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Pheromone Propagation Controller: The Linkage of
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Abstract—Statistical process control (SPC) is traditionally used
in advanced process control (APC). However, SPC, which treats
measurements as a series of isolated statistical data, employs dif-
ferent methods to deal with different problems. In this paper, we
present a new perspective on process control, which treats the in-
tercepts of the process in different runs as a social insect colony.
Our novel algorithm, called the pheromone propagation controller
(PPC), is a meta-heuristic method based on the assumption that
the intercepts of the linear regression model have their own be-
havior and affect others nearby on different runs. The pheromone
basket is an environment initially filled with intercepts, and then
the “intercepts pheromones” in the basket propagate according to
the modified digital pheromone infrastructure. After propagation,
the intercept in the next run can be forecast by extrapolating the
last two entities of the pheromone basket. Consequently, a revised
process recipe can be obtained from the forecast intercepts and
the linear regression model. We also propose a workable scheme
for adaptively tuning the PPC propagation parameter. We discuss
the PPC stability region and the strategy for tuning the propaga-
tion parameter as well as the effects of size of pheromone basket,
model mismatch on the performance. Our simulation results show
that the standard deviation and the mean square error for PPC,
whether fixed or self-tuning, are more consistent than that of the
EWMA, the predictor corrector control (PCC), and the double
EWMA for five types of anthropogenic disturbance. We also ex-
amined a hybrid disturbance obtained from semiconductor fab-
rication. When system drifts, the PPC was superior to the other
candidate controllers for all values of the PPC propagation pa-
rameters and weightings of the other controllers, whether fixed or
self-tuning.

Index Terms—Digital pheromone infrastructure, pheromone
basket, pheromone propagation controller, process control, swarm
intelligence.

I. INTRODUCTION

I N PROCESS control, combining statistical process control
(SPC) and feedback control [1] is a popular technique.

Quin et al. [2] divided semiconductor manufacturing process
control into four levels: equipment control, run-to-run con-
trol, island control, and fab-wide control. The lowest level is
equipment-level control, which holds the desired parameters of
tools. Run-to-run control adjusts the recipe slightly based on
in-line measurements to even out disturbances. Island control
shares information among tools to achieve tool matching and
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feed-forward/feedback control. The highest level is fab-wide
control, which optimizes the desired electrical properties by
adjusting the target of the lower level controller. This study ad-
dresses advanced process control (APC), which is a run-to-run
control.

The exponentially weighted moving average (EWMA) con-
troller is widely used in semiconductor APC. EWMA weighs
past data with an exponential discount factor [3]. The stability
and sensitivity of EWMA have been analyzed [4]–[6] and
some attempts have been made to solve the problem of tuning
the discount factor of the EWMA controller in different ways
[7]–[11]. Predictor corrector control (PCC) and double EWMA
control have been proposed to improve the performance of
EWMA when dealing with drifting processes [12], [13]. The
stability of double EWMA and multiple-input multiple-output
(MIMO) double EWMA has been demonstrated [14], [15], and
the weightings for the double EWMA controller have been
tuned using different methods [16], [17]. The initial intercept
iteratively adjusted (IIIA) controller [18] is used to modify
double EWMA with different update procedures to set initial
intercepts under drifting disturbance conditions. However, the
EWMA-based solvers reject only specific types of disturbance
and cannot adapt to a complex environment.

In addition to EWMA and double EWMA, artificial neural
networks (ANNs) [19] map the relationship between input and
output directly. ANNs, ant colony optimization (ACO), and data
mining have been integrated to illustrate the “black box” of
ANNs in chemical mechanical polishing (CMP) processes [20].
However, ANNs require many parameters in a suitably con-
structed network with appropriate training data. The recursive
least square (RLS) technique [21] can model a constant mean
and a linear trend or random walk for online estimation, but the
RLS controller may be unstable if the system gain varies with
time.

In this paper, we describe an algorithm that adapts easily to
complicated disturbances and the uncertainty of the linear re-
gression model. The concept comes from the observation that
current errors are caused by previous errors, and the symptoms
of future errors come from present errors in the real world. The
new algorithm is a meta-heuristic method, which uses swarm
intelligence by assuming that each intercept has its own be-
havior that affects nearby intercepts at different runs. Specifi-
cally, swarm algorithms or devices are inspired by the collective
behaviors of social insect colonies and other animal societies
[22]. ACO [23], for example, is motivated by the behavior of
ants in finding paths from their colony to food. Particle swarm
optimization (PSO) [24] is inspired by the social behavior of or-
ganisms such as birds in a flock or fish in a school. Stochastic
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Fig. 1. Concept of the pheromone propagation controller (PPC).

diffusion search (SDS) [25] employs the tandem calling mech-
anism of ants to perform cheap, partial evaluations of a candi-
date solution to a search problem. In the semiconductor industry,
Jiang et al. employed pheromone rules of ACO to solve dynamic
scheduling problems for a fabrication line [26].

This paper presents the pheromone propagation controller
(PPC) based on the digital pheromone infrastructure [27], which
was inspired by the chemical dynamics of pheromone transition
and was recently used to describe the decentralized self-orga-
nizing behavior of unmanned aerial vehicles (UAVs) and bat-
tlefield tactics [27]–[31]. However, the digital pheromone infra-
structure must be modified to avoid the end effect. Under the
modified digital pheromone infrastructure, the intercepts of a
linear regression model in different runs are modeled as a social
insect colony. The interaction among intercepts is modeled by a
propagation mechanism, which means that an intercept affects
others nearby.

Fig. 1 shows the overview of PPC. In Fig. 1(a), the pheromone
basket is a moving window that is initially filled with intercepts
or pheromones; is the coordination within the pheromone
basket and can map to run. The shape of the
pheromone basket in Fig. 1(a) is a single-dimensional line, but
could be different for other specific applications. Fig. 1(b) illus-
trates an example of the input of pheromone basket. Then, the

intercepts in the pheromone basket propagate themselves into a
steady state according to the modified digital pheromone infra-
structure, which will be described in Section II. The final prop-
agation result is shown in Fig. 1(c), which reflects the tendency
of the external inputs (or intercepts) in the specific pheromone
basket. Fig. 1(d) shows that the intercept for the next run can
be forecast by extrapolating the last two entities of the final
propagation result in the pheromone basket. Particularly, Figs.
1(a)–1(d) are all at the same time stamp. Finally, the process
recipe for the next run can be obtained by the forecast intercept
and the process model. We also propose a workable scheme for
adaptively tuning the propagation parameter in Section III-F.

We conducted simulations to compare the performance of
PPC with EWMA, PCC, and double EWMA. Five types of
anthropogenic disturbance and semiconductor fabrication data
were used as disturbances in the simulations with three perfor-
mance indices (average, standard deviation and mean square
error) to evaluate the performance. The controller parameters
such as the PPC propagation parameter and the weights of the
other controllers were fixed and were obtained from historical
data with minimum sum square error. The proposed self-tuning
PPC, the self-tuning EWMA [9], and the self-tuning PCC [17]
were also included in the simulations.

The rest of this paper is organized as follows. Section II ex-
plains our modifications to the digital pheromone infrastruc-
ture. Section III illustrates the PPC structure including param-
eter tuning to improve performance. Section IV analyzes the
PPC stability region and compares the controller structure of
PPC with other controllers. Section V shows the simulation re-
sults for the proposed controller. The final section is the conclu-
sion and describes related areas for future work.

II. THE MODIFIED DIGITAL PHEROMONE INFRASTRUCTURE

FOR PPC

In nature, pheromone, a chemical substance, is released
by an insect or animal which causes another individual of
the same species to react. When pheromone is released, it
evaporates from one position and propagates itself by wind.
So, pheromone has different states and transition dynamics.
The digital pheromone infrastructure [27] imitated the mech-
anism of pheromone by modeling the environment, states of
pheromone and transition dynamics of a pheromone. While the
natural pheromone is powered by wind and time, the digital
pheromone infrastructure models the transition dynamics by
transition parameters (evaporation and propagation param-
eters), transition functions where iterations for pheromone
propagation are practiced. Therefore, as compared the power
of natural with digital pheromones, wind maps to transition
parameters and transition functions; time maps to iterations.

This section introduces the modified digital pheromone
infrastructure. We define pheromone basket, mapping to the
environment, as a moving time window in the manufacturing
process. The pheromone states and transition parameters are
the same as defined in the digital pheromone infrastructure.
Because of the end effect and the energy balance in our
one-dimensional pheromone basket, we modified the transition
functions in [27].
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A. Pheromone Basket

The pheromone basket is the pheromone propagation envi-
ronment. The environment of the modified digital pheromone
infrastructure is a tuple , where is a finite set of po-
sitions M within the pheromone
basket, M is the size of the pheromone basket, and maps
to the current run and maps to M runs beforehand. In addi-
tion, is a finite set of neighbors of and
is the size of . In addition, the modified pheromone in-
frastructure assumes that the propagation relationship between

and is irreflective, which means that will accept
propagation inputs from without preconditions.

From Fig. 1(a), the pheromone basket fills with “intercept
pheromones” initially. Since the “intercept pheromones” propa-
gate themselves into a steady state at a time stamp from Fig. 1(b)
to Fig. 1(c), the measurement of the intercepts can be treated
as the external impulse input to the pheromone basket. The ex-
ternal input is a finite set

where is the run number of
the manufacturing process, is the number of iterations (or
propagations) in the transition functions, and is the global
limit of the external inputs in the environment . Note
that iteration is executed to update transition functions but not
means the process. We use the notation for the set of natural
numbers and for the set of real numbers. Since the external
input is the initial condition for launching transition functions
of pheromone propagation, maps to the intercept at
the run on the process and is 0 when

is larger than 0.

B. Pheromone States

The states in the pheromone basket are and
, where

is a finite set of the propagated inputs at run and iteration ,
and is a fi-
nite set of the aggregated pheromones at run and iteration .
Therefore, is regarded as the propagated input from

to at iteration and run . Similarly, is re-
garded as the aggregated pheromone of at iteration and run

. In PPC, refers to the effectiveness of one intercept
affecting its nearby intercepts; refers aggregation result
which involves the influence of external input and prop-
agation effect .

In addition, and are as-
sumed to be the default initial conditions. While launching
transition functions as shown in the following sections,
disseminates pheromones and aggregates pheromones
simultaneously.

C. Pheromone Transition Parameters

Two transition parameters of the digital pheromone infra-
structure [27] are the evaporation parameter and the
propagation parameter . In PPC, the propagation pa-
rameter describes the effect of a measurement on other nearby
measurements, and the evaporation parameter indicates the
weakening property of the monitored data. In other words, in-
dicates that the importance of the measurement data will “evap-
orate” with time. Because measurements in a short period can
be treated as a nondissipative system, the modified pheromone
infrastructure uses in a small pheromone basket (Proof
is given in Appendix A).

D. Transition Functions

While defining the pheromone basket , the parameters
and , the external input , state , and ,

Brueckner introduced two transition functions to describe
the propagated inputs and the aggregated pheromone

[27]. The transition function of the propagated inputs
is

(1)

where indicates that is the neighbor of ,
is the number of neighbors of , and

indicates that affects its neighbors equally. Because the
shape of the proposed pheromone basket is a one-dimensional
line, the basket has only one neighbor at the two ends of the
basket and two neighbors in the other positions. Thus, (1) be-
comes (2), found at the bottom of the page.

In addition, the transition of the aggregated pheromone
is defined as [27]

(3)

Because propagates the ratio of
out to in (2), the

ratio of should be subtracted from
(3) to maintain its balance. Thus, we modify (3) to be

(4)

With is 1, (4) becomes

(5)

if
if
if
if
if

(2)
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Fig. 2. Boundary effect of pheromone propagation without a modifier.

Moreover, the profile of the final transition result of
should be flat when the pattern of the external input is
flat. Unfortunately, the profile of the final propagation result ob-
tained from (2) and (5) is not flat due to the end effect as shown
in Fig. 2. To overcome this, we modify the propagation-out ratio
in the two extremities from to (See the
proof in Appendix B) when the shape of the pheromone basket
is a line and (2) and (5) become(6) and (7), found at the bottom
of the page.

Fig. 3 illustrates the concept of (6) and (7). The final propa-
gation results of (6) and (7) can be obtained analytically by (A9)
in the Appendix C. For example, if M is 6, the final propagation
results for and are (8) and (9), found at the
bottom of the page.

III. PHEROMONE PROPAGATION CONTROLLER

Fig. 4 illustrates the PPC block diagram for APC according to
the modified pheromone infrastructure described in Section II.
The PPC can be separated into four modules: plant, pheromone
basket generator, intercept predictor, and recipe generator. This
section describes each of these modules. In addition, a workable
propagation parameter tuner in the intercept predictor is also
proposed.

A. Plant

The plant is the process model in a simulation or in a real
system, which can be obtained by the linear regression model.
Because fabrication recipes usually have several parameters, the
demonstrated MISO plant, which has recipes (inputs), is

(10)

where

measurement at the end of run ;

recipes (inputs) of run and is a matrix;

initial intercept of the process;

system gain of run and is a matrix;

disturbance, which includes noise and
uncontrolled terms of run .

In (10), the intercept of run , , becomes

(11)

if
if

if
if

if
(6)

if

if
(7)

(8)

(9)
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Fig. 3. Transitions with propagation parameter � and size � in a pheromone basket.

Fig. 4. Block diagram of a pheromone propagation controller.

Furthermore, this study considers two cases of system gain:
i) The fixed system gain with bias:

(12)

where is the fixed shift of the process gain and size of
is .

ii) The system gain shifts and drifts simultaneously,

(13)

where is the constant drifting rate of the process gain.

B. Pheromone Basket Generator

The concept of the pheromone basket is the most important
part of the PPC. Treating the intercepts of the linear regres-
sion model for a sequence of runs as external inputs to the
pheromone basket links process control with the modified
digital pheromone infrastructure. The pheromone basket is
initially filled with intercepts, which map the external input

to the modified digital pheromone infrastructure. Then,
states and are updated simultaneously by the
transition functions of the modified infrastructure. Because the
intercept of run can be obtained by the forecast intercept in

the previous run and the error in the current run, the external
input of at run becomes

(14)

where is the forecast intercept of run and is
the error of run .

Equation (14) shows that the pheromone basket generator is a
series of intercepts with a sequence of delays. The external input
at of run maps the intercept of the previous runs.

In addition, the error of run in (14) is defined as

(15)

where is a fixed process target.

C. Intercept Predictor

The intercept predictor propagates of the pheromone basket
and the extrapolation of the last two entities of the aggregated
pheromone to achieve one-step-ahead forecasting for
the next run. In Fig. 4, the input to the intercept predictor func-
tion block is a series of intercepts with a sequence of time delays
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and propagation parameter , and the output of the intercept
predictor is the forecast intercept at the next run.

The propagation of the pheromone basket obeys the modified
transition functions in Section II. In addition, the final propa-
gation result reflects the trend of the specific external input at
run . Then, the forecast intercept at run can be inferred
simply by extrapolating the last two entities of :

(16)

Using (A9), the analytic solution of (16) yields

(17)

where

...

...

is the external inputs of all of the positions at the pheromone
basket. In addition, , which varies with the size of the
pheromone basket M, is an algebraic expression of . For ex-
ample, if M is 6, substituting (8) and (9) into (17) yields (18),
found at the bottom of the page.

Figs. 5(a)–(c) shows an example of different forecast inter-
cepts with an external ramp input and different propagation pa-
rameters for a pheromone basket size . Fig. 5(a)
shows the external ramp inputs, and Fig. 5(b) illustrates the
final propagation results of Fig. 5(a) with different values of .
Fig. 5(c) is the extrapolated result of Fig. 5(b). If is 0, the
final propagation result is directly equal to one of the last two
extrapolated entities of the external inputs. However, the extrap-
olated result approaches the mean of the external inputs as
approaches unity.

D. Recipe Generator

The recipe generator generates the recipe of the process for
the next run. We use the linear regression model to produce

(19)

where , which is a matrix, is the recipe (input)
of run , is the estimator of the initial intercept , and

Fig. 5. Forecast intercept for different external inputs and pheromone parame-
ters: (a) External inputs, (b) Final propagation results for different values of � ,
and (c) Forecast intercepts for different values of � .

, which is a matrix, is the estimator of the system
(model gain).
In (19), and are obtained from the linear regression model

by the off-line DOE and are not equal to the process parame-
ters and . The parameter comes from the intercept pre-
dictor, and is the given target value. Then the recipe for run

is generated by

(20)

(18)



LEE AND LEE: PHEROMONE PROPAGATION CONTROLLER 363

E. Propagation Parameter F Tuner

This section proposes two strategies for tuning the propaga-
tion parameter . The first strategy uses historical data and ex-
amines all possible values to obtain the best fixed propagation
parameter, , with minimum mean square error:

(21)

where is the index of the historical data. Then is used in
the testing data.

The second strategy employs and available from the last
run for adaptively tuning at run , . The adjusted
propagation parameter is given by

(22)

where all possible forecast intercepts are obtained after
each run by (A9) and (17) to obtain , which can be interpreted
as the best parameter for run .

Since noise will be included in (22), we conduct with a
moving average filter to avoid overcorrection and the perturba-
tion of noise:

(23)

where is the size of the filter and its influence on performance
is presented in Section V-A1.

F. Control Procedure

The PPC requires M historical intercepts, where M is the de-
sired size of the pheromone basket. The whole control procedure
is presented in the following sequence, including the case when
the run number is less than M at the beginning of the process.
Step 1) Set the following initial conditions: and are

zero; input of run 1 is the initial recipe; if is
self-tuning, let , , and approach 1.

Step 2) Get the process error , set to , and determine
the recipe using (20).

Step 3) Get the process error and put , , , and into
(14) to generate external inputs to the pheromone
basket for run 2.

Step 4) Set to from (21) when is fixed and selected
by historical data. When is self-tuning, calculate
forecast propagation parameter using (23).

Step 5) Use (A9) with propagation parameter to forecast
the steady-state value of the aggregated pheromone
at run 3, and predict the process intercept
using (17).

Step 6) Determine the recipe using (20) and obtain
process error .

Step 7) Put and into (14) to generate the external input
of the pheromone basket for run 3.

Step 8) Repeat steps 4–7 by replacing and with
and , respectively, for . This
produces the recipe and the error at run

.
If the run is larger than the desired size of pheromone basket

M, update the pheromone basket by (14).

Fig. 6. PPC stability region for different sizes M of the pheromone basket.

IV. STABILITY ANALYSIS

In this section, we analyze the stability of the SISO PPC.
We first derive its transfer function from the block diagram and
then discuss the stability region under the conditions of different
model mismatch and propagation parameters.

A. Transfer Function

Because the analytic solution of pheromone propagation has
been determined, the transfer function of the PPC can be derived
from Fig. 4. The figure shows that the pheromone basket gener-
ator is modeled by a sequence of integer delays corresponding
to a series of intercepts. The intercept predictor uses (17) to fore-
cast the intercept of the next run, and the model gain is obtained
using the linear regression model. Thus, the transfer function
from target to output can be obtained by Mason’s gain formula:

(24)

where and are and with is one. In (24), the charac-
teristic function has M poles, which can be used to check the
stability region of the PPC as shown in the next section. In ad-
dition, (24) and Fig. 4 indicates that PPC is an Mth order con-
troller. The higher order controller has the capacity of elimi-
nating higher order disturbances.

B. Stability Region

The stability region of the PPC with a constant model and
process gain can be obtained by checking the pole locations of
the characteristic function in (24), where the order of the char-
acteristic function varies with the size of the pheromone basket
M. We examined the PPC stability region in terms of model mis-
match with different propagation parameters, , and
the size of the pheromone basket, M. If all of the pole locations
are within the unit circle, the point is a stable point. Fig. 6
shows the stability regions, which are located under each curve,
for values of M in the range 5–10. Fig. 6 indicates that the sta-
bility regions increase as increases, and the slight effect of
M is observed when is less than 0.7. As approaches 1, the
maximum stability value will converge to . For example,
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TABLE I
CONTROLLER STRUCTURE COMPARISON OF EWMA, PCC, D-EWMA, AND PPC

if is 5, the maximum stability value is 6 as approaches 1. It
seems counter-intuitive that a higher order PPC has a larger sta-
bility region. Appendix D shows an example that a higher order
moving average controller actually has a larger stability region
than a lower order one.

C. Controller Comparison

This section compares PPC with EWMA, PCC and d-EWMA
controller analytically. Table I lists the number of poles and
zeros of the transfer function from disturbance to output, zero
positions, controller type and allowable stable region for candi-
date controllers. A controller can reject step disturbance when
zeros of the transfer function include one and reject ramp dis-
turbance when they include two ones.

In Table I, controller type of PPC varies with the propagation
parameter . When is zero, PPC has only two zeros locating
all in one, which is the same as PCC and d-EWMA controller
with and . When increases from zero, PPC
has M zeros, and still has a zero at one. As approaches to 1,
the PPC is equal to a moving average filter of order M. Thus,
PPC can deal with Mth order disturbance theoretically when
is not zero. Furthermore, PPC always has a zero at one for every

, which means that PPC is able to reject step disturbance, same
characteristics as EWMA. Note that PCC and d-EWMA can
reject ramp disturbance with every and , while PPC can
only deal with ramp disturbance when is zero. In summary,
PPC is a scalable Mth order controller and its properties are
similar to EWMA, PCC and d-EWMA under certain conditions.

As for the stability region, it varies with the controller pa-
rameters. The minimum acceptable stability region of PPC is
the same as PCC and d-EWMA, while the maximum accept-
able stability region of PPC is smallest among all controllers.

V. SIMULATION RESULTS

This section compares the performance of PPC with EWMA,
PCC, and double EWMA when subjected to different types of
disturbance. This study used the training data to examine all pos-
sible propagation parameters or weightings of other controllers
to find a fixed optimal propagation parameter or the weight-
ings of the other controllers using the minimum mean square
error. Then the parameter or weightings were applied to testing
data. Furthermore, the proposed self-tuning PPC was compared
with self-tuning EWMA [9] and self-tuning PCC [17] directly
through the testing data. Notably, there has been no literature to
date regarding adaptive tuning of the double EWMA controller.
Thus, seven candidate controllers were used in our simulation;
we applied five types of anthropogenic disturbance and the data
from semiconductor fabrication.

A. Anthropogenic Disturbance

The simulation settings with anthropogenic disturbance in-
cluded the following: the process model was (1, 1.5), the
10% offset controller model was (1.1, 1.65), the initial
input was 0, and the process target was 0, respectively.

Because PPC is a meta-heuristic method, the performance can
only be assessed by different cases. This study examined five
types of disturbance with as the backward shift operator and

as the Gaussian noise and uncontrolled terms of run :
(a) IMA(1, 1)

(25)

(b) ARMA (1, 1)

(26)
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TABLE II
COEFFICIENTS OF THE ANTHROPOGENIC DISTURBANCE

(c) Random walks

(27)

(d) AR(3)

(28)

(e) ARI(3, 1)

(29)

The coefficients for the different types of anthropogenic dis-
turbance are listed in Table II. IMA(1, 1) [5], [6], [8], [11], [13],
[17], [21], ARMA(1, 1) [5], [8], [18], Random walk [1], [21]
are typical disturbance models for the fabrication data in semi-
conductor manufacturing and the high order disturbance ARI(3,
1) is also observed in sputter deposition process [32]. Addition-
ally, AR(3) is employed to check the performance of PPC under
high order disturbance.

We produced 100 sets of training data and 100 sets of testing
data using (25)–(29) with , , and standard devia-
tion . Each set of the training and testing data had 100
runs. In addition, this study employs three performance indices
to evaluate the performance: average (Ave.), standard deviation
(Std.) and mean square errors (MSE) of ’s (10) obtained
from 100 sets of test data.

1) Influence of PPC Parameters on Output Performance:
This section shows the influence of PPC parameters on output
performance: 1) the size of pheromone basket M; 2) the stan-
dard deviation of noise in (25)–(29); 3) the model mismatch;
and 4) the filter size in (23).

The influence of the size of the pheromone basket is shown
in Figs. 7(a)–7(b). In Fig. 7(a), when propagation parameter
is fixed, the size of pheromone basket almost has no effect
on MSE. In Fig. 7(b), when the propagation parameter is
self-tuned, a small size of pheromone basket has benefits in
dealing with the higher order disturbance. However, selecting
M is a trade-off between stability and performance. One selects

by the following considerations: (1) The PPC with
has slightly smaller MSE than that of for

ARMA(1,1) and IMA(1,1) as shown in Figs. 7(a)–7(b); (2)
Stability region of the PPC with is larger than that of

as shown in Fig. 6.
For the minimum variance control [33], with a priori infor-

mation about the disturbance structure, the Std. of the controlled

Fig. 7. Comparison of the size of pheromone basket with � � ���: (a) PPC
with fixed optimum propagation parameters and (b) Self-tuning PPC.

output is always equal to or larger than . The influence of
the standard deviation of noise in (25)–(29) on performance is
shown in Fig. 8(a)–(b), which shows output Std. is slightly larger
than the setting of . It also indicates that the performance ap-
proaches to that of minimum variance controller, which needs a
priori information about the disturbance structure.

Fig. 9(a)–(b) examines the influence of different model mis-
matches within the stability region, where no particular trend
can be concluded, but it will increase with the increase of model
mismatch for high order disturbances. From our observation,
MSE with different model mismatches in Fig. 9(a)–(b) is in form
of a parabolic curve when model mismatch is further extended;
the minimum MSE is not always at for different
types of disturbance.

The influence of the filter size in (23) on performance is
shown in Fig. 10, where the size of pheromone basket of self-
tuning PPC is 6. It shows that the perturbation of noise will
appear when , i.e., no filtering. In addition, the result is
slightly different when 3 and choosing larger needs more
runs for initialization (it needs runs in simulation and real
case). So, the self-tuning PPC in this study employs in
the following simulations.

2) Performance Comparison of PPC With EWMA, PCC and
Double EWMA: The fixed optimal propagation parameter or
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Fig. 8. Comparison of the magnitude of � with � � ��� and � � �: (a) PPC
with fixed optimum propagation parameters and (b) Self-tuning PPC.

weights of the other controllers listed in Table III were ob-
tained using the minimum MSE from 100 sets of training data.
Next, the fixed optimal controller parameters were applied to
the testing data. The simulation results from the 100 sets of
testing data with fixed optimum parameters controllers are listed
in Table IV. Table IV also compares consistency of the simula-
tion results of five anthropogenic disturbances by mean, range
and variance. One observed that the fixed PPC has better output
Std. and MSE for ARMA(1, 1), AR(3) and ARI(3, 1) distur-
bances and is consistent in Std. and MSE with smaller mean,
range and variance. However, the Ave. of fixed PPC is worse
than the other candidate controllers. Consequently, this study
develops self-tuning PPC for improvement.

The three performance indices from the 100 sets of testing
data with self-tuning controllers are listed at Table V. The Ave.
index is improved over the one by fixed PPC. Table V also
indicates that the self-tuning PPC, which is designed without
a priori information about disturbance type, is superior to the
other candidate self-tuning controllers in the sense of smallest
variance in Std. and MSE. Summing up Table IV and 5, the
self-tuning PPC is more consistent in output Std. and MSE than
any other candidate controllers.

B. Fabrication Data

The test pattern, which was collected from semiconductor
fabrication [32], is shown in Fig. 11, and is composed of ramp

Fig. 9. Comparison of the magnitude of the model mismatch: (a) PPC with
fixed optimum propagation parameters and (b) Self-tuning PPC.

Fig. 10. The influence of the filter size � in (23).

disturbance, step disturbance, and noise. Moreover, the test pat-
tern has 197 runs, where the first 97 runs (runs 1–97) are des-
ignated as training data and the last 100 runs (runs 98–197) are
the testing data.

The other simulation settings were ,
, , initial ,

and ; the upper and lower specification limits of the
controlled outputs were set at 25 and , respectively. The
simulation assumed that the process had two variations; one
was a fixed gain with bias , and the other
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TABLE III
FIXED OPTIMUM CONTROLLER PARAMETERS OF THE ANTHROPOGENIC DISTURBANCE IN FIG. 10

TABLE IV
PERFORMANCE COMPARISON OF THE ANTHROPOGENIC DISTURBANCES WITH DIFFERENT FIXED PARAMETER CONTROLLERS: (A) AVERAGE, (B) STANDARD

DEVIATION, AND (C) MEAN SQUARE ERROR

TABLE V
PERFORMANCE COMPARISON OF THE ANTHROPOGENIC DISTURBANCES WITH DIFFERENT SELF-TUNING CONTROLLERS: (A) AVERAGE, (B) STANDARD

DEVIATION, AND (C) MEAN SQUARE ERROR

Fig. 11. Testing pattern composed of ramp disturbance, step disturbance, and
noise.

drifted per run from the first run, which amounts to a
model mismatch of approximately 1–2 for the training data
and approximately 2–3 for the testing data. Thus, the simulation
of the controllers with the fixed optimal controller parameters
had eight scenarios with the permutation of hybrid disturbance,
two types of system variation, and four control algorithms. The
simulation of the self-tuning controllers included six scenarios,
with permutations of the hybrid disturbance, two types of
system variation, and three self-tuning controllers.
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Fig. 12. Output of the controllers with fixed optimum controller parameters.

Fig. 12(a) and 1(b) shows the output of the controllers with
the fixed optimal controller parameters. Table VI summarizes
the simulation results of Figs. 12(a) and (b). From Table VI,
PCC and double EWMA performs slightly better than PPC
when system is fixed with a bias. When the system gain drifts,
the PPC has a good output Std. and MSE. Fig. 13(a) and (b)
shows the controlled output and the tuned parameters of the
self-tuning controllers. The results reveal that the PPC offset
observed with the fixed propagation parameters disappeared,
while the self-tuning EWMA [9] still had an offset near the
target and converged slowly. In addition, the transient time of
the self-tuning PCC [17] was slower than that of the self-tuning
PPC, as shown in Fig. 13(a), and oscillated [Fig. 13(b)].
Table VII summarizes the simulation results for the self-tuning
controllers and shows that the self-tuning PPC was superior to
the other controllers in output Ave., Std., and MSE. In addition,
the performance of off-line searching for the best parameters
was better than that of self-tuning controllers when the process
had a fixed bias. When the system drifted, the self-tuning PPC
had the best performance of all in our simulations. Furthermore,

the results are consistent whether the process had a fixed bias
or drift.

VI. CONCLUSION

We used swarm intelligence to develop a new process con-
troller, the PPC. PPC links swarm intelligence and APC by
treating the intercepts of the linear regression model at different
runs as a social insect colony and modeling the interactions
among the intercepts in terms of propagation. We proposed a
workable PPC scheme with the strategy of tuning the propaga-
tion parameter adaptively. The method can be easily extended
to the MIMO case. Dealing with high order disturbances is the
advantage of PPC; in particular, no training time as for neural
work and no special rules as for fuzzy logic are the advantages of
the proposed self-tuning PPC. Smaller stability region is the dis-
advantage. For the five anthropogenic disturbances, fixed PPC
is more consistent than EWMA, PPC, and double EWMA, in
sense of output Std. and MSE; self-tuning PPC improved Ave.
index over fixed PPC and is the most consistent in Std. and MSE
among candidate controllers. In short, PPC has advantage in
higher order disturbance, such as AR(3) and ARI(3,1), and is as
good as the competitors in lower order disturbance. For different
disturbance model other than those in the paper, one can specu-
late PPC will perform well since it is capable of deal with com-
plex disturbance with a scalable Mth order controller. In addi-
tion, for the semiconductor fabrication data, the double EWMA
controller seems to perform slightly better than the PPC when
system is fixed with a bias and the proposed self-tuning PPC was
superior to the other candidate self-tuning controllers in our sim-
ulations and had the best performance when the process drifted.

Because PPC is a meta-heuristic method and not designed for
any specific type of disturbance, the performance can only be as-
sessed by different cases. Outstanding issues requiring further
study include effect of the magnitude of the model mismatch on
the output MSE, a two-dimensional pheromone basket, the role
of the evaporation parameter in PPC, and extension of the dig-
ital pheromone infrastructure to other fields such as parameter
estimation or the disturbance observer.

APPENDIX A

We look at (2) and (4), and assume that the system is nondis-
sipative over the short term. If the pattern of the external input
to a pheromone basket is a series of ones, the final
transition result of aggregated pheromone should also
be a series of ones, regardless of the value of the propagation
parameter . Therefore, the transition function should obey
the energy balance law, which means that the summation of the
aggregated pheromone before transition is equal to that of the
final transition results. In (2), when and ,

.
Thus, substituting (2) into (4) yields

(A1)

and should be 1.



LEE AND LEE: PHEROMONE PROPAGATION CONTROLLER 369

Fig. 13. Controlled output and the tuned parameters of the self-tuning controllers.

TABLE VI
SIMULATION RESULTS OF CONTROLLERS WITH FIXED PARAMETERS OBTAINED

FROM MINIMUM MSE

APPENDIX B

To overcome the end effect as shown in Fig. 2, we modify the
propagation-out ratio in the two extremities from
to , which can be obtained by final value theorem in the Ap-

TABLE VII
SIMULATION RESULTS OF SELF-TUNING CONTROLLERS

pendix C. First, (2) and (5) are rewritten as (A2) and (A3), found
at the bottom of the next page.

By (A2) and (A3), (A8) in Appendix C becomes

(A4)
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where

...

...

...

...

...

...

...
. . .

...

...
. . .

...

...
. . .

...

Without loss of generality, take “M equal to 5 and is
the 5 1 matrix of ones” as an example. The final propagation
result of obtained from (A9) must be the 5 1 matrix of
ones.

(A5)

Solving (A5) yields

(A6)

Relatively, when is the matrix of ones, (A9) in
Appendix C becomes

(A7)

Equation (A7) shows that the final propagation result
is also an matrix of ones. Thus, the modified

transition functions not only obey the energy balance law but
also avoid the end effect.

if
if
if
if
if

(A2)

if
if

(A3)
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(A11)

APPENDIX C

Because states and are updated simultane-
ously, (6) and (7) can be rewritten in matrix form:

(A8)

where

...

...

...

...

...

...

...
. . .

...

...
. . .

...

...
. . .

...

and

In (A8), and can be obtained with the
z-transform and the final value theorem

(A9)

where , ,

and ... . Note

that if the above system is stable, in (A9) will converge
to the matrix of 0 and will converge to . In addi-
tion, the z-transform of the external input is equal
to since is an impulse at by definition in
Section II-A. Thus, is a function of and for a
specific M. The final propagation results can be obtained ana-
lytically using (A9).

APPENDIX D

When approaches 1, the PPC is equal to disturbance with
a moving average (MA) filter; this result can also be observed
from Fig. 5(c). In the following, we analyze the stability of
MA(4) and MA(6) to show a higher order MA controller has
a larger stability region than the lower order one.

1) The transfer function from disturbance to output of a
MA(4) controller is

(A10)

where the stability region is 5.
2) The transfer function from disturbance to output of a

MA(6) controller is (A11), found at the top of the page.
where the stability region is 7.
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