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摘要 

這篇論文提出一套 AAC 編碼的最佳化演算法以及在 AAC 編碼系統中加入

資料嵌入演算法的應用。最後將這兩套系統實現在一顆 206 MHz的 32位元定點

處理器 StrongARM SA-1110 上。實驗結果顯示，我們所提出的架構在實驗平台

上可執行至少一倍速的壓縮。在 AAC編碼最佳化中，我們移除計算量龐大的長

短窗轉換，簡化 TNS及M/S 立體聲編碼的控制流程，數學函式的簡化運算及較

快速的量化模組，在 MDCT 的實現方式上，也採用了以快速演算法。為了彌補

定點化過程中所產生的誤差，我們加入了頻寬控制及動態精確度的 MDCT 運算

等。最後，為了進一步增加 AAC 檔案的功能性，並在 AAC 編碼系統中加入資

料嵌入的應用。 
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ABSTRACT 

In this thesis, we present an optimized AAC encoding scheme and also proposed 

a data embedded method integrated into AAC encoding system. Both of them are 

finally realized on a 32-bit fixed-point processor, StrongARM SA-1110. Experimental 

result shows that at least 1 encoding speed is achieved. In the AAC encoding 

algorithm, we propose several approaches including the removal of block switching, 

fast MDCT, simplified TNS, simplified M/S stereo coding, mathematical function 

optimization and fast quantization. To compensate the error caused by fixed-point 

conversion, a bandwidth control and a dynamic data precision MDCT are applied. 

Finally, a data embedded method is implemented to further increase its utility.  
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CHAPTER 1.  Introduction 

1.1  Background 

With the rapid development of computer science, our life style has been changed 

a lot in recent years. Data are digitalized and distributed through Internet, wireless, 

and communication. Due to the limited bandwidth or storage space, data compression 

has become an important issue. Focusing on audio field, lots of audio codecs have 

been proposed in past years. For example, MPEG-1 layer III, generally known as 

MP3, has gained its popularity. Though there still has the vagueness of legalization, 

one can not deny that digital audio will gradually replace the traditional music market 

seems to be an irresistible trend. 

1.2  Motivation 

We’ve seen the wildly popularity of MP3 format. The request for higher coding 

efficiency and multichannel support drives the development of AAC format. As 

compared to MP3, AAC provides higher-quality results with smaller file sizes, higher 

resolution and multichannel support. AAC proves itself worthy of replacing MP3 as 

the new Internet audio standard. 

Because of its superior performance and quality, AAC also constitutes the kernel 

of MPEG-4 audio and has been adopted in several application areas as Internet 

streaming, ISDN music transmission, high definition television (HDTV), satellite and 
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terrestrial digital audio broadcasting and for audio transmission in third generation 

mobile networks (as 3GPP and 3GPP2 for UMTS/CDMA2000). Especially, Apple 

Computer, arms with its cool devices and online music store, spares no efforts to 

promote AAC format. AAC is gaining its importance in the market. 

1.3  Innovation 

 Most AAC encoders are restricted to PC-based applications, since it consumes 

too much computational resources to implement on portable devices which often 

powered by batteries. 

In this thesis, we present an optimized AAC encoding algorithm which can be 

implemented on power-limited portable systems. An additional functionality of data 

embedded technique is also presented. Finally, this proposed AAC encoding algorithm 

with data embedding feature is realized with a 206MHz 32-bit RISC CPU, Intel® 

StrongARM SA-1110. At least 1X encoding speed is achieved. 

1.4  Content Organization 

There are 7 chapters in this thesis. Chapter 2 and Chapter 3 briefly explain the 

AAC encoding algorithm. Chapter 2 focuses on psychoacoustic model and chapter 3 

discusses the remaining modules. Chapter 4 describes our proposed optimization for 

MPEG-2 low complexity (LC) profile AAC. Chapter 5 illustrates the implementation 

of this modified MPEG-2 LC AAC encoder with Intel® StrongARM SA-1110 RISC 

CPU. A data embedded method specific to AAC file is also realized, and this is 

described in Chapter 6. The final experimental results can be found in Chapter 7. 

Chapter 8 concludes the whole thesis and discusses some future possibilities.
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CHAPTER 2.  Psychoacoustic Model 

Most current audio coders achieve compression by exploiting the fact that 

“irrelevant” information is not detectable in general case. Irrelevant information is 

identified by incorporating several psychoacoustic principles. 

2.1  The Absolute Threshold of Hearing 

The absolute threshold of hearing, also called the quiet threshold, can be 

described as the amount of energy needed in a pure tone such that it can be detected 

by a listener in a noiseless environment. It is well approximated [18] by the nonlinear 

function: 
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    (2.1) 

It is the representative of a young listener with acute hearing. When )( fTq is 

applied to signal compression, it can be interpreted as a maximum allowable energy 

level for coding distortions introduced in frequency domain. Fig. 2.1 shows the curve 

of the absolute threshold of hearing. 
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Fig. 2. 1 The absolute threshold of hearing [17] 

The sound pressure level (SPL) is a measurement of sound intensity which is 

calculated as 

Number of decibels = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

0

1
10log10

I
I                                  (2.2) 

where, 
I0 is the reference intensity, 

The most commonly used reference intensity is 10-12 (W/m2) [8]. 
I1 is the intensity to be measured.  

 

2.2  Critical Band 

It turns out that a frequency-to-place transformation takes place in the inner ear, 

along the basilar membrane. Distinct regions in the cochlea, each with a set of neural 

receptors, are responsible for a limited range of frequencies. This limited frequency 

resolution can be expressed in terms of “critical band”. From the experimental sense, 

critical bandwidth can be loosely defined as the bandwidth at which subjective 

responses change abruptly. Fig. 2.1 shows how critical bands correspond to frequency 
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domain. Table 2.2 illustrates the nonuniform Hertz spacing of the critical band. 

Band 
NO. 

Fc(Hz) Bandwidth(Hz)
Band
NO. 

Fc(Hz) Bandwidth(Hz) 

1 50 0-100 14 2150 2000-2320 
2 150 100-200 15 2500 2320-2700 
3 250 200-300 16 2900 2700-3150 
4 350 300-400 17 3400 3150-3700 
5 450 400-510 18 4000 3700-4400 
6 570 510-630 19 4800 4400-5300 
7 700 630-770 20 5800 5300-6400 
8 840 770-920 21 7000 6400-7700 
9 1000 920-1080 22 8500 7700-9500 
10 1170 1080-1270 23 10500 9500-12000 
11 1370 1270-1480 24 13500 12000-15500 
12 1600 1480-1720    
13 1850 1720-2000    

Table 2. 1 Critical bands. Fc – center frequency of the critical band [16] 

 

 

Fig. 2. 2 Idealized critical band filterbank [17] 
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2.3  Masking Effects 

Masking refers to a process where one sound turns out to be inaudible because of 

the presence of another sound. There are two types of masking: simultaneous masking 

and temporal masking. 

2.3.1  Simultaneous Masking 

Simultaneous masking occurs in frequency domain, thus it is also called 

frequency masking. A simplified explanation of the mechanism is as follows: The 

presence of a strong signal (masker) creates an excitation of sufficient strength on the 

basilar membrane at the critical band location to effectively block the transmission of 

a weaker signal (maskee) [19]. This phenomenon has been observed both within a 

single critical band and between critical bands. The latter one is also known as the 

spread of masking. Fig. 2.3 gives an example of simultaneous masking with a masker 

at 150Hz. 

 

Fig. 2. 3 An example of simultaneous masking [19] 
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2.3.2  Temporal Masking 

Masking effect is also happened in time domain which is called the temporal 

masking or nonsimultaneous masking. It is the term describing those situations where 

sounds are hidden due to maskers which have just disappeared (this is also called 

post-masking), or maskers which are about to appear (this is also called pre-masking). 

In the context of audio signal analysis, abrupt signal transients often creates 

pre-masking and post-masking regions in time during which a listener will not 

perceive signals beneath the elevated audibility thresholds produced by a masker. 

 

Fig. 2. 4 Schematic representation of temporal masking effect [16] 

 

2.4  Psychoacoustic Model 

The MPEG audio algorithm compresses the audio data in large part by removing 

the acoustically irrelevant parts of the audio signal. Psychoacoustic model (PM) 

exploits the masking effect of the human auditory system to calculate maximum 

allowable amount of quantization noise. This maximum level is referred to masking 

threshold. PM also uses this information along with input signal to decide bit 
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allocation and block type switching. 

The psychoacoustic model used for AAC system is similar to the one used in 

MPEG-1 audio [1]. The simplified description of its process is as follows: 

1. Performing a 2048-point or 256-point FFT. 

2. Using FFT-transformed spectrum to calculate the unpredictability measure. 

3. Calculating the threshold (part I) by input signal energy and considering the quiet 

threshold. 

4. Computing perceptual entropy (PE) to determine which block size (long or short) 

to use. 

5. Calculating the minimum of masking threshold (part II) of each scalefactor band 

(see Section 3.6.2). 

6. Calculating the signal-to-mask ratio (SMR) for each scalefactor band, and sending 

them to the quantizer. 

 

The outputs from the psychoacoustic model are: 

1. A set of signal-to-mask ratios and thresholds. 

2. The delayed time domain data (PCM samples), which re-used by the MDCT. 

3. The block type for the MDCT. 

4. An estimation of how many bits should be used for encoding in addition to the 

average bits. 

A simplified block diagram of psychoacoustic model is plotted in Fig. 2.5. 
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Fig. 2. 5 Block diagram of psychoacoustic model [2] 

 

For more details about how psychoacoustic model implements, please see [2].

Delay threshold, blocktype, PE by one block 
if ( window_sequence(n) == EIGHT_SHORT_SEQUENCE && 

window_sequence(n-1) == ONLY_LONG_SEQUENCE) 

window_sequence(n-1) == LONG_START_SEQUENCE; 

Calculate threshold (Part II) 

Output buffer: block type, threshold, perceptual entropy, time signal 

Use short block 
N PE > switch_pe ?

Calculate unpredictability measure

Calculate threshold (Part I) 

Calculate perceptual entropy (PE)

Calculate threshold (short)

FFT 

Delay compensation 
for filterbank 

Input buffer 

Use long block
Y
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CHAPTER 3.  MPEG-2 AAC Algorithm 

3.1  Overview 

Started in 1994, the ISO/IEC MPEG-2 advanced audio coding (AAC) system 

was designed to provide best audio quality without any restrictions due to 

compatibility requirements. It was finalized as an international standard in 1997 April 

(ISO/IEC 13818-7). The MPEG-2 AAC scheme also constitutes the kernel of the 

MPEG-4 audio standard. All profiles (will be introduced later) defined in MPEG-2 

AAC also appear in MPEG-4 standard. 

AAC can include 48 full-bandwidth audio channels in one stream plus 15 low 

frequency enhancement (LFE, limited to 120 Hz) channels. The sampling rates 

supported by the AAC system vary from 8 to 96 kHz, as shown in Table 3.1. 

Sampling Frequency (Hz) Maximum Bitrate Per Channel (kbit/s) 

96000 576 
88200 329.2 
64000   384 
48000 288 
44100 264.6 
32000 192 
24000 144 
22050 132 
16000 96 
12000 72 
11025 66.25 
 8000 48 

Table 3. 1 MPEG-2 AAC sampling frequencies and maximum data rates 
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The basic structure of the MPEG-2 AAC system is shown in Fig. 3.1 and Fig. 3.2. 

We can briefly describe the AAC encoder process as follows. First, a filter bank is 

used to decompose the input signal into spectral components. Based on the input 

signal, an estimate of current signal-to-mask ratio is computed by psychoacoustic 

model, which will be utilized in quantization stage in order to minimize the audible 

distortion. 

After the analysis filter bank, the TNS technique permits the encoder to exercise 

control over the temporal fine structure of quantization noise. For multichannel 

signals, intensity stereo coding and M/S ( M as in middle, S as in side ) stereo coding 

are used to reduce irrelevancies and redundancies. The former allows for a reduction 

in the spatial information, the latter transmits the normalized sum and difference 

signals instead of the left and right signals. 

The time-domain prediction tool further increases the redundancy reduction of 

stationary signals. Next, in the quantizer, the spectral components are quantized and 

coded with the aim of keeping the quantization noise below the masked threshold. 

Finally, all quantized and coded spectral coefficients and control parameters are 

assembled to form the target AAC bit stream. 
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    In order to allow a tradeoff among the quality, the memory and processing power 

requirements, the AAC system offers three profiles: main profile, low-complexity (LC) 

profile, and scalable sampling rate (SSR) profile. 

 Main profile: In this configuration the AAC system provides the best audio 

quality at the given data rate. All AAC tools are applied except for gain control 

tool. Thus, it requires most computing power and memory usage. 

 Low-complexity (LC) profile: The prediction tool and gain control tool are not 

employed and TNS order is limited in this configuration. Comparing to main 

profile, this reduces processing power and memory requirements. 

 Scalable sampling rate (SSR) profile: Gain control tool is used only in this 

configuration. However, the prediction module is excluded and TNS order and 

bandwidth are limited. SSR profile provides the lowest complexity and a 

frequency scalable capability. 

Table 3.2 describes the tools used by three profiles. 

Tool Name Main Profile LC Profile SSR Profile 
Gain Control ╳ ╳ ○ 
Filter Bank ○ ○ ○ 
TNS ○  ○*  ○* 
Intensity/Coupling ○ ○ ╳ 
Prediction ○ ╳ ╳ 
M/S ○ ○ ○ 
Quantizer ○ ○ ○ 
Noiseless Coding ○ ○ ○ 

Table 3. 2 Tools used by three profiles 
* presented but limited 



  15

3.2  Filter Bank and Block Switching 

Filter bank is a fundamental component of MPEG-2 AAC system that transforms 

the time-domain input signals into a time-frequency representation. This conversion is 

done by a forward modified discrete cosine transform (MDCT) in the encoder. 

3.2.1  MDCT 

The modified discrete cosine transform (MDCT) is a Fourier-related transform 

based on the type-IV discrete cosine transform (DCT-IV), with the additional property 

of being lapped. This overlapping, in addition to the energy-compaction quality of the 

DCT, makes the MDCT especially attractive for signal compression applications, 

since it helps to avoid artifacts stemming from the block boundaries. 

In AAC system, the filterbank takes the appropriate block of input samples, 

modulates them by an appropriate window function, and performs the MDCT. Each 

block of input samples is overlapped by 50% with the immediately preceding block 

and the following block. 

The expression for the MDCT is  

∑
−
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0
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n
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where 

inx  = windowed input sequence, 
n   = sample index, 
k   = spectral coefficient index, 
i   = block index, 
N  = window length of the one transform window based on the window_sequence value, 

0n  = ( N/2 + 1 ) / 2, 
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3.2.2  Window Shape 

The frequency selectivity of an MDCT filter bank is dependent on the window 

function. A window function commonly used in audio coding is the sine window. This 

window produces a filter bank with good separation of nearby spectral components. 

Another window function provided in AAC system is the Kaiser-Bessel derived 

(KBD) window which allows optimization of the transition bandwidth and the 

ultimate rejection of the filter bank. 

Sine window coefficients are given as follows:  
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Kaiser-Bessel derived window coefficients are given as follows: 
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where 

'W , Kaiser-Bessel kernel window function is defined as follows: 
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α = kernel window alpha factor, 
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The AAC system allows seamless switching between KBD and sine windows. 

Perfect reconstruction is preserved in the filter bank during window shape changes. 

Fig. 3.3 shows the window shape switching process. The sequence of windows 

labeled A-B-C employs the KBD window, whereas the sequence D-E-F shows the 

transition to and from a single frame employing the sine window. 

Fig. 3. 3 Example of window shape switching process [1] 
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3.2.3  Block Switching 

To adapt the time-frequency resolution of the filter bank to the characteristics of 

the input signal, AAC system provides two kinds of transformation lengths: the long 

transformation with 2048 samples is termed a “long” sequence, while the short 

transformation occur in groups called “short” sequence. The short sequence is 

composed of eight short block transforms, and each with 256 samples. 

This block switching, however, potentially creates a problem of block synchrony 

between the different channels being coded. To maintain block alignment and to 

preserve the time-domain aliasing cancellation properties of MDCT and IMDCT, a 

“start” and “stop” bridge window is used during transitions. Fig. 3.4 shows the 

window overlap-add process appropriate for both steady-state and transient 

conditions[1]. 

Fig. 3. 4 Comparison of window overlap-add processes for steady-state and  
transient conditions 
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According to the window_sequence and window_shape element, different 

transformation windows are used. All possible combinations are described as follows: 

Let N = window length, we have:  
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c) EIGHT_SHORT_SEQUENCE 
 
The total length of the window_sequence together with leading and following zeros is 
2048-bit. Each of the eight short blocks are windowed separately first. The short 
block number is indexed with the variable j = 0,1,…,7. 
 
 window_shape = = KBD window 
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d) LONG_STOP_SEQUENCE 
 
 window_shape = = KBD window 
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3.3  Temporal Noise Shaping 

The handling of transient and pitched input signal has always been a challenge of 

today’s audio coding, which is due to the so called “pre-echo” phenomenon. 

3.3.1  Pre-echo Phenomenon  

In psychoacoustic model, we exploit the perceptual effect of simultaneous 

masking (see Chapter 2). However, from Fig. 2.4, we observed that pre-masking, in 

the order of 2-5 ms, is much shorter than post-masking. At the same time, to achieve 

perceptually transparent coding quality, quantization noise must not exceed the 

time-dependent masking threshold. 

This requirement is not easy to meet for perceptual coders. Because quantizing 

and coding in frequency domain implies that the quantization error introduced in this 

domain will be spread out in time domain after reconstruction. Assuming sampling 

rate is 44.1 kHz, AAC system performs 2048-point MDCT which means the 
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quantization noise can be spread out over a period of more than 46 ms. In particular, if 

quantization noise is spread out before the onsets of the signal and in extreme cases 

may even exceed the original signal in level during certain time. Fig. 3.5 gives a 

pre-echo phenomenon example. 

 

Fig. 3. 5 Pre-echo phenomenon example[39] 

Some traditional techniques have been proposed to avoid pre-echo phenomenon, 

including bit reservoir, gain control and adaptive window switching. Here, AAC 

provides a new powerful tool called temporal noise shaping (TNS) to further exercise 

control over the temporal fine structure of the quantization noise even within a filter 

bank window. 
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3.3.2  TNS Processing 

The basic concept of TNS can be outlined as follows: 

 Time-frequency duality considerations:  

It is well known that signals with an “unflat” spectrum can be coded efficiently 

either by directly coding spectral values or by applying predictive coding methods to 

the time domain signal [3]. According to duality between frequency and time domain, 

we can say that signals with an “unflat” time structure, that is, transient signals can be 

coded efficiently either by directly coding time-domain signals or by applying 

predictive coding methods to the spectral values. Table 3.3 summarizes this concept. 

Input Signal Optimum Coding 
Time Domain Freq. Domain Direct Coding Predictive Coding

 

Coding of 
spectral data 

Prediction in 
time domain 

  

Coding of 
time domain data 

Prediction in 
frequency domain

Table 3. 3 Optimum Coding Methods for Extreme Input Signal Characteristics [4] 

 Noise shaping by predictive coding:  

Although both open-loop and close-loop predictive coding techniques can be 

employed to provide coding gain, the distribution of quantization error in the final 

decoded signal are different. If a close-loop prediction scheme is used the error 
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introduced in the final decoded signal has a “flat” power spectral density (PSD). 

However, if an open-loop prediction scheme is used, the PSD of its quantization error 

is known to adapt to the PSD of the input signal. This effectively puts the quantization 

noise under the actual signal and therefore avoids problems of temporal masking in 

either transient or pitched signals. Fig. 3.6 shows this concept of DPCM coding. For 

more details, please refer to [3]. 

 

Fig. 3. 6 Comparisons of input (solid) and coding noise (dashed) spectrum [3] 

This type of linear prediction coding of spectral data is referred to as the TNS 

method. 

3.4  M/S Stereo Coding 

AAC system includes two techniques for stereo coding of signals – mid/side 

(M/S) stereo coding (also known as sum-difference coding) and intensity stereo 

coding. Both stereo coding strategies can be combined by applying them to different 
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frequency regions. 

Middle/Side (M/S) stereo coding primarily has two effects: one is to control the 

imaging of coding noise, as compared to the imaging of the original signal. In 

particular, this technique is capable of addressing the issue of binaural masking level 

difference (BMLD). The other is simply to reduce interchannel redundancies. 

3.4.1  Binaural Masking Level Difference 

The masking threshold of a signal can sometimes be markedly lower down when 

listening by two ears than when listening by only one. Considering the situation 

shown in Fig. 3.7(a). White noise from the same noise generator is fed into both ears 

via headphones. Pure tones, also from the same signal generator, are fed separately 

into each ear and mixed with the noise. Thus the total signals in two ears are identical. 

Assuming that the level of the tone is adjusted until it is masked by the noise, i.e. it is 

at its masking threshold, and let this level be L0 dB. Now that we invert the tone 

signal at only one ear, i.e. the phase of the tone signal is shifted by 180°, as shown in 

Fig. 3.7(b). The result is that the tone becomes audible again. The tone can be 

adjusted to a new level, Lπ, and it is again its masking threshold. The difference 

between the two levels, L0 － Lπ (dB), is known as a binaural masking level 

difference (BMLD). 
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Fig. 3. 7 Illustration of the situation in which BMLD occurs [8] 

BMLD value may be as large as 15 dB at low frequencies (around 500 Hz), 

decreasing to 2 dB for frequencies above 1500 Hz. 

This phenomenon is not limited to pure tones. Similar effects have been 

observed for complex tones, transient and pitched signals. Our ability to detect and 

identify the signals depends on the phase of the signal and noise presented (or lack of 

correlation in the case of noise). 

3.4.2  M/S Stereo Threshold 

Due to the BMLD phenomenon stated previously, to prevent stereo unmasking, 

M and S, left and right thresholds are again calculated: 
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where, 
Mthr, Sthr, Rthr, Lthr are thresholds of M, S, right and left channel. 
Mengy, Sengy, Rengy, Lengy are spread energy of M, S, R, L channel. 
Mfthr, Sfthr, Rfthr, Lfthr are final thresholds 
bmax represents BMLD protection ratio, as can be calculated from 
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where, bval(b): median bark value of bth partition. 

 

Fig. 3. 8 BMLD protection ratio (bmax) [6] 
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3.4.3  L/R and M/S Switching 

If the difference between THRl and THRr is less than 2 dB, and the bits required 

is fewer than L/R mode, the coder will switch to M/S mode, i.e. the left signal for that 

given band of frequencies is replaced by 
2

RLM +
=  and the right signal is replaced 

by 
2

RLS −
= . 

3.5  Intensity Stereo Coding 

Intensity stereo coding exploits the fact that the human perception of high 

frequencies components relies on the analysis of the energy–time envelopes [7][8] to 

increase the reduction of irrelevancy at high frequencies. This is done based on the 

channel-pair concept as used for M/S stereo, the following explanation will use L/R 

pair for convenience. Instead of transmitting both left and right channel signals, a 

single representing signal plus directional information will be transmitted only. Thus, 

the reconstructed signals for the left and right channel consist of differently scaled 

versions of the same transmitted signals which have different amplitudes but have the 

same phase information. The energy-time envelope is preserved by means of the 

scaling operation; however, due to the loss of phase information, the waveform of the 

original signal is generally not preserved. The directional information, is_position, is 

computed as: 
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Next, the intensity signal spectral coefficients speci[i] are calculated for each 
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scalefactor bands (see section 3.6.2) by adding spectral samples from the left and right 

channel (specl[i] and specr[i]) and rescaling the resulting values like 

][
][

])[][(][
sfbE
sfbE

ispecispecispec
s

l
rli ×+=                             (3.10) 

 
where 
sfb is the index of scalefactor band, 
NINT means “nearest integer”, 
El, Er, Es represent the energy of left, right and sum channel. The sum channel is 

calculated by summing the squared spectral coefficients. 

The signal flow of an intensity stereo coding / decoding scheme is shown in the 

Fig. 3.9. 

 

Fig. 3. 9 signal flow of an intensity stereo coding / decoding scheme [14] 

3.6  Prediction 

Prediction is used for an improved redundancy reduction and is especially 

effective if the signal is more or less stationary. Since a window sequence of type 

EIGHT_SHORT_SEQUENCE indicates signal changes, i.e. non-stationary signal 
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characteristics, prediction is used only for long window. There is one corresponding 

predictor for each spectral component, resulting in a bank of predictors. 

3.6.1  Predictor Structure 

Backward-adaptive predictors are adopted in AAC system. The predictor 

coefficients are calculated from preceding quantized spectral components in the 

encoder as well as in the decoder. Thus, no additional side information is needed for 

the transmission of predictor coefficients. A second-order backward-adaptive lattice 

structure predictor is used for each spectral component, so that each predictor is 

working on the spectral component values of the two preceding frames. 

Due to the realization in a lattice structure, the predictor contains two basic 

elements that are cascaded. The overall estimate results in 

)()()( 2,1, nxnxnx estestest +=                                       (3.11) 

In each element, the part 2,1),(, =mnx mest , of the estimate is calculated 

according to: 

)1()()( 1, −×××= − nrankbnx mmmest                               (3.12) 

where backward prediction error at stage m, )(nrm , is calculated as: 

)()()1()( 11 nenkbnrnr mmmm −− ××−−=                             (3.13) 

and forward prediction error at stage m, )(nem : 

)()()( ,1 nxnene mestmm −= −                                     (3.14) 
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The attenuation factors, a and b are chosen as a = b = 0.953125.  

 
And a least-mean-square (LMS) approach is used here, the prediction coefficients, 

mk , are calculated as follows: 
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with 
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where α  is an adaptation time constant which determines the influence of the 

current sample on the estimate of the expected values. The value of α  is chosen to 

be 0.90625. 

More explanations can be found in [9][10]. Fig. 3.10 shows the second-order 

backward-prediction lattice structure. 

 

Fig. 3. 10 The second-order backward-prediction lattice structure [1] 
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3.6.2  Predictor Control 

A predictor control is required to guarantee that there is a prediction gain. The 

decision, whether the predictor is on or off, is made in the unit of one scalefactor band 

(see Section 3.6.2). Two considerations are taken into account - First, if prediction 

gives a prediction gain in that scalefactor band, and all predictors belonged switch on 

or off accordingly. Second, whether the overall coding gain of current frame 

compensates at least the additional bits needed for the prediction side information. 

Prediction is activated only if the above two conditions are met. In order to increase 

the stability of the predictors, a cyclic reset mechanism is applied, in which all 

predictors are initialized in a certain time interval. The whole set of predictors are 

subdivided, in an interleaving way, into 30 so-called reset groups.  

Reset Group Number Predictors of Reset Group 
1 P0, P30, P60, P90, …. 
2 P1, P31, P61, P91, …. 
3 P2, P32, P62, P92, …. 

…. …. 
30  P29, P59, P89, P119, ⋯ 

Table 3. 4 Reset groups of predictors [2] 

Fig. 3.11 shows the block diagram of the prediction unit for one single predictor 

of the predictor bank. P – predictor ; Q – quantizer ; REC – reconstruction of last 

quantized value. For more detailed description of the principles can be found in [11]. 
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Fig. 3. 11 Block diagram of prediction unit for one scale factor band [2] 

3.7  Quantization 

The primary goal of quantization is to quantize spectral data in such a way that 

the quantization noise fulfills the demands of the psychoacoustic model, and at the 

same time, the bits required must also be below a certain limit, normally the average 

number of bits available for a block of audio data. 

3.7.1  Nonuniform Quantization Function 

The nonuniform quantizer used in AAC is shown as follow: 
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where MAGIC_NUMBER is defined to 0.4054, and scalefactor will be described in 
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Section 3.6.2. 

The main advantage of nonuniform quantizer is the implicit noise shaping 

depending on the coefficient amplitudes. Its increasing signal-to-error ratio (SNR) 

with rising signal energy is much lower than that in a linear quantizer. 

3.7.2  Scalefactor Band 

Noise shaping in quantization process is done by using scalefactors. For this 

purpose, spectrum is divided into several (depending on sampling rates) scalefactor 

bands which is very similar to the critical bands of human auditory system. Each 

scalefactor band has a scalefactor that represents a certain gain value. All spectral 

coefficients belong to that scalefactor band will be rescaled by their scalefactor. The 

noise shaping is therefore achieved because amplified coefficients have larger 

amplitudes, and thus obtained a higher SNR after quantization. 

3.7.3  Iteration Process 

Optimum quantization is done by an iteration process consisting of two nested 

loops, an inner loop which is aimed at controlling coding bits required and an outer 

loop which is used to shape the quantization noise. The overall iteration process can 

be shown as Fig. 3.12. 
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Fig. 3. 12 A simplified block diagram of iteration process 

 

BEGIN 

Calculation of number 
of available bits 

Reset of iteration variables

All spectral values zero? 

Outer Iteration Loop 

Calculate the number  
of unused bits 

RETURN 

yes 

no
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3.7.3.1  Inner Iteration Loop 

The task of inner iteration loop is controlling the coding bit required by adjusting 

quantizer step size until all spectral data can be encoded with the number of available 

bits. If the number of bits needed for encoding is higher than available bits, the 

quantizer step size is increased, and the process will repeat until reaching its goal. 

Thus, inner iteration loop is also called rate control loop. A simplified processing 

description is as follows: 

1. At the beginning, the spectral data are quantized by nonuniform quantization 

function (3.18). 

2. Number of bits required to encode the quantized data is counted. 

3. If the number of bits required is higher than the number of available bits, the 

quantizer step size is increased, and go back to (1), repeating the whole process. 

4. Else, the inner iteration loop is ended. 

A simplified block diagram of inner iteration loop is shown in Fig. 3.13. 
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Fig. 3. 13 A simplified block diagram of inner iteration loop 

3.7.3.2  Outer Iteration Loop 

The task of outer iteration loop is amplifying the scalefactor bands in such a way 

that the demands of the psychoacoustic model are achieved. Thus, outer iteration loop 

is also called distortion control loop. A simplified processing description is as follows: 

1. At the beginning, no scalefactor is amplified. 

2. Inner iteration loop is called. 

3. The distortion causes by quantization of every scalefactor band is calculated. 

BEGIN 

Nonlinear quantizer 

Noiseless coding 
(count number of bits used)

Number of bits used less than 
number of available bits ? 

END 

yes 

no Increase quantizer  
step size 



  38

4. The actual distortion is compared with the permitted distortion calculated by 

psychoacoustic model. 

5. If it is the best result so far, store this result, and this process stops. Note that this 

iteration process is not always converges. 

6. Amplifying the scalefactor band which has a higher distortion than the allowed.  

7. If all scalefactor bands have been amplified, this process stops. 

8. If the distortions of all scalefactor bands are smaller than permitted, this process 

stops. 

9. Otherwise, the whole process will repeat. 

A simplified block diagram of outer iteration loop is shown in Fig. 3.14. 
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BEGIN 

Inner Iteration Loop 

Calculate distortion in all 
scalefactor bands 

Best result so far? 

Amplify sfbs with more 
than the allowed distortion

RETURN 

yes

no

All sfbs amplified? 

At least one band with more 
than the allowed distortion?

END 

Store best result 

Store best result 
no

no

yes

yes
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Fig. 3. 14 A simplified block diagram of outer iteration loop 

3.8  Noiseless Coding 

Noiseless coding is used to further reduce the redundancy of scalefactors and the 

quantized spectrum. This is done by lossless packing of quantized spectral data 

exploiting statistical dependencies and other properties. 

3.8.1  Grouping and Interleaving 

As for the window sequence of type EIGHT_SHORT_SEQUENCE, there could 

be a possibility that some of eight short blocks are very different from the other. For 

example, the first three sets are nearly silent in time domain, the next two sets are 

actually where the onset event happens, and the final three are the decay of the event. 

In such cases, sets of 128 coefficients that have similar statistics are grouped together 

and interleaved to form a single spectrum. Fig. 3.15 shows the grouping example 

stated above. 

 

Fig. 3. 15 Example for short window grouping 

To be specific, assume that before interleaving the spectral coefficients are 



  41

indexed as  

C[g][w][b][k] 
 

where 
g is the index of groups, 
w is the index of windows within a group, 
b is the index of scalefactor bands within a window, 
k is the index of coefficients within a scalefactor band. 

After interleaving the coefficients are indexed as 

C[g][b][w][k] 

This has the advantage of combining the high-frequency zero-valued coefficients (due 

to band-limiting) within each group. Fig. 3.16 shows the spectral order within one 

group before interleaving, and Fig. 3.17 shows the spectral order after interleaving. 

 

Fig. 3. 16 Spectral order within one group before interleaving 

 

Fig. 3. 17 Spectral order after interleaving 

3.8.2  Spectral Clipping 
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The first step of noiseless coding is a method of dynamic range compression that 

may be applied to the spectrum. Up to four coefficients can be coded separately as 

magnitudes in excess of one, with a value of ± 1 left in the quantized coefficient 

array to carry the sign. The “clipped” coefficients are coded as integer magnitudes and 

an offset from the base of the coefficient array to mark their location. This method is 

applied only if it results in a net savings of bits. 

3.8.3  Huffman Coding 

A variable-length Huffman coding is employed to compensate the nonuniform 

probability distribution for the levels in quantizer and to represent n-tuples of 

quantized coefficients. In the AAC system, Huffman codewords are drawn from one 

of 11 codebooks. The maximum absolute value of the quantized coefficients that can 

be represented by each Huffman codebook and the number of coefficients in each 

n-tuple for each codebook is shown in Table 3.4. There are two codebooks for each 

maximum absolute value, with each representing a distinct probability distribution. 

The best fit is always chosen. 

Codebook Index n-Tuple Size Maximum Absolute Value Signed 

0  0  
1 4 1 Yes 
2 4 1 Yes 
3 4 2 No 
4 4 2 No 
5 2 4 Yes 
6 2 4 Yes 
7 2 7 No 
8 2 7 No 
9 2 12 No 
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10 2 12 No 
11 2 16(ESC) No 

Note that codebook 0 indicates all coefficients within that scalefactor band are 

zero, and codebook 11 can especially represent those who have an absolute value 

greater than or equal to 16, and a special escape coding mechanism is used to 

represent them. For each coefficient magnitude greater or equal to 16, an escape 

sequence is appended, as follows: 

escape sequence = <escape_prefix><escape_separator><escape_word> 
 
where 
<escape_prefix> is a sequence of N binary “1’s”, 
<escape_separator> is a binary “0”, 
<escape_word> is an N+4 bit unsigned integer, MSB first and N is a count that is 
just large enough so that the magnitude of the quantized coefficient is equal to  

><++ wordescapeN _2 )4( . 

 

3.8.4  Sectioning 

The noiseless coding segments the scalefactor bands into sections. Each section 

uses only one Huffman codebook, thus the number of bits needed to represent the full 

block is minimized. 

Section is dynamic and typically varies block from block. This is done using a 

greedy merge algorithm by starting with the maximum possible number of sections 

(only one scalefactor band per section). Sections are merged if the resulting merged 

section needs lesser number of bits. If the sections to be merged use different 

Huffman codebooks, the codebook with higher index is always chosen. 

Table 3. 5 Huffman codebooks [4] 
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3.9  Gain Control 

The gain control module is employed only in the SSR profile. It consists of a 

polyphase quadrature filter (PQF), gain detectors, and gain modifiers. By neglecting 

the signals from the upper bands of PQF, this output bandwidths can be 18, 12, and 6 

kHz when one, two, or three PQF outputs are ignored, respectively.  

The advantage of this scalability is that the complexity can be reduced as the 

output bandwidth is reduced. 

3.9.1  Polyphase Quadrature Filter 

The PQF splits each audio channel’s input signal into four frequency bands of 

equal width. The coefficients of each band’s PQF are given by 

30,950),(
16

)52)(12(cos
4
1

≤≤≤≤⎥⎦
⎤

⎢⎣
⎡ ++

= innQnihi
π

   (3.19) 

Where, 

9548),95()( ≤≤−= nnQnQ  

The Q(n) is the filter coefficients that are standardized in [2]. 

3.9.2  Gain Detector 

The gain detector produces gain control data including number of bands 

receiving gain modification, and the number of modified segments and indices 
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indicating the location and level of gain modification for each segment. Note that the 

gain detector has a one-frame delay. 

3.9.3  Gain Modifier 

The gain modifier applies gain control to the signal in each PQF band by 

windowing the signals of the gain control function. Fig. 3.18 shows the block diagram 

of gain control module. 

 

Fig. 3. 18 Block Diagram of AAC encoder gain control module [2] 

3.10  Bitstream Format 

There are two kinds of transport syntax that have been standardized in AAC:  
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 Audio Data Interchange Format (ADIF): The audio bitstream contains one 

single header with all information necessary to control the decoder. The main 

application of ADIF is exchange of audio files. 

ADIF block block block block block 

 Audio Data Transport Stream (ADTS): The audio bitstream consists of a 

sequence of frames with headers similar to MPEG-1 audio frame headers. The 

encoded audio data of one frame is always contained between two sync words. 

ADTS block ADTS block ADTS block 

 

There are mainly five elements in the bitstream: audio data element, data stream 

element (DSE), program configuration element (PCE), fill element (FIL), and 

terminator (TERM). Audio data element also consists of four possible elements: 

single channel element (SCE), channel pair element (CPE), coupling channel element 

(CCE), and low frequency enhancement channel element (LFE).  

SCE contains coded data for a single audio channel. CPE contains data for a pair 

of channels, and the two channels may share common side information. CCE 

represents the information for intensity stereo coding. LFE gives the low frequency 

(under 120 Hz) audio data. PCE contains program configuration data, such as profile, 

sampling rate, channel information, etc. FIL is used when transporting over a constant 

rate channel to adjust instantaneous bitrate. DSE contains any additional data that is 

not part of the audio information itself. TERM indicates the end of a raw data block. 

Example of possible bitstreams are: 
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 The syntax of a single channel element (SCE)  

 

 Mono signal 

 

 Stereo signal 

 

 5.1 channel signal 

 

 If the bitstreams are to transmit over a constant rate channel  

 

 If the bitstreams are to carry ancillary data and run over a constant rate channel 
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CHAPTER 4.  MPEG-2/4 LC AAC Encoder 

Optimization 

Comparing with main profile, low complexity (LC) profile significantly reduces 

memory usage and computational effort, but still maintains good quality [1]. 

Therefore, we choose low complexity profile to implement and this is also the most 

commonly used profile. 

4.1  Complexity Analysis 

Table 4.1 shows the computational demand of a standard AAC LC 

implementation from MPEG reference coder: 

Module Percentage 

Psychoacoustic Model 22% 

Filter Bank 5% 

Quantization 64% 

Others 9% 

Table 4. 1 Distribution of resources in AAC-LC encoder [21] 

The most demanding module is quantization due to the presence of nested loops. 

Psychoacoustic model also takes up to 22% computation effort. Besides these two 

critical modules, our optimization covers other modules as well. 



  49

4.2  Removal of Block Switching 

Modern audio compression algorithm often adopts dynamic block switching to 

avoid pre-echoes (see Section 3.3.1). In general, psychoacoustic model decides 

whether block type changes or not depending on perceptual entropy. However, the 

calculation of perceptual entropy requires lots of computation effort. 

A related research [22] shows that encoding without block switching didn’t cause 

significant negative effect, TNS module in AAC system also aims at controlling 

pre-echo phenomenon which can compensate the lack of block switching. Under these 

considerations, we remove the mechanism of block switching. For this, not only the 

calculation of perceptual entropy, but also the complexity of block synchrony and 

short block related grouping and interleaving algorithm are eliminated. 

4.3  Fast MDCT 

AAC uses MDCT with 50% overlap in its filterbank module. However, there are 

lots of multiply-accumulation operation within this module, thus adopting a fast 

algorithm is necessary. According to [20], MDCT can be rewritten as the real part of 

odd-time odd-frequency discrete Fourier transform (O2DFT), and finally need only 

N/4-point FFT calculation: 

Coefficient number k of O2DFT of length N is defined as:  
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MDCT can be rewritten as the real part of O2DFT: 
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[26][20] further presented a fast algorithm for calculating: 
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Through this process introduced in [26][20], only even indices are calculated 

because of the basic symmetries of the O2DFT. Another saving of 50% computation is 

calculating two values simultaneously, as shown in (4.5). Finally, only one N/4 point 

FFT is needed with some overhead of pre and post rotation of the sample point. 
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4.4  Simplified TNS 

In general, TNS method is the linear prediction performed in frequency domain. 

We use the popular Levinson-Durbin recursive procedure to achieve linear predictive 

coding (LPC). The TNS prediction order of LC profile is designed to be 12 as 

described in [2]. Fig. 4.1 shows the basic TNS implementation flow: 

 

Fig. 4. 1 Original TNS implementation flow 

We are curious about how often TNS is active, therefore, the percentage of 

whether TNS is finally applied is statistically measured. Table 4.2 shows the result. 

TNS filtered data (ON), or 
the same as input data (OFF) 

N

12th-order Levinson-Durbin Recursion 

TNS Filter 

Set up prediction 

12th-order Autocorrelation  

Y 
 Gain > TNS Threshold ?

ON OFF

Input data

coefficients 

Gain Computation
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Test audio sample Active percentage 

Violoncello[23] 5.5% 

Quartet[23] 19.9% 

Soprano[23] 6.7% 

Radio[24] 4.3% 

Table 4. 2 the percentage of TNS being active 

We found that the active percentage is pretty low, however, the prediction gain 

has to be computed every time no matter TNS is finally on or off. Generally, the 

procedure to obtain prediction gain (including autocorrelation and Levinson-Durbin 

recursion blocks) requires as much computing effort as TNS filter, see Table 4.3. If 

further taking the active frequency into account, prediction gain computation actually 

contributes the most complexity in TNS module. Thus, if we can decide whether TNS 

is on or off earlier, that is, before 12th-order LPC has been completed, the complexity 

will be reduced. 

Block Percentage 

Gain Computation 49.5% 

TNS Filter 49.5% 

Others 1% 

Table 4. 3 Distribution of resources in TNS module (TNS is finally “ON” case) 

To eliminate this over computation, we propose using 6th order prediction gain to 

determine if LPC procedure will go on. Fig. 4.2 shows the modified TNS 

implementation flow. 



  53

 

Fig. 4. 2 Modified TNS implementation flow 

The matching percentage of this early-deciding mechanism is about 90% in 

average. Table 4.4 shows some results. 

 

TNS Filter 

Set up prediction 

TNS filtered data (ON), or 
the same as input data (OFF) 

6th-order Levinson-Durbin Recursion  

6th-order Autocorrelation  

NY 
Gain > TNS Threshold ?

ON OFF 

Input data 

Gain > 6th_order_TNS_Threshold ?

7~12th-order Levinson-Durbin Recursion 

7~12th-order Autocorrelation  

N

Y

coefficients
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Test audio sample Matched(1) Missed(2) Over(3) 

Violoncello 90.0% 1.5% 8.5% 

Quartet 87.9% 3.0% 9.1% 

Soprano 96.3% 0.05% 3.6% 

Radio 95.9% 0.4% 3.7% 

Table 4. 4 Comparisons between original and modified TNS 

(1) Matched – Both 6th-and 12th-order prediction gain made the same decision. 
(2) Missed – The TNS filter should be turned on in original case, however, it is set to 

be off by mistake in 6th-order LPC stage. 
(3) Over – Though TNS filter should finally be turned off, 6th-order LPC wrongly 

passes the calculation to 12th order. Note this part doesn’t really cause the 
wrong implementation, since the TNS filter will still be turned off in 
12th-order LPC stage. 

Only the “missed” portion indicates how much that proposed modified TNS 

method leads to a different result as comparing to original TNS mechanism. Thus, 

from Table 4.4, we can say this modified TNS method has very much the same effect 

as the original TNS method, but the computation effort is a lot reduced in the same 

time. 

The complexity of LPC by Levinson-Durbin approach is generally known as 

O(N2), where “N” denotes the prediction order. Therefore, 6th-order LPC has only 

one-fourth of complexity as comparing to 12th-order LPC. The computation reduction 

in this modified TNS method is achieved only in TNS-inactive frame. From Table 4.2, 

roughly 91% frames are originally TNS-inactive. And from Table 4.4, the “over” 

portion should be excluded, almost 84% of total frames are benefited from this 

modified TNS method. In this way, the computation effort within TNS module can be 
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reduced to about %5.351%14
4
1%2

4
1%84 =×+×+× missed of the original TNS 

method.  

4.5  Simplified M/S Stereo Coding 

Although the heart of mid/side stereo coding is simply calculating the sum and 

difference between two channels, the process to determine whether mid/side stereo 

coding should be applied or not requires much more effort. Bit-consuming of both 

normal modes (L/R) and M/S mode are calculated and compared. The mode with 

fewer bits requirement will be chosen. And the decision is also made scalefactor band 

by scalefactor band. 

Usually, except the multilingual or 1/+1 case, the data similarity between channel 

pair is quite high. We wonder if the decision can be made more easily. Therefore, we 

try to investigate how often the encoder decides switching to M/S mode. 

Test audio sample M/S mode percentage 

Elliott[24] 88.16% 

Quartet 88.84% 

Devic[24] 95.03% 

Sandee[24] 88.34% 

Soprano 89.46% 

Table 4. 5 The percentage that encoder switching to M/S mode 

We found the encoder decides to switch to M/S mode very often, at least 80% 

which is shown in Table 4.5, and nearly 90% scalefactor bands of a single frame will 
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be switched to M/S mode. So we think the decision can be made more easily, and 

shouldn’t cause too much overhead. Such as using the energy of the entire frame as 

what MPEG-1 layer III does. Also, by observing that the energy ratio of channel pair 

of the scalefactor band that switches to M/S mode is often around 1~2, as you can see 

in Fig. 4.3, whereas the energy ratio of the scalefactor band that remains in L/R mode 

is usually larger, as shown in Fig. 4.4. 

Also, since a frame with lower energy is less benefited from M/S stereo coding, 

we should save computation for these frames, which usually occurs in the beginning 

and the end of the song, or the near silence in the middle of the song. 

Thus, the proposed implementation is setting a first threshold_1, when the 

average energy of channel pair is below this threshold, M/S stereo mode will be 

enabled to the entire frame temporarily. And then, further takes the energy ratio into 

consideration, a second threshold_2 is set, when the energy ratio of the entire frame of 

channel pair exceeds this threshold, this frame will remain in L/R mode still, even its 

energy is quite large that has been set M/S mode enabled in the first stage. The 

proposed decision flowchart can be found in Fig. 4.5. 

Because the energy of entire frame has been pre-calculated for the use in 

quantizaton module, there are only one energy ratio calculation and few comparisons 

need to be computed to make the decision. 
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Fig. 4. 3 Energy ratio of channel pair of the scalefactor band switches to M/S mode 

 

Fig. 4. 4 Energy ratio of channel pair of the scalefactor band remains in L/R mode 
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The energy ratio is defined as: 
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Fig. 4.5 blow shows the flowchart of the proposed M/S stereo switching decision 

scheme. 

 

Fig. 4. 5 The flowchart of the proposed M/S stereo decision scheme 

4.6  Quantization Optimization 

From Table 4.1, we find that quantization consumes most computation power, 

Calculate “energy_ratio” of channel pair 

Max(energyL,energyR) 
>  threshold_1 ? 

energy_ratio > threshold_2 ? 

L/R mode M/S mode 

yes

no 

no 

yes 

Energy_Left  Data_Left Energy_Right  Data_Right 
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and this is primarily due to the nested inner and outer loops. We based on FAAC’s[15] 

implementation of quantization and further do some modifications. 

Our encoder performs an average bit rate (ABR) encoding, in this way, the inner 

loop can be simplified to merely Huffman coding without bit rate control. The nested 

loops now have only outer loop left. The relationship between ABR encoding and 

single loop quantization can be shown as follows: 

 

Fig. 4. 6 The relationship between ABR encoding and single loop quantization 

Adjust “quality” according to desired 
bitrate and bits used already 

Calculate allowed distortion, xmin[sfb], and 
it is adjusted by “quality” 

BEGIN 

Distortion control loop 
(Outer loop) 

END 

Huffman Coding 
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4.6.1  Scalefactor Prediction 

Now our encoder performs single loop quantization, thus the complexity 

primarily lies in the distortion control loop. The distortion control is achieved by 

adjusting scalefactors of scalefactor bands so that a higher SNR will be obtained. Due 

to the usually quasi-stationary property of audio and speech data, it is intuitively to 

think of using previous frame’s scalefactor as the initialization of current frame’s 

scalefactor. However, to prevent special cases, some thresholds should be set to make 

sure when special case occurs, the original initialization will be used instead. If an 

unreasonable predicting scalefactor is adopted, more loops may be required to achieve 

distortion control. Table 4.6 shows some results of the average loop count of quantizer 

before and after scalefactor prediction. 

Test audio sample Original Modified 

Violoncello 9.22 6.55 

Quartet 8.61 6.35 

Soprano 8.45 6.80 

Radio 7.96 6.57 

Bass[23] 8.27 6.45 

Table 4. 6 Average iteration loop counts of quantizer 

From experimental results, 20% of iteration loop counts can be reduced in 

average. 
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4.6.2  Simplified QuantizeBand() 

By statistical measure, we found QuantizeBand()[15] is the most computation 

demanding function in quantization module. Over 50% of quantization computing 

effort spent in this function. Thus, we should try to do some optimization here. 

What QuantizeBand() actually dose is exploiting Takehiro IEEE 754 Hack, a fast 

method turning float digits into integer digits, to perform quantization. However, the 

vital drawback of this method is that a large amount of memory is needed for audio 

fine-tune. Here, a large table of 8192 entries is required. By observation, we find the 

relationship between the input and output of QuantizeBand() function is quite simple 

and could be much easier to realize. Only a five-entry lookup table and one linear 

approximation segment are needed. In average, most inputs of QuantizeBand() are 

distributed within the range x ＜ 4.51, see Table 4.7. 

Iutput Range Percentage 

x ＜ 4.51 99.10% 

x ≧ 4.51 0.90% 

Table 4. 7 The distribution of input range of QuantizeBand() 

 Thus, applying a small lookup table can largely save computation power. Not 

only the table size is significantly reduced, the approximating error is also quite small, 

as you can see in Fig. 4.7.  
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Fig. 4. 7 The error magnitude of the approximating QuantizeBand() function 

 
 

4.7   Math Functions Approximation 

There are lots of complicated mathematical calculations in AAC encoding 

system which are originally solved by math.h of C Library. However, it is unfeasible 

when implementing on some power-limited devices. Thus, a simplified approach to 

these math functions is necessary. Some of them may use simply linear approximation, 

and some of them can play little tricks to approximate 

4.7.1  TNS 

When TNS is applied, the reflection coefficients are therefore needed to be 

transmitted. However, if we transmit reflection coefficients directly, it would cost too 



  63

many bits which is undesirable. Thus, these reflection coefficients will be quantized, 

and only index will be transmitted. As we know, the reflection coefficients of LPC 

always lie within the interval +1 ~ -1. The quantization is done by a sin-1 function.  

iqfackindex n ×= − )(sin(int) 1                                          (4.8) 

where, 
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where, 
coeffRes = reflection coefficient resolution, 
kn = reflection coefficient. 
 
For simplicity and generality, some rounding factor in (4.7) and (4.8) are eliminated. 

When the coefficient resolution is defined as a constant, this quantization can be 

done by using a 2coeffRes-entries lookup table. 

4.7.2   Quantization 

Most of those unusual math functions appear in quantization module. And they 

especially need a simplified implementation. 
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 2-0.25x  

In the function BalanceEnergy()[15], 2-0.25x is used. Since x is an integer, it 

makes this function much easier to approximate.  

First, x can be decomposed into ( 4a + b ), thus, 2-0.25x can be rewritten as  

bax 4
1

25.0 222 ×=−                                               (4.12) 

where a and b are both integers, especially, b is always less than 4.  

Therefore, a2 can be implemented by a simple shift. And since b
4
1  can only be 

four numbers: 0.0, 0.25, 0.5, and 0.75. If three constants, 20.25, 20.5, and 20.75, are 

predefined, and 2-0.25x can thus be easily realized by a shift and a multiplication. In 

this way, only small computing effort and small extra memory requirement are 

needed. 

Now you may wonder how we obtain a and b
4
1 ? First, a = ( x >> 2 ) which is 

quite simple. To obtain b
4
1 , let x = ( x4 x3 x2 x1 x0 )2. Apparently, b is the first LSB and 

the second LSB of x:  

x = ( x4 x3 x2 x1 x0 )2 b
4
1  

( x4 x3 x2 0 0 )2 (0.00)10 

( x4 x3 x2 0 1 )2 (0.25)10 

( x4 x3 x2 10 )2 (0.50)10 

( x4 x3 x2 11 )2 (0.75)10 

Table 4. 8 The relationship between x and 1/4b b
4
1
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Therefore, 
b

4
1

2  can be easily detected by ( x & 0x03 ). 

 ln(x)  

Natural logarithm is widely used in quantization module. This simplified 

approach is basically based on the linear approximation. Thanks to the simple division 

and multiplication identities of logarithm, the range needed to be actually 

approximated can be narrowed. The “actually” mentioned here, will be explained 

later. 

To do the linear approximation, we must know what range the input, we say x 

here, of logarithm is distributed. It is statistically measured that the range is roughly 

from 10-6 to 500. We first perform the linear approximation to the range of 0.5 < x < 

5.0 which is divided into 9 segments. And this range is what we mean 

“actually-approximated” range. The remaining range exploits the division and 

multiplication properties of logarithm: 

baba loglog)log( +=×                                         (4.13) 

bab
a loglog)log( −=                                          (4.14) 

They are not approximated directly, but consume an extra multiplication and an 

addition, and then take the already-build linear approximation of the range 0.5 < x < 

5.0 as a lookup table. 

For example, x = 0.0452,  

)500ln()500()ln( −+×= xLx                                     (4.15) 
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Another example, x = 76.42, 

100ln)01.0()ln( +×= xLx                                       (4.16) 

Here, L(．) denotes the already-build linear approximation of the range 0.5 < x < 5.0. 

Though some extra works are needed, the memory is saved and approximation 

error is reduced. This approach has the same effect of dividing the ranges 0.1 < x < 

0.5, 10-2 < x < 10-1,…., 10-6 < x < 10-5, 5.0 < x < 50.0, and 50.0 < x < 500.0 into 9 

segments separately, and approximating accordingly. This same-effect dividing is 

quite reasonable. As shown in Fig. 4.8, we all know the curve of logarithm gets 

smoother when x increases, whereas the curve of logarithm becomes sharper as x 

decreases. This approach is just well fitted to this characteristic of logarithm curve, 

which uses more segments to approximate smaller x, and uses fewer segments to 

approximate larger x. 

 

 

Fig. 4. 8 The curve of nature logarithm 
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( )

tmp rbandsscalefactototal
rbandscalefactocurrnetrbandsscalefactototal 3.0

_
__1.0

+
−∗

 

This calculation appears in the function CalcAllowedDist()[15] of quantization 

module. This calculation is quite annoying since both of tmp and its exponent are 

variables. The proposed approach exploits the simple properties of logarithm again. 

For simplicity, total_scalefactorbands and current_scalefactorband will be 

abbreviated as total_sfbs and current_sfb separately. 

First, the exponent can be rewritten as  

( )
)

_
_(4.03.0

_
__1.0

sfbstotal
sfbcurrent

sfbstotal
sfbcurrnetsfbstotal

−=+
−×                        (4.17) 

Thus, to obtain 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
sfbstotal

sfbcurrent
_

_ only one division is needed in first scalefactor band, the 

remaining scalefactor bands can use addition instead. 

 

Now let tmp sfbstotal
sfbcurrnet

C _
_4.0 −

= , and taking logarithm of C with base 2: 

)(log)
_

_4.0(log 22 tmp
sfbstotal

sfbcurrentCB ×−==                        (4.18) 

The reason why we choose logarithm with base 2 is that this can simplify the 

implementation, and you will see later.  

Thus,  

)
_

_(4.0log)
_

_4.0( 2

22 sfbtotal
sfbcurrenttmp

sfbstotal
sfbcurrent

B tmpC
−×−

===              (4.19) 

To solve this equation, there are two functions have to be implemented: 2x and 
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log2(x). Fortunately, these two functions are familiar, we’ve implemented similar 

functions before. First, log2(x) can be realized by ln(x) linear approximation table as 

discussed previously, using the property of logarithm which can be used to change 

from one logarithm base to another: 

)(log
)(log)(log

b
xx

a

a
b =                                             (4.20) 

Therefore, log2(x) can be obtained by using ln(x): 

)ln(
)2ln(

1
)2ln(
)ln()(log 2 xxx ×==                                   (4.21) 

Since ln(x) approximation has been build already, there is no extra memory cost here. 

Though we’ve implemented 2-0.25x before, the situation here, 2x, is a little bit 

different. Because x here is a floating-point number, it’s impossible to predefine 

constants as what we do when implementing 2-0.25x. Howerver, we still decompose x 

into integer (I) part and mantissa (F) part, then applying linear approximations to 

implement 2F. Fortunately, the range of F is quite small, the memory cost here won’t 

be severe.  

2x = 2I × 2F = ( 1 << I ) × 2F                                    (4.22) 

where 0.0 < F < 1.0.  

To estimate the performance of ln(x) approximation, we first assumed uniform 

distribution. The average SNR of the range 0.5 < x < 5.0 is about 45.17 dB. The 

average SNR of the entire range, i.e. 10-6 < x < 500, rises to 59.76 dB. And then, we 

further tested with varies audio samples, the resulting average SNR is 63.56 dB. 
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CHAPTER 5.  Implementation on a 

StrongARM Processor 

This work is primarily done in the software part. First, most speedup and 

memory reduction work is done in floating-point C code, and then convert it to 

fixed-point C code, since our target processor, Intel® StrongARM SA – 1110, is a 

32-bit fixed-point processor. Some fixed-point specific modifications are also done in 

this stage. Further, coding style is tuned according to StrongARM implementation 

behavior. Finally, execution file is generated by ARM C compiler and then porting to 

our implementing platform, Advantech PCM-7130 SBC (single board computer).  

PCM-7130 based on a 32-bit microprocessor, Intel® StrongARM SA-1110, 

supports various kinds of peripherals such as USB, CF, Ethernet, and so on. For more 

detailed description, you can find in Appendix A and [35][36]. 

5.1   Implementation Flow 

The implementation flow can be shown as Fig. 5.1: 
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   Fig. 5. 1 Implementation Flow 

5.2  Fixed-point C Code Implementation 

Basically, StrongARM SA-1110 performs 32-bit arithmetic. To maintain more 

accuracy of processing data, some functions may employ 64-bit calculation, including 

FFT implementation of MDCT, average energy calculation of quantization module, 

and autocorrelation calculation of TNS module. 

Especially in MDCT module, the dynamic range of processing data convert from 

±215 to ±225, first explicit error may be caused here. And this early-caused error 

Speedup & Memory Reduction with 
Floating-point C Code 

Fixed-Point C Code & Some 
Fixed-Point Specific Modification

Generating Execution File 

Verify and Test with  
StrongARM SA-1110 
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would diverge in the later approximating implementation. However, using 64-bit 

calculation requires large computation effort. It’s impossible to perform 64-bit 

arithmetic through out the entire encoder. Thus, we choose to give the early module a 

finer error control.  

Since almost 80% of transformed data are still within the range of ±215, if 

performing 64-bit calculation to the whole FFT process, it would cause too much 

overhead. Therefore, a dynamic precision calculation is applied finally. The 

implementation flow is shown as Fig. 5.2: 

 

Fig. 5. 2 Dynamic precision FFT calculation in MDCT module 

In order to compensate the distortion mainly caused by the conversion from 

32-bit FFT 
Calculation 

Pre-Twiddle FFT Input

Post-Twiddle FFT Output

64-bit FFT Calculation 

Dynamic Precision FFT

MDCT Input Data 

64 to 32 bit Converter 

MDCT Output Data

yes no Temporary Processing 
Data > 215 ?
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floating-point source code to approximating fixed-point source code, a bandwidth 

control of input signal is employed [22]. Subjective tests also revealed people prefer 

the sound with a limited bandwidth to the sound with full bandwidth but with 

unmasked distortion [31].  

It is in fact a low pass filter which will be applied after MDCT module. 

Therefore, the implementation is quite easy: 

( )( )
⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×≤

=
1024int,0

1024int,)(

s

c

s

c
f

f

f
f

niif

f
f

niifix
ixL                           (5.1) 

where,  

L(．) indicates the Bandwidth control function, 

xf(i) represents the ith frequency line of fth frame, 

fc represents the cut-off frequency, 

fs represents the sampling rate. 

And since this modified encoding algorithm adapts long block only, the multiplicator 
is set 1024 as a constant.  

With this bandwidth control tool, thus more bits can be allocated in the low 

frequency bands, and then the quality can be improved [31]. Also, since the number of  

nonzero data decreases, the encoding speed is therefore increased. Some cutoff 

frequency settings of corresponding bitrate are listed in Table 5.1. It is referenced and 

modified from FAAC’s suggestion for VBR settings and approximating bitrate. 
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Bitrate (kbps/channel) Cutoff frequency (Hz) 

192 kbps 20800 

160 kbps 19600 

128 kbps 17200 

112 kbps 16000 

96 kbps 14800 

80 kbps 12400 

64 kbps 10000 

 

Table 5. 1 Some desired bitrate and corresponding cut-off frequency of bandwidth          

control module 

5.3  Modify Coding Style 

Finally, the C code is further modified according to the target processor, 

StrongARM. Such as optimizing loop termination, simplified Boolean expressions of 

range checking, loop unrolling, and being caution of choosing local variable types, etc. 

For more details, you can find in [28][29]. 
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CHAPTER 6.  Implementation of Data 

Embedded Method 

There are many watermark techniques in terms of their application areas and 

purposes. The technology of data embedding is, in fact, one kind of watermarking. 

With data embedding, this highly compressed audio data is more attractive to 

consumers since it provides extra services while listening to music. 

6.1  The Properties of Data Embedded Method 

This data embedded method is mainly derived from [32], with modifications 

accommodate it to AAC file structure. This method is specifically available for audio 

data due to its exploiting the psychoacoustic characteristic of human hearing. The 

classification of this data embedded method is summarized in Table 6.1. 

Classification Contents 

Perceptivity Invisible 

Watermark Type Public Watermarking 

Inserting File Type Any Type 

Robustness Fragile 

File Size After Inserting Unchanged 

Processing Method:Frequency Domain Spread Spectrum of High Frequency 

Table 6. 1 Classification of the watermarking technique in this thesis 
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 Perceptivity of watermark: Invisible 

The embedded data must be invisible, since the inserted media type is audio. 

And the quality of audio file after data embedding should be unaffected, or at 

least imperceptible. 

 Watermark type: Public watermark 

        This data embedded method belongs to public watermark which doesn’t aim 

at protecting file but providing additional services such as some related 

information. 

 Inserting file type: Any type 

        No matter what file type inserted, the data embedded algorithm remains the 

same. Since the data-embedding extractor simply reads the binary data stream. 

There’s also a header in the temporary file of data embedding process, package 

file, which contains the synchronization bits, the file size and the file type of each 

embedded files, and of course the file data stream. The data embedded decoder 

can therefore reconstruct embedded files according to the information in the 

header of package file. 

 Robustness of watermark: Fragile 

As stated previously, this data embedded method doesn’t mean to provide 

protection rather than giving additional services. The embedding data is easily 

destroyed when these data embedded audio files undergo re-compression or some 

post-processing, such as filtering, reverberation and equalization, etc.  

 File size after inserting: Unchanged 

        It is the most attractive feature of the proposed data embedded method. That 
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is, under the same encoding settings, the resulting AAC file sizes with and 

without data embedding are the same! This data embedding doesn’t cause the 

resulting file size to increase. Further, the data embedded AAC file is also 

compatible to those decoders without proposed data embedded algorithm. Thus, 

these data embedded AAC files can be play safely with general AAC decoders. 

6.2  Implementation of Data Embedded Encoder 

Fig. 6.1 shows the basic structure of data embedded AAC encoder. The data 

embedded algorithm is bundle within the AAC encoding process rather than a post- or 

pre- processing of AAC system. 

 

Fig. 6. 1 The structure of data embedded AAC encoder 

First, the files you want to insert will be pack into a so called package file. 

Meanwhile, the file size and file type of each inserting files are also store in the 

header of package file. Additional synchronization bits are used to recognize the start 

of a new file. The file structure of package file is shown in Fig. 6.2. 
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Fig. 6. 2 The structure of package file [32] 

After the generation of package file, the AAC encoding routine then begins. The 

package file is extracted bit by bit and embedded into quantized data before entering 

the noiseless coding module. The later implementation is exactly the same as the 

original AAC encoder. The package file structure is exactly the same design as [32], if 

you are interested, please see [32] or Appendix B. 

6.2.1  Embedding Data into High Frequency Range 

As we’ve discussed in Chapter 2 and Chapter 3, at high frequencies, human 

hearing are relatively insensitive to phase identity as comparing to energy. The 
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intensity stereo coding technique already exploits this characteristic of human hearing 

to further reduce irrelevancy. Here, we again take advantage of this characteristic, i.e. 

replace the sign bits of high frequency data with our embedded bits. Because we’ve 

known that the sign bits of high frequency data are unimportant, and the errors caused 

by this replacement could be insignificant to human perception. 

At even higher frequency range, the embedding bits can replace the data directly. 

That is, not only sign bits but also data quantities will be changed. The advantage of 

this method is that even a zero-valued data can be embedded data. There is no sign 

bits saved in bitstream for zero-valued data, so these data always have to be avoid in 

the previously-stated method(i.e. replacing the sign bit). However, this method should 

be applied very carefully, or the music quality would be damaged seriously. Thus, to 

preserve the audio quality, this method is not utilized finally. 

Fig. 6.3 shows the basic implementation flow of data embedded method. 

 

Quantiazer

Replacing Sign Bit 
Or Data With  

Embedding Bit 

Regain Sign Bit
From Xi 

Huffman Coding

Quantizer Input, Xr (signed) 

Quantizer Output, Xi (unsigned) 

Quantizer Output, Xi (signed) 

Recover Sign Info.

yes no f > Embedding Frequency ?



  79

Fig. 6. 3 The implementation flow of data embedded method. 

6.3 Implementation of Data Embedded Decoder 

Fig. 6.4 shows the basic structure of data embedded AAC decoder. The data 

embedded decoding algorithm is also bundle within the AAC decoding process 

 

Fig. 6. 4 The structure of data embedded AAC decoder 

The embedded data will be extracted bit by bit during AAC decoding process. 

And the embedded data stream are extracted to be analyzed by data stream analyzer 

and then reconstructed according to their headers. Thus, there are two kinds of final 

outputs, including general decoded wave file and embedded files. Fig. 6.5 shows the 

more detailed implementation flow of data embedded decoding procedure. 
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Fig. 6. 5 The implementation flow of data embedded decoding process 

If a lyrics text file is embedded, a synchronous lyrics display is also implemented, 

so you can show the current lyrics while playing music. The data stream analyzer and 

lyrics analyzer, which mainly deals with lyrics display synchronization, are inherited 

from [32], to known more specifics, please see [32] and Appendix B. 
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CHAPTER 7.  Experimental Results 

This chapter will be divided into two parts, 7.1 shows the performance of the 

proposed MPEG-2/4 LC AAC encoding scheme, and 7.2 shows the results after the 

addition of data embedded method.  

7.1   MPEG-2/4 LC AAC Encoder 

The proposed AAC encoder is implemented on a 32-bit fixed-point processor, 

StrongARM SA-1110. The performance of the proposed AAC encoder, including the 

final resource distribution, encoding speed, memory usage and audio quality test 

results will be presented in the follows. 

7.1.1  Resource Distribution 

After modifications to the original algorithm, the computational requirements in 

each module have been changed. The final resource distribution is listed in Table 7.1. 

Note that since the psychoacoustic model has been nearly removed: block switching is 

discarded and allowed distortion evaluation is moved into the quantization module 

(by FAAC’s implementation). Therefore, it is not presented in the Table 7.1. 
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Module Percentage 

Filter Bank 26.5% 

TNS  5.8% 

M/S Stereo  0.9% 

Quantization 39.8% 

Noiseless Coding  5.9% 

Bitstream Formatting 13.7% 

Others 7.4% 

Table 7. 1 Distribution of resources in proposed AAC-LC encoder 

Comparing with Table 4.1, the complexity of quantization module is reduced, 

and the computational requirements in other modules are relatively increased because 

of the lack of psychoacoustic model. Thus, from Table 7.1, we can quickly conclude 

that quantization module has been simplified significantly, since it even has a 30~40% 

reduction in resource requirement while the others are increased relatively. However, 

you may wonder why it seems that the computational effort consumed by filterbank 

module is increased. It is mainly because filterbank adopts lots of 64-bit calculation, 

or we could say the complexity reduced in filterbank module is not as much as the 

other modules, including TNS, M/S stereo, bitstream formatter and so on. 

7.1.2  Resource Requirement Improvement 

Comparing with the original source code, 86.36% of the RAM requirement is 

reduced and also 3.36% of the ROM requirement is reduced. The reason why ROM 

size is not significantly decreased is mainly due to that most mathematical functions 
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realized by math.h of C library previously are implemented now by linear 

approximations or lookup tables instead. And this increases the ROM size. 

Memory Reduction Percentage 

RAM 86.36% 

ROM 3.36% 

Table 7. 2 Comparing the resource requirement with the original source code 

The ROM size is obtained by objdump, and the RAM size is obtained by the 

memory usage information reported by the Unix command “top” which provides an 

on-going look at processes in real time, including memory and CPU usage, etc.. Since 

it’s hard to precisely estimate the run-time memory usage for a software in the C code 

stage, however, the memory requirement is usually an important issue to embedded 

systems. Therefore, we employ “top” to give a simple rough estimation. 

7.1.3  Encoding Speed 

Since our proposed encoder is targeted at 96kbps encoding, all encoding speed is 

test under 96kbps bitrate settings. 

Test  Length Bitrate Speed 

Violoncello 0:30 96kbps 1.54 X 

Soprano 0:23 96kbps 1.54 X 

Bass 0:24 96kbps 1.44 X 

Table 7. 3 Encoding speed 
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From the Table 7.3 we can see that our proposed encoder can at least run at the 

speed of 1X on our demo platform, PCM-7130 with StrongARM SA-1110 processor. 

7.1.4  Quality Evaluation 

To evaluate the audio quality of proposed AAC encoder, an objective evaluation 

is applied. The objective audio quality evaluation is done by using a software 

objective measurement tool for audio quality tool called EAQUAL, which stands for 

Evaluation of Audio QUality, and is implemented based on the recommendation 

ITU-R BS.1387. A brief introduction can be found in Appendix C.  

The reference codec is traditional AAC encoder and the test codec is the 

proposed AAC encoder. Both of them are decoded by FAAD[15] implemented in 

floating-point. The “Diffgrade (DG)” is the objective rating given to the test item 

minus the rating given to the reference item. The DG scale can be divided into five 

ranges: “imperceptible (>0.00)”, “perceptible but not annoying (0.00 ~ -1.00)”, 

“slight annoying (-1.00 ~ -2.00)”, “annoying (-2.00 ~ -3.00)” and “very annoying 

(-3.00 ~ -4.00)”. 

Test Audio Sample 
Bitrate 

Violoncello Soprano Bass 

128kbps 0.67 0.60 -0.07 

96kbps 0.15 -0.04 -0.43 

64kbps -0.05 -0.23 -0.51 

Table 7. 4 The objective test results of proposed encoder 
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7.2   Data Embedded Method 

After the addition of the data embedded feature, the performance analysis is 

discussed in the follows. 

7.2.1  Resource Distribution 

According to Table 7.5, we can see that only about 0.3% of computation resource 

is required by data embedded module. Thus it is quite less computation demanding.  

Module Percentage 

Data Embedded 0.3% 

Filter Bank   24.4% 

TNS    6.6% 

M/S Stereo 1.0% 

Quantization 39.9% 

Noiseless Coding 6.0 % 

Bitstream Formatting 13.8% 

Others 8.0% 

Table 7. 5 Resource distribution of the proposed encoder plus data embedded method 

7.2.2  Encoding Speed and File Size 

Some comparisons based on experimental results are listed below, including file 

size, encoding speed and embedded bits count. Table 7.6 shows the resulting file size 

and encoding speed before and after data embedded method presented. 
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Test  File size Speed 
Sample 

Length Bitrate
Before After Before After 

Always[24] 5:49 96kbps 3.98 MB 3.98 MB 1.33 X 1.32 X 

Thank[24] 3:39 96kbps 2.50 MB 2.50 MB 1.32 X 1.31 X 

Torn[24] 3:56 96kbps 2.74 MB 2.74 MB 1.28 X 1.28 X 

Table 7. 6 The resulting file size and encoding speed before and after data embedded 

method presented 

The results in Table 7.6 reveals the most attractive properties of this data 

embedded method. The file size remains the same, and only increases a small amount 

of computing complexity to the original proposed AAC encoder. 

7.2.3  Embedded Data Size 

Some resulting embedded data size of different files are listed in Table 7.7, and 

also presents the comparison with Huang’s implementation of MP3 at 128kbps [32]. 

Test Sample Length  Bitrate Embedded bits Huang’s  

96kbps 46.2KB N/A 
Always 5:49 

128kbps 110.0KB 163.1KB 

96kbps 36.2KB N/A 
Thank 3:39 

128kbps 77.7KB 122.8KB 

96kbps 47.4KB N/A 
Torn 3:56 

128kbps 113.0KB 162.0KB 

Table 7. 7 The embedded bits count of different files 
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From Table 7.7, we find that, even at the same bitrate, i.e. 128kbps, the 

embedded bits count of AAC is still less than Huang’s implementation of MP3 for 

about 50KB. One main reason is that this proposed AAC encoder exploits ABR 

encoding, thus no bit reservoir is presented. And observing the results from [32], bit 

reservoir often contributes 30~50KB data embedding space. Another reason is that 

AAC system does not provides “count 1 region data embedded method” as mentioned 

in Huang’s thesis. Though there’s no so-called “count 1 region” defined in AAC, 

inheriting the same concept from MP3, we should still apply the same method. 

However, the so called “count 1 region” in AAC, usually starts at around 7.9 kHz, 

which is much lower in frequency range than MP3 (~12kHz). It could cause great 

damage if applying “count 1 region data embedded method” as what MP3 does. Also, 

due to the presentation of bandwidth control tool, the nonzero range has been 

narrowed, to preserve the music quality, this method is not utilized finally. 

7.2.4  Quality Evaluation 

We use the same objective audio quality evaluation method as that in pure AAC 

encoder case, that is by applying EAQUAL. The reference codec is also the ISO 

method implemented encoder and then decoded by FAAD[15]. We use the “Diffgrade 

(DG)” here to evaluate audio quality again. The resulting DG of both pure proposed 

encoder and the proposed encoder with the addition of data embedded method are 

listed below for comparison. 
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Test Sample Length  Bitrate None Data embedded 

96kbps -1.26 -1.31 
Always 5:49 

128kbps -0.67 -0.52 

96kbps -0.88 -0.92 
Thank 3:39 

128kbps -0.57 -0.42 

96kbps -1.85 -1.92 
Torn 3:56 

128kbps -0.22 -0.49 

Table 7. 8 The objective test results of proposed encoder plus data embedded feature 

Experimental results reveal that this data embedded method which based on 

psychoacoustic characteristic of human hearing only causes small degradation of 

music quality. 
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CHAPTER 8. Conclusions and Future Works 

The conclusions of this thesis and future possibilities are shown in the follows. 

8.1   Conclusions 

In this thesis, we give a brief introduction of MPEG-2 AAC encoding algorithm, 

a proposed fast algorithm including: 

  Removal of block switching 

  Adopting fast MDCT algorithm  

  Simplified TNS with a early decision mechanism 

  Simplified Mid/Side stereo coding 

  Faster quantization with scalefactor prediction and simplified QuantizeBand() 
function 

  Simplified implementation of math functions 

In the fixed-point stage, to further control the error caused by the approximating 

fixed-point arithmetic, a dynamic 32/64 bit implementation of FFT and a bandwidth 

control module are applied.  

For additional feature, a data embedded method is also applied to AAC file. Both 

AAC encoders with and without data embedding are realized on a 32-bit RISC 

processor, Intel® StrongARM SA-1110. Finally, the performance analysis, the 

subjective and objective sound quality test results, and the comparison with other 
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implementations are presented. 

Experimental result shows that the 32-bit fixed-point implementation of 

proposed algorithm can perform at least 1X encoding by the processor, Intel® 

StrongARM SA-1110 which is capable of running at up to 206 MHz. And comparing 

with the original ISO implemented source code, 86.36% of RAM requirement and 3% 

of  ROM requirement are reduced. 

8.2   Future Works 

The proposed encoder in this thesis is mainly concentrate in C code level, to be 

more adapted to embedded system applications, converting it into assembly code and 

perform further optimization accordingly is necessary. In this way, the proposed AAC 

encoder can get even better performance. Also, at present, we haven’t paid much 

attention to the memory usage optimization. However, this is quite important in those 

resource limited systems. Thus, these are two essential works in the future. 

We can see that selling music in digitalized format through Internet rather than 

selling CDs in record stores seems to be an irresistible trend. Though AAC itself has 

the advantages of smaller file size and better quality, to convince traditional music 

company taking AAC format as the distributing standard is not enough. Thus, 

corresponding encryption should be implemented as well. Together with data 

embedded algorithm and encryption, AAC can be the first choice of standard format 

delivery music through Internet. 

To further expand the application of this thesis, the concepts proposed can be 

applied to many other developed modern audio compression formats, such as Dolby 
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AC-3, MPEG-1 Layer III, Microsoft® WMA, and Ogg Vorbis, to increase their 

performance, too. Especially, MPEG-2 AAC constitutes the kernel of MPEG-4 

General Audio (GA). MPEG-4 GA generally based on MPEG-2 AAC structure and 

with some enhancement and refinement. What have been standardized in MPEG-2 

AAC, including low complexity (LC) profile, main profile and scalable sampling rate 

(SSR) profile, are also presented in MPEG-4 AAC. Thus, the proposed algorithm is 

most suitable for optimizing MPEG-4 audio. 
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APPENDIX A.  Advantech PCM-7130 SBC  

The PCM-7130 is an Intel® StrongARM low-power RISC processor single board 

computer that is designed to serve power/environment critical applications. Fig. A.1 

shows the appearance of the entire system. 

 

Fig. A. 1 The appearance of the Advantech PCM-7130 SBC [37] 

The brief specifications are shown as following [35]:  

 CPU: Intel® StrongARM SA-1110, 206 MHz  

 Flash memory: up to 32 MB flash memory on board  

 Memory: 64 MB SDRAM on board  

 Watchdog timer: Dallas DS1670  

 Audio: AC’97 stereo audio interface  

 Dimensions: 145 x 102 mm  

 Gross weight: 0.2 kg (0.4 lb.) 

 SSD: 1 type-II CompactFlash™ card slot  
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 DIO: 8 digital inputs, 8 digital outputs  

 Ethernet: 1 RJ-45 10Base-T port  

 GPIO: 8  

 IrDA: 1 IrDA interface  

 PCMCIA: 1 type-II PCMCIA slot  

 PS/2 port: 1 PS/2 port for keyboard/mouse  

 Serial ports: 2 full RS-232 ports and 1 RS-485 port with automatic data flow 

control  

 USB ports: 1 USB host and 1 USB client ports  

 Display Chipset: Epson S1D13806 VGA controller  

 LCD interface: 18-bit TFT active color LCD/16 bit DSTN passive color LCD; 

20-pin header for 18-bit LVDS interface  

 TV-out: supports both NTSC and PAL output  

 Touchscreen: supports 4-wire resistive touchscreen via SPI (Serial Peripheral 

Interface)  

 FCC Class A certified  

 CE certified 

Fig. A.2 gives a more detailed view of PCM-7130 with its peripheral interface. 
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Fig. A. 2 Advantech PCM-7130 SBC [37] 
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APPENDIX B.  Data Embedded Codec 

B.1  Package File 

The embedded data usually contain several files. These files should be embedded 

in series. Interleaving data of different files is not allowed. To avoid mix-up of data 

from different files, all embedding files will be bundled into one file, called package 

file, before entering encoding routine. 

There are headers in the package file to recognize each file, and this information 

will be used while decoding. Each header consists of three parameters: 

synchronization bits, file type, and file length. 

 

Table B. 1 Parameters of the header in package file[32] 

 Synchronization Bits: It is defined as “020240608”. And it is used to notify 

decoder that this is a start of new file. 

 File Length: 2 bytes are used to record the file size. 

 File Type: 1 byte is used to identify the file type. And it is very important when 

perform reconstruction in the decoder. 
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Fig. B.1 shows the file structure of package file:  

 

Fig. B. 1 The structure of package file [32] 

To make sure the correctness of synchronous lyrics display, lyrics file must be 

embedded first. Thus, a sorting must be done before generating the package file. Fig. 

B.2 shows the flowchart of generating package file. 
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．
．
．
．
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Fig. B. 2 The flowchart of generating package file [32] 
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B.2  Data Stream Analyzer 

The data stream analyzer is used to analyze the data stream which is extracted by 

the data embedded decoder. The data stream is a series of signal of “0” and “1”, it 

must be analyzed and reconstructed to the original files by the data stream analyzer. 

The flowchart of the data stream analyzer is shown as Fig. B.3 The purpose of 

stream analyzer is for data stream analyzing, including identifying synchronization, 

file length and file type, and processing every different files type. 

 “Synchronization bits” is composed of 4 bytes. So at first 4 bytes should be 

read to check if they are synchronization bits. If not, left-shifting one byte and 

replenish one byte for checking, this process will continue until the synchronization 

bits are found. Afterwards, both file length and file type will be read. If the file type is 

identified as a lyrics file, those data will be saved to a lyric buffer, preparing to be 

shown synchronously on the screen while the song is playing. Other file types will be 

saved as files, then finishing the analysis of data stream.  
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Fig. B. 3 The flowchart of data stream analyzer[32] 
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Lyrics analyzer is used to analyze the lyrics file, and print lyrics synchronously 

while playing music, which is the same as what we see lyrics shown in KTV screen. 

In data stream analyzer, if the file type is identified as a lyrics text file, then those data 

will be saved temporarily to lyric buffer for analyzing by lyrics analyzer.  

The lyrics file format is defined as ”[mm:ss] the lyrics of a line”, Fig. B.5 shows 

one example of lyrics file. “[” represents the beginning of the lyrics in every 

line, ”mm” represents the showing minutes of the lyrics, ”:” is for partition, and “ss” 

represents the showing seconds of the lyrics. From ”]” to Carriage Return/Linefeed 

(CR/LF) characters ”0D 0A”, they represent the contents of one line of the lyrics. 

At first, one byte will be read to check if it’s the beginning of one line, that is ”[”. 

After finding that, the next five bytes will be analyzed to get the showing time of the 

lyrics. Following the “]” character is the content of current line of lyrics. The result 

will be saved to print buffer. Then, the analysis of next line of lyrics will begin again. 

This process will continue until the whole lyrics file are analyzed and all results are 

saved to print buffer. Fig. B.4 shows the flowchart. 
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Fig. B. 4 The flowchart of lyrics analyzer[32] 
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Fig. B. 5 An example of lyrics file format 



  108

 

 

APPENDIX C.  EAQUAL 

 The EAQUAL, which stands for Evaluation of Audio QUALity, is an audio 

quality evaluation software. It is implemented based on the recommendation ITU-R 

BS.1387. 

In general, it compares a signal that has been processed in some way with the 

corresponding time-aligned original signal. And it extracts perceptually relevant 

features, which are used to compute a measure of quality. Also, a number of 

intermediary model output variables (MOVs) are available.  

A selected set of MOVs are mapped to a final output score, called objective 

difference grade (ODG). The mapping was established by minimizing the difference 

between the distribution of objective measurements and the corresponding 

distribution of mean subjective qualities for an available data set. 

The block diagram of EAQUAL is shown in Fig. C.1. It includes an ear model 

based on the fast Fourier transform (FFT). The model output values are based partly 

on the masked threshold concept and partly on a comparison of internal 

representations. The model outputs the partial loudness of nonlinear distortions, the 

partial loudness of linear distortions (signal components lost due to an unbalanced 

frequency response), a noise to mask ratio, measures of alterations of temporal 

envelopes, a measure of harmonics in the error signal, a probability of error detection 

and the proportion of signal frames containing audible distortions. 
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Selected output values are mapped to a single quality indicator by an artificial 

neural network with one hidden layer. For details, please see [38]. 

 

Fig. C. 1 Block diagram of measurement scheme[38] 


