IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997 171

CSPL: An Ada95-Like,
Unix-Based Process Environment

Jen-Yen Jason Chen, Member, IEEE

Abstract —This paper presents a new process-centered environment called “concurrent software process language” (CSPL). CSPL
takes a unique and innovative approach to integrate the object-oriented Ada95-like syntax (for its modeling power) with Unix shell
semantics (for its enactment capability) in a software process language. This paper depicts the following new CSPL features:

1) object orientation, 2) multirole and multiuser, and 3) unified object modeling. Language constructs specially designed for software
process such as work assignment statement, communication-related statements, role unit, tool unit, relation unit and so on, are,
respectively, described. The related work of this diversified field is also surveyed in some depth. The CSPL environment prototype
has been built. A CSPL process program for the IEEE Software Process Modeling Example Problem has been developed and

enacted to demonstrate the capabilities of this environment.

Index Terms —Process-centered environment, software process, software engineering, software engineering environment,

process modeling.

1 INTRODUCTION

OFTWARE development process (software process) has

traditionally been modeled using the sequential, phased
waterfall process model. This is an over-simplified model
because it merely identifies the phases, and the documents
and reviews associated with each phase. Actually, a process
involves complexities resulting from multiple developers
performing activities concurrently to produce a set of re-
lated documents. Moreover, the highly iterative nature of
software process is not focused upon in this model. With
software processes becoming extremely complex, sophisti-
cated and nontraditional approaches are definitely needed
by the software industry.

Various approaches to model software processes have
been proposed. Each provides a formalism or language
with a precise syntax and semantics (see Section 5 for dis-
cussions on the approaches). One approach is process pro-
gramming language [24], [25] which represents a software
process in a programming language as a process program.
The process program can be automatically executed
(enacted) in a process-centered environment. This automa-
tion is expected to enforce development policies, to relieve
developers from tedious routine work, and consequently, to
reduce potential human errors. It should be noted though
that manual activities can only be assisted, rather than
automated, by the environment.

Most developers have been using one programming lan-
guage or another for quite some time. It thus appears natu-
ral for them to use this language approach. In regard to
modeling software processes in detail, it seems that lan-

 J.-Y. Chen is with the Department of Computer Science and Information
Engineering, National Chiao Tung University, Hsinchu, Taiwan.
E-mail: jychen@csie.nctu.edu.tw.

Manuscript received Oct. 5, 1995; revised Mar. 10, 1997.

Recommended for acceptance by D.E. Perry.

For information on obtaining reprints of this article, please send e-mail to:
transse@computer.org, and reference IEEECS Log Number S95092.

guage approach is better than graph formalism approach
such as Petri Net [28]. Moreover, programs in modern pro-
gramming languages are normally readable and thus un-
derstandable. Particularly, languages like Ada [5] can be
either programming-in-the-large languages that specify
module interface or programming-in-the-small languages
that specify module detail. They thus encourage developing
modular programs. All these facilitate using the process
programming language approach in the development, re-
view, refinement, enactment, and maintenance of compli-
cated software process models.

This research thus adopted Ada95 to design a software
process language called concurrent software process lan-
guage (CSPL). The associated CSPL process-centered envi-
ronment prototype (CSPL environment) is also thus devel-
oped [9], [10]. CSPL takes a unique and innovative ap-
proach in integrating the object-oriented Ada95-like syntax
(for its modeling power) with Unix shell semantics (for its
enactment capability) within a software process language.

This paper depicts the new CSPL developments. It is or-
ganized as follows. Section 2 depicts the objectives. Section
3 gives an overview. Section 4 covers the CSPL syntax and
semantics. Section 5 depicts related work. Finally, Section 6
draws the conclusions together. And a CSPL process pro-
gram for the IEEE Software Process Modeling Example
Problem is presented in Appendix A.

2 OBJECTIVES

The concurrent software process language (CSPL) has been
recently enhanced to meet the following objectives to: 1)
achieve an object-oriented language, 2) allow multiroles and
multiusers systems, and 3) provide unified object modeling.

2.1 Need for an Object-Oriented Language

Recently quite a few object-oriented programming languages
have emerged such as C++, Ada95, Java, etc. One important

0098-5589/97/$10.00 © 1997 IEEE

172 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997

benefit of object orientation is that it leads to constructing
well-structured complex systems comprised of classes [6].
Through class inheritance, programs are easier to reuse and
are more resilient to change. In the domain of software proc-
ess, because a software product (a document) can be easily
mapped to an object, identifying a class (a document type or
object type) appears to be straightforward.

Originally, CSPL is Ada83-like, which is not an object-
oriented language. Unlike C++ that adds new syntax such
as “class” to C [31], Ada95 simply extends the derived type
concept of Ada83 so that it becomes an object-oriented lan-
guage [3]. Similarly, CSPL is extended to be Ada95-like
with the object-oriented features.

Nonprocedural process languages are not object-
oriented. Neither are many procedural process languages.
In this regard CSPL is rather distinctive. Example 1 shows
the CSPL inheritance feature. In the example, object type
“design_type” is a derived type of its parent type
“doc_type”. That is, the former inherits attribute
“last_modified_time” of the latter and adds a new attribute
“descriptor” (see Section 4.1.3).

ExAMPLE 1. (Object Type Inheritance)

type doc_type is tagged
record
last_modified_time: time;
end record,;

type design_type is new doc_type with
record
descriptor: string;
end record;

2.2 Need for Multirole and Multiuser Systems

Under certain circumstances, one developer can assume
multiple roles to perform several kinds of work. This re-
duces the number of developers needed in a process. CSPL
provides a role unit (see Section 4.4.1) for that purpose. Ex-
ample 2 depicts this multirole feature. In the example, devel-
oper “bktseng” can assume an “analyst” role as “analyst2”
to analyze a requirement. He can also assume another
“designer” role as “designerl” to design the software.
EXAMPLE 2. (Multirole Feature)
role analyst is
analystl := “cywang”;
analyst2 := “bktseng”;
end;
role designer is
designerl := “bktseng”;
designer2 := “cywang”;
designer3 := “jychen”;
end;

Next, CSPL provides a work assignment statement (to be
described) to support the multiuser feature. The statement
assigns “manual work” (to be described) to a role, such as
“designer,” instead of actual developers. During process
enactment, the role is “instantiated” to multiple developers
of that role (e.g., three developers “bktseng,” “cywang,”
and “jychen” of role “designer” in Example 2). Work is as-
signed to those developers through the CSPL communica-
tion system.

The CSPL communication system supports the work as-
signment statement, communication-related statements (to
be described), etc. It is implemented as a client-server ar-
chitecture using SUNOS remote procedural calls. Due to
limited space, the system will be discussed elsewhere.

2.3 Need for Unified Object Modeling

A large software system consists of a large number of
documents (objects) and the relationships among those
documents easily become uncontrollable. Thus, objects and
their relationships should be properly modeled.

Object relationship often refers to object dependency re-
lationship. Fig. 1 shows object code “A” is produced by
compiling program module “B.” Here, “A” is said to be
dependent on “B.” CSPL uses the relation unit to model
such relationship. When a document is modified, a relation
unit triggers some activities on its dependent documents.

Program

Object code
module B A

dependent
on

Fig. 1. A “dependent on” relationship.

In addition to modeling object and object relationship,
process language needs to manage concurrent, long-
duration transaction on object. For example, multiple de-
velopers may need to work on a design document concur-
rently for several weeks. CSPL object management system
(OMS) uses a check-in/check-out model to handle this kind
of transaction. Briefly, when a developer checks-in an object
currently checked out by others, a new version of that ob-
ject should be created. If this is not the case, the current ver-
sion is simply overwritten. The created versions will be
merged through review later. Due to limited space, CSPL
OMS will not be discussed in detail in this paper.

One CSPL significance is that its object modeling capa-
bilities just mentioned are unified with the process lan-
guage. In other words, the CSPL object management system
is fully integrated with the process environment (see Sec-
tion 3.1).

3 OVERVIEW

To give the readers an overview of this paper, CSPL envi-
ronment architecture and the ideas behind using Unix shell
are, respectively, depicted below.

3.1 Environment Architecture

CSPL environment contains five components: 1) CSPL
compiler, 2) CSPL server, 3) CSPL clients, 4) object man-
agement system (OMS) server, and 5) OMS clients, as
sketched in Fig. 2.

In Fig. 2, CSPL compiler compiles a CSPL program to
generate C shell (Unix shell) scripts [1] which are executed
by CSPL server running Unix. Specifically, each Ada-like
program unit in the CSPL program (such as subprogram
and task) maps to one C shell script generated.

CHEN: CSPL: AN ADA95-LIKE, UNIX-BASED PROCESS ENVIRONMENT

CSPL
program
Developer Work assignment CSPL compiler
and user data C shell scripts
C,SPL : CSPL server
Thent Register object
object Query relationship relationships;
r Store process
OMS ~ OMS server oformation
client Query object

Fig. 2. CSPL environment architecture.

During process enactment, the CSPL server first registers
object relationships and stores process information (such as
interprocess communication) in the OMS server. Then, ac-
cording to program flow of the CSPL program, the CSPL
server assigns work to CSPL clients. Note that one client
corresponds to one developer. Also, the CSPL server can
query relationships from the OMS server and, based on the
object relationships, may trigger necessary actions.

When a developer needs to access an object, his or her
CSPL client will get the object by querying the OMS server
via his or her OMS client. User data such as on-line users
are also available to developers via CSPL clients.

Currently the CSPL server and the OMS server run on
Sun Sparc20 workstation. And each client (a CSPL client
and an OMS client) runs on a workstation with X windows.
Our laboratory plans to port a client to a Pentium PC run-
ning Unix.

3.2 Why CSPL Uses Unix Shell

Operating systems manage hardware resources such as
files, devices, etc. A striking similarity between the operat-
ing system and software engineering environment
(environment) is that both are resource managers. Envi-
ronment manages resources needed by software develop-
ment and maintenance, including human resources (e.g.,
developers), software objects and hardware resources.
Through the managerial supports, environment users need
not worry about the details in utilizing those resources.

Since hardware resources have long been managed by
operating systems, it is unnecessary for an environment to
handle hardware resources directly. Instead, an environ-
ment can, and should, utilize an operating system to man-
age hardware resources through an interface language such
as Unix shell. Furthermore, the entire environment can be
built on top of an operating system, again through the op-
erating system interface language. This relatively simple
strategy may lower the barrier to adoption of the process
environment. On the other hand, another Ada-like process
language APPL/A uses a different strategy. An APPL/A
program is first translated into a standard Ada program
and then processed by an Ada compiler. This results in the
difficulty of accessing run-time information such as run-
time stack [32].

In a sense, the concept of the operating system has been
extended to that of “operating environment” in this ap-
proach. This more or less reflects the trend of information

173

technology moving from expensive hardware to expensive
software development, and the consequent shift of man-
agement focus from hardware to software development.

In short, the CSPL environment is built on top of Unix
operating system. The relationship between CSPL and Unix
is illustrated in Fig. 3.

CSPL Environment
UNIX shellas ___\
the interfas
e interface N Operating
System

Fig. 3. Build CSPL environment on top of Unix.

4 CSPL SYNTAX AND SEMANTICS

Data, statements, and program units of CSPL are briefly
described in this section. To specify program control flow,
CSPL provides sequential statement, decision statement,
iterative statement, and so on, that are primarily adopted
from Ada83 and thus are not discussed. Rather, special
statements for software process are discussed, such as the
work assignment statement and communication-related
statements. Additionally, special program units are dis-
cussed, such as role unit, tool unit and relation unit. Mis-
cellaneous features, such as genetic unit and exception
handling, are also briefly covered.

4.1 Data

There are two kinds of data in CSPL: variable and object.
Variables are temporary data used in the flow control of
process execution. Objects represent documents that could
be intermediate or final software products, along with the
attributes associated with the documents. Note that objects
are persistent.

4.1.1 Variable

There are two types of variable: scalar variable and com-
posite variable. Predefined scalar types are provided such
as integer, real, char, Boolean, time, and event.

One type worthy of noting is event type. An event rep-
resents a particular circumstance in a software process.
Sometimes an event must be waited on before a process
can proceed. For example, only after a design document
has been approved can coding start. The approval of the
design can thus be regarded as an event declared as
“design_approved” given below (bold face denotes CSPL
keyword):

design_approved: event;

An event is essentially a Boolean variable with the value
“True” or “False.” The value of an event can be assigned
asynchronously by an inform statement (to be described).
An event can appear in places expecting Boolean expres-
sions. However, Boolean variables cannot be used in places
expecting events such as an inform statement.

CSPL provides enumeration types (also a scalar type) to
increase program readability. For example:

type Button_Status is (Down, Up);
defines an enumeration type “Button_Status.”

174 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997

Two composite types are offered: array and record. For
instance, array type “List” is defined as follows:

type List is array (1..10) of Integer;

Also, string type is a predefined array type in CSPL.

A record type contains several components of different
types. For example, record type “Workload_of _Day” is de-
fined as follows:

type Workload_of _Day is

record
Day: Day_type;
Workload: Integer;
end record;

Variables can be used to monitor progress of processes.
For example, a counter in a loop can record the iteration
number of an activity. A Boolean variable can represent the
status of a process. Also, an event variable can be set by
another task using an inform statement to notify occurrence
of the event.

Because a process language focuses on documents
(objects), the variables are used for auxiliary purposes. It
seems unnecessary to provide complex user-defined vari-
able types like ordinary programming languages do. Thus,
CSPL only provides several simple variable types. The
variables declared in a program are managed by the object
management system (OMS) server through which the CSPL
server can access the contents of the variables.

4.1.2 Object

As just mentioned, a CSPL object represents a document
and the associated attributes. Although the semantics of
variable and object are different, objects can be typed
(called “object type™) just like variables. All the object types
are directly or indirectly derived from a type called
“DocType” supplied by the object management system. For
example, an object type called “test_case” with no attributes
can be defined as follows:

type test_case is new DocType with null record;
An object of this type can then be declared as follows:
test_doc : test_case;

Most of the time an object has several attributes to assist
developers in managing the object. Example 3 depicts ob-
ject type “design_type” with three attributes: “last_modify_
time,” “modifier,” and “description.”

ExAMPLE 3. (Defines an Object Type with Attributes)

type design_type is

record
last_modify_time: time;
modifier: string;
description: string := “This describes the
document.”;
end record;

Like Ada, CSPL provides keyword “constant” to control
access to attributes. For instance:

Buttonl : constant Button_status := Up;

declares a constant “Button1” of type “Button_Status” which
is initialized as “Up.” A constant cannot be modified by a
developer after its initialization.

Note that objects’ attributes are variables, which are per-
sistent and are managed by the object management system.
They can be manipulated using operators just like ordinary
variables. For example, value “Kane” can be assigned to
attribute “modifier” of object “design_doc” as follows:

design_doc’modifier := “Kane”;

Note that an object can be a composite object. Fig. 4 de-
picts that composite object A is composed of two objects B
and C, each corresponding to a file. Again, each object has
its associated attribute values. Example 4 in the next sub-
section will depict composite object definition.

Object B

attribute
values
including
a file

Object A

attribute
values

Object C

attribute
values
including
a file

Fig. 4. Composite object.

4.1.3 Inheritance

Inheritance is very important in object-oriented program-
ming languages. Ada83 cannot be regarded as object-
oriented because it does not support inheritance. That is,
Ada83 does not allow creating a new type that inherits an
existing type. On the other hand, by marking a record type
as tagged, Ada95 allows adding new components to an
existing type to get a new type [3]. Ada95 thus supports
inheritance.

In CSPL, users can define a composite object type that
contains other object types as its attributes. In Example 4,
type “SystemCharter” inherits the system-supplied type
“DocType.” Similarly, type “RequirementDoc” inherits
“DocType.” Moreover, type “RequirementDoc” contains an
attribute of type “SystemCharter” just defined. That is,
composite object type “RequirementDoc” is composed of
type “SystemCharter” and other attributes. Note that tools
cannot be inherited like this. Tools are separately defined in
tool unit (to be described).

EXAMPLE 4. (Composite Object Type “RequirementDoc’)

type SystemCharter is new DocType with record
statement: TextType;

end record;

type RequirementDoc is new DocType with record
problemStatement: TextType;

systemCharter: SystemCharter;
visitingTime: time;
end record,;

CHEN: CSPL: AN ADA95-LIKE, UNIX-BASED PROCESS ENVIRONMENT

4.2 Work Assignment Statement

Originally CSPL supported only single-user usage. Multi-
user (multideveloper) requirements were not addressed. To
remedy that, a new statement called “work assignment
statement” is designed to assign work to multiple develop-
ers. There are three elements specified in this statement:
1) object manipulated, 2) tool used, and 3) role who ma-
nipulates object. For example, the following work assign-
ment statement specifies a requirement document (an ob-
ject) is edited by one analyst (a role) using an editor (a tool):

1 analyst edit req_doc using editor;

There are two kinds of work: manual work and auto-
matic work. Manual work performed by a developer al-
ways requires creativity and experience of the human de-
veloper. For example, editing of the design document or
source code is done by the developer, which cannot be
done by computers automatically. On the other hand,
automatic work such as compiling source code can be exe-
cuted by computer without role (assumed by human
developer).

Because manual activity (for manual work) and auto-
matic activity (for automatic work) have different semantics
over work assignment, two separate work assignment
statements are designed for each:

For manual activity,

num_of_worker role_name activity_name objectl

[referring to object2 {objectN}] using tool_name
[resulted in variable];

For automatic activity,

activity_name objectl [to get object2] using tool_name
[resulted in variable];

A manual activity is shown below where one designer
designs a design document using an editor while referring
to a requirement document:

1 designer edit design_doc referring to req_doc using editor;

A manual activity works on only one object, but it can refer
to multiple objects. When multiple objects need work, mul-
tiple work assignment statements should be used.

An automatic activity does not specify a role in the work
assignment statement. Thus, the work is not assigned to a
client. Instead, it is assigned to the server. Two automatic
activities are shown below: 1) a compiler is used to compile
source code to get an executable unit and 2) a metrics tool is
used to measure the quality of a design document.

1) compile source to get exec_unit using compiler;
2) measure design_doc using metrics-tool,

Some work may be executed (performed) by multiple
developers, such as reviewing a design document. Under
this circumstance, a manager specifies the number of de-
velopers (seven or all, respectively, in the statements shown
below) for the work as:

7 reviewer review design_doc referring to reg_doc using
review_tool;

or

all reviewer review design_doc referring to req_doc using
review_tool;

175

When multiple developers are involved in a review, each
reviewer separately sees the same copy of an object. Those
reviewers then communicate with each other through the
user interface system to obtain a review result which can be
a consensus or majority vote. The semantics of the review
result is not defined here. After that, the work assignment
statement as a whole terminates.

If a work assignment produces some result, the result
can be specified in the work assignment statement. The
statement below shows that the review result is stored in
variable “result.”

all reviewer review design_doc referring to req_doc using
review_tool resulted in result;

Tools are managed by the user interface system of CSPL
environment. After the tool unit of a CSPL program is
compiled, a tool definition file is sent to the clients. When
manual work is assigned to a client, the user interface sys-
tem automatically checks the tool definition file to invoke
the proper tool. Currently a developer is allowed to modify
tool definition based on his or her preference through the
user interface system (see Section 4.4.2). The CSPL user in-
terface system will be discussed elsewhere.

For the sake of understandability, a work assignment
can be encapsulated in a procedure, and then in a package.
Example 5 shows a package that contains a work assign-
ment statement. In the example, package “design” consists
of object type “design” and an associated procedure
“modify”. The inform statement appearing in the procedure
“modify” will be described shortly. Event “design_modified”
in the inform statement is declared in the relation unit
“design_and_source” not shown here (see Appendix A for
the complete CSPL process program).

ExAMPLE 5. (A Package That Contains a Work Assignment
Statement)

package design is
type design_type is new DocType with record
descriptor : string;
end record,;
procedure modify(design_doc: in out design_type; req_doc:
in req_type);
end design;
package body design is
procedure modify(design_doc: in out design_type; req_doc:
in req_type) is
begin
1 designer edit design_doc referring to req_doc using
editor;
inform design_and_source to set design_modified;
end;
end design;

4.3 Communication-Related Statements

In CSPL, a task can issue an entry call for synchronous
communication or inform (set/reset) an event for asyn-
chronous communication. Normally the former is used to
synchronize or start other tasks, while the latter notifies
other tasks about the events. The scenario of a CSPL entry
call is illustrated in Example 6 where task “ ModifyDesign”
issues an entry call to task “ReviewDesign.” The semantics
of Ada rendezvous is preserved in CSPL. This is imple-
mented using the Unix named pipe [9], [18].

176 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997

EXAMPLE 6. (Task “ModifyDesign” Makes an Entry Call to Task
“ReviewDesign’)

“ModifyDesign”
task body ModifyDesign is

begin
-- modify the design document

<—ReviewDesign.start(design_doc, req_doc); -- rendezvous

end;
“ReviewDesign”

task body ReviewDesign is
begin
loop
‘> accept start(design_doc: in design_type;
req_doc: in reg_type) do
-- reset event “design_approved”
-- review the design document
-- if review is ok, set event “design_approved”
end;
end loop;
end;

“Inform” and “waitfor” statements are provided in
CSPL for asynchronous communication. An inform state-
ment sets (or resets) an event in another task. A “waitfor”
statement waits for the event to occur. When the event oc-
curs, the “waitfor” statement stops waiting and clears the
event. In Example 7, task “ModifyTestPlan” informs task
“ModifyUnitTestPackage” to set event “start”. Meanwhile,
task “ModifyUnitTestPackage” waits for the event to be set
before it can execute the following statements. The arrow in
Example 7 indicates this communication.

ExAMPLE 7. (Task “ModifyTestPlan’ informs task “Modify Unit
TestPackage)”

“ModifyTestPlan™
task body ModifyTestPlan is

begin
loop

testplan.modify(test_plan, design_doc);
< inform ModifyUnitTestPackage to set start;
end loop;
end;

“ModifyUnitTestPackage”

task body ModifyUnitTestPackage is
start : event;
begin
loop
“—> waitfor start;
testpac.modify (test_unit, test_plan);
inform TestUnit to set test_available;
end loop;
end;

Example 8 illustrates another asynchronous communica-
tion. After the design review is approved, task
“ReviewDesign” informs task “ModifyCode” to set event
“design_approved”. When the event is set to “True,” the
exit statement of task “ModifyCode” causes the process to
jump out of the loop.

ExAMPLE 8. (Task “ReviewDesign” Informs Task “ModifyCode”
to Set an Event)

“ReviewDesign”

task body ReviewDesign is
begin
loop

-- reset event “design_approved*
-- review the design document
-- if the review is ok,
inform ModifyCode
to set design_approved,;
end loop;
end;

“ModifyCode”

task body ModifyCode is
design_approved: event; ...
begin
loop
loop
-- loop to modify and compile source
-- code while compilation is not ok

&

exit when design_approved = True;
end loop;
-- set event “code_available”
end loop;
end;

‘>

4.4 Program Unit

A program unit is regarded as a unit which can be sepa-
rately compiled. Incidentally, CSPL follows the Ada scope
and visibility rules. Several kinds of the Ada-like program
unit are supported by CSPL: 1) package unit which is used
to collect resources such as data type, data, or program
unit, 2) subprogram unit (procedure or function) which is a
set of statements and can be invoked by another program
unit, and 3) task unit which can be executed in parallel with
other task units. Normally task units are used to model
concurrent activities; while subprogram units to model se-
guential activities.

Furthermore, to support the multiuser and multirole
feature and the dependency relationship, three kinds of
program unit are designed: 1) role unit, 2) tool unit, and 3)
relation unit. They are, respectively, depicted below.

4.4.1 Role Unit

It is not a good idea for managers to randomly assign work
to developers without considering developers’ experiences.
“Role” provides an abstraction of the experiences. If a proc-
ess language uses a role feature in work assignment, the
feature will prevent process programmers from writing
programs that negligently assigns work to unsuitable de-
velopers. A role unit defines the mapping of a role to the
developers. Because a role can be assumed by multiple de-
velopers and a developer can also assume multiple roles,
the mapping from role to developer is “many to many.”
The syntax of role unit is:
role role_name is
user_variable := “user_name”;

{user_variable := “user_name”;}
end;

CHEN: CSPL: AN ADA95-LIKE, UNIX-BASED PROCESS ENVIRONMENT

The “user variable” shown above specifies abstract de-
veloper which maps to actual developer shown in
“user_name”. Role unit “designer” shown below specifies
actual developers “cywang” and “bktseng,” respectively,
map to abstract developers “designerl” and “designer2” of
“designer” role:

role designer is
designerl := “cywang”;
designer2 := “bktseng”;
end;

Since a role unit is a separate compilation unit, it can be
changed without affecting other program units. For in-
stance, when designers are changed (which is quite often in
a process) only the role unit, rather than the entire program,
needs recoding and recompilation. No relinking is needed
either.

Either abstract developer or role can be assigned work in
work assignment statement. For example, abstract devel-
oper “designerl” is assigned the work to edit object
“design_doc” in the statement below:

designerl edit design_doc referring to req_doc using editor;

In this case, role unit “designer” just depicted will be con-
sulted to map abstract developer “designerl” to actual de-
veloper “cywang.”

On the other hand, role “designer” is assigned the work
in the statement below:

1 designer edit design_doc referring to req_doc using editor;

In this case, there are two options to map a role to an
actual developer: one is to monitor the developers and
automatically assign the work to a developer who is under-
loaded, while the other is to prompt a message to the man-
ager and let him or her manually assign the work. The two
options are not features of the language. They are done
manually with the support of the user interface system.

4.4.2 Tool Unit

There are two kinds of tool. Manual tool is used in manual
activity which requires human intervention. Automatic
tool, on the other hand, is used in automatic activity. For
example, an editor is a manual tool; while a compiler is an
automatic tool.
The syntax of tool unit is:
tool tool_name is
tool_variable := “tool_name”;
{tool_variable := “tool_name”;}
end;

A tool unit that contains a manual tool “editor” and an
automatic tool “compiler” is depicted below where actual
tools “vi” and “gcc” are assigned to abstract tools “editor”
and “compiler,” respectively.

tool IEEE_Example is

editor := “vi”;
compiler := “gcc”;

end;

Changing tools is quite common in a process because
newer and more efficient tools may become available or
developers may have their preferred tools. When the tool is
changed (owing to abstract tool concept just mentioned),

177

only the tool unit, instead of the entire program, needs
modification. This improves program maintainability. Be-
sides, an abstract tool name is usually easier to understand
than an actual tool name. For example, “editor” (an abstract
tool) appears to be clearer than “vi” (an actual tool).

Manual tools are usually chosen according to develop-
ers’ preferences. For example, a developer might prefer
“emacs” editor to “vi” editor. Given the centrality of devel-
opers in software process, developers’ preferences have to
be taken into account. CSPL thus allows developers to
change their tools. For instance, a developer can change his
or her editor to “emacs” (the editor was originally assigned
“vi” in the tool unit shown above) through the user inter-
face system.

4.4.3 Relation Unit

An object usually produces one or more objects in an ac-
tivity. For example, the object code is produced from the
source code in a compilation activity, and a design docu-
ment is produced from a requirement specification in a de-
sign activity. The produced objects are thus dependent on
the original object. This is called dependency relationship.

Dependency relationships among object types form a
graph. Fig. 5 shows such a graph for the software process
modeling of IEEE Example (see Appendix A). Three de-
pendencies are identified in Fig.5. And each can be mod-
eled as a relation unit.

requirement
specification

ﬁpendent code)
of —

dependent
of
AN

Ktest case

d\ependent
of

Fig. 5. Object type dependencies.

The syntax of relation unit is:

relation relation_name is
object : object_type;
object : object_type;
upon modification_event do
statements;
end;
{upon modification_event do
statements;
end;}
end;

Example 9 defines the dependency relationship between
a requirement specification (“req_doc”) and a design
document (“design_doc”). Upon occurrence of event
“req_modified,” procedure “design.modify” is invoked to
modify the dependent design document (“design_doc™).
The dependency of design document upon requirement
document is thus implicitly specified. Note that event
“reqg_modified” needs no separate declaration for simplicity.

178 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997

ExXAMPLE 9. (A Relation Unit)
relation req_and_design is
req_doc: req_type;
design_doc: design_type;
upon req_modified do
design.modify(design_doc, req_doc);
end;
end;

Roughly speaking, a relation unit can be regarded as a
class with members (such as “(design_doc, req_doc)” in
Example 9) and with operations (such as insertion and de-
letion) predefined in the object management system. For
instance, relation unit “req_and_design” models the de-
pendency relationship of design documents on requirement
documents. A program segment below:

req_doc : req_type;
design_docl : design_type;
design_doc? : design_type;

req_and_design.insert(req_doc, design_docl);
req_and_design.insert(req_doc, design_doc2);

shows two insertions are made to this relation unit, proba-
bly because two design documents “design_docl” and
“design_doc2” are developed based on, and thus depend-
ent on, requirement document “req_doc.” After the inser-
tions, this relation unit (a class) contains the members
(req_doc, design_docl) and (req_doc, design_doc2). Note
that a relation unit defines the relationship between two
object types (e.g., design documents depend on require-
ment documents), while the members of this class (the re-
lation unit) define the relationship between two objects
(e.g., object “design_docl” depends on object “req_doc™).

4.5 Miscellaneous

Sometimes objects of different types are manipulated simi-
larly in an activity. CSPL thus provides a generic program
unit to avoid writing similar programs simply because of
different object types [9]. The CSPL generic unit and excep-
tion handling are similar to those in Ada. They are briefly
described below.

Example 10 depicts generic package “Inspection” is in-
stantiated, respectively, by two different object types
(“reg_type” and “design_type”) to obtain two packages—
“Requirement_Inspection” and “Design_Inspection.”
ExAMPLE 10. (A Generic Unit)
generic
type doc is private;
package INSPECTION is

procedure modify(d : in out doc);
end INSPECTION;

-- instantiate new packages
package REQUIREMENT _INSPECTION is new INSPECTION(req_type);
package DESIGN_INSPECTION is new INSPECTION(design_type);

CSPL allows process programmers to define their own
exceptions and the handlers [9]. Exceptions usually occur
due to abnormality in process enactment such as schedule
delay, developer replacement, and so on. Exception “time
out” (when the review time is up) is depicted in Example
11. It is raised by the raise statement in procedure
“Review.”

ExAaMPLE 11. (Exception Handling)

procedure Review is
timeout : exception;

begin
raise timeout;

exception
when timeout =>
output “Time out, start review now.”;
ReviewDesign.start(design_doc, req_doc);
end;

5 RELATED WORK

This section compares the related work with CSPL in this
diversified field. The process model, multiuser and multi-
role features, and object modeling of several environments
are thus compared.

5.1 Process Model

This section focuses on several aspects of process model:
form of expression, object, and activity.

5.1.1 Form of Expression

In process-centered environment, software process must be
modeled in some form. The forms of the existing environ-
ments are categorized as follows:

1) Regular Expression. Regular expression is used in
Hakoniwa to model software processes [20]. This
form appears clear and easy to recognize by comput-
ers. However, it is not very easy to read and under-
stand, compared with program languages.

2) Petri Net. Petri Net is used in Process Weaver [7]. Be-
cause it has high degree of parallelism, it is very suit-
able to model concurrent tasks in a process. Since
Petri Net is a graphical form, it is easy to read and
understand—if a Petri-Net is neither too large nor too
complicated. A state in a process is represented as a
place in Petri Net. Thus, it is easy to use Petri Net to
monitor the progress of software processes. However,
Petri Net is weak in the capability of describing object
models. For example, how can we describe which
product serves as the input or output of a transition?
Incidentally, Process Weaver uses another language
(i.e., co-shell) to solve this problem. FUNSOFT in
Kernel/2r is also Petri Net based [17].

3) Programming Language. One important advantage of
using programming language to model software proc-
ess is that a process in this form is relatively easier to
enact using computers. Diversified programming lan-
guage paradigms have been used. Examples are:

a) procedural languages, such as APPL/A [32], CSPL
[9], [10], MDL [8];

b) functional languages, such as HFSP [22];

c) rule-based languages, such as Merlin [29], Marvel [21];

d) goal-directed or planning languages, such as Inter-
mediate [26], [27], Grapple [19]; and

e) triggered languages, such as Adele-2 [4], EPOS [12].

CHEN: CSPL: AN ADA95-LIKE, UNIX-BASED PROCESS ENVIRONMENT

Each paradigm above exhibits some strengths, but also suf-
fers some weaknesses. Note that the languages cited above
may also represent other paradigms. The paradigms are
briefly compared below:

Procedural languages in a) appear to be the paradigm
that developers are most familiar with. Developers often
use this kind of language, such as C++, Ada and Java, to
develop a product. Therefore it is natural for the developers
to use a procedural language to develop a process program.
Howvever, the abstraction level of this paradigm is relatively
low.

Functional languages in b) such as HFSP applies top-
down functional decomposition to obtain an activity hierar-
chy. The hierarchy is very clear and easy-to-understand.
However, unless developers understand a software process
very well, it seems difficult to carry out such a decomposi-
tion without too much backtracking.

Rule-based languages in c) achieve a higher abstraction
level than that of procedural languages [30]. The latter
specifies exact control flow of the processing. The former,
on the other hand, specifies the form of results without re-
vealing the lower level procedural control flow knowledge.
This paradigm provides declarative meaning to a process.
However, if developers do not understand adequately
about the meaning of the process, it would be difficult for
them to construct a rule-based process program.

Let us take this one step further. Some rules about a
process can be constructed to serve as constraints or goals
for the process. This idea brings about the goal-based or
planning language in d), where mixed paradigms can be
observed. For example, Intermediate uses preconditions,
obligations, and postconditions to construct an “implicit,
internal locus of control” which is a partial ordering. Within
the constraint of that partial ordering, the developer is free
to control the execution at his or her will. Similarly, Grapple
uses some rules to build constraints. A recent language
Julia [34] provides rich semantics. For instance, a Julia
“step” specifies objects, resources (such as developer and
tool), substeps, step constraints, proactive control, reactive
control, preconditions, postconditions, and exception han-
dlers. These mixed-paradigm languages seem promising.
However, it is needed to strike the balance between lan-
guage theory and process practicality.

In e), triggered languages, a database transaction may
signal an event which triggers an activity. For instance, in
Adele-2 and EPOS, a transaction may set an event which
triggers an action (activity). That action may set another
event which in turn triggers another action, and so on. This
kind of language is good for object modeling, such as de-
pendency, version, and so on. However, it lacks a general
view of an activity model. Thus, complex process programs
appear extremely difficult to construct using this paradigm.

5.1.2 Object

“Object” in CSPL, “work object” in AD/Cycle [11], or
“document” in MDL [8] represents product that can be in-
put or output of activity. Many process-centered environ-
ments provide predefined object types. Some environments
allow users to define new types. For example, ALF [14] us-
ers can define new types as subtypes of existing types.

179

SLANG [2] allows users to define an object like a record.
Marvel users can define object types as classes in a
“strategy”. A strategy defines classes, tools and rules,
which is similar to a simple CSPL program. Furthermore,
EPOS provides a predefined class hierarchy called EPOS
types. Users can define new object types by inheriting the
attributes, procedures, and triggers from the hierarchy.
PLEIADES [36] uses a unique approach to construct object
types. It provides type constructors such as node, edge,
relation, relationship and sequence. Like APPL/A, PLEIA-
DES is a part of the Arcadia project. Various ways can be
used by APPL/A to generate relations such as using Triton
or PLEIADES [32].

CSPL adopts record type and derived type from Ada [5].
CSPL users can derive a new type based on an existing type.
Moreover, CSPL allows users to define a new object type
which is not based on a defined type. For example, if an ac-
tivity is to process a picture file, an object type for that can be
defined, provided that the tool for that type is specified.

5.1.3 Activity
Completing a process usually takes many activities. Some
issues of activity are: primitive activity, activity flow, and task
communication.

Primitive Activity. A primitive activity is an elementary
activity. It represents one abstraction such as editing source
code or compiling source code. In this paper it is simply
called an activity.

In a Petri Net based process model such as Process
Weaver, a primitive activity can be represented as a transi-
tion [7]. Because Petri Net cannot model the work to be
done in a transition, Process Weaver uses another co-shell
language to model that. In CSPL, a primitive activity is
modeled as a work assignment statement. CSPL need not
use another language as Process Weaver does.

Activity Flow. Activity flow relates to activity dynamics
of process such as execution sequence, concurrency, and
synchronization.

In Process Weaver, activity flow can be easily repre-
sented by Petri Net “procedure model.” In Hakoniwa [20],
it can be modeled by regular expression which, however, is
difficult to write and understand. In HFSP, activities in the
functional hierarchy can be concurrently executed—if there
is no data dependency between their attributes.

In rule-based languages such as Marvel and Merlin, pre-
conditions and postconditions of activities serve as the basis
for backward and forward reasoning. In triggered lan-
guages such as Adele-2, a database transaction may signal
an event, which then triggers an activity. That activity may
still signal another event that triggers another activity, etc.

Because Ada provides sequential statement, alternative
statement and iterative statement to control the flow, Ada-
like languages such as CSPL or APPL/A can directly de-
scribe activity flow.

Task Communication. Task is more abstract than activity.
It executes activities according to activity flow. For instance,
task “ModifyCode” executes activities of editing source
code, compiling it, etc.

180 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997

Because multiple tasks are concurrently executed in a
process, task communication is needed. Environments pro-
vide their distinctive methods to handle this. For instance,
Process Weaver provides two functions: “SendEvent” and
“WaitForEvent” to communicate with all external systems.
Hakoniwa provides message transfer and task control primi-
tives. Adele-2 provides events to trigger other tasks. CSPL
provides high level language statements for the purpose,
such as Ada rendezvous related statements and inform and
waitfor statements. That is, a CSPL task can either issue an
entry call for synchronized communication or inform another
task about an event for asynchronous communication.

5.2 MultiUser and MultiRole

Many environments support multiuser usage in which a
user is usually provided with an agenda for work assigned
to him or her. In Hakoniwa, each user has a “task organ-
izer” to control several “task drivers” which guide the user
to do his or her work [20]. Process Weaver provides an
agenda for each user [7]. When executing a “procedure,” a
“work assignment” is sent to an agenda. Because Process
Weaver’s agenda is shown in a window and a piece of
work is represented by an icon, users can easily know what
work they should do. In Merlin, a “working context” con-
sists of all objects a developer can manipulate. For each ob-
ject, all the available activities are shown on the screen. And
the developer can choose any one of the activities to exe-
cute. The relationships between objects are also shown [29].
In CSPL, a client is provided for each user, collecting the
assigned work during process enactment. A CSPL client
runs a windowed user interface system that provides an
agenda.

As mentioned earlier, one distinctive CSPL multiuser
feature is that the work assignment statement assigns work
to multiple developers of the same role. For instance, mul-
tiple reviewers can be assigned with a review using this
feature. Moreover, concurrent object access by multiple
developers is supported by the object management system.

Next, multirole feature is covered. In Kernel/2r, role is
defined in project management view [13]. It not only de-
fines mapping of role to developer, but also defines what
activities are performed by a role and what object can be
manipulated by an activity. In APDM [15], there are re-
sponsibility charts for similar purposes. APPL/A does not
seem to support multiuser and multirole feature at the
moment. In CSPL, role unit defines role mapping to the
developer. Besides, work assignment statement specifies
work and related role.

5.3 Object Modeling

Object dependency relationship is important because it fa-
cilitates automation of triggering the modification of de-
pendent objects when an object is modified. Both Marvel
[21] and Merlin [29] use rules to describe dependency rela-
tionship. Adele-2 [4] uses events instantiated on relations to
model the dependency. EPOS [12] provides several relation
types such as “DependOn” and “ImplementedBy” to model
the dependency. In APPL/A [32], dependency relationship
is represented by relation. The dependency specification in
relation defines how dependent objects are to be generated.

Also, the “trigger unit” can be used to handle such relation-
ship and to cause a transitive change. That is, if object C is
dependent on object B, and object B is dependent on object
A, when object A is modified, a modification on object B
will be triggered, which in turn trigger a modification on
object C. This is reactive control. On the other hand, proac-
tive control actively calls a modification procedure when
needed.

In process program, reactive control is intuitively ap-
pealing, but it can get complicated if used extensively, ac-
cording to APPL/A experiences [33]. Use of reactive and
proactive controls should thus be balanced. In Adele-2 [4],
events can be instantiated on: object or object relationship.
Their experience depicted the two types of instantiation
making it difficult to have a general view of control.

In managing object relationship, CSPL provides the re-
lation unit which defines dependency between two object
types and statements to be executed when modification
event is raised. Transitive change can be accomplished by
using multiple relation units.

ALF-based environment [14] uses a PCTE object man-
agement system (OMS). APPL/A ultilizes a relational data-
base management system Triton [16] as its OMS. CSPL de-
velops its OMS on top of the Unix file system. As men-
tioned earlier, a distinctive CSPL feature is that its object
modeling capabilities are unified with the CSPL process
environment.

6 CONCLUSIONS

It is concluded that CSPL process environment has pro-
vided facilities to support: 1) object orientation, 2) multirole
and multiuser, and 3) unified object modeling. Finally, a
CSPL program solving the Software Process Modeling Ex-
ample Problem is presented.

6.1 Object Orientation

CSPL originally adopted concepts from Ada83. Ada83 has
some capabilities which are normally associated with object
orientation [35]. However, Ada83 could not inherit a type.
Neither could the original CSPL. By using the tag of a
tagged type as discriminant, Ada95 can inherit a record
type. Adags is thus enhanced to be an object-oriented lan-
guage [3]. This enhancement technique is adopted by CSPL
to support inheritance feature. Therefore the current CSPL
is an object-oriented language.

6.2 Multirole and Multiuser

First, CSPL uses role unit to define the role that the devel-
oper can assume. Notice that a developer can appear in
multiple role units to assume multiple roles. This supports
multirole feature. Second, CSPL uses work assignment
statement to assign work to multiple developers of the
same role who are working concurrently. CSPL also pro-
vides communication-related statements to support both
synchronous and asynchronous communications among
developers. Moreover, concurrent object access is managed
by the object management system. These support multiuser
feature.

CHEN: CSPL: AN ADA95-LIKE, UNIX-BASED PROCESS ENVIRONMENT

6.3 Unified Object Modeling

Object modeling includes modeling object, object type, ob-
ject relationship, and so on. CSPL models object relation-
ship by using a relation unit which provides capability to
trigger activity on dependent objects when modification
event is raised. In addition, CSPL object management sys-
tem manages long transaction, version, access, and so on
that are not covered in this paper due to limited space. Of
particular significance is that CSPL object modeling capa-
bilities are unified with CSPL process environment.

To evaluate the CSPL environment, a CSPL program
solving the “Software Process Modeling Example Problem”
[23] is developed and enacted. In this example, there are six
tasks contained in main procedure “StartTasks”:

* “ModifyDesign”

¢ ”ReviewDesign”

¢ ”ModifyCode”

¢ "ModifyTestPlan”

¢ ”ModifyUnitTestPackage”
e TestUnit”.

An object type and the associated procedures to manipulate
the objects of that type are encapsulated in a package.
Seven packages are developed in this program. The pro-
gram size is about 250 lines of CSPL code (see Appendix
A).

APPENDIX A — CSPL PROCESS PROGRAM

A CSPL process program to solve the “IEEE Software Proc-
ess Modeling Example Problem” is developed. The main
procedure “StartTasks” starts six concurrent tasks de-
scribed below (see Fig. 6):

Task 1. Task “ModifyDesign” modifies a design docu-
ment. When the modification is finished or review time is
up, it makes an entry call to task “ReviewDesign” to review
the design document.

The two tasks will be synchronized. Readers will notice
that all other task communications in this example are
asynchronous where a task just passes some information to
another task - no need to synchronize the tasks.

Task 2. When the document is approved in the review,
task “ReviewDesign” sends an event to inform task
“ModifyCode.”

Task 3. Task “ModifyCode” modifies a source code ac-
cording to whether the desigh document is approved or not.

Task 4. When the modification of code is finished and
the design document is approved, task “ModifyCode” in-
forms task “TestUnit” that the code is available.

Task 5. Task “ModifyTestPlan” modifies test plan and
sends an event to start task “ModifyUnitTestPackage”
which then modifies unit test package and sends an event
to inform “TestUnit” that the test unit is available.

Task 6. Task “TestUnit” tests the source code when the
events “code_available” and “test_available” are true. If the
testing fails, task “TestUnit” restarts “ModifyCode” and
“ModifyUnitTestPackage” until testing is successful.

The CSPL process program follows.

181

StartTasks

ModifyDesign ModifyCode ModifyTestPlan
) B !
; : ModifyUnitTest
ReviewDesign TestUnit | . | Packglge

———= Entrycall

inform a task an event

Fig. 6. The activity model for the IEEE example problem.

tool IEEE is
compiler := “gcc”;
end;

role analyst is
analystl := “cywang”;
analyst2 := “bktseng”;
end;

role designer is
designerl := “cywang”;
designer2 := “bktseng”;
end;

role reviewer is
reviewerl := “cywang”;
reviewer2 := “bktseng”;
end;

role coder is
coderl ;= “cywang”;
coder?2 := “bktseng”;
end;

role tester is
testerl := “cywang”;
tester2 := “bktseng”;
end;

package IEEE is
review_time : time;

package requirement is
type req_type is new DocType with null record,;
procedure modify(req_doc: in out req_type);
end requirement;

package design is
type design_type is new DocType with

record

descriptor : string;

end record,;

procedure modify(design_doc: in out design_type;
req_doc: in req_type);

function reviewing(design_doc: in design_type;
reg_doc: in req_type)

182 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997

return Boolean;
end design;

package source_code is
type source_type is new design_type with null record,;
procedure modify(source: in out source_type;
design_doc: in design_type);
end source_code;

package exec is
type exec_type is new DocType with null record;
function compilation(exec_unit: in out exec_type;
source: in source_type)
return Boolean;
end exec;

package testplan is
type test_plan_type is new design_type with null record;
procedure modify(test_plan: in out test_plan_type;
design_doc: in design_type);
end testplan;

package testpac is
type test_unit_type is new design_type with null record,;
procedure modify(test_unit: in out test_unit_type;
test_plan: in test_plan_type);
function testing(exec_unit: in exec_type;
test_unit: in test_unit_type)
return Boolean;
end test_pac;

end IEEE;

package body IEEE is
relation req_and_design is
req_doc : req_type;
design_doc : design_type;
upon req_modified do
design.modify(design_doc, req_doc);
end;
end;

relation design_and_source is
design_doc : design_type;
source : source_type;
upon design_modified do
source_code.modify(source, design_doc);
end;
end;

package body requirement is
procedure modify(req_doc: in out req_type) is
begin
1 analyst edit req_doc using editor;
inform req_and_design to set req_modified;
end,;
end requirement;

package body design is
procedure modify(design_doc: in out design_type;
reg_doc: in req_type) is
current_time : time;
timeout : exception;
begin
current_time := GetCurTime;
if current_time > review_time
then raise timeout;
end if;
1 designer edit design_doc referring to req_doc using editor;
inform design_and_source to set design_modified;
end,;

function reviewing(design_doc: in design_type;
reg_doc: in req_type) return Boolean is
result : Boolean;
begin
all reviewer review design_doc referring to req_doc
using review_tool resulted in result;
return result;
end;
end design;

package body source_code is
procedure modify(source: in out source_type;
design_doc: in design_type) is
begin
1 coder edit source referring to design_doc using editor;
end;
end source_code;

package body exec is
function compilation(exec_unit: in out exec_type;
source: in source_type) return Boolean is
result : Boolean;
begin
compile source to get exec_unit using compiler resulted in
result;
return result;
end;
end exec;

package body testplan is
procedure modify(test_plan: in out test_plan_type;
design_doc: in design_type) is
begin
1 tester edit test_plan referring to design_doc using editor;
end;
end testplan;

package body testpac is
procedure modify(test_unit: in out test_unit_type;
test_plan: in test_plan_type) is
begin
1 tester edit test_unit referring to test_plan using editor;
end;
function testing(exec_unit: in exec_type;
test_unit: in test_unit_type) return Boolean is
result : Boolean;
begin
all tester test exec_unit referring to test_unit
using test_tool resulted in result;
return result;
end;
end testpac;

end IEEE;

with IEEE;

procedure StartTasks is
req_doc : req_type := “requirement.doc”;
design_doc : design_type := “design.doc”;
source : source_type := “example.c”;
test_plan : test_plan_type := “test.plan”;
test_unit : test_unit_type := “test.unit”;
exec_unit : exec_type = “a.out”;
reviewok : Boolean;
compileok : Boolean;
testok : Boolean;
task ModifyDesign;
task ReviewDesign is

entry start(design_doc: in design_type; req_doc: in req_type);

end;

CHEN: CSPL: AN ADA95-LIKE, UNIX-BASED PROCESS ENVIRONMENT

task ModifyCode;

task ModifyTestPlan;

task ModifyUnitTestPackage;
task TestUnit;

task body ModifyDesign is
start : event;
procedure modify_and_reviewing(design_doc: in out design_type;
reg_doc: in req_type) is
begin
design.modify(design_doc, req_doc);
ReviewDesign.start(design_doc, req_doc);
exception
when timeout =>
output “Time out, starting review now”;
ReviewDesign.start(design_doc, req_doc);
end;
begin
loop
waitfor start;
reviewok := False;
while reviewok = False
loop
modify_and_reviewing(design_doc, req_doc);
end loop;
end loop;
end;

task body ReviewDesign is
begin
loop
accept start(design_doc: in design_type; req_doc: in req_type)
do
inform ModifyCode to reset design_approved,;
reviewok := design.reviewing(design_doc, req_doc);
if reviewok = True then
inform ModifyCode to set design_approved,;
end if;
end;
end loop;
end;

task body ModifyCode is
design_approved : event;
start : event;
begin
loop
waitfor start;
compileok := False;
loop
while compileok = False
loop
source_code.modify(source, design_doc);
compileok := exec.compilation(exec_unit, source);
end loop;
exit when design_approved = True;
compileok := False;
end loop;
inform TestUnit to set code_available;
end loop;
end;

task body ModifyTestPlan is
start : event;
begin
loop
waitfor start;
testplan.modify(test_plan, design_doc);
inform ModifyUnitTestPackage to set start;
end loop;

183

end;

task body ModifyUnitTestPackage is
start : event;
begin
loop
waitfor start;
testpac.modify(test_unit, test_plan);
inform TestUnit to set test_available;
end loop;
end;

task body TestUnit is
code_available : event;
test_available : event;
begin
loop
waitfor code_available and test_available;
testok := testpac.testing(exec_unit, test_unit);
if testok = False then
inform ModifyCode to set start;
inform ModifyUnitTestPackage to set start;
else
exit;
end if;
end loop;
end,;

begin
requirement.modify(req_doc);
review_time := SetTime(19,3,15,95);
inform ModifyDesign to set start;
inform ModifyCode to set start;
inform ModifyTestPlan to set start;
waitfor testok;
reg_and_design.insert(req_doc, design_doc);
design_and_source.insert(design_doc, source);
end;

ACKNOWLEDGMENTS

The author wishes to thank Dewayne E. Perry, Stanley Sut-
ton, Wuu Yang, and the anonymous reviewers for their valu-
able comments. This research cannot be completed without
dedicated work by the following members of the Software
Engineering Environment laboratory: B.K. Tzeng, C.M. Tu,
Y.M. Chen, C.Y. Wang, B.J. Hsu, Y.L. Liu, and C.P. Lai. Spe-
cial thanks to Pei Hsia for his encouragement over the years.
This research was sponsored by the National Science Coun-
cil, Taiwan, ROC, under Grant No. NSC 85-2213-E-009-058.

REFERENCES

[1] G. Anderson and P. Anderson, The UNIX C Shell Field Guide.
Englewood Cliffs, N.J.: Prentice Hall, 1986.

[2] S. Bandinelli, A. Fuggetta, and S. Grigolli, “Process Modeling In-
The-Large with SLANG,” Proc. Second Int’l Conf. Software Process,
Berlin, pp. 75-83, Feb. 1993.

[3] J. Barnes, Introducing Ada 9X. Private Communication. June 1994.

[4] N. Belkhatir and W. L. Melo, “Supporting Software Development
Process in Adele 2,” The Computer J., vol. 37, no. 2, pp. 621-628,
1994.

[5] G. Booch and D. Bryan, Software Engineering with Ada, 2nd edi-
tion. Benjamin Cummings, 1994.

[6] G. Booch, Object-Oriented Analysis and Design with Applications,
2nd edition. Benjamin Cummings, pp. 77-79, 1994.

[71 M. Bourdon, Process Weaver: Process Modeling Experience Report.
France: Cap, Gemini Innovation, 1992.

184

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
(31]

(32]

(33]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997

JY. Chen and P. Hsia, “MDL (Methodology Definition Lan-
guage): A Language for Defining and Automating Software De-
velopment Process,” J. Computing Language, vol. 17, no. 3, pp. 199-
211, July 1992.

JY. Chen and C.M. Tu, “An Ada-Like Software Process Lan-
guage,” J. Systems Software, vol. 27, no. 1, pp. 17-25, Oct. 1994.

J.Y. Chen and C.M. Tu, “CSPL: A Process-Centred Environment,”
Information and Software Technology, vol. 36, no. 1, pp. 3-10, Jan.
1994.

G. Chroust, H. Goldmann, and O. Gschwandtner, “The Role of
Work Management in Application Development,” IBM Systems J,
vol. 29, no. 2, pp. 189-207, 1990.

R. Conradi, M. Hagaseth, J-O Larsen, M. Nguyen, B. Munch,
P. Westby, W. Zhu, M. Letizia, and C. Liu, “Object-Oriented and
Cooperative Process Modeling in EPOS,” Software Process Model-
ing and Technology, A. Finkelstein, J. Kramer, and B.A. Nuseibeh,
eds., Advanced Software Development Series. Research Studies Press
Ltd. (John Wiley), pp. 33-70, 1994.

W. Deiters, “Support for Interworking in Kernel/2r,” ESF Semi-
nar, Berlin, Nov. 1992.

J.C. Derniame, C. Godart, V. Gruhn, and J. Lonchamp, “Process
Centered IPSEs in ALF,” Proc. 15th Int’l Workshop Computer-Aided
Software Eng., Montreal, pp. 179-190, July 1992.

D.W. Drew, “Developing Formal Software Process Definitions,”
Proc. Conf. Software Maintenance, Montreal, pp. 12-20, 1993.

D. Heimbigner, “Experience with an Object Manager for a Proc-
ess-Centered Environment,” Proc. 18th VLDB Conf., Vancouver,
pp. 585-595, Aug. 1992.

B. Holtkamp and H. Weber, “Kernel/2r-A Software Infrastruc-
ture for Building Distributed Applications,” Proc. Fourth Int’l
Conf. Future Trends in Distributed Computing Systems, Lisboa, Sept.
1993.

R.N. Horspool, The Berkeley UNIX Environment. Prentice Hall,
1992.

K.E. Huff, “Probing Limits to Automation: Towards Deeper Proc-
ess Models,” Proc. Fourth Int’l Software Process Workshop, New
York, pp. 79-81, 1988.

H. lida, K. Mimura, K. Inoue, and K. Torii, “Hakoniwa: Monitor
and Navigation System for Cooperative Development Based on
Activity Sequence Model,” Proc. Second Int’l Conf. Software Process,
pp. 64-74, Feb. 1993.

G.E. Kaiser and N.S. Barghouti, “Database Support for Knowl-
edge-Based Engineering Environments,” IEEE Expert, vol. 3, no.
2, pp. 18-32, 1988.

T. Katayama, “A Hierarchical and Functional Approach to Soft-
ware Process Description,” Proc. Fourth Int’l Software Process
Workshop, NewYork, pp. 87-92, 1989.

M. Kellner et al., “ISPW-6 Software Process Example,” Proc. First
Int’l Conf. Software Process, Redondo Beach, Calif., pp. 176-186,
1991.

J. Lonchamp, “A Structured Conceptual and Terminological
Framework for Software Process Engineering,” Proc. Second Int’l
Conf. Software Process, Berlin, pp. 41-53, 1993.

L.J. Osterweil, “Software Processes are Software Too,” Proc. Ninth
Int’l Conf. Software Eng., pp. 2-13, 1987.

D.E. Perry, “Policy-Directed Coordination and Cooperation,”
Proc. Seventh Software Process Workshop, Yountville, Calif., pp. 111-
113, Oct. 1991.

D.E. Perry, “Enactment Control in Interact/Intermediate,” Proc.
Third European Workshop on Software Process, EWSPT 94, Villard de
Lans, France, Feb. 1994. Brian C. Warboys, ed., Lecture Notes in
Computer Science, 772, pp. 107-113. Springer-Verlag, 1994.

J.L. Peterson, Petri Net Theory and the Modeling of Systems. Engle-
wood Cliffs, N.J.;, Prentice Hall, 1981.

B. Peuschel and W. Schafer, “Concepts and Implementation of
Rule-Based Process Engine,” Proc. 14th Int’l Conf. Software Eng.,
pp. 262-279, 1992.

R.W. Sebesta, Concepts of Programming Languages, 2nd edition.
Benjamin Cummings, pp. 491-493, 1993.

B. Stroustrup, The C++ Programming Language, 2nd edition, pp.
143-179. Addison-Wesley, 1993.

S.M. Sutton Jr., D. Heimbigner, and L.J. Osterweil, “APPL/A: A
Language for Software Process Programming,” ACM Trans. Soft-
ware Eng. and Methodology, vol. 4, no. 3, pp. 221-286, 1995.

S.M. Sutton, private communication, May 1995.

[34] S.M. Sutton and L.J. Osterweil, “The Design of a Next-Generation
Process Language,” Technical Report 96-030, Dept. of Computer
Science, Univ. of Massachusetts at Amherst, 1996.

[35] S.T. Taft, “Ada 9X: From Abstraction-Oriented to Object-
Oriented,” Proc. OOPSLA ‘93, pp. 127-136, 1993.

[36] P. Tarr and L.A. Clarke, “PLEIADES: An Object Management
System for Software Engineering Environments,” Proc. ACM
SIGSOFT ‘93 Symp., Dec. 1993.

Jen-Yen Jason Chen received a BS degree in
industrial engineering from Tung Hai University,
Taiwan; an MS degree in industrial engineer-
ing, an MS degree in computer science, and a
PhD degree in computer science and engi-
neering from the University of Texas at Arling-
ton. He was with Gearhart Industry Rresearch
= Laboratory, Texas, in 1981 and 1982. From
\?“ 1983 to 1986 he p{irticipat(_ed in the research on
J\ L software engineering environment at the Uni-
versity of Texas. He has been on the faculty at
National Chiao Tung University, Taiwan, since 1987 and is now a
professor in the Department of Computer Science and Information
Engineering. Dr. Chen served as an advisor to the Institute for Infor-
mation Industry during 1994-1996. He is currently a visiting professor
at the University of New South Wales, Australia.

His research interests center on software process modeling, proc-
ess-centered environment (process environment), and object-oriented
analysis and design method. In particular, he is interested in software
process improvements through process environment supports. Dr.
Chen won Top Scholar in an assessment of system and software en-
gineering scholars in 1995. The assessment was based on cumula-
tive publication frequency in six leading journals of that field in the
world. He is a member of the IEEE.

