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Abstract

Proteins have been played an important role in a creature and the number of
proteins and their structures-have ‘been Tinicreased with years. Since protein
applications are more widely used, there will be a lot of problems to be solved. For
example, there are protein secondary structure prediction problem, protein folding
problem, protein mapping problem and so on. Nowadays, scientists use X-ray
diffraction or nuclear magnetic resonance(NMR) to solve the protein problem. Even
though chemical experiments can achieve high accuracy, it in the mean time incurs
high costs and long time to solve the protein problems. Therefore, we think that it is
possible to reduce the time and the costs mentioned above by using machine learning

algorithm in computer science.



In this thesis, we make an experiment on protein secondary structure prediction

problem using nearest neighbor algorithm. As all we know, every protein is consisted

of twenty kinds of amino acid. Every kind of amino acid can be regarded as a symbol.

In the past, nearest neighbor algorithms for learning from examples have worked well

in domains in which all features had numeric values. In such domains, the examples

can be treated as points and distance metrics can be exploited using Euclidean

distance. However, the nearest neighbor algorithm used for the symbolic domain

calculates distance tables that allow it to produce real-valued distances between

instances. The method we used is proposed by Stanfill and Waltz and is called Value

Difference Metric table, we propose two. -different algorithms to predict protein

secondary structure. Besides, we also' study and implement PSIPRED, a common

method of the protein secondary structure prediction in recent years. Finally, we try to

combine our two different algorithms with PSIPRED and make an effort on elevating

the accuracy in predicting protein secondary structure.
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Chapter 1. Introduction

1.1 Motivation and The Background of This Research

The number of proteins and its structure has been increased in recent years. Since
protein applications are more widely used, there will be a lot of problems to be solved.
For example, there are protein secondary structure prediction problems [1]-[4],
protein fold recognition problems [5], [6], protein mapping problems and so on.
Nowadays, scientists use X-ray diffraction or nuclear magnetic resonance (NMR) to
solve the protein structure problems. Even though chemical experiments can achieve
high accuracy, they in the mean time incur high costs and long time to solve the
protein problems. Therefore, w¢ believe that using machine learning methods in the
computer science field is promising, becatse it not only reduces the time and the costs
but also maintains the accuracy.

In this thesis, we make an algorithmic prediction on the protein secondary
structure prediction problem using nearest neighbor algorithm [7]. Predicting the
secondary structure of a protein (a-helix, B-sheet and coil) is an important step
towards elucidating its three dimensional structure and its function. In the past,
nearest neighbor algorithms via learning from examples have worked well in domains
in which all features had numeric values. In such domains, the examples can be
treated as points and distance metrics can be exploited, using Euclidean distance for
example. However, when the feature values are symbolic, a more sophisticated
treatment of the feature space is required. The nearest neighbor algorithm used for the
symbolic feature space needs to construct the distance table among symbols. From it,

we can calculate real-valued distances between instances. As all we know, every



protein sequence is consisted of twenty kinds of amino acid, and every kind of amino
acid can be regarded as a symbol. Under this condition, the protein secondary
structure prediction problem has the symbolic feature space. The method we will
adopt is proposed by Stanfill and Waltz [8] and further refined by Cost and Salzberg
[9], called Value Difference Metric (VDM) table. Based on the construction of VDM
table, we propose two different algorithms to predict the protein secondary structure.
Besides, we also study and implement Position Specific Iterated Prediction (PSIPRED)
[10], [11], a common method of the protein secondary structure prediction used in
recent years. Finally, we try to combine our two different algorithms with PSIPRED
and make an effort on elevating the accuracy in predicting the protein secondary
structure. We will also compare the prediction accuracy of our fusion based method

with PSIPRED and VDM approaches.

1.2 Brief Introduction to TheProtein Secondary Structure

The protein secondary structure consists of local folding regularities maintained
by hydrogen bonds and traditionally subdivided into three classes: a-helix, B-sheet
and loop (coil) representing all the rest. The a-helix (Fig. 1.1) is the classic element of
protein structure. It was first described by Linus Pauling working at the California
Institute of Technology [12]. He predicted that it was a structure which would be
stable and energetically favorable in proteins. Alpha helices in proteins are found
when a stretch of consecutive residues all have the phi, psi angle pair
approximately —85° and —50°, corresponding to the allowed region in the bottom left

quadrant of the Ramachandran plot (Fig. 1.2) [13], [14].
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Fig. 1.2. The Ramachandran plot.



Only in the a-helix are the backbone atoms properly packed to provide a stable
structure. In globular proteins, the average length for a-helices is around ten residues,
corresponding to three turns. The rise per residue of an o-helix is 1.5 A along the
helical axis, which corresponds to about 15 A from one end to the other of an average
a-helix.

The second major structural element found in globular proteins is the B-sheet.
This structure is built up from a combination of several regions of the polypeptide
chain, in contrast to the a-helix, which is built up from one continuous region. These
regions, BB-strands, are usually from five to ten residues long and are in an almost fully
extended conformation with phi, psi angles within the broad structurally allowed
region in the upper left quadrant of the Ramachandran plot (Fig. 1.2) [13], [14].
B-strands can interact in two ways:to form a pleated sheet — parallel and anti-parallel.
Each of the two forms has a distinctive pattern of hydrogen-bonding. The anti-parallel
3-sheet (Fig. 1.3) has narrowly spaced hydregen bond pairs that alternate with widely
spaced pairs. Parallel B-sheets (Fig. 1.4) have evenly spaced hydrogen bonds that

bridge the B- strands at an angle.
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Most protein structures are.built up from combinations of secondary structure
elements, a-helices and B-strands,.which are: connected by loop regions of various
lengths and irregular shape. The loop regions.are aiways at the surface of protein
molecules. Loop regions exposed to.solvent are rich in charge and polar hydrophilic
residues. Loop regions that connect two adjacent anti-parallel B-strands are called the

hairpin loops. Short hairpin loops are usually called reverse turns or simply turns.
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Fig. 1.5. Two hairpin loops between three anti-parallel 3-strands.



1.3 Introduction to Machine Learning and Nearest Neighbor Algorithms for

Learning with Continuous Features

Learning is an important component of any intelligent system, whether human,
animal, or machine. Machine learning [15], [16] is a field of artificial intelligence
involving developing techniques to allow computers to “learn.” More specifically, it is
a two-step process, which finds the common properties among a set of instances in a
database and classifies them into different classes. Generally speaking, training data
are analyzed by classification algorithms and then represented in the form of rules or
formulas in the first step. In the second step, testing data are used to measured the
accuracy of all the classification,tules and:formulas. If the accuracy is quite
acceptable, the rules can be applied to the classification of new instance for which the
class label is not known.

Machine learning algorithms can be dividéd into supervised and unsupervised
algorithms. In supervised learning, input pattern is identified as a member of
pre-defined class. In other words, the supervised learning algorithm is told to which
class each training instance belongs. On the other hand, input pattern is assigned to a
hitherto unknown class in unsupervised learning. This kind of learning learns the
classification by searching through some common properties of the data. In case
where there is no prior knowledge of classes, supervised learning can still be applied
if the data has a natural clustering structure. Then a clustering algorithm has to be run
first to reveal these natural groupings.

Different approaches from pattern recognition and machine learning have been
used in intelligent diagnostic systems. One of the most important developments in this

area is the nearest neighbor algorithm. In the past, the nearest neighbor algorithm is



used to deal with the continuous features data. In such domains, the examples can be
treated as points and distance metrics can be exploited, using Euclidean distance for
instance. The training samples are described by n-dimensional numeric attributes.
Each sample represents a point in an n-dimensional space. When given an unknown
sample, a k-nearest neighbor classifier searches the pattern space for k training
samples that are closest to the unknown sample. The Kk training samples are the k
“nearest neighbors” of the unknown sample. “Closeness” is defined in terms of
Euclidean  distance, @ where the Euclidean  distance  between two
points, X = (X, X,,--X,) and Y =(Y,, ¥, Y,) IS
n

dX,Y)= > (x-y) (L.1)

i=1

and.a set of N sample patterns {yi }IN whose

Consider the case of m classes {Ci }:" 4

=1
classification is a prior known. Let X denote an arbitrary incoming pattern. The

nearest neighbor classification™-approach'-classifies X in the pattern class of its

nearest neighbor in the set{yi}N

=l

i.c., if X = y;|=min

min|x—y;| then xC;. This
I<I<
scheme which is basically another type of minimum-distance classification, can be

modified by considering the k nearest neighbors to X and using a majority-rule type

classifier. There is an example shown in Fig. 1.6.
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Fig. 1.6. Simple 2-D case, each instance is described only by two values

(X, y coordinates). The class is either @ or ().



Inside the circle of Fig. 1.6, we can easily see that the class of single-NN (1-NN)

is (1), and the class of 5-NN is €P), assuming that is the testing data.

1.4 Thesis Outline

The organization of this thesis is structured as follows. Chapter 1 introduces the
role of machine learning, the motivation and the background of this thesis. In Chapter
2, the nearest neighbor learning with symbolic feature will be described. Then we will
introduce Value Difference Metric (VDM) table and its construction method. In
Chapter 3, we will first introduce PSIPRED, a common method of the protein
secondary structure prediction usediin recent years. Then, based on the construction of
VDM table, we will propose two different methods-to predict the protein secondary
structure, majority vote and balanced prediction schemes. Then we will describe the
combination of our two different methods with PSIPRED and elevate the accuracy by
tuning the confidence values developed. In Chapter 4, the experiment of computer
simulation and the results are conducted and compared to PSIPRED. Finally, the

conclusion of this thesis is presented in Chapter 5.



Chapter 2. Nearest Neighbor Algorithm for Symbolic Data

2.1 Overlap Metric

The most fundamental metric that works for patterns with symbolic features is
the overlap metric given in Eq. (2.1) and Eq. (2.2). In these two equations, d(X, Y) is
the total distance between instances X and Y, represented by n features, and § is the
distance per feature. The distance between two instances is simply the sum of the
differences between n features. The k-NN algorithm with this overlap metric is called

IB1 which is introduced by Aha et al [15]. Generally K is set to 1.

dX,Y) =Y | X — Yid'= D605, vo) @1
i=1 i=1
abs (ﬁ) ; if numeric, else
6(xi,yi) = 0, if Ti = Yi (2.2)

But the overlap metric has a disadvantage that it could not decide the real
intrinsic distances in symbolic domain. When the instances are not equal, it assigns a
1 of value to their distance. This assumes that each different symbolic value is
equi-distant from another which leads to problems when two different values should
be considered equal, and where symbolic values should have varying distances among
them. However, the rule is ambiguous. The distance metric in Eq. (2.2) simply counts
the number of matching or mismatching feature-values in the patterns. So overlap

metric is limited to exact match between feature-values.



2.2 Value Difference Metric

Since the overlap metric could not find the degree of difference between the
instances, we think that it is not a proper distance metric for calculating the distance
among those instances. For this purpose, a metric was defined by Stanfill and Waltz
[8] and further refined by Cost and Salzberg [9]. It is called the (Modified) Value
Difference Metric, and it is a method to determine the similarity of the values of a
feature by looking at co-occurrence of values with target classes. For the distance
between two values, v1 and v2 of a feature, we compute the difference of the

conditional distribution of the classes C} for these values is defined in Eq. (2.3).

51, v2) = S AP(C, | v1) ~B(C, | v2) | 23)

i

T Cy, Cs.

In this equation, v1 and v2 are two possible symbols for the feature and the
distance between the values is the sum of all n classes. C, is the number of times
v1 was classified into category i, C1 is the total number of times value 1 (v1)
occurred, and K is a constant and usually set to 1. Using Eq. (2.3), we compute a
matrix of value differences for each feature in the input data. It is interesting to note
that the value difference matrices computed in the experiments below are quite similar
overall for different features, although they differ significantly for some value pairs.

The idea behind this metric is that we want to establish that values are similar if
they occur with the same relative frequency for all classifications. The term C,,/Cy
represents the likelihood that the central residue will be classified as i given that the

feature in Eq. (2.3) has value vi. Thus we say that two values are similar if they give

10



similar likelihood for all the possible classifications. Eq. (2.3) computes overall
similarity between two values by finding the sum of the differences of these
likelihoods over all classifications.

Consider the following simple example. Say that we have a pool of instances for
which we only examine a single feature that takes one of three symbols: A, B and C.
Assume that two classifications a and B are possible. From the data we construct in
Table 2.1. The table entries represent the number of times an instance had a given
feature value and classification. From this condition we construct a table of distances
as follows. The frequency of occurrence of A for class a is 60%, since there are 3
instances classified as o out of 5 instances with value A. Similarly, the frequencies of
occurrence for B and C for class a are 20% and 75% respectively. The frequency of

occurrence of A for class B is 40%,and so on. In-order to find the distance between A
and B, we use Eq. (2.3), which yields ‘ % — % ‘ + ‘% —%‘ =0.8. The complete table

of distances is shown in Table 2.2:. Note that-we construct a difference value table for

each feature.

Table 2.1. Number of occurrences of each symbol value to each class

Class
Symbol Values 07 ﬁ
A 3 2
B 1 4

11



Table 2.2. Value Difference Metric Table

Symbol values

A B C
A 0 0.8 0.3
B 0.8 0 1.1
C 0.3 1.1 0

We can find that the distance between A and C is quite small. This is due to
their occurrence numbers in the o and B are very similar. Eq. (2.3) defines geometric
distance on a fixed, finite set of values. The VDM table is symmetric, and they obey

the triangle inequality. We summartize these propetties as follows:

i. Ola,b) >0, a # b

ii. 8(a,b) = 8(b,a)

iii. 6(a,a) =0

. 8(a,b) + (b, c) > &(a,c)

Assume that X and Y represent two instances with X being a training example
and Y a testing example. The variables x; and y; are values of the i-th feature for X
and Y, where each example has n features. Therefore, the total distance between X and

Y is the sum of all distances between x; and y;. The distance between X and Y is

shown in the following figure, Fig. 2.1.

12



X-Y= ('rl?x% '--xn) - (yL Yo, yn)

J

(1 —y1) + (2 —y2) + ... + () — yn)

VDM table of feature 1 VDM table of feature 2 VDM table of feature n

Fig. 2.1. The distance between instances X and Y.

2.3 Distances between Protein Symbaols Using VDM table

As all we know, any protein’ sequence is consisted of 20 kinds of amino acid
which are represented by 20 characters. They are Alanine (A), Cysteine (C), Aspartic
acid (D), Glutamic acid (E), Phenylalanine (F), Glycine (G), Histidine (H), Isoleucine
(D), Lysine (K), Leucine (L), Methionine (M), Asparagine (N), Proline (P), Glutamine
(Q), Arginine (R), Serine (S), Threonine (T), Valine (V), Tryptophan (W), and
Tyrosine (Y) respectively [17]. In other words, there should be 20 kinds of symbolic
value for each feature. In fact, there will be 21 kinds of symbolic value for each

feature in our research, and this will be explained later.

The feature number of our research is set to 13, i.e. we should make a window
for every symbol (amino acid) in a protein sequence and its length is 13. This is the

pre-process of our experiment. Under this condition, every symbol (amino acid) in
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the protein sequence will be located in the center of the expanded window. So it both
has 6 neighbors on its left-hand side and right-hand side, respectively. During the
process of making windows, the fronted, i.e., the first six and the last end, i.e., the last
six residues will have some unknown neighbors. We regard these unknown neighbors
as another symbol “X,” and this is the reason why we will have 21 kinds of symbolic
value for each feature. Let us illustrate a simple example as follows. If a protein
sequence is “GKITFY E D R G,” then we will make a window for each symbol

and they will become a 10x13 symbolic matrix which is shown as follows:

XXXXXXGKITFYE

XXXXXGKITFYED

XXXXGKITEYEDR

XXXGKRKITEYEDRG

XXGKITFYEDRGX

XGKITFYEDRGXX

GKITFYEDRGXXX

KITFYEDRGXXXX

ITFYEDRGXXXXX

TFYEDRGXXXXXX

We can see that the boldface of each row construct the original protein sequence. Each

column (feature) will construct a VDM table, and each size is 21x21. In this case, we
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will have 13 different VDM tables for 13 features.

Assume that the secondary structure corresponding to the original protein
sequence is “aa oo B B B B 11" we should construct the occurrence table for each
feature first. We show the 10x13 symbolic matrix again by adding the secondary
structure label behind each row. Therefore, it is convenient for us to check the

occurrence frequency for each symbol in each class.

XXXXXXGKITFYE.....ooooii o
XXXXXGKITFYED....ooooooiiiin. o
XXXXGKITFYEDR.......ocooon. a
XXXGKITFYEDRG..............ooool. a
XXGKITFYEDRGX ..o 3
XGKITFYEDRGXX.....oooovviviinennn 5
GKITFYEDRGXXX..ooooiiiiiiiiinn 3
KITFYEDRGXXXX..ioiiiiiiiiiiiinnn B3

ITFYEDRGXXXXX. .oiiiiiiiiiiiinnnn I

TFYEDRGXXXXXX.iioiiiiiiiiiinennn. I

For Feature 1 (first column), we can construct the occurrence table which is shown in
Table 2.3. Note that there are many zeros in the occurrence table because the protein
length of this example is too short. If the elements in a row are all zeros, we can not

use Eq. (2.3) to compute the distance between two symbols in a feature.
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Table 2.3. Occurrence table of the example for Feature 1

Class Alpha Beta Loop
Symbol
A 0 0 0
C 0 0 0
D 0 0 0
E 0 0 0
F 0 0 0
G 0 1 0
H 0 0 0
I 0 0 1
K 0 1 0
L 0 0 0
M 0 0 0
N 0 0 0
P 0 0 0
Q 0 0 0
R 0 0 0
S 0 0 0
T 0 0 1
v 0 0 0
W 0 0 0
Y 0 0 0
X 4 2 0
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This is an example to show how an occurrence table for one feature is
established. Because too many sums of the row are zeros, we can not illustrate the
VDM table for 21 symbolic values for Feature 1 for this example. In our research, we
make a global VDM table for 120 protein sequences in HSSP database including
31755 residues (amino acids). The occurrence table and the global VDM table of

these 31755 residues for Feature 1 are shown below.

Table 2.4. Occurrence table of 31755 residues for Feature 1

Class Alpha Beta Loop
Symbol

A 853 553 1040
C 149 164 338
D 566 428 736
E 560 415 735
F 339 241 624
G 778 743 1093
H 209 186 320
I 523 343 834
K 537 496 796
L 766 524 1166
M 209 117 266
N 447 422 666
p 409 386 740

17



Q 358 296 502
R 376 321 550
S 591 619 973
T 559 541 896
\Y% 601 484 1083
W 136 92 233
Y 299 271 537
X 113 184 423
Table 2.5. Global VDM table of 31755 residues. fof Feature 1

meel | A C D E F G H
Symbol
A 0 0.238 0.043 0,043 0.186 0.116 0.113
C 0.238 0 0.197 0.197 0.105 0.202 0.143
D 0.043 0.197 0 0.009 0.186 0.074 0.070
E 0.043 0.197 0.009 0 0.177 0.083 0.070
F 0.186 0.105 0.186 0.177 0 0.200 0.141
G 0.116 0.202 0.074 0.083 0.200 0 0.059
H 0.113 0.143 0.070 0.070 0.141 0.059 0
I 0.131 0.158 0.130 0.122 0.055 0.165 0.117
K 0.110 0.168 0.067 0.068 0.166 0.034 0.025
L 0.099 0.166 0.099 0.090 0.087 0.142 0.094
M 0.057 0.248 0.100 0.090 0.143 0.173 0.125
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N 0.115 0.171 0.072 0.073 0.169 0.032 0.030
P 0.165 0.075 0.121 0.122 0.103 0.128 0.069
Q 0.078 0.170 0.035 0.036 0.168 0.056 0.035
R 0.094 0.156 0.051 0.052 0.154 0.054 0.018
S 0.156 0.147 0.113 0.114 0.167 0.055 0.047
T 0.137 0.141 0.094 0.095 0.142 0.062 0.025
\Y% 0.149 0.097 0.148 0.139 0.046 0.163 0.104
W 0.161 0.132 0.160 0.151 0.027 0.175 0.122
Y 0.157 0.082 0.119 0.115 0.089 0.134 0.075
X 0.384 0.144 0.341 0.341 0.249 0.339 0.280
Table 2.5. Continued
Smbel | p K L M N P Q

Symbol

A 0.131 0.110 0.099 0.057 0.115 0.165 0.078
C 0.158 0.168 0.166 0.248 0.171 0.075 0.170
D 0.130 0.067 0.099 0.100 0.072 0.121 0.035
E 0.122 0.068 0.090 0.090 0.073 0.122 0.036
F 0.055 0.166 0.087 0.143 0.169 0.103 0.168
G 0.165 0.034 0.142 0.173 0.032 0.128 0.056
H 0.117 0.025 0.094 0.125 0.030 0.069 0.035
I 0 0.139 0.032 0.091 0.146 0.099 0.113
K 0.139 0 0.116 0.147 0.008 0.094 0.032
L 0.032 0.116 0 0.082 0.123 0.091 0.085
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M 0.091 |0.147 |0.082 |0 0.155 0173 |0.117
N 0.146  |0.008 [0.123 |0.155 |0 0.096 | 0.038
p 0.099 0094 [0091 [0.173 |0.09 |0 0.096
Q 0.113 0032 [0085 [0.117 |0.038 |009% |0
R 0.111  |0.028 [0.088 |0.120 |0.035 |0.082 |0.016
S 0.164 |0.046 |0.140 [0.172 |0.041 0073 |0.078
T 0.139 0027 [0.115 |0.147 ]0.030 |0.066 |0.059
\% 0.061 |0.129 [0.069 |0.152 |0.131 |0.056 |0.131
W 0.030 |0.143 [0061 |0.116 |0.151 |0.104 |0.142
Y 0.086 |0.100 [0.084 |0.166 |0.102 |0.013 |0.102
X 0301  |0305 [031040000:392 |0307 |0219 |0.307
Table 2.5. Continued

Smbel | R S ¥ \% W Y X
Symbol
A 0.094 0156 |0.137 |0.149 |0.161 |0.157 |0.384
C 0.156 | 0.147 |0.141 ]0.097 |0.132 |0.082 |0.144
D 0.051 0113 |0.094 |0.148 |0.160 |0.119 |0.341
E 0.052 |0.114 [0.095 |0.139 |0.151 |0.115 |0.341
F 0.154 0167 |0.142 |0.046 |0.027 |0.089 |0.249
G 0.054 0055 [0.062 |0.163 |0.175 |0.134 |0.339
H 0.018 0047 0025 |0.104 |0.122 |0.075 |0.280
I 0.111 |0.164 [0.139 |0.061 |0.030 [008 |0.301
K 0.028 |0.046 |0.027 |0.129 |0.143 |0.100 |0.305
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L 0.088 [0.140 |0.115 |0.069 |0.061 |0.084 |0.310
M 0.120 |0.172 [0.147 |0.152 |0.116 |0.166 |0.392
N 0.035 [0.041 0030 |0.131 |0.151 |0.102 |0.307
P 0.082 [0.073 |0.066 |0.056 |0.104 |0.013 |0.219
Q 0.016 [0.078 |0.059 |0.131 |0.142 |0.102 |0.307
R 0 0062 [0.043 |0.117 |0.129 |0.088 |0.293
S 0.062 |0 0.025 [0.121 |0.168 |0.079 |0.284
T 0.043 0025 |0 0.101 |0.143 |0.072 |0277
\% 0.117 |0.121 |0.101 |0 0.047 |0.043 | 0.241
W 0.120 | 0.168 |0.143 [0.047 |0 0.091 |0.276
Y 0.088 [ 0.079 | 0.072,31410:043 | 0.091 |0 0.226
X 0293 |0284 |0277 110241 {0276 |0226 |0

Obeying the same rule, we<can also derive the global VDM table for Feature 1
to Feature 13, respectively. Here we only show the global VDM table for Feature 1.
Back to Fig. 2.1, the distance between two instances will be determined easily since
we have constructed 13 VDM table. The reason why we call the global VDM table is
that we regard all the 120 proteins (31755 residues) as a training set. In this research,
we make a leave one out cross validation. In other words, every protein will be
selected and the all its position will be picked up and tested. When one protein is
picked up and tested, the rest 119 proteins will be regarded as the training data and be
used to make the 13 VDM tables for each feature and this process will be done for
120 times. Totally, there will be 13x120 different VDM tables for different protein in
this research. Under this condition, the VDM table for each feature will not be

“global” anymore. It will be “dynamic” with the variance of the training data.
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Chapter 3. Protein Secondary Structure Prediction

3.1 Brief Introduction to PSIPRED

A recent protein secondary structure prediction method that incorporates multiple
sequence alignment and neural network is PSIPRED method. However, the method
exploits Position Specific Scoring Matrix (PSSM) [10] as generated by the Position
Specific Iterated BLAST (PSI-BLAST) [18] algorithm and feeds those to a
two-layered forward neural network. More specifically, there are three stages in
PSIPRED and the overall flowchart is shown in Fig. 3.1. In the first stage, multiple
sequence alignment is performed using PSI-BLAST and then the sequence profile
will be built up. In the second stage,:the" final “position-specific scoring matrix
(log-odds values) from PSI-BLAST (after three iterations) is used as input to the first
neural network. In the third stage, post filtering i§ performed using the second neural
network and PSIPRED is done.

The PSSM matrix has 20xM elements, where M is the length of the target
sequence, and each element represents the log-likelihood of that particular residue
substitution at that position. The profile matrix elements are scaled to the required 0—1

range by using the standard logistic function:

1+e”

where X is the raw profile matrix value. This scaling could also have been achieved by
adapting the input units directly to accept input in the given range. A window of 15

amino acid residues was found to be optimal, and thus the final input layer comprises
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315 input units, divided into 15 groups of 21 units. The extra unit per amino acid is
used to indicate where the window spans either the N or C terminus of the protein
chain. A large hidden layer of 75 units was used, with another three units making the
output layer where the units represent the three-states of secondary structure (helix,
strand and coil). A second neural network is used to filter successive outputs from the
main network. As only three possible inputs are necessary for each amino acid
position, this network has an input layer comprising only 60 input units, divided into
15 groups of 4. Again the extra input in each group is used to indicate that the window

spans a chain terminus. For this network, a smaller hidden layer of 60 units was used.
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3.2 The VDM Table Method with Nearest Neighbor Majority Vote

There are 120 proteins including 31755 residues (amino acids) in our database.
In this thesis, we make a lift one out and cross validation. In other words, every
protein and the all amino acids will be picked up and tested. When one protein is
tested, the rest 119 proteins will be regarded as the training data and used to make 13
VDM table for each feature since the window size is 13 in this research.

For example, if a protein sequence is the testing data and its sequence length is a,
then these a amino acid symbols will be transformed into an ax13 symbolic matrix
after the process of sliding window. In the mean time, the rest 119 proteins will not
only be regarded as the training data but also be transformed into a (31755-a)x13
symbolic matrix and this is shown'in Fig. 3.2."Because the secondary structure label
for training data is already known, we can add the class label behind each row of the
(31755—a)x13 symbolic matrix dike the way-we have mentioned in Section 2.3. Then
according to the occurrence table for.each.column, we can construct 13 different
VDM tables for each feature and this is shown in Fig. 3.3. Since every position of the
testing data should be tested and compared with the training data, every position of
the testing data will have (31755-a) scores which are computed using 13 VDM tables.
Thus, there will be totally ax(31755-a) scores for the testing data.

The VDM table with majority vote method is that we will choose the smallest,
i.e., the nearest 200 scores among these (31755-a) scores for each position of the
testing data. So the total scores will become ax200 for the testing data. Then we will
take a vote among these 200 scores for each position. For example, if 100 scores are
labeled as alpha class, 60 scores are labeled as beta class and the rest are labeled as
loop class. The class label for this amino acid position will be assigned to alpha using

the majority win. That is, this process will be done a times for each amino acid.
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3.3 The VDM Table Method with Nearest Neighbor Balanced Prediction

The database in this research contains 120 proteins in HSSP including 31755
amino acids. First step we should do in this approach is to check the distribution ratio
of three types secondary structure in our database. Among these 31755 amino acids,
there are 9378, 7826 and 14551 residues whose secondary structure labels are alpha,
beta and loop (coil) respectively. In other words, the proportion of alpha, beta and
loop structure among these 31755 amino acids are 29.5%, 24.6% and 45.8%
respectively. Then we record these statistics and this will be used latter. The same
process as the VDM table method with majority vote, we also choose the smallest
(nearest) 200 scores among these (31755—a) scores for each position of the testing
data. Differ from making a vote between these 200 nearest neighbors, this time we
make a distribution ratio table-first' and see.the proportion of alpha, beta and loop
structure among these 200 nearest neighbors:

For example, assume that theproportion’ of the alpha, beta and loop structure
among these 200 points for Position 1 are b%, ¢% and d %, respectively. Then we will
check the change of distribution ratio corresponding to the original distribution ratio

and this is shown as follows:

Table 3.1. The change of distribution ratio corresponding to the original ratio

Class Alpha Beta Loop
Position
1 b-29.5 <100 c—-24.6 <100 d-45.8 <100
29.5 24.6 45.8
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Under this condition, we can see the percentage change of the distribution ratio easily.
The class label will be determined to be the maximum gain change of the ratio among
these three types of secondary structure. In the same way, this process will be

performed a times for each amino acid sequence.

3.4 Fusion Method

3.4.1 Majority Vote Based on the Global Confidence Value

Since we have proposed two.different approaches based on the VDM table and
the PSIPRED to predict the protein secondary structure, we certainly have a great
interest in combining these three methods-and-eager to raise the overall accuracy after
this fusion work. The first idea that we-have hit upon is also the majority vote scheme.
Every position of the input testing sequence will certainly have three predicted class
labels using VDM table method with nearest neighbor majority vote, VDM table
method with nearest neighbor balanced prediction and PSIPRED respectively. The
ideal case is that these three different methods have the same ability to predict the a, 3
and loop class. Then we can simply take a vote between these three predicted classes.
Unfortunately, this thing will definitely not occur in the real life. Having this
cognition, we make an overall prediction among the 120 proteins by using three
different approaches first and then find out the individual accuracy for a, B and loop
class respectively. We regarded these as the global confidence value for three classes.
After this work, when any testing sequence comes and has three class labels for any

position, we will not take a vote between these three class labels to decide the class it
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belongs to. Let us make an example to illustrate this approach.

Assume that the individual accuracy of the a, B and loop classes with three

different approaches are show below:

Table 3.2. The individual accuracy of three classes with three different approaches

Method VDM NN MV VDM NN BP PSIPRED
Class
Alpha a% b % c %
Beta d % e % f%
Loop g% h % i %

Assume that a part of a testing sequence of length 3 is predicted by the three different

methods and it is shown below:

Table 3.3. The class labels predictéd by three different methods

Method | VDM NN MV | VDM NN BP | PSIPRED
Position
1 Alpha Alpha Beta
2 Beta Beta Alpha
3 Alpha Beta Loop

If we only take a simple vote between these three class labels, position one and
position two will be determined easily due to the majority win. But position three will

be ambiguous. So we need to make another table to calculate the total global

confidence values for a, B and loop class respectively and it is shown below:
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Table 3.4. The total global confidence value table for each position

Class Alpha Beta Loop
Position
1 a%+b% f% 0
2 c % d%+e % 0
3 a% e % i %

Under this condition, the final class label for each position will be determined by the
largest number of each row in the table and the ambiguous condition can also be
avoided at the same time. In chapter 4, we will see the difference between prediction

ability for the three classes for different approaches.

3.4.2 Majority Vote Based on the:L.ecal Confidence Value

In the last section, we have tried to combine the three different methods based
on the global confidence value concept. In order to get the global confidence value,
we need to test the overall proteins in advance and it usually takes a long time. Then,
how to combine the three different methods without doing this and can still obtain
some significant information from each method is the new problem we have to face
now. In opposition to the global confidence value, we have proposed the local
confidence values to reveal the three class probability for each predicted position in
real-time. PSIPRED is developed by the neural network. As a result, the reliance of
three states is available from the program. For the VDM table with nearest neighbor

majority vote method, the reliance for three states is the distribution ratio for each
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class. Finally, for the VDM table with nearest neighbor balanced prediction method,
the reliance for three states is the change of distribution ratio corresponding to the
original ratio. Under this condition, each predicted position will have 9 local
confidence values. Let us make an example to illustrate this approach.

Assume that we make the 200 nearest neighbors for two VDM approaches and
the original distribution ratio for a, § and loop in our data set are 29.5%, 24.6% and
45.8%, respectively. Among these 200 neighbors, assume that 100 are labeled as a, 50
are labeled as B and 50 are labeled as loop. The PSIPRED local confidence value for
three states are @, b and ¢ which are obtained from the neural network program. So the

9 local confidence values can be obtained and is shown as below:

Table 3.5. The local confidence-wvalue for three classes by three different methods

VDM NN MV VDM NN BP PSIPRED
Alpha | Beta | Loop Alpha Beta Loop Alpha | Beta | Loop
0.5 025 | 025 | 0.5-0.295| 0.25-0.246 | 0.25-0.458 a b c

0.295 0.246 0.458

The next work we should do is to make a sum of each confidence value for each class.
For alpha class, the total confidence value will be (0.5+0.695+a). The beta and the
loop confidence value will be (0.25+0.016+b) and (0.25-0.454+cC), respectively.

Finally, the predicted class will be determined with the largest number in the sum.
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Chapter 4. Experiment and Simulation Results

4.1 Introduction to Data Sets

The database of our research is a part of HSSP [19], [20] database and has less
than 25% sequence identity by using BLAST testing. There are totally 120 proteins in
our database and it is shown in Table 4.1. HSSP (homology-derived Structures of
proteins) is a derived database merging information from 3-D structure and 1-D
sequence of proteins. For each protein of known 3-D structure from the Protein Data
Bank (PDB), the database has a multiple sequence alignment of all available
homologues and a sequence profile characteristic of the family. The list of
homologues is the result of a database ‘search in SWISSPROT using a
position-weighted dynamic programming method for:sequence profile alignment. The
database is updated frequently. The listed homologues are very likely to have the
same 3-D structure as the PDB protein to which they have been aligned. The database
is not only a database of aligned sequence families, but also a database of implied

secondary and tertiary structures covering 29% of all SWISSPROT-stored sequences.
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Table 4.1. The database of this research

la45 |lacx | lazu | 1bbp |1bds | 1bks | lbmv | lcbh | 1lcc5S | lcdh

lcdt lern [ lese | lcyo | Idur | leca | letu 1fc2 1£dl 1tkf

Ifnd | 1fxi lgbn | 1gdl | 1gd; 1gpl lhip 1118 1158 llap

Ilmb | Imcp | Imrt | lovo | 1paz | Ippt Iprc Ipyp | 1r09 Irbp

Irhd | 1s01 | 1shl | Itgs Itnf lubq |2aat |2ak3 |2alp |2cab

2ccy | 2cyp | 2fox | 2fxb | 2gbp | 2gls 2gn5 | 2hmz | 2ilb | 2lhb

2ltn 2mev | 2mhu | 2orl | 2pab | 2pcy |2phh |2rsp | 2sns | 2sod

2stv 2tgp | 2tmv | 2tsc 2utg | 2wrp | 3ait 3blm | 3cla 3cln

3ebx | 3hmg | 3icb | 3pgm | 3rnt 3sdh | 3tim |4bp2 |4cms | 4cpa

4epv | 4grl | 4ptk | 4rhv | 4rxnl [ 4sgb. | 4ts] 4xia Scyt Ser2

Shvp |5ldh | Slyz | 6acn =| 6¢cpa |4 6¢pp -, | 6¢ts 6dfr 6hir 6tmn

Tcat 7icd | 7rsa 8abp = | 8adh | 9api 9ins Opap | 9wga | 256b

Let us make a simple introduction to the content and format of the HSSP files.
One HSSP file contains a structural protein family: one testing protein of known
structure and all its structurally homologous relatives from the database of known
sequences. The file is divided into four blocks: HEADERS, PROTEINS,
ALIGNMENTS and SEQUENCE PROFILE. The HEADERS block is mandatory and
the other three blocks are present only if at least one homologous alignment is found
and each of the additional blocks begins with the string “##.” File organization is
line-oriented. SEQLENGTH, NCHAIN and NALIGN which indicate the length of the
sequence, the number of distinct chains and the number of aligned sequences,

respectively. The PROTEINS block shows the pair alignment data for each of the
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proteins deemed structurally homologous to the testing protein, where the word pair
alignment refers to the alignment of the testing protein with the single homologous
protein. The ALIGNMENTS block indicates the residue-by-residue details of the
family alignment. Finally, the SEQUENCE PROFILE block shows the relative
frequency for each of the 20 amino acid residue in a given sequence position, from
counting the residue at that position in each of the aligned sequences including the
testing sequence. A value of 100 means that at this position only one type of amino
acid is found. As a result, we get the amino acid and corresponding secondary
structure from the ALIGNMENTS block section for 120 different HSSP files and then
our data sets are established. After building up our data sets, we can use two different
VDM-based nearest neighbor methods, PSIPRED and two fusion methods to make

the prediction. The experiment results are shown in the following sections.

4.2 Simulation Results of VDM Method with*Nearest Neighbor Majority Vote

Since we use the nearest neighbor scheme to make the prediction, we choose the
100, 150 and 200 nearest neighbors to run the simulation in this research. The
simulation results of VDM method with nearest neighbor majority vote for different

number of nearest neighbors are shown as follows:
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Table 4.2 The accuracy of 120 proteins with VDM_100-NN_MYV method (%)

497 162.6 |524 |572 |69.8 64.8 | 60.1 639 | 723 57.3

59.2 1478 |61.7 |557 ]60.0 |47.8 |66.1 62.7 [59.0 |51.4

61.5 66.7 57.1 58.1 64.1 558 624 |704 |72.6 |60.9

76.0 |60.2 |90.3 60.3 65.8 86.1 539 646 |60.7 |44.8

65.2 | 65.1 52.1 584 | 485 553 64.1 63.7 | 46.5 67.6

748 |61.8 |652 |704 |67.0 |[63.6 |644 |588 |55.6 |65.1

548 1632 190.0 |74.6 |482 [63.6 |59.6 |579 |56.7 |69.5

522 | 623 532 1629 |600 |[752 |63.5 |66.1 59.6 | 8I.1

629 |57.5 |80.0 |657 |663 |545 [69.0 |48.7 |513 |61.2

62.0 |575 |61.8 603 63.00 (15810, |67.6 |659 |[553 543

515 [56.8 [63.6 |61.3 -159.0 4652 [64.1 |63.6 |837 |61.8

622 | 623 |66.1 60.3 52.9 £{155.3 60.8 |61.8 [59.9 ]69.8

100

80 - B

O B

(3 accuracy (%)

=N

a0 —

40 1 1 1 1 1
o 20 40 B0 50 100 120
seguence index

Fig. 4.1. The accuracy plot of 120 proteins with VDM _100-NN_MYV method.
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Table 4.3 The accuracy of 120 proteins with VDM _150-NN_MYV method (%)

514 | 59.8 56.4 | 53.8 744 | 652 |61.7 694 |68.7 |56.7

583 478 ]62.6 |58.0 |564 |478 |67.8 |63.5 |569 |533

63.5 656 |549 |56.6 |634 |[567 |60.0 |69.7 |713 62.1

754 | 613 |935 56.3 65.8 86.1 539 166.0 |61.7 |47.7

642 |644 |500 |590 (467 |539 |657 |650 |449 |67.6

732 | 6l.1 674 |72.8 |689 |642 |678 |56.1 542 | 67.8

557 164.0 [90.0 |762 |456 |61.6 |60.1 59.2 | 56.7 |66.6

505 |644 |57.8 |640 |62.1 714 1649 |654 |582 |79.7

694 | 5777 |787 674 654 |[56.6 |67.9 479 |519 |59.1

593 58.6 | 643 61.9 |63.00 (602, |67.9 |649 |62.1 543

485 |56.8 |63.6 |62.5 S|5TT 4654 1641 |604 |87.8 |60.0

639 |623 |645 59.0 = | 54.5 4556 |[569 |60.8 |6l.1 68.9

100
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Fig. 4.2. The accuracy plot of 120 proteins with VDM _150-NN_MYV method.
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Table 4.4 The accuracy of 120 proteins with VDM_200-NN_MYV method (%)

49.7 57.0 57.3 57.2 74.4 | 63.7 61.7 69.4 68.7 55.0

583 478 1629 |56.8 |582 (493 |684 |62.7 |569 |533

60.8 | 66.7 55.6 | 572 |647 |553 58.8 | 725 70.1 62.2

754 | 59.5 |935 60.7 | 642 |833 539 1679 |613 |443

63.5 64.0 |52.1 587 |47.6 |539 [659 |64.6 |424 |67.2

740 604 |66.7 |72.8 |68.3 645 |66.7 |58.8 |53.6 |68.5

553 643 [90.0 |73.0 |465 |[59.6 |604 |579 |539 |67.2

51.1 63.3 56.5 61.4 |643 724 | 67.6 |654 |60.1 79.7

694 |59.1 80.0 [66.5 |[625 545 |[699 [48.7 |525 |[60.9

62.0 |58.1 63.3 61.4 | 6l.1 597, 1689 654 |61.2 |54.0

495 | 577 |63.6 |622 4593 {4654 1639 |597 |89.8 |61.5

645 |62.6 |645 59.0 = {543 543 549 160.8 |60.8 |67.9

100

80 - B

O B

a0 —

(3 accuracy (%)

40 1 1 1 1 1
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Fig. 4.3. The accuracy plot of 120 proteins with VDM _200-NN_MYV method.
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Let us make a summary for this method. The overall average accuracy of the
120 proteins for 100, 150 and 200 nearest neighbors are 60.8%, 61.0% and 61.5%
respectively. The standard deviations are 8.27, 8.56 and 8.62, respectively.
Furthermore, the average accuracies for alpha, beta and loop classes are shown below.
These will be very significant when we make a fusion work with PSIPRED in the

later section.

Table 4.5 The average accuracies and standard deviations of 120 proteins

Method Average Accuracy Standard Deviation
VDM _100-NN_MV 60.8% 8.27
VDM _150-NN_MV 61:0% 8.56
VDM 200-NN_MV 61:5% 8.62

Table 4.6 The average accuracies for three classes with different No. of neighbors

Class Alpha Beta Loop

Method
VDM 100-NN_ MV 55.9% 37.0% 76.7%
VDM 150-NN_MV 56.0% 37.2% 77.5%
VDM 200-NN_ MV 56.4% 36.6% 77.9%
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4.3 Simulation Results of VDM Method with Nearest Neighbor Balanced

Prediction

Based on the nearest neighbor method, we also choose the nearest 100, 150 and
200 nearest neighbors to run the simulation in this research. The simulation results of
VDM method with nearest neighbor balanced prediction for different number of

nearest neighbors are shown as follows:

Table 4.7 The accuracy of 120 proteins with VDM _100-NN_BP method (%)

439 672 |548 |613 |72.1 64.8 | 555 |55.6 |68.7 |539

50.0 |45.7 576 1602 [490 |54.4 4695 614 | 613 56.1

62.8 604 |559 |59.0- 647 |563 150.6 |613 |689 |64.2

743 162.0 |613 |57.1 592 18313° [48.0 |51.4 |55.6 |47.7

577 585 |64.6 |56.6 |49.3°71513 548 |61.2 |[50.5 |613

78.0 1594 674 |704 |64.7 562 [46.0 |60.5 |523 |65.1

5577 |56.8 |70.0 |683 509 |64.6 |575 548 | 56.7 |62.7

527 |58.0 [46.8 |644 |650 |743 594 677 |545 |79.7

67.7 |558 |733 58.7 | 683 579 622 |556 |544 |513

56.5 547 ]66.5 |56.1 574 614 654 |639 485 |56.7

545 4777 1620 |6l.1 52.1 62.7 | 60.1 584 | 755 56.5

56.0 |62.6 |67.7 |656 |48.7 |513 [43.1 524 |503 |783
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Fig. 4.4. The accuracy plot of 120 proteins with VDM_100-NN_BP method.
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Table 4.8 The accuracy of 120 proteins with VDM _150-NN_BP method (%)

44.5 66.4 | 56.5 63.6 | 72.1 654 | 574 |528 66.3 57.3

51.7 | 457 593 |614 |473 |537 |67.8 |622 |61.9 |57.0

63.9 594 |554 |584 647 |55.1 48.2 ] 65.5 70.7 | 63.6

732 | 6277 |613 594 1608 |77.8 470 |51.1 55.0 |51.1

56.7 589 | 542 56.6 |524 |539 56.1 62.8 51.0 |60.2

79.5 584 652 |74.1 67.3 564 | 437 658 |51.6 |658

52,6 | 5777 1633 |73.0 |49.1 65.7 |58.1 575 |51.0 |62.7

53.8 | 584 [474 |633 629 | 733 59.5 673 56.8 81.8

66.1 575 |76.0 |57.0 [663 |[57.9 |647 |51.3 |54.1 51.0

56.5 553 | 652 | 547 |59.3 63:6, | 66.0 |61.8 |48.5 57.3

55.6 | 47.1 60.5 |61.0 =511 61.7.+ 1160.1 578 |77.6 |58.0

562 162.6 |71.8 |66.2 -50.5 7519 |43.1 552 529 |774

85

e+

7O

B5

B0

(3 accuracy (%)

55 H

a0 H

a5 |

40 1 1 1 1 1
o 20 40 B0 50 100 120
seguence index

Fig. 4.5. The accuracy plot of 120 proteins with VDM _150-NN_BP method.
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Table 4.9 The accuracy of 120 proteins with VDM_200-NN_BP method (%)

45.1 654 | 54.8 63.6 | 744 |645 574 | 556 |67.5 54.0

533 478 593 |59.1 455 |53.7 672 |614 |63.1 57.9

62.8 58.3 554 | 58.1 64.1 542 | 47.1 62.7 |70.7 |644

74.3 633 | 71.0 |585 60.0 |77.8 |473 51.1 552 | 511

56.7 59.3 58.3 54.8 51.8 53.9 56.0 |62.8 51.0 | 625

772 | 58.0 | 68.1 74.1 66.3 567 4377 640 |51.0 |67.8

553 576 567 |[69.8 (474 |62.6 |575 |575 |546 |63.6

538 |58.7 |480 |63.6 (679 |714 |568 |669 |582 |804

69.3 577 | 773 |56.1 69.2 |58.6 |65.1 52.1 54.1 525

574 |573 668 |552 |57.4 1640, |648 |[62.3 |47.6 |56.1

56.6 462 |62.0 |61.4 534 4605 1592 |584 |79.6 |59.0

572 |63.0 |685 66.2 = 49.2 71524 |43.1 57.5 532 | 764
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Fig. 4.6. The accuracy plot of 120 proteins with VDM _200-NN_BP method.
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Let us make another summary for this balanced prediction method. The average
accuracy of the 120 proteins for 100, 150 and 200 nearest neighbors are 58.1%, 59.4%
and 59.7%, respectively. The standard deviations are 7.89, 7.97 and 7.98, respectively.
Furthermore, the average accuracies for alpha, beta and loop classes are shown below.
These will also be very significant when we make a fusion work with PSIPRED in the

later section.

Table 4.10 The average accuracies and standard deviations of 120 proteins

Method Average Accuracy Standard Deviation
VDM_100-NN_BP 58.1% 7.79
VDM _150-NN_BP 59:4% 7.97
VDM _200-NN_BP 59:7% 7.98

Table 4.11 The average accuracies for three classes with different No. of neighbors

Class Alpha Beta Loop

Method
VDM 100-NN_BP 63.3% 56.8% 55.4%
VDM 150-NN_BP 63.6% 57.0% 56.2%
VDM 200-NN_BP 63.8% 57.4% 56.3%
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4.4 Simulation Results of PSIPRED

Table 4.12 The accuracy of 120 proteins with PSIPRED (%)

520 | 673 63.7 55.5 83.7 71.9 65.3 66.7 73.5 69.7

61.7 1435 599 |59.1 69.0 |794 |80.2 |70.7 |69.5 |757

747 | 75.0 |70.1 62.3 64.0 |64.1 54.1 67.6 |78.0 |70.5

78.2 | 78.0 100 63.8 80.8 944 625 |64.6 |655 60.3

62.1 62.5 50.0 |67.2 |60.5 72.4 | 69.4 | 68.8 69.2 | 70.7

84.3 703 | 76.8 |753 79.0 698 |57.5 1693 71.9 | 83.9

64.5 [639 |83 |857 |623 |8l.8 |683 |67.1 66.0 |71.4

609 | 712 656 |644 |82.9:0829 |703 |68.5 65.7 | 86.0

629 |51.2 |88.0 |64.8 =159.6 4814 169.1 53.0 [669 |675

81.5 59.9 | 755 654 - 1630 1674 | 7.7 |71.8 |67.0 |57.9

57.6 160.7 ]60.5 |67.4 (4694 |70.6..73.4 |61.0 |8l.6 |65.6

659 |69.1 677 |71.8 62,6 |596 |549 |613 63.7 | 90.6
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Fig. 4.7. The accuracy plot of 120 proteins with PSIPRED method.

The average accuracy of the 120 proteins. for PSIPRED is 67.0% and the
standard deviation is 9.4. The-average accuracy.for alpha, beta and loop class are

shown below and these also will'be useful-when-we'make a fusion work.

Table 4.13 The average accuracy and standard deviation of 120 proteins

Method Average Accuracy Standard Deviation

PSIPRED 67.0% 94

Table 4.14 The average accuracy of PSIPRED for three classes

Class Alpha Beta Loop

Method

PSIPRED 70.7% 58.7% 69.1%
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45 Simulation Results of Fusion Method

4.5.1 Results of Majority Vote Based on the Global Confidence Value

We make a fusion work in combining the VDM_NN MV with VDM_NN_BP
and PSIPRED first. Here we will have three fusion works (Fusion 1 — Fusion 3).
Fusion 1 work is to make the fusion combination of VDM 100-NN_ MV,
VDM 100-NN_BP and PSIPRED. Fusion 2 work is to make the fusion combination
of VDM_150-NN_MV, VDM 150-NN_BP and PSIPRED. Fusion 3 work is to make
the fusion combination of VDM 200-NN_ MYV, VDM 200-NN_BP and PSIPRED.
According to Section 3.4.1, the total global confidence values for each predicted
residue will be weighted summed to determine‘the class which has the maximum
weighted class value. We show-these global eonfidence values and the fusion results

as follows.

(1) Fusion 1:

Table 4.15 The global confidence values of three classes for three methods (Fusion 1)

Class Alpha Beta Loop
Method
VDM 100-NN MV | 55.9% 37.0% 76.7%
VDM _100-NN _BP | 63.3% 56.8% 55.4%
PSIPRED 70.7% 58.7% 69.1%
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Table 4.16 The accuracy of 120 proteins for Fusion 1 (%)

520 |69.2 57.3 60.1 81.4 | 68.5 619 |6l.1 75.9 | 64.0

583 457 1632 [60.2 |61.8 |588 |71.8 [659 |64.0 |57.0

652 |69.8 584 | 62.0 |660 |59.7 57.6 | 71.1 74.3 67.2

7177 1679 1903 60.3 70.8 88.9 532 |657 |62.77 |50.0

62.8 | 65.8 56.2 62.3 51.3 56.6 | 634 |64.8 535 69.1

80.3 63.5 | 703 74.1 706 | 64.0 |58.6 |640 |582 |7I.1

61.8 629 |86.7 |73.0 |553 |71.7 |62.1 59.2 617 |70.2

533 65.5 552 | 655 68.6 |77.1 66.2 | 693 60.1 82.5

71.0 |57.0 |81.3 |652 |654 |62.1 69.1 53.0 |[550 |614

66.7 |573 |69.6 |62.3 63.0" 166:5, | 70.1 69.0 |573 60.3

58.6 | 53.8 |65.1 643 ~161.9 4664 1657 |61.0 |87 |60.9

61.2 [65.0 |71.0 |66.9 | 54.8 756.1 549 594 |6l.1 81.1

95

(3 accuracy (%)

1 1 1
B0 50 100 120
seguence index

Fig. 4.8. The accuracy plot of 120 proteins with Fusion 1 method.
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Table 4.17 The average accuracy and standard deviation of 120 proteins

Method Overall Average Accuracy | Standard Deviation
Fusion 1 63.0% 8.2
(2) Fusion 2:

Table 4.18 The global confidence values-of-three classes for three methods (Fusion 2)

Class Alpha Beta Loop
Method
VDM _150-NN MYV | 56.0% 37.2% 77.5%
VDM 150-NN _BP | 63.6% 57.0% 56.2%
PSIPRED 70.7% 58.7% 69.1%
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Table 4.19 The accuracy of 120 proteins for Fusion 2 (%)

526 | 673 57.3 61.9 814 | 688 [639 |66.7 |723 64.0

583 457 650 |625 |582 |61.8 |71.2 |67.1 63.6 | 59.8

669 |70.8 56.9 |60.8 64.7 |593 55.3 704 | 72.6 | 67.8

76.5 | 683 |935 57.1 70.8 83.3 53.0 |643 62.8 | 51.1

62.5 65.5 54.2 62.6 |524 |579 |644 |655 55.6 | 68.8

79.5 | 628 [69.6 |76.5 71.8 | 64.5 59.8 | 658 |569 |745

614 |64.1 86.7 | 794 |535 |737 |614 [632 |589 [694

57.0 | 66.5 57.8 1663 67.1 762 | 649 689 |61.0 |81.1

742 | 575 | 787 657 654 |634 |71.0 |504 |559 |60.3

639 |584 |693 62.8 | 64.8 [68:6, | 70.1 679 |61.2 |59.7

545 535 643 |654 1603 4659 164.6 |59.7 |87 |61.2

63.7 [165.0 |71.8 679 -|57.0 4572 |569 |61.3 61.1 80.2
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Fig. 4.9. The accuracy plot of 120 proteins with Fusion 2 method.
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Table 4.20 The average accuracy and standard deviation of 120 proteins

Method Average Accuracy Standard Deviation
Fusion 2 63.3% 8.2
(3) Fusion 3:

Table 4.21 The global confidence values-of-three classes for three methods (Fusion 3)

Class Alpha Beta Loop
Method
VDM 200-NN_ MV | 56.4% 36.6% 77.9%
VDM 200-NN_BP | 63.8% 57.4% 56.3%
PSIPRED 70.7% 58.7% 69.1%
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Table 4.22 The accuracy of 120 proteins for Fusion 3 (%)

497 1654 |60.0 |619 814 | 679 639 |66.7 |735 60.7

60.8 457 656 |59.0 |61.8 [632 |71.2 |66.7 |64.0 |60.7

652 |71.9 |58.1 62.3 654 |593 54.1 71.8 74.4 | 684

782 169.2 935 60.3 69.2 | 833 535 639 |624 |50.0

63.1 65.1 54.2 62.6 537 |592 639 |652 535 68.4

79.5 | 62.1 71.7 | 76.5 71.5 | 64.0 |60.0 |640 |556 |745

623 | 64.1 8.7 |74.6 |51.8 |71.7 |61.1 |614 |582 |[70.2

56.0 |66.2 |57.1 640 |70.0 |752 |676 |69.7 |634 |8l.1

742 | 585 | 813 |657 |654 |614 |719 |513 |563 |62.0

66.7 |58.8 699 |62.6 |63.00 4690, |704 |692 |612 |594

57.6 544 643 |658 1622 4652 648 |59.0 |87.8 |62.5

64.7 |657 702 |67.5 54.8 1559 569 |61.8 |61.1 80.2
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Fig. 4.10. The accuracy plot of 120 proteins with Fusion 3 method.
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Table 4.23 The average accuracy and standard deviation of 120 proteins

Method Average Accuracy Standard Deviation

Fusion 3 63.5% 8.2

4.5.2 Results of Majority Vote Based on the Local Confidence Value

In this section, we make a fusion work in combining the VDM_NN MYV with
VDM NN BP and PSIPRED using the local confidence values of these three
methods. We will propose three fusion works, Fusion 4 — Fusion 6. Fusion 4 work is
the combination of the VDM 100-NN MV, VDM 100-NN BP and PSIPSED.
Fusion 5 work is the combination ‘of - VDM=150-NN NV, VDM 150-NN_BP and
PSIPRED. Fusion 6 work 1S the...combination of VDM 200-NN_BP,
VDM 200-NN_ MYV and PSIPRED. The local confidence value of VDM NN MV
scheme for each predicted position is the distribution ratio of the three classes. On the
other hand, the local confidence value of VDM NN _BP for each predicted position is
the change of the distribution ratio corresponding to the original ratio of the database.
Since PSIPRED is developed by neural network, the confidence value for each
predicted residue can be obtained directly from the execution program. According to
Section 3.4.2, the total local confidence values for each predicted residue will be
weighted summed to determine the class which has the maximum weighted class

value. The simulation results of Fusion 4 — Fusion 6 are shown as follows.
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(1) Fusion 4: (VDM_100-NN_MV + VDM _100-NN_BP +PSIPRED)

Table 4.24 The accuracy of 120 proteins for Fusion 4 (%)

486 |71.0 |589 |578 |744 |705 |59.8 |61.1 81.9 | 65.7
56.7 |457 |63.8 602 582 |735 |785 |[679 |683 |598
65.5 688 |57.9 ]60.8 |67.3 |62.7 |54.1 69.7 |76.8 |68.2
82.1 69.5 |839 638 |742 |944 |57.0 |62.1 61.6 |51.1
61.4 |65.1 542 648 |55.0 [645 [634 [657 |60.6 |66.8
819 |64.1 69.6 | 753 |73.5 |62.77 |552 658 |60.1 78.5
618 |613 |83 [794 (544 |727 |645 |61.0 |603 |685
59.2 1 70.1 59.7 1648 764 |77.1 63.5 704 |624 |88.8
742 | 56.2 |86.7 |657 |683% 731 71.5 |55.6 |559 603
67.6 | 58.1 70.5 1622 =63.0 1669 1695 |67.7 |593 |61.2
57.6 535 682 |66.2 1603 4686 |662 |597 |837 |63.4
633 [67.6 |71.8 [69.2 [55.6 |569 529 |585 |594 |858

Fig. 4.11. The accuracy plot of 120 proteins with Fusion 4 method.

(33 accuracy

95

1
B0

seguence index

53

1
S0

1
100




Table 4.25 The average accuracy and standard deviation of 120 proteins

Method

Average Accuracy

Standard Deviation

Fusion 4

64.0%

8.8
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(2) Fusion 5: (VDM_150-NN_MV + VDM _150-NN_BP +PSIPRED)

Table 4.26 The accuracy of 120 proteins for Fusion 5 (%)

497 |71.0 |589 |624 |767 |703 |614 |61.1 83.1 66.3
60.8 [47.8 632 [59.0 |60.0 |76.5 |76.8 |67.1 68.1 59.8
649 708 |574 |614 |68.6 |62.0 494 |683 |787 |68.0
832 |70.8 (903 |62.1 733 |91.7 573 |61.8 |61.6 |534
61.8 |64.7 |52.1 63.0 |[575 605 |644 |652 |60.6 |67.6
819 (638 |71.7 |76.5 |72.8 |652 |58.6 |693 |582 |785
61.0 |62.2 |833 81.0 509 |73.7 |642 |645 |589 |704
58.7 [ 68.7 |59.7 |66.3 80.0 | 77.1 649 |71.6 |643 88.8
75.8 | 57.7 | 827 |66.1 68.37 (7311 727 | 538 |553 |614
694 |583 |70.8 |61.8 =163.0 1682 1698 |67.7 |544 |60.9
60.6 |529 659 ]66.7 -|61.9 44674 |67.1 59.7 | 81.6 | 659
649 1679 |734 702 [55.6 |58.0..49.0 |557 |58.8 |82.1

Fig. 4.12. The accuracy plot of 120 proteins with Fusion 5 method.
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Table 4.27 The average accuracy and standard deviation of 120 proteins

Method

Average Accuracy

Standard Deviation

Fusion 5

64.4%

8.9
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(3) Fusion 6: (VDM_200-NN_MV + VDM _200-NN_BP +PSIPRED)

Table 4.28 The accuracy of 120 proteins for Fusion 6 (%)

503 | 729 56,5 [63.0 |79.1 71.7 614 |6l.1 81.9 | 629
60.0 |47.8 |63.8 |59.1 60.0 | 743 |76.8 |687 |684 |59.8
66.6 |68.8 |358.1 60.5 |64.7 |61.1 529 669 |78.7 |68.6
82.1 70.8 1903 |61.6 |742 [944 |575 [629 |61.6 |552
62.5 647 |50.0 |62.6 |57.2 632 629 |659 |60.1 69.1
82.7 652 732 |76.5 |73.8 |[655 |[575 |719 |582 |76.5
627 |61.7 |86.7 |81.0 [52.6 |727 |645 |64.0 |582 |70.7
59.2 168.0 |59.0 |66.7 |78.6 |78.1 62.6 |69.7 |66.2 |88.1
774 |57.77 813 |64.8 |67.3" 724, |727 |53.8 |559 |623
69.4 |58.8 |73.0 |61.8 =63.0 1678 [70.8 |69.0 |563 |59.7
58.6 | 544 |66.7 |66.2 =632 71669 |68.1 604 |81.6 |644
64.7 168.6 |72.6 |69.5 [559 |58.0..49.0 |557 |57.6 |8l.1

Fig. 4.13. The accuracy plot of 120 proteins with Fusion 6 method.
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Table 4.29 The average accuracy and standard deviation of 120 proteins

Method

Average Accuracy

Standard Deviation

Fusion 6

64.6%

9.0
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4.6 Accuracy Comparison and Comments

Since we have made 13 different experiments to predict the protein secondary
structure including 3 VDM NN MYV methods, 3 VDM NN BP methods, PSIPRED
method, and 6 Fusion methods in this research, we can make an overall average
accuracy comparison list among these different schemes. The accuracy ranking of
these 13 approaches are shown as follows. From the Table 4.30, we can see that
PSIPRED has the highest accuracy. Fusion methods based on the local confidence
values have higher accuracy than the fusion methods based on the global confidences.
We think the main reason is that the local confidence values can reveal more
significant information directly for each predicted residue than global confidence
values. Furthermore, we note that.the larger number of nearest neighbor we choose,
the higher accuracy we can obtain.. We think-this,is-due to the more information we
can get and find the distribution-ratiorof the-change of this ratio more clearly. Besides,
VDM NN MV methods have higher-accuracy.than VDM NN BP methods due to
the average distinguish ability of VDM NN MV for three classes is better than
VDM NN _BP. The global VDM tables for 120 proteins which we have mentioned in
Sec. 2.3 are also used to make the secondary structure prediction using these 13
different methods. The average accuracy of Fusion 6 using global VDM tables is
higher than that the Fusion 6 using dynamic VDM tables by 0.5%. We suspect that the
reason is the more data sets we have, the more information we can obtain. Since the
more information about the appear frequency of each symbol for three classes we can
obtain, the VDM table will be built up precisely. In the mean time, the average

accuracy will be promoted.
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Table 4.30 The accuracy ranking of 13 approaches

Ranking Method Accuracy Remarks

1 PSIPRED 67.0% Highest Accuracy
2 Fusion 6 64.6% Fusion with local
3 Fusion 5 64.4% confidence value

4 Fusion 4 64.0%

5 Fusion 3 63.5% Fusion with global
6 Fusion 2 63.3% confidence value

7 Fusion 1 63.0%

8 VDM 200-NN_ MV | 61.5% VDM methods
9 VDM 150-NN MV, .61.0% with majority vote
10 VDM _100-NN MV 160.8%

11 VDM 200-NN_BP 1-59.7% VDM methods
12 VDM_150-NN"BP! [159:4% with balanced
13 VDM_100-NN _BP | 58.1% prediction
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Chapter 5. Conclusion

In this thesis, we propose two different methods, nearest neighbor majority vote
and nearest neighbor balanced prediction schemes based on the VDM table metric to
make the experiment of the protein secondary structure prediction. Besides, we also
implement the PSIPRED, the benchmark of the protein secondary structure prediction
in recent years. Having these three different methods, we have an interest in
combining these three approaches to promote the average accuracy and we
successfully implement the fusion works by using the global and local confidence
values developed. Although the accuracies of the two different VDM based
approaches and the fusion works can'not overtake PSIPRED, we think this is still a
promising way in fusion methods by tunming optimal weights of predicted residues or
combining with other algorithms since séme other methods are running now in our
lab. So we think this is the impottant thing that we can try and investigate further in

the future work.
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