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a b s t r a c t

Motivated by the pooling designs over the incidence matrices of matchings with various
sizes of the complete graph K2n considered by Ngo and Du [Ngo and Du, Discrete Math.
243 (2003) 167–170], two families of pooling designs over the incidence matrices of
t-cliques (resp. strongly t-cliques) with various sizes of the Johnson graph J(n, t) (resp.
the Grassmann graph Jq(n, t)) are considered. Their performances as pooling designs are
better than those given by Ngo and Du. Moreover, pooling designs associated with other
special distance-regular graphs are also considered.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The basic problem of group testing is to identify the set of defective items in a large population of items. Supposewe have
n items to be tested and that there are at most d defective items among them. Each test (or pool) is (or contains) a subset
of items. We assume that some testing mechanism exists which, if applied to an arbitrary subset of the population, gives a
negative outcome if the subset contains no positive and a positive outcome otherwise. Objectives of group testing vary from
minimizing the number of tests, limiting number of pools, limiting pool sizes, to tolerating a few errors. It is conceivable
that these objectives are often contradictory, thus testing strategies are application-dependent. A group testing algorithm
is non-adaptive if all tests must be specified without knowing the outcomes of other tests. A non-adaptive testing algorithm
is useful in many areas such as DNA library screening. (See [3]).
A group testing algorithm is error tolerant if it can detect some errors in test outcomes. A mathematical model of error-

tolerance designs is a de-disjunct matrix. A binarymatrixM is said to be de-disjunct if, given any d+1 columns ofM with one
designated, there are e+1 rowswith a 1 in the designated column and 0 in each of the other d columns. A de-disjunctmatrix
with e = 0 is said to be d-disjunct. Macula [12] proposed a novel way of constructing d-disjunctmatrices by the containment
relation of subsets in a finite set, while in [13] he constructed de-disjunct matrices for certain values of e. Ngo and Du [14]
extended the construction to some geometric structures, such as simplicial complexes, and some graph properties, such
as matchings. Huang and Weng [9] generalized the constructions to pooling spaces, while they proved that a d2e-disjunct
matrix is e-error-correcting in [10].
Du and Ngo [15] pointed out that the subject of pooling designs is a young and interesting field with deep connections to

coding theory and design theory, and they strongly believe that the theory of association schemes – in particular distance
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regular graphs – should play an important role in improving pooling designs. For more information about pooling designs,
see [2,6–8].
Let Γ = (X, R) be a connected graph of diameter D, and let ∂(x, y) denote the distance of the vertices x and y. Γ is said to

be distance-regular whenever for all non-negative integers h, i, j, and for any two vertices x and y at distance h, the number

phi,j = |{z ∈ X | ∂(x, z) = i, ∂(z, y) = j}|

is independent of the choice of x and y. For more information, the reader may consult [1].
For any positive integer n we shall use [n] to denote the set {1, 2, . . . , n}. Also, given any set X and any vector space V

over a finite field Fq,
(
X
k

)
denotes the collection of all k-subsets of X , and [ Vk ] denotes the collection of all k-subspaces of V .

The Johnson graph J(n, t) is defined on
(
[n]
t

)
such that two vertices A and B are adjacent if and only if |A ∩ B| = t − 1.

Similarly, the Grassmann graph Jq(n, t) is defined on
[

Fnq
t

]
such that two vertices A and B are adjacent if and only if

dim(A ∩ B) = t − 1. Johnson graphs and Grassmann graphs are two families of well-known distance-regular graphs.
Let Γ = (X, R) be a connected graph. An l-subset ∆ of X is said to be a t-clique of Γ with size l if any two distinct

vertices in∆ are at distance t . 1-clique is the clique in traditional use. A strongly t-clique of Jq(n, t)with size l is a subfamily

{A1, A2, . . . , Al} ⊆
[

Fnq
t

]
such that dim(A1 + A2 + · · · + Al) = tl. Note that an l-matching on K2n is a 2-clique of J(n, 2)with

size l. Hence a t-clique of J(n, t)with size l is a generalization of an l-matching.
A class of pooling designs over the incidence matrices of matchings with various sizes of the complete graph K2n is

considered by Ngo and Du [14]. In this paper, we try to generalize Ngo and Du’s construction. The rest of the article is
organized as follows. In Section 2, we review some results on pooling designs over Johnson graphs and Grassmann graphs,
and then compute one important parameter for these pooling designs. (See Theorems 2.9 and 2.10). In Section 3, with an
interpretation of matchings as 2-cliques of the Johnson graph J(n, 2), the pooling designs by Ngo and Du are generalized to
the incidence matrices of t-cliques with various sizes of the Johnson graph J(n, t) and strongly t-cliques with various sizes
of the Grassmann graph Jq(n, t), respectively. We show that our pooling designs have the same capability of error-detecting
and error-correcting as Ngo and Du’s. However, the test-to-item ratio of ours is much smaller. In Section 4, we construct
pooling designs associated with some special distance-regular graphs.

2. Disjunctness over Johnson graphs and Grassmann graphs

For a binary matrixM of order N× T , let B(D) denote the Boolean sum of those columns indexed by elements of D ⊆ [T ],
and let dH(B(D), B(D′)) denote the Hamming distance between B(D) and B(D′) whenever D and D′ are two distinct subsets
of [T ].
Let

es = min
|D|=|D′|=s

dH(B(D), B(D′)).

The larger the parameter es, the better its capacity of error correcting.
In this section, we first review some results on pooling designs over Johnson graphs and Grassmann graphs, and then

compute the parameter es for those se-disjunct matrices.

2.1. Some known results

D’yachkov et al. [5] proposed the concept of fully se-disjunct matrices. An se-disjunct matrix is fully se-disjunct if it is not
de
′

-disjunct whenever d > s or e′ > e. D’yachkov et al. [4] gave the lower bounds of es for a fully se-disjunct matrix.

Proposition 2.1 ([4, Lemma 3.4]). Let M be a fully se-disjunct matrix. Then es ≥ 2(e+ 1).

Macula [12] constructed d-disjunct matrices using the containment relation in a structure. D’ yachkov et al. [5] discussed
the error-correcting property of Macula’s construction.

Definition 2.1 ([12]). For positive integers d < k < n, let J(n, d, k) be the binary matrix with row-indexed (resp. column-
indexed) by

(
[n]
d

) (
resp.

(
[n]
k

))
such thatM(A, B) = 1 if and only if A ⊆ B and 0 otherwise.

Theorem 2.2 ([5, Proposition 2]). Suppose 1 ≤ s ≤ d < k < n and e = e(s) =
(
k−s
k−d

)
− 1. Then J(n, d, k) is fully se-disjunct.

Ngo and Du [14] gave a q-analogue of Macula’s construction. The error-correcting property of Ngo and Du’s construction
was discussed in [5,4], respectively.
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Definition 2.2 ([14]). For positive integers d < k < n, let Jq(n, d, k) be the binary matrix with row-indexed (resp. column-
indexed) by

[
Fnq
d

] (
resp.

[
Fnq
k

])
such thatM(A, B) = 1 if A ⊆ B and 0 otherwise.

Let Fq be the finite field with q elements, where q is a prime power. Let Fnq be the n-dimensional vector space over Fq. For
a positive integer n, the Gaussian binomial coefficients with basis q is defined by

[n
i

]
q
=


i−1∏
j=0

n− j
i− j

, if q = 1,

i−1∏
j=0

qn − qj

qi − qj
, if q 6= 1.

Naturally,
[ n
0

]
q = 1 and

[ n
i

]
q = 0 if i > n. In the case q = 1, we shall write

( n
i

)
instead of

[ n
i

]
1 for convenience.

In the rest of this paper, for positive integers d < k and k− d ≥ 2r , we always assume that

pq(r) =


[
k
d

]
q
−

[
k−r
d

]
q[

k−r
d

]
q
−

[
k−2r
d

]
q


and

eq(s, r) =
[
k
d

]
q
−

[
k− r
d

]
q
− (s− 1)

([
k− r
d

]
q
−

[
k− 2r
d

]
q

)
− 1.

Theorem 2.3 ([5, Proposition 4],[4, Theorem 4.4 and Corollary 4.5]). Let q be a prime power. Suppose k−d ≥ 2 and e = eq(s, 1).

(i) If s ∈ [pq(1)], then Jq(n, d, k) is se-disjunct.
(ii) If s ∈ [q+ 1], then Jq(n, d, k) is fully se-disjunct.

Based on J(n, d, k), Macula [13] proposed another family of se-disjunct matrices. D’yachkov et al. [5] also discussed their
error-correcting property.

Definition 2.3. (i) A familyK ⊆
(
[n]
k

)
is called an {r, r + 1, . . . , k}-clique of J(n, k) if |K ∩ K ′| ≤ k− r for any two distinct

K , K ′ ∈ K .
(ii) A family F ⊆

[
Fnq
k

]
is called an {r, r + 1, . . . , k}-clique of Jq(n, k) if dim(K ∩ K ′) ≤ k− r for any two distinct K , K ′ ∈ F .

Definition 2.4 ([13]). For positive integers d < k < n, letK ⊆
(
[n]
k

)
. Suppose J(n, d,K) denotes the binary matrix with

row-indexed (resp. column-indexed) by
(
[n]
d

)
(resp.K) such thatM(A, B) = 1 if A ⊆ B and 0 otherwise.

Theorem 2.4 ([5, Proposition 3], [13, Theorem 2]). Let K be an {r, r + 1, . . . , k}-clique of J(n, k).

(i) Let d ≥ 1 with 1+ r
k−d ≤ r and αd = min(r

d, k− d). Then J(n, d,K) is dαd−1-disjunct.
(ii) J(n, d,K) is se-disjunct where s ∈ [p1(r)] and e = e1(s, r).

As the q-analogue of J(n, d,K), we propose the following definition.

Definition 2.5. For positive integers d < k < n, let F ⊆
[

Fnq
k

]
. Suppose Jq(n, d,F ) denotes the binary matrix with row-

indexed (resp. column-indexed) by
[

Fnq
d

]
(resp. F ) such thatM(A, B) = 1 if A ⊆ B and 0 otherwise.

Similar to Theorem 2.4, we have the following result.

Corollary 2.5. Let F be an {r, r+1, . . . , k}-clique of Jq(n, k). Then Jq(n, d,F ) is se-disjunct where s ∈ [pq(r)] and e = eq(s, r).

Let X = {x = (x1, x2, . . . , xn) | xi ∈ F}where F = {0, 1, . . . , q}, and let Pi denote the set of elements with weight i of X .
For positive integers 1 ≤ d ≤ k ≤ n, define H(n, q, d, k) to be the binary matrix with row-indexed (resp. column-indexed)
by Pd (resp. Pk) such thatM(x, y) = 1 if xi = 0 or xi = yi and xi 6= 0.
D’yachkov et al. [5] proposed the above matrix and discussed its disjunctness.

Theorem 2.6 ([5]). For 1 ≤ s ≤ d ≤ k ≤ n, H(n, q, d, k) is fully se-disjunct, where e =
(
k−s
k−d

)
− 1.
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Let V be the vector space of dimension n + r over Fq, and let W be a fixed r-subspace of V . Let Pi = {A | A ∈[
V
i

]
and A ∩W = 0}. For positive integers 1 ≤ d ≤ k ≤ n, define Bq(n, r, d, k) to be the binary matrix with row-indexed

(resp. column-indexed) by Pd (resp. Pk) such thatM(A, B) = 1 if A ⊆ B.
Huang and Weng [9] proved that Bq(n, r, d, k) is a de-disjunct matrix for some e. Similar to Theorem 2.3, we may obtain

the following results.

Theorem 2.7. Let q be a prime power. Suppose k− d ≥ 2 and e = eq(s, 1).

(i) If s ∈ [pq(1)], then Bq(n, r, d, k) is se-disjunct.
(ii) If s ∈ [q+ 1], then Bq(n, r, d, k) is fully se-disjunct.

2.2. Parameter es for error tolerance

The complement Mc of a binary matrix M is the matrix that results when one interchanges the 0’s and 1’s in M . LetK
be any subset of

(
[n]
k

)
. Macula [13] considered the matrix J∗(n, d,K) as that which results by row augmenting the matrix

J(n, d,K)with Jc(n, 1,K). He claimed that e1 ≥ 4 for J∗(n, d,K). Hwang [11] gave a proof.

Theorem 2.8 ([11, Theorem 2]). Given J∗(n, d,K) with k− d ≥ 3. Then e1 ≥ 4.

In the rest of this subsection, we shall compute the parameter es for J(n, d, k) and Jq(n, d, k), respectively. We begin with
an example.

Example 2.1. Given a matrix J(n, d, k)with 1 ≤ d < k < n. For s ∈ [d], let

D0 = {̂1, 2̂, . . . , ŝ− 1, k̂+ 1} and D′0 = {̂1, 2̂, . . . , ŝ− 1, k̂}

where î = [k+ 1] − {i} and i ∈ [k+ 1]. Then∣∣∣∣{R|R ∈ ( [k]d
)
, R 6⊆ 1̂, 2̂, . . . , ŝ− 1, k̂

}∣∣∣∣ = ( k− sk− d

)
.

By the symmetry, dH(B(D0), B(D′0)) = 2
(
k−s
k−d

)
.

Theorem 2.9. Given a matrix J(n, d, k) with 1 ≤ s ≤ d < k < n. Then es = 2
(
k−s
k−d

)
.

Proof. The upper bound for es is derived from Example 2.1. By Theorem 2.2 and Proposition 2.1, it is also a lower bound for
es. Hence the desired result follows. �

Similar to the case for Johnson graphs, we consider the following example. �

Example 2.2. Given a matrix Jq(n, k, d) with k − d ≥ 2. For each i ∈ [k + 1], let ei be the row vector of V whose i-th
coordinate is 1 and all other coordinates are 0. Suppose Fq = {a1, a2, . . . , aq} and s ≤ q+ 1.
For i ∈ [s+ 1], let

D0 = {C1, . . . , Cs−1, Cs} and D′0 = {C1, . . . , Cs−1, Cs+1},

where

Cs = 〈e1, e2, . . . , ek〉, Cs+1 = 〈e2, e3, . . . , ek, ek+1〉, Ci = 〈e1 + aie2, e3, . . . , ek, ek+1〉.

By the principle of inclusion and exclusion,∣∣∣∣{R|R ∈ [Csd
]
, R 6⊆ C1, . . . , Cs−1, Cs+1

}∣∣∣∣ = [ kd
]
q
−

( s
1

) [k− 1
d

]
q
+

[
k− 2
d

]
q

s∑
j=2

(−1)j
(
s
j

)
= eq(s, 1)+ 1.

By the symmetry, dH(B(D0), B(D′0)) = 2eq(s, 1)+ 2.

Theorem 2.10. Given a matrix Jq(n, d, k) with k− d ≥ 2. If s ∈ [q+ 1], then es = 2eq(s, 1)+ 2.

Proof. The upper bound for es is derived from Example 2.2. By Theorem 2.3 and Proposition 2.1, it is also a lower bound.
Therefore the desired result follows. �
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3. Disjunctness over matchings on K2m and its extensions

For positive integers d < k ≤ m, let M be a binary matrix with row-indexed (resp. column-indexed) by d-matchings
(resp. k-matchings) of K2m such that M(A, B) = 1 if A ⊆ B and 0 otherwise. This matrix is denoted by M(2m, d, k). In [14],
Ngo and Du proposed the matrix and discussed its disjunctness.

Theorem 3.1 ([14, Theorem 11,Corollary 12]). Let 1 ≤ d < k ≤ m. Then

(i) M(2m, d, k) is a d-disjunct matrix.
(ii) M(2m, d,m) is d-error-detecting and bd/2c-error-correcting.
(iii) Moreover, if the number of positives is known to be exactly d, then M(2m, d,m) is (2d + 1)-error-detecting and d-error-

correcting.

With an interpretation of matchings as 2-cliques of Johnson graph J(n, 2), we shall generalize Ngo and Du’s designs to
the incidence matrices of t-cliques with various sizes of the Johnson graph J(n, t) and strongly t-cliques with various sizes
of the Grassmann graph Jq(n, t), respectively. We show that our pooling designs have the same capability of error-detecting
and error-correcting as Ngo and Du’s. However, the test-to-item ratio of ours is much smaller.

Definition 3.1. Given positive integers d < k and kt ≤ n.

(i) Let J(n, t, d, k) be the binarymatrix with row-indexed (resp. column-indexed) by t-cliques with size d (resp. k) of J(n, t)
such thatM(A, B) = 1 if A ⊆ B and 0 otherwise.

(ii) Let Jq(n, t, d, k) be the binary matrix with row-indexed (resp. column-indexed) by strongly t-cliques with size d (resp.
k) of Jq(n, t) such thatM(A, B) = 1 if A ⊆ B and 0 otherwise.

Since J(2m, 2, d, k) = M(m, d, k), J(n, t, d, k) is a generalization ofM(m, d, k).

Lemma 3.2. Let W be a given k-subspace of Fnq . Then the number of d-subspaces of Fnq intersecting triviallywithW is
[
n−k
d

]
q
qdk.

Proof. Let D = {A | A ∈
[

Fnq
d

]
, A ∩W = 0}. Counting the set {(v1, v2, . . . , vd)| vi 6∈ 〈W , v1, v2, . . . , vi−1〉, i ∈ [d]} in two

ways, we have

(qn − qk)(qn − qk+1) · · · (qn − qk+d−1) = |D| · (qd − 1)(qd − q) · · · (qd − qd−1).

Hence |D| =
[
n−k
d

]
q
qdk as required. �

Lemma 3.3. (i) The number of t-cliques of J(n, t) with size l is

u(n, t, l) =
(n
tl

)
(tl)!/(t!)ll!. (1)

(ii) The number of strongly t-cliques of Jq(n, t) with size l is

uq(n, t, l) =
[n
t

]
q

[
n− t
t

]
q
· · ·

[
n− (l− 1)t

t

]
q
·
qt
2 l(l−1)/2

l!
. (2)

Proof. (i) Since every tl-subset of [n] forms (tl)!
(t!)l l!

many t-cliques of J(n, t)with size l, (1) holds.

(ii) By Definition 2.3, uq(n, t, l) is the number of {A1, A2, . . . , Al} ⊆
[

Fnq
t

]
satisfying dim(A1 + A2 + · · · + Al) = tl. Let

N(n, t, l) be the number of ordered tuples (A1, A2, . . . , Al) of t-subspaces of Fnq such that dim(A1 + A2 + · · · Al) = tl. Then
uq(n, t, l) = N(n,t,l)

l! . Hence, if we want to get uq(n, t, l), it suffices to compute N(n, t, l). There are
[ n
t

]
q ways to choose A1,

then
[ n−t
t

]
q q
t2 ways to choose A2 by Lemma 3.2 and so on. It follows that

N(n, t, l) =
[n
t

]
q

[
n− t
t

]
q
qt·t

[
n− 2t
t

]
q
q2t·t · · ·

[
n− (l− 1)t

t

]
q
q(l−1)t·t .

Hence (2) holds. �

Theorem 3.4. Let 1 ≤ s ≤ d < k and kt ≤ n. Then J(n, t, d, k) is an se-disjunct matrix of order N × T with row weight
u(n− td, t, k− d) and column weight

(
k
d

)
, where (N, T ) = (u(n, t, d), u(n, t, k)) and e =

(
k−s
k−d

)
− 1.
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Proof. By Lemma 3.3, J(n, t, d, k) is an N × T matrix with row weight u(n− td, t, k− d) and column weight
(
k
d

)
.

Let C0, C1, . . . , Cs be any s+1 distinct columns of J(n, t, d, k). For each i ∈ [s], there exists Pi ∈ C0 \Ci. Let E = {Pi|i ∈ [s]}.
Then |E| ≤ s and E ⊆ C0 but E 6⊆ Ci for each i ∈ [s]. If |E| = j, the number of d-subsets of C0 containing E is

(
k−j
k−d

)
. Since(

k−j
k−d

)
≥

(
k−s
k−d

)
whenever j ≤ s, the number of t-cliques with size d contained in C0 but not contained in Ci for each i ∈ [s]

is at least
(
k−s
k−d

)
. �

Corollary 3.5. Let 1 ≤ s ≤ d < k and (k+1)t ≤ n. Then J(n, t, d, k) is fully se-disjunct with e =
(
k−s
k−d

)
−1 and es = 2

(
k−s
k−d

)
.

Proof. In order to prove that J(n, t, d, k) is fully se-disjunct, we only need to show that the maximum size of E is obtained
in Theorem 3.4. Since (k+ 1)t ≤ n, there exists a t-clique T = {A1, A2, . . . , Ak+1}with size k+ 1. Let C0 = T − {Ak+1} and
Ci = T − {Ai} for each i ∈ [k]. Then |E| = |{Ai | i ∈ [s]}| = s. Similar to Theorem 2.9, it is routine to compute es. �

Similar results hold for Jq(n, t, d, k) too, and their proofs will be omitted.

Theorem 3.6. Let 1 ≤ s ≤ d < k and kt ≤ n. Then the matrix Jq(n, t, d, k) is an se-disjunct matrix of order N × T with row
weight uq(n− td, t, k− d) and column weight

(
k
d

)
, where

(N, T ) = (uq(n, t, d), uq(n, t, k)) and e =
(
k− s
k− d

)
− 1.

Corollary 3.7. Let 1 ≤ s ≤ d < k and (k+1)t ≤ n. Then Jq(n, t, d, k) is fully se-disjunct with e =
(
k−s
k−d

)
−1 and es = 2

(
k−s
k−d

)
.

Remarks. (i) By zigzag arguments similar to Theorem 3.1 (ii), J(tn, t, d, n) is d-error-detecting and bd/2c error-correcting.
(ii) The test-to-item ratio of J(tm, t, d, k) (resp. Jq(tm, t, d, k)) is much less than that ofM(m, d, k) (resp. J(tm, t, d, k)).
The following theorem tells us how to choose d and k such that the test-to-item ratio for J(tm, t, d, k) (resp. Jq(tm, t, d, k))

is minimized.

Theorem 3.8. For l goes from 1 to m ≥ 3,

(i) u(tm, t, l) is unimodal and get its peak when bl1c ≤ l ≤ bl2cwhere l1, l2 satisfying l1+ t
√
l1 + 1 = m, l2+

t+ t
√
l2+1−1
t = m.

(ii) uq(tm, t, l) is increasing and get its maximum at l = m.

Proof. (i) Suppose f (l) = u(tm,t,l+1)
u(tm,t,l) . Then f (l) is a decreasing number series while l goes from 1 to m − 1. Since f (1) > 1

and f (m− 1) = 1
m < 1, u(tm, t, l) is unimodal. Note that

f (l) =
u(tm, t, l+ 1)
u(tm, t, l)

=
tm− tl

t t
√
l+ 1

·
tm− tl− 1

(t − 1) t
√
l+ 1

· · ·
tm− tl− t + 1

t√l+ 1
.

Let ui = tm−tl−i
(t−i) t

√
l+1
. Then (u0)t ≤ f (l) ≤ (ut−1)t . If u0 = 1, then l + t√l+ 1 = m; if ut−1 = 1, then l + t+ t

√
l+1−1
t = m. The

desired results follow.
(ii) Suppose g(l) = uq(tm,t,l+1)

uq(tm,t,l)
. Then

g(l) =
(qtm − qtl) · · · (qtm−t+1 − qtl)
(qt − 1) · · · (q− 1)(l+ 1)

.

It follows that that g(l) is decreasing while l goes from 1 tom−1. Since g(1) > 1 and g(m−1) > 1, uq(tm, t, l) is increasing
while l goes from 1 tom, and achieve the maximum value at l = m. �

4. Disjunctness over other distance-regular graphs

In this section, we shall give two constructions of pooling designs associated with antipodal distance-regular graphs and
distance-regular graphs of order (r, t), respectively. Since the results are similar to those in Section 3, we shall omit all the
proofs in this section.
A distance-regular graph Γ = (X, R) of diameter D ≥ 2 is said to be antipodal, if ∂(x, y) = ∂(x, z) = D and y 6= z implies

∂(y, z) = D. Let kD = p0D,D. Then the number of maximal D-clique of Γ is
|X |
kD+1

. Since any two distinct maximal D-cliques

have no common vertices, the number of D-clique with size l of Γ is |X |kD+1
·

(
kD+1
l

)
.
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Table 1
The parameters of se-disjunct matrices.

Name Tests Items Ratio (test to item) s e Remarks

J(n, d, k)
( n
d

) ( n
k

)
(n−k)!k!
(n−d)!d! s ∈ [d]

(
k−s
k−d

)
− 1 Theorem 2.2

Jq(n, d, k)
[ n
d

]
q

[ n
k

]
q

(qk−1)···(qd+1−1)
(qn−k−1)···(qn−d+1−1)

s ∈ [pq(1)] eq(s, 1) Theorem 2.3

J(n, d,K)
( n
d

)
|K|

( nd )
|K|

s ∈ [p1(r)] e1(s, r) Theorem 2.4

Jq(n, d,F )
[ n
d

]
q |F |

[ nd ]q
|F |

s ∈ [pq(r)] eq(s, r) Corollary 2.5

H(n, q, d, k)
( n
d

)
qd

( n
k

)
qk (n−k)!k!qd

(n−d)!d!qk
s ∈ [d]

(
k−s
k−d

)
− 1 Theorem 2.6

Bq(n, r, d, k)
[ n
d

]
q q
dr

[ n
k

]
q q
kr (qk−1)···(qd+1−1)qdr

(qn−k−1)···(qn−d+1−1)qdk
s ∈ [pq(1)] eq(s, 1) Theorem 2.7

M(2m, d, k) (2d)!
2dd!
·

(
2m
2d

)
(2k)!
2kk!
·

(
2m
2k

)
(2m−2k)!k!
(2m−2d)!d! 2

k−d s ∈ [d]
(
k−s
k−d

)
− 1 Theorem 3.1

J(n, t, d, k) (td)!
(t!)dd!

·
( n
td

)
(tk)!
(t!)kk!

·
( n
tk

)
(n−tk)!k!
(n−td)!d! (t!)

k−d s ∈ [d]
(
k−s
k−d

)
− 1 Theorem 3.4

Jq(n, t, d, k) uq(n, t, d) uq(n, t, k)
qt(d−k)(k+d−1)/2k![

n−dt
t

]
q
···

[
n−(k−1)t

t

]
q
d!

s ∈ [d]
(
k−s
k−d

)
− 1 Theorem 3.6

A(n, d, k) n
kD+1
·

(
kD+1
d

)
n

kD+1
·

(
kD+1
k

)
(kD+1−k)!k!
(kD+1−d)!d!

s ∈ [d]
(
k−s
k−d

)
− 1 Theorem 4.1

B(r, t; d, k) n(t+1)
r+1 ·

(
r+1
d

)
n(t+1)
r+1 ·

(
r+1
k

)
(r+1−k)!k!
(r+1−r)!d! s ∈ [d]

(
k−s
k−d

)
− 1 Theorem 4.2

A distance-regular graph Γ = (X, R) is said to be of order (r, t) if, for each vertex x ∈ X , the induced subgraph
on Γ (x) is a disjoint union of t + 1 cliques with size r . Then each maximal clique is of size r + 1, and each vertex is
contained in t + 1 maximal cliques. Denote the set of all maximal cliques by C. By computing the number of the set
{(x, C) | x ∈ X, C ∈ C, x ∈ C} in two ways, the number of maximal cliques of Γ is n(t+1)r+1 ; consequently the number of

cliques with size l is
(
r+1
l

)
·
n(t+1)
r+1 .

Let Γ be an antipodal distance-regular graph of diameter Dwith n vertices. For positive integers 1 < d < k < kD+ 1, let
M be the binary matrix whose row (resp. column) indexed by the D-cliques of Γ with size d (resp. k) such thatM(A, B) = 1
if A ⊆ B and 0 otherwise. This matrix is denoted by A(n, d, k).

Theorem 4.1. Let 1 ≤ s ≤ d < k < kD + 1. Then A(n, d, k) is a fully se-disjunct matrix of order N × T with row weight(
kD+1−d
k−d

)
and column weight

(
k
d

)
, where

(N, T ) =
(

n
kD + 1

·

(
kD + 1
d

)
,
n

kD + 1
·

(
kD + 1
k

))
, e =

(
k− s
k− d

)
− 1.

Moreover, es = 2
(
k−s
k−d

)
.

Let Γ be a distance-regular graph of order (r, t). For positive integers 1 < d < k < r + 1, let M be the binary matrix
whose row (resp. column) indexed by the cliques of Γ with size d (resp. k) such thatM(A, B) = 1 if A ⊆ B and 0 otherwise.
This matrix is denoted by B(r, t; d, k).

Theorem 4.2. Let 1 ≤ s ≤ d < k < r + 1. Then B(r, t; d, k) is a fully se-disjunct matrix of order N × T with row weight(
r+1−d
k−d

)
and column weight

(
k
d

)
, where

(N, T ) =
(
n(t + 1)
r + 1

·

(
r + 1
d

)
,
n(t + 1)
r + 1

·

(
r + 1
k

))
, e =

(
k− s
k− d

)
− 1.

Moreover, es = 2
(
k−s
k−d

)
.
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