracy and the number of fuzzy rules before and after pruning as 

shown in Table V. For classifying Glass data set, we consider only five attributes that 

are Na, Mg, Al, K, Ba according to feature subset select [19]. If we do not reduce the 

attributes of this data set, we will get too many rules after tree construction, but it will 

not help in increasing the learning accuracy. 

 

From Table V, we find that the data sets of Myo_electric, Promoters, Golf, and 

Australian, the accuracy remain the same before and after rule pruning. For these data 

sets, we get less number of rules and remain the training accuracy which is the best 

condition of rule pruning. For the others, there is a little degradation in the accuracy 

and decreasing the rule numbers. This has happened possibly because the rule pruning 

process has removed some rules, which were correctly classifying these data sets and 

the residual rules are not able to correctly classify few examples. We can also see that 

the number of the rules is decreased for all data sets, which shows the effectiveness of 

our rule pruning process. 
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TABLE V 

PERFORMANCE OF THE DATA SETS BEFORE AND AFTER PRUNING 

Before rule pruning After rule pruning 
Data set 

# of rules Training acc. # of rules Training acc. 

Crude_oil 9.0 100.0 7.0 98.2 

Glass 55.0 77.6 23.0 76.2 

Iris 8.0 99.3 6.0 98.7 

Myo_electric 4.0 98.6 2.0 98.6 

Norm4 35.0 96.0 23.0 95.2 

Bupa 11.0 75.7 6.0 74.5 

Promoters 7.0 85.8 4.0 85.8 

Heart 11.0 84.7 9.0 84.1 

Golf 9.0 100.0 6.0 100.0 

Australian 5.0 87.0 3.0 85.6 

 

    

 

We use CAIM algorithm as a front-end tool to discretize these ten data sets. The 

data sets after discretization are used to be the training data and the same examples to 

be the testing data for our proposed GA based fuzzy ID3. By the similar analysis, we 

do the performance evaluation, and record the accuracy and the number of fuzzy rules. 

Next, we use our rule pruning method to decrease the size of rule base. From Table IV, 

we know that the data set Promoters has no continuous attribute, so it is not tested in 

this procedure. The performance with the data sets before and after pruning is shown 

in Table VI. 
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TABLE VI 

PERFORMANCE OF THE DATA SETS WITH CAIM BEFORE AND AFTER 

PRUNING 

Before rule pruning After rule pruning 
Data set 

# of rules Training acc. # of rules Training acc. 

Crude_oil 13.0 100.0 11.0 100.0 

Glass 48.0 79.4 18.0 76.2 

Iris 8.0 98.7 5.0 98.2 

Myo_electric 4.0 98.6 2.0 98.6 

Norm4 37.0 96.4 23.0 95.4 

Bupa 17.0 77.6 15.0 76.2 

Heart 10.0 84.8 8.0 84.4 

Golf 9.0 100.0 7.0 100.0 

Australian 4.0 86.5 3.0 85.2 

 

From Table VI, we find that the data sets of Crude_oil, Myo_electric, Promoters, 

and Golf, the accuracy are the same before and after rule pruning. For the others, there 

is a little reduction in the training accuracy. It also shows the effectiveness of our 

proposed rule pruning method.   
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TABLE VII 

COMPARISON OF THE ACCURACIES BY DIFFERENT PROCESSING 

before pruning After pruning 
Data set 

without CAIM CAIM without CAIM CAIM 

Crude_oil 100.0 100.0 98.2 100.0 
Glass 77.6 79.4 76.2 76.2 
Iris 99.3 98.7 98.7 98.2 

Myo_electric 98.6 98.6 98.6 98.6 
Norm4 96.0 96.4 95.2 96.8 
Bupa 75.7 77.6 74.5 76.2 
Heart 84.7 84.8 84.1 84.4 
Golf 100.0 100.0 100.0 100.0 
Australian 87.0 86.5 85.6 85.2 

RANK (mean) 1.4 1.2 1.4 1.2 

 

 

TABLE VIII 

COMPARISON OF THE NUMBER OF RULES BY DIFFERENT PROCESSING 

before pruning After pruning 
Data set 

without CAIM CAIM without CAIM CAIM 

Crude_oil 9.0 13.0 7.0 11.0 

Glass 55.0 48.0 23.0 18.0 
Iris 8.0 8.0 6.0 5.0 
Myo_electric 4.0 4.0 2.0 2.0 
Norm4 35.0 37.0 23.0 26.0 

Bupa 11.0 17.0 6.0 15.0 

Heart 11.0 10.0 9.0 8.0 
Golf 9.0 9.0 6.0 7.0 

Australian 5.0 4.0 3.0 3.0 
RANK (mean) 1.3 1.3 1.3 1.4 
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We arrange the performances which are shown in Table V and Table VI. Direct 

comparison of results can be seen by looking at the RANK column in Table VII that 

shows the accuracy. Here, we give a rank to the performance of each data set by the 

processing with and without CAIM. In the following tables, a bold face is emphasized 

to the number of the top one, i.e., winner. The last row is the RANK (mean), which is 

defined as the average of all the rank obtained of the data sets above. Table VIII 

shows the classification results in terms of number of generated rules. From Table VII, 

we find that the data sets discretized by CAIM algorithm have the higher RANK in 

both processes before and after pruning. By the comparison of these ten data sets, it 

shows that the CAIM algorithm significantly improves accuracy of the results. In 

Table VIII, the RANK of rule numbers generated with CAIM is smaller than or equal 

to that generated without CAIM. For these data sets, our proposed method with CAIM 

algorithm has not conspicuous improvement of the number of rules.    

 

The performance of the testing accuracy and the number of generated rules by 

our proposed GA based fuzzy ID3 method with or without CAIM algorithm has been 

discussed. So far, we have not evaluated the generalization ability of the testing 

accuracy and the rules extracted by our scheme. Next, we compare our method with 

C5.0 [5]. The reason why we choose C5.0 is a decent version of C4.5 and is the 

state-of-the-art algorithm which works well for many decision-making problems.  

 

We use two-fold cross validation testing which divides the each data set in two 

folds. The instances are randomly divided among the two folds. One of the two folds 

is then trained using our proposed learning algorithm and C5.0. Then the learned 

structure is then tested against the other fold. The same procedure is repeated 

considering the second fold to be the train data and the first fold to be the testing data. 
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Average accuracy and the number of rules are recorded. This procedure is repeated six 

times. Note that, C5.0 whose demonstration version is limited up to 400 examples, 

and free download from Rule Quest Research Data Mining Tools [5]. We use this 

demonstration version of C5.0 as the learning tool.    

 

The comparison of the testing accuracy of our method and that from C5.0 is 

shown in Table IX. It takes down the testing accuracy from two-fold cross validation 

repeated six times on each data set. On average, we find that our rule-base 

outperforms C5.0 in eight out of ten data sets. Thus our system has better 

generalization ability than C5.0 and except for the data sets Glass and Bupa. The 

results of our method and C5.0 are also compared with respect to the average number 

of rules. Table X shows the comparison of the number of rules generated by these two 

methods at the same experiment. We find that our rule-base outperforms C5.0 in five 

out of ten data sets. But, the total average number of the rules on our rule-base is 7.18, 

which less than 8.17 of C5.0. It is evident that our approach tends to produce more 

concise rule sets than C5.0.  

 

Table XI lists the maximum testing accuracy of the six for our rule-base and 

C5.0 in Table IX. It also shows the corresponding number of the rules in the 

experiment. With respect to the testing accuracy shown in Table XI, our rule-base is 

still superior to C5.0 in six data sets and ties one.  
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TABLE IX 

COMPARISON OF THE TESTING ACCURACIES 

Testing acc. (two-fold CV repeated six times) 
Data set Algorithm 

1 2 3 4 5 6 

Avg. 

acc. 

Our rule-base 85.7 87.5 75.0 83.9 73.2 82.1 81.2 

Crude_oil 
C5.0 76.8 78.6 80.4 80.4 76.8 75.0 78.0 

Our rule-base 64.0 66.4 65.4 61.2 64.0 63.1 64.0 
Glass 

C5.0 65.9 67.8 65.0 67.3 66.4 69.6 67.0 

Our rule-base 96.0 93.3 94.7 96.0 95.3 94.0 94.9 

Iris 
C5.0 92.0 94.7 92.0 92.7 91.3 92.7 92.6 

Our rule-base 81.9 93.1 83.3 91.7 91.7 91.7 88.9 

Myo_electric 
C5.0 83.3 90.3 79.2 86.1 93.1 88.9 86.8 

Our rule-base 93.8 94.4 94.4 95.3 94.3 92.5 94.1 

Norm4 
C5.0 89.8 91.3 91.3 90.6 91.8 89.9 90.8 

Our rule-base 60.9 59.7 64.6 64.1 64.4 64.1 63.0 
Bupa 

C5.0 65.8 62.3 65.8 68.7 63.5 64.0 65.0 

Our rule-base 76.4 76.4 68.9 76.4 79.3 75.5 75.5 

Promoters 
C5.0 75.5 74.5 69.8 71.7 78.3 78.3 74.7 

Our rule-base 76.7 80.0 77.4 78.2 78.2 77.0 77.9 

Heart 
C5.0 74.1 77.0 76.3 77.8 79.6 73.3 76.4 

Our rule-base 92.9 67.9 60.7 85.7 82.1 78.6 78.0 

Golf 
C5.0 82.1 71.4 57.1 71.4 78.6 71.4 72.0 

Our rule-base 84.6 84.1 85.5 84.8 84.4 84.4 84.6 

Australian 
C5.0 83.2 84.5 85.4 85.8 84.8 83.1 84.5 
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TABLE X 

COMPARISON OF THE NUMBER OF THE RULES 

# of rules (two-fold CV repeated six times) 
Data set Algorithm 

1 2 3 4 5 6 

Avg. 

rules 

Our rule-base 5.5 5.0 5.5 6.0 5.0 5.5 5.4 
Crude_oil 

C5.0 4.0 4.0 5.0 4.0 4.5 3.0 4.1 

Our rule-base 20.0 12.5 13.0 15.0 16.0 9.0 14.3 
Glass 

C5.0 10.0 9.5 13.5 7.0 9.5 9.0 9.8 

Our rule-base 4.5 3.0 4.5 5.0 5.0 5.0 4.5 
Iris 

C5.0 4.0 3.5 3.0 4.0 3.0 3.0 3.4 

Our rule-base 2.5 2.5 2.5 3.5 2.0 3.5 2.8 

Myo_electric 
C5.0 3.5 3.0 3.5 4.0 3.5 4.0 3.6 

Our rule-base 12.0 9.5 17.0 12.0 13.0 10.0 12.3 

Norm4 
C5.0 14.5 14.5 13.5 12.5 11.5 14.5 13.5 

Our rule-base 5.5 5.0 3.5 7.0 7.0 4.0 5.3 

Bupa 
C5.0 14.0 9.5 17.0 13.0 16.0 11.0 13.4 

Our rule-base 5.0 1.5 3.5 12.5 8.0 8.5 6.5 

Promoters 
C5.0 9.0 7.0 8.5 8.0 5.5 7.5 7.6 

Our rule-base 16.0 9.5 15.0 14.0 7.0 13.5 12.5 
Heart 

C5.0 11.0 12.0 12.5 11.5 12.5 11.5 11.8 

Our rule-base 5.0 3.5 4.5 6.0 5.5 6.5 5.2 
Golf 

C5.0 5.0 4.5 2.5 2.5 3.0 2.5 3.3 

Our rule-base 3.5 3.0 2.5 2.0 3.5 3.5 3.0 

Australian 
C5.0 8.5 10.5 13.5 11.5 14.0 9.0 11.2 
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TABLE XI 

COMPARISON OF THE BEST PERFORMANCE 

Our rule-base C5.0 rule-base 
Data set 

# of rules Testing acc. # of rules Testing acc. 

Crude_oil 5.0 87.5 4.0 80.4 

Glass 12.5 66.4 9.0 69.6 

Iris 4.5 96.0 3.5 94.7 

Myo_electric 2.5 93.1 3.5 93.1 

Norm4 12.0 95.3 11.5 91.8 

Bupa 3.5 64.6 13.0 68.7 

Promoters 8.0 79.3 5.5 78.3 

Heart 9.5 80.0 12.5 79.6 

Golf 5.0 92.9 5.0 82.1 

Australian 2.5 85.5 11.5 85.8 

 

 

From the result shown in Table IX, we find that testing accuracy of the two data 

sets Glass and Bupa by our method is lower than that by C5.0. In order to improve 

this problem, we focus on these two data sets. We observe these data sets and find that 

both of them have continuous attributes and discrete attributes. As mention in Chapter 

3, we introduce CAIM algorithm to discretize continuous attributes. We use CAIM 

algorithm to deal with the data sets Glass and Bupa, and then tested by our scheme. 

Table XII and Table XIII show the performance of our GA based fuzzy ID3 with and 

without CAIM algorithm.   

 

The performances of these two data sets are illustrated in Table XII and Table 

XIII. After testing ten times, the average accuracy of our method with CAIM 

algorithm is superior to that without CAIM algorithm. As demonstrated in the testing, 

the proposed CAIM algorithm is helpful to improve the testing accuracy.   
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TABLE XII 

COMPARISON OF THE ACCURACY BY DIFFERENT PROCESS 

Glass Bupa  

ORIGINAL WITH CAIM ORIGINAL WITH CAIM 

1 65.4 65.9 73.9 74.2 

2 68.7 64.0 72.5 75.1 

3 65.9 65.4 74.2 73.6 

4 61.7 70.6 75.9 74.5 

5 63.0 66.8 73.6 76.8 

6 65.9 62.2 74.8 76.2 

7 70.0 66.4 72.8 74.2 

8 65.9 69.2 76.8 75.0 

9 65.4 64.5 68.7 75.6 

10 66.4 68.2 73.0 74.8 

Avg. acc. 65.8 66.3 73.6 75.0 

 

TABLE XIII 

COMPARISON OF THE ACCURACY BY DIFFERENT PROCESS (TWO-FOLD CV) 

Glass Bupa  

ORIGINAL WITH CAIM ORIGINAL WITH CAIM 

1 61.3 66.4 57.7 66.1 

2 63.1 63.6 66.1 64.9 

3 60.3 65.4 64.3 67.5 

4 64.5 70.1 69.6 59.7 

5 66.4 64.2 64.4 66.7 

6 63.6 62.2 64.1 65.8 

7 64.5 66.4 61.2 64.9 

8 65.4 69.2 65.8 65.2 

9 66.4 65.4 68.4 66.1 

10 65.4 64.0 58.8 64.7 

Avg. acc. 64.1 65.7 64.0 65.2 
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Chapter 5. Conclusion 

 

 

In this thesis, we proposed a genetic algorithm based fuzzy ID3 method to 

construct fuzzy classification system, which can accept continuous, discrete, or 

mixed-mode data sets. Next, we formulated a rule pruning method to obtain a more 

efficient rule base. Our proposed method can directly classify mixed-mode data set 

with high classification accuracy. On testing to some famous data sets, which include 

continuous, discrete, and mixed-mode data sets, we have obtained very high 

classification accuracy with small number of rules. It is remarked that the decision 

tree after pruning can lead to a smaller fuzzy rule base and the pruned rule base can 

usually remain or decrease slightly the classification performance despite the 

deduction of the number of the rules. 

 

Furthermore, we proposed CAIM algorithm to discretize the data sets and tested 

by our GA based fuzzy ID3 method. The performance of the testing accuracy and 

generated rules by our method with CAIM algorithm is better averagely than that 

without CAIM algorithm. On comparing the results generated by our proposed 

method with C5.0, we find that our rule-base outperforms C5.0 in eight out of ten data 

sets except for the data sets Glass and Bupa. To be directed against the two data sets, 

we find that the average testing accuracy of our GA based fuzzy ID3 method with 

CAIM algorithm is superior to that without CAIM algorithm. As demonstrated in the 

testing, the proposed CAIM algorithm is helpful to improve the testing accuracy.    

 

The features employed in this thesis are independent scalar. We will extend our 
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GA based fuzzy ID3 method to a vector format. Computation consuming is another 

task in the field of machine learning, we must try to reduce the computation burden in 

this scheme. These will be a good challenge to study in the future. 
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