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Abstract—This paper investigates a geometric property of time-
optimal problem in the Takagi–Sugeno (T–S) fuzzy model via Lie
algebra. We will focus on the existence of a time-optimal solution,
singularity of switching function, and number of switching. These
inherent problems are considered because of their rich geometric
properties. The sufficient condition for the existence of a time-
optimal solution reveals the controllability of T–S fuzzy model that
can be found by the generalized rank condition. The time-optimal
controller can be found as the bang–bang type with a finite number
of switching by applying the maximum principle. In the study of
the singularity problem, we will focus on the switching function
whenever it vanishes over a finite time interval. Finally, we show
that the bounded number of switching can be found if the T–S
model (also a nonlinear system) is solvable.

Index Terms—Controllability, fuzzy control, Lie algebras,
Takagi–Sugeno (T–S) fuzzy model, time-optimal control.

I. INTRODUCTION

IN RECENT years, fuzzy logic control with human knowl-
edge of the plant has witnessed an effective approach to

the design of nonlinear control systems. Indeed, there have
been many successful applications that are based on fuzzy con-
trol [1]–[8]. Takagi and Sugeno [9] proposed an approach to
model nonlinear processes. This type of model is known as the
T–S model that is further developed in [10]. The T–S fuzzy
model blends the dynamics of each fuzzy implication by a lin-
ear consequence part [11]–[13]. In this type of fuzzy model, lots
of important issues are addressed such as stability [2], [8], [11],
performance [13]–[15], and robustness [16]–[18], etc. In [19],
a fuzzy approach is used in the design of time-suboptimal feed-
back controllers.

The T–S fuzzy model has a strong connection with the poly-
topic linear differential inclusion (PLDI) [36], [37] that will lead
to the relaxed version of T–S fuzzy model defined in this paper.
The equivalence between the fuzzy model and the differential
inclusion is revealed by the well-known Filippov’s selection
lemma [36], [37]. From Filippov’s selection lemma, the set of
solutions of T–S fuzzy model coincides with the set of solu-
tions of the differential inclusion. By formulating the T–S fuzzy
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model as a relaxed version, we can perform some algebraic op-
erations on it, such as linear combinations and the Lie bracket
product.

The maximum principle has been extensively applied in many
time-optimal control problems [20]–[35]. A series of results has
been published on the applications of the maximum principle
in time-optimal control of finite-dimensional linear systems and
certain low-order nonlinear systems [21]–[23]. It is well known
that Lie brackets play an essential role in the study of time-
optimal control [31]–[35]. In general, the maximum principle
can reduce the optimal control problem by the Hamiltonian.
However, the Hamiltonian formulation contains no information
about the existence of a time-optimal solution. It is better to
convert the existence of a time-optimal solution to the study of
reachable sets [25], [26], [28]. While the existence of a time-
optimal solution is addressed as the compactness of a research-
able set, we still have to generalize the analytical process, and
this will lead us to the discussion of Lie algebra. An accessible
Lie algebra spans a family of analytical vector fields that will
imply the controllability of T–S fuzzy model.

Using the maximum principle, a time-optimal trajectory com-
bined with the corresponding control is called an extremal.
The bounded input is determined by the signs of the associ-
ated switching functions. The singularity of the system is a
well-known problem in time-optimal control that was explored
in [27] and [31]. An optimal trajectory may be singular, i.e.,
switching functions may vanish along the trajectory. The char-
acterization of such trajectories will be investigated in this paper.
The existence of extremal will imply that the time-optimal con-
troller of the T–S fuzzy model has a finite number for switching,
which can be found by Lie algebra in this paper.

This paper is organized as follows. In Section II, we will
formulate the time-optimal problem in T–S fuzzy model. In
Section III, the T–S fuzzy model is described as a polytopic
linear differential inclusion and Lie algebra is adopted to find the
controllability of T–S fuzzy model. It can also be shown that if
the T–S fuzzy model is controllable, then the time-optimal does
exist. Assuming the existence of a time-optimal solution, we will
investigate the singular structure in fuzzy model in Section IV.
The optimal trajectory is solved by the shooting method, and
the numerical illustrations are provided in Section V. Finally,
conclusions are included in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Consider a nonlinear control-affine system

ẋ = f (x) + g (x) u (1)
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where x ∈ X is the system state, and u is the control input in
an arbitrary set U . The state space X is a smooth differential
manifold of dimension n. The vector fields f and g are assumed
to be analytic.

In many situations, a fuzzy model with the human knowledge
can provide a linguistic description of the nonlinear system in
terms of IF–THEN rules. The ith rule of the T–S fuzzy model
is described by the following form:

Rule i: IF z1(t) is Mi1 · · · and zp(t) is Mip, THEN

ẋ = Aix + Biu

where x denotes system states, taking values in an open subset
X of R

n , u ∈ R
m is a measurable bounded function on U, i

is the number of IF–THEN rules, zi(t) are some fuzzy input
variables, Mij are fuzzy membership functions in the ith rule,
and ẋ = Aix + Biu is the output from the ith IF–THEN rule.
The entire fuzzy model is formulated as follows:

ẋ =
r∑

i=1

µi (z(t)) (Aix + Biu) (2)

where r is the total number of rules, µi (z(t)) is the nor-
malized membership function, and µi (z(t)) = αi/

∑r
i=1 αi ,

where αi is the firing strength of the ith rule such that
αi =

∏p
j=1 Mij (zj (t)).

The relaxed version of T–S fuzzy model is described by

ẋ ∈ Co {[Aix + Biu] | i = 1, . . . , r} (3)

where Co denotes a convex hull [36]. If the T–S fuzzy model
is continuous and the control input U is compact, the set of
solutions of (2) coincides with the set of solutions of (3) [36],
[37], i.e.,

Co{[Aix + Biu] | i = 1, . . . , r} ⊇
r∑

i=1

µi (z(t)) (Aix + Biu) .

Therefore, we represent the T–S fuzzy model by (3) as

ẋ =
r∑

i=1

µi(t) (Aix + Biu) (4)

where µi(t) ∈ [0, 1], and
∑r

i=1 µi(t) = 1. To simplify the no-
tion, we adopt

∑
Ai =

∑r
i=1 µi(t)Ai,

∑
Bi =

∑r
i=1 µi(t)Bi,

and the jth column vector of
∑

Bi denoted as
∑

bj =∑r
i=1 µi(t)Bij , j = 1, . . . , m and these are assumed to be lin-

early independent. Throughout the rest of this paper, the T–S
fuzzy model is denoted as

ẋ =
∑

Aix +
∑

Biu. (5)

In general, the variable z(t) in (2) sometimes is chosen as the
state variable x(t), thus defuzzification µi (z(t)) causes (2) to
become a class of nonlinear systems. This leads to difficultly in
performing differential algebra on (2). To avoid this problem,
such a T–S fuzzy model (5) is introduced to allow us to perform
differential algebra on it.

In this paper, we will make the following assumptions on the
control input.

Assumption 1: The control input is given by

U = {u ∈ R
m | aj ≤ uj ≤ bj , j = 1, . . . , m} .

For a given control u(t) ⊂ U on a time interval [0, t1 ] and any
initial point x (t0) = x0 ∈ X , let x (., x0 , u) denote the solution
of the fuzzy model (5) with a measurable control u defined on
an interval of [0, t1 ]. For performing optimality on a segment
[0, t1 ], we introduce a cost functional

J (u) =
∫ t1

0
ϕ (x(t), u(t)) dt. (6)

Let x0 ∈ X be an initial point and x1 ∈ X be a final point.
We propose the following optimal control problem in terms of
the cost functional J .

Problem 1: Find a control u(t) ∈ U that minimizes (6) along
the solution of (5) and satisfies the boundary condition

x (t1 , x0 , u) = x1 . (7)

We note that this problem is well posed, i.e., an optimal
control does exist. The intuitive interpretation of Problem 1 is
clear: find a control that will push the initial state to a given final
condition in a given amount of time.

B. Preliminaries

For the nonlinear control-affine system (1), the corresponding
Lie bracket of two smooth vector fields f and g is denoted by
[f, g], and

[f, g] (x) =
∂f

∂x
g (x) − ∂g

∂x
f (x)

where ∂f/∂x and ∂g/∂x denote the Jacobi matrices of their
vector fields. The iterated Lie bracket of f and g is defined as

ad (f)k (g) (x) = [f, ad (f)k−1 g] (x) (8)

where ad (f)0 (g) := g, and k ≥ 1. The Lie algebra generated
by the vector fields can be expressed as

L = {f, g1 , . . . , gm}LA

= span{[gi1 · · ·[gik −1 , gik
] · · ·] | k ≥ 1, 0 ≤ i1 , . . . , ik ≤ m}

where g0 = f. Since the control-affine system can be repre-
sented by a family of vector fields, this will have direct applica-
tions to control systems. Considering a T–S fuzzy model with
a compact set of control inputs U , the Lie bracket taken at a
point of an analytic family of vector fields forms a complete
set of its invariants. In particular, L (p0) denotes the space of
tangent vectors at p0 defined by the Lie algebra. Due to the
fact that f = g0 =

∑
Aix, g1 =

∑
b1 , . . . , gm =

∑
bm , and

that the Lie bracket of constant vector fields is zero, the iter-
ated Lie bracket can be found as

ad
(∑

Aix
)k ∑

bj =
[∑

Aix, ad
(∑

Aix
)k−1 ∑

bj

]
.

(9)
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A Lie algebra L is recursively defined by

L(1) = [L,L]

L(2) = [L(1) ,L(1) ], . . . ,L(k) = [L(k−1) ,L(k−1) ], . . .

is called solvable if L(k) = 0 for large k, i.e., L(k) ⊃ L(k+1) .
Furthermore, the Lie algebraL is called nilpotent if the sequence
of L is always decreasing with respect to

L1 = L,L2 = [L,L1 ], . . . ,Lk = [L,Lk−1 ], . . .

and Lk = 0. Any nilpotent Lie algebra is solvable. More details
can be found in [38]. In the following, we will introduce notions
and results that play a basic role in analyzing the structure of
nonlinear control systems. They are directly related to control-
lability properties of nonlinear systems. In the following, we
denote X as an n-dimensional C∞ manifold.

Definition 1: Let TxX be a subspace of the tangent space at
any point x ∈ X . A distribution ∆ on X is a map that is

x ∈ X → ∆(x) ⊂ TxX.

The distribution ∆ is a smooth subspace of R
n to each point

x. The dimension of ∆, in general, is not a constant. If the
dimension is constant in a neighborhood of x, then x is said
to be a regular point of the distribution. If any point of the
distribution is regular with dimension k, the distribution is said
to be regular and the dimension of the distribution is k.

Definition 2: A distribution ∆(x) is called involutive if for any
two vector fields f, g ∈ ∆(x), their Lie bracket [f, g] ∈ ∆(x).

For convenience, the following Theorems 1–3 are listed here
that are adapted from [35]–[39].

Theorem 1 (Chow’s Theorem) [35]: Let F be a set of C∞

vector fields on X and L = {λ0 , λ1 , . . . , λk}LA be the Lie
algebra generated by F . If dim (L (x)) = n for all x ∈ X , then
any point of X is reachable by trajectory of the vector fields F .
Thus

x1 = eλL
tL

◦ · · · ◦ eλ1
t1

(x0)

for some L≥ 1, {λ0 , λ1 , . . . , λk}∈F and t1 , . . . , tL ∈ (0,∞).
The following well-known theorem of Frobenius is charac-

terized by the integrable distribution.
Theorem 2 (Frobenius’ Theorem) [38]: If X is a Cω (regular)

manifold of dimension n and ∆ is an involutive distribution,
then around any point x ∈ X , there exists a largest integral
manifold of ∆ passing through x.

Remark 1: A distribution ∆ is said to be integrable if there
exists a submanifold S on X such that for any x ∈ X

∆(x) = TxS

where S is passing through x.
Remark 2: Any analytic involutive distribution ∆ is integrable

[39].
Theorem 3 [39]: Let F be a set of Cω vector fields on X and

L = {λ0 , λ1 , . . . , λk}LA be the Lie algebra generated by F . For
all x ∈ X , there exists a largest integral manifold of F passing
through x.

The proof of Theorem 3 can be found by using the Campbell–
Baker–Hausdorff formula and Theorem 2.

In the following section, the T–S fuzzy model (5) associ-
ated with the Lie algebra is derived to show the controllability
condition and imply the existence of optimal control.

III. EXISTENCE OF OPTIMAL CONTROL

IN THE T–S FUZZY MODEL

We begin with the formal definition of reachability and
controllability.

Definition 3: The reachable set R (x) of the T–S fuzzy model
(5) for time t ≥ 0, subject to the initial condition x ∈ X is the
set

RT (x) = {x (t, u) : x ∈ X and u : [0, T ] 
→ U} .

Definition 4: The T–S fuzzy model (5) is accessible if its
reachable set RT (x), x ∈ X has a nonempty interior. Similarly,
we will call this T–S fuzzy model strongly accessible if the
reachable set RT (x) has the nonempty interior for any T > 0.

Definition 5: The T–S fuzzy model (5) is controllable if ∀x0
and ∀x1 in the manifold of X , there exists a finite time T and an
admissible control function u : [0, T ] such that x (T ;x0 , u) =
x1 .

In the following, we shall show that the existence of optimal
solution of Problem 1 can be reduced to determine the acces-
sibility of the reachable set. The qualitative properties of the
reachable sets can be established. One of the basic properties
can be shown in the following context.

Definition 6: For the T–S fuzzy model (5), the accessibility
Lie algebra is defined as

La :=
{∑

Aix,
∑

bj | ∀j = 1, . . . , m
}

LA
. (10)

TheLa is a finite-dimensional Lie algebra of vector fields that
contains the family {

∑
Aix,

∑
bj}. In fact, this accessibility

Lie algebra plays basic role in the controllability of a T–S fuzzy
model.

Theorem 4: If the accessibility Lie algebra of the T–S fuzzy
model in (5) is full rank at x, that is

rank (La (x)) = n ∀x ∈ R
n (11)

then the reachable setup to any time T > 0 has the nonempty
interior, and therefore, the fuzzy model is strongly accessible.

Proof: According to Chow’s theorem [35], the reachable set
R (x) is the largest integral manifold of La for ∀x ∈ R

n . From
(11), it contains an open neighborhood Ω of x. This implies that
for any x0 , its reachable set is an open set. We can conclude that
the reachable set R (x) is arcwise connected and spans into the
R

n space. Q.E.D.
Remark 3: Since the T–S fuzzy model (5) is analytic, using

Chow’s theorem [35] and Frobenius’ theorem [38], the manifold
X represents the maximal-connected reachable manifolds. Each
reachable manifold is the maximal integral manifold of La .

Remark 4: By using Chow’s theorem [35], the control-
lable manifolds can be spanned from {

∑
Aix,

∑
bj |∀j =

1, . . . , m}.
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Remark 5: The La implies that the T–S fuzzy model (5) is
accessible from x0 if the same collection of vectors together with∑

Aix0 +
∑

Biu span the whole space. This condition means
that no vector

∑
Biu belongs to a proper invariant subspace of∑

Aix0 .
Theorem 5: If a T–S fuzzy model is strongly accessible, then

it is also controllable.
Proof: Using Remark 3, for a T–S fuzzy model, the degree

of largest integral manifold is related to rank of accessibility
Lie algebra La . As the fuzzy model is strongly accessible, there
exists the nth-degree largest integral manifold. For a given point
x ∈ R

n , the fuzzy model is controllable. Q.E.D.
In the following, the generalized rank condition of accessible

Lie algebra is derived to show the controllability of the T–S
fuzzy model.

Corollary 1: The T–S fuzzy model (5) is controllable if and
only if the following matrix

(W0 ,W1 , . . . , Wn−1) :=
(∑

bj ,
∑

Ai

∑
bj , . . .

×
(∑

Ai

)n−1 ∑
bj

)
, j =1, . . . , m (12)

is of rank n for any t > 0.
Proof: First, we give the proof of sufficient part. Considering

the T–S fuzzy model (5), let f = g0 =
∑

Aix, and g1 =
∑

bj

be a vector field. Then, we have the following iterated Lie
brackets:[∑

Aix,
∑

bj

]
=−

∑
Ai

∑
bj ,

[∑
Aix,

[∑
Aix,

∑
bj

]]

=
∑

A2
i

∑
bj , . . . .

From (9), the iterated Lie brackets are rewritten as

ad
(∑

Aix
)l ∑

bj =
(
(−1)

∑
Ai

)l ∑
bj .

Therefore, the accessibility Lie algebra La consists of con-
stant vector fields only

La =Span

{(∑
Ai

)l (∑
bj

) ∣∣∣∣l ≥ 0, j = 1 , . . . , m

}
.

(13)
If (12) is satisfied, we can conclude that dim (La) is of full

rank n for any t > 0, and then, the fuzzy model is controllable.
Next, we show the necessary condition. From the Frobenius’

theorem [38] and Remark 3, it follows that if the T–S fuzzy
model (5) is controllable, then there exits the nth-degree largest
integral manifold for x ∈ X . If (12) is satisfied from Theorem
3 and Remark 1, there exists a largest integral nth-order sub-
manifold S that is unique and contained in the largest integral
manifold. Q.E.D.

Remark 6: In analyzing controllability properties of the
fuzzy model (5), we can replace the set of G (x) =
{Aix + Biu : u ∈ U, i = 1 , . . . , r} by its convex hull, and the
trajectories of convexified system can be approximated by the
trajectories of the original fuzzy model (2). In particular, if
0 ∈ intCo {G (x)} for all x ∈ X , then the fuzzy model is con-
trollable.

Fig. 1. Membership functions in Example 1.

Remark 7: Obviously, for the single-rule T–S fuzzy model,
Corollary 1 degenerates to the Kalman controllability matrix of
the linear system.

Remark 8: If all the subsystems are controllable, whereas the
overall system cannot be concluded as controllable, then the
overall system can be called local controllable.

The membership functions obviously play the critical roles in
the controllability of the system. In the following examples, the
local controllability and controllability of the T–S fuzzy model
will be illustrated. The nonlinear system will be modeled with
the distinct membership functions.

Example 1: Consider a nonlinear system

ẋ = tan (u)

ẏ = 10 sin(x) cos (x) .

Assume that x(t) ∈ [−π/2, π/2]. Then, the T–S fuzzy model
of the nonlinear system can be formulated as follows:

Rule i: IF x(t) is about “Positive” and “Negative,” THEN

Ẋ(t) = AiX(t) + Biu, i = 1, 2 (14)

where X(t) = [x(t) y(t)]T

A1 =
[

0 0
10β 0

]
, B1 =

[
1
0

]

A2 =
[

0 0
−10β 0

]
, B2 =

[
1
0

]

and β = cos (88◦). The membership functions are shown in
Fig. 1. According to Corollary 1, the corresponding rank of
controllability matrix of the fuzzy model is

Rank
(∑

bj ,
∑

Ai

∑
bj

)

where

W0 =
∑

bj =
[

1
0

]
W1 =

∑
Ai

∑
bj

=
(

µ1

[
0 0

0.349 0

] [
1
0

]
+ µ2

[
0 0

−0.349 0

] [
1
0

])

=
[

0
0.349 (µ1 − µ2)

]
.
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Fig. 2. Membership functions in Example 2.

The fuzzy model is controllable if Rank ([W0 ,W1 ]) = 2. We
can check the controllability by the following determinant:∣∣∣∣

[
1 0
0 0.349 (µ1 − µ2)

]∣∣∣∣ = 0.349 (µ1 − µ2) .

Unfortunately, the rank of [W0 ,W1 ] for µ1 = µ2 = 0.5 is 1.
From the membership functions, we can observe that the fuzzy
model is uncontrollable if x(t) = 0. Although x(t) = 0 is one of
the equilibrium points; however, the fuzzy model is concluded
to be uncontrollable when x(t) = 0 and y(t) �= 0.

In following example, we redesign the nonlinear system with
different membership functions.

Example 2: Consider the nonlinear system in Example 1. If
the membership functions are chosen as Fig. 2, then the conse-
quence parts of the fuzzy model can be formulated as

A1 =
[

0 0
10 0

]
, B1 =

[
1
0

]

A2 =
[

0 0
10β 0

]
, B2 =

[
1
0

]
.

By Corollary 1, the controllability matrix contains the vector
fields

W0 =
∑

bj =
[

1
0

]

W1 =
∑

Ai

∑
bj =

(
µ1

[
0 0
10 0

]
+ µ2

[
0 0

0.349 0

])[
1
0

]

=
[

0
10 (µ1 + 0.0349µ2)

]
.

If the fuzzy model is controllable, then the following condi-
tion is satisfied:∣∣∣∣

[
1 0
0 10 (µ1 + 0.0349µ2)

]∣∣∣∣ = 10 (µ1 + 0.0349µ2) �= 0.

Since the firing strengths µi ∈ [0, 1] and µ1 + µ2 = 1, then
10 (µ1 + 0.0349µ2) �= 0 for ∀t. Then, we can conclude that the
overall T–S fuzzy model is controllable.

Remark 9: An important and natural question arises in the
design of a feedback controller using local controllability. The
controllability of a physical system is a prerequisite for proceed-
ing with the controller design.

The following theorem discusses the existence of the optimal
solution for Problem 1.

Corollary 2: If the T–S fuzzy model in (5) is controllable,
then there exists an optimal control for any bounded input.

Proof: Consider the T–S fuzzy model with bounded input
u(t) ∈ U ⊆ R

m . It is more convenient to consider the T–S fuzzy
model in the form

ẋ =
∑

Aix + v, v ∈ V

where V is the image of U under the map
∑

b : R
m → R

n .
Thus, the Lie brackets are[∑

Aix, v
]

=
∑

Ai · v, v ∈ V.

Let the set W = {v′ − v′′| v′, v′′ ∈ V }. The Lie algebra of
the T–S fuzzy model contains the vector fields

∑
Aix + v′ −

(∑
Aix + v

′′
)

= v′ − v
′′ ∈ W.

Consider all constant vector fieldsf = w,w ∈ W. Thus, it
contains the Lie brackets [w,

∑
Aix + v] =

∑
Aiw. Since the

fuzzy model is controllable, the accessibility Lie algebra La

consists of constant vector fields if

La = dim span

{(∑
Ai

)l

w

∣∣∣∣0 ≤ i ≤ n − 1, w ∈ W

}
= n

(15)
for l = 0, . . . , n − 1 ∀t > 0. This condition means that if the
bounded input U is nonempty, then the controllability rank
condition implies that the system can be spanned the whole
space. Q.E.D.

The condition of Corollary 2 means that there exists no vector
v = v′ − v′′ ∈ U, j �= k, such that no image of U belongs to an
invariant subspace of matrix

∑
Ai . In the next section, we shall

design the time-optimal controller for the T–S fuzzy model with
the maximum principle.

IV. DESIGNING TIME-OPTIMAL CONTROLLER

FOR A CONTROLLABLE T–S FUZZY MODEL

In this section, we will study the properties of time-optimal
control using the maximum principle [20], [27]. In general,
Problem 1 can be formulated as a Hamiltonian by the maximum
principle. The Hamiltonian for Problem 1 can be described as

H (x, λ, u) := λT
∑

Aix + λT
∑

Biu (16)

where λ : [0, t1 ] is a costate satisfying the adjoint equation as-
sociated with (5)

λ̇ = −∂H

∂x
= −λT

∑
Ai. (17)

By using the maximum principle [20], Problem 1 becomes

H (x, λ, u) = max
v∈U

H (x, λ, v) . (18)

Definition 7: Trajectories of (5), (16), and (17) that satisfy
the maximum principle are called extremal (x, λ, u) : [0, t1 ] 
→
Rn × Rn\ {0} × U . When the constant λ0 is zero, the extremal
is said to be abnormal [31].
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Definition 8: For j = 1 , . . . , m, the switching functions
ψj (·) along an extremal (x, λ, u) are defined by

ψj : [0, t1 ] → R, ψj (t) := λT
∑

bj . (19)

They are absolutely continuous functions [31].
The necessary condition for optimality provided by the max-

imum principle states that u : [0, t1 ] must pointwise maximize
H (x(t), λ(t), ·) for the costate λ associated with the optimal
trajectory. Moreover, the Hamiltonian is constant along the so-
lutions of (16) and must satisfy

H (x, λ, u) = λ0 , λ0 ≥ 0. (20)

The maximum condition (18) is equivalent to the following:

uj (t)ψj (t) = max
vj ∈U

vj (t)ψj (t), j = 1, . . . , m. (21)

Obviously, the functions ψj (t) play a crucial role in the study
of time-optimal trajectories. Under Assumption 1, the time-
optimal control must satisfy the following conditions almost
everywhere:

uj = bj , if ψj (t) > 0

uj = aj , if ψj (t) < 0 (22)

for j = 1 , . . . , m. In such a case, switching functions having
zeros have to be carefully analyzed.

Remark 10: Determination of optimal control sequence of
(22) is related to the trajectory of costates. This introduces other
problems as the initial costates and final time are unknown. This
kind of problem is called two-point boundary value problems
(TPBVP). The shooting method [40], however, has been used
to solve this problem. The optimal solution can be obtained by
solving (5), (17), (20), and (22) simultaneously. For TPBVP,
no practical method has been developed yet to compute the
time-optimal feedback control.

Supposing that in the time interval [0, t1 ] there exists one
nontrivial (or more) subinterval [ta , tb ] ⊂ [0, t1 ] such that ψj (t)
is identically zero, then the corresponding extremal is called
singular. If ψj (t) �= 0 for almost all t ∈ [0, t1 ], the maximum
principle implies that the control uj corresponds to piecewise
constant controls taking values in the set of m vertices of U
called bang–bang. An extremal is said to be normal if control
uj is bang–bang with at most a finite number of switching.

If T–S fuzzy model is smooth and (x, λ, u) is an extremal,
then the time derivative of the absolutely continuous function
ψj (t) is given by

ψ̇j (t) = λT
[
−
∑

Aix(t),
∑

bj

]
+λT

[∑
bk ,

∑
bj

]
uj (t)

= λT
[
−
∑

Aix(t),
∑

bj

]
. (23)

Since
∑

bj , j = 1 , . . . , m and j �= k are constant
terms, therefore, [

∑
bk ,

∑
bj ] = 0. It is obvious that the deriva-

tives of the switching functions ψj (t) are themselves absolutely
continuous functions, and therefore, we can perform further
derivatives of it. In the next theorem, Lie brackets will be cru-

cial in establishing a bound on the number of switches when
bang–bang controls are derived.

Theorem 6: If the T–S fuzzy model is controllable, then the
extremal is normal.

Proof: Let (x, λ, u) be extremal in t ∈ [0, t1 ]. We shall prove
the theorem by contradiction. Suppose there exists a sequence
of infinite distinct singular sets

S = {s0 , . . . , si , . . .}
where si is the ith time interval [ta , tb ]i such that ψj (t) = 0 ∀t ∈
[ta , tb ]i , j = 1, . . . , m. Assume t0 ∈ si . Then, we have the fol-
lowing relation:

ψj (t) = λT (t0)
∑

bj = 0, j = 1, . . . , m. (24)

From (24), we have the first derivation of ψj (t)

ψ̇j (t) = λT (t0)
[∑

Aix(t),
∑

bj

]
= 0. (25)

Indeed, the lth derivative of ψj (t) can be expressed as

ψl
j (t) = λT (t0) ad

(∑
Aix(t)

)l (∑
bj

)
= 0 (26)

for l = 1 , . . . , n − 1. By Corollary 2, we have

span

{
ad

(∑
Aix(t)

)l (∑
bj

)}
∈ R

n , l = 1, . . . , n − 1.

Hence, we have λ (t0) = 0, which contradicts the necessary
condition of the maximum principle. Therefore, we can con-
clude that the set S is finite. Outside the set S, the switching
function λT (t)

∑
bj attains the maximum on U at one vertex;

thus, the optimal control u(t) is bang–bang on [0, t1 ] \t0 .
Q.E.D.

If the T–S fuzzy model is extremal, then the system will also
simultaneously establish a bounded number of switching for
bang–bang optimal controls. Further, consider the trajectories
for which m control vectors are simultaneously singular. From
the proof of Corollary 2, we also know the the set of all vector
fields {[

∑
Aix,

∑
bj ]} is linear independent, and therefore, we

have the following result.
Theorem 7: If an extremal of the T–S fuzzy model in (5) is

normal, then the switching function ψj (t), j = 1 , . . . , m will
not vanish for any t.

Proof: Assume that k is a fixed element of {1, . . . , m} and
(x, λ, u) is extremal with a common accumulation point of
zeros at t = t0 . From (24) and (25), we have

ψj (t) = λT (t0)
∑

bj = 0

and its first derivative is

ψ̇j (t) = λT (t0)
[∑

Aix(t),
∑

bj

]
= 0

for all j = 1, . . . , m, j �= k. If ψk and ψ̇k vanish at t = t0 , then
the vector field

∑
bk , [

∑
Aix,

∑
bj ] for j = 1, . . . , m is linear

independent. This yields a contradiction with the nonvanishing
condition for costate in the maximum principle. Q.E.D.

The solvable Lie algebra is defined for the T–S fuzzy model
(5) as follows.
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Fig. 3. Articulated vehicle model [1].

Definition 9: For T–S fuzzy model (5), the solvable Lie alge-
bra is defined as

L(k) :=
{∑

Aix,
∑

bj |∀j = 1, . . . , m
}

LA
. (27)

If the derived series L(k) vanishes for large k, then the T–S
fuzzy model is called solvable.

In the next theorem, the solvable Lie algebra, which will be
crucial in establishing a bound on the number of switching for
bang–bang control will be derived.

Theorem 8: If the controllable T–S fuzzy model (5) is solv-
able, then the total number of switching is bounded.

Proof: The controllable T–S fuzzy model (5) will imply

L = span

{
ad

(∑
Aix

)k ∑
bj

}
, for k = 1, . . . , n − 1.

If L is solvable Lie algebra, i.e., L(k) = ad (
∑

Aix)k∑
bj = 0, for k ≥ p ≥ n − 1. From (26), we have

ψk
j (t) = λT (t0) ad

(∑
Aix

)k (∑
bj

)
, for k ≥ p

(28)
is identically zero as the T–S fuzzy model is solvable. In (28), if
ψk

j (t) vanishes for k ≥ p, then the polynomial degree of switch-
ing function ψj (t) does not exceed p. Q.E.D.

Remark 11: For
∑

bj �= 0, the solvable condition (28) can be
generalized as L(k) = ad (

∑
Aix)k = 0.

V. ILLUSTRATIVE EXAMPLES

To utilize the time-optimal design techniques, two systems
with single input and two inputs, respectively, will be illustrated.

Example 3: Consider an articulated vehicle [1] in Fig. 3. The
kinematic model of the vehicle is the starting point to model the
dynamics of the lateral and orientation motions. The dynamics
of the articulated vehicle can be formulated as

ẋ0 =
v

l
tan (u(t))

x1 = x0 − x2

ẋ1 = ẋ0 − ẋ2 =
v

l
tan (u(t)) − v

L
sin (x1(t))

Fig. 4. Membership functions in Example 3.

ẋ2 =
v

L
sin (x1(t))

ẋ3 = v cos (x1(t)) · sin (x2(t))

ẋ4 = −v cos (x1(t)) · cos (x2(t))

where
x0(t) angle of truck;
x1(t) angle difference between truck and trailer;
x2(t) angle of trailer;
x3(t) vertical position of rear end of trailer;
x4(t) horizontal position of rear end of trailer;
u(t) steering angle.

l is the length of truck, L is the length of trailer, and v is
the constant backward speed. In this example, let l = 1 m, L =
2.5 m, and v = −5 m/s.

The control purpose is to find the steering angle with constant
backward speed so that the articulated vehicle will reach the
straight line x3 = 0, i.e.,

x1(t) → 0, x2(t) → 0, x3(t) → 0.

If the angle difference between the truck and trailer expands
to 90◦, i.e., |x1 | = 90◦, this phenomenon is called “jackknife.”

When a jackknife phenomenon happens, an articulated ve-
hicle becomes uncontrollable and the backward motion cannot
continue anymore. To avoid this problem, the analysis of the
researchable set will be discussed in the following.

For constructing the T–S fuzzy model, assume that
u(t), x2(t) are small and x1(t) ∈ (−π/2, π/2) . Let X(t) =
[x1(t) x2(t) x3(t)]

T . The dynamics of the articulated vehicle
can be formulated as:

Rule i: IF x1(t) is “Positive” and “Negative,” THEN

Ẋ(t) = AiX(t) + BiU(t), i = 1, 2 (29)

where the membership functions are given in Fig. 4 and the
consequent parts are chosen as

A1 =



−v/L 0 0
v/L 0 0
0 v 0


 , B1 =




v/l

0
0




A2 =



−v/L 0 0
v/L 0 0
0 β · v 0


 , B2 =




v/l

0
0




and β = cos (88◦).
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From Corollary 1, we have

W0 =
∑

bj =




v/l

0
0


 .

The matrix
∑

Ai

∑
bj is

W1 =


µ1



−v/L 0 0
v/L 0 0
0 v 0






v/l

0
0


+µ2



−v/L 0 0
v/L 0 0
0 βv 0






v/l

0
0






=



−v2/ (lL) (µ1 + µ2)
v2/ (lL) (µ1 + µ2)

0


 .

The matrix
∑

A2
i

∑
bj is

W2 =



−v3/

(
lL2

)
(µ1 + µ2)

v3/
(
lL2

)
(µ1 + µ2)

−v3/ (lL) (µ1 + βµ2)


 .

The controllability of the fuzzy model can be reformulated
by finding the determinant of [W0 ,W1 ,W2 ]∣∣∣∣∣∣∣




v/l −v2/ (lL) −v3/
(
lL2

)
(µ1 + µ2)

0 −v2/ (lL) v3/
(
lL2

)
(µ1 + µ2)

0 0 −v3/ (lL) (µ1 + βµ2)



∣∣∣∣∣∣∣
. (30)

The determinant of (30) can be found as (v/l) ·
[
−v2/ (lL)

]
·{

−v3/ [(lL) (µ1 + βµ2)]
}

. Since the determinant of (30) can-
not be zero for ∀µi ∈ [0, 1] with

∑
µi = 1 (i = 1, 2), therefore,

we may conclude that the fuzzy model is controllable and a time-
optimal solution does exist. To realize time-optimal control,
we consider a control as U = ũ + u∗, where the control input
ũ = −kx can be designed by the pole assignment and time-
optimal control u∗ (steering angle) is constrained in [5◦,−5◦].
Choose the closed-loop eigenvalues as [ 0 0 0 ], and we have
k = [−0.4 0 0 ]. By closed-loop feedback, the consequent
parts of the fuzzy model (29) can be reformulated as

A1 =




0 0 0
−2 0 0
0 −5 0


 , B1 =



−5
0
0




A2 =




0 0 0
−2 0 0
0 −0.1745 0


 , B2 =



−5
0
0


 .

Due to
∑

Bi �= 0 for ∀t ≥ 0, by using Remark 11, we have

L(0) = µ1A1 + µ2A2 = µ1




0 0 0
−2 0 0
0 −5 0




+ µ2




0 0 0
−2 0 0
0 −0.1745 0




Fig. 5. Projection of the set V on the x1 − x2 plane.

L(1) = µ1A1A1 + µ2A2A2 = µ1




0 0 0
0 0 0
10 0 0




+ µ2




0 0 0
0 0 0

0.3490 0 0




L(2) = µ1A1A1A1 + µ2A2A2A2 =




0 0 0
0 0 0
0 0 0




L(3) = L(4) = · · · =




0 0 0
0 0 0
0 0 0


 .

For ∀µi ∈ [0, 1] with
∑

µi = 1 (i = 1, 2), and k ≥ 2,L(k) is
identically zero; therefore, the fuzzy model is concluded to be
solvable and the number of switching is at most 2. Assuming u =
5◦, the bang–bang control does exist and the possible control
sequence can be concluded as

{u}, {−u}, {u,−u}, {−u, u}, {u,−u, u}, {−u, u,−u}.

The switching curves V are shown in Figs. 5 and 6. The
dotted line is the set V −, that is, the trajectory by control input
{−u}, and the solid line shows the set V + , that is, the trajectory
by control input {u}. Let V1 denote the set of states that can be
forced to the origin by the control sequence {u,−u} or {−u, u}.
The transition from the control input u to −u must occur on the
set V . If the control sequence is from−u to u, the transition must
occur on the set V + . The set V1

− is shown in Figs. 7 and 8. The
dotted line is the set V −

1 , which is forced by the control sequence
{−u, u}, and the solid line shows the set V +

1 , which is forced by
the control sequence {u,−u}. The set V2 is the trajectory that
can be forced to the origin by the control sequence {u,−u, u}
or {−u, u,−u}. To prevent the jackknife phenomenon, the state
x1 should be constrained to be less than 90◦. In Figs. 9 and 10,
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Fig. 6. Projection of the set V on the x2 –x3 plane.

Fig. 7. Projection of the set V1 on the x1 –x2 plane.

Fig. 8. Projection of the set V1 on the x2 –x3 plane.

the ellipses show the reachable set for |x1 | ≤ 90◦, where the
solid ellipses are the set V1 , and the dotted ellipses are the set
V2 . In fact, V ⊆ V1 ⊆ V2 . The maximal reasonable range of
initial positions will be restricted on the reachable set V2 .

Fig. 9. Reachable set of V1 and V2 on the x1 –x2 plane.

Fig. 10. Reachable set of V1 and V2 on the x2 –x3 plane.

Fig. 11. Time-optimal trajectory in phase plane (Case I).

Case I: For the initial position, x0 = 240◦, x1 = 200◦, x2 =
40◦, x3 = 20 m, and x4 = 0 m, the time-optimal trajectory of
x3 versus x4 is depicted in Fig. 11. The corresponding time-
optimal control u∗(t) is shown in Fig. 12. The shortest time
from the initial position to the origin is 2.4115 s.
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Fig. 12. Corresponded time-optimal control input (Case I).

Fig. 13. Time-optimal trajectory in phase plane (Case II).

Fig. 14. Corresponded time-optimal control input (Case II).

Case II: For the initial position, x0 = 320◦, x1 = 20◦, x2 =
300◦, x3 = 20 m, and x4 = 0 m, the time-optimal trajectory of
x3 versus x4 is depicted in Fig. 13. The corresponding time-
optimal control u∗(t) is shown in Fig. 14. The shortest time
from the initial position to the origin is 13.6715 s.

Fig. 15. Membership functions in Example 4.

Fig. 16. Switching curve and time-optimal control input.

Example 4: The multiple inputs system is considered here.
Consider the following T–S fuzzy model

Rule i: IF x1(t) is “Positive” and “Negative,” THEN

Ẋ(t) = AiX(t) + BiU(t), i = 1, 2 (31)

where X(t) = [x1(t) x2(t)]T , U(t) = [u1(t) u2(t)]T ,
|u1(t)| ≤ 1, |u2(t)| ≤ 1, and the consequent parts are chosen
as

A1 =
[

0 0
0.18 0

]
, B1 =

[
4 0.5

0.5 −4

]

A2 =
[

0 0
0.2 0

]
, B2 =

[
4 0.5

0.5 −4

]
.

The membership functions of the fuzzy model are given in
Fig. 15. The fuzzy model is found to be controllable by Corollary
1. The switching number is at most 2 that is obtained by using
Remark 11. Therefore, the time-optimal sequences are

{1, 1}, {−1,−1}, {1,−1}, {−1, 1}.

Following the same analysis in Example 3, the switching
curves are explained in the following. There are two possible
switching curves in this example. Let the set of states V be forced
by input {1, 1} or {−1,−1} and V1 be forced by input {1,−1}
or {−1, 1} to the origin. The switching curve V is depicted as a
solid line in Fig. 16, the dotted line depicts switching curve V1 ,
and the time-optimal control inputs are also shown in Fig. 16.



LIN et al.: TIME-OPTIMAL CONTROL OF T–S FUZZY MODELS VIA LIE ALGEBRA 747

Fig. 17. Reachable sets in Example 4.

Fig. 18. Time-optimal trajectory in phase plane (Case I).

Fig. 19. Corresponded time-optimal control input (Case I).

Assume R(T ) and R1(T ) are reachable sets for V and V1 ,
respectively, that can reach the origin at time T . Fig. 17 depicts
a reachable set that is sampled from T = 5 to T = 20 every 5 s.
The dotted line is the reachable set R1(T ), and the solid line is
the reachable set R(T ).

Fig. 20. Time-optimal trajectory in phase plane (Case II).

Fig. 21. Corresponded time-optimal control input (Case II).

Case I: For the initial state X0 = [40,−50], the time-
optimal trajectory is shown in Fig. 18. The corresponding
time-optimal control u∗(t) is shown in Fig. 19. The shortest
time from initial state to the origin is 9.350 s.

Case II: For the initial state X0 = [40, 100], the time-
optimal trajectory is depicted in Fig. 20. The corresponding
time-optimal control u∗(t) is shown in Fig. 21. The shortest
time from initial state to the origin is 25.249 s.

VI. CONCLUSION

This paper presents a new design of time-optimal controller
for a controllable T–S fuzzy model in which the maximum prin-
ciple is applied. In particular, the subsystems of T–S fuzzy model
are blended by a set of firing strengths, which leads it to a class of
nonlinear systems. First, we proposed the proof of the existence
of optimal control in the T–S fuzzy model that can be addressed
as the compactness of the reachable set. The generalized rank
condition of the accessible Lie algebra is also applied in this
paper for the proof of the existence of optimal controller for
the T–S fuzzy model. This also results in the controllability of
the T–S fuzzy model. According to the maximum principle, the
time-optimal control of the T–S fuzzy model is bang–bang that
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is determined by the switching function. By investigating the
singular structure of the switching functions of the controllable
T–S fuzzy model, we can yield the conditions for the existence,
i.e., if the extremal is normal, then there exists the time-optimal
controller for the T–S fuzzy model. In other words, the time-
optimal control of controllable T–S fuzzy model is bang–bang
with a finite number of switchings over all trajectories for all
t. The bounded number of switching is related to the polyno-
mial degree of switching function that is obtained by introduc-
ing the solvable Lie algebra. Several examples are fully illus-
trated to show the conditions for the existence of a time-optimal
controller with their optimal trajectories found by numerical
simulation.
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[35] R. W. Brockett, “Nonlinear systems and differential geometry,” Proc.

IEEE, vol. 64, no. 1, pp. 61–71, Jan. 1976.
[36] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix

Inequalities in System and Control Theory. Philadelphia, PA: SIAM,
1994.

[37] J.-P. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and
Viability Theory. Berlin, Germany: Springer-Verlag, 1984.

[38] H. Samelson, Note on Lie Algebras. New York: Van Nostrand Reinhold,
1969.

[39] P. J. Olver, Application of Lie Groups to Differential Equations, 2nd ed.
New York: Springer-Verlag, 1993.

[40] G. J. Lastman, “A shooting method for solving two-point boundary-value
problems arising from nonsingular bang–bang optimal control processes,”
Int. J. Control, vol. 27, pp. 513–524, 1978.

Pao-Tsun Lin (S’02–M’03) was born in Hsinchu,
Taiwan, in 1976. He received the B.S. and M.S. de-
grees in electrical engineering from the National Tai-
wan University of Science and Technology, Taipei,
Taiwan, in 1999 and 2001, respectively. He is cur-
rently working toward the Ph.D. degree with the De-
partment of Electrical and Control Engineering, Na-
tional Chiao Tung University, Hsinchu.

His current research interests include the fields
of fuzzy control, optimal control, support vector ma-
chines, and intelligent transport systems.



LIN et al.: TIME-OPTIMAL CONTROL OF T–S FUZZY MODELS VIA LIE ALGEBRA 749

Chi-Hsu Wang (M’92–SM’93–F’08) was born in
Tainan, Taiwan, in 1954. He received the B.S.
degree in control engineering from the National
Chiao Tung University, Hsinchu, Taiwan, the M.
S. degree in computer science from the National
Tsing Hua University, Hsinchu, and the Ph.D. de-
gree in electrical and computer engineering from the
University of Wisconsin, Madison, in 1976, 1978,
and 1986, respectively.

He was an Associate Professor and a Professor
with the Department of Electrical Engineering, Na-

tional Taiwan University of Science and Technology, Taipei, Taiwan, in 1986
and 1990, respectively. He is currently a Professor with the Department of Elec-
trical and Control Engineering, National Chiao Tung University. His current
research interests include the areas of digital control, fuzzy neural networks,
intelligent control, adaptive control, and robotics.

Prof. Wang is a member of the Board of Governors and Webmaster of
the IEEE Systems, Man, and Cybernetics Society. He is currently serving
as an Associate Editor of the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS, PART B.

Tsu-Tian Lee (M’87–SM’89–F’97) was born in
Taipei, Taiwan, in 1949. He received the B.S.
degree in control engineering from the National
Chiao Tung University (NCTU), Hsinchu, Taiwan,
in 1970 and the M.S. and Ph.D. degrees in electri-
cal engineering from the University of Oklahoma,
Norman, in 1972 and 1975, respectively.

During 1975, he was an Associate Professor with
NCTU, where during 1978, he was a Professor and
the Chairman of the Department of Control Engineer-
ing. During 1981, he was a Professor and the Direc-

tor of the Institute of Control Engineering, NCTU. In 1986, he was a Visiting
Professor and, during 1987, a Full Professor of electrical engineering with the
University of Kentucky, Lexington. During 1990, he was a Professor and the
Chairman of the Department of Electrical Engineering, National Taiwan Uni-
versity of Science and Technology (NTUST). During 1998, he was a Professor
and Dean of the Office of Research and Development, NTUST. Since 2000, he
has been with the Department of Electrical and Control Engineering, NCTU,
where he is currently a Chair Professor. His professional activities include serv-
ing on the Advisory Board of the Division of Engineering and Applied Science,
National Science Council, serving as the Program Director of the Automatic
Control Research Program and the National Science Council and serving as an
Advisor of the Ministry of Education, Taiwan. He also held numerous consult-
ing positions. He is the author or coauthor of more than 200 refereed journal and
conference papers in the areas of automatic control, robotics, fuzzy systems,
and neural networks. His current research interests include motion planning,
fuzzy and neural control, optimal control theory and application, and walking
machines.

Prof. Lee was the Fellow of the New York Academy of Sciences (NYAS)
in 2002. He has been actively involved in many IEEE activities. He has served
as the Member of Technical Program Committee and Member of Advisory
Committee for many IEEE-sponsored international conferences. He is now
the Vice President—Membership of the IEEE Systems, Man, and Cybernetics
Society. He was the recipient of the Distinguished Research Award from the
National Science Council, R.O.C., during 1991–1992, 1993–1994, 1995–1996,
and 1997–1998, respectively, and the Academic Achievement Award in engi-
neering and applied science from the Ministry of Education, R.O.C., in 1997,
the National Endow Chair from the Ministry of Education, R.O.C., and the
TECO Science and Technology Award from the TECO Technology Foundation
in 2003.


