
國 立 交 通 大 學

電機與控制工程學系

碩 士 論 文

MPEG-2/4 低複雜度先進音訊編碼演算

法最佳化及在 StrongARM平台上之實現

MPEG-2/4 LOW COMPLEXITY AAC
ENCODER OPTIMIZATION AND

IMPLEMENTATION ON A StrongARM

PLATFORM

研 究 生 : 林映伶

指導教授 : 吳炳飛 教授

中華民國 九十四 年 七 月

MPEG-2/4低複雜度先進音訊編碼演算法

最佳化及在 StrongARM平台上之實現

研 究 生 : 林映伶 Student : Yin-Ling Lin

指導教授 : 吳炳飛 教授 Advisor : Prof. Bing-Fei Wu

國立交通大學

電機與控制工程學系

碩士論文

A Thesis
Submitted to Department of Electrical and Control Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung University

In Partial Fulfillment of the Requirements
For the Degree of Master

In
Electrical and Control Engineering

July 2005
Hsinchu, Taiwan, Republic of China

中華民國 九十四 年 七 月

 i

MPEG-2/4低複雜度先進音訊編碼演算

法最佳化及在 StrongARM平台上之實現

研究生 : 林映伶 指導教授 : 吳炳飛 教授

國立交通大學電機與控制工程學系碩士班

摘要

這篇論文提出一套 AAC 編碼的最佳化演算法以及在 AAC 編碼系統中加入

資料嵌入演算法的應用。最後將這兩套系統實現在一顆 206 MHz的 32位元定點

處理器 StrongARM SA-1110 上。實驗結果顯示，我們所提出的架構在實驗平台

上可執行至少一倍速的壓縮。在 AAC編碼最佳化中，我們移除計算量龐大的長

短窗轉換，簡化 TNS及M/S 立體聲編碼的控制流程，數學函式的簡化運算及較

快速的量化模組，在 MDCT 的實現方式上，也採用了以快速演算法。為了彌補

定點化過程中所產生的誤差，我們加入了頻寬控制及動態精確度的 MDCT 運算

等。最後，為了進一步增加 AAC 檔案的功能性，並在 AAC 編碼系統中加入資

料嵌入的應用。

 ii

MPEG-2/4 LOW COMPLEXITY AAC

ENCODER OPTIMIZATION AND

IMPLEMENTATION ON A StrongARM

PLATFORM

Student : Yin-Ling Lin Advisor : Prof. Bing-Fei Wu

Department of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

In this thesis, we present an optimized AAC encoding scheme and also proposed

a data embedded method integrated into AAC encoding system. Both of them are

finally realized on a 32-bit fixed-point processor, StrongARM SA-1110. Experimental

result shows that at least 1 encoding speed is achieved. In the AAC encoding

algorithm, we propose several approaches including the removal of block switching,

fast MDCT, simplified TNS, simplified M/S stereo coding, mathematical function

optimization and fast quantization. To compensate the error caused by fixed-point

conversion, a bandwidth control and a dynamic data precision MDCT are applied.

Finally, a data embedded method is implemented to further increase its utility.

 iii

ACKNOWLEDGEMENTS

首先，要感謝我的指導教授吳炳飛老師，這兩年來在研究方式及研究態度上

的指導，讓我受益良多。尤其提供了一個資源充足的研究環境，找到我想做的東

西，還有參賽寫書的經驗，都是我在進研究所之前所沒想過的。也許進交大念研

究所並不在我原先一直以為的人生規劃表上，但真的很感恩目前為止經歷過的一

切，很感謝吳老師給我的機會。

此外，最要感謝的是旭哥，不但常在學術研究上給我很多的建議，上班後仍

然很有義氣的帶我們 meeting 到畢業。還有在進入音訊編碼領域幫忙很多的鐵男

學長，教導實現資料嵌入的榮煌學長，在系統上幫忙很多的俊傑，剛進研究所常

載我上下學的螞蟻學姐，及常請大家吃水果的飛鼠學姐。

當然不能不提的是一起八卦、shopping 的好姐妹，元馨學妹，一起吃飯、

玩樂、幫忙搬家的培恭、晏阡及學弟小熊、宗堯，煮咖啡老歌同好重甫學長，還

有幫忙買電腦的子萱學弟，一起做實驗的皓昱學弟。如果沒有你們，我的研究所

生活一定會單調許多吧！

最後，最要感謝的是一直支持著我的父母、姐姐，提供我很好的生活條件，

讓我可以無後顧之憂的專心學業。還有把我像親生女兒一樣照顧的新竹親戚，大

姑姑、和英阿姨。還有許多感謝無法一一列述，謹以這篇論文獻給所有在研究生

涯幫助過我的人，謝謝你們！

林映伶

民國九十四年七月 於新竹

 iv

CONTENTS
ABSTRACT(CHINESE) ..i
ABSTRACT(ENGLISH) ...ii
ACKNOWLEDGEMENTS .. iii
CONTENTS...iv
LIST OF TABLES..vii
LIST OF FIGURES ...vii
CHAPTER 1. Introduction ...1

1.1 Background...1
1.2 Motivation...1
1.3 Innovation ...2
1.4 Content Organization ..2

CHAPTER 2. Psychoacoustic Model..3
2.1 The Absolute Threshold of Hearing..3
2.2 Critical Band ...4
2.3 Masking Effect..6

2.3.1 Simultaneous Masking...6
2.3.2 Temporal Masking ...7

2.4 Psychoacoustic Model ..7
CHAPTER 3. MPEG-2 AAC Algorithm...10

3.1 Overview...10
3.2 Filter Bank and Block Switching..14

3.2.1 MDCT..15
3.2.2 Window Shape ...16
3.2.3 Block Switching...18

3.3 Temporal Noise Shaping...21
3.3.1 Pre-echo Phenomenon ...21
3.3.2 TNS Processing..23

3.4 M/S Stereo Coding..24
3.4.1 Binaural Masking Level Difference...25
3.4.2 M/S Stereo Threshold ..26
3.4.3 L/R and M/S Switching ...28

3.5 Intensity Stereo Coding...28
3.6 Prediction ..29

3.6.1 Predictor Structure ...30
3.6.2 Predictor Control..32

3.7 Quantization..33

 v

3.7.1 Nonuniform Quantization Function...33
3.7.2 Scalefactor Band ..34
3.7.3 Iteration Process...34

3.8 Noiseless Coding ..40
3.8.1 Grouping and Interleaving ...40
3.8.2 Spectral Clipping ...41
3.8.3 Huffman Coding ..42
3.8.4 Sectioning ..43

3.9 Gain Control..44
3.9.1 Polyphase Quadrature Filter ..44
3.9.2 Gain Detector ...44
3.9.3 Gain Modifier...45

3.10 Bitstream Format ...45
CHAPTER 4. MPEG-2/4 LC AAC Encoder Optimization..................48

4.1 Complexity Analysis...48
4.2 Removal of Block Switching..49
4.3 Fast MDCT ...49
4.4 Simplified TNS ...51
4.5 Simplified M/S Stereo Coding..55
4.6 Quantization Optimization..58

4.6.1 Scalefactor Prediction ..60
4.6.2 Simplified QuantizeBand() ..61

4.7 Math Function..62
4.7.1 TNS..62
4.7.2 Quantization...63

CHAPTER 5. Implementation on a StrongARM Processor69
5.1 Implementation Flow...69
5.2 Fixed-point C Code Implementation ..70
5.3 Modify Coding Style...73

CHAPTER 6. Implementation of Data Embedded Method..............74
6.1 The Properties of Data Embedded Method...74
6.2 Implementation of Data Embedded Encoder..76

6.2.1 Embedding Data into High Frequency Range77
6.3 Implementation of Data Embedded Decoder...79

CHAPTER 7. Experimental Results...81
7.1 MPEG-2/4 LC AAC Encoder ..81

7.1.1 Resource Distribution ..81
7.1.2 Resource Requirement Improvement ..82

 vi

7.1.3 Encoding Speed ...83
7.1.4 Quality Evaluation ...84

7.2 Data Embedded Method ..85
7.2.1 Resource Distribution ..85
7.2.2 Encoding Speed and File Size..85
7.2.3 Embedded Data Size ..86
7.2.4 Quality Evaluation ...87

CHAPTER 8. Conclusions and Future Works ..89
8.1 Conclusions..89
8.2 Future Works..90

REFERENCE ...92
APPENDIX A. Advantech PCM-7130 SBC ...97
APPENDIX B. Data Embedded Codec..100

B.1 Package File ...100
B.2 Data Stream Analyzer...103
B.3 Lyrics Analyzer ..104

APPENDIX C. EAQUAL...108

 vii

LIST OF TABLES

Table 2. 1 Critical bands. Fc – center frequency of the critical band5
Table 3. 1 MPEG-2 AAC sampling frequencies and maximum data rates..................10
Table 3. 2 Tools used by three profiles ..14
Table 3. 3 Optimum Coding Methods for Extreme Input Signal Characteristics........23
Table 3. 4 Reset groups of predictors...32
Table 4. 1 Distribution of resources in AAC-LC encoder ...48
Table 4. 2 the percentage of TNS being active ..52
Table 4. 3 Distribution of resources in TNS module (TNS is finally “ON” case).......52
Table 4. 4 Comparisons between original and modified TNS54
Table 4. 5 The percentage that encoder switching to M/S mode55
Table 4. 6 Average iteration loop count of quantizer ...60
Table 4. 7 The distribution of input range of QuantizeBand().....................................61
Table 4. 8 The relationship between x and 1/4b...64
Table 5. 1 Some desired bitrate and corresponding cut-off frequency of bandwidth

control module ...73
Table 6. 1 Classification of the watermarking technique in this thesis........................74
Table 7. 1 Distribution of resources in proposed AAC-LC encoder............................82
Table 7. 2 Comparing the resource requirement with the ISO source code83
Table 7. 3 Encoding speed ...83
Table 7. 4 The objective test results of proposed encoder ...84
Table 7. 5 Resource distribution of the proposed encoder plus data embedded method

..85
Table 7. 6 The resulting file size and encoding speed before and after data embedded

method presented ...86
Table 7. 7 The embedded bits count of different files..86
Table 7. 8 The objective test results of proposed encoder plus data embedded feature

..88
Table B. 1 Parameters of the header in package file..100

 viii

LIST OF FIGURES

Fig. 2. 1 The absolute threshold of hearing ...4
Fig. 2. 2 Idealized critical band filterbank ...5
Fig. 2. 3 An example of simultaneous masking ...6
Fig. 2. 4 Schematic representation of temporal masking effect.....................................7
Fig. 2. 5 Block diagram of psychoacoustic model...9
Fig. 3. 3 Example of window shape switching process ...17
Fig. 3. 5 Pre-echo phenomenon example...22
Fig. 3. 6 Comparisons of input (solid) and coding noise (dashed) spectrum...............24
Fig. 3. 7 Illustration of the situation in which BMLD occurs......................................26
Fig. 3. 8 BMLD protection ratio (bmax)..27
Fig. 3. 9 signal flow of an intensity stereo coding / decoding scheme29
Fig. 3. 10 The second-order backward-prediction lattice structure31
Fig. 3. 11 Block diagram of prediction unit for one scale factor band33
Fig. 3. 12 A simplified block diagram of iteration process..35
Fig. 3. 13 A simplified block diagram of inner iteration loop......................................37
Fig. 3. 14 A simplified block diagram of outer iteration loop......................................40
Fig. 3. 15 Example for short window grouping...40
Fig. 3. 16 Spectral order within one group before interleaving41
Fig. 3. 17 Spectral order after interleaving ..41
Fig. 3. 18 Block Diagram of AAC encoder gain control module45
Fig. 4. 1 Original TNS implementation flow...51
Fig. 4. 2 Modified TNS implementation flow ...53
Fig. 4. 3 Energy ratio of channel pair of the scalefactor band switches to M/S mode 57
Fig. 4. 4 Energy ratio of channel pair of the scalefactor band remains in L/R mode ..57
Fig. 4. 5 The flowchart of the proposed M/S stereo decision scheme58
Fig. 4. 6 The relationship between ABR encoding and single loop quantization........59
Fig. 4. 7 The error magnitude of the approximating QuantizeBand() function62
Fig. 4. 8 The curve of nature logarithm ...66
Fig. 5. 1 Implementation Flow...70
Fig. 5. 2 Dynamic precision FFT calculation in MDCT module71
Fig. 6. 1 The structure of data embedded AAC encoder………………………………...….….. 76
Fig. 6. 2 The structure of package file ...77
Fig. 6. 3 The implementation flow of data embedded method……………………………….89

Fig. 6. 4 The structure of data embedded AAC decoder..79

 ix

Fig. 6. 5 The implementation flow of data embedded decoding process.....................80
Fig. A. 1 The appearance of the Advantech PCM-7130 SBC......................................97
Fig. A. 2 Advantech PCM-7130 SBC ..99
Fig. B. 1 The structure of package file...101
Fig. B. 2 The flowchart of generating package file ...102
Fig. B. 3 The flowchart of data stream analyzer..104
Fig. B. 4 The flowchart of lyrics analyzer ...106
Fig. B. 5 An example of lyrics file format ...107
Fig. C. 1 Block diagram of measurement scheme ...109

 1

CHAPTER 1. Introduction

1.1 Background

With the rapid development of computer science, our life style has been changed

a lot in recent years. Data are digitalized and distributed through Internet, wireless,

and communication. Due to the limited bandwidth or storage space, data compression

has become an important issue. Focusing on audio field, lots of audio codecs have

been proposed in past years. For example, MPEG-1 layer III, generally known as

MP3, has gained its popularity. Though there still has the vagueness of legalization,

one can not deny that digital audio will gradually replace the traditional music market

seems to be an irresistible trend.

1.2 Motivation

We’ve seen the wildly popularity of MP3 format. The request for higher coding

efficiency and multichannel support drives the development of AAC format. As

compared to MP3, AAC provides higher-quality results with smaller file sizes, higher

resolution and multichannel support. AAC proves itself worthy of replacing MP3 as

the new Internet audio standard.

Because of its superior performance and quality, AAC also constitutes the kernel

of MPEG-4 audio and has been adopted in several application areas as Internet

streaming, ISDN music transmission, high definition television (HDTV), satellite and

 2

terrestrial digital audio broadcasting and for audio transmission in third generation

mobile networks (as 3GPP and 3GPP2 for UMTS/CDMA2000). Especially, Apple

Computer, arms with its cool devices and online music store, spares no efforts to

promote AAC format. AAC is gaining its importance in the market.

1.3 Innovation

 Most AAC encoders are restricted to PC-based applications, since it consumes

too much computational resources to implement on portable devices which often

powered by batteries.

In this thesis, we present an optimized AAC encoding algorithm which can be

implemented on power-limited portable systems. An additional functionality of data

embedded technique is also presented. Finally, this proposed AAC encoding algorithm

with data embedding feature is realized with a 206MHz 32-bit RISC CPU, Intel®

StrongARM SA-1110. At least 1X encoding speed is achieved.

1.4 Content Organization

There are 7 chapters in this thesis. Chapter 2 and Chapter 3 briefly explain the

AAC encoding algorithm. Chapter 2 focuses on psychoacoustic model and chapter 3

discusses the remaining modules. Chapter 4 describes our proposed optimization for

MPEG-2 low complexity (LC) profile AAC. Chapter 5 illustrates the implementation

of this modified MPEG-2 LC AAC encoder with Intel® StrongARM SA-1110 RISC

CPU. A data embedded method specific to AAC file is also realized, and this is

described in Chapter 6. The final experimental results can be found in Chapter 7.

Chapter 8 concludes the whole thesis and discusses some future possibilities.

 3

CHAPTER 2. Psychoacoustic Model

Most current audio coders achieve compression by exploiting the fact that

“irrelevant” information is not detectable in general case. Irrelevant information is

identified by incorporating several psychoacoustic principles.

2.1 The Absolute Threshold of Hearing

The absolute threshold of hearing, also called the quiet threshold, can be

described as the amount of energy needed in a pure tone such that it can be detected

by a listener in a noiseless environment. It is well approximated [18] by the nonlinear

function:

)(
1000

105.6
1000

64.3)(
4

3
3.3

1000
6.08.0 2

SPLdBfeffT
f

q ⎟
⎠
⎞

⎜
⎝
⎛+−⎟

⎠
⎞

⎜
⎝
⎛= −

⎟
⎠
⎞

⎜
⎝
⎛ −−−

 (2.1)

It is the representative of a young listener with acute hearing. When)(fTq is

applied to signal compression, it can be interpreted as a maximum allowable energy

level for coding distortions introduced in frequency domain. Fig. 2.1 shows the curve

of the absolute threshold of hearing.

 4

Fig. 2. 1 The absolute threshold of hearing [17]

The sound pressure level (SPL) is a measurement of sound intensity which is

calculated as

Number of decibels = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

0

1
10log10

I
I (2.2)

where,
I0 is the reference intensity,

The most commonly used reference intensity is 10-12 (W/m2) [8].
I1 is the intensity to be measured.

2.2 Critical Band

It turns out that a frequency-to-place transformation takes place in the inner ear,

along the basilar membrane. Distinct regions in the cochlea, each with a set of neural

receptors, are responsible for a limited range of frequencies. This limited frequency

resolution can be expressed in terms of “critical band”. From the experimental sense,

critical bandwidth can be loosely defined as the bandwidth at which subjective

responses change abruptly. Fig. 2.1 shows how critical bands correspond to frequency

 5

domain. Table 2.2 illustrates the nonuniform Hertz spacing of the critical band.

Band
NO.

Fc(Hz) Bandwidth(Hz)
Band
NO.

Fc(Hz) Bandwidth(Hz)

1 50 0-100 14 2150 2000-2320
2 150 100-200 15 2500 2320-2700
3 250 200-300 16 2900 2700-3150
4 350 300-400 17 3400 3150-3700
5 450 400-510 18 4000 3700-4400
6 570 510-630 19 4800 4400-5300
7 700 630-770 20 5800 5300-6400
8 840 770-920 21 7000 6400-7700
9 1000 920-1080 22 8500 7700-9500
10 1170 1080-1270 23 10500 9500-12000
11 1370 1270-1480 24 13500 12000-15500
12 1600 1480-1720
13 1850 1720-2000

Table 2. 1 Critical bands. Fc – center frequency of the critical band [16]

Fig. 2. 2 Idealized critical band filterbank [17]

 6

2.3 Masking Effects

Masking refers to a process where one sound turns out to be inaudible because of

the presence of another sound. There are two types of masking: simultaneous masking

and temporal masking.

2.3.1 Simultaneous Masking

Simultaneous masking occurs in frequency domain, thus it is also called

frequency masking. A simplified explanation of the mechanism is as follows: The

presence of a strong signal (masker) creates an excitation of sufficient strength on the

basilar membrane at the critical band location to effectively block the transmission of

a weaker signal (maskee) [19]. This phenomenon has been observed both within a

single critical band and between critical bands. The latter one is also known as the

spread of masking. Fig. 2.3 gives an example of simultaneous masking with a masker

at 150Hz.

Fig. 2. 3 An example of simultaneous masking [19]

 7

2.3.2 Temporal Masking

Masking effect is also happened in time domain which is called the temporal

masking or nonsimultaneous masking. It is the term describing those situations where

sounds are hidden due to maskers which have just disappeared (this is also called

post-masking), or maskers which are about to appear (this is also called pre-masking).

In the context of audio signal analysis, abrupt signal transients often creates

pre-masking and post-masking regions in time during which a listener will not

perceive signals beneath the elevated audibility thresholds produced by a masker.

Fig. 2. 4 Schematic representation of temporal masking effect [16]

2.4 Psychoacoustic Model

The MPEG audio algorithm compresses the audio data in large part by removing

the acoustically irrelevant parts of the audio signal. Psychoacoustic model (PM)

exploits the masking effect of the human auditory system to calculate maximum

allowable amount of quantization noise. This maximum level is referred to masking

threshold. PM also uses this information along with input signal to decide bit

 8

allocation and block type switching.

The psychoacoustic model used for AAC system is similar to the one used in

MPEG-1 audio [1]. The simplified description of its process is as follows:

1. Performing a 2048-point or 256-point FFT.

2. Using FFT-transformed spectrum to calculate the unpredictability measure.

3. Calculating the threshold (part I) by input signal energy and considering the quiet

threshold.

4. Computing perceptual entropy (PE) to determine which block size (long or short)

to use.

5. Calculating the minimum of masking threshold (part II) of each scalefactor band

(see Section 3.6.2).

6. Calculating the signal-to-mask ratio (SMR) for each scalefactor band, and sending

them to the quantizer.

The outputs from the psychoacoustic model are:

1. A set of signal-to-mask ratios and thresholds.

2. The delayed time domain data (PCM samples), which re-used by the MDCT.

3. The block type for the MDCT.

4. An estimation of how many bits should be used for encoding in addition to the

average bits.

A simplified block diagram of psychoacoustic model is plotted in Fig. 2.5.

 9

Fig. 2. 5 Block diagram of psychoacoustic model [2]

For more details about how psychoacoustic model implements, please see [2].

Delay threshold, blocktype, PE by one block
if (window_sequence(n) == EIGHT_SHORT_SEQUENCE &&

window_sequence(n-1) == ONLY_LONG_SEQUENCE)

window_sequence(n-1) == LONG_START_SEQUENCE;

Calculate threshold (Part II)

Output buffer: block type, threshold, perceptual entropy, time signal

Use short block
N PE > switch_pe ?

Calculate unpredictability measure

Calculate threshold (Part I)

Calculate perceptual entropy (PE)

Calculate threshold (short)

FFT

Delay compensation
for filterbank

Input buffer

Use long block
Y

 10

CHAPTER 3. MPEG-2 AAC Algorithm

3.1 Overview

Started in 1994, the ISO/IEC MPEG-2 advanced audio coding (AAC) system

was designed to provide best audio quality without any restrictions due to

compatibility requirements. It was finalized as an international standard in 1997 April

(ISO/IEC 13818-7). The MPEG-2 AAC scheme also constitutes the kernel of the

MPEG-4 audio standard. All profiles (will be introduced later) defined in MPEG-2

AAC also appear in MPEG-4 standard.

AAC can include 48 full-bandwidth audio channels in one stream plus 15 low

frequency enhancement (LFE, limited to 120 Hz) channels. The sampling rates

supported by the AAC system vary from 8 to 96 kHz, as shown in Table 3.1.

Sampling Frequency (Hz) Maximum Bitrate Per Channel (kbit/s)

96000 576
88200 329.2
64000 384
48000 288
44100 264.6
32000 192
24000 144
22050 132
16000 96
12000 72
11025 66.25
 8000 48

Table 3. 1 MPEG-2 AAC sampling frequencies and maximum data rates

 11

The basic structure of the MPEG-2 AAC system is shown in Fig. 3.1 and Fig. 3.2.

We can briefly describe the AAC encoder process as follows. First, a filter bank is

used to decompose the input signal into spectral components. Based on the input

signal, an estimate of current signal-to-mask ratio is computed by psychoacoustic

model, which will be utilized in quantization stage in order to minimize the audible

distortion.

After the analysis filter bank, the TNS technique permits the encoder to exercise

control over the temporal fine structure of quantization noise. For multichannel

signals, intensity stereo coding and M/S (M as in middle, S as in side) stereo coding

are used to reduce irrelevancies and redundancies. The former allows for a reduction

in the spatial information, the latter transmits the normalized sum and difference

signals instead of the left and right signals.

The time-domain prediction tool further increases the redundancy reduction of

stationary signals. Next, in the quantizer, the spectral components are quantized and

coded with the aim of keeping the quantization noise below the masked threshold.

Finally, all quantized and coded spectral coefficients and control parameters are

assembled to form the target AAC bit stream.

 12

Input Time Signal

Perceptual
Model

Gain
Control

Filter
Bank

TNS

Intensity /
Coupling

Prediction

M / S

Scale
Factors

Quantizer

Noiseless
Coding

Rate / Distortion
Control Process

Bitstream
Formatter

13818-7
Coded
Audio
Stream

Legend

Data
Control

Iteration Loops

Quantized
Spectrum
of Previous
Frame

Fig. 3. 1 MPEG-2 AAC encoder block diagram

 13

Gain
Control

Filter
Bank

TNS

Intensity /
Coupling

Prediction

M / S

Scale
Factors

Inverse
Quantizer

Noiseless
Decoding

Bitstream
De-
Formatter

13818-7
Coded
Audio
Stream

Legend

Data
Control

Output
Time
Signal

Fig. 3. 2 MPEG-2 AAC decoder block diagram

 14

 In order to allow a tradeoff among the quality, the memory and processing power

requirements, the AAC system offers three profiles: main profile, low-complexity (LC)

profile, and scalable sampling rate (SSR) profile.

 Main profile: In this configuration the AAC system provides the best audio

quality at the given data rate. All AAC tools are applied except for gain control

tool. Thus, it requires most computing power and memory usage.

 Low-complexity (LC) profile: The prediction tool and gain control tool are not

employed and TNS order is limited in this configuration. Comparing to main

profile, this reduces processing power and memory requirements.

 Scalable sampling rate (SSR) profile: Gain control tool is used only in this

configuration. However, the prediction module is excluded and TNS order and

bandwidth are limited. SSR profile provides the lowest complexity and a

frequency scalable capability.

Table 3.2 describes the tools used by three profiles.

Tool Name Main Profile LC Profile SSR Profile
Gain Control ╳ ╳ ○
Filter Bank ○ ○ ○
TNS ○ ○* ○*
Intensity/Coupling ○ ○ ╳
Prediction ○ ╳ ╳
M/S ○ ○ ○
Quantizer ○ ○ ○
Noiseless Coding ○ ○ ○

Table 3. 2 Tools used by three profiles
* presented but limited

 15

3.2 Filter Bank and Block Switching

Filter bank is a fundamental component of MPEG-2 AAC system that transforms

the time-domain input signals into a time-frequency representation. This conversion is

done by a forward modified discrete cosine transform (MDCT) in the encoder.

3.2.1 MDCT

The modified discrete cosine transform (MDCT) is a Fourier-related transform

based on the type-IV discrete cosine transform (DCT-IV), with the additional property

of being lapped. This overlapping, in addition to the energy-compaction quality of the

DCT, makes the MDCT especially attractive for signal compression applications,

since it helps to avoid artifacts stemming from the block boundaries.

In AAC system, the filterbank takes the appropriate block of input samples,

modulates them by an appropriate window function, and performs the MDCT. Each

block of input samples is overlapped by 50% with the immediately preceding block

and the following block.

The expression for the MDCT is

∑
−

=

++=
1

0
0)]

2
1)((2cos[)(2)(

N

n
ini knn

N
nxkX π , for

2
0 Nk <≤ , (3.1)

where

inx = windowed input sequence,
n = sample index,
k = spectral coefficient index,
i = block index,
N = window length of the one transform window based on the window_sequence value,

0n = (N/2 + 1) / 2,

 16

3.2.2 Window Shape

The frequency selectivity of an MDCT filter bank is dependent on the window

function. A window function commonly used in audio coding is the sine window. This

window produces a filter bank with good separation of nearby spectral components.

Another window function provided in AAC system is the Kaiser-Bessel derived

(KBD) window which allows optimization of the transition bandwidth and the

ultimate rejection of the filter bank.

Sine window coefficients are given as follows:

))
2
1(sin()(,_ += n

N
nW NLEFTSIN

π
 2

0 Nnfor <≤ (3.2)

))
2
1(sin()(,_ += n

N
nW NRIGHTSIN

π
 NnNfor <≤

2 (3.3)

Kaiser-Bessel derived window coefficients are given as follows:

∑
∑

=

==
2
0

0
,_

)],('[

)],('[
)(N

p

n

p
NLEFTKBD

pW

nW
nW

α

α
 2

0 Nnfor <≤ (3.4)

∑
∑

=

−

==
2
0

0
,_

)],('[

)],('[
)(N

p

nN

p
NRIGHTKBD

pW

nW
nW

α

α
 NnNfor <≤

2 (3.5)

where

'W , Kaiser-Bessel kernel window function is defined as follows:

[]πα

πα

α
0

2

0

4

40.1

),('
I

N

Nn
I

nW
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−

=
2

0 Nnfor ≤≤ (3.6)

 17

[]

2

0
0 !

2∑
∞

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

=
k

k

k

x

xI (3.7)

α = kernel window alpha factor,
⎪⎩

⎪
⎨
⎧

=

=
=

256,6

2048,4

Nfor

Nfor
α

The AAC system allows seamless switching between KBD and sine windows.

Perfect reconstruction is preserved in the filter bank during window shape changes.

Fig. 3.3 shows the window shape switching process. The sequence of windows

labeled A-B-C employs the KBD window, whereas the sequence D-E-F shows the

transition to and from a single frame employing the sine window.

Fig. 3. 3 Example of window shape switching process [1]

 18

3.2.3 Block Switching

To adapt the time-frequency resolution of the filter bank to the characteristics of

the input signal, AAC system provides two kinds of transformation lengths: the long

transformation with 2048 samples is termed a “long” sequence, while the short

transformation occur in groups called “short” sequence. The short sequence is

composed of eight short block transforms, and each with 256 samples.

This block switching, however, potentially creates a problem of block synchrony

between the different channels being coded. To maintain block alignment and to

preserve the time-domain aliasing cancellation properties of MDCT and IMDCT, a

“start” and “stop” bridge window is used during transitions. Fig. 3.4 shows the

window overlap-add process appropriate for both steady-state and transient

conditions[1].

Fig. 3. 4 Comparison of window overlap-add processes for steady-state and
transient conditions

 19

According to the window_sequence and window_shape element, different

transformation windows are used. All possible combinations are described as follows:

Let N = window length, we have:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
=
=
=

2048,__
2048,__
2048,__
2048,__

_

NSEQUENCESTOPLONG
NSEQUENCESHORTEIGHT
NSEQUENCESTARTLONG
NSEQUENCELONGONLY

sequencewindow

⎩
⎨
⎧

windowines
windowKBD

shapewindow _

a) ONLY_LONG_SEQUENCE

 window_shape = = KBD window

⎩
⎨
⎧

<≤
<≤

=
20481024),(

10240),(
)(

2048,_

2048,

nfornW
nfornW

nW
RIGHTKBD

LEFT

 window_shape = = sine window

⎩
⎨
⎧

<≤
<≤

=
20481024),(

10240),(
)(

2048,_

2048,

nfornW
nfornW

nW
RIGHTSIN

LEFT

b) LONG_START_SEQUENCE

 window_shape = = KBD window

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤
<≤−+
<≤

<≤

=

20481600,0.0
16001472),1472128(
14721024,0.1

10240),(

)(
256,_

2048,

nfor
nfornW
nfor

nfornW

nW
RIGHTKBD

LEFT

 window_shape = = sine window

 20

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤
<≤−+
<≤

<≤

=

20481600,0.0
16001472),1472128(
14721024,0.1

10240),(

)(
256,_

2048,

nfor
nfornW
nfor

nfornW

nW
RIGHTSIN

LEFT

c) EIGHT_SHORT_SEQUENCE

The total length of the window_sequence together with leading and following zeros is
2048-bit. Each of the eight short blocks are windowed separately first. The short
block number is indexed with the variable j = 0,1,…,7.

 window_shape = = KBD window

⎩
⎨
⎧

<≤
<≤

=
256128),(

1280),(
)(

256,_

256,
0 nfornW

nfornW
nW

RIGHTKBD

LEFT

⎩
⎨
⎧

<≤
<≤

=− 256128),(
1280),(

)(
256,_

256,_
71 nfornW

nfornW
nW

RIGHTKBD

LEFTKBD

 window_shape = = sine window

⎩
⎨
⎧

<≤
<≤

=
256128),(

1280),(
)(

256,_

256,
0 nfornW

nfornW
nW

RIGHTSIN

LEFT

⎩
⎨
⎧

<≤
<≤

=− 256128),(
1280),(

)(
256,_

256,_
71 nfornW

nfornW
nW

RIGHTSIN

LEFTSIN

d) LONG_STOP_SEQUENCE

 window_shape = = KBD window

 21

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤
<≤
<≤−

<≤

=

20481024),(
1024576,0.1
576448),448(

4480,0.0

)(

2048,_

256,

nfornW
nfor
nfornW

nfor

nW

RIGHTKBD

LEFT

 window_shape = = sine window

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤
<≤
<≤−

<≤

=

20481024),(
1024576,0.1
576448),448(

4480,0.0

)(

2048,_

256,

nfornW
nfor
nfornW

nfor

nW

RIGHTKBD

LEFT

3.3 Temporal Noise Shaping

The handling of transient and pitched input signal has always been a challenge of

today’s audio coding, which is due to the so called “pre-echo” phenomenon.

3.3.1 Pre-echo Phenomenon

In psychoacoustic model, we exploit the perceptual effect of simultaneous

masking (see Chapter 2). However, from Fig. 2.4, we observed that pre-masking, in

the order of 2-5 ms, is much shorter than post-masking. At the same time, to achieve

perceptually transparent coding quality, quantization noise must not exceed the

time-dependent masking threshold.

This requirement is not easy to meet for perceptual coders. Because quantizing

and coding in frequency domain implies that the quantization error introduced in this

domain will be spread out in time domain after reconstruction. Assuming sampling

rate is 44.1 kHz, AAC system performs 2048-point MDCT which means the

 22

quantization noise can be spread out over a period of more than 46 ms. In particular, if

quantization noise is spread out before the onsets of the signal and in extreme cases

may even exceed the original signal in level during certain time. Fig. 3.5 gives a

pre-echo phenomenon example.

Fig. 3. 5 Pre-echo phenomenon example[39]

Some traditional techniques have been proposed to avoid pre-echo phenomenon,

including bit reservoir, gain control and adaptive window switching. Here, AAC

provides a new powerful tool called temporal noise shaping (TNS) to further exercise

control over the temporal fine structure of the quantization noise even within a filter

bank window.

 23

3.3.2 TNS Processing

The basic concept of TNS can be outlined as follows:

 Time-frequency duality considerations:

It is well known that signals with an “unflat” spectrum can be coded efficiently

either by directly coding spectral values or by applying predictive coding methods to

the time domain signal [3]. According to duality between frequency and time domain,

we can say that signals with an “unflat” time structure, that is, transient signals can be

coded efficiently either by directly coding time-domain signals or by applying

predictive coding methods to the spectral values. Table 3.3 summarizes this concept.

Input Signal Optimum Coding
Time Domain Freq. Domain Direct Coding Predictive Coding

Coding of
spectral data

Prediction in
time domain

Coding of
time domain data

Prediction in
frequency domain

Table 3. 3 Optimum Coding Methods for Extreme Input Signal Characteristics [4]

 Noise shaping by predictive coding:

Although both open-loop and close-loop predictive coding techniques can be

employed to provide coding gain, the distribution of quantization error in the final

decoded signal are different. If a close-loop prediction scheme is used the error

 24

introduced in the final decoded signal has a “flat” power spectral density (PSD).

However, if an open-loop prediction scheme is used, the PSD of its quantization error

is known to adapt to the PSD of the input signal. This effectively puts the quantization

noise under the actual signal and therefore avoids problems of temporal masking in

either transient or pitched signals. Fig. 3.6 shows this concept of DPCM coding. For

more details, please refer to [3].

Fig. 3. 6 Comparisons of input (solid) and coding noise (dashed) spectrum [3]

This type of linear prediction coding of spectral data is referred to as the TNS

method.

3.4 M/S Stereo Coding

AAC system includes two techniques for stereo coding of signals – mid/side

(M/S) stereo coding (also known as sum-difference coding) and intensity stereo

coding. Both stereo coding strategies can be combined by applying them to different

 25

frequency regions.

Middle/Side (M/S) stereo coding primarily has two effects: one is to control the

imaging of coding noise, as compared to the imaging of the original signal. In

particular, this technique is capable of addressing the issue of binaural masking level

difference (BMLD). The other is simply to reduce interchannel redundancies.

3.4.1 Binaural Masking Level Difference

The masking threshold of a signal can sometimes be markedly lower down when

listening by two ears than when listening by only one. Considering the situation

shown in Fig. 3.7(a). White noise from the same noise generator is fed into both ears

via headphones. Pure tones, also from the same signal generator, are fed separately

into each ear and mixed with the noise. Thus the total signals in two ears are identical.

Assuming that the level of the tone is adjusted until it is masked by the noise, i.e. it is

at its masking threshold, and let this level be L0 dB. Now that we invert the tone

signal at only one ear, i.e. the phase of the tone signal is shifted by 180°, as shown in

Fig. 3.7(b). The result is that the tone becomes audible again. The tone can be

adjusted to a new level, Lπ, and it is again its masking threshold. The difference

between the two levels, L0 － Lπ (dB), is known as a binaural masking level

difference (BMLD).

 26

Fig. 3. 7 Illustration of the situation in which BMLD occurs [8]

BMLD value may be as large as 15 dB at low frequencies (around 500 Hz),

decreasing to 2 dB for frequencies above 1500 Hz.

This phenomenon is not limited to pure tones. Similar effects have been

observed for complex tones, transient and pitched signals. Our ability to detect and

identify the signals depends on the phase of the signal and noise presented (or lack of

correlation in the case of noise).

3.4.2 M/S Stereo Threshold

Due to the BMLD phenomenon stated previously, to prevent stereo unmasking,

M and S, left and right thresholds are again calculated:

 27

()

()

()

() ⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ ×=

⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ ×=

=

⎟
⎠
⎞⎜

⎝
⎛ ××=

⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ ××=

=>

=
−

MengybMthrSthrtSthr

SengybSthrMthrtMthr

RthrLthrt

LengybLthrtLthrLfthr

engyRbRthrtRthrRfthr

tttif

SthrMthrt

max,min,max,min

max,min,max,min

,min

max,min,max

max,min,max

)1(

/
1

where,
Mthr, Sthr, Rthr, Lthr are thresholds of M, S, right and left channel.
Mengy, Sengy, Rengy, Lengy are spread energy of M, S, R, L channel.
Mfthr, Sfthr, Rfthr, Lfthr are final thresholds
bmax represents BMLD protection ratio, as can be calculated from

()
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+−

= 5.15
5.15),(mincos5.05.03

10)max(
bbval

bb
π

 (3.8)

where, bval(b): median bark value of bth partition.

Fig. 3. 8 BMLD protection ratio (bmax) [6]

 28

3.4.3 L/R and M/S Switching

If the difference between THRl and THRr is less than 2 dB, and the bits required

is fewer than L/R mode, the coder will switch to M/S mode, i.e. the left signal for that

given band of frequencies is replaced by
2

RLM +
= and the right signal is replaced

by
2

RLS −
= .

3.5 Intensity Stereo Coding

Intensity stereo coding exploits the fact that the human perception of high

frequencies components relies on the analysis of the energy–time envelopes [7][8] to

increase the reduction of irrelevancy at high frequencies. This is done based on the

channel-pair concept as used for M/S stereo, the following explanation will use L/R

pair for convenience. Instead of transmitting both left and right channel signals, a

single representing signal plus directional information will be transmitted only. Thus,

the reconstructed signals for the left and right channel consist of differently scaled

versions of the same transmitted signals which have different amplitudes but have the

same phase information. The energy-time envelope is preserved by means of the

scaling operation; however, due to the loss of phase information, the waveform of the

original signal is generally not preserved. The directional information, is_position, is

computed as:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

][
][

log2][_ 2 sfbE
sfbE

NINTsfbpositionis
r

l (3.9)

Next, the intensity signal spectral coefficients speci[i] are calculated for each

 29

scalefactor bands (see section 3.6.2) by adding spectral samples from the left and right

channel (specl[i] and specr[i]) and rescaling the resulting values like

][
][

])[][(][
sfbE
sfbE

ispecispecispec
s

l
rli ×+= (3.10)

where
sfb is the index of scalefactor band,
NINT means “nearest integer”,
El, Er, Es represent the energy of left, right and sum channel. The sum channel is

calculated by summing the squared spectral coefficients.

The signal flow of an intensity stereo coding / decoding scheme is shown in the

Fig. 3.9.

Fig. 3. 9 signal flow of an intensity stereo coding / decoding scheme [14]

3.6 Prediction

Prediction is used for an improved redundancy reduction and is especially

effective if the signal is more or less stationary. Since a window sequence of type

EIGHT_SHORT_SEQUENCE indicates signal changes, i.e. non-stationary signal

 30

characteristics, prediction is used only for long window. There is one corresponding

predictor for each spectral component, resulting in a bank of predictors.

3.6.1 Predictor Structure

Backward-adaptive predictors are adopted in AAC system. The predictor

coefficients are calculated from preceding quantized spectral components in the

encoder as well as in the decoder. Thus, no additional side information is needed for

the transmission of predictor coefficients. A second-order backward-adaptive lattice

structure predictor is used for each spectral component, so that each predictor is

working on the spectral component values of the two preceding frames.

Due to the realization in a lattice structure, the predictor contains two basic

elements that are cascaded. The overall estimate results in

)()()(2,1, nxnxnx estestest += (3.11)

In each element, the part 2,1),(, =mnx mest , of the estimate is calculated

according to:

)1()()(1, −×××= − nrankbnx mmmest (3.12)

where backward prediction error at stage m,)(nrm , is calculated as:

)()()1()(11 nenkbnrnr mmmm −− ××−−= (3.13)

and forward prediction error at stage m,)(nem :

)()()(,1 nxnene mestmm −= − (3.14)

 31

The attenuation factors, a and b are chosen as a = b = 0.953125.

And a least-mean-square (LMS) approach is used here, the prediction coefficients,

mk , are calculated as follows:

()
[])(

)(

)1()(
2
1

)1()(
1

2
1

2

1
2

1
2

1

nVAR
nCOR

ii

ii
nk

m

m

mm

n

i

in

m

n

i
m

in

m

re

re
=

−+

−
=+

−−
=

−

−
=

−
−

∑

∑

α

α
 (3.15)

with

)()1()1()(11 nenrnCORnCOR mmmm −− ×−+−×=α (3.16)

[])()1(
2
1)1()(2

1
2

1 nenrnVARnVAR mmmm −− +−+−×=α (3.17)

where α is an adaptation time constant which determines the influence of the

current sample on the estimate of the expected values. The value of α is chosen to

be 0.90625.

More explanations can be found in [9][10]. Fig. 3.10 shows the second-order

backward-prediction lattice structure.

Fig. 3. 10 The second-order backward-prediction lattice structure [1]

 32

3.6.2 Predictor Control

A predictor control is required to guarantee that there is a prediction gain. The

decision, whether the predictor is on or off, is made in the unit of one scalefactor band

(see Section 3.6.2). Two considerations are taken into account - First, if prediction

gives a prediction gain in that scalefactor band, and all predictors belonged switch on

or off accordingly. Second, whether the overall coding gain of current frame

compensates at least the additional bits needed for the prediction side information.

Prediction is activated only if the above two conditions are met. In order to increase

the stability of the predictors, a cyclic reset mechanism is applied, in which all

predictors are initialized in a certain time interval. The whole set of predictors are

subdivided, in an interleaving way, into 30 so-called reset groups.

Reset Group Number Predictors of Reset Group
1 P0, P30, P60, P90, ….
2 P1, P31, P61, P91, ….
3 P2, P32, P62, P92, ….

…. ….
30 P29, P59, P89, P119, ⋯

Table 3. 4 Reset groups of predictors [2]

Fig. 3.11 shows the block diagram of the prediction unit for one single predictor

of the predictor bank. P – predictor ; Q – quantizer ; REC – reconstruction of last

quantized value. For more detailed description of the principles can be found in [11].

 33

Fig. 3. 11 Block diagram of prediction unit for one scale factor band [2]

3.7 Quantization

The primary goal of quantization is to quantize spectral data in such a way that

the quantization noise fulfills the demands of the psychoacoustic model, and at the

same time, the bits required must also be below a certain limit, normally the average

number of bits available for a block of audio data.

3.7.1 Nonuniform Quantization Function

The nonuniform quantizer used in AAC is shown as follow:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⎥
⎦

⎤
⎢
⎣

⎡
=

−
NUMBERMAGIC

ixr
quantx

rscalefactocommonrscalefacto
_

2

)(
int_

75.0

4 _
 (3.18)

where MAGIC_NUMBER is defined to 0.4054, and scalefactor will be described in

 34

Section 3.6.2.

The main advantage of nonuniform quantizer is the implicit noise shaping

depending on the coefficient amplitudes. Its increasing signal-to-error ratio (SNR)

with rising signal energy is much lower than that in a linear quantizer.

3.7.2 Scalefactor Band

Noise shaping in quantization process is done by using scalefactors. For this

purpose, spectrum is divided into several (depending on sampling rates) scalefactor

bands which is very similar to the critical bands of human auditory system. Each

scalefactor band has a scalefactor that represents a certain gain value. All spectral

coefficients belong to that scalefactor band will be rescaled by their scalefactor. The

noise shaping is therefore achieved because amplified coefficients have larger

amplitudes, and thus obtained a higher SNR after quantization.

3.7.3 Iteration Process

Optimum quantization is done by an iteration process consisting of two nested

loops, an inner loop which is aimed at controlling coding bits required and an outer

loop which is used to shape the quantization noise. The overall iteration process can

be shown as Fig. 3.12.

 35

Fig. 3. 12 A simplified block diagram of iteration process

BEGIN

Calculation of number
of available bits

Reset of iteration variables

All spectral values zero?

Outer Iteration Loop

Calculate the number
of unused bits

RETURN

yes

no

 36

3.7.3.1 Inner Iteration Loop

The task of inner iteration loop is controlling the coding bit required by adjusting

quantizer step size until all spectral data can be encoded with the number of available

bits. If the number of bits needed for encoding is higher than available bits, the

quantizer step size is increased, and the process will repeat until reaching its goal.

Thus, inner iteration loop is also called rate control loop. A simplified processing

description is as follows:

1. At the beginning, the spectral data are quantized by nonuniform quantization

function (3.18).

2. Number of bits required to encode the quantized data is counted.

3. If the number of bits required is higher than the number of available bits, the

quantizer step size is increased, and go back to (1), repeating the whole process.

4. Else, the inner iteration loop is ended.

A simplified block diagram of inner iteration loop is shown in Fig. 3.13.

 37

Fig. 3. 13 A simplified block diagram of inner iteration loop

3.7.3.2 Outer Iteration Loop

The task of outer iteration loop is amplifying the scalefactor bands in such a way

that the demands of the psychoacoustic model are achieved. Thus, outer iteration loop

is also called distortion control loop. A simplified processing description is as follows:

1. At the beginning, no scalefactor is amplified.

2. Inner iteration loop is called.

3. The distortion causes by quantization of every scalefactor band is calculated.

BEGIN

Nonlinear quantizer

Noiseless coding
(count number of bits used)

Number of bits used less than
number of available bits ?

END

yes

no Increase quantizer
step size

 38

4. The actual distortion is compared with the permitted distortion calculated by

psychoacoustic model.

5. If it is the best result so far, store this result, and this process stops. Note that this

iteration process is not always converges.

6. Amplifying the scalefactor band which has a higher distortion than the allowed.

7. If all scalefactor bands have been amplified, this process stops.

8. If the distortions of all scalefactor bands are smaller than permitted, this process

stops.

9. Otherwise, the whole process will repeat.

A simplified block diagram of outer iteration loop is shown in Fig. 3.14.

 39

BEGIN

Inner Iteration Loop

Calculate distortion in all
scalefactor bands

Best result so far?

Amplify sfbs with more
than the allowed distortion

RETURN

yes

no

All sfbs amplified?

At least one band with more
than the allowed distortion?

END

Store best result

Store best result
no

no

yes

yes

 40

Fig. 3. 14 A simplified block diagram of outer iteration loop

3.8 Noiseless Coding

Noiseless coding is used to further reduce the redundancy of scalefactors and the

quantized spectrum. This is done by lossless packing of quantized spectral data

exploiting statistical dependencies and other properties.

3.8.1 Grouping and Interleaving

As for the window sequence of type EIGHT_SHORT_SEQUENCE, there could

be a possibility that some of eight short blocks are very different from the other. For

example, the first three sets are nearly silent in time domain, the next two sets are

actually where the onset event happens, and the final three are the decay of the event.

In such cases, sets of 128 coefficients that have similar statistics are grouped together

and interleaved to form a single spectrum. Fig. 3.15 shows the grouping example

stated above.

Fig. 3. 15 Example for short window grouping

To be specific, assume that before interleaving the spectral coefficients are

 41

indexed as

C[g][w][b][k]

where
g is the index of groups,
w is the index of windows within a group,
b is the index of scalefactor bands within a window,
k is the index of coefficients within a scalefactor band.

After interleaving the coefficients are indexed as

C[g][b][w][k]

This has the advantage of combining the high-frequency zero-valued coefficients (due

to band-limiting) within each group. Fig. 3.16 shows the spectral order within one

group before interleaving, and Fig. 3.17 shows the spectral order after interleaving.

Fig. 3. 16 Spectral order within one group before interleaving

Fig. 3. 17 Spectral order after interleaving

3.8.2 Spectral Clipping

 42

The first step of noiseless coding is a method of dynamic range compression that

may be applied to the spectrum. Up to four coefficients can be coded separately as

magnitudes in excess of one, with a value of ± 1 left in the quantized coefficient

array to carry the sign. The “clipped” coefficients are coded as integer magnitudes and

an offset from the base of the coefficient array to mark their location. This method is

applied only if it results in a net savings of bits.

3.8.3 Huffman Coding

A variable-length Huffman coding is employed to compensate the nonuniform

probability distribution for the levels in quantizer and to represent n-tuples of

quantized coefficients. In the AAC system, Huffman codewords are drawn from one

of 11 codebooks. The maximum absolute value of the quantized coefficients that can

be represented by each Huffman codebook and the number of coefficients in each

n-tuple for each codebook is shown in Table 3.4. There are two codebooks for each

maximum absolute value, with each representing a distinct probability distribution.

The best fit is always chosen.

Codebook Index n-Tuple Size Maximum Absolute Value Signed

0 0
1 4 1 Yes
2 4 1 Yes
3 4 2 No
4 4 2 No
5 2 4 Yes
6 2 4 Yes
7 2 7 No
8 2 7 No
9 2 12 No

 43

10 2 12 No
11 2 16(ESC) No

Note that codebook 0 indicates all coefficients within that scalefactor band are

zero, and codebook 11 can especially represent those who have an absolute value

greater than or equal to 16, and a special escape coding mechanism is used to

represent them. For each coefficient magnitude greater or equal to 16, an escape

sequence is appended, as follows:

escape sequence = <escape_prefix><escape_separator><escape_word>

where
<escape_prefix> is a sequence of N binary “1’s”,
<escape_separator> is a binary “0”,
<escape_word> is an N+4 bit unsigned integer, MSB first and N is a count that is
just large enough so that the magnitude of the quantized coefficient is equal to

><++ wordescapeN _2)4(.

3.8.4 Sectioning

The noiseless coding segments the scalefactor bands into sections. Each section

uses only one Huffman codebook, thus the number of bits needed to represent the full

block is minimized.

Section is dynamic and typically varies block from block. This is done using a

greedy merge algorithm by starting with the maximum possible number of sections

(only one scalefactor band per section). Sections are merged if the resulting merged

section needs lesser number of bits. If the sections to be merged use different

Huffman codebooks, the codebook with higher index is always chosen.

Table 3. 5 Huffman codebooks [4]

 44

3.9 Gain Control

The gain control module is employed only in the SSR profile. It consists of a

polyphase quadrature filter (PQF), gain detectors, and gain modifiers. By neglecting

the signals from the upper bands of PQF, this output bandwidths can be 18, 12, and 6

kHz when one, two, or three PQF outputs are ignored, respectively.

The advantage of this scalability is that the complexity can be reduced as the

output bandwidth is reduced.

3.9.1 Polyphase Quadrature Filter

The PQF splits each audio channel’s input signal into four frequency bands of

equal width. The coefficients of each band’s PQF are given by

30,950),(
16

)52)(12(cos
4
1

≤≤≤≤⎥⎦
⎤

⎢⎣
⎡ ++

= innQnihi
π

 (3.19)

Where,

9548),95()(≤≤−= nnQnQ

The Q(n) is the filter coefficients that are standardized in [2].

3.9.2 Gain Detector

The gain detector produces gain control data including number of bands

receiving gain modification, and the number of modified segments and indices

 45

indicating the location and level of gain modification for each segment. Note that the

gain detector has a one-frame delay.

3.9.3 Gain Modifier

The gain modifier applies gain control to the signal in each PQF band by

windowing the signals of the gain control function. Fig. 3.18 shows the block diagram

of gain control module.

Fig. 3. 18 Block Diagram of AAC encoder gain control module [2]

3.10 Bitstream Format

There are two kinds of transport syntax that have been standardized in AAC:

 46

 Audio Data Interchange Format (ADIF): The audio bitstream contains one

single header with all information necessary to control the decoder. The main

application of ADIF is exchange of audio files.

ADIF block block block block block

 Audio Data Transport Stream (ADTS): The audio bitstream consists of a

sequence of frames with headers similar to MPEG-1 audio frame headers. The

encoded audio data of one frame is always contained between two sync words.

ADTS block ADTS block ADTS block

There are mainly five elements in the bitstream: audio data element, data stream

element (DSE), program configuration element (PCE), fill element (FIL), and

terminator (TERM). Audio data element also consists of four possible elements:

single channel element (SCE), channel pair element (CPE), coupling channel element

(CCE), and low frequency enhancement channel element (LFE).

SCE contains coded data for a single audio channel. CPE contains data for a pair

of channels, and the two channels may share common side information. CCE

represents the information for intensity stereo coding. LFE gives the low frequency

(under 120 Hz) audio data. PCE contains program configuration data, such as profile,

sampling rate, channel information, etc. FIL is used when transporting over a constant

rate channel to adjust instantaneous bitrate. DSE contains any additional data that is

not part of the audio information itself. TERM indicates the end of a raw data block.

Example of possible bitstreams are:

 47

 The syntax of a single channel element (SCE)

 Mono signal

 Stereo signal

 5.1 channel signal

 If the bitstreams are to transmit over a constant rate channel

 If the bitstreams are to carry ancillary data and run over a constant rate channel

 48

CHAPTER 4. MPEG-2/4 LC AAC Encoder

Optimization

Comparing with main profile, low complexity (LC) profile significantly reduces

memory usage and computational effort, but still maintains good quality [1].

Therefore, we choose low complexity profile to implement and this is also the most

commonly used profile.

4.1 Complexity Analysis

Table 4.1 shows the computational demand of a standard AAC LC

implementation from MPEG reference coder:

Module Percentage

Psychoacoustic Model 22%

Filter Bank 5%

Quantization 64%

Others 9%

Table 4. 1 Distribution of resources in AAC-LC encoder [21]

The most demanding module is quantization due to the presence of nested loops.

Psychoacoustic model also takes up to 22% computation effort. Besides these two

critical modules, our optimization covers other modules as well.

 49

4.2 Removal of Block Switching

Modern audio compression algorithm often adopts dynamic block switching to

avoid pre-echoes (see Section 3.3.1). In general, psychoacoustic model decides

whether block type changes or not depending on perceptual entropy. However, the

calculation of perceptual entropy requires lots of computation effort.

A related research [22] shows that encoding without block switching didn’t cause

significant negative effect, TNS module in AAC system also aims at controlling

pre-echo phenomenon which can compensate the lack of block switching. Under these

considerations, we remove the mechanism of block switching. For this, not only the

calculation of perceptual entropy, but also the complexity of block synchrony and

short block related grouping and interleaving algorithm are eliminated.

4.3 Fast MDCT

AAC uses MDCT with 50% overlap in its filterbank module. However, there are

lots of multiply-accumulation operation within this module, thus adopting a fast

algorithm is necessary. According to [20], MDCT can be rewritten as the real part of

odd-time odd-frequency discrete Fourier transform (O2DFT), and finally need only

N/4-point FFT calculation:

Coefficient number k of O2DFT of length N is defined as:

()()
∑
−

=

++−
==

1

0

1212
2

][
2 }{

N

r

rk
N

j

rkN euUuDFTO
k

π

 (4.1)

MDCT can be rewritten as the real part of O2DFT:

 50

{ } ()()

⎭
⎬
⎫

⎩
⎨
⎧

−== ∑
−

=

++−1

0

1212
22)4/(Re)(Re)(

N

r

rk
N

j
eNrxkDFTOkX

π

 (4.2)

[26][20] further presented a fast algorithm for calculating:

()(){ } ()kXNrxoddDFTOW =−= 4/2 (4.3)

as

{ }
{ }

}Im{
}Re{

Im
Re

212

21

22

2

kkN

kkN

kkN

kk

PW
PW

PW
PW

−=
−=

=
=

−−

−−

+
 (4.4)

Where

kNkk jUUP
22

2 +
−=

()()
∑

−

=

++−

+−=
14/

0

222

22/2
2
1

2
1

)(2
N

r

rk
N

j

rNr ejuu
π

 (4.5)

() ()

44444 344444 21
FFTpoN

N

r

rk
N

jr
N

j

r

k
N

j
eeue

int4

14/

0

4/
222

)'(2 8
1

8
1

∑
−

=

−+−+−

⎥
⎦

⎤
⎢
⎣

⎡
=

πππ

rNrr juuu 22/'* +−= (4.6)

Through this process introduced in [26][20], only even indices are calculated

because of the basic symmetries of the O2DFT. Another saving of 50% computation is

calculating two values simultaneously, as shown in (4.5). Finally, only one N/4 point

FFT is needed with some overhead of pre and post rotation of the sample point.

 51

4.4 Simplified TNS

In general, TNS method is the linear prediction performed in frequency domain.

We use the popular Levinson-Durbin recursive procedure to achieve linear predictive

coding (LPC). The TNS prediction order of LC profile is designed to be 12 as

described in [2]. Fig. 4.1 shows the basic TNS implementation flow:

Fig. 4. 1 Original TNS implementation flow

We are curious about how often TNS is active, therefore, the percentage of

whether TNS is finally applied is statistically measured. Table 4.2 shows the result.

TNS filtered data (ON), or
the same as input data (OFF)

N

12th-order Levinson-Durbin Recursion

TNS Filter

Set up prediction

12th-order Autocorrelation

Y
 Gain > TNS Threshold ?

ON OFF

Input data

coefficients

Gain Computation

 52

Test audio sample Active percentage

Violoncello[23] 5.5%

Quartet[23] 19.9%

Soprano[23] 6.7%

Radio[24] 4.3%

Table 4. 2 the percentage of TNS being active

We found that the active percentage is pretty low, however, the prediction gain

has to be computed every time no matter TNS is finally on or off. Generally, the

procedure to obtain prediction gain (including autocorrelation and Levinson-Durbin

recursion blocks) requires as much computing effort as TNS filter, see Table 4.3. If

further taking the active frequency into account, prediction gain computation actually

contributes the most complexity in TNS module. Thus, if we can decide whether TNS

is on or off earlier, that is, before 12th-order LPC has been completed, the complexity

will be reduced.

Block Percentage

Gain Computation 49.5%

TNS Filter 49.5%

Others 1%

Table 4. 3 Distribution of resources in TNS module (TNS is finally “ON” case)

To eliminate this over computation, we propose using 6th order prediction gain to

determine if LPC procedure will go on. Fig. 4.2 shows the modified TNS

implementation flow.

 53

Fig. 4. 2 Modified TNS implementation flow

The matching percentage of this early-deciding mechanism is about 90% in

average. Table 4.4 shows some results.

TNS Filter

Set up prediction

TNS filtered data (ON), or
the same as input data (OFF)

6th-order Levinson-Durbin Recursion

6th-order Autocorrelation

NY
Gain > TNS Threshold ?

ON OFF

Input data

Gain > 6th_order_TNS_Threshold ?

7~12th-order Levinson-Durbin Recursion

7~12th-order Autocorrelation

N

Y

coefficients

 54

Test audio sample Matched(1) Missed(2) Over(3)

Violoncello 90.0% 1.5% 8.5%

Quartet 87.9% 3.0% 9.1%

Soprano 96.3% 0.05% 3.6%

Radio 95.9% 0.4% 3.7%

Table 4. 4 Comparisons between original and modified TNS

(1) Matched – Both 6th-and 12th-order prediction gain made the same decision.
(2) Missed – The TNS filter should be turned on in original case, however, it is set to

be off by mistake in 6th-order LPC stage.
(3) Over – Though TNS filter should finally be turned off, 6th-order LPC wrongly

passes the calculation to 12th order. Note this part doesn’t really cause the
wrong implementation, since the TNS filter will still be turned off in
12th-order LPC stage.

Only the “missed” portion indicates how much that proposed modified TNS

method leads to a different result as comparing to original TNS mechanism. Thus,

from Table 4.4, we can say this modified TNS method has very much the same effect

as the original TNS method, but the computation effort is a lot reduced in the same

time.

The complexity of LPC by Levinson-Durbin approach is generally known as

O(N2), where “N” denotes the prediction order. Therefore, 6th-order LPC has only

one-fourth of complexity as comparing to 12th-order LPC. The computation reduction

in this modified TNS method is achieved only in TNS-inactive frame. From Table 4.2,

roughly 91% frames are originally TNS-inactive. And from Table 4.4, the “over”

portion should be excluded, almost 84% of total frames are benefited from this

modified TNS method. In this way, the computation effort within TNS module can be

 55

reduced to about %5.351%14
4
1%2

4
1%84 =×+×+× missed of the original TNS

method.

4.5 Simplified M/S Stereo Coding

Although the heart of mid/side stereo coding is simply calculating the sum and

difference between two channels, the process to determine whether mid/side stereo

coding should be applied or not requires much more effort. Bit-consuming of both

normal modes (L/R) and M/S mode are calculated and compared. The mode with

fewer bits requirement will be chosen. And the decision is also made scalefactor band

by scalefactor band.

Usually, except the multilingual or 1/+1 case, the data similarity between channel

pair is quite high. We wonder if the decision can be made more easily. Therefore, we

try to investigate how often the encoder decides switching to M/S mode.

Test audio sample M/S mode percentage

Elliott[24] 88.16%

Quartet 88.84%

Devic[24] 95.03%

Sandee[24] 88.34%

Soprano 89.46%

Table 4. 5 The percentage that encoder switching to M/S mode

We found the encoder decides to switch to M/S mode very often, at least 80%

which is shown in Table 4.5, and nearly 90% scalefactor bands of a single frame will

 56

be switched to M/S mode. So we think the decision can be made more easily, and

shouldn’t cause too much overhead. Such as using the energy of the entire frame as

what MPEG-1 layer III does. Also, by observing that the energy ratio of channel pair

of the scalefactor band that switches to M/S mode is often around 1~2, as you can see

in Fig. 4.3, whereas the energy ratio of the scalefactor band that remains in L/R mode

is usually larger, as shown in Fig. 4.4.

Also, since a frame with lower energy is less benefited from M/S stereo coding,

we should save computation for these frames, which usually occurs in the beginning

and the end of the song, or the near silence in the middle of the song.

Thus, the proposed implementation is setting a first threshold_1, when the

average energy of channel pair is below this threshold, M/S stereo mode will be

enabled to the entire frame temporarily. And then, further takes the energy ratio into

consideration, a second threshold_2 is set, when the energy ratio of the entire frame of

channel pair exceeds this threshold, this frame will remain in L/R mode still, even its

energy is quite large that has been set M/S mode enabled in the first stage. The

proposed decision flowchart can be found in Fig. 4.5.

Because the energy of entire frame has been pre-calculated for the use in

quantizaton module, there are only one energy ratio calculation and few comparisons

need to be computed to make the decision.

 57

Fig. 4. 3 Energy ratio of channel pair of the scalefactor band switches to M/S mode

Fig. 4. 4 Energy ratio of channel pair of the scalefactor band remains in L/R mode

 58

The energy ratio is defined as:

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≥
=

LeftEnergyRightEnergy
LeftEnergy

RightEnergy

RightEnergyLeftEnergy
RightEnergy
LeftEnergy

ratioenergy
__,

_
_

__,
_
_

 (4.7)

Fig. 4.5 blow shows the flowchart of the proposed M/S stereo switching decision

scheme.

Fig. 4. 5 The flowchart of the proposed M/S stereo decision scheme

4.6 Quantization Optimization

From Table 4.1, we find that quantization consumes most computation power,

Calculate “energy_ratio” of channel pair

Max(energyL,energyR)
> threshold_1 ?

energy_ratio > threshold_2 ?

L/R mode M/S mode

yes

no

no

yes

Energy_Left Data_Left Energy_Right Data_Right

 59

and this is primarily due to the nested inner and outer loops. We based on FAAC’s[15]

implementation of quantization and further do some modifications.

Our encoder performs an average bit rate (ABR) encoding, in this way, the inner

loop can be simplified to merely Huffman coding without bit rate control. The nested

loops now have only outer loop left. The relationship between ABR encoding and

single loop quantization can be shown as follows:

Fig. 4. 6 The relationship between ABR encoding and single loop quantization

Adjust “quality” according to desired
bitrate and bits used already

Calculate allowed distortion, xmin[sfb], and
it is adjusted by “quality”

BEGIN

Distortion control loop
(Outer loop)

END

Huffman Coding

 60

4.6.1 Scalefactor Prediction

Now our encoder performs single loop quantization, thus the complexity

primarily lies in the distortion control loop. The distortion control is achieved by

adjusting scalefactors of scalefactor bands so that a higher SNR will be obtained. Due

to the usually quasi-stationary property of audio and speech data, it is intuitively to

think of using previous frame’s scalefactor as the initialization of current frame’s

scalefactor. However, to prevent special cases, some thresholds should be set to make

sure when special case occurs, the original initialization will be used instead. If an

unreasonable predicting scalefactor is adopted, more loops may be required to achieve

distortion control. Table 4.6 shows some results of the average loop count of quantizer

before and after scalefactor prediction.

Test audio sample Original Modified

Violoncello 9.22 6.55

Quartet 8.61 6.35

Soprano 8.45 6.80

Radio 7.96 6.57

Bass[23] 8.27 6.45

Table 4. 6 Average iteration loop counts of quantizer

From experimental results, 20% of iteration loop counts can be reduced in

average.

 61

4.6.2 Simplified QuantizeBand()

By statistical measure, we found QuantizeBand()[15] is the most computation

demanding function in quantization module. Over 50% of quantization computing

effort spent in this function. Thus, we should try to do some optimization here.

What QuantizeBand() actually dose is exploiting Takehiro IEEE 754 Hack, a fast

method turning float digits into integer digits, to perform quantization. However, the

vital drawback of this method is that a large amount of memory is needed for audio

fine-tune. Here, a large table of 8192 entries is required. By observation, we find the

relationship between the input and output of QuantizeBand() function is quite simple

and could be much easier to realize. Only a five-entry lookup table and one linear

approximation segment are needed. In average, most inputs of QuantizeBand() are

distributed within the range x ＜ 4.51, see Table 4.7.

Iutput Range Percentage

x ＜ 4.51 99.10%

x ≧ 4.51 0.90%

Table 4. 7 The distribution of input range of QuantizeBand()

 Thus, applying a small lookup table can largely save computation power. Not

only the table size is significantly reduced, the approximating error is also quite small,

as you can see in Fig. 4.7.

 62

Fig. 4. 7 The error magnitude of the approximating QuantizeBand() function

4.7 Math Functions Approximation

There are lots of complicated mathematical calculations in AAC encoding

system which are originally solved by math.h of C Library. However, it is unfeasible

when implementing on some power-limited devices. Thus, a simplified approach to

these math functions is necessary. Some of them may use simply linear approximation,

and some of them can play little tricks to approximate

4.7.1 TNS

When TNS is applied, the reflection coefficients are therefore needed to be

transmitted. However, if we transmit reflection coefficients directly, it would cost too

 63

many bits which is undesirable. Thus, these reflection coefficients will be quantized,

and only index will be transmitted. As we know, the reflection coefficients of LPC

always lie within the interval +1 ~ -1. The quantization is done by a sin-1 function.

iqfackindex n ×= −)(sin(int) 1 (4.8)

where,
2

)]1Re(1[
π

−<<
=

scoeffiqfac (4.9)

From (4.8) and (4.9), index can be rewritten as:

⎥
⎦

⎤
⎢
⎣

⎡
×= −

−
)1Re(

1

2
2

)(sin
(int) scoeffnk

index
π

 (4.10)

⎟
⎠
⎞

⎜
⎝
⎛ ×= − 22

sin__)1Re(

π
scoeffn

indexkquantizedinvert (4.11)

where,
coeffRes = reflection coefficient resolution,
kn = reflection coefficient.

For simplicity and generality, some rounding factor in (4.7) and (4.8) are eliminated.

When the coefficient resolution is defined as a constant, this quantization can be

done by using a 2coeffRes-entries lookup table.

4.7.2 Quantization

Most of those unusual math functions appear in quantization module. And they

especially need a simplified implementation.

 64

 2-0.25x

In the function BalanceEnergy()[15], 2-0.25x is used. Since x is an integer, it

makes this function much easier to approximate.

First, x can be decomposed into (4a + b), thus, 2-0.25x can be rewritten as

bax 4
1

25.0 222 ×=− (4.12)

where a and b are both integers, especially, b is always less than 4.

Therefore, a2 can be implemented by a simple shift. And since b
4
1 can only be

four numbers: 0.0, 0.25, 0.5, and 0.75. If three constants, 20.25, 20.5, and 20.75, are

predefined, and 2-0.25x can thus be easily realized by a shift and a multiplication. In

this way, only small computing effort and small extra memory requirement are

needed.

Now you may wonder how we obtain a and b
4
1 ? First, a = (x >> 2) which is

quite simple. To obtain b
4
1 , let x = (x4 x3 x2 x1 x0)2. Apparently, b is the first LSB and

the second LSB of x:

x = (x4 x3 x2 x1 x0)2 b
4
1

(x4 x3 x2 0 0)2 (0.00)10

(x4 x3 x2 0 1)2 (0.25)10

(x4 x3 x2 10)2 (0.50)10

(x4 x3 x2 11)2 (0.75)10

Table 4. 8 The relationship between x and 1/4b b
4
1

 65

Therefore,
b

4
1

2 can be easily detected by (x & 0x03).

 ln(x)

Natural logarithm is widely used in quantization module. This simplified

approach is basically based on the linear approximation. Thanks to the simple division

and multiplication identities of logarithm, the range needed to be actually

approximated can be narrowed. The “actually” mentioned here, will be explained

later.

To do the linear approximation, we must know what range the input, we say x

here, of logarithm is distributed. It is statistically measured that the range is roughly

from 10-6 to 500. We first perform the linear approximation to the range of 0.5 < x <

5.0 which is divided into 9 segments. And this range is what we mean

“actually-approximated” range. The remaining range exploits the division and

multiplication properties of logarithm:

baba loglog)log(+=× (4.13)

bab
a loglog)log(−= (4.14)

They are not approximated directly, but consume an extra multiplication and an

addition, and then take the already-build linear approximation of the range 0.5 < x <

5.0 as a lookup table.

For example, x = 0.0452,

)500ln()500()ln(−+×= xLx (4.15)

 66

Another example, x = 76.42,

100ln)01.0()ln(+×= xLx (4.16)

Here, L(．) denotes the already-build linear approximation of the range 0.5 < x < 5.0.

Though some extra works are needed, the memory is saved and approximation

error is reduced. This approach has the same effect of dividing the ranges 0.1 < x <

0.5, 10-2 < x < 10-1,…., 10-6 < x < 10-5, 5.0 < x < 50.0, and 50.0 < x < 500.0 into 9

segments separately, and approximating accordingly. This same-effect dividing is

quite reasonable. As shown in Fig. 4.8, we all know the curve of logarithm gets

smoother when x increases, whereas the curve of logarithm becomes sharper as x

decreases. This approach is just well fitted to this characteristic of logarithm curve,

which uses more segments to approximate smaller x, and uses fewer segments to

approximate larger x.

Fig. 4. 8 The curve of nature logarithm

 67

()

tmp rbandsscalefactototal
rbandscalefactocurrnetrbandsscalefactototal 3.0

_
__1.0

+
−∗

This calculation appears in the function CalcAllowedDist()[15] of quantization

module. This calculation is quite annoying since both of tmp and its exponent are

variables. The proposed approach exploits the simple properties of logarithm again.

For simplicity, total_scalefactorbands and current_scalefactorband will be

abbreviated as total_sfbs and current_sfb separately.

First, the exponent can be rewritten as

()
)

_
_(4.03.0

_
__1.0

sfbstotal
sfbcurrent

sfbstotal
sfbcurrnetsfbstotal

−=+
−× (4.17)

Thus, to obtain
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
sfbstotal

sfbcurrent
_

_ only one division is needed in first scalefactor band, the

remaining scalefactor bands can use addition instead.

Now let tmp sfbstotal
sfbcurrnet

C _
_4.0 −

= , and taking logarithm of C with base 2:

)(log)
_

_4.0(log 22 tmp
sfbstotal

sfbcurrentCB ×−== (4.18)

The reason why we choose logarithm with base 2 is that this can simplify the

implementation, and you will see later.

Thus,

)
_

_(4.0log)
_

_4.0(2

22 sfbtotal
sfbcurrenttmp

sfbstotal
sfbcurrent

B tmpC
−×−

=== (4.19)

To solve this equation, there are two functions have to be implemented: 2x and

 68

log2(x). Fortunately, these two functions are familiar, we’ve implemented similar

functions before. First, log2(x) can be realized by ln(x) linear approximation table as

discussed previously, using the property of logarithm which can be used to change

from one logarithm base to another:

)(log
)(log)(log

b
xx

a

a
b = (4.20)

Therefore, log2(x) can be obtained by using ln(x):

)ln(
)2ln(

1
)2ln(
)ln()(log 2 xxx ×== (4.21)

Since ln(x) approximation has been build already, there is no extra memory cost here.

Though we’ve implemented 2-0.25x before, the situation here, 2x, is a little bit

different. Because x here is a floating-point number, it’s impossible to predefine

constants as what we do when implementing 2-0.25x. Howerver, we still decompose x

into integer (I) part and mantissa (F) part, then applying linear approximations to

implement 2F. Fortunately, the range of F is quite small, the memory cost here won’t

be severe.

2x = 2I × 2F = (1 << I) × 2F (4.22)

where 0.0 < F < 1.0.

To estimate the performance of ln(x) approximation, we first assumed uniform

distribution. The average SNR of the range 0.5 < x < 5.0 is about 45.17 dB. The

average SNR of the entire range, i.e. 10-6 < x < 500, rises to 59.76 dB. And then, we

further tested with varies audio samples, the resulting average SNR is 63.56 dB.

 69

CHAPTER 5. Implementation on a

StrongARM Processor

This work is primarily done in the software part. First, most speedup and

memory reduction work is done in floating-point C code, and then convert it to

fixed-point C code, since our target processor, Intel® StrongARM SA – 1110, is a

32-bit fixed-point processor. Some fixed-point specific modifications are also done in

this stage. Further, coding style is tuned according to StrongARM implementation

behavior. Finally, execution file is generated by ARM C compiler and then porting to

our implementing platform, Advantech PCM-7130 SBC (single board computer).

PCM-7130 based on a 32-bit microprocessor, Intel® StrongARM SA-1110,

supports various kinds of peripherals such as USB, CF, Ethernet, and so on. For more

detailed description, you can find in Appendix A and [35][36].

5.1 Implementation Flow

The implementation flow can be shown as Fig. 5.1:

 70

 Fig. 5. 1 Implementation Flow

5.2 Fixed-point C Code Implementation

Basically, StrongARM SA-1110 performs 32-bit arithmetic. To maintain more

accuracy of processing data, some functions may employ 64-bit calculation, including

FFT implementation of MDCT, average energy calculation of quantization module,

and autocorrelation calculation of TNS module.

Especially in MDCT module, the dynamic range of processing data convert from

±215 to ±225, first explicit error may be caused here. And this early-caused error

Speedup & Memory Reduction with
Floating-point C Code

Fixed-Point C Code & Some
Fixed-Point Specific Modification

Generating Execution File

Verify and Test with
StrongARM SA-1110

 71

would diverge in the later approximating implementation. However, using 64-bit

calculation requires large computation effort. It’s impossible to perform 64-bit

arithmetic through out the entire encoder. Thus, we choose to give the early module a

finer error control.

Since almost 80% of transformed data are still within the range of ±215, if

performing 64-bit calculation to the whole FFT process, it would cause too much

overhead. Therefore, a dynamic precision calculation is applied finally. The

implementation flow is shown as Fig. 5.2:

Fig. 5. 2 Dynamic precision FFT calculation in MDCT module

In order to compensate the distortion mainly caused by the conversion from

32-bit FFT
Calculation

Pre-Twiddle FFT Input

Post-Twiddle FFT Output

64-bit FFT Calculation

Dynamic Precision FFT

MDCT Input Data

64 to 32 bit Converter

MDCT Output Data

yes no Temporary Processing
Data > 215 ?

 72

floating-point source code to approximating fixed-point source code, a bandwidth

control of input signal is employed [22]. Subjective tests also revealed people prefer

the sound with a limited bandwidth to the sound with full bandwidth but with

unmasked distortion [31].

It is in fact a low pass filter which will be applied after MDCT module.

Therefore, the implementation is quite easy:

()()
⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×≤

=
1024int,0

1024int,)(

s

c

s

c
f

f

f
f

niif

f
f

niifix
ixL (5.1)

where,

L(．) indicates the Bandwidth control function,

xf(i) represents the ith frequency line of fth frame,

fc represents the cut-off frequency,

fs represents the sampling rate.

And since this modified encoding algorithm adapts long block only, the multiplicator
is set 1024 as a constant.

With this bandwidth control tool, thus more bits can be allocated in the low

frequency bands, and then the quality can be improved [31]. Also, since the number of

nonzero data decreases, the encoding speed is therefore increased. Some cutoff

frequency settings of corresponding bitrate are listed in Table 5.1. It is referenced and

modified from FAAC’s suggestion for VBR settings and approximating bitrate.

 73

Bitrate (kbps/channel) Cutoff frequency (Hz)

192 kbps 20800

160 kbps 19600

128 kbps 17200

112 kbps 16000

96 kbps 14800

80 kbps 12400

64 kbps 10000

Table 5. 1 Some desired bitrate and corresponding cut-off frequency of bandwidth

control module

5.3 Modify Coding Style

Finally, the C code is further modified according to the target processor,

StrongARM. Such as optimizing loop termination, simplified Boolean expressions of

range checking, loop unrolling, and being caution of choosing local variable types, etc.

For more details, you can find in [28][29].

 74

CHAPTER 6. Implementation of Data

Embedded Method

There are many watermark techniques in terms of their application areas and

purposes. The technology of data embedding is, in fact, one kind of watermarking.

With data embedding, this highly compressed audio data is more attractive to

consumers since it provides extra services while listening to music.

6.1 The Properties of Data Embedded Method

This data embedded method is mainly derived from [32], with modifications

accommodate it to AAC file structure. This method is specifically available for audio

data due to its exploiting the psychoacoustic characteristic of human hearing. The

classification of this data embedded method is summarized in Table 6.1.

Classification Contents

Perceptivity Invisible

Watermark Type Public Watermarking

Inserting File Type Any Type

Robustness Fragile

File Size After Inserting Unchanged

Processing Method:Frequency Domain Spread Spectrum of High Frequency

Table 6. 1 Classification of the watermarking technique in this thesis

 75

 Perceptivity of watermark: Invisible

The embedded data must be invisible, since the inserted media type is audio.

And the quality of audio file after data embedding should be unaffected, or at

least imperceptible.

 Watermark type: Public watermark

 This data embedded method belongs to public watermark which doesn’t aim

at protecting file but providing additional services such as some related

information.

 Inserting file type: Any type

 No matter what file type inserted, the data embedded algorithm remains the

same. Since the data-embedding extractor simply reads the binary data stream.

There’s also a header in the temporary file of data embedding process, package

file, which contains the synchronization bits, the file size and the file type of each

embedded files, and of course the file data stream. The data embedded decoder

can therefore reconstruct embedded files according to the information in the

header of package file.

 Robustness of watermark: Fragile

As stated previously, this data embedded method doesn’t mean to provide

protection rather than giving additional services. The embedding data is easily

destroyed when these data embedded audio files undergo re-compression or some

post-processing, such as filtering, reverberation and equalization, etc.

 File size after inserting: Unchanged

 It is the most attractive feature of the proposed data embedded method. That

 76

is, under the same encoding settings, the resulting AAC file sizes with and

without data embedding are the same! This data embedding doesn’t cause the

resulting file size to increase. Further, the data embedded AAC file is also

compatible to those decoders without proposed data embedded algorithm. Thus,

these data embedded AAC files can be play safely with general AAC decoders.

6.2 Implementation of Data Embedded Encoder

Fig. 6.1 shows the basic structure of data embedded AAC encoder. The data

embedded algorithm is bundle within the AAC encoding process rather than a post- or

pre- processing of AAC system.

Fig. 6. 1 The structure of data embedded AAC encoder

First, the files you want to insert will be pack into a so called package file.

Meanwhile, the file size and file type of each inserting files are also store in the

header of package file. Additional synchronization bits are used to recognize the start

of a new file. The file structure of package file is shown in Fig. 6.2.

Embedded Files

Wave File

Package File

AAC Encoder with

Data Embedded AAC File

Data Embedded
Algorithm

 77

Fig. 6. 2 The structure of package file [32]

After the generation of package file, the AAC encoding routine then begins. The

package file is extracted bit by bit and embedded into quantized data before entering

the noiseless coding module. The later implementation is exactly the same as the

original AAC encoder. The package file structure is exactly the same design as [32], if

you are interested, please see [32] or Appendix B.

6.2.1 Embedding Data into High Frequency Range

As we’ve discussed in Chapter 2 and Chapter 3, at high frequencies, human

hearing are relatively insensitive to phase identity as comparing to energy. The

Header1

Synchronization

File Size

File Type

Synchronization

File Size

File Type

File Data

File Data

Header2

．
．
．
．
．

 78

intensity stereo coding technique already exploits this characteristic of human hearing

to further reduce irrelevancy. Here, we again take advantage of this characteristic, i.e.

replace the sign bits of high frequency data with our embedded bits. Because we’ve

known that the sign bits of high frequency data are unimportant, and the errors caused

by this replacement could be insignificant to human perception.

At even higher frequency range, the embedding bits can replace the data directly.

That is, not only sign bits but also data quantities will be changed. The advantage of

this method is that even a zero-valued data can be embedded data. There is no sign

bits saved in bitstream for zero-valued data, so these data always have to be avoid in

the previously-stated method(i.e. replacing the sign bit). However, this method should

be applied very carefully, or the music quality would be damaged seriously. Thus, to

preserve the audio quality, this method is not utilized finally.

Fig. 6.3 shows the basic implementation flow of data embedded method.

Quantiazer

Replacing Sign Bit
Or Data With

Embedding Bit

Regain Sign Bit
From Xi

Huffman Coding

Quantizer Input, Xr (signed)

Quantizer Output, Xi (unsigned)

Quantizer Output, Xi (signed)

Recover Sign Info.

yes no f > Embedding Frequency ?

 79

Fig. 6. 3 The implementation flow of data embedded method.

6.3 Implementation of Data Embedded Decoder

Fig. 6.4 shows the basic structure of data embedded AAC decoder. The data

embedded decoding algorithm is also bundle within the AAC decoding process

Fig. 6. 4 The structure of data embedded AAC decoder

The embedded data will be extracted bit by bit during AAC decoding process.

And the embedded data stream are extracted to be analyzed by data stream analyzer

and then reconstructed according to their headers. Thus, there are two kinds of final

outputs, including general decoded wave file and embedded files. Fig. 6.5 shows the

more detailed implementation flow of data embedded decoding procedure.

Embedded Files

Extracted
Embedding Data

Stream

AAC Decoder with
Data Embedded

Decoder

Wave File
Data Embedded
AAC File

Write Data
Stream to Files

 80

Fig. 6. 5 The implementation flow of data embedded decoding process

If a lyrics text file is embedded, a synchronous lyrics display is also implemented,

so you can show the current lyrics while playing music. The data stream analyzer and

lyrics analyzer, which mainly deals with lyrics display synchronization, are inherited

from [32], to known more specifics, please see [32] and Appendix B.

Write Data
to Files

Huffman Decoding

Dequantization

Data Stream Analyzer Read Sign Bit

 81

CHAPTER 7. Experimental Results

This chapter will be divided into two parts, 7.1 shows the performance of the

proposed MPEG-2/4 LC AAC encoding scheme, and 7.2 shows the results after the

addition of data embedded method.

7.1 MPEG-2/4 LC AAC Encoder

The proposed AAC encoder is implemented on a 32-bit fixed-point processor,

StrongARM SA-1110. The performance of the proposed AAC encoder, including the

final resource distribution, encoding speed, memory usage and audio quality test

results will be presented in the follows.

7.1.1 Resource Distribution

After modifications to the original algorithm, the computational requirements in

each module have been changed. The final resource distribution is listed in Table 7.1.

Note that since the psychoacoustic model has been nearly removed: block switching is

discarded and allowed distortion evaluation is moved into the quantization module

(by FAAC’s implementation). Therefore, it is not presented in the Table 7.1.

 82

Module Percentage

Filter Bank 26.5%

TNS 5.8%

M/S Stereo 0.9%

Quantization 39.8%

Noiseless Coding 5.9%

Bitstream Formatting 13.7%

Others 7.4%

Table 7. 1 Distribution of resources in proposed AAC-LC encoder

Comparing with Table 4.1, the complexity of quantization module is reduced,

and the computational requirements in other modules are relatively increased because

of the lack of psychoacoustic model. Thus, from Table 7.1, we can quickly conclude

that quantization module has been simplified significantly, since it even has a 30~40%

reduction in resource requirement while the others are increased relatively. However,

you may wonder why it seems that the computational effort consumed by filterbank

module is increased. It is mainly because filterbank adopts lots of 64-bit calculation,

or we could say the complexity reduced in filterbank module is not as much as the

other modules, including TNS, M/S stereo, bitstream formatter and so on.

7.1.2 Resource Requirement Improvement

Comparing with the original source code, 86.36% of the RAM requirement is

reduced and also 3.36% of the ROM requirement is reduced. The reason why ROM

size is not significantly decreased is mainly due to that most mathematical functions

 83

realized by math.h of C library previously are implemented now by linear

approximations or lookup tables instead. And this increases the ROM size.

Memory Reduction Percentage

RAM 86.36%

ROM 3.36%

Table 7. 2 Comparing the resource requirement with the original source code

The ROM size is obtained by objdump, and the RAM size is obtained by the

memory usage information reported by the Unix command “top” which provides an

on-going look at processes in real time, including memory and CPU usage, etc.. Since

it’s hard to precisely estimate the run-time memory usage for a software in the C code

stage, however, the memory requirement is usually an important issue to embedded

systems. Therefore, we employ “top” to give a simple rough estimation.

7.1.3 Encoding Speed

Since our proposed encoder is targeted at 96kbps encoding, all encoding speed is

test under 96kbps bitrate settings.

Test Length Bitrate Speed

Violoncello 0:30 96kbps 1.54 X

Soprano 0:23 96kbps 1.54 X

Bass 0:24 96kbps 1.44 X

Table 7. 3 Encoding speed

 84

From the Table 7.3 we can see that our proposed encoder can at least run at the

speed of 1X on our demo platform, PCM-7130 with StrongARM SA-1110 processor.

7.1.4 Quality Evaluation

To evaluate the audio quality of proposed AAC encoder, an objective evaluation

is applied. The objective audio quality evaluation is done by using a software

objective measurement tool for audio quality tool called EAQUAL, which stands for

Evaluation of Audio QUality, and is implemented based on the recommendation

ITU-R BS.1387. A brief introduction can be found in Appendix C.

The reference codec is traditional AAC encoder and the test codec is the

proposed AAC encoder. Both of them are decoded by FAAD[15] implemented in

floating-point. The “Diffgrade (DG)” is the objective rating given to the test item

minus the rating given to the reference item. The DG scale can be divided into five

ranges: “imperceptible (>0.00)”, “perceptible but not annoying (0.00 ~ -1.00)”,

“slight annoying (-1.00 ~ -2.00)”, “annoying (-2.00 ~ -3.00)” and “very annoying

(-3.00 ~ -4.00)”.

Test Audio Sample
Bitrate

Violoncello Soprano Bass

128kbps 0.67 0.60 -0.07

96kbps 0.15 -0.04 -0.43

64kbps -0.05 -0.23 -0.51

Table 7. 4 The objective test results of proposed encoder

 85

7.2 Data Embedded Method

After the addition of the data embedded feature, the performance analysis is

discussed in the follows.

7.2.1 Resource Distribution

According to Table 7.5, we can see that only about 0.3% of computation resource

is required by data embedded module. Thus it is quite less computation demanding.

Module Percentage

Data Embedded 0.3%

Filter Bank 24.4%

TNS 6.6%

M/S Stereo 1.0%

Quantization 39.9%

Noiseless Coding 6.0 %

Bitstream Formatting 13.8%

Others 8.0%

Table 7. 5 Resource distribution of the proposed encoder plus data embedded method

7.2.2 Encoding Speed and File Size

Some comparisons based on experimental results are listed below, including file

size, encoding speed and embedded bits count. Table 7.6 shows the resulting file size

and encoding speed before and after data embedded method presented.

 86

Test File size Speed
Sample

Length Bitrate
Before After Before After

Always[24] 5:49 96kbps 3.98 MB 3.98 MB 1.33 X 1.32 X

Thank[24] 3:39 96kbps 2.50 MB 2.50 MB 1.32 X 1.31 X

Torn[24] 3:56 96kbps 2.74 MB 2.74 MB 1.28 X 1.28 X

Table 7. 6 The resulting file size and encoding speed before and after data embedded

method presented

The results in Table 7.6 reveals the most attractive properties of this data

embedded method. The file size remains the same, and only increases a small amount

of computing complexity to the original proposed AAC encoder.

7.2.3 Embedded Data Size

Some resulting embedded data size of different files are listed in Table 7.7, and

also presents the comparison with Huang’s implementation of MP3 at 128kbps [32].

Test Sample Length Bitrate Embedded bits Huang’s

96kbps 46.2KB N/A
Always 5:49

128kbps 110.0KB 163.1KB

96kbps 36.2KB N/A
Thank 3:39

128kbps 77.7KB 122.8KB

96kbps 47.4KB N/A
Torn 3:56

128kbps 113.0KB 162.0KB

Table 7. 7 The embedded bits count of different files

 87

From Table 7.7, we find that, even at the same bitrate, i.e. 128kbps, the

embedded bits count of AAC is still less than Huang’s implementation of MP3 for

about 50KB. One main reason is that this proposed AAC encoder exploits ABR

encoding, thus no bit reservoir is presented. And observing the results from [32], bit

reservoir often contributes 30~50KB data embedding space. Another reason is that

AAC system does not provides “count 1 region data embedded method” as mentioned

in Huang’s thesis. Though there’s no so-called “count 1 region” defined in AAC,

inheriting the same concept from MP3, we should still apply the same method.

However, the so called “count 1 region” in AAC, usually starts at around 7.9 kHz,

which is much lower in frequency range than MP3 (~12kHz). It could cause great

damage if applying “count 1 region data embedded method” as what MP3 does. Also,

due to the presentation of bandwidth control tool, the nonzero range has been

narrowed, to preserve the music quality, this method is not utilized finally.

7.2.4 Quality Evaluation

We use the same objective audio quality evaluation method as that in pure AAC

encoder case, that is by applying EAQUAL. The reference codec is also the ISO

method implemented encoder and then decoded by FAAD[15]. We use the “Diffgrade

(DG)” here to evaluate audio quality again. The resulting DG of both pure proposed

encoder and the proposed encoder with the addition of data embedded method are

listed below for comparison.

 88

Test Sample Length Bitrate None Data embedded

96kbps -1.26 -1.31
Always 5:49

128kbps -0.67 -0.52

96kbps -0.88 -0.92
Thank 3:39

128kbps -0.57 -0.42

96kbps -1.85 -1.92
Torn 3:56

128kbps -0.22 -0.49

Table 7. 8 The objective test results of proposed encoder plus data embedded feature

Experimental results reveal that this data embedded method which based on

psychoacoustic characteristic of human hearing only causes small degradation of

music quality.

 89

CHAPTER 8. Conclusions and Future Works

The conclusions of this thesis and future possibilities are shown in the follows.

8.1 Conclusions

In this thesis, we give a brief introduction of MPEG-2 AAC encoding algorithm,

a proposed fast algorithm including:

 Removal of block switching

 Adopting fast MDCT algorithm

 Simplified TNS with a early decision mechanism

 Simplified Mid/Side stereo coding

 Faster quantization with scalefactor prediction and simplified QuantizeBand()
function

 Simplified implementation of math functions

In the fixed-point stage, to further control the error caused by the approximating

fixed-point arithmetic, a dynamic 32/64 bit implementation of FFT and a bandwidth

control module are applied.

For additional feature, a data embedded method is also applied to AAC file. Both

AAC encoders with and without data embedding are realized on a 32-bit RISC

processor, Intel® StrongARM SA-1110. Finally, the performance analysis, the

subjective and objective sound quality test results, and the comparison with other

 90

implementations are presented.

Experimental result shows that the 32-bit fixed-point implementation of

proposed algorithm can perform at least 1X encoding by the processor, Intel®

StrongARM SA-1110 which is capable of running at up to 206 MHz. And comparing

with the original ISO implemented source code, 86.36% of RAM requirement and 3%

of ROM requirement are reduced.

8.2 Future Works

The proposed encoder in this thesis is mainly concentrate in C code level, to be

more adapted to embedded system applications, converting it into assembly code and

perform further optimization accordingly is necessary. In this way, the proposed AAC

encoder can get even better performance. Also, at present, we haven’t paid much

attention to the memory usage optimization. However, this is quite important in those

resource limited systems. Thus, these are two essential works in the future.

We can see that selling music in digitalized format through Internet rather than

selling CDs in record stores seems to be an irresistible trend. Though AAC itself has

the advantages of smaller file size and better quality, to convince traditional music

company taking AAC format as the distributing standard is not enough. Thus,

corresponding encryption should be implemented as well. Together with data

embedded algorithm and encryption, AAC can be the first choice of standard format

delivery music through Internet.

To further expand the application of this thesis, the concepts proposed can be

applied to many other developed modern audio compression formats, such as Dolby

 91

AC-3, MPEG-1 Layer III, Microsoft® WMA, and Ogg Vorbis, to increase their

performance, too. Especially, MPEG-2 AAC constitutes the kernel of MPEG-4

General Audio (GA). MPEG-4 GA generally based on MPEG-2 AAC structure and

with some enhancement and refinement. What have been standardized in MPEG-2

AAC, including low complexity (LC) profile, main profile and scalable sampling rate

(SSR) profile, are also presented in MPEG-4 AAC. Thus, the proposed algorithm is

most suitable for optimizing MPEG-4 audio.

 92

REFERENCES
[1]. K. Brandenburg, M. Bosi, S. Quackenbush, L. Fielder, K. Akagiri, H. Fuchs, M.

Dietz, J. Herre, G. Davidson and Y. Oikawa, “ISO/IEC MPEG - 2 Advanced

Audio Coding”, J. Audio Eng. Soc., October 1997, pp. 789 – 811.

[2]. ISO/IEC 13818 – 7, “Information Technology – Generic Coding of Moving

Pictures and Associated Audio, Part 7: Advanced Audio Coding,” 1997.

[3]. N. Jayant and P. Noll, “Digital Coding of waveforms”, Prentice-Hall,

Englewood Cliffs, NJ, 1984.

[4]. J. Herre and J. D. Johnston, “Enhancing the Performance of Perceptual Audio

Coders by Using Temporal Noise Shaping (TNS),” 101st AES convention,

Preprint 4384.

[5]. MPEG Audio FAQ [online]

URL: http://www.tnt.uni-hannover.de/project/mpeg/audio/faq/

[6]. J. D. Johnston and A. J. Ferreira, “Sum-Difference Stereo Transform Coding,”

Proc. IEEE ICASSP, 1992, pp. 569 – 572.

[7]. T. T. Sandel, D. C. Teas, W. E. Feddersen and Jeffress, “ Localization of Sound

From Single and Paired Sources,” J. Audio Eng. Soc. Am. 27, 1955, pp.842 –

852.

[8]. B. C. J. Moore, “An Introduction to the Psychology of Hearing, ” 3rd ed.,

Academic Press, NY, 1989.

[9]. M. L. Honig, and D. G. Messerschmitt , “Adaptive Filters: Structures,

Algorithms, and Applications,＂Kluwer Academic, 1984.

 93

[10]. C. F. N. Cowan, P. M. Grant and P. F. Adams,“Adaptive Filters,＂

Prentice-Hall, Englewood Cliffs, 1985.

[11]. H. Fuchs, “Improving MPEG Audio Coding by Backward Adaptive Linear

Stereo Prediction,” 99st AES convention, Preprint 4086.

[12]. S. R. Quackenbush and J. D. Johnston, “Noiseless Coding of Quantized

Spectral Components in MPEG-2 Advanced Audio Coding,” IEEE ASSP, 1997,

pp. 1 – 4.

[13]. R.G. v. d. Waal and R. N. J. Veldhuis, “Subband Coding of Stereophonic

Digital Audio Signals,” IEEE ICASSP, 1991, pp. 3601 – 3604.

[14]. J. Herre, K. Brandenburg , and D. Lederer, “Intensity Stereo Coding,” 96st AES

convention, Preprint 3799.

[15]. FAAC – Freeware Advanced Audio Coder [online]

URL: http://www.audiocoding.com

The proposed source code is modified based on FAAC’s implementation.

[16]. E. Zwicher and H. Fastl, “Psychoacoustics: Facts and Models,”

Springer-Verlag, 1990.

[17]. T. Painter and A. Spanias, “A Review of Algorithms for Perceptual Coding of

Digital Audio Signals,” DSP ’97 Conference, 1997, pp. 179 – 209.

[18]. E. Terhardt, “Calculating Virtual Pitch,” Hearing Research, pp. 155-182, 1979.

[19]. Multimedia and Streaming [online]

URL: http://www.liacs.nl/~joostd/WebTech/Day6/slides/multimedia.html

 94

[20]. R. Gluth, “Regular FFT-Related Transform Kernels for DCT/DST-based

polyphase filter banks,” IEEE ICASSP 1991, vol.3, pp. 2205 – 2208.

[21]. E. Kurniawati, C. T. Lau, B. Premkumar, J. Absar and S. George, ”New

Implementation of Techniques of an Efficient MPEG Advanced Audio Coder,”

IEEE Transactions on Consumer Electronics, Vol. 50, No. 2, MAY 2004, pp.

655 – 665.

[22]. H. oh, J. Kim, C. Song, Y. Park and D. Youn, “Low Power MPEG/Audio

Encoders Using Simplified Psychoacoustic Model and Fast Bit Allocation,”

IEEE Transactions on Consumer Electronics, Vol. 47, No. 3, August 2001, pp.

613 – 621.

[23]. SQAM – Sound Quality Assessment Material: EBU SQAM disc tracks.

URL: http://www.tnt.uni-hannover.de/project/mpeg/audio/sqam/

[24]. Test Audio Sample Description –

Elliott: Artist/Elliott Smith, Album/From a Basement on the Hill, Title/A Fond

Farewell, Label/Anti.

Jeff: Artist/Jeff Buckley, Album/Grace, Title/So Real, Label/Columbia.

Radio:Artist/Radiohead, Album/The Bends, Title/High and Dry, Label/

Parlophone.

Devic: Artist/The Devics, Album/The Stars at Saint Andrea, Title/Red Morning,

Label/Bellaire

Sandee: Artist/Sandee Chan, Album/When We All Wept in Silence, Title/Track

03, Label/Music 543.

 95

Always: Artist/Bon Jovi, Album/Cross Road, Title/Always, Label/Mercury.

Thank: Artist/Dido, Album/No Angel, Title/Thank You, Label/Arista.

Torn:Artist/Natalie Imbruglia, Album/Left of the Middle, Title/Torn,

Label/RCA.

[25]. S. Cramer and R. Gluth, “Computationally Efficient Real-Valued Filter Banks

Based on a Modified O2DFT,” Signal Processing V, Elsevier Sc. Publ., Proc.

EUSIPCO 90, Barcelona, 1990.

[26]. G. Bonnerot and M. Bellanger, “Odd-Time Odd-Frequency Discrete Fourier

Transform for Symmetric Real-Valued Series,” IEEE Proceedings, March

1976, pp. 392 – 393.

[27]. ISO/IEC 11172-3, “Coding of Moving Pictures and Associated Audio for

Digital Storage Media at up to about 1.5 Mbit/s, Part 3: Audio,” 1992.

[28]. Advanced RISC Machines Ltd. [online]

URL: http://www.arm.com/

[29]. Advanced RISC Machines Ltd., “Application Note 34: Writing Efficient C for

ARM,” 1998.

[30]. Intel Corporation [online]

URL: http://www.intel.com/

[31]. Y. S. Lin, “MPEG-1 Layer III Audio Codec Optimization and Implementation

on a DSP Chip,” Master thesis submitted to department of Electrical and

Control Engineering, National Chiao Tung University, July 2004.

[32]. R. H. Huang, “A Study of Data Embedded Method on MPEG/Audio and

 96

Implementation of Data Embedded Decoder on the ADSP-2181 DSP

Processor,” Master thesis submitted to department of Electrical and Control

Engineering, National Chiao Tung University, July 2004.

[33]. Apple Computer, Inc. [online]

URL: http://www.apple.com/

[34]. Fraunhofer Institute [online]

URL: http://www.iis.fraunhofer.de/

[35]. Advantech PCM-7130 User Manual

[36]. Advantech PCM-7130 Data Sheet

[37]. Advantech Co., Ltd [online]

URL: http://www.advantech.com/

[38]. Thilo Thiede, William C. Treurniet, Roland Bitto, Christian Schmidmer,

Thomas Sporer, John G. Beerends, Catherine Colomes, Michael Keyhl,

Gerhard Stoll, Karlheinz Brandenburg and Bernhard Feiten, “PEAQ – The ITU

Standard for Objective Measurement of Perceived Audio Quality,” J. Audio

Eng. Soc. Vol. 48, No.1/2, Jan/Feb 2000. pp. 3 – 29.

[39]. Proseminar Redundanz, Fehlertoleranz und Kompression [online]

URL: http://goethe.ira.uka.de/seminare/rftk/mp3/

 97

APPENDIX A. Advantech PCM-7130 SBC

The PCM-7130 is an Intel® StrongARM low-power RISC processor single board

computer that is designed to serve power/environment critical applications. Fig. A.1

shows the appearance of the entire system.

Fig. A. 1 The appearance of the Advantech PCM-7130 SBC [37]

The brief specifications are shown as following [35]:

 CPU: Intel® StrongARM SA-1110, 206 MHz

 Flash memory: up to 32 MB flash memory on board

 Memory: 64 MB SDRAM on board

 Watchdog timer: Dallas DS1670

 Audio: AC’97 stereo audio interface

 Dimensions: 145 x 102 mm

 Gross weight: 0.2 kg (0.4 lb.)

 SSD: 1 type-II CompactFlash™ card slot

 98

 DIO: 8 digital inputs, 8 digital outputs

 Ethernet: 1 RJ-45 10Base-T port

 GPIO: 8

 IrDA: 1 IrDA interface

 PCMCIA: 1 type-II PCMCIA slot

 PS/2 port: 1 PS/2 port for keyboard/mouse

 Serial ports: 2 full RS-232 ports and 1 RS-485 port with automatic data flow

control

 USB ports: 1 USB host and 1 USB client ports

 Display Chipset: Epson S1D13806 VGA controller

 LCD interface: 18-bit TFT active color LCD/16 bit DSTN passive color LCD;

20-pin header for 18-bit LVDS interface

 TV-out: supports both NTSC and PAL output

 Touchscreen: supports 4-wire resistive touchscreen via SPI (Serial Peripheral

Interface)

 FCC Class A certified

 CE certified

Fig. A.2 gives a more detailed view of PCM-7130 with its peripheral interface.

 99

Fig. A. 2 Advantech PCM-7130 SBC [37]

 100

APPENDIX B. Data Embedded Codec

B.1 Package File

The embedded data usually contain several files. These files should be embedded

in series. Interleaving data of different files is not allowed. To avoid mix-up of data

from different files, all embedding files will be bundled into one file, called package

file, before entering encoding routine.

There are headers in the package file to recognize each file, and this information

will be used while decoding. Each header consists of three parameters:

synchronization bits, file type, and file length.

Table B. 1 Parameters of the header in package file[32]

 Synchronization Bits: It is defined as “020240608”. And it is used to notify

decoder that this is a start of new file.

 File Length: 2 bytes are used to record the file size.

 File Type: 1 byte is used to identify the file type. And it is very important when

perform reconstruction in the decoder.

 101

Fig. B.1 shows the file structure of package file:

Fig. B. 1 The structure of package file [32]

To make sure the correctness of synchronous lyrics display, lyrics file must be

embedded first. Thus, a sorting must be done before generating the package file. Fig.

B.2 shows the flowchart of generating package file.

Header1
Synchronization

File Size

File Type

Synchronization

File Size

File Type

File Data

File Data

Header2

．
．
．
．
．

 102

Fig. B. 2 The flowchart of generating package file [32]

Read Parameters From
Embedded Files

Sorting Files:
.txt > .jpg > .gif

Find out File Type
And File Length

Add Header

Pack into Files

Any Other Files ?

END

Start

no

yes

 103

B.2 Data Stream Analyzer

The data stream analyzer is used to analyze the data stream which is extracted by

the data embedded decoder. The data stream is a series of signal of “0” and “1”, it

must be analyzed and reconstructed to the original files by the data stream analyzer.

The flowchart of the data stream analyzer is shown as Fig. B.3 The purpose of

stream analyzer is for data stream analyzing, including identifying synchronization,

file length and file type, and processing every different files type.

 “Synchronization bits” is composed of 4 bytes. So at first 4 bytes should be

read to check if they are synchronization bits. If not, left-shifting one byte and

replenish one byte for checking, this process will continue until the synchronization

bits are found. Afterwards, both file length and file type will be read. If the file type is

identified as a lyrics file, those data will be saved to a lyric buffer, preparing to be

shown synchronously on the screen while the song is playing. Other file types will be

saved as files, then finishing the analysis of data stream.

 104

Fig. B. 3 The flowchart of data stream analyzer[32]

B.3 Lyrics Analyzer

Read 1 bytes From
Buffer

Read 4 bytes From
Buffer

File Length

File Type

Lyric Buffer Put to File

Sync ?

File Type ?

Start

no

yes

!=0 =0

 105

Lyrics analyzer is used to analyze the lyrics file, and print lyrics synchronously

while playing music, which is the same as what we see lyrics shown in KTV screen.

In data stream analyzer, if the file type is identified as a lyrics text file, then those data

will be saved temporarily to lyric buffer for analyzing by lyrics analyzer.

The lyrics file format is defined as ”[mm:ss] the lyrics of a line”, Fig. B.5 shows

one example of lyrics file. “[” represents the beginning of the lyrics in every

line, ”mm” represents the showing minutes of the lyrics, ”:” is for partition, and “ss”

represents the showing seconds of the lyrics. From ”]” to Carriage Return/Linefeed

(CR/LF) characters ”0D 0A”, they represent the contents of one line of the lyrics.

At first, one byte will be read to check if it’s the beginning of one line, that is ”[”.

After finding that, the next five bytes will be analyzed to get the showing time of the

lyrics. Following the “]” character is the content of current line of lyrics. The result

will be saved to print buffer. Then, the analysis of next line of lyrics will begin again.

This process will continue until the whole lyrics file are analyzed and all results are

saved to print buffer. Fig. B.4 shows the flowchart.

 106

Fig. B. 4 The flowchart of lyrics analyzer[32]

 107

Fig. B. 5 An example of lyrics file format

 108

APPENDIX C. EAQUAL

 The EAQUAL, which stands for Evaluation of Audio QUALity, is an audio

quality evaluation software. It is implemented based on the recommendation ITU-R

BS.1387.

In general, it compares a signal that has been processed in some way with the

corresponding time-aligned original signal. And it extracts perceptually relevant

features, which are used to compute a measure of quality. Also, a number of

intermediary model output variables (MOVs) are available.

A selected set of MOVs are mapped to a final output score, called objective

difference grade (ODG). The mapping was established by minimizing the difference

between the distribution of objective measurements and the corresponding

distribution of mean subjective qualities for an available data set.

The block diagram of EAQUAL is shown in Fig. C.1. It includes an ear model

based on the fast Fourier transform (FFT). The model output values are based partly

on the masked threshold concept and partly on a comparison of internal

representations. The model outputs the partial loudness of nonlinear distortions, the

partial loudness of linear distortions (signal components lost due to an unbalanced

frequency response), a noise to mask ratio, measures of alterations of temporal

envelopes, a measure of harmonics in the error signal, a probability of error detection

and the proportion of signal frames containing audible distortions.

 109

Selected output values are mapped to a single quality indicator by an artificial

neural network with one hidden layer. For details, please see [38].

Fig. C. 1 Block diagram of measurement scheme[38]

