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Stochastic Erasure-Only List Decoding
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Abstract—We present a novel stochastic decoding algorithm for
Reed-Solomon codes. We apply an iterative Monte Carlo based ap-
proach called the Cross-Entropy method to produce, in every itera-
tion, a set of random error locator vectors, each indicates pos-
sible erasure positions within a received word. We associate each
error locator vector with a candidate codeword by erasures-only
decoding the received word, using the error locator vector to lo-
cate the erasures. Each iteration results in a new elite set that con-
tains the best candidate codewords. To increase the search radius
and enhance the decoder performance we use the randomly drawn
samples to generate what we call virtual received words from which
extra candidate codewords and thus candidate elite members can
be obtained. The proposed algorithms offer both complexity and
performance advantages over some existing algebraic decoding al-
gorithms for high rate RS codes.

Index Terms—Cross-Entropy method, list decoding,
Reed–Solomon code.

I. INTRODUCTION

T HE class of Reed–Solomon (RS) codes [1] is a powerful
error control code that has been used in a wide variety of

applications, ranging from data storage systems to deep-space
and wireless communications. These codes are usually de-
coded by hard-decision decoding (HDD) algorithms using
the Berlekamp-Massey (BM) algorithm [2] and the Euclidean
algorithm [3].

Many soft-decision decoding (SDD) algorithms that use re-
liability information to assist HDD have been developed. Ear-
lier proposals include Forney’s generalized minimum distance
(GMD) decoding algorithm [5], the Chase II algorithm [6], and
the combined Chase II-GMD algorithm [7]. These algorithms
give a moderate performance improvement over HDD solutions
with reasonable complexity. Guruswami and Sudan (GS) [4] in-
vented an algebraic list decoding algorithm which corrects be-
yond half the minimum distance. Koetter and Vardy (KV) [8]
proposed an algebraic SDD algorithm based on a multiplicity
assignment scheme to improve the GS algorithm. The KV algo-
rithm can significantly outperform HDD for low rate RS codes.
However, to achieve large coding gain, the complexity can be
prohibitively large.
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In this letter, we apply the Cross-Entropy (CE) method [9]
to develop a Monte Carlo based iterative SDD algorithm which
renders an improved algebraic SDD decoding performance. The
CE method is an elegant practical principle for simulating rare
events which approximates the probability of the rare event by
means of a family of parameterized probabilistic models. Our
stochastic erasure-only list decoding (SEOLD) algorithm uses
the extended CE method for optimization problem by consid-
ering an optimal event as a rare event.

The rest of this letter is organized as follows. Some prelim-
inaries are given in Section II. In Section III, the general sto-
chastic SDD algorithm based on the CE method is introduced.
One of the proposed stochastic decoding algorithms is presented
in Section IV. Some simulation results and discussions are pre-
sented in Section V.

II. PRELIMINARY

Let be an RS code over with min-
imum Hamming distance . Let

be a codeword in with the binary expan-
sion . Using binary phase-shift-keying
(BPSK), the transmitter maps the binary imaged codeword
into the bipolar vector

(1)

and sends it over an additive white Gaussian noise (AWGN)
channel with zero mean and power spectral density . The
received sequence at the output of the matched filter is

where and ’s are statisti-
cally independent Gaussian random variables with zero mean
and variance .

Let be the hard decision binary vector
of the received bit sequence , i.e.,

otherwise
(2)

and be the corresponding symbol vector.
Denoted by the reliability vector of
in which is the magnitude of the log-likelihood ratio (LLR)
associated with the corresponding hard-limited bit

(3)

and define the symbol reliability vector of
by

(4)
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III. STOCHASTIC LIST DECODING ALGORITHM

A. Algebraic Erasures-Only (EO) Decoding

It is well-known that RS codes are maximum-distance sepa-
rable (MDS) which implies that any coordinates (symbols) in
an RS codeword can be used to determine the remaining
symbols. Hence it is sufficient to decide correct (message) or

incorrect (error) coordinates of a codeword. Let be
the collection of all combinations of error coordinates,

(5)
where if the th coordinate is in error. Then a straight-
forward decoding schedule is given as below:

(a) For all , erase the corresponding error co-
ordinates of the received word and decode by the era-
sures-only (EO) decoder. The resulting codeword set is
denoted by .

(b) Choose the codeword from with the best score, e.g.,
the one whose Euclidean distance from the received word
is the smallest, as the decoder output.

It can be easily confirmed that for any ,
, where is the Hamming distance between and

. Therefore, the transmitted codeword belongs to if the
number of error symbols is less than . Furthermore, (b) is
equivalent to the following minimization problem

(6)

where is defined by (1) and is the Euclidean dis-
tance (ED) between the -ary real vectors and .

B. A Stochastic List Decoding Idea

Each error locator vector (ELV) represents a par-
ticular set of possible error coordinates and has a corre-
sponding codeword that belongs to . We denote the latter
relationship by . Although more than one ELV may be
associated with the same codeword, the complexity of searching
for the optimal solution in the error location domain is
still extremely high because the cardinality of is and
only a few (or one) elements in , depending on the number
and locations of the received errors, can be used to reconstruct

.
Suppose we model the selection of the ELV from as

a stochastic (vector-valued) experiment governed by a family
of parameterized distributions with being
a real-valued parameter vector. Usually is assumed to
be uniformly distributed due to the lack of priori information
whence the search in (6) is exhaustive unless some algebraic
properties of the code are used. One way to solve (6) efficiently
is to find a parameter such that where

. Then drawing one sample from is sufficient to
obtain the optimal solution . To get around the difficulty that

is not known, one notices that the optimization problem (6)
is related to the estimation of the probability

, which is a rare event when .
The connection comes from the fact that efficient estimation of
a rare event can be achieved by the method of importance sam-
pling and in this case the optimal importance density is .

Fig. 1. Flow chart of a stochastic decoder for RS codes.

Without the knowledge of the threshold , we start with a
proper importance density to generate samples of and
compute an initial estimate for . Ideally, we can use those
drawn samples which satisfy to obtain new
parameter value such that is closest to in
the Kullback-Leibler (KL) sense, i.e., the CE between
and is minimized. Since is unknown, we choose

such that is closest to the empirical distribution of
in those samples that are generated by and satisfy

for this empirical distribution is likely to be
a good approximation of . New samples of are then
produced by the updated importance density to com-
pute new estimate . This iterative procedure continues until

is less than a predetermined threshold.
The above method is known as the CE method [9] which is

an iterative procedure that consists of the following two phases
in each iteration.

• Generate samples from the specified importance density
given by the parameters from the previous iteration.

• Update the parameters for next iteration according to the
order of the score values associated with the drawn samples
and the minimizing CE criterion.

Based on the above discussion, we propose a generic Monte
Carlo based SDD algorithm as shown in Fig. 1 and in Table I
with some detailed description given in Section IV.

C. Convergence and Complexity

Different convergence conditions and results have been dis-
cussed for the deterministic CE method and its extensions in
[10] where it is also proved that convergence in distribution or

can be guaranteed but needs a proper tuning of the parame-
ters of the algorithm such as the number of samples , number
of elites , and smoothing factor . Convergence to the global
minimum is ensured only if a large sample size is used. On
the other hand, the computing complexity is related to and is
given by . It is obvious that the decoding perfor-
mance can be improved by using a larger . As we retain the
the best sample at the end of each iteration, the decoding perfor-
mance is also improved by increasing the iteration number .
As an early-stopping at any iteration produces a decoded code-
word, we say the algorithm converges if the sequence of de-
coded codewords converges. With a modest , we found that
the decoded codewords converge to the same codeword within



LEE AND SU: STOCHASTIC ERASURE-ONLY LIST DECODING ALGORITHMS 693

TABLE I
A STOCHASTIC LIST DECODING ALGORITHM

Fig. 2. Virtual received words are generated around the received LLR vector
�� by hard-limiting the sample vectors generated by an importance probability
density whose parameter values evolved according to the CE principle.

ten iterations in most cases. Our algorithm yields good perfor-
mance although uniform convergence in distribution or within
a limited iterations is not guaranteed.

IV. LIST DECODING WITH VIRTUAL RECEIVED WORDS

In Step 2 of Table I we try to find the most likely message/
error coordinates such that the associated EO-decoded code-
word is closest to the received vector. Note that the random
samples are used to determine the erasure locations only, and the
searching sphere of the algebraic list decoding described in Sec-
tion III-A is always centered at the hard-limited received word
with radius equals to . To increase our search range and im-
prove decoding performance, we include some extra codewords
which lie statistically in a small neighborhood of the received
word in our expanded search, such that some of them may in fact
be closer in ED to the true transmitted codeword ; see Fig. 2.
More specifically, the expansion is accomplished by eliminating
the requirement that the search be centered at . Instead, we ran-
domized the search center by EO-decoding the hard-decision
versions of the drawn sample vectors which we refer to as vir-
tual received words. If the importance density does converge to
the desired density , such an expanded search will even-
tually contract and converge to the true transmitted codeword.

A. Importance Density and Sample Format

Let be a random vector where
are independent Gaussian random variables

with means and variances .
We write , where and

are initialized by

(7)

(8)

At the th iteration, random samples are
drawn from to form the sample set . Each
sample vector represents the bit reliabilities of an associated
virtual received word. By using (4) to convert the bit reliabil-
ities into symbol reliability, the coordinates with smallest
symbol reliabilities are erased; the remaining bit positions are
hard-limited, mapped into symbol decisions and the resulting
virtual received word is then decoded by an EO decoder.

B. Update Parameters

Let be the output codewords of the EO decoder.
We compute the ED between each candidate codeword and the
received word and sort the corresponding random vectors ac-
cording to the descending order of their associated EDs. Define
an elite set which includes vectors with the smallest EDs
to , i.e., the corresponding codewords are more likely to have
been transmitted. We always store the best one in up to
the current iteration for the final decision when the maximum
number of iteration is reached.

Then the two sets of parameters and are updated
by [9]

(9)

and

(10)
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Fig. 3. Codeword error probability performance of the (15,11) Reed-Solomon
code; ten iterations.

where and are real values between (0,1) used to smooth the
variation of these parameters. The algorithm described in this
section is called the stochastic erasures-only listing decoding
(SEOLD) algorithm.

V. SIMULATION RESULTS AND DISCUSSION

In this section, some simulated performance of the SEOLD
algorithm is presented and compared with that of other well
known RS decoding algorithms. A standard binary input AWGN
channel is assumed over which the BPSK modulated codewords
are transmitted. We model the receive matched filter output as
the sum of a - valued sequence and Gaussian sequence with
zero-mean i.i.d. components. The average performance bounds
on the ML error probability of RS codes over an AWGN channel
developed in [11] are used as the performance lower limits.

Due to the complexity and the decoding delay considerations,
the SEOLD algorithm will not terminate until convergence is
assured. Instead, we limit our decoding procedure to iterations
in all simulations.

Figs. 3 and 4 show respectively the codeword error rate
(CER) performance of the (15,11) and (31,25) RS codes over
an AWGN channel. HDD-BM refers to the performance of
a hard decision bounded minimum distance decoder such as
the BM algorithm. Curves labelled by GMD and KV are the
performance obtained by using Forney’s GMD algorithm and
the algebraic soft decision decoding algorithm of Koetter and
Vardy, respectively. Note that the performance of the KV
algorithm shown here represents the lower bound obtained
by using an infinite interpolation multiplicity. For the case of
(15,11) RS codes, the size of the sample set and the size
of the elite set at every iteration are set to be 20 and 6,
respectively. With iterations, the SEOLD algorithm
obtains 1.2 dB and 1.0 dB coding gains with respect to the
GMD and the KV algorithms at CER . For the case of
(31,25) RS codes, the SEOLD algorithm also outperform the

Fig. 4. Codeword error probability performance of the (31,25) Reed-Solomon
code; ten iterations.

other two algorithms with reasonable complexity of ,
and , in 10 iterations. The SEOLD

algorithm has about 0.6 dB and 1.0 dB coding gains over the
KV algorithm when is equal to 100 and 500, respectively.
In conclusion, the proposed decoding algorithm is capable of
offering good performance with modest complexity for short
high rate RS codes. Its performance can be further improved
by increasing the sample size and/or the maximum iteration
number at the cost of increased decoding complexity.
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