

國國國國 立立立立 交交交交 通通通通 大大大大 學學學學

電機與控制工程學系電機與控制工程學系電機與控制工程學系電機與控制工程學系

博博博博 士士士士 論論論論 文文文文

高效能之管線式傅立葉轉換處理器之設計與實現

Design and Implementation of High-Effective

Pipelined Processors for Discrete-Time Fourier

Transform Applications

 研研研研 究究究究 生生生生：：：：余余余余 遠遠遠遠 渠渠渠渠

 指導教授指導教授指導教授指導教授：：：：林林林林 進進進進 燈燈燈燈

中華民國九中華民國九中華民國九中華民國九十十十十七七七七年年年年五五五五月月月月

 2

高效能之管線式傅立葉轉換處理器之設計與實現

Design and Implementation of High-Effective

Pipelined Processors for Discrete-Time Fourier

Transform Applications

研 究 生：余 遠 渠 Student: Yuan-Chu Yu

指導教授：林 進 燈 Advisor: Chin-Teng Lin

國立交通大學

電機與控制工程學系

博士論文

A Dissertation

Submitted to Department of Electrical and Control Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Doctor of Philosophy

In
Electrical and Control Engineering

May 2008
Hsinchu, Taiwan, Republic of China

中華民國九十七年五月

 i

中文摘要中文摘要中文摘要中文摘要

本篇論文針對傅立葉轉換，設計其高效能之管線式處理器。論文以四種不同之即時

應用為範例來提出其對應之高效能設計，其包括：雙聲多頻偵測器在高通道密度之

VoP 應用、多輸入多輸出之正交多頻的無線區域網路、多輸入點之長快速傅立葉轉

換運算在手機之數位影像傳波系統應用、以及快速傅立葉正(反)轉換/二維數位餘弦

轉換在下代手機之多媒體應用。針對這四種明顯不同之應用，本論文提出了六種特

定之硬體導向設計，以達到最高效能之管線式處理器架構，其評估之指標包括: 單

位時間輸出量、計算延遲時間、運算複雜度、硬體成本與硬體使用之利用率。在雙

聲多頻偵測器之應用上，本論文採用：精簡式輸入序列架構、分散式記憶體以及柴

比雪夫多項式為基準之改良式遞迴式轉換器，來達到低計算週期、高能量利用率之

優點。所架構之單聲多頻偵測器單核心，可在相同之運算速度及運算時間內，達到

雙倍之資料運算量。對於 2×2 以及 4×4 多輸入多輸出之正交多頻的無線區域網路，

本論文提出兩種高效能之快速傅立葉正(反)轉換處理器：積數 2/8 之多回授路徑架

構(R28MDF)與積數 2/8 之多延遲整流路徑架構(R28MDC)。依據精簡式之基數 8 快速

傅立葉轉換單元(R8-FFT)，配合先寫後讀(MAW)之技巧，此兩架構達到了 100%之蝴

蝶器利用率，同時更在單位時間內達到高輸出量已滿足 2×2 以及 4×4 多輸入多輸出

之正交多頻之無線區域網路需求。針對多輸入點之長快速傅立葉轉換運算應用上，

本論文提出兩個新式架構：基數 4
2
單一迴授路徑架構與基數 4

3
單一迴授路徑架構，

其以較少之基數 4 理論來達到高基數 16 與基數 64 之低運算複雜度效能。在跟其他

數個已存在之管線式處理器比較後，可證明本論文所提出之架構，以最少之硬體成

本達到最高之硬體使用率，因此達到了高效能之應用需求。最後根據基數 4
2
單一迴

授路徑架構，配合區段移位暫存器與翻轉移位暫存器架構，架構了一”三模處理器”

來支援 256 點之快速傅立葉正(反)轉換運算與二維數位餘弦轉換運算。同樣地，在

跟其他數個現存之管線式處理器比較後，可證明本論文所提出之架構，以最少之硬

體成本達到最高之硬體使用率，因此達到了高效能之應用需求。在本論中六個處理

器皆以用 TSMC 0.13µm CMOS 製程完成實現與驗證，根據實現結果與嚴謹之比較，我

們可證明本文所提出之 RDFT、R28MDF/R28MDC、R4
2
SDF/ R4

3
SDF 與三模處理器，在

雙聲多頻偵測器、多輸入多輸出之正交多頻的無線區域網路、多輸入點之長快速傅

立葉轉換運算、下代手機之多媒體應用上皆達到高處理效能之優點。

 ii

Design and Implementation of High-Effective Pipelined
Processors for Discrete-Time Fourier Transform Applications

Student：Yuan-Chu Yu Advisor：Chin-Teng Lin

Department of Electrical and Control Engineering
National Chiao-Tung University

ABSTRACT

 In this thesis, the design and implementation of effective pipeline processors for

Fourier transform are presented. Four different real-time applications are introduced,

which includes dual tone multi-frequency (DTMF) detector in the high channel density

voice over packet (VoP) application, multiple-input multiple-output orthogonal frequency

division multiplexing (MIMO-OFDM) wireless LAN (WLAN) system, long-length based

FFT/IFFT computations in digital video broadcasting－handheld (DVB-T) standard and

FFT/IFFT/2D-DCT computations in next generation mobile multimedia applications.

According to these four standards, six specific hardware-orientated designs for most

effective pipeline processors have been proposed in terms of throughput, computation

latency, computation complexity, hardware cost and hardware utilization.

For the DTMF standards, one low-computation cycle and power-efficient recursive

DFT/IDFT processor adopting a hybrid of input strength reduction, the Chebyshev

polynomial, and register-splitting schemes has been proposed. Appling this novel

low-computation cycle architecture, we could double the throughput rate and the channel

density without increasing the operating frequency for the DTMF detector in the high

channel density VoP application. Two effective FFT/IFFT processors, namely adix-2/8

multiple-path delay feedback (R28MDF) based and raidx-2/8 multiple-path delay

commutator (R28MDC) based FFT/IFFT processors for the 2×2 and 4×4 MIMO-OFDM

WLAN systems, respectively. By applying the retrenched 8-point FFT (R8-FFT) unit

combined with the proposed multiplication-after-write (MAW) method, the R28MDF and

R28MDC architectures resulted in 100% butterfly utilization and an appropriate

throughput rate with few hardware resources for the 2×2 and 4×4 MIMO-OFDM

applications, respectively. For the long-length based FFT/IFFT computations, two novel

radix-42 single-path delay feedback (R42SDF) design and radix-43 single-path delay

feedback (R43SDF) design with the low computational complexities of the radix-16 and

radix-64 algorithms and the low hardware requirement of the radix-4 algorithm achieve

 iii

the smallest hardware cost and the highest hardware utilization among the tested

architectures and thus has the highest efficiency. Base on the effective R42SDF

architecture with the segment shift register (SSR) and overturn shift register (OSR)

structure, the proposed triple-mode processor not only supports both 256-point FFT/IFFT

and 8×8 2-D DCT computations, but also has the smallest hardware requirement and

largest hardware utilization among the tested architectures for the FFT/IFFT computation,

and thus has the highest cost efficiency.

In this thesis, six processors all implemented under TSMC 0.13µm CMOS process.

According to the comprehensive comparisons and implementation results, we could

demonstrate that the proposed RDFT, R28MDF/R28MDC, R42SDF/ R43SDF and

Triple-Mode designs achieve the high effective advantages for DTMF, MIMO-OFDM

WLAN, DVB-T and next-generation applications.

 iv

致謝致謝致謝致謝
 本論文的整個研究過程，需要感謝的人實在太多了，無論是碩士班的學弟還是博

士班的同學與學長們，對於我都給予我相當多的支持與鼓勵，讓我在博士班的時期

能不斷地精進。

 最感謝當然是指導教授 林進燈博士的悉心指導，在研究的方向總是給我最正確

的方向與建議，儘管指導教授再忙碌，也從不望給予我鼓勵與指導，且老師也給我

相當大的彈性，讓我能學習如何面對及解決問題的正確態度與方法。另外要感謝 邱

創乾教授千里迢迢來擔任我的口試委員召集人，教授們的建議與指導，更讓本論文

的內容更加充實與完整。

 其次是要感謝交通大學資訊工程系的 范倫達教授，在我的研究內容與方向上給

我相當多的建議與幫助，並在我博士班時期遇到的所有困難與低潮時，都給予最大

的協助與體諒。在這段時間和我共同度過許許多多難忘的回憶。同時也感謝 義隆電

子股份有限公司的 顏國隆副總的賞識與補助，讓我可在上班的閒暇之餘，完成如此

艱鉅的博士班求學過程。

 最後最要感謝的是默默支持我的老婆，以及母親、弟弟與女兒給予我精神及物質

上的一切支援，也感謝其他親朋好友的關心與鼓勵。你們的關心與支持，才是使我

保持研究的動力與精神來源。

 謹以本論文獻給我的家人及所有關心我的師長與朋友們。

 v

Contents

Abstract in Chinese……………………………………………………………………...i

Abstract in English……………………………………………………………………...iii

Acknowledgements in Chinese……………………………………………………….....v

Contents…………………………………………………………………….…………….vi

List of Figures………………………………………………………….………………...x

List of Tables...………………………………………………………….………………xiv

1 Introduction……………………………………………………………………… ...1

1.1 Motivation……………………………………………………………………………2

1.2 Objectives………….………………………………………………………………...4

1.3 Contributions…………………………………………………………………………9

1.4 Organization……….……………………………………………………………...12

2 Literature Review…………………………………………………………………...14

2.1 The Goertzel Algorithm...………………………………………………………....14

2.1.1 The Recursive DFT Algorithm……………………………………………15

2.1.2 The Recursive DFT Architecture……………………………….…………..16

2.2 The Review of FFT Algorithm……………………………………………………...18

2.2.1 Radix-2 DIF FFT Algorithm………………………………………………19

2.2.2 Radix-4 DIF FFT Algorithm………………………………….…………..20

2.2.3 Radix-8 DIF FFT Algorithm………………………………………………23

2.2.4 Radix-2/4 DIF FFT Algorithm……………………………….…..………..24

2.2.5 Radix-2/8 DIF FFT Algorithm……………………………………….……26

2.2.6 Radix-22 DIF FFT Algorithm……………………………….…..…………..27

2.2.7 Radix-23 DIF FFT Algorithm…………………………………….…………28

2.3 The Review of Pipeline FFT Architecture………………….……………………...30

2.4 The MIMO-FFT Architecture……………………………………………………...31

3 he Low-Computation Cycle and Power-Efficient Recursive DFT/IDFT Design….34

3.1 New Recursive Algorithm and Architecture...……………………………..……....35

3.2 The Proposed DTMF Receiver and Chip Implementation………………………...41

 vi

3.3 The Comparison of different Recursive DFT/IDFT Architecture………………...46

3.4 Summary…………………………………………………………………………...48

4 Effective FFT/IFFT Processors for MIMO- OFDM WLAN Systems………….....49

4.1 The Proposed Modified Radix-2/8 FFT/IFFT Algorithm...………………………...50

4.2 The Proposed MIMO-FFT Architecture...…………………….…………………...53

4.2.1 R28MDF-based 64-Point FFT/IFFT Processor for 2×2 MIMO-OFDM

system……………………………………………………………………………....53

4.2.2 R28MDC-based 64-Point pipeline FFT/IFFT Processor for 4×4

MIMO-OFDM system...………………………….…………………………….….58

4.3 Circuit Implementation……………………………………………..……………...59

4.4 The Comparison Discussion of MIMO-FFT Architecture………………………...61

4.4.1 2×2 MIMO-OFDM WLAN application…………………...…….…………62

4.4.2 4×4 MIMO-OFDM WLAN application…………………………………..64

4.5 Summary………………….………………………………………………………...66

5 Long-Length based Effective Pipeline FFT/IFFT Processor……………………...67

5.1 New Radix-42 and Radix-43 based FFT/IFFT Algorithm...…………………………68

5.1.1 Radix-42 based FFT Formula……………………………….………………68

5.1.2 Radix-42 based IFFT Formula………………………………….…………..70

5.1.3 Radix-43 based FFT/IFFT Formula………………………………………..71

5.2 Pipeline 4096-Point R42SDF and R43SDF Based FFT/IFFT VLSI Architecture…..73

5.2.1 Radix-4 Butterfly………………………….…………………….…………74

5.2.2 Memory Structure……………………………………….…..……………..75

5.2.3 Constant Multiplier……………………………………………….…………78

5.2.4 Eight Folded Complex Multiplier……………………….…..……………..80

5.3 Finite Word-Length Analysis……………………………….…………………...81

5.4 The MIMO-FFT Architecture……………………………………………………...83

5.5 Chip Implementation……………………………….….…………………………...85

5.6 Summary…………………………………………………………………………...88

6 Effective Triple-Mode Reconfigurable Pipeline FFT/IFFT/2D-DCT Processor….89

6.1 8×8 2D FFT and 8×8 2D DCT Formula...…………………………………………90

6.2 Pipeline 256-Point FFT/IFFT/8×8 2D-DCT Processor Architecture……………..93

 vii

6.2.1 Radix-4 Butterfly and Radix-2 Butterfly………………………..…………95

6.2.2 Memory Structure……………………………………….…..……………..96

6.2.3 Input Re-ordering and First Butterfly Computation…………….…………99

6.2.4 Constant Multiplier……………………………………………….………101

6.2.5 Eight Folded Complex Multiplier………………………….……………..103

6.2.5 Post Computation…………………………………………..……………..104

6.3 Finite Word-Length Analysis……………………………….…………………...105

6.3.1 Pipeline 256-Point FFT/IFFT…………………………..………..………106

6.3.2 Pipeline 8×8 2-D DCT…………………………………………..………107

6.4 Comparison and Chip Implementation…………………………….……………..109

6.4.1 Comparison between R42SDF and R22SDF…………………..…………109

6.4.2 8×8 2-D DCT Comparison…………………………….…..……………..111

6.4.3 Chip Implementation……………………………………….…..………….114

6.5 Summary…………………………………………………………………………..116

7 Conclusion and Future Work………………………………..………………..…...117

8 Bibliography…………………………………………………..………………..…...119

9 Appendix………………………………………………………..………………..…...126

 viii

List of Figures

Fig. 1: MIMO-FFT architectures. (a) Parallel multi-path MIMO-FFT architecture. (b)

 Serial multi-stream MIMO-FFT architecture. (c) Serial blockwise MIMO-FFT

 architecture..……………………………………………………………….……. 7

Fig. 2: (a) Block diagram of the first-order recursive DFT structure and (b) a

multiplexer-type dash-line implementation with down-sampling value of N……. 19

Fig. 3: Block diagram of the second-order recursive DFT structure.............................. 20

Fig. 4: Three 256-points pipeline FFT architecture. (a) The R4SDF architecture. (b) The

 R4MDC architecture. (c) The R4SDC architecture.………………………...….. 34

Fig. 5: Block diagram of low-computation cycle for (a) DCT part and (b) DST part of the

 DFT computation. .…………………………..….. 40

Fig. 6: Block diagram of the proposed low-computation cycle and power-efficiency

 recursive DFT architecture. …...….. 41

Fig. 7: Block diagram of the proposed low-computation cycle and power-efficient

 recursive IDFT architecture. …...….. 44

Fig. 8: Dataflow of the DTMF detection [21]. …...….. 45

Fig. 9: Block diagram of the proposed high channel density DTMF architecture. 46

Fig. 10: Bit level SNR simulation environment.…..….. 46

Fig. 11: Bit level SNR simulation results. ...….. 46

Fig. 12: The 212/106-point recursive DFT/IDFT chip layout.….. 49

Fig. 13: The “L” shaped butterfly of novel radix-2/8 FFT algorithm.……..... 55

Fig. 14: Block diagram of the proposed R28MDF-based 64-point FFT/IFFT architecture

 for2X2 MIMO-OFDM system. . ..……..... 56

Fig. 15: The timing sequence of the purposed block based input unit. 57

Fig. 16: Block diagram of the proposed R8-FFT/IFFT unit. .. 58

Fig. 17: Block diagram of the proposed MAW-based multiplier unit. 59

Fig. 18: The timing sequence of the proposedR28MDF and R28MDC architectures. (a)

 The first stage: Multiplication Stage. (b) The second stage: Output Stage. (c) The

 timing sequence of R28MDF design. (d) The pipeline timing sequence of R28MDC

 design. .. 60

Fig. 19: Block diagram of the proposed R28MDC-based 64-point FFT/IFFT architecture

 For 4X4 MIMO-OFDM system.. 61

 ix

Fig. 20: Layout view of the proposed 64-point FFT/IFFT processors. (a) The R28MDF

 implementation. (b) The R28MDC implementation. 63

Fig. 21: The CFA decomposition procedure of the proposed radix-42 based N-point FFT

 Algorithm………………... 73

Fig. 22: Block diagram of the R42SDF-based 4096-point FFT/IFFT VLSI architecture 76

Fig. 23: Block diagram of the R43SDF-based 4096-point FFT/IFFT VLSI architecture 76

Fig. 24: Block diagram of the radix-4 butterfly architecture. 77

Fig. 25: The proposed 4 operation modes of the radix-4 butterfly stage in the R42SDF

 And R43SDF based 4096-point FFT/IFFT VLSI architecture. (a) The proposed 4

 operation modes in the radix-4 based butterfly stages. (b) The timing sequences of 4

 operation modes in the proposed pipeline architecture. 78

Fig. 26: The proposed memory architecture of the butterfly stage I and II in the R42SDF

 and R43SDF based 4096-point FFT/IFFT VLSI architecture. (a) The proposed FIFO

 shift registers architecture on the butterfly stage I. (b) The proposed single port

 SRAM with independent word control. (c) The Memory context on the purposed

 Butterfly stage I. (d) The timing sequence of proposed memory architecture in the

 operat ion mode 3... .. 80

Fig. 27: Block diagram of the proposed constant multiplier in R42SDF design........... 82

Fig. 28: The block diagram of eight-folded algorithm in the coefficient ROM…........ 83

Fig. 29: Finite word-length analysis of the proposed pipeline R42SDF and R43SDF-based

 4096 points FFT/IFFT architecture…... 85

Fig. 30: The layout view of proposed 4096-point pipeline FFT/IFFT processor. (a) The

 Layout view of proposed R42SDF design. (b) The layout view of proposed R43SDF

 design... 89

Fig. 31: Block diagram of the R42SDF-based 256-point FFT/IFFT and 8×8 2D-DCT

 Architecture…….. 97

Fig. 32: Block diagram of the radix-4 butterfly architecture....................................... 97

Fig. 33: Block diagram of the proposed first radix-4 butterfly stage in the R42SDF-based

 256-point FFT/IFFT and 8×8 2D-DCT architecture. (a) The proposed 12

 reconfigurable operation mechanisms of the first butterfly stage. (b) The timing

 sequences of operation mechanism in the first butterfly stage. (c) The storage

 content in SSR in the 8×8 2D-DCT mode. (d) The content of the 8×8 2-D DCT

 computation result in SSR... 100

Fig. 34: Block diagram of the proposed constant multiplier architecture. 105

 x

Fig. 35: The block diagram of eight-folded algorithm in the coefficient ROM.......... 106

Fig. 36: Block diagram of the proposed fourth butterfly stage in the R42SDF-based

 256-point FFT/IFFT and 8×8 2D-DCT architecture. (a) The data context of the

 fourth butterfly stage in the 8×8 2D DCT mode. (b) The OSR structure of the

 fourth butterfly stage... 107

Fig. 37: Finite wordlength analysis of the proposed pipeline R42SDF-based 256 points

 FFT/IFFT architecture…………... 108

Fig. 38: Finite wordlength analysis of the proposed pipeline R42SDF-based 8×8 2D DCT

 architecture. (a). Overall mean square error analysis. (b) Peak Mean Square Error

 analysis. (c). Overal l Mean Error analysis. (d). Peak Mean Error

 analysis…………... 110

Fig. 39: The layout view and design characteristics of proposed pipeline 256-point

 FFT/IFFT /8×8 2D DCT processor………………............................... 116

 xi

List of Tables

Table 1: Number of complex multiplication needed for the computation of a 64 point

FFT/IFFT processor…………………………….………………………..…. 35

Table 2: Chip Characteristics of the Proposed DTMF detector. ...…………………. 49

Table 3: Comparison Results among the Recursive DFT/IDFT Architectures……. 50

Table 4: Area usage of each building block in the proposed R28MDF and R28MDC

 Design…………………………………...……………………………….…. 63

Table 5: Comparison results of the 64-point FFT/IFFT chip designs in 2x2 MIMO-OFDM

 system………………………………………………...………………….…. 65

Table 6: Comparison results of the 64-point pipelined FFT/IFFT architecture in 4x4

 MIMO-OFDM system……………………………………......……………. 68

Table 7: The Data Control of The Coefficient ROM in the R43SDF design. ………. 83

Table 8: Hardware Cost Comparisons of the Pipelined FFT/IFFT Architecture……. 86

Table 9: Hardware Utilization Rate Comparisons of the Pipelined FFT/IFFT

 Architecture. ……………………………………………………….......…. 87

Table 10: The Gate Count Usage of Each Building Block in the Proposed Design. . 89

Table 11: The Corresponding Equation Numbers for Each Building Block. 97

Table 12: The Data Control of The Coefficient ROM. .. 106

Table 13: Hardware Cost Comparisons of the Pipelined FFT/IFFT Architecture...... 113

Table 14: Hardware Utilization Rate Comparisons of the Pipelined FFT/IFFT

 Architecture…………………...……………………………….........…. 114

Table 15: Hardware Requirement Comparison of 8×8 2D DCT Architecture......…. 114

Table 16: The Gate Count Usage of Each Building Blocks..................................…. 117

 1

Chapter 1 Introduction

 The increased demand for communication, multimedia, and other consumer products

has created the need for low-cost, low-power consumption and high throughput based

processor that can use Fourier transforms for their signal processing or data manipulation. The

discrete Fourier transform (DFT) is an equation for converting time domain data into

frequency domain data [1]. Discrete means that the signal is sampled in time rather than being

continuous. Therefore, DFT is an approximation for the continuous Fourier transform [2]. The

DFT equation, unlike the continuous Fourier transform, covers a finite time and frequency

span. Base on the requirements of the DFT results, there are possible two categories for the

effective algorithms of DFT computations: 1) fast Fourier transform (FFT) algorithm, 2)

recursive algorithm. FFT based algorithms are a group of algorithms for significantly

speeding up the computation of the DFT, when all N points of DFT results are required. The

most widely known of these algorithms is attributed to Cooley and Tukey [3] and is used for a

number of point N equal to a power-of-two. In the realistic world, many applications require

spectrum analysis only over a subset of the N center frequencies via the DFT computation

instead of the overall results of the FFT. An effective derivative of DFT is the recursive based

algorithm, which emerges better performance than the FFT algorithm when only some sparse

DFT results need to be obtained by completing a single complex DFT spectral bin value for

every N input time instances. The most famous of the recursive algorithms is the Goertzel

algorithm [4], which use the periodicity properties to reduce DFT computations. Base on the

required portions of DFT results, two effective DFT processors could be found: 1) FFT based

processor, 2) recursive based processor. In this study, one high effective recursive processor

has been presented. Base on the different requirements, five different pipeline FFT/IFFT

processors are also presented in this work.

 2

1.1 Motivation

Many researchers have concentrated on designing an optimized reconfigurable DSP

processor to achieve a high processing rate and low power consumption in next-generation

mobile multimedia applications [5][6]. The software based architecture such as the

co-processor and dual-MAC designs have been proposed by Chai et al. [5] and Kolagotla et al.

[6], respectively. However, they induce the large chip size because of the high flexibility.

Vorbach et al. have also presented hardware-based concepts such as the processing element

(PE) array [7], which achieves a high processing rate with reasonable flexibility. However, the

processing kernel has the flaw of a low utilization rate with a large array memory and

muti-MACs, leading to poor cost efficiency. The specific ASIC based design on a fast

computation algorithm provides high cost efficiency [8]-[10]. Base on the different real-time

applications, some design decisions for ASIC based FFT processor should be made following

with the different specification:

� Required portions of DFT results: The primary advantage of recursive based algorithms

is that it allows a subset of the DFT’s N output terms to be efficiently calculated.

Considering the computation complexity, the direct evaluation of DFT of all N values

requires a total of N2 complex multiplications and N(N-1) complex additions. If only M

values of N DFT results are required, the computation complexity of Goertzel and

radix-2 based FFT algorithm are NM and Nlog2N, respectively. It is obviously that the

computation saving of radix-2 based FFT algorithm is not significant —less than a factor

of two. Then, the Goertzel algorithm demonstrates the good efficient for certain

applications, such as: the dual tone multi-frequency (DTMF) standards [11-16] for voice

over packet (VoP) network [17-19], discrete multi-tone equalizer of multi-carrier

modulation system [20, 21], and speed detection.

� Number of FFT channels: Future broadband wireless access systems including wireless

LANs (WLAN) and fourth-generation (4G) mobile radio systems need much higher

spectral efficiency and service quality than the current standards do [22, 23]. A

multiple-input-multiple-output (MIMO) wireless system has been extensively studied

recently due to the potential for raising system capacity [24, 25, 26]. The orthogonal

frequency division multiplexing (OFDM) modulation scheme not only decreases the

receiver complexity, but also improves the performance on highly dispersive channels.

An especially promising candidate for the next-generation fixed and mobile wireless

systems is the combination of MIMO technology with OFDM, called the MIMO-OFDM

 3

system. A MIIMO-OFDM system with k antennas in the transmitter and the receiver

comprises k OFDM baseband processors working in parallel, and thus requires k FFT

processors, one for each antenna [24-26]. Then, a high throughput FFT processor, which

could compute the multi-channel FFT computations, would be required.

� Transform length of FFT computation: The size of the transform will directly affect

frequency resolution, memory requirements, and the speed at which the computation can

be done. In the realistic world, many applications require the FFT/IFFT implementations

that can perform long-length computations while exhibiting low cost, low power

consumption and high throughput. The long-length based FFT/IFFT processor has been

widely applied in many real time applications, such as: DVB-H(Digital Video

Broadcasting－Handheld)[27, 28], VDSL(Very-high-speed Digital Subscriber Line) [29],

and audio measurement [30]. Since such long-length FFT computations are rather

time-consuming, the efficient FFT processors are necessary to meet the real time

operations. Furthermore, the handheld devices include multimedia mobile phones with

color displays as well as personal digital assistant (PDA) and pocket PC, which should

consider some specific advantages — small, lightweight, portable, battery-powered

devices.

� Number of dimension: All multidimensional FFTs are done as a sequence of

one-dimensional FFTs. The importance of knowing how many dimensions (one, two, or

three, usually) there are determines how many FFTs will be need and how the data must

be organized to do the multiple dimensions. This will affect chip processing load and the

choice of architecture. To improve the radix-2 based FFT algorithm, He et al. [31] has

presented radix-22 and radix-23 algorithms for the higher computation efficiency. Then,

the design in [31] achieves the high hardware utilization and low hardware resource

usage.

� Algorithm construction: The algorithm used will affect the computational complexity the

algorithm requires and computation speed the design does. The low radix based

algorithm is well known to have higher multiplicative complexity than the high radix

based algorithm. Notably, the design with the highest complex multiplicative complexity

has the highest power consumption [26, 28, 31-33].

� Architectures: Many researches were concentrated on the efficient FFT realizations [26,

31, 34-36]. The appropriated algorithm and architecture for the FFT processor should be

chosen trading off its processing speed and its chip cost. The pipeline architecture

processes regularity, modularity, local connection, and high throughput rate with lower

 4

clock frequency [37]. Furthermore, pipeline FFT processor is characterized by

non-stopping processing on a clock frequency of the input data sampling. An analysis

has depicted that a unique operating frequency, which is close or equivalent to the

sampling frequency is preferable to the FFT processor when the power consumption is

confined by the application environment, such as handheld communications [26, 31, 32,

34, 38]. Basically, there are mainly two different pipeline architectures: multipath delay

commutator (MDC) architectures [33, 36, 39, 40] and single-path delay feedback (SDF)

architectures [31, 32, 34, 35, 42, 43]. The SDF architectures are well known to be more

efficient than MDC architectures in terms of memory utilization since the butterfly

output share the same storage with its input [31, 32, 34]. Therefore, this investigation

focuses on the “hardware-oriented” pipeline architecture, in which the arithmetic

operations can be tightly scheduled for effective hardware utilization.

1.2 Objectives

The objectives of this thesis are to propose the high effective pipeline processors for

the DFT computations in different real-time applications. Four different applications have

been taken into consideration, which are recursive based DFT computation in DTMF standard

[12-15], multiple-input multiple-output orthogonal frequency division multiplexing

(MIMO-OFDM) wireless LAN (WLAN) [22, 23], long-length based FFT/IFFT computations

in digital video broadcasting－handheld (DVB-T) standard [27, 28] and FFT/IFFT/2D-DCT

computations in next generation mobile multimedia applications [5-7, 44]. The objective

descriptions of these four designs are provided as below:

1. Recursive DFT/IDFT Design: The Goertzel algorithm has been widely applied to the

dual tone multi-frequency (DTMF) standards [11]-[16] for voice over packet (VoP)

network [17]-[19] to compute the interested spectra, the discrete multitone equalizer of

multicarrier modulation system [20]-[31], and speed detection. Considering the

state-of-the-art applications, the high channel-density dual-tone detector [17]-[19] is

demanded. Some advanced DTMF detectors for the high density VoP network

application have been realized by one embedded DSP processor [12]-[14], [17]-[19].

Although, the DSP processor based design could keep the maximum flexibility, it may

 5

not meet the cost effective considerations. On the other hand, the DSP processor based

design may lose the advantages of high-throughput, low power, and small area

compared with the application-specific integrated circuits (ASIC) designs [45]. In [13],

the DSP processor based DTMF detectors needs a large amount of memory to decode

only 24 channels, which requires 800 words data memory and 1000 words program

memory with 16-bit wordlength for each words. Also, it has to operate on the higher

frequency of 24 MHz. For the purpose of optimizing the whole system performance and

cost, much research [46]-[53] has concentrated on the dedicated core design. In

[15]-[17], the recursive expressions for the DCT computation that are suitable for VLSI

implementation are presented. It is worth noticing that the recursive algorithms are

solely used to design recursive DCT architectures rather than the recursive DFT

architectures in [46]-[48]. In the past two decades, several recursive DFT algorithms and

architectures have been explored [49]-[53]. Compared with the conventional

second-order recursive DFT/IDFT architecture, Van et al. [51] utilized resource-sharing

and register-splitting schemes to reduce two multipliers and speedup the computation,

respectively. Yang et al. [52] proposed two unified IIR filter structures to save the

hardware cost for the DFT computation. Nevertheless, neither Van et al. [51] nor Yang

et al. [52] improve the computation cycle. In [53], Fan et al. applied the previous

proposed method to reduce the computation cycles but the performance is limited. On

the other hand, Fan et al. only proposed the recursive DFT algorithm but the IDFT

algorithm is not yet ready in [53]. In essence, a short description of the proposed

algorithm has been presented in the associated conference [54, 55]. In this thesis, the

detailed descriptions of a high-performance and power-efficient VLSI algorithm and

architecture by the hybrid of input strength reduction scheme, Chebyshev polynomial,

and register-splitting scheme for the DTMF application have been fully provided. The

derived recursive algorithm and devised architecture [54, 55] possesses the following

features: low-computation cycle (i.e., high throughput) and power efficiency at the

expense of slightly increased area overhead compared with the existing recursive

DFT/IDFT structures.

2. MIMO-OFDM FFT design: Future broadband wireless access systems including

wireless LANs (WLAN) and fourth-generation (4G) mobile radio systems need much

higher spectral efficiency and service quality than the current standards do [22, 23]. A

multiple-input-multiple-output (MIMO) wireless system has been extensively studied

recently due to the potential for raising system capacity [24-26]. The orthogonal

 6

frequency division multiplexing (OFDM) modulation scheme not only decreases the

receiver complexity, but also improves the performance on highly dispersive channels.

An especially promising candidate for the next-generation fixed and mobile wireless

systems is the combination of MIMO technology with OFDM, called the MIMO-OFDM

system. A MIIMO-OFDM system with k antennas in the transmitter and the receiver

comprises k OFDM baseband processors working in parallel, and thus requires k FFT

processors, one for each antenna [24-26]. Because of the high throughput requirements

of the FFT computation in the MIMO-OFDM system, three 4×4 MIMO-FFT

architectures, parallel multi-path architecture, serial multi-stream architecture and serial

blockwise architecture, as depicted in Fig. 1(a)-(c), respectively, have been presented

[25]. A parallel multi-path architecture includes k FFT blocks for k antennas, as depicted

in Fig. 1(a). The figure indicates that the area cost of parallel multi-path based system

rises linearly with the number of antennas (i.e. k times the FFT block area). Conversely,

the serial multi-stream architecture and serial blockwise architecture only requires one

FFT block to handle the concurrent computation of k antennas. However, the serial

multi-stream architecture applies one lower throughput rate FFT processor embedded

with the k times buffer size for intermediate computation, as depicted in Fig. 1(b). For k

channel computation, the serial multi-stream architecture must operate at a higher clock

frequency than sampling data frequency of Fs to satisfy the higher throughput

requirements. Analytical results indicate that the operating frequency of serial

multi-stream based system grows linearly with the number of antennae (i.e. k times the

sampling frequency of Fs). Based on the serial blockwise FFT architecture, the input

data of the FFT block can be provided in parallel with k embedding input buffer, as

depicted in Fig. 1(c). Applying one higher throughput rate FFT processor, the serial

blockwise FFT based processor can complete k channel FFT computations concurrently.

Among these three architectures, the serial blockwise architecture only requires one FFT

block operating at the same clock frequency with the data sampling frequency of Fs. An

analysis has depicted that a unique operating frequency, which is close or equivalent to

the sampling frequency of Fs, is preferable to the FFT processor when the power

consumption is confined by the application environment, such as mobile

communications [26, 31, 38, 56, 57]. Considering the memory cost, the serial blockwise

architecture should slightly increase the cost with one extra buffer of size N than other

architectures. However, the memory cost problem for serial blockwise architecture

becomes increasingly minor when the number of antennae in the MIMO-OFDM system

 7

is larger. Consequently, the serial blockwise-based MIMO-FFT architecture applies

single FFT block to achieve the appropriate throughput and minimizes power

consumption for MIMO-OFDM WLAN applications.

FFT block # 1
(Operating Freqency: Fs)

A/D

A/D

A/D

A/D

Buffer (Size: N)

FFT block # 2
(Operating Freqency: Fs)

Buffer (Size: N)

FFT block # 3
(Operating Freqency: Fs)

Buffer (Size: N)

FFT block # 4
(Operating Freqency: Fs)

Buffer (Size: N)

Channel 1

Channel 2

Channel 3

Channel 4

Z1(k)

Z2(k)

Z3(k)

Z4(k)

(A/D Sampling Frequency: Fs)

Parallel Multi-Path MIMO-FFT Processor

(a) Parallel multi-path MIMO-FFT architecture.

A/D

A/D

A/D

A/D

Buffer (Size: 4N)

MUX DeMUXFFT block # 1
(Operating Freqency: 4Fs)

Channel 1

Channel 2

Channel 3

Channel 4

Z1(k)

Z2(k)

Z3(k)

Z4(k)

(A/D Sampling Frequency: Fs)

Serial Multi-Stream MIMO-FFT Processor

(b) Serial multi-stream MIMO-FFT architecture.

A/D

A/D

A/D

A/D

MUX DeMUXBuffer (Size: N)

Buffer (Size: N)

Buffer (Size: N)

Buffer (Size: N)

FFT block # 1
(Operating
Freqency: Fs)

Buffer
(Size: N)

Channel 1

Channel 2

Channel 3

Channel 4

Z1(k)

Z2(k)

Z3(k)

Z4(k)

(A/D Sampling Frequency: Fs)

Serial Blockwise MIMO-FFT Processor

 (c) Serial blockwise MIMO-FFT architecture.

Fig. 1: MIMO-FFT architectures.

3. Long-Length FFT Design: The FFT and IFFT are essential in the field of digital signal

processing (DSP) and communication systems. In the realistic world, many applications

require the FFT/IFFT implementations that can perform long-length computations while

exhibiting low cost, low power consumption and high throughput. The long-length

 8

based FFT/IFFT processor has been widely applied in many real time applications, such

as: DVB-H(Digital Video Broadcasting－Handheld)[27, 28], VDSL(Very-high-speed

Digital Subscriber Line) [29], and audio measurement [30]. DVB-H is a digital

broadcast standard offering high data rate audio/video content delivery to handheld

devices, which requires a 4096-point FFT computation (i.e. 4k mode) for the flexible

networking design in single frequency networks (SFNs) [27, 28]. The VDSL transceiver

and audio analyzer need to involve the complicated FFT computations, where the

transform length is also 4096-point [29, 30]. Since such long-length FFT computations

are rather time-consuming, the efficient FFT processors are necessary to meet the real

time operations. Furthermore, the handheld devices include multimedia mobile phones

with color displays as well as personal digital assistant (PDA) and pocket PC, which

should consider some specific advantages — small, lightweight, portable,

battery-powered devices.

4. Triple-mode reconfigurable FFT/IFFT/2-D DCT design: generation mobile multimedia

applications, including mobile phones and personal digital assistant (PDAs), require

much sufficiently high processing power for multimedia applications. Multimedia

applications include video/audio codecs, speech recognition and echo cancellers. The

speech recognition requires the speech extraction and autocorrelation coefficient

computations [58] in the voice command application. The video codec is the most

challenging element of a multimedia application, since it requires much processing

power and bandwidth. Hence, a flexible and low cost pipeline processor with the

superiority of high processing rate is required to realize necessary computation-intensive

algorithms, such as 256-point FFT/IFFT and 8×8 2-D DCT [5]-[7]. Additionally, a major

integration challenge is to design the digital baseband and accompanying control logic.

The WiMAX baseband is constructed around orthogonal frequency division

multiplexing (OFDM) technology requiring high processing throughput. The fixed,

IEEE 802.16e [44], version of WiMAX also needs a 256-point FFT computation. Many

researchers have recently concentrated on designing an optimized reconfigurable DSP

processor to achieve a high processing rate and low power consumption in

next-generation mobile multimedia applications [5][6]. The software based architecture

such as the co-processor and dual-MAC designs have been proposed by Chai et al. [5]

and Kolagotla et al. [6], respectively. However, they induce the large chip size because

of the high flexibility. Vorbach et al. have also presented hardware-based concepts such

as the processing element (PE) array [7], which achieves a high processing rate with

 9

reasonable flexibility. However, the processing kernel has the flaw of a low utilization

rate with a large array memory and muti-MACs, leading to poor cost efficiency. The

specific ASIC based design on a fast computation algorithm provides high cost

efficiency [8]-[10]. Tell et al. [8] presented the FFT/WALSH/1-D DCT processor for

multiple radio standards of the upcoming 4th generation wireless systems. Conversely,

some designs [8]-[10] only support 1-D DCT computation, and have no 2-D DCT

support. However, 2-D DCT is desirable for the video compression among wireless

communication applications. This study not only presents a single reconfigurable

architecture for the 256-point FFT/IFFT modes and the 8×8 2-D DCT mode, but also

achieves high cost-efficiency in portable multimedia applications.

1.3 Contributions

For the purpose of supporting these four applications, six ASIC based pipeline

processors, namely recursive DFT/IDFT (RDFT) based processor, radix-2/8 multiple-path

delay feedback (R28MDF) based processor, radix-2/8 multiple-path delay commutator

(R28MDC) based processor, radix-42 single-path delay feedback (R42SDF) based processor,

radix-43 single-path delay feedback (R43SDF) based processor and reconfigurable triple-mode

FFT/IFFT/2-D DCT processor, have been presented in this thesis. The contributive

descriptions are presented as below:

1. RDFT Design: Based on the proposed RDFT architecture, one high-throughput (i.e. high

channel density) and power-efficient DTMF detector has been proposed. For the purpose

of achieving the high power efficiency, we perform the bit level SNR simulation to

decide the best configuration for the DTMF detector system. The results show that the

proposed design only needs 9-bit word-length, which is one-bit less than the second

order Goertzel structure, to land the satisfactory resolution under 15 dB SNR

environment. In this paper, the resulting DTMF detector uses 12-bit word-length, where

the additional 3 bits are used for design margins so as to obtain better performance. On

the other hand, the novel design saves 4-bit cost compared with the 16-bit based DSP

processor design [12]-[14]. In summary, the proposed DTMF structure not only saves

more area cost, but also reduces the power consumption due to the register-splitting

 10

scheme [51] and a smaller word-length requirement. Most importantly, the computation

cycles can be reduced to 50% and thus a double throughput rate and channel density can

be easily obtained without increasing the operation frequency. Our proposed DFT/IDFT

chip is able to offer over 128-channel telephone signals for the high channel density

DTMF detector [16] without any DSP processor inside. Each channel consumes 9.77 uW

under 1.2V@20 MHz in TSMC 0.13 1P8M CMOS process. This is a significant

contribution, as the high channel density and low power characteristics are demanded for

the communication systems.

2. R28MDF and R28MDC Design: This investigation presents two new efficient designs,

R28MDF based and R28MDC based FFT/IFFT processors for the 2×2 and 4×4

multiple-input multiple-output orthogonal frequency division multiplexing

(MIMO-OFDM) wireless LAN (WLAN) system, respectively. The novel radix-2/8

algorithm reduces the half constant multiplier requirement in the proposed retrenched

8-point FFT (R8-FFT) unit compared with that of the conventional radix-2/8 algorithm,

and has low multiplicative complexity as a radix-8 based algorithm. By applying the

R8-FFT unit combined with the proposed multiplication-after-write (MAW) method, the

R28MDF and R28MDC architectures resulted in 100% butterfly utilization and an

appropriate throughput rate with few hardware resources for the 2×2 and 4×4

MIMO-OFDM applications, respectively. Implementation results indicate that two chips

consume only 19.42mW and 23.57mW under 1.2V@20 MHz in a TSMC 0.13µm 1P8M

CMOS process. The comparison results among the existing 64-point FFT/IFFT processor

architectures are comprehensively discussed. The architecture analyses and chip

implementation indicate that the proposed FFT/IFFT processor architectures are suitable

for MIMO-OFDM WLAN systems.

3. R42SDF and R43SDF Design: In this investigation, we proposes the novel radix-42 and

radix-43 algorithms with the low computational complexities of the radix-16 and

radix-64 algorithms and the low hardware requirement of the radix-4 algorithm. Base on

the multiplierless radix-4 butterfly structure, the proposed R42SDF design and R43SDF

design support the 4096-point FFT/IFFT computations. Moreover, the retrenched

constant multiplier and eight-folded complex multiplier structures are adopted to

decrease the multiplier cost and the coefficient ROM size with the complex conjugate

symmetry rule and subexpression elimination technology. To further decrease the chip

cost, a finite word-length analysis is provided to indicate that the proposed R42SDF and

R43SDF architectures only require 14 and 13-bit internal word-length to achieve 40dB

 11

SNR performance in the 4096-point FFT/IFFT computation. The comprehensive

comparison results indicate that the proposed R43SDF design has the smallest hardware

cost and the highest hardware utilization among the tested architectures for the FFT/IFFT

computation, and thus has the highest efficiency. The implementation results show that

the proposed R42SDF and R43SDF based 4096-point pipeline FFT/IFFT processors only

consumes 6.3725 and 5.985 mW@20 MHz at 1.2V supply voltage in TSMC 0.13 µm

CMOS process.

4. The triple-mode reconfigurable FFT/IFFT/2D-DCT Design: Applying the R42SDF

architecture with the specific linear mapping of common factor algorithm (CFA), the

proposed triple-mode design supports both 256-point FFT/IFFT and 8×8 2-D DCT

modes following with the high efficient feedback shift registers architecture. The

segment shift register (SSR) and overturn shift register (OSR) structure are adopted to

minimize the register cost for the input re-ordering and post computation operations in

the 8×8 2-D DCT mode, respectively. Moreover, the retrenched constant multiplier and

eight-folded complex multiplier structures are adopted to decrease the multiplier cost and

the coefficient ROM size with the complex conjugate symmetry rule and subexpression

elimination technology. To further decrease the chip cost, a finite wordlength analysis is

provided to indicate that the proposed architecture only requires a 13-bit internal

wordlength to achieve 40dB SNR performance in 256-point FFT/IFFT modes and high

digital video (DV) compression quality in 8×8 2-D DCT mode. The comprehensive

comparison results indicate that the proposed cost effective reconfigurable design has the

smallest hardware requirement and largest hardware utilization among the tested

architectures for the FFT/IFFT computation, and thus has the highest cost efficiency. The

derivation and chip implementation results show that the proposed pipeline 256-point

FFT/IFFT/2-D DCT triple-mode chip consumes 22.37mW@100 MHz at 1.2V supply

voltage in TSMC 0.13µm CMOS process, which is very appropriate for the RSoCs IP of

next-generation handheld devices.

 12

1.4 Organization

The remainder of this thesis is organized as follows.

Chapter 2 reviews the literature of the work presented in this thesis and four topics are

reviewed. The first topic is a review of the Goertzel algorithm and respective hardware

architecture. The second topic is a review of mixed-radix based FFT algorithms. The third

topic is a comparative review of high-radix based FFT algorithms. The final topic is a review

the DCT algorithm.

Chapter 3 describes a new recursive DFT/IDFT algorithm and architecture by the hybrid of

input strength reduction, Chebyshev polynomial, and register-splitting schemes is revealed.

Applying this new architecture, the DTMF application has been demonstrated. After the

bit-level SNR simulation, the 212/106-point DFT/IDFT chip has been successfully

implemented for the DTMF detector system. Furthermore, the comparison results are

tabulated in terms of the amount of computation cycles for each output as well as N-point

DFT/IDFT, the maximum number of the channel density, the clock period, and the number of

real multipliers.

Chapter 4 describes a modified radix -2/8 FFT/IFFT algorithm. Using this mixed-radix based

algorithm, we discuss the corresponding R28MDF and R28MDC fabrics and the detailed

timing considerations. Furthermore, the implementation issues are discussed. Finally, the

comparison results of the 64-point FFT/IFFT architectures for the 2×2 and 4×4

MIMO-OFDM system have been summarized.

Chapter 5 describes a new radix-42 and radix-43 FFT/IFFT algorithms. Applying these

algorithms, the proposed R42SDF and R43SDF VLSI architectures could be demonstrated.

Base on the finite word-length analysis, we could prove that the proposed architectures

achieve the satisfactory system performance. Furthermore, the comparison results in terms of

hardware utilization and cost demonstrate the high cost-efficiency of the proposed

architectures. The chip implementation is also presented.

Chapter 6 describes a new triple-mode radix-42 FFT/IFFT and 8×8 2D DCT algorithm. Using

the proposed radix-42 algorithm, the proposed R42SDF based FFT/IFFT/2-D DCT pipeline

architecture is demonstrates. The finite wordlength analysis indicates that the proposed

 13

architecture achieves the required system performance in both 256-point FFT/IFFT and 8×8

2-D DCT modes with the lowest hardwire cost. According to the comparison results in terms

of hardware utilization and cost, we could demonstrate the high cost-efficiency of the

proposed architecture. Finally, the chip implementation is presented.

 14

Chapter 2 Literature Review

 The research work described in this thesis pertains to the design and realization of high

effective pipeline processor for DFT/IDFT computations in different applications as discussed

in Chapter 1. In this chapter, we consider a number of algorithms for computing the DFT. The

algorithms vary in efficiency, but all of them require fewer multiplications and additions than

does direct evaluation of DFT. This chapter will review four different topics relating to four

different applications as discussed in the chapter 1. First, a review of the Goertzel algorithm

and respective hardware architecture is presented. Second, a r eview of mixed-radix based

FFT algorithms is presented. Third, a comparative review of high-radix based FFT algorithms

is discussed. Finally, the algorithm mapping between FFT and DCT is detail reviewed.

2.1 The Goertzel Algorithm

 In this section, we first discuss the Goertzel’s algorithm [4], which requires computation

proportional to N2, but with a smaller constant proportionality than that of the direct

computation of DFT. Notably, the Goertzel’s algorithm is that it is not restricted to

computation of the DFT, but is in fact equally valid for the computation of any desired set of

samples of the Fourier transform of a sequence. Adopting the periodicity of the sequence

kn
NW , the Goertzel algorithm efficiently reduce the computation complexity of DFT

computation.

 15

2.1.1 The Recursive DFT Algorithm

Given input sequence and DFT output sequence denoted as x[n] and X[K], respectively,

the N-point DFT can be defined as

kn
N

N

n
WnxkX ⋅∑=

−

=

1

0
][][, (1)

where Nj
N eW /2π−= . The Goertzel algorithm [4] making use of the periodicity of the

sequence kn
NW can be used to reduce computation. For convenience of deriving a new

architecture, we begin a review of the recursive DFT expression based on Goertzel

algorithm by noting that

12)/2(=== −− kjNkNjkN
N eeW ππ . (2)

Because of Eq. (2), we may multiply the right side of Eq. (1) by kN
NW− without

affecting the equation. Thus,

.][][][)(1

0

1

0

rNk
N

N

r

kr
N

N

r

kN
N WrxWrxWkX −−−

=

−

=

− ⋅∑=⋅∑= (3)

In order to simplify the final expression, let us define the sequence

].[][)()(rnuWrxny rnk
N

r
k −⋅⋅∑= −−∞

−∞=
 (4)

From Eqs. (3) and (4) and the fact that x[n]=0 for n<0 and n≧N , it follows that

Nnk nykX ==][][. (5)

Eq. (4) can be interpreted as a discrete convolution of the finite-duration sequence x[n],

0≦n≦N-1, with the][nuW kn
N
− . As a consequence,)(nyk can be regarded as the

response of a system with impulse response][nuW kn
N
− to a finite-length input x[n]. In

particular, X[k] is the value of the output when n=N. Taking the z-transform of Eq. (4), we

can obtain the first-order transfer function as

11

1
][−−−

=
zW

zH
k

N
k . (6)

It is possible to retain this simplification while reducing the number of multiplications by

a factor of 2. To see how this may be treated, the transfer function of the first-order

recursive DFT structure can be noted. Multiplying both the numerator and the

 16

denominator of Hk(z) by the factor)1(1−− zWk
N , we obtain second-order transfer function

as

21

1

11

1

)2cos(21

1

)1)(1(

1
][−−

−

−−−

−

+−
−=

−−
−=

zzN
k

zW

zWzW

zW
zH

k
N

k
N

k
N

k
N

k π
. (7)

2.1.2 The Recursive DFT Architecture

 (a) (b)

Fig. 2: (a) Block diagram of the first-order recursive DFT structure and (b) a

multiplexer-type dash-line implementation with down-sampling value of N.

Eq. (6) can be mapped into the first-order recursive DFT structure as shown in Fig.

2(a), where initial rest conditions are assumed and the vertical dash-line denotes the

down-sample operation with N for each crossing signal path. Note that the dash-line as

shown in Fig. 2(a) can be possibly implemented by multiplexer-type or register-type

down-sampling realization. Here, we adopt the multiplexer-type down-sampling

realization as shown in Fig. 2(b) due to the advantages of less area and exact mapping

from the equation to the architecture. In Fig. 2(b), if sel=1, the lower-side signal is passed

to the output; otherwise, the upper-side signal is selected as the output signal for the

multiplexer. In this correspondence, since the input x[n] and the coefficient k
NW− are in

the complex domain, the computation of each new value of yk[n] through the first-order

recursive DFT structure as shown in Fig. 2(a) requires four real multiplications and four

real additions. All the intervening values yk[1], yk[2],… yk[N-1] must be computed in

order to compute yk[N]=X[k], so the use of the first-order recursive DFT structure as a

 17

computational algorithm requires 4N real multiplications and 4N real additions to

compute X[k] for a particular value of k. However, a large number of multiplications are

required for the first-order recursive DFT architecture, even if the one avoids the

computation or storage of the coefficients kn
NW in Eq. (1) at each nth time index.

Eq. (7) can be mapped into the second-order recursive DFT structure as shown in Fig. 3.

Fig. 3: Block diagram of the second-order recursive DFT structure.

In Fig. 3, only two real multiplications per sample are required to implement the poles of

this system as shown in Fig. 3. Note that, in the denominator of Eq. (7), the coefficients

are real and the factor –1 need not be counted as a multiplication. It is worthy of

emphasizing that the complex multiplication by k
NW− required to implement the zero of

the transfer function need not be performed at every iteration of the difference equation,

but only after the Nth iteration. Thus, the total computation is 2N real multiplications and

4N real additions for the poles plus four real multiplications and four real additions for the

zero. The coefficients kn
NW are again computed implicitly in the iteration of the

recursion formula implied in Fig. 3. The second-order recursive DFT structure can

decrease the number of multiplications by Goertzel algorithm; however, the amount of

multipliers and the value of the critical period are sacrificed. Hence, the structures in Figs.

2(a) and 3 are not efficient.

 18

2.2 The Review of FFT Algorithm

 Due to the large computation load of DFT computation, the direct evaluation of the entire

DFT results will cause the serious quantization noise error. FFT are a group of algorithms for

significantly speeding up the computation of the DFT. Furthermore, FFT based algorithms

reduce the number of computations to achieve the low quantization. Notably, the design with

the highest computation complexity also means the highest power consumption [26, 28,

31-33]. The most widely known of these algorithms is attributed to Cooley and Tukey and is

used for a number of points N equal to a power-of-two [3]. The number of applications for

specific FFTs continues to grow and includes such diverse areas as: speech recognition,

video/audio codecs and MIMO-OFDM based mobile communication. There are many ways

to measure the complexity and efficiency of an implementation or algorithm, and a final

assessment depends on both the available technology the intended application [62]. The

arithmetic multiplications and additions are well known to be the good measurements of

computational complexity. In this section, some popular FFT algorithms are first reviewed.

Some famous pipeline FFT architectures are also detail discussed. Later, some design issues

are reminded, such as: high-throughput and long-length based FFT design.

 According to the variant of decomposing sequence, two common FFT algorithms could be

found, namely decimation in time (DIT) and decimation in frequency (DIF) based FFT

algorithms. Significantly, the in-place computation could conveniently make the conversion

between these two algorithms [62]. There is no difference in computational complexity and

signal flow graph (SFG) between two types of algorithms; herein we only focus on DIF FFT

algorithm. In this thesis, we focus on the discussion of DIF based FFT algorithms. Since the

low computational complexity of FFT algorithms is desired for high speed and low power

consideration in VLSI implementation as discussed before. In this sub-section, the radix-2,

radix-4 and radix-8 DIF based equations will be first discussed to demonstrate the

computation complexity between different FFT algorithms.

 19

2.2.1 Radix-2 DIF FFT Algorithm

 The DIF FFT algorithms are all based on structuring the DFT computation by forming

smaller and smaller subsequences of the output sequence X[k]. To restrict the formula to N a

power of 2, the radix-2 DIF FFT algorithm is to consider computing separately the

even-numbered frequency samples and the odd-numbered frequency samples. By separating

X[k] into 2r and 2r+1, we obtain the following equations.

rn
N

N

N
n

rn
N

N

n

rn
N

N

n
WnxWnxWnxrX 21

2

2
1

2

0

)2(1

0
][][][]2[⋅∑+⋅∑=⋅∑=

−

=

−

=

−

=
 (8)

nr
N

N

N
n

nr
N

N

n

rn
N

N

n
WnxWnxWnxrX)12(1

2

)12(
1

2

0

)12(1

0
][][][]12[+−

=

+
−

=

+−

=
⋅∑+⋅∑=⋅∑=+ (9)

where r=0,1,……(N/2 - 1). Due to the periodicity of rn
NW2 , we could substitute the variables

in the second term of summation to obtain the following equations.

rn
N

N

n

rn
N

N

n

N
nr

N

N

n

rn
N

N

n
W

N
nxWnxW

N
nxWnxrX 2

1
2

0

2
1

2

0

)
2

(2
1

2

0

2
1

2

0
]

2
[][]

2
[][]2[⋅∑ ++⋅∑=⋅∑ ++⋅∑=

−

=

−

=

+−

=

−

=

 rn
N

N

n

rn
N

N

n
W

N
nxnxW

N
nxnx

2

1
2

0

2
1

2

0
]}

2
[][{]}

2
[][{ ++∑=++∑=

−

=

−

=
 (1 0)

)
2

)(12(1
2

0

)12(
1

2

0
]

2
[][]12[

N
nr

N

N

n

nr
N

N

n
W

N
nxWnxrX

++−

=

+
−

=
⋅∑ ++⋅∑=+

nr
N

N

n

nr
N

N

n
W

N
nxWnx)12(

1
2

0

)12(
1

2

0
]

2
[][+

−

=

+
−

=
⋅∑ +−⋅∑=

rn
N

rn
N

N

n

nr
N

N

n
WW

N
nxnxW

N
nxnx

2

1
2

0

)12(
1

2

0
]}

2
[][{]}

2
[][{ ⋅∑ +−=⋅∑ +−=

−

=

+
−

=
 (1 1)

Following with the similar decomposition procedure, two N/2 points DFT results can be

further decomposed and then four N/4 points DFT results are produced. After log2N time

recursive decompositions, we can obtain the radix-2 DIF FFT algorithm.

Considering the computation complexity, the direct DFT computation requires a total of

 20

N2 complex multiplications and N(N-1) complex additions. It is well known that each

complex multiplication requires four real multiplications and two real additions, and each

complex addition requires two real additions. Then, the direct computation of DFT of a

sequence x[n] totally requires 4N2 real multiplications and N(4N-2) real additions. From the

eqs. (10) and (11), the radix-2 algorithm requires Nlog2N complex multiplications and

complex additions. Alternately, the radix-2 algorithm requires 8
2

7
log

2

3
2 +− NN

N
 real

multiplications and 8
2

7
log

2

5
2 +− NN

N
 real additions.

2.2.2 Radix-4 DIF FFT Algorithm

 From the discussion in subsection 2.2.1.1, it is obviously that the radix-2 DIF FFT

algorithm could efficiently compute the DFT results than direct method. Comparing with the

radix-2 algorithm, the radix-4 algorithm can further reduce the computation complexity with

keeping the same regularity in each butterfly computation. A radic-4 DIF FFT algorithm can

be derived from recursively decimating the frequency series into four subsets. By separating

X[k] into 4r , 4r+1, 4r+2 and 4r+3, we obtain the following equations.

rn
N

N

N
n

rn
N

N

N
n

rn
N

N

N
n

rn
N

N

n

rn
N

N

n
WnxWnxWnxWnxWnxrX 41

4

3

4
1

4

3

2

4
1

2

4

4
1

4

0

41

0
][][][][][]4[⋅∑+⋅∑+⋅∑+⋅∑=⋅∑=

−

=

−

=

−

=

−

=

−

=

 (12)

nr
N

N

n
WnxrX)14(1

0
][]14[+−

=
⋅∑=+

 nr
N

N

N
n

nr
N

N

N
n

nr
N

N

N
n

nr
N

N

n
WnxWnxWnxWnx)14(1

4

3

)14(
1

4

3

2

)14(
1

2

4

)14(
1

4

0
][][][][+−

=

+
−

=

+
−

=

+
−

=
⋅∑+⋅∑+⋅∑+⋅∑=

 (13)

nr
N

N

n
WnxrX)24(1

0
][]24[+−

=
⋅∑=+

 21

nr
N

N

N
n

nr
N

N

N
n

nr
N

N

N
n

nr
N

N

n
WnxWnxWnxWnx)24(1

4

3

)24(
1

4

3

2

)24(
1

2

4

)24(
1

4

0
][][][][+−

=

+
−

=

+
−

=

+
−

=
⋅∑+⋅∑+⋅∑+⋅∑=

(14)

nr
N

N

n
WnxrX)34(1

0
][]34[+−

=
⋅∑=+

 nr
N

N

N
n

nr
N

N

N
n

nr
N

N

N
n

nr
N

N

n
WnxWnxWnxWnx)34(1

4

3

)34(
1

4

3

2

)34(
1

2

4

)34(
1

4

0
][][][][+−

=

+
−

=

+
−

=

+
−

=
⋅∑+⋅∑+⋅∑+⋅∑=

 (15)

where r=0,1,……(N/4 - 1). Due to the periodicity of rn
NW4 , we could substitute the variables

in the 2nd, 3rd and 4th term of summation to obtain the following equations.

)
4

(41
4

0

4
1

4

0
]

4
[][]4[

N
nr

N

N

n

rn
N

N

n
W

N
nxWnxrX

+−

=

−

=
⋅∑ ++⋅∑=

)
4

3
(4

1
4

0

)
4

2
(4

1
4

0
]

4

3
[]

4

2
[

N
nr

N

N

n

N
nr

N

N

n
W

N
nxW

N
nx

+−

=

+−

=
⋅∑ ++⋅∑ ++

rn
N

N

n
W

N
nx

N
nx

N
nxnx

4

1
4

0
])}

4

3
[]

4
[(])

2
[][{(++++++∑=

−

=
 (16)

)
4

)(14(1
4

0

)14(
1

4

0
]

4
[][]14[

N
nr

N

N

n

nr
N

N

n
W

N
nxWnxrX

++−

=

+
−

=
⋅∑ ++⋅∑=+

)
4

3
)(14(1

4

0

)
4

2
)(14(1

4

0
]

4

3
[]

4

2
[

N
nr

N

N

n

N
nr

N

N

n
W

N
nxW

N
nx

++−

=

++−

=
⋅∑ ++⋅∑ ++

rn
N

n
N

N

n
WW

N
nx

N
nxj

N
nxnx

4

1
4

0
])}

4
3

[]
4

[(])
2

[][{(+−+−+−∑=
−

=
 (1 7)

)
4

)(24(1
4

0

)24(
1

4

0
]

4
[][]24[

N
nr

N

N

n

nr
N

N

n
W

N
nxWnxrX

++−

=

+
−

=
⋅∑ ++⋅∑=+

 22

)
4

3
)(24(

1
4

0

)
4

2
)(24(

1
4

0
]

4

3
[]

4

2
[

N
nr

N

N

n

N
nr

N

N

n
W

N
nxW

N
nx

++−

=

++−

=
⋅∑ ++⋅∑ ++

rn
N

n
N

N

n
WW

N
nx

N
nx

N
nxnx

4

2
1

4

0
])}

4

3
[]

4
[(])

2
[][{(+++−++∑=

−

=
 (18)

)
4

)(34(1
4

0

)34(
1

4

0
]

4
[][]34[

N
nr

N

N

n

nr
N

N

n
W

N
nxWnxrX

++−

=

+
−

=
⋅∑ ++⋅∑=+

)
4

3
)(34(

1
4

0

)
4

2
)(34(

1
4

0
]

4

3
[]

4

2
[

N
nr

N

N

n

N
nr

N

N

n
W

N
nxW

N
nx

++−

=

++−

=
⋅∑ ++⋅∑ ++

rn
N

n
N

N

n
WW

N
nx

N
nxj

N
nxnx

4

3
1

4

0
])}

4

3
[]

4
[(])

2
[][{(+−+++−∑=

−

=
 (19)

Following with the similar decomposition procedure, four N/4 points DFT results can be

further decomposed and then sixteen N/16 points DFT results are produced. After log4N time

recursive decompositions, we can obtain the radix-4 DIF FFT algorithm.

Considering the computation complexity, the radix-4 algorithm requires Nlog4N complex

multiplications and complex additions from the eq. (16) and (19). Alternately, the radix-4

algorithm requires 33log
8

9
2 +− NN

N
 real multiplications and 33log

8

9
2 +− NN

N
 real

additions.

 23

2.2.3 Radix-8 DIF FFT Algorithm

 Following with the similar decomposition produce, a radix-8 DIF FFT algorithm can be

derived from recursively decimating the frequency series into eight subsets. After the

separation of X[k] into 8r , 8r+1, 8r+2, 8r+3, 8r+4, 8r+5, 8r+6 and 8r+7, we adopt the

periodicity of rn
NW8 to obtain the following equations.

])]
4

3
[]

4
[(])

2
[][{[(][]8[

1
8

0

81

0

N
nx

N
nx

N
nxnxWnxrX

N

n

rn
N

N

n
++++++∑=⋅∑=

−

=

−

=

rn
NW

N
nx

N
nx

N
nx

N
nx

8

])]}
8

7
[]

8

3
[(])

8

5
[]

8
[[(++++++++ (20)

])]
4

3
[]

4
[(])

2
[][{[(][]18[

1
8

0

)18(1

0

N
nx

N
nxj

N
nxnxWnxrX

N

n

nr
N

N

n
+−+−+−∑=⋅∑=+

−

=

+−

=

n
N

rn
N WW

N
nx

N
nxj

N
nx

N
nxW

8

1
8])]}

8

7
[]

8

3
[(])

8

5
[]

8
[[(+−+−+−++ (21)

])]
4

3
[]

4
[(])

2
[][{[(][]28[

1
8

0

)28(1

0

N
nx

N
nx

N
nxnxWnxrX

N

n

nr
N

N

n
+++−++∑=⋅∑=+

−

=

+−

=

n
N

rn
N WW

N
nx

N
nxj

N
nx

N
nxj 2

8

])]}
8

7
[]

8

3
[(])

8

5
[]

8
[[(+−+++−+− (2 2)

])]
4

3
[]

4
[(])

2
[][{[(][]38[

1
8

0

)38(1

0

N
nx

N
nxj

N
nxnxWnxrX

N

n

nr
N

N

n
+++++−∑=⋅∑=+

−

=

+−

=

n
N

rn
N WW

N
nx

N
nxj

N
nx

N
nxW 3

8

3
8])]}

8

7
[]

8

3
[(])

8

5
[]

8
[[(+−+++−++ (23)

])]
4

3
[]

4
[(])

2
[][{[(][]48[

1
8

0

)48(1

0

N
nx

N
nx

N
nxnxWnxrX

N

n

nr
N

N

n
++++++∑=⋅∑=+

−

=

+−

=

n
N

rn
N WW

N
nx

N
nx

N
nx

N
nx 4

8

])]}
8

7
[]

8

3
[(])

8

5
[]

8
[[(+−+++−+− (24)

])]
4

3
[]

4
[(])

2
[][{[(][]58[

1
8

0

)58(1

0

N
nx

N
nxj

N
nxnxWnxrX

N

n

nr
N

N

n
+−+−+−∑=⋅∑=+

−

=

+−

=

 24

n
N

rn
N WW

N
nx

N
nxj

N
nx

N
nxW 5

8

1
8])]}

8

7
[]

8

3
[(])

8

5
[]

8
[[(+−+−+−+− (25)

])]
4

3
[]

4
[(])

2
[][{[(][]68[

1
8

0

)68(1

0

N
nx

N
nx

N
nxnxWnxrX

N

n

nr
N

N

n
+−+−++∑=⋅∑=+

−

=

+−

=

n
N

rn
N WW

N
nx

N
nx

N
nx

N
nxj 6

8

])]}
8

7
[]

8

3
[(])

8

5
[]

8
[[(+++−++++ (26)

])]
4

3
[]

4
[(])

2
[][{[(][]78[

1
8

0

)78(1

0

N
nx

N
nxj

N
nxnxWnxrX

N

n

nr
N

N

n
+−+++−∑=⋅∑=+

−

=

+−

=

n
N

rn
N WW

N
nx

N
nxj

N
nx

N
nxW 7

8

3
8])]}

8

7
[]

8

3
[(])

8

5
[]

8
[[(+−+++−+− (27)

where r=0,1,……(N/8 - 1). Following with the similar decomposition procedure, eight N/8

points DFT results can be further decomposed and then 64 N/64 points DFT results are

produced. After log8N time recursive decompositions, we can obtain the radix-8 DIF FFT

algorithm.

Considering the computation complexity, the radix-8 algorithm requires Nlog8N complex

multiplications and complex additions from the eq. (20) to (17). Alternately, the radix-8

algorithm requires 4
8

25
log

24

21
2 +− N

N
N

 real multiplications and

4
8

25
log

24

738
2 +−+ N

N
NT

 real additions, where T denotes the number of real additions for

the realization of coefficient lW8 .

2.2.4 Radix-2/4 DIF FFT Algorithm

 Duhamel et al. [63] presented the radix-2/4 and radix-2/8 FFT algorithms, which achieve

the few multiplications and additions. The radix-2/4 algorithm takes the advantages of both

radix-2 and radix-4 algorithms. On the other hand, the radix-2/8 has the advantages of both

 25

radix-2 and radix-8 algorithms. However, the radix-2/4 and radix-2/8 algorithms are less

regular than the fixed-radix based algorithms. To decimate the frequency series into

even-numbered points and odd-numbered points, the radix-2/4 DIF FFT algorithm can be

obtained. After the separation of X[k] into 2r , and 2r+1, we adopt the radix-4 decomposition

with the periodicity of rn
NW2 and sn

NW4 to obtain the following equations.

rn
N

N

n

rn
N

N

n
W

N
nxnxWnxrX

2

1
2

0

)2(1

0
]}

2
[][{][]2[++∑=⋅∑=

−

=

−

=
 (28)

)
4

)(14(1
4

0

)14(
1

4

0
]

4
[][]14[

N
ns

N

N

n

ns
N

N

n
W

N
nxWnxsX

++−

=

+
−

=
⋅∑ ++⋅∑=+

)
4

3
)(14(

1
4

0

)
4

2
)(14(

1
4

0
]

4

3
[]

4

2
[

N
ns

N

N

n

N
ns

N

N

n
W

N
nxW

N
nx

++−

=

++−

=
⋅∑ ++⋅∑ ++

sn
N

n
N

N

n
WW

N
nx

N
nxj

N
nxnx

4

1
4

0
])}

4

3
[]

4
[(])

2
[][{(+−+−+−∑=

−

=
 (29)

)
4

)(34(1
4

0

)34(
1

4

0
]

4
[][]34[

N
ns

N

N

n

ns
N

N

n
W

N
nxWnxsX

++−

=

+
−

=
⋅∑ ++⋅∑=+

)
4

3
)(34(

1
4

0

)
4

2
)(34(

1
4

0
]

4

3
[]

4

2
[

N
ns

N

N

n

N
ns

N

N

n
W

N
nxW

N
nx

++−

=

++−

=
⋅∑ ++⋅∑ ++

sn
N

n
N

N

n
WW

N
nx

N
nxj

N
nxnx

4

3
1

4

0
])}

4

3
[]

4
[(])

2
[][{(+−+++−∑=

−

=
 (30)

where r=0,1,……(N/2 - 1) and s=0,1,……(N/4 – 1) . Considering the computation complexity,

the radix-2/4 algorithm requires 43log2 +− NNN real multiplications and

43log3 2 +− NNN real additions.

 26

2.2.5 Radix-2/8 DIF FFT Algorithm

 Following the similar decomposition produce with radix-2/4 algorithm, the radix-2/8

algorithm can be derived by recursively decimating the frequency series into even-numbered

points and odd-numbered points. After the separation of X[k] into 2r , and 2r+1, we adopt the

radix-8 decomposition with the periodicity of rn
NW2 and sn

NW8 to obtain the following

equations.

rn
N

N

n

rn
N

N

n
W

N
nxnxWnxrX

2

1
2

0

)2(1

0
]}

2
[][{][]2[++∑=⋅∑=

−

=

−

=
 (31)

])]
4

3
[]

4
[(])

2
[][{[(][]18[

1
8

0

)18(1

0

N
nx

N
nxj

N
nxnxWnxsX

N

n

ns
N

N

n
+−+−+−∑=⋅∑=+

−

=

+−

=

n
N

sn
N WW

N
nx

N
nxj

N
nx

N
nxW

8

1
8])]}

8

7
[]

8

3
[(])

8

5
[]

8
[[(+−+−+−++ (32)

])]
4

3
[]

4
[(])

2
[][{[(][]38[

1
8

0

)38(1

0

N
nx

N
nxj

N
nxnxWnxsX

N

n

ns
N

N

n
+++++−∑=⋅∑=+

−

=

+−

=

n
N

sn
N WW

N
nx

N
nxj

N
nx

N
nxW 3

8

3
8])]}

8

7
[]

8

3
[(])

8

5
[]

8
[[(+−+++−++ (33)

])]
4

3
[]

4
[(])

2
[][{[(][]58[

1
8

0

)58(1

0

N
nx

N
nxj

N
nxnxWnxsX

N

n

ns
N

N

n
+−+−+−∑=⋅∑=+

−

=

+−

=

n
N

sn
N WW

N
nx

N
nxj

N
nx

N
nxW 5

8

1
8])]}

8

7
[]

8

3
[(])

8

5
[]

8
[[(+−+−+−+− (34)

])]
4

3
[]

4
[(])

2
[][{[(][]78[

1
8

0

)78(1

0

N
nx

N
nxj

N
nxnxWnxsX

N

n

ns
N

N

n
+−+++−∑=⋅∑=+

−

=

+−

=

n
N

sn
N WW

N
nx

N
nxj

N
nx

N
nxW 7

8

3
8])]}

8

7
[]

8

3
[(])

8

5
[]

8
[[(+−+++−+− (35)

where r=0,1,……(N/2 - 1) and s=0,1,……(N/8 – 1) . Considering the computation complexity,

the radix-2/8 algorithm requires MR(N) real multiplications and MR(N)+2Nlog2N real additions.

The notation of MR(N) could be defined as

 27

θ)5cos(])
2

1
(

4
)2(9[3)75.2()(55 −−++−= −− n

N
NnNM nn

R

θ)5sin(
7

1
])

2

1
(

4
5 −− − n

N n (36)

2.2.6 Radix-22 DIF FFT Algorithm

 He et al. [31] presented the radix-22 and radix-23 FFT algorithms, which achieve the low

computational complexities of the radix-4 and radix-8 algorithms but the low hardware

requirement of the radix-2 algorithm. The radix-22 algorithm takes the advantages of both

radix-2 and radix-4 algorithms. On the other hand, the radix-23 has the advantages of both

radix-2 and radix-8 algorithms. Furthermore, the radix-22 and radix-23 algorithms keep the

regularity with the fixed-radix based algorithms. Applying a 3-dimensional linear index map,

the parameters n and k of eq. (1) could be expressed as the combinations of n1, n2, n3 and k1,

k2, k3, respectively.

321 42
nn

N
n

N
n ++= , 321 42 kkkk ++= . (37)

where 0 ≦ n1, n2, k1, k2 ≦ 1.The common factor algorithm (CFA) [64] form can be written as

[]321 42 kkkX ++ ∑ ∑ ∑ ++=
−

= = =

++++1
4

0

1

0

1

0

)42)(
42

(

321
3 2 1

321321
)

42
(

N

n n n

kkknn
N

n
N

NWnn
N

n
N

x

















∑
















∑ +=
−

=

++

=

+1
4

0

)42)(
4

(1

0

)
4

(

32

23

3232

2

132
1)

4
(

N

n

kknn
N

N
n

knn
N

N
k
N WWnn

N
B

, (38)

where the butterfly structure of the first stage takes the form

)
24

()1()
4

()
4

(323232

2

11 N
nn

N
xnn

N
xnn

N
B kk

N ++−++=+ , (39)

Following a similar decomposition procedure, Eq. (38) can be decomposed as

 28

33

3

21321

4

1
4

0

)2(
3

,

4

321)(]42[kn
N

N

n

kkn
N

kk
N WWnBkkkX



















∑=++
−

=

+ , (40)

Meanwhile, the butterfly structure of the second stage can be obtained as

)
4

()()()(3

2

)2(
3

2

3
,

4

121121 N
nBjnBnB k

N
kkk

N
kk

N +−+= + , (41)

From eqs (38) and (40), it is obviously that the radix-22 algorithm reduces the non-trivial

multiplications as the radix-4 algorithm. Furthermore, the radix-22 algorithm still keeps the

radix-2 butterfly structure as depicted in (39) and (41).

2.2.7 Radix-23 DIF FFT Algorithm

Applying another 4-dimensional linear index map in (1), the parameters n and k could be

expressed as the combinations of n1, n2, n3, n4 and k1, k2, k3, k4 , respectively.

4321 1642
nn

N
n

N
n

N
n +++= ,

4321 1642 kkkkk +++= . (42)

where 0 ≦ n1, n2, n3, k1, k2, k3 ≦ 1. The common factor algorithm (CFA) [64] form can be

written as

[] ∑








∑








∑ ++=+++
−

= = =

1
16

0

1

0

1

0
432

2

4321
4 3 2

1)
84

(1642

N

n n n

k
N nn

N
n

N
BkkkkX

)842()42(
8

)2(
4 43214

3213212 kkkkn
N

kkkn
N

N

kkn
N

N WWW ++++++

















⋅

)1642(
1

8

0

1

0

)42(
8

43
,

4

43214

4 3

3213
21)

8
(kkkkn

N

N

n n

kkkn
N

N
kk

N WWnn
N

B +++
−

= =

++
⋅∑

















∑ +=

44

4

3214321

8

1
8

0

)42(
4

,,

8

)(kn
N

N

n

kkkn
N

kkk
N WWnB ⋅∑

















⋅=
−

=

++ , (43)

 29

where the butterfly structure of the each stage takes the form

)
24

()1()
4

()
4

(323232

2

11 N
nn

N
xnn

N
xnn

N
B kk

N ++−++=+

)
4

()()()(3

2

)2(
3

2

3
,

4

121121 N
nBjnBnB k

N
kkk

N
kk

N +−+= +

)
8

()()(4
,

4

4
,

4

4
,,

8

21

)34221(
8

21321 N
nBWnBnB kk

NN
kk

N
kkk

N

kkk
N

++=
++

, (44)

From eqs (43), it is obviously that the radix-23 algorithm reduces the non-trivial

multiplications as the radix-8 algorithm. Furthermore, the radix-23 algorithm still keeps the

radix-4 butterfly structure as depicted in (44).

In 1998, He and Torkeson suggested radix-22 FFT algorithm [31]. The reason to develop a

radix-22 algorithm instead of conventional radix-4 and radix-2 FFT is that the number of the

non-trivial multiplications can be further reduced in implementation. The radix-22 algorithm is

characterized with the same multiplication complexity as the radix-4 algorithm but still retain

the radix-2 butterfly structure. A radix-22 DIF FFT algorithm can be derived by recursively

decimating the frequency series into four subsets. By substituting k for 4r+2s2+s1, it follows

from equation (1) that

 30

2.3 The Review of Pipeline FFT Architecture

 Many researches were concentrated on the design of efficient FFT architecture. For the

purpose of achieving the most effective architecture, the appropriated algorithm and

architecture for the FFT processor should be chosen trading off its processing speed and its

chip cost. We could use five performance measures to define the efficiency of related FFT

architectures, which includes: input data organization, output data organization, internal data

bus loading, throughput and computation latency [1]. There are two types of data buffering

structures for pipelined-based FFT architecture, that are delay-commutator (DC) and

delay-feedback (DF). Base on these two structures, three different pipeline architectures could

be found: single-path delay feedback (SDF), multiple-path delay commutator (MDC) and

single-path delay commutator (SDC) architecture. Base on these three pipeline architectures,

figure 4 lists the radix-4 based 256-points pipeline FFT processors. According to the five

measures, the SDF architecture is well known to be more efficient than MDC and SDC

architectures in terms of input data ordering, output data ordering and internal bus loading.

Due to memory sharing in SDF architecture, the butterfly output uses the same storage with

its input. Although, the MDC architecture has the higher throughput rate than SDF

architecture, the MDC architecture spends the larger chip cost than SDF architecture. In Fig. 4,

the R4MDC architecture has four times throughput rate than R4SDF architecture. However,

the R4MDC architecture also increases 3 and 1.7 times of complex multipliers and memories

in the 256-points FFT computation. The most effective FFT processor should consider the

tightly hardware scheduling and chip cost at the same time.

(a) The R4SDF architecture.

(b) The R4MDC architecture.

 31

(c) The R4SDC architecture.

Fig. 4: Three 256-points pipeline FFT architecture.

2.4 The MIMO-FFT Architecture

The High Throughput Task Group, which established the IEEE 802.11n standard, is going

to develop the next-generation wireless LAN (WLAN) based on the 802.11 a/g, which

comprises the current OFDM-based WLAN standards [23]. According to the IEEE 802.11n

standard [23], 128-point and 64-point FFT/IFFT processors are utilized to support four

different throughput rates —R, 2R, 3R and 4R—within 3.6 or 4 µs. The transmitted signal

bandwidths are 40 and 20 MHz for the 128-point and 64-point FFT/IFFT processors,

respectively. In this study, we focus our 64-point FFT/IFFT design on 2×2 and 4×4

MIMO-OFDM WLAN systems, which require the high throughput rate of 2R and 4R.

Sansaloni et al. presented a detail comparison of several 64-points FFT/IFFT algorithms for

the MIMO-OFDM WLAN system [26]. According to that comparison, the multi-path delay

commutator (MDC) based design, which was built by the serial blockwise architecture, is the

most cost-efficient architecture for the MIMO-OFDM system. For a 4×4 MIMO-OFDM

system, the radix-4 multi-path delay commutator (R4MDC) architecture can achieve the

lowest hardware requirement, where the operating frequency equals the sampling frequency,

while the radix-2 multi-path delay commutator (R2MDC) architecture is the most

cost-efficient architecture for the 2×2 MIMO-OFDM system. However, the R4MDC- and

 32

R2MDC- based 64-point FFT/IFFT designs both have higher complex multiplicative

complexities than the radix-8, radix-2/4/8 and radix-2/8 based designs as listed in Table 1.

The design with the highest complex multiplicative complexity has the highest power

consumption [26, 31, 32, 36, 56, 57]. Maharatna et al. [41] recently presented a modified

radix-8 multi-path delay commutator (R8MDC) based 64-point FFT/IFFT WLAN processor

to reduce the hardware cost than the conventional R8MDC design with the appropriate

throughput rate of 5.33R. Although, the modified R8MDC design achieves the low complex

multiplicative complexity as radix-8 based algorithm, the large amount of memory and four

constant multipliers still lead to a large chip cost.

Table 1: Number of complex multiplication needed for the computation of a 64 point
FFT/IFFT processor.

 Complex Multiplication Constant Multiplication
Radix-2 98 N/A
Radix-22 76 N/A
Radix-4 76 N/A
Radix-2/4 72 N/A
Radix-2/4/8 48 32
Radix-8 48 32
Radix-2/8 48 32

Bouguezel et al. [59] reported the comprehensive analysis of the data transfer, address

generation and twiddle factor evaluation or access to the lookup table. The comparison results

of [59] reveal that the radix-2/8 algorithm has fewer arithmetic operations than other

low-radix and mixed-radix algorithms. Additional, Yeh et al. [32] indicate that the radix-2/8

algorithm is computationally superior to all other algorithms, since it has most trivial

multiplications (i.e., 1± and j±). Therefore, the radix-2/8 based architecture is presented for

the few constant multipliers, high utilization and low complex multiplicative complexity. Yeh

et al. [32] apply the radix-2/8 algorithm to present the radix-2/8 single path delay feedback

(R28SDF) -based 64-point FFT/IFFT processors. However, the single path delay feedback

(SDF) based architecture [32] has the lowest throughput rate of R. This investigation adopts

the novel radix-2/8 algorithm, which is different from the conventional radix-2/8 algorithm

[32, 59, 60], to further reduce the constant multiplier requirement in the proposed retrenched

8-point FFT (R8-FFT) unit. Lin et al. briefly described the algorithm that is adopted in the

SISO-OFDM application [57]. This work adopts this novel radix-2/8 algorithm and the

 33

multiplier after write (MAW) scheme [57] to devise two architectures, radix-2/8 multiple-path

delay feedback (R28MDF) and radix-2/8 multiple-path delay commutator (R28MDC), for the

high throughput rate system of 2R and 4R, respectively.

 34

Chapter 3 The Low-Computation Cycle and Power-Efficient

Recursive DFT/IDFT Design

 In this chapter, we focus on the design of low-computation cycle and power-efficient

recursive DFT/IDFT design. The detailed descriptions of a high-performance VLSI algorithm

and architecture by the hybrid of input strength reduction scheme, Chebyshev polynomial,

and register-splitting scheme for the DTMF application have been fully provided. The derived

algorithm and devised architecture [23] possesses the following features: low-computation

cycle (i.e., high throughput) and power efficiency at the expense of slightly increased area

overhead compared with the existing recursive DFT/IDFT structures. This chapter is

organized as follows. A new recursive DFT/IDFT algorithm and architecture by the hybrid of

input strength reduction, Chebyshev polynomial, and register-splitting schemes is revealed in

Section 3.1. In Section 3.2, the DTMF application using this new architecture has been

demonstrated. After the bit-level SNR simulation, the 212/106-point DFT/IDFT chip has been

successfully implemented for the DTMF detector system. In Section 3.3, the comparison

results are tabulated in terms of the amount of computation cycles for each output as well as

N-point DFT/IDFT, the maximum number of the channel density, the clock period, and the

number of real multipliers. At last, the concise statements conclude this chapter in Section 3.4.

3.1 New Recursive Algorithm and Architecture

 The DFT of the N-point input x[n] is defined as

kn
N

N

Nn

kn
N

N

n

kn
N

N

n
WnxWnxWnxky ⋅∑+⋅∑=⋅∑=

−

=

−

=

−

=

1

2

12

0

1

0
][][][][, (45)

where Nj
N eW /2π−= . By reducing the input strength of the DFT algorithm, equation (45)

can be folded as

∑ ⋅−−′∑ +⋅′=
−

=

−−−

=

12/

0

)1(12/

0
]1[][][

N

n

nNk
N

N

n

kn
N WnNxWnxky

()∑ ⋅−−′⋅+′=
−

=

−12/

0
)

2
cos(]1[][

N

n

k
N N

kn
nNxWnx

π

 35

 ())
2

sin(]1[][
12/

0 N

kn
nNxWnxj

N

n

k
N

π⋅∑ −−′⋅+′−+
−

=

− ,

(4 6)

where


 −≤≤

=′
otherwise ,0

12/0],[
][

Nnnx
nx . Since using the input strength reduction scheme in

(46), only half summation terms are needed to express y[k]. Equation (46) can be treated as

DCT and DST parts,][kyDCT and][kyDST , respectively, as

())
2

(cos]1[][][
12/

0 N

kn
nNxWnxky

N

n

k
NDCT

π
∑ ⋅−−′⋅+′=

−

=

− , (47)

and

())
2

(sin]1[][][
12/

0 N

kn
nNxWnxky

N

n

k
NDST

π
∑ ⋅−−′⋅−′−=

−

=

− . (48)

In (47), we can define]1[][][nNxWnxnr k
Nk −−′⋅+′= − . Replacing n by N/2-1-n, equation

(47) can be rewritten as

∑ ⋅=
−

=

12/

0
)

2
cos(][][

N

n
kDCT N

kn
nrky

π
∑

−−⋅−−=
−

=

12/

0
)

)12/(2
cos(]12/[

N

n
k N

nNk
nNr

π

()
∑

+⋅−−−=
−

=

12/

0
)

12
cos(]12/[)1(

N

n
k

k

N

nk
nNr

π () ()kgN
k

12/1 −⋅−= , (49)

where
()

∑
+⋅−−=

−

=
−

12/

0
12/)

12
cos(]12/[)(

N

n
kN N

nk
nNrkg

π
. Let

N

k
k

πθ 2= , and

()kgN 12/ − can be generalized as

() ()()∑ +⋅−=
=

i

n
kki nnirkg

0
1cos][θ , where 12 −= Ni (50)

It is known that Chebyshev polynomials are well defined as

))2cos((cos))1cos((2)cos(θθθθ −−⋅−= rrr , (51)

))2sin((cos))1sin((2)sin(θθθθ −−⋅−= rrr . (52)

Using the recursive identity stated in (51), equation (50) can be deduced as

() ()()∑ +−=
=

i

n
kki nnirkg

0
1cos].[θ () ()(){ }∑ −−⋅⋅−=

=

i

n
kkkk nnnir

0
1coscoscos2][θθθ

()∑ ∑ −⋅−−⋅⋅−=
= =

i

n

i

n
kkkkk nnirnnir

0 0
))1cos((][coscos][2 θθθ

 36

∑ ⋅+⋅−−+⋅=
−

=

1

0
cos))1cos((]1[2cos][2

i

n
kkkkk nnirir θθθ

 ()()∑ +⋅−−−−−⋅−
−

=

2

0
1cos]2[]1[cos][

i

n
kkkkk nniririr θθ

()kgkgirir iikkkk 21)(cos2]1[cos][−− −⋅+−−⋅= θθ . (53)

The z-transform of (53) can be denoted as

21

1

cos21

cos

)(

),(
−−

−

+−

−
=

zz

z

zr

zkg

k

k

k θ
θ

. (54)

For the DST part in (48), by letting]1[][][nNxWnxns k
Nk −−′⋅−′= − and replacing n by

nN −−12/ ,][kyDST can be derived as

∑ ⋅−=
−

=

12/

0
)

2
sin(][][

N

n
kDST N

kn
nsky

π () ()khN
k

12/1 −⋅−= , (55)

where () .))1sin((]12/[
12/

0
12/ ∑ +⋅−−=

−

=
−

N

n
kkN nnNskh θ Applying recursive identity of (52),

()khN 12/ − can be generalized as

() ()()∑ +⋅−=
=

j

n
kkj nnjskh

0
1sin][θ

kk

j

n
kkk jsnnjs θθθ sin][cos))1sin((]1[2

1

0
⋅+∑ ⋅+⋅−−=

−

=
()()∑ +⋅−−−

−

=

2

0
1sin]2[

j

n
kk nnjs θ

() ()khkhjs jjkkk 21cos2sin][−− −⋅+⋅= θθ . (56)

The z-transform of (56) can be denoted as

21cos21

sin

)(

),(
−− +−

=
zzzs

zkh

k

k

k θ
θ

. (57)

Equations (54) and (57) can be easily mapped into the recursive DFT structures as shown in

Fig. 5(a) and (b), respectively. Compared with the conventional architectures [51, 52, 62], it is

clear that by using the proposed DFT algorithm and architecture can reduce computations

cycles by 50%. In other words, with respect to the algorithm derivation, the throughput rate

can be easily doubled without increasing the operating frequency.

 37

][nrk

−
Σ

Σ Σ
−

k)1(−
][kyDCT

kθcos2

kθcos

1−z

1−z

(a)

kθcos2

][nsk

−
Σ

Σ
k)1(−

][kyDST

kθsin
1−z

1−z

(b)

Fig. 5: Block diagram of low-computation cycle for (a) DCT part and (b) DST part of the

DFT computation.

For the power-efficiency issue, we adopt the register-splitting scheme [51] (i.e., a type of

retiming schemes) to reduce the critical path. There are two main advantages of using

retiming scheme [65]: one is high speed and the other is low power. In this paper, we consider

this technique for lowering the power consumption where the speed does not need to be

increased. The resulting DCT part is depicted in the upper diagram of Fig. 6, where <=1

denotes a hardwired shifter with one-bit left shift. Similarly, the DST part can be modified as

the lower diagram of Fig. 6. In order to maintain the minimum clock period for the recursive

DFT computation, the forward pipeline register, , is exploited for the final sum output.

Later combining these two new parts into one, a novel recursive DFT architecture that

possesses lower computation cycle and more power-efficiency than the conventional DFT

structures can be obtained.

 38

][nrk

−
Σ

Σ

kθcos2

][nsk

−
Σ

Σ

kθcos

kθsin

<=1

1−z

1−z

1−z

1−z

Σ−
k)1(−

][kyΣ
j

Fig. 6: Block diagram of the proposed low-computation cycle and power-efficiency recursive

DFT architecture.

The IDFT of the N-point input y[k] is defined as

kn
N

N

k
Wky

N
nx −−

=
⋅∑=

1

0
][

1
][, (58)

To develop the low-computation cycle recursive IDFT algorithm, equation (58) using the

input strength reduction scheme can be modified as

()∑ ⋅−−′⋅+′=
−

=

12/

0
)

2
cos(]1[][

1
][

N

k

n
N N

kn
kNyWky

N
nx

π

 ())
2

sin(]1[][
1 12/

0 N

kn
kNyWky

N
j

N

k

n
N

π⋅∑ −−′⋅−′⋅+
−

=
, (59)

where


 −≤≤

=
otherwise ,0

12/0],[
]['

Nnky
ky . Similarly, equation (59) can be treated as the IDCT

and IDST parts,][nxIDCT and][nxIDST , respectively, as

())
2

(cos]1[][
1

][
12/

0 N

kn
kNyWky

N
nx

N

k

n
NIDCT

π
∑ ⋅−−′⋅+′=

−

=
, (60)

())
2

(sin]1[][
1

][
12/

0 N

kn
kNyWky

N
nx

N

k

n
NIDST

π
∑ ⋅−−′⋅−′=

−

=
. (61)

In (60), we can define]1[][][kNyWkykr n
Nn −−′⋅+′= . Replacing k by N/2-1-k, equation

(60) can be rewritten as

∑ ⋅=
−

=

12/

0
)

2
cos(][

1
][

N

k
nIDCT N

kn
kr

N
nx

π () ()ng
N N

n

12/
1

−⋅−= , (62)

 39

where
()

∑
+⋅−−=

−

=
−

12/

0
12/)

12
cos(]12/[)(

N

k
nN N

kn
kNrng

π
. Let

N

n
n

πθ 2= , and

()ngN 12/ − can be generalized as

() ()()∑ +⋅−=
=

i

k
nni kkirng

0
1cos][θ . (63)

Using the recursive identity stated in (51), equation (63) can be deduced as

() ()()∑ +⋅−=
=

i

k
nni kkirng

0
1cos][θ ()ngngirir iinnnn 21)(cos2]1[cos][−− −⋅+−−⋅= θθ ,

 (64)

The z-transform of (64) can be denoted as

21

1

cos21

cos

)(

),(
−−

−

+−

−
=

zz

z

zr

zng

n

n

n θ
θ

. (65)

For the IDST part in (61), by letting −′=][][kyksn]1[kNyWn
N −−′⋅ and replacing k by

kN −−12/ ,][nxIDST can be derived in similar behavior as

∑ ⋅=
−

=

12/

0
)

2
sin(][

1
][

N

k
nIDST N

kn
ks

N
nx

π () ()nh
N N

n

12/
1

−⋅−−= , (66)

where () ∑ +⋅−−=
−

=
−

12/

0
12/))1sin((]12/[

N

k
nnN kkNsnh θ . Applying (52), ()nhN 12/ − can be

generalized as

() ()()∑ +⋅−=
=

j

k
nnj kkjsnh

0
1sin][θ () ()nhnhjs jjnnn 21cos2sin][−− −⋅+⋅= θθ .

(67)

The z-transform of (67) can be denoted as

21cos21

sin

)(

),(
−− +−

=
zzzs

znh

n

n

n θ
θ

. (68)

After using the register-splitting scheme, equations (65) and (68) can be easily mapped

into the modified structures as shown in Fig. 7. Again, from the proposed algorithm and

architecture, it is obviously found that the 50% computation cycle reduction can be achieved

by contrast with that of [50, 51, 62]. That means double the throughput rate can be achieved

under the same operating frequency.

 40

][krn

−
Σ

Σ

nθcos2

][ksn

−
Σ

Σ

nθcos

nθsin

<=1

1−z

1−z

1−z

1−z

][nx

Σ−
N

n)1(−

Σ
j

−

Fig. 7: Block diagram of the proposed low-computation cycle and power-efficient recursive

IDFT architecture.

3.2 The Proposed DTMF Receiver and Chip Implementation

In this chapter, we are encouraged to design a low-computation cycle (i.e., high throughput)

and power-efficient (i.e., cost-effective) recursive DFT/IDFT architecture for the high channel

density DTMF detector in the VoP application. So as to reach this purpose, we follow two

down-to-earth steps to optimize our target design. First, according to the dataflow of the

DTMF detection as shown in Fig. 8 [13], we could find that the DTMF detector enables one

channel telephone [13] to provide 14 different recursive DFT computations. The total

computations for the DTMF detector include 6 106-sample frames and 8 212-sample frames.

Thus, we proposed one high channel density DTMF detector to handle both 212 and

106-sample frames based on the proposed recursive core architecture as shown in Fig. 9. The

proposed architecture in the first 106-sample frame needs full 106 clock cycles because it

involves extra 53 clock cycles for the input data latency. The other 5 106-sample frames only

require 53x5 clock cycles, and 8 212-sample frames only require 106x8 clock cycles. Besides,

the RDFT unit needs 14 reset clock cycle to initialize each frame computation. In total, one

channel DTMF detection process would only require 1,233 clock cycles per window. On the

contrary, based on the second-order Goertzel structure, one channel DTMF detection would

require 2,346 clock cycles for each window, which is almost twice the latency of the proposed

 41

framework.

The high channel density DTMF detector as depicted in Fig. 9 consists of the recursive DFT

(RDFT) units, an input unit, and a control unit. The behaviors of the above units are described

as follows:

RDFT Unit: The RDFT unit as depicted in Fig. 9 consists of one pre-processing element

and one recursive processing element (PE). The pre-processing element is able to provide the

intermediary data ks and kr to the following recursive PE. Recalling (49), (55), (62), and (66),

our proposed VLSI algorithm only needs N/2 clock cycles to accomplish each output data

sequence.

Input Unit: The input unit is composed of a dual port SRAM that can store 318 complex

data sequences. It could serve two sizes of input data buffer: 106 and 212 samples. According

to the proper scheduling, the input unit can provide the dual data][' nx and]1[' nNx −− for

the pre-processing element of the RDFT unit.

Control Unit: The control unit not only plays the role of the data sequence controller but

also a parameter controller, which feeds the proper coefficients to the RDFT units. In this

paper, since the input data and output data of the proposed architecture are all controlled in

the serial manner, the desired output data can be obtained for each N/2 clock cycles.

Compressed
PCM

Digital Signal
Multi-Channels

Stream

Log-to-Linear
Expansion

Buffer

Detection for 1336 Hz

Detection for 1477 Hz

Detection for 1633 Hz

DFT
(106 points)

Threshold
Detection

1209 Hz

Detection for 770 Hz

Detection for 852 Hz

Detection for 941 Hz

DFT
(212 points)

Threshold
Detection

697 Hz

High Frequceny detection group

Low Frequceny detection group

Shift
106

points
Low Frequceny detection group

Decision
Logic

4 DFTs

4 DFTs

4 DFTs

2 DFTs
2nd DFT Harmonice detection group

Detection
Results

Fig. 8: Dataflow of the DTMF detection [21].

 42

+WN
-k

Input Unit

Clock
Start
Reset

RDFT Unit
recursive PEPre-processing

Control Unit

y[k]
rk[n]

x’[N-1-n]

x[n]
sk[n]x’[n]

-

Dual Port
SRAM

PEDST

PEDCT

Clock-gated
controller

Sequence
controller

Parameter
controller

Fig. 9: Block diagram of the proposed high channel density DTMF architecture.

Transmitter Receiver

Channel
AWGN

DFT
(fixed point)

IDFT
(floating Point)

Fig. 10: Bit level SNR simulation environment.

Fig. 11: Bit level SNR simulation results.

Next, we adopt the bit-level SNR simulation to estimate the appropriate word-length

under the ITU specification [11] to further reduce the chip area and power consumption. We

know that the DTMF detector must operate properly under 15dB SNR or higher. Thus, we set

the simulation environment as depicted in Fig. 10 under 15dB with additive white Gaussian

 43

noise (AWGN) channel model. Then, we will only consider the DFT part in the receiver side

for the DTMF detector. In Fig. 10, the input signal x[n] passes thought IDFT block and then

propagates through the channel, where the above operations run at floating point simulation.

In the receiver side, the receiver signal is quantized into the fixed bits and performs the

fixed-point DFT calculation. We perform the system simulation of 212/106-sample frames at

the 8 DTMF signal frequency bins: 697, 770, 852, 941, 1209, 1336, 1477 and 1633 Hz as

shown in Fig. 8. In Fig. 11, the x-axis and y-axis denote the data word-length and the whole

system output SNR, respectively. We can observe that the output SNR will saturate as data

word-length increases. It is manifest that the proposed recursive architecture only needs 9-bit

resolution, which is less than 10-bit of the second-order Goertzel structure. That means we

need less hardware resources to achieve the ITU performance requirements under our

proposed architecture. In other words, if we select the same word-length for the proposed and

Goertzel based designs, the former is able to offer the higher design margin for better system

performance. In this case, because 3-bit design margin is sufficient, we choose the data

word-length as 12-bit wide.

 Concerning the chip implementation, our target is 212/106-point DFT/IDFT for high

channel density DTMF detector [17-19]. As we know, the ITU timing specification indicates

that the durations of DTMF signal detection and non-detection must be at least 40 ms and less

than 23 ms, respectively. At a sampling rate of 8K Hz, a 106-sample frame size corresponds

to a 13.3 ms window. After each window, the detected signal is compared to the last and

second-to-last values. If the result of the new window is the same as the last, but different

from the second-to-last, then a new valid DTMF signal has been found [13]. Recall that the

proposed architecture requires 1233 clock cycles to finish one channel DTMF detection for

each window. In this paper, the operating frequency and guard time are targeted at 20 MHz

and 31.6 ms, respectively. That means we only need 61.65 µs (i.e., 1233x50 ns) to finish one

window computation for one channel DTMF detection. Accompany with the DTMF FSM

controller [13], the proposed design can detect up to 128-channel DTMF signals, which is

superior to [12-14]. The implementation processes are as follows. First, the Cadence

NC-Simulator is used as the Verilog functional verification, so the outputs from the RTL

model are validated against a standard LabVIEW model. Then, the 212/106-point recursive

DFT/IDFT architecture in which the internal word-length is 12-bit has been synthesized with

the Design Compiler in TSMC 0.13 µm CMOS technology. After the post simulation, at the

present stage, the critical path is 43.12 ns in TSMC 0.13µm CMOS process. Consequently,

the proposed design is very suitable for DTMF detector system. The floorplan as well as the

 44

post-layout have been carried out using Astro. After the back-annotation from Start-RC

extractor, the post-simulation has been issued by NC-Simulator to verify the functionality.

The static timing check can be signed-off by PrimeTime. Finally, the power analysis and LVS

can be done by Astro Rail and Dracula, respectively. For post layout, the core area is 0.18

mm2. The chip characteristics listed in Table 2 shows that the average power dissipation of

the proposed high channel density DTMF detector is 1.25 mW@20 MHz at 1.2V supply

voltage. It is worth to notice that the proposed design could handle the 128 DTMF channel,

that means each channel only consumes 9.77 µW after the division of 128. The

microphotograph of the 212/106-point recursive DFT/IDFT core design as shown in Fig. 12

has been implemented as one hard IP (Intellectual Property). In this way, the proposed

architecture and chip can be reused in the system-on-a-chip (SOC) platform. The proposed

212/106-point recursive DFT/IDFT design not only meets 40 ms timing specification for ITU

standard, but also achieves the low power consumption due to the register-splitting scheme

and smaller bit-width requirement compared with the design of [12-14].

Table 2: Chip Characteristics of the Proposed DTMF detector.

Maximum Channel 128
DFT Length (N) 212/106 points
Input Word Length (w) 12 bits
Critical Delay Time 43.12 ns
Chip Area 387 µm x 469 µm

Power Consumption per 9.77 µW@20
Process Technology TSMC 0.13 µm

 45

Input Unit

Control Unit

RDFT Unit

Fig. 12: The 212/106-point recursive DFT/IDFT chip layout.

 46

3.3 The Comparison of Different Recursive DFT/IDFT

Architecture

In this section, we give a comprehensive comparison result as listed in Table 3 in

terms of the number of computation cycles for each DFT/IDFT output as well as N-point

DFT/IDFT calculation, the maximum number of channel density, the clock period, and

the number of real multipliers. Note that the operation time of a complex multiplication

requires am TT + . Our proposed work [66] based on the input strength reduction scheme

can save half computation cycles for each DFT/IDFT output compared with the existing

works [51, 52, 62] at the expense of slightly increased area cost. Note that we make a

comparison between our proposed work and the best case design of [52], FAST

fixed-coefficient recursive DFT (FFR-DFT), in terms of specific terminologies in Table 3.

At the same time, the reference structure of [62] is the block diagram as shown in Fig. 9.2

of [62]. Compared with the results of the recursive algorithm in [53] which, for example,

requires 2794 computational cycles to obtain all 64-point DFT outputs, the proposed

core-type architecture requires 2048 computational cycles. In other words, our proposed

work exploiting the input strength reduction scheme has the lowest computation cycles

among existing structures [51-53, 62]. As a consequence, our proposed architecture is

capable of providing the highest channel density in the DTMF communication system.

From the implementation results, it is obviously seen that the channel amount of the

proposed architecture is double compared with other designs [51, 52, 62]. Since

exploiting the register-splitting scheme, the proposed one inherently has higher speed

than the recursive structures of [51, 52, 62] and possesses the same operating frequency

as that of our previous work [51]. According to the critical path comparison in Table 3,

the proposed DFT/IDFT fabric owns am TT 2+ clock period and the clock periods in [52,

53, 62] are of am TT 3+ , am TT 2+ , and am TT 52 + , respectively. As mentioned in

Section 3.1, the register-splitting scheme either achieves high speed or low power

computation. In this article, we consider this technique for lowering the power

consumption where the speed does not need to be increased [65]. In Table 3, if the

architecture possesses a shorter clock period, less power consumption can be achieved

while keeping the same clock rate. However, considering the hardware complexity, the

proposed DFT/IDFT architecture requires two more multipliers than the previously

proposed one [51]. Furthermore, based on the proposed work, we can easily construct a

 47

parallel-type recursive DFT/IDFT architecture for other applications such as the matching

filter and equalizer. The parallel-type architecture can significantly reduce the number of

computation cycles for N-point DFT/IDFT from 2/2N to 




⋅
P

NN

2
, where P is the

number of RDFT and  •••• indicates the minimum integer value greater than or equal to

•••• . Thus, the maximum throughput can be achieved. As a consequence, in Table 3, it

reveals that our proposed architecture has characteristics of the lowest computation cycle

(i.e., highest throughput), the maximum number of channel density, and power efficiency.

Table 3: Comparison Results among the Recursive DFT/IDFT Architectures.
Parameters Second Order

DFT/IDFT [2]
V-Ys’ Structure
[20] (Core Type)

Y-Cs’ Structure
[21] (FFR-DFT)

Proposed Work

of Computation
Cycles for Each
y[k] or x[n]

N N N 2/N

of Computation
Cycles for
N-Point
DFT/IDFT

2N 2N 2N 2/2N

Maximum of
Channel Density
(in TSMC 0.13
µm)

64 64 64 128

Clock Period am TT 3+ am TT 2+ am TT 52 ++++ am TT 2++++

of Real
Multipliers

6 4 6
(Pre-processing

Excluded)

6
(Pre-processing

Excluded)

 48

3.4 Summary

One new recursive DFT/IDFT algorithm and architecture based on a hybrid of input

strength reduction scheme, the Chebyshev polynomial and register-splitting scheme is

devised in this framework. The analyzed results show that the proposed VLSI algorithm

leads to the fewest computation cycle and the highest throughput rate. Moreover, the

proposed 212/106-point recursive DFT/IDFT chip design has been successfully

implemented in 0.13 µm CMOS technology and possesses the power-efficiency

consumption of 9.77 uW@20 MHz at 1.2V supply voltage for each channel. These

features guarantee that the proposed high-throughput and power-efficient VLSI

architecture is certainly amenable to high channel density DTMF systems.

 49

Chapter 4 Effective FFT/IFFT Processors for MIMO-OFDM

WLAN Systems

 In this chapter, we adopts the novel radix-2/8 algorithm, which is different from the

conventional radix-2/8 algorithm [32, 59, 60], to further reduce the constant multiplier

requirement in the proposed retrenched 8-point FFT (R8-FFT) unit. Accompany with the

multiplier after write (MAW) scheme [57], this work adopts the novel radix-2/8 algorithm

to devise two 64-points FFT/IFFT architectures, radix-2/8 multiple-path delay feedback

(R28MDF) and radix-2/8 multiple-path delay commutator (R28MDC), for the high

throughput rate system of 2R and 4R, respectively. A detailed comparison of the 64-point

FFT/IFFT processors among several existing chips has been presented for the 2×2

MIMO-OFDM system, revealing that the new R28MDF implementation achieves the low

complex multiplicative complexity, high butterfly utilization, low hardware cost and

appropriate throughput rate. In the 4×4 MIMO-OFDM system, the proposed R28MDC

implementation further applies the fully pipeline architecture to achieve 100% utilization

of the complex multipliers, adders and memory. Comparison results indicate that the

R28MDC architecture achieves the lower multiplicative complexity and lower chip cost

than the R4MDC [40, 61] and other pipeline FFT/IFFT architectures. Thus, the proposed

R28MDF and R28MDC architectures clearly achieve the high efficiency advantages for

the 2×2 and 4×4 MIMO-OFDM WLAN application, respectively. The organization of this

chapter is listed as follows. Section 3.1 describes the proposed modified radix -2/8

FFT/IFFT algorithm. Section 4.2 then discusses the corresponding R28MDF and

R28MDC fabrics and the detailed timing considerations. The implementation issues are

discussed in Section 4.3. Section 4.4 summarizes the comparison results of the 64-point

FFT/IFFT architectures for the 2×2 and 4×4 MIMO-OFDM system. Conclusions are

finally drawn in Section 4.5.

 50

4.1 The Proposed Modified Radix-2/8 FFT/IFFT Algorithm

 The discrete Fourier transform (DFT) of the N-point input X[n] is given by

kn
N

N

n
WnXkZ ⋅∑=

−

=

1

0
][][, (69)

where Nj
N eW /2π−= and Z[k] represents the DFT output sequences for

10 −≤≤ Nk . Based on the decomposition of the radix-8 algorithm, (69) can be rewritten

as

()∑ ⋅







∑ ⋅+⋅=+

−

=

−

=

1

0

1

0
][

M

l

lt
M

T

m

sm
T

sl
MT WWMmlXWTtsZ . (7 0)

Equation (4.2) indicates that the 64-point DFT can be separated into two-dimensional

8-point FFTs, where 8== TM . The 8-point FFT computation in (70) can then be

written as:

































⋅

































=

































7

6

5

4

3

2

1

0

1
8

2
8

3
8

4
8

5
8

6
8

7
8

0
8

2
8

4
8

6
8

0
8

2
8

4
8

6
8

0
8

3
8

6
8

1
8

4
8

7
8

2
8

5
8

0
8

4
8

0
8

4
8

0
8

4
8

0
8

4
8

0
8

5
8

2
8

7
8

4
8

1
8

6
8

3
8

0
8

6
8

4
8

2
8

0
8

6
8

4
8

2
8

0
8

7
8

6
8

5
8

4
8

3
8

2
8

1
8

0
8

0
8

0
8

0
8

0
8

0
8

0
8

0
8

0
8

7

6

5

4

3

2

1

0

X

X

X

X

X

X

X

X

WWWWWWWW

WWWWWWWW

WWWWWWWW

WWWWWWWW

WWWWWWWW

WWWWWWWW

WWWWWWWW

WWWWWWWW

Y

Y

Y

Y

Y

Y

Y

Y

 (71)

The notations Xi and Yi indicate the input data and output result of the 8-point FFT

computation, respectively, where 70 ≤≤ i . After eliminating the °180 and °90

redundancies of twiddle factors, another simple matrix result can easily be calculated. By

re-ordering the output sequence, the alternative matrix representation (72) can be

obtained.

 (72)

































−+−
−−−

+−+
+++

−+−
−−−

+−+
+++

⋅



































−

−

−

−

=

































)()(

)()(

)()(

)()(

)()(

)()(

)()(

)()(

0001000

0000010

0001000

0000010

0000100

00010001

0000100

00010001

7351

7351

7351

7351

6240

6240

6240

6240

1
8

1
8

1
8

1
8

7

6

3

2

5

4

1

0

XXjXX

XXjXX

XXXX

XXXX

XXjXX

XXjXX

XXXX

XXXX

jW

j

jW

j

W

W

Y

Y

Y

Y

Y

Y

Y

Y

 51

Clearly, the four quarters of the transform matrix (72) all exhibit the same symmetric

property. Thus, the 8-point FFT transform matrix in (72) can be decomposed as

)(1)(1
1

0
FFTFFT HG

Y

Y
+=







 ,)(1)(1
5

4
FFTFFT HG

Y

Y
−=







 (73)

)(2)(2
3

2
FFTFFT HG

Y

Y
+=







 ,)(2)(2
7

6
FFTFFT HG

Y

Y
−=







 (74)

where










−−−
+++

=
)()(

)()(

6240

6240
)(1 XXjXX

XXXX
G FFT

 (75a)










−+−
+−+

=
)()(

)()(

6240

6240
)(2 XXjXX

XXXX
G FFT

 (75b)

[] 








−−−
+++

⋅=
)()(

)()(
1

7351

73511
8)(1 XXjXX

XXXX
WH FFT

 (75c)

[] [] 








−+−−
+++−

⋅=








−+−
+−+

⋅⋅−=
)()(

)()(
1

)()(

)()(
1

7351

73511
8

7351

73511
8)(2 XXXXj

XXjXXj
W

XXjXX

XXXX
WjH FFT

 (75d)

In the similar behaviors, the IFFT equation representation can easily be calculated.

The detailed expression is given in [57]. The difference between the FFT and IFFT

equations is the sign bit in the matrixes 1G , 2G , 1H and 2H , which can easily

implement the FFT and IFFT processor in a single chip. Significantly, the presented

algorithm has the similar results as the conventional radix-2/8 algorithm with the

parameter “q=1, m=6” [59]. The conventional radix-2/8 algorithm [32, 59, 60] splits the

8-point FFT computation results into odd-half and even-half components in (72). Then,

the butterfly computation requires two constant multiplications, which can be calculated

by an “L” shaped butterfly. To implement radix-8 FFT algorithm more efficiently, the

purposed 8-point butterfly computations decomposed into another index map, which is

different from the conventional decimation-in-frequency (DIF) based radix-2/8 algorithm.

The derivation results of modified radix-2/8 algorithm in (72) indicates that 3
8W can be

replaced by 1
8jW− . Thus, the “L” shaped butterfly can be modified as illustrated in Fig.

13.

 52

1
8W

X0

X4

X2

X6

X1

X5

X3

X7

-1

-1

-1

-1

-j

-j

1
8jW−

Y0

Y4

Y2

Y6

Y1

Y5

Y3

Y7

-1

-1 1st

2nd

j−

-1

-1 j

j -1

-1
Fig. 13: The “L” shaped butterfly of novel radix-2/8 FFT algorithm.

 53

4.2 The Proposed MIMO-FFT Architecture

Applying the proposed radix-2/8 algorithm, we propose two 64-point R28MDF and

R28MDC FFT/IFFT architecture, for the high throughput rate system of 2R and 4R,

respectively.

4.2.1 R28MDF-based 64-Point FFT/IFFT Processor for 2×2

MIMO-OFDM system

block 3

X07 X06 X05 X04 X03 X02 X01 X00

X17 X16 X15 X14 X13 X12 X11 X10

X27 X26 X25 X24 X23 X22 X21 X20

X37 X36 X35 X34 X33 X32 X31 X30

X47 X46 X45 X44 X43 X42 X41 X40

X57 X56 X55 X54 X53 X52 X51 X50

X67 X66 X65 X64 X63 X62 X61 X60

Retrenched
8-Points
FFT Unit

Multiplier Unit

Y06 Y16 Y26 Y36 Y66 Y76

X(0:7)

X(8:15)

X(16:23)

X(24:31)

X(32:39),
X(0:7)

X(40:47),
X(8:15)

X(48:55),
X(16:23)

X(56:63),
X(32:39)

Y46 Y56

Y05 Y15 Y25 Y35 Y65 Y75Y45 Y55

Y04 Y14 Y24 Y34 Y64 Y74Y44 Y54

Y03 Y13 Y23 Y33 Y63 Y73Y43 Y53

Y02 Y12 Y22 Y32 Y62 Y72Y42 Y52

Y01 Y11 Y21 Y31 Y61 Y71Y41 Y51

Y00 Y10 Y20 Y30 Y60 Y70Y40 Y50

Y07 Y17 Y27 Y37 Y67 Y77Y47 Y57

Z[0:7], Z[16:23]
Z[8:15], Z[24:31]
Z[32:39], Z[48:55]
Z[40:47], Z[56:63]

2 Input Units (128 Words)

Delay Feedback Memory (64 Words)

Shift Data In
Simple Gated Control

Clock

Shift Data Out

X77 X76 X75 X74 X73 X72 X71 X70

Output
Control Unit

block 0

block 1

block 2

Fig. 14: Block diagram of the proposed R28MDF-based 64-point FFT/IFFT architecture

for 2X2 MIMO-OFDM system.

The R28MDF design comprises two input units (IU), one retrenched 8-point FFT

(R8-FFT) unit, one multiplier unit (MU), one delay feedback memory (DFM) and one

control unit (CU) as shown in Fig. 14. The detailed operations of each building unit are

described as follows.

IU: The IU contains one register bank, which can store 64 complex 16-bit word-length

data. These 64 complex registers are split into 8 parallel shift-register lines as illustrated

in Fig. 14. Each shift-register line can be easily controlled independently by the simple

clock-gated controller. In Figs. 16 and 18, the subscripts of each element are represented

as radix-8 based notation. Figure 14 shows that the proposed R28MDF-based serial

blockwise architecture contains two input units to store two channel input data for the 2×2

 54

MIMO-OFDM system, represented as X and X , to realize the functionality of the

input buffer as discussed in the chapter 1. To prevent the input data overflow, the

R28MDF architecture groups these 16 shift-register lines into four blocks, namely, block0,

block1, block2 and block3, each of which contains four parallel shift-register lines. In the

consequent timing frames, the proposed input unit applies two different combinations of

these four blocks to store two-channel input data to prevent input data overflow as

depicted in Fig. 15. Each timing frame contains 64 clock cycles. In Fig. 15, X(0:63),

X(64:127) and X(128:191) denote input data in the first, second and third timing frames,

respectively.

In the first timing frame, block0 and block1 are utilized to store input data X(0:31) and

X(32:63), block2 and block3 are used to store input data)31:0(X and)63:32(X as

shown in Fig. 15. The proposed R28MDF architecture requires 32 cycles to complete the

64-point FFT/IFFT computations, which is described in detail in the following subsection.

In the preceding 32 cycles of the second timing frame, the data X(0:63) in block0 and

block1 are pushed into the R8-FFT unit in parallel. Simultaneously, input data X(64:95)

and)95:64(X can seamlessly replace the data contexts in block0 and block1. During

cycles 96–127, the proposed design completes the 64-point FFT/IFFT computation of

data)63:0(X in block2 and block3, and input data X(96:127) and

)127:96(X concurrently replace the data contexts in block2 and block3. Based on these

block-based input unit architectures with appropriate multiplexing control, two channel

input data can be easily pushed to the R8-FFT unit using128 words shift-registers as

depicted in Fig. 14.

 55

Fig. 15: The timing sequence of the purposed block based input unit.

X1

Sel
G1, G2

Sel
H1, H2

X0

+
|

Y0 ,Y2

|
+X2

X4
X6

X3
X5
X7

mode

Shift-
and-
Add

Y1 ,Y3

Y4 ,Y6

Y5 ,Y7

Matrix
Computation 1

Matrix
Computation 2

Fig. 16: Block diagram of the proposed R8-FFT/IFFT unit.

R8-FFT unit: By sharing one constant multiplier in the radix-8 based butterfly in two

clock cycles, the proposed equation (72) could produce a low cost and high-efficiency

8-point FFT/IFFT butterfly kernel as illustrated in Fig. 16, called the R8-FFT unit. The

constant multiplier in the R8-FFT unit is fully implemented with the shift-and-add circuits,

while the proposed parallel type multiplier unit (MU) is fully implemented with eight

constant multipliers. The IFFT architecture can be easily obtained by controlling the

mode signal in Fig. 16, and the operations of IFFT are similar to those of FFT. The

detailed description is omitted here.

MU: The MU as illustrated in Fig. 17 comprises eight constant multipliers to realize

different multiplications of the sl
MTW in (70). For the purpose of completing the 64-point

FFT/IFFT computation in (70), the 64-point FFT/IFFT operation sequence can be

separated into two operational stages, namely the multiplication stage (MS) and the

 56

output stage (OS), as illustrated in Figs. 18(a) and 18(b), where the number inside

brackets denotes the usage of the constant name in the MU. Notably, the MU can only be

adopted in the MS. Thus, the input ports of the MU should be gated during the OS to

further reduce the power consumption. The MU contains five independent multiplication

pair-ports in parallel, which has one more port than the modified R8MDC design [41].

The modified R8MDC design has to been halted for five clock cycles during FFT

computation because of the resource conflictions. The proposed architecture adopts this

port to resolve the performance degradation. The conflict clearly occurs in four different

clock cycles, with clock cycle numbers of 6, 10, 11 and 14, as revealed in Fig. 18(a). In

the clock cycles 8, 11, 12, 13 and 16, the fifth pair-port P(4), could re-serve the

multiplication to re-fill the data)4(62R ,)8(64R ,)4(45R ,)4(74R and)4(66R to DFM,

which is called MAW. Using the MAW method, the proposed architecture is capable of

completing the computation in 16 clock cycles for each operational stage. The R28MDF

architecture only needs 32 clock cycles to complete the two operational stages. The

R28MDF architecture can thus complete two 64-Point FFT/IFFT computations in 64

clock cycles. Hence, the proposed R28MDF architecture can achieve a higher throughput

rate of 2R, which is the twice that of the R22SDF architecture as illustrated in Fig. 18(c).

DFM
or

DCM

Multiplier Unit

P(0)

P(1)

P(2)

P(4)

R

P(3)
R

Constant 1

Constant 8

Constant 7

Constant 6

Constant 5

Constant 4

Constant 2

Constant 3Y0 , Y2

Y1 , Y3

Y4 , Y6

Y5 , Y7

Constant 0

Fig. 17: Block diagram of the proposed MAW-based multiplier unit.

 57

Clock

X

P(0)

P(1)

P(2)

P(3)

X67 X70 X71 X72 X73 X74 X75 X76 X77 X00 X01 X02 X03 X04 X05 X06 X07 X10 X11

Y00(0)

Y10(0)

Y40(0)

P(4)

Y50(0)

Y30(0)

Y60(0)

Y70(0)

Y11(1)

Y41(4)

Y51(5)

Y31(3)

Y61(6)

Y71(7)

Y12(2)

Y42(8)

Y52(6)

Y32(6)

Y62(4)

Y72(2)

Y13(3)

Y43(4)

Y53(1)

Y33(7)

Y63(2)

Y73(5)

R62(4)

Y14(4)

Y44(0)

Y54(4)

Y34(4)

Y64(8)

Y74(4)

Y15(5)

Y45(4)

Y55(7)

R64(8)

Y35(1)

Y65(2)

Y75(3)

R45(4)

Y16(6)

Y46(8)

Y56(2)

R74(4)

Y36(2)

Y66(4)

Y76(6)

Y17(7)

Y47(4)

Y57(3)

Y37(5)

Y67(6)

Y77(1)

R66(4)

Z10

Z40

Z50

Z11

Z41

Z51

Y20(0) Y01(0) Y21(2) Y02(0) Y22(4) Y03(0) Y23(6) Y04(0) Y24(8) Y05(0) Y25(6) Y06(0) Y26(4) Y07(0) Y27(2) Z00 Z01

Cycle
Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(a) The first stage: Multiplication Stage/

Clock

Output Z00,10,

40,50

Z01,11,

41,51

Z02,12,

42,52

Z03,13,

43,53

Z04,14,

44,54

Z05,15,

45,55

Z06,16,

46,56

Z07,17,

47,57

Z20,30,

60,70

Z21,31,

61,71

Z22,32,

62,72

Z23,33,

63,73

Z24,34,

64,74

Z25,35,

65,75

Z26,36,

66,76

Z27,37,

67,77

X X 10 X11 X 12 X13 X 14 X15 X 16 X17 X 20 X21 X 22 X23 X 24 X25 X 26 X27 X 30 X31 X 32

Cycle
Number

18 27 28 29 30 31 32 33 34 3519 20 21 22 23 24 25 2617

(b) The second stage: Output Stage.

16 cycles

MS1 OS1 MS2 OS2

16 cycles 16 cycles 16 cycles 16 cycles

MS1 OS1

MS2 OS2

16 cycles 16 cycles 16 cycles16 cycles

MS3 OS3

MS4 OS4

(c) The timing sequence of (d) The pipeline timing sequence of
R28MDF design. R28MDC design.

Fig. 18: The timing sequence of the proposedR28MDF and R28MDC architectures.

DFM: The DFM contains one register bank, which can store 64 complex 16-bit

wordlength data. The DFM is adopted to store the intermediate coefficient parameters

from R8-FFT unit, as illustrated in Fig. 14. To save power, the DFM is built by one

matrix based buffer architecture with the proper-gated control, as illustrated in Fig. 14.

CU: The CU contains a 6-bit master counter to manage the entire procedures, and gates

the unused parts during the redundant period to minize power consumption. Although the

proposed CU should pay very small area effort to realize the MAW, the proposed design

still raises the throughput rate of 2R with only one constant multiplier.

 58

4.2.2 R28MDC-based 64-Point Pipeline FFT/IFFT

Processor for 4×4 MIMO-OFDM System

DCMMU

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

R8-FFT R8-FFT

8

8

8

8

8

8

8

8

SW

4 IU
(4x4 MIMO)

4

4

4

4

4

4

4

4

X

Z[0:7],
Z[16:23]

Z[8:15],
Z[24:31]

Z[32:39],
Z[48:55]

Z[40:47],
Z[56:63]

 Fig. 19: Block diagram of the proposed R28MDC-based 64-point FFT/IFFT architecture
for 4X4 MIMO-OFDM system.

For the 4×4 MIMO-OFDM WLAN application, another R28MDC design based on

pipeline architecture is presented to further raise the throughput rate to 4R, which is

double than that of the R28MDF architecture. The R28MDC design comprises four input

units (IU), two retrenched 8-point FFT (R8-FFT) units, one multiplier unit (MU), one

delay commutator memory (DCM) and one control unit (CU) as shown in Fig. 19.

Additionally, the R28MDC architecture has four IUs, allowing it to store four-channel

 59

data for the 4×4 MIMO-OFDM system. Based on the block-based input buffer

architecture, which is similar to the R28MDF design, the R28MDC architecture groups

32 shift-register lines into 16 blocks. Each block contains two parallel shift-register lines.

Applying two different combinations of these 16 blocks with a simple clock gated

controller in CU, these four IUs can prevent input data overflow in the consequent timing

frames for the 4×4 MIMO-OFDM system. For the 2×2 MIMO-OFDM WLAN system,

the R28MDF design apply the feedback path to reduce the number of R8-FFT unit to only

one with the 100% butterfly utilization rate as illustrated in Fig. 14. Compared with the

R28MDF architecture, the R28MDC architecture adopts the feedforward path rather than

the feedback path as illustrated in Fig. 19. Thus, the feedback-type memory architecture

of the DFM is replaced by the feedforward-type delay commutator memory (DCM)

 60

architecture. Additionally, another R8-FFT unit should be inserted following the DCM.

Otherwise, the structures of the R8-FFT unit and the MU are the same as those in the

R28MDF architecture, but two intermediate multiplexes have been eliminated.

The MAW scheme can finish the computation period of each stage in the R28MDC

architecture within 16 clock cycles without any performance degradation. In the R28MDF

architecture, the same R8-FFT unit should execute the computation of MS and OS with

the feedback path. The throughput rate of the R28MDF architecture is 2R. However, the

first R8-FFT unit only performs the MS computation, and the second R8-FFT unit only

performs the OS computation in the R28MDC architecture. Thus the R28MDC

architecture can provide the double throughput rate of the R28MDF. Hence, the four

channels computation can be completed in 64 clock cycles for the 4×4 MIMO-OFDM

system, as illustrated in Fig. 18(d). The proposed R28MDC architecture attains a high

throughput rate of 4R, which is the same as that of the R4MDC design.

4.3 Circuit Implementation

This work presents the R28MDF and R28MDC implementations for 2×2 and 4×4

MIMO-OFDM WLAN applications [23], respectively. As is well known, the processing

time of 64-point FFT/IFFT for IEEE 802.11n standard has to be within 3.2µs without the

guard interval [23]. The proposed 64-point FFT/IFFT design can maintain an appropriate

throughput in the sampling data frequency of 20MHz for the MIMO-OFDM system. The

R28MDF and R28MDC design thus achieves throughput rates of 2R and 4R to meet the

IEEE 802.11n standard, respectively. Following functional verification by MATLAB, the

proposed design was modeled in Verilog and verified using an NC-Verilog simulator. In

this investigation, the proposed design with an internal word length of 16 bits was

synthesized using a Design Complier based on TSMC 0.13µm 1P8M CMOS technology.

The floorplan and the post-layout were performed by Astro. Following the

back-annotation from Start-RC extractor, the post-simulation was performed by the

NC-Verilog simulator to verify the functionality. The static timing check was signed-off

by PrimeTime. Finally, the power analysis was performed by Astro Rail. Figure 20(a) and.

20(b) show the core layouts of the R28MDF and R28MDC designs, respectively. For the

post layout, the core area of R28MDF was 0.75 mm2, which includes power rings and

 61

power straps as depicted in Fig. 20(a). The average power dissipation of the proposed

R28MDF design was 19.42mW@20 MHz at 1.2V supply voltage. The core area of

R28MDC was 0.98 mm2, as depicted in Fig. 20(b), and the power dissipation was

23.57mW@20 MHz at 1.2V supply voltage. Table 4 lists the gate count usage of each

building unit. In Table 4, the small gate count usages in CU show that the small area

expense for supporting the MAW can be ignored. Significantly, the matrix-based DFM

architecture in the R28MDF design reduces routing complexity compared with the serial

architecture in [57]. The routing area of the physical design in our previous scheme was

reduced. Base on implementation results, the R28MDC implementation further has a

smaller routing area than R28MDF implementation using the feedforward path

architecture. Following the back-annotation, the static timing analyses indicate that the

critical paths of the R28MDF and R28MDC design are 48.3ns and 47.8ns, respectively.

The implementation results demonstrate that the proposed 64-point FFT/IFFT design

satisfies the 3.2µs timing specification of IEEE 802.11n standard for the 2×2 and 4×4

MIMO-OFDM wireless applications.

IUIUIUIU CUCUCUCU

R8-FFTR8-FFTR8-FFTR8-FFT

MUMUMUMUR8-R8-R8-R8-
FFTFFTFFTFFT

DCMDCMDCMDCM

 (a) The R28MDF implementation. (b) The R28MDC implementation.

Fig. 20: Layout view of the proposed 64-point FFT/IFFT processors.

Table 4: Area usage of each building block in the proposed R28MDF and R28MDC
design.

Implementation IU R8-FFT MU DFM/DCM CU
R28MDF 37.6 % 6.6 % 27 % 27.9 % 0.9 %
R28MDC 53.2 % 9.2 % 17.2 % 20 % 0.4 %

 62

4.4 The Comparison Discussion of MIMO-FFT Architecture

Considering the most efficient pipeline FFT processor in a single-input single-output

OFDM (SISO-OFDM) WLAN application, He et al. have presented several reliable

architectures and the detailed comparison of their hardware costs [31]. The comparison of

these architectures indicates that the radix-22 single-path delay feedback (R22SDF) has the

highest 50% butterfly utilization and lowest hardware resource consumption [31, 34].

However, the radix-22 based algorithm has a higher complex multiplicative complexity than

high-radix and other mixed-radix FFT algorithms, as revealed in Table 1. Furthermore, the

SDF based architecture has the lowest throughput rate of R, which can not meet the

requirements of the MIMO-OFDM applications. Considering the most efficient pipeline FFT

processor in the MIMO-OFDM WLAN applications, the comparison results of [26] indicates

that the R4MDC architecture meets the most efficient 64-points FFT/IFFT processor for the

4×4 MIMO-OFDM WLAN system. Although several R4MDC based 64-point FFT chips

have been discussed [40, 61, 72], only the design of Swartzlander et al. [40] can operate at the

data sampling frequency in the 4×4 MIMO-OFDM systems. Notably, Hui et al. [56] proposed

a digit-serial architecture base on radix-4 decomposition, with higher hardware utilization

(100%) than the R4MDC based design [40] in the SISO-OFDM system. Hui et al. made good

tradeoffs between the digit size and throughput rate in the SISO system. However, the radix-4

based design has a higher complex multiplicative complexity than high-radix and other

mixed-radix FFT algorithms, too. This work focuses on the high throughput rate design with

the low multiplicative complexity to fit the requirements of 2×2 and 4×4 MIMO-OFDM

systems.

This section presents detailed comparisons among the two proposed architectures, R28MDF

and R28MDC, and several famous FFT architectures in the 2×2 and 4×4 MIMO-OFDM

systems. An effective design is well to be dictated by considerations on area, timing, power

consumption and easily reuse. In this investigation, the systems were compared using five

indices —MIMO-FFT architecture, complex multiplicative complexity, throughput rate,

utilization and cost— to assess the effectiveness of FFT/IFFT processors. For the purpose of

estimating the area index between the different architectures, the conventional comparative

methodology [26] with the unit of equivalent adders was adopted. Based on the

implementation results of our process, one complex multiplier is equivalent to 50 complex

adders if it utilizes 16-bit precision and the scheme of three real multiplications and five real

additions. The 16-bit complex memory was converted to 1.3 complex adders. The area report

 63

of the logic synthesis tool demonstrates that one proposed MU is considered to equal 3.2

complex multipliers. Furthermore, the area of proposed constant multiplier is equivalent to

one-eighth times that of the proposed MU. Restated, one constant multiplier is approximately

equivalent to 0.4 complex multipliers.

4.4.1 2×2 MIMO-OFDM WLAN Application

Table 5: Comparison results of the 64-point FFT/IFFT chip designs in 2x2 MIMO-OFDM
system.

Cost Architecture MIMO-FFT architecture
(Frequency, MHz)

Complex
Multipli-c
ation #

Through-
put rate

Butterfly
Utilization
 ROM # complex

multipliers

constant
multipliers

Area without
memory (Area
with memory)

Modified R22SDF [34] Parallel Multi-Path (20) 76 R 50% 2 4 0 224 (390.4)
R28SDF [32] Parallel Multi-Path (20) 48 R 25% 4 4 8 304 (470.4)
R2MDC [67] Serial Blockwise (20) 98 2R 100 % 4 4 0 424 (834.8)
R4MDC [40] Serial Blockwise (20) 76 4R 50% 6 6 0 324 (776.4)
Modified R4MDC [61] Serial Multi-Stream (80) 76 4R 50% 4 4 0 340 (1120)
Modified R8MDC [41] Serial Blockwise (20) 48 5.33R 25% 0 3.2 4 228 (709)
Proposed R28MDF Serial Blockwise (20) 48 2R 100 % 0 3.2 1 197 (446.6)

Table 5 presents the comprehensive comparison results of seven existing 64-point

FFT/IFFT processors and the proposed R28MDF design in terms of MIMO-FFT architecture,

complex multiplicative complexity, throughput rate, butterfly utilization, the number of

ROM/complex multipliers/constant multipliers and the area index. Table 5 shows that the

proposed R28MDF and R8MDC design achieve the lowest complex multiplicative

complexity among the tested design. In terms of butterfly utilization, the proposed R28MDF

design achieved the highest butterfly utilization (100%) among those tested. The R28SDF [32]

and R22SDF [34] designs clearly have lowest throughput rates of R than other designs.

Significantly, the R8MDC-based FFT/IFFT architecture in [41] has two butterfly stages,

which only needs 12 and 11 clock cycles respectively. Base on the serial blockwise

architecture, the parallel input data for each butterfly stages in [41] could be provided

simultaneously to achieve the higher throughput rate. Table 5 shows that the modified

R8MDC [41] and R4MDC [40] design could attain higher throughput rates of 5.33R and 4R,

respectively, but both of them have lower butterfly utilization and higher chip cost than the

proposed R28MDF design. Sansaloni et al. [26] indicated that the MIMO-FFT processor with

 64

throughput rates of 2R and 4R with the least amount of hardware was more appropriate than

other architectures for 2×2 and 4×4 MIMO-OFDM applications, respectively.

Based on the serial blockwise architecture, the proposed R28MDF design should incur a

small cost penalty on two IUs and one DFM memory in the 2×2 MIMO-OFDM system.

When considering the memory area, the cost of the R28MDF design increases the area index

to 14.4% higher than that obtained with the R22SDF [34] design. However, the R2SDF design

increases the multiplicative complexity by 58.3% and reduces the butterfly utilization to 50%

of that of the R28MDF design. Furthermore, the proposed design and that of Maharatna et al.

[41], which only adopt one parallel type multiplier unit, do not require any coefficient ROM.

Following comprehensive comparison between different architectures, this investigation

demonstrates that the proposed R28MDF implementation minimizes the chip cost problem

associated with the R8MDC, R4MDC architectures, low throughput rate problem of R22SDF

and R28SDF architectures, and the high multiplicative complexity problem of R22SDF and

R2MDC architectures. Thus, the proposed R28MDF design makes an effective tradeoff

between complex multiplicative complexity, throughput rate, butterfly utilization and cost for

the 2×2 MIMO-OFDM application.

4.4.2 4×4 MIMO-OFDM WLAN Application

For a 4×4 MIMO-OFDM system, Table 6 presents the comprehensive comparison result

of several pipeline FFT/IFFT architectures in terms of the MIMO-FFT architecture,

throughput rate, complex multiplicative complexity, the utilization of all components, the

number of complex multipliers/complex adders/memory size and the area index of the entire

system. Table 6 shows that the proposed R28MDC design achieves the lowest complex

 65

multiplicative complexity among the tested design. Furthermore, the proposed R28MDC and

R4MDC [40] achieved the highest utilization (100%) for all components; thus R28MDC and

R4MDC design were the best among all pipeline architectures tested for the 4×4

MIMO-OFDM application. Although the R4MDC architecture [40] achieved 100% utilization

for all components, it also resulted in a chip area 25.6% larger than that of the R28MDC

architecture, when considering the memory cost. Regardless of whether memory cost is

considered, the proposed R28MDC architecture had the smallest chip area among all pipeline

architectures tested in the 4×4 MIMO-OFDM system. The R28MDC architecture did not

require any coefficient ROM, also representing an improvement over the R4MDC

architecture. Then, the R28MDC architecture achieved the lowest complex multiplicative

complexity, appropriate throughput of 4R, highest utilization for all components and lowest

chip cost, making it very suitable for the 4×4 WLAN MIMO-OFDM application.

Table 6: Comparison results of the 64-point pipelined FFT/IFFT architecture in 4x4
MIMO-OFDM system.

Pipeline
Architecture

MIMO-FFT
architecture

Complex
multipli-c
ation #

Through-
put rate

Complexm
ultiplier #
(Utilization)

Complex adder
(Butterfly
Utilization)

Memory Size
(Utilization)

Area without
memory (Area
with memory)

R2SDF [42] Parallel Multi-Path 98 R 20 (50%) 48 (50%) 252 (100%) 1048 (1375.6)
R22SDF [34] Parallel Multi-Path 76 R 8 (75%) 48 (50%) 252 (100%) 448 (775.6)
R23SDF [31] Parallel Multi-Path 48 R 8 (87.5%) 48+16T (50%) 252 (100%) 528 (855.6)
R24SDF [68] Parallel Multi-Path 76 R 8 (75%) 48 (50%) 252 (100%) 448 (775.6)
R4SDF [69] Parallel Multi-Path 76 R 8 (75%) 96 (25%) 252 (100%) 496 (823.6)
R4SDC [70] Parallel Multi-Path 76 R 8 (75%) 36 (25%) 504 (100%) 436 (1091.2)
R28SDF [32] Parallel Multi-Path 48 R 8 (12.5%) 64+8T (25%) 252 (100%) 504 (831.6)
R2MDC [67] Parallel Multi-Path 98 2R 8 (100%) 24 (100%) 316 (100%) 424 (834.8)
R23MDC [36] Parallel Multi-Path 48 2R 8 (87%) 24+8T (100%) 316 (100%) 464 (874.8)
R24MDC [71] Parallel Multi-Path 76 2R 16 (75%) 56 (71.2%) 380 (100%) 856 (1350)
R4MDC [40] Serial Blockwise 76 4R 6 (100%) 24 (100%) 348 (100%) 324 (776.4)
Modify
R4MDC [61]

Serial Multi-Stream 76 4R 4 (100%) 80+12T (100%) 600 (100%) 340 (1120)

Modify
R8MDC [41]

Serial Blockwise 48 5.33R 3.2 (75%) 48+4T (75%) 370 (75%) 228 (709)

Proposed
28MDC

Serial Blockwise 48 4R 3.2 (100%) 32+2T (100%) 320 (100%) 202 (618)

 66

4.5 Summary

 This work proposes a hardware-orientated approach for high efficiency to minimize the

complex multiplicative complexity, area cost and achieve 100% butterfly utilization with an

appropriate throughput rate. By adopting the proposed R8-FFT unit combined with the MAW

method, two efficient serial blockwise type 64-point FFT/IFFT processors are constructing for

the 2×2 and 4×4 MIMO-OFDM WLAN systems. For the 2×2 MIMO-OFDM system, the

proposed R28MDF design has the best performance in terms of lowest complex multiplicative

complexity, appropriate throughput rate of 2R, highest butterfly utilization and the fewest

complex multipliers, when compared with other existing 64-point FFT/IFFT processor

architectures. For the 4×4 MIMO-OFDM system, the proposed R28MDC outperforms

existing FFT/IFFT pipeline processor architectures and has the lowest complex multiplicative

complexity, an appropriate throughput rate of 4R, highest utilization rate (100%) of all

components and the lowest hardware cost. According to the IEEE 802.11n standard [23],

execution time for the 128-point and 64-point FFT/IFFT processor with 1–4 simultaneous

data sequences must be calculated within 3.6 or 4.0 µs. In total, eight operational modes of the

FFT/IFFT processor are required in the IEEE 802.11n standard. The effective reconfigurable

FFT/IFFT processor [73] supports eight operational modes in the IEEE 802.11n standard,

consumes small hardware and little power, is easily reused, and is an important topic for

future work.

 67

Chapter 5 Long-Length based Effective Pipeline FFT/IFFT

Processor

 In order to demonstrating the high efficiency for the long-length FFT/IFFT

computations, the proposed effective architecture focus on the design of 4096-point FFT/IFFT

processor ensuring the reasonable operating times for low chip cost and on the features of the

high hardware utilization rate. In this chapter, two high effective 4096-point pipeline

FFT/IFFT processors have been presented, namely R42SDF and R43SDF design, to achieve

the less complex multiplicative complexities as radix-16 and radix-64 based algorithm with

only radix-4 based algorithm. Results of comprehensive comparison further indicate that the

proposed R42SDF and R43SDF based pipeline processors achieve a higher utilization with a

smaller hardware requirement than R22SDF [31, 34] and other pipeline processors in the

4096-point FFT/IFFT computation, and thus have the higher hardware efficiency. Then, the

proposed architectures are very appropriate for the long-length based FFT/IFFT system. The

organization of this chapter is structured as follows. A new R42SDF and R43SDF FFT/IFFT

algorithms are given in Section 5.1. Section 5.2 demonstrates the proposed R42SDF and

R43SDF VLSI architectures. The finite word-length analysis is given in Section 5.3, and

indicates that the proposed architectures achieve the satisfactory system performance. Section

5.4 tabulates the comparison results in terms of hardware utilization and cost to demonstrate

the high cost-efficiency of the proposed architectures. The chip implementation is discussed

in Section 5.5. The section 5.6 draws conclusions.

 68

5.1 New Radix-42 and Radix-43 based FFT/IFFT Algorithm

5.1.1 Radix-42 based FFT Formula

The FFT of the N-point input x[n] is given by

kn
N

N

n
WnxkX ⋅∑=

−

=

1

0
][][, (76)

where Nj
N eW /2π−= . Applying a 3-dimensional linear index map, the parameters n and k

could be expressed as the combinations of n1, n2, n3 and k1, k2, k3, respectively.

321 164
nn

N
n

N
n ++= , 321 164 kkkk ++= . (77)

where 0 ≦ n1, n2, k1, k2 ≦ 3.The common factor algorithm (CFA) [64] form can be written as

[]321 164 kkkX ++ ∑ ∑ ∑ ++=
−

= = =

++++1
16

0

3

0

3

0

)164)(
164

(

321
3 2 1

321321
)

164
(

N

n n n

kkknn
N

n
N

NWnn
N

n
N

x

33

3

213

2

212
1

16

1
16

0

)4(3

0

)4(
16

32

4

)
16

(kn
N

N

n

kkn
N

n

kkn
N

N
k
N WWWnn

N
B



















∑
















∑ +=
−

=

+

=

+ , (78)

where the butterfly structure of the first stage takes the form

)
416

()()
16

()
16

(323232

4

11
N

nn
N

xjnn
N

xnn
N

B kk
N ++−++=+

)
4

3

16
()()

4

2

16
()1(3232

11
N

nn
N

xj
N

nn
N

x kk +++++−+ , (79)

Following a similar decomposition procedure, Eq. (78) can be decomposed as

33

3

21321

16

1
16

0

)4(
3

,

16

321)(]164[kn
N

N

n

kkn
N

kk
N

WWnBkkkX



















∑=++
−

=

+ , (80)

Meanwhile, the butterfly structure of the second stage can be obtained as

















+−+=)
16

()()()(3

4

163

4

3
,

16

121121
N

nBjWnBnB k
N

kkk
N

kk
N

















++
















+−+)
16

3
()()

16

2
()1(3

4

3
163

4

2
16

121121
N

nBjW
N

nBW k
N

kkk
N

kk ,

 (81)

Clearly, the decomposition creates three multipliers: 1
16
kW , 22

16
kW and 33

16
kW , as

 69

written in (81). Three full complex multipliers from the second butterfly stage

can be simplified as one single constant multiplier in the proposed R42SDF

architecture. The constant multiplier cost can be further reduced by applying the

subexpression elimination algorithm. The detailed hardware structure of

constant multiplier is described in the next section. The second radix-4 butterfly

structure in (81) is the same as the first radix-4 butterfly structure in (79) after

simplification of the common factor of the constant multiplier. The complete

radix-42 decimation-in-frequency (DIF) FFT algorithm is obtained by applying

the CFA procedure recursively to the remaining FFTs of length N/16 in (80), as

illustrated in Fig. 21. Figure 21 indicate that the proposed radix-42 algorithm

decomposes the N-points FFT computation by cascading the number of log16N

radix-16 based butterfly (R16-BF) computations, which can be split into two

cascading radix-4 based butterfly (R4-BF) computations as depicted in (79) and

(81). When the variables of k1, k2 and k3 were treated as constants for each single

output X[k1+ 4k2 +16k3] as depicted in (78) and (80), the summation rages

indicate that the required computation results of first and second radix-4

butterfly stage were N/4 and N/16, respectively, as depicted in Fig. 21. The

radix-42 algorithm has the same multiplicative complexity as the radix-16

algorithm, but still retains the radix-4 butterfly structure. Significantly, the

radix-16 algorithm clearly has a lower multiplicative complexity than other

low-radix algorithm, such as a radix-22 algorithm. For instance, the number of

complex multiplications of the 256-point FFT computation adopting the radix-22

and radix-42 algorithms are 1539 and 224, respectively. Thus, the proposed

design based on the new radix-42 algorithm has a lower multiplication

complexity (85.4%) than the R22SDF design [31][34]. Furthermore, as

mentioned above, the radix-42 algorithm does not require any multiplication in

the single butterfly structure.

 70

)4(213 kkn
NW +

,1
16
kW

,12
16

kW
13

16
kW

)4(213 kkn
NW +

)4(213 kkn
NW +)4(213 kkn

NW +

,1
16
kW

,12
16

kW
13

16
kW

,1
16
kW

,12
16

kW
13

16
kW

,1
16
kW

,12
16

kW
13

16
kW

Fig. 21: The CFA decomposition procedure of the proposed radix-42 based N-point FFT algorithm.

5.1.2 Radix-42 based IFFT Formula

Following the similar procedure, the radix-42 IFFT algorithm can be obtained as below. The

IFFT of the N-point input X[k] is given by

kn
N

N

k
WkX

N
nx −−

=
⋅∑=

1

0
][

1
][, (82)

In (82), the coefficient
N

1
 can be implemented with the simple right-shift circuit. Thus,

the IFFT derivation results can be written as

)164(321 nnnx ++ ∑ ∑ ∑ 




 ++=
−

= = =

++++−1
16

0

3

0

3

0

)164)(
164

(

321
3 2 1

321321

164

1
N

k k k

nnnkk
N

k
N

NWkk
N

k
N

X
N

33

3

213

2

212
1

16

1
16

0

)4(3

0

)4(
16

32

4

)
16

(
1 nk

N

N

k

nnk
N

k

nnk
N

N
n
N WWWkk

N
B

N
−

−

=

+−

=

+−



















∑
















∑ +=

33

3

21321

16

1
16

0

)4(
3

,

16

)(
1 nk

N

N

k

nnk
N

nn
N WWkB

N
−

−

=

+−



















∑=
, (83)

where the butterfly structure of the first and second stage has the form

))
4

3

16
()()

4

2

16
()1()

416
()()

16
()

16
(3232323232

4

1111
N

kk
N

xj
N

kk
N

x
N

kk
N

xjkk
N

xkk
N

B nnnn
N ++−+++−+++++=+ ,

(84a)

and

















++
















+−+
















++= −−−)
16

3
()()

16

2
()1()

16
()()()(3

4

3
163

4

2
163

4

163

4

3
,

16

121121121121
N

kBjW
N

kBW
N

kBjWkBkB n
N

nnn
N

nnn
N

nnn
N

nn
N

.

 (84b)

 71

Notably, the only difference between FFT and IFFT algorithm are the sign bits

as given in (79), (81) (84a) and (84b). Therefore, the pipeline FFT/IFFT

processor can be easily implemented with a single module by controlling the

sign coefficient. Additionally, the proposed pipeline IFFT processor has a similar

butterfly structure and a single constant multiplier structure with the proposed

pipeline FFT processor, which could replace the three multipliers: 1
16

nW − , 22
16

nW−

and 33
16

nW− .

5.1.3 Radix-43 based FFT/IFFT Formula

Applying another 4-dimensional linear index map in (76), the parameters n and k could be

expressed as the combinations of n1, n2, n3, n4 and k1, k2, k3, k4 , respectively.

4321 64164
nn

N
n

N
n

N
n +++= ,

4321 64164 kkkkk +++= . (85)

where 0 ≦ n1, n2, n3, k1, k2, k3 ≦ 3. The common factor algorithm (CFA) [64] form can be

written as

[] ∑








∑







∑ ++=+++
−

= = =

1
64

0

3

0

3

0
432

4

4321
4 3 2

1)
6416

(64164

N

n n n

k
N nn

N
n

N
BkkkkX

)64164(
)164(

64
)4(

16 43214
3213212 kkkkn

N

kkkn
N

N

kkn
N

N WWW ++++++

















⋅

)64164(
1

64

0

3

0

)164(
64

43
,

16

43214

4 3

3213
21)

64
(kkkkn

N

N

n n

kkkn
N

N
kk

N WWnn
N

B +++
−

= =

++
⋅∑

















∑ +=

44

4

3214321

64

1
64

0

)164(
4

,,

64

)(kn
N

N

n

kkkn
N

kkk
N

WWnB ⋅∑
















⋅=
−

=

++ , (86)

where the butterfly structure of the each stage takes the form

The first butterfly stage:

 72

)
46416

()()
6416

()
6416

(432432432

4

11
N

nn
N

n
N

xjnn
N

n
N

xnn
N

n
N

B kk
N +++−+++=++

)
4

3

6416
()()

4

2

6416
()1(432432

11
N

nn
N

n
N

xj
N

nn
N

n
N

x kk +++++++−+

The second butterfly stage:

















++−++=+)
1664

()()
64

()
64

(43

4

1643

4

43
,

16

121121
N

nn
N

BjWnn
N

Bnn
N

B k
N

kkk
N

kk
N

















+++
















++−+)
16

3

64
()()

16

2

64
()1(43

4

3
1643

4

2
16

121121
N

nn
N

BjW
N

nn
N

BW k
N

kkk
N

kk

The third butterfly stage:

)4(2
644

16

)4(
644

16

4
,,

64

2113211321)
64

()()()(kkk
N

kkkk
N

kkk
N W

N
nBjWnBnB ++ +

















+−+=

















++
















+− +)
64

3
()()

64

2
()1(4

16

)4(3
644

16

132113
N

nBjW
N

nB k
N

kkkk
N

k , (87)

The complete radix-43 DIF FFT algorithm is obtained by applying the CFA

procedure recursively to the remaining FFTs of length N/64 in (86). Thus, the

radix-43 algorithm has few multiplicative complexities as the radix-64 algorithm,

but still retains the simple radix-4 butterfly structure. For instance, the numbers

of complex multiplications in the 4096-point FFT computation adopting the

radix-22, radix-42 and radix-43 algorithms are 13996, 7425 and 3969,

respectively. Thus, the proposed radix-43 algorithm has a lower multiplication

complexity (71.6%) than the radix-22 algorithm [31, 34]. Significantly, the

radix-43 algorithm clearly has a lower multiplicative complexity than the

purposed radix-42 algorithm and other low-radix algorithms. According to the

similar radix-4 based butterfly architecture with only some sign inversions, the

radix-43 DIF IFFT computation could be obtained.

 73

5.2 Pipeline 4096-Point R42SDF and R43SDF based FFT/IFFT

VLSI Architecture

Base on the new proposed radix-42 and radix-43 DIF FFT algorithms, the

novel R42SDF and R43SDF architectures for supporting the 4096-point

FFT/IFFT computations are shown in Fig. 22 and 23, respectively. Two

proposed architectures both require six butterfly stages with 4095-word shift

registers. The R42SDF based 4096-point FFT/IFFT pipeline processor requires

three constant multipliers and two complex multipliers. The R43SDF based

4096-point FFT/IFFT pipeline processor requires four constant multipliers and

one complex multiplier. Comparing with the R42SDF design, the R43SDF design

replaces one complex multiplier with one constant multiplier in the 4096-point

FFT/IFFT computation. The detailed operations of each element are described as

follows.

R4-
BF

1024
1024
1024

R4-
BF

256
256
256

R4-
BF

64
64
64

R4-
BF

16
16
16

R4-
BF

4
4
4

R4-
BF

1
1
1

Stage I Stage II Stage III Stage IV Stage V Stage VI

Fig. 22: Block diagram of the R42SDF-based 4096-point FFT/IFFT VLSI architecture.

R4-
BF

1024
1024
1024

R4-
BF

256
256
256

R4-
BF

64
64
64

R4-
BF

16
16
16

R4-
BF

4
4
4

R4-
BF

1
1
1

Stage I Stage II Stage III Stage IV Stage V Stage VI

Fig. 23: Block diagram of the R43SDF-based 4096-point FFT/IFFT VLSI architecture.

 74

5.2.1 Radix-4 Butterfly

The derivation results of the radix-42 and radix-43 algorithms reveal that both the FFT/IFFT

butterfly computation in (78) and (86), can be easily computed with the same radix-4 butterfly

architecture. Notably, the radix-4 butterfly structure only requires trivial multiplication, which

involves real-imaginary swapping and sign inversion, and which does not require any

complex multiplication. Figure 24 illustrates the proposed radix-4 butterfly structure, which

only includes four four-input complex adders. Without any complex multiplier, the radix-4

based butterfly structure is more cost-efficient than higher-radix based butterfly structures.

Moreover, the proposed radix-42 algorithm has the same complex multiplication complexity

as the radix-16 algorithm, and radix-43 algorithm further has the few complex multiplication

complexity as the radix-64 algorithm. Thus, the proposed two pipeline architectures have the

high cost efficiency of lower radix architectures.

Fig. 24: Block diagram of the radix-4 butterfly architecture.

 75

5.2.2 Memory Structure

The memory structure of each butterfly stage is well known to be an important issue for the

effective pipeline FFT/IFFT processor. In this work, the delay feedback based memory

structure is adopted. In order to compute the radix-4 based butterfly computations, the input

data and the intermediate results have to be reordered as four concurrently data streams using

memory as shown in Fig. 24. In the radix-4 butterfly structure, four proposed operation modes

can finish the data reordering and the butterfly computation as shown in Fig. 25(a). Operation

modes 0–2 are adopted in the data reordering, and operation mode 3 is adopted in the

FFT/IFFT computation. Each radix-4 butterfly unit applies three parallel Fist-In First-Out

(FIFO) shift registers to store the serial data input and butterfly output in the feedback paths

as presented in Fig. 25(a). The timing sequence of N-point FFT/IFFT computation can be

divided into four stages, each stage contains N/4 clock cycles as presented in Fig. 25(b). The

required number of memory cells for the kth stage is 3×N/(4k). Significantly, the SDF based

pipeline FFT/IFFT structure is highly regular, which has the highly effective memory

structure with the simpler routing complexity [31, 32, 34, 35, 42, 43].

x(0 : N/4-1)

x(N/4 : N/2-1)

x(N/2 : 3N/4-1)

X[N/4 : N/2-1]

X[N/2 : 3N/4-1]

Mode 0 Mode 1 Mode 2 Mode 3

X[3N/4 : N-1]

(a) The proposed 4 operation modes in the radix-4 based butterfly stages.

0 (N-1)/4
N/
4

2N/4 3N/4

Clock

Clock #

Input

Operation
Modes #

x(o) x((N-1)
/4)

0 1 2 3 0

(2N-1)/4
(3N-1)/

4 (4N-1)/4 0 (N-1)/4

x(N/4) x((2N-1)
/4)

x(2N/4) x((3N-1)
/4)

x(3N/4) x((4N-1)
/4)

x(o) x((N-1)
/4)

(b) The timing sequences of 4 operation modes in the proposed pipeline architecture.

 76

Fig. 25: The proposed 4 operation modes of the radix-4 butterfly stage in the R42SDF and

R43SDF based 4096-point FFT/IFFT VLSI architecture.

The dual port memory is well known to be an intuitive implementation for the FIFO shifts

register. However, each cell in the dual port memory takes an area 33% larger than the

corresponding single port RAM cell. Furthermore, the dual port memory would consume

more power than single port memory [31]. In this study, the memory implementation of stage

I and II are realized by the single port SRAM. The proposed FIFO shift registers architecture

in the butterfly stage I is depicted in Fig. 26(a), where the notations of the input/output ports

denote the respective operators in (79) for the proposed operation mode 3. Due to the few

memory cell requirements, the stage III, IV, V and VI adopt the synchronize flip-flops to

implement the FIFO shift registers for the small chip cost. Accompany with the six words

synchronize flip-flops, the proposed FIFO architecture has a wide data width of six-words to

provide a six-words reading at a time as shown in Fig. 26(a). Base on the proposed FIFO

shifter registers as depicted in Fig. 26(a), the proposed memory architecture can concurrently

provide three operators for the radix-4 based butterfly unit in the current and consequent

cycles. Therefore, the size of single port SRAMs are 512×6 and 128×6 words in the stage I

and II, respectively. Accompany with the control signals of word selection, the proposed

single port SRAM adopts the simple word-control circuits to provide the ability of

independent-word writing in the same address as shown in Fig. 26(b). That means the

proposed single port SRAM, which has the wide data width, can easily achieve the

independent-word writing for the data reordering in the operation modes 0–2 as shown in Fig.

25(a). The detail data arrangement in the proposed single port memory is listed as Fig. 26(c).

In Fig. 26(c), the notation A(n) and B(n) denote the combinative data sets of three input data

and butterfly results after data reordering and butterfly computations, respectively. In the

butterfly stage I, A(n) and B(n) could be expressed as {x(n), x(n+N/4), x(n+N/2)} and

{ B0
N/4(n), B1

N/4(n), B2
N/4(n)}, respectively. Notably, each radix-4 butterfly unit could store the

input data and output results in the same SRAM for the highest memory utilization rate. The

read and write operations are interleaved and each of them is active every other clock cycle as

shown in Fig. 26(d), which can prevent the read/write conflict. Figure 26(d) shows the detail

timing sequence of the proposed memory architecture in the operation mode 3.

 77

512 x 6
 (words)

single port
SRAM

Q D

Q D

Q D

1 word

1 word
1 word

6 word

1 word

1 word

1 word

6 word

1 word x[n]

1 word

1 word

x[n+N/4]

x[n+2N/4]

x[(n-1)]

x[(n-1)+N/4]

x[(n-1)+2N/4]

1 word

1 word

1 word

Q D

Q D

Q D

DODI

B0
N/4(n)

B1
N/4(n-1)

B2
N/4(n-1)

B0
N/4(n-1)

B1
N/4(n)

B2
N/4(n)

(a) The proposed FIFO shift registers architecture on the butterfly stage I.

X ADR
Pre-

decoder

Y ADR
Pre-

decoder

Word
Line

Decoder Memory Array

Bit Line Pre-charge

Bit Line Multiplex

Write
Buffer
Data In

Sense
Amp.

Data Out

I/O

Control
Circuit

ADR

CLK

Write_EN

Word_Sel

DI DO

WL_EN

Y_ADR

X_ADR

BL_EN

WL

BL

DIN DOUT

Word_Sel

(b) The proposed single port SRAM with independent word control.

B2
1024

(1023)

Length:
512

Width : 3 words Width : 3 words

x[2048]x[1024]x[0]x[2049]x[1025]x[1]
x[2050]x[1026]x[2]x[2051]x[1027]x[3]
x[2052]x[1028]x[4]x[2053]x[1029]x[5]

Butterfly
Results:

B(n)

B1
1024

(1023)
B0

1024
(1023)

Input
Data:
A(n)

B2
1024

(1022)
B1

1024
(1022)

B0
1024

(1022)
B2

1024
(1021)

B1
1024

(1021)
B0

1024
(1021)

B2
1024

(1020)
B1

1024
(1020)

B0
1024

(1020)
B2

1024
(1019)

B1
1024

(1019)
B0

1024
(1019)

B2
1024

(1018)
B1

1024
(1018)

B0
1024

(1018)

(c) The memory context on the purposed butterfly stage I.

 78

CLK

DI

DO A(n-1)
& A(n)

A(n-3)
& A(n-2)

B(n-5)
& B(n-4)

B(n-3)
& B(n-2)

B(n-1)
& B(n)

Write_EN

(d) The timing sequence of proposed memory architecture in the operation mode 3.

Fig. 26: The proposed memory architecture of the butterfly stage I and II in the R42SDF and

R43SDF based 4096-point FFT/IFFT VLSI architecture.

5.2.3 Constant Multiplier

Based on the derivation results in Section 5.1, the radix-42 algorithm requires some

complex multiplications, namely 1
16
kW , 12

16
kW and 13

16
kW in the 4096-point FFT/IFFT

computation in (81). According to the SDF based architecture as depicted in Fig. 22, a single

data stream passes through the constant multipliers and complex multipliers. There is only

one complex multiplication, which is computed in (81) during each cycle. Then, the three full

complex multipliers can be simplified as a single constant multiplier. This subsection follows

three steps to reduce the complex multipliers to the most economical constant multipliers in

the R42SDF and R43SDF architecture. The implementation of constant multiplier in the

R42SDF architecture is presented as below. First, the multiplication of twiddle factors from Eq.

(81) is realized as the constant multiplier, which only contains shifters and adders as shown in

Fig. 27. Second, the complex conjugate symmetry rule is applied to decrease the number of

complex multiplications to only two constant multiplications per stage with some shuffle

circuits as shown in Fig. 27, thus achieving a constant multiplier cost reduction of 83%.

Finally, the subexpression elimination algorithm [65] is adopted to reduce the number of shift

circuits by more than 20%, and the number of complex adders by 50% in one constant

multiplier, as depicted in Fig. 27. The strictest constant multipliers are obtained in the

 79

purposed architectures by following these three steps. The cost penalty of the constant

multiplier is thus minimized. Similarity, the radix-43 algorithm has two retrenched constant

multipliers as depicted in (78). The constant multiplier of second stage in R43SDF design is

the same as the constant multiplier in R42SDF design. Following the similar reduction steps,

the constant multiplier of the third stages in R43SDF based design requires eight constant

multiplications with the cost reduction of 83%. Considering the chip cost in R43SDF design,

the constant multiplier in third stage increases slightly control complexity than the constant

multiplier in second stage.

>>4

>>8

>>7

>>9

>>1

>>3

>>6

>>12
+

+

+

“0”

+

+

>>3

>>12

>>7

>>1

>>4

>>6

>>8 +

+

+

“0”

+

+

>>2

S0

Real
input

Imaginary
input

Real
output

Imaginary
output

2's

2's

Constant Multiplier

[Real]
Constant 1: 0.923828 = 1-2-4-2-7-2-8-2-9

Constant 2: 0.707092 = 2-1+2-3+2-4+2-6+2-8+2-12

[Imaginary]
Constant 1: 0.382629 = 2-2+2-3+2-7-2-13+2-12

Constant 2: 0.707092 = 2-1+2-3+2-4+2-6+2-8+2-12

S1

S1 S1 S2

S1 S2

Complex
Adders: 5
(reduced 50%)
Shifts: 17
(reduce 20%)

S0

S0

S0

S0

S0
S0

Fig. 27: Block diagram of the proposed constant multiplier in R42SDF design.

 80

5.2.4 Eight-Folded Complex Multiplier

The proposed 4096-point R43SDF design has only one complex multiplier and one

coefficient ROM to realize the complex multiplication of twiddle factors)164(3214 kkkn
NW ++ in

(86). However, the proposed 4096-point R42SDF design requires two complex multipliers and

two coefficient ROMs to realize the)4(213 kkn
NW + in (79). To decrease the ROM size, the

complex conjugate symmetry rule and subexpression elimination [65] is applied to devise one

eight-folded complex multiplier as shown in Fig. 28. The proposed eight-folded complex

multiplier could reduce the storage size of 87.5 % for each coefficient ROM. In the proposed

R42SDF design, the first and second coefficient ROMs store 31 and 511 words, respectively.

However, the proposed R43SDF design only has one complex multiplier, which stores 511

words in the coefficient ROM. Comparing with the R43SDF design, the R42SDF design

requires a larger chip cost of two complex multipliers and two coefficient ROMs to complete

the 4096-point FFT/IFFT computation. The ROM address and data control circuit of R43SDF

design are easily realized by the 12-bit counter controller given in Table 6.

a+jb

b+ja-b+ja

-a+jb

-a-jb

-b-ja b-ja

a-jb

8/3N
NW

4/N
NW

8/N
NW

0
NW

8/7N
NW

4/3N
NW

8/5N
NW

2/N
NW

Fig. 28: The block diagram of eight-folded algorithm in the coefficient ROM.

 81

Table 7: The Data Control of The Coefficient ROM in the R43SDF design.
H = n3(k1+4k2) Address Mode

(H[9])
ROM address Data Mode

(H[7:5])
ROM
data

0~511 0 Two’s complement of H[9:0] 0 a+jb
512~1023 1 H[9:0] 1 b+ja
1024~1535 0 Two’s complement of H[9:0] 2 -b+ja
1536~2047 1 H[9:0] 3 -a+jb
2048~2559 0 Two’s complement of H[9:0] 4 -a-jb
2560~3071 1 H[9:0] 5 -b-ja
3072~3583 0 Two’s complement of H[9:0] 6 b-ja
3584~4095 1 H[9:0] 7 a-jb

5.3 Finite Word-Length Analysis

Due to the requirements of handheld devices, several specific issues should be

considered — small dimensions, light weight, and battery-power operation. The system

performance should then satisfy the relative specifications. A higher system performance

undoubtedly implies a larger chip cost and greater power consumption, owing to the wider

internal word-length. Since the chip cost and system performance are known to be a trade-off,

this study performed a finite word-length analysis to estimate the appropriate word-length for

the R42SDF and R43SDF based 4096-point FFT/IFFT processors. In this work, the output

signal to noise ratio (SNR) performance of 4096-point FFT/IFFT processor is estimated under

40dB additive white Gaussian noise (AWGN) channel. In our fixed-point simulation

environment, the input data of the double floating-point precision were generated from the

ideal IFFT (FFT) model by passing the 40 dB AWGN channel model in Matlab. The input

data with noise are sent into the proposed R42SDF and R43SDF pipeline FFT/IFFT

architectures, which are modeled at different fixed-point levels for each function unit. The

output SNR is obtained by comparing the original input data with the fixed-point model

output. The results after 100,000 iterations are averaged as depicted in Fig. 29, where the

x-axis and y-axis represent the internal word-length and the whole system output SNR,

respectively. These analytical results demonstrate that the output SNR saturated as the internal

word-length increased. It is obviously that the proposed R43SDF only requires 13-bit internal

word-length for each function unit to produce satisfactory performance under 40dB noise

environments, satisfying the DVB-H specification [27, 28]. Significantly, the proposed

R42SDF requires one more bit than R43SDF, which is 14-bit internal word-length for each

 82

function units. That means the R42SDF design has the larger chip cost than R43SDF design in

the 4096-point FFT/IFFT computation.

Fig. 29: Finite word-length analysis of the proposed pipeline R42SDF and R43SDF-based

4096 points FFT/IFFT architecture.

 83

5.4 The Comparison of Pipeline FFT/IFFT Architecture

This section presents the comprehensive comparison results of several famous pipeline

FFT/IFFT architectures to demonstrate the high efficiency of the proposed R42SDF and

R43SDF FFT/IFFT architectures. The architectures are compared in two indices, namely cost

and utilization, to express the hardware efficiency of the proposed FFT/IFFT architecture, as

listed in Tables 8 and 9. Table 8 lists the required hardware resources, where T denotes the

number of complex adders required in the implementation of the constant multiplier.

Significantly, the area of the complex multiplier and memory are well known to be the

dominant cost index in the pipeline FFT/IFFT design. The comparison results in Table 8

clearly demonstrate that the proposed R43SDF based-FFT/IFFT architecture has the fewest

complex multipliers requirement among other pipeline architectures. The R43SDF based

4096-point FFT/IFFT architecture only needs one complex multiplier, which is 80% and 95%

below the requirement of the R22SDF and R8MDC FFT/IFFT architectures, respectively.

Additionally, the proposed architectures maintain the minimum shift registers requirement

among the tested pipeline architectures. Although the proposed R42SDF and R43SDF based

architectures need slightly more complex adders than the R22SDF based architecture, this

small cost penalty is acceptable. To estimate the total chip cost in the 4096-point FFT/IFFT

architectures, which includes the number of complex multipliers, complex adders and

memory size, the conventional comparative methodology [26, 34] with the unit of equivalent

adders was used to estimate the cost value between the different architectures. Based on the

implementation results in our process, we convert the area of each complex multiplier and

complex memory to the 50 and 1.3 complex adder, respectively, and the scheme with three

real multiplications and five real additions, in the complex multiplier implementation. The

rightmost column of Table 8 lists the area indexes of the equivalent adder of the 4096-point

FFT/IFFT architecture. Clearly, the proposed R43SDF-based 4096-point FFT/IFFT

architecture has the lowest hardware requirements. Significantly, the cost advantages of our

proposed architectures become more evident when the transform length is larger. That means

the proposed architectures are very appropriate for the long-length FFT/IFFT computation.

Thus, the proposed R43SDF architectures have lower hardware cost than R42SDF and other

famous pipeline FFT/IFFT architectures in terms of the number of ROMs, complex

multipliers, complex adders, constant multipliers and shift registers.

 84

Table 8: Hardware Cost Comparisons of the Pipelined FFT/IFFT Architecture.
Pipeline archi-

tecture
Mult.

Comp-lexity
Complex

Mult.
Complex adders

(including
constant mult.)

Complex
Memory

Size

Equivalent
area in 4096

points
R2SDF [17] Radix-2 log2N-2 2log2N N-1 5847.5
R4SDF [18] Radix-4 log4N-1 8log4N N-1 5621.5
R8SDF [8] Radix-8 log8N-1 (24+2T)log8N N-1 5609.5
R22SDF [6] Radix-22 log4N-1 4log4N N-1 5597.5
R23SDF [5] Radix-23 2(log8N-1) 6log8N N-1 5647.5

R2MDC [13] Radix-2 log2N-2 2log2N 1.5N-2 8508.6
R22MDC [9] Radix-22 log2N-2 2log2N 1.5N-2 8508.6
R4MDC [14] Radix-4 3log4N-3 4log2N 2.5N-4 14104.8
R8MDC [15] Radix-8 7log8N-7 (24+2T)log8N 4.5N-8 30664.4

Proposed R42SDF Radix-42 log16N-1 (16+T)log16N N-1 5470.5
Proposed R43SDF Radix-43 log64N-1 (24+2T)log64N N-1 5429.5

Table 9: Hardware Utilization Rate Comparisons of the Pipelined FFT/IFFT Architecture.
Pipeline architecture Utilization rate of

complex Mult.
Utilization rate of
complex adders

(including constant
mult.)

Utilization rate of
complex memory

R2SDF [17] 50% 50% 100%
R4SDF [18] 75% 25% 100%
R8SDF [8] 87.5% 12.5% 100%
R22SDF [6] 75% 50% 100%
R23SDF [5] 87.5% 50% 100%

R2MDC [13] 50% 50% 50%
R22MDC [9] 37.5% 50% 50%
R4MDC [14] 25% 25% 25%
R8MDC [15] 12.5% 12.5% 12.5%

Proposed R42SDF 87.5% 56.25% 100%
Proposed R43SDF 96.9% 60.42% 100%

 85

Table 9 shows the comprehensive comparison of the hardware utilization rate in terms of

the utilization rate of complex multipliers, complex adders and complex memory. Clearly, the

proposed R43SDF architecture achieves the highest complex multiplier utilization rate among

the tested pipeline architectures (96.9%). Additionally, the proposed architecture maintains the

maximum complex memory utilization rate of 100%. Furthermore, the proposed R43SDF

architecture, including the constant multipliers, has the highest complex adder utilization rate

of 60.42%. Thus, the purposed R43SDF architecture achieves a higher hardware utilization

rate than R42SDF and other well-known pipeline FFT/IFFT architectures in terms of the

utilization rate of complex multipliers, complex adders, constant multipliers and complex

memory.

5.5 Chip Implementation

Following the functional verification in the Matlab environment, the proposed R42SDF and

R43SDF based 4096-point FFT/IFFT architectures in which the internal word-length of entire

design are 14-bit and 13-bit, respectively, were synthesized by the Design Compiler with

TSMC 0.13µm CMOS technology. Using the standard logic process rules, the single port

SRAM applies the 6T bit cell. The floorplan and post-layout were performed by Astro. The

post-simulation was issued by NC-Simulator to verify the functionality after back-annotation

was performed from the Start-RC extractor. The static timing check can be signed-off by

PrimeTime. Finally, the power analysis and DRC were conducted using Astro Rail and

Dracula, respectively. The core area of the post layout for the R42SDF and R43SDF design are

1.01 and 0.89 mm2, which includes power rings and power straps as depicted in Fig. 30(a) and

30(b) , respectively. The gate count usage of each building block for R42SDF and R43SDF

design are listed in Table 10. Comparing with the R42SDF architecture, the R43SDF

architecture can replace one complex multiplier with one constant multiplier in the 4096-point

FFT/IFFT computation as depicted in Fig. 22 and 23. Then, the R43SDF design reduces the

multiplier cost of 3.9 % than the R42SDF design as listed in Table 10, which includes the

complex and constant multipliers. It is obviously that 4095 words feedback memory

 86

dominates the chip of 77.34 % and 80.72 % for the R42SDF and R43SDF design, respectively.

Both of these two chips could operate at 20 MHz, thus satisfying the high throughput

requirement. Concerning the speed performance, because the pipelined multiplier operation is

easy to design at a clock rate of 20 MHz or even higher, the proposed architectures can

achieve a high clock rate by simple pipelining techniques for the involved arithmetic

components. The average power dissipation of the R42SDF and R43SDF based 4096-point

FFT/IFFT design are 6.3725 and 5.985 mW@20 MHz at 1.2V supply voltage. The layout

view of R42SDF design as shown in Fig. 30(a) has 68 I/O pins, of which eight pins are power

supply pins. Due to the few datawidth requirements, the layout view of R43SDF design as

shown in Fig. 30(b) has only 64 I/O pins. The proposed R42SDF and R43SDF based

4096-point FFT/IFFT implementation satisfies the system performance of DVB-H standard.

Additionally, the proposed R43SDF based 4096-point FFT/IFFT implementation has a low

power consumption (5.985 mW), and the lowest hardware requirement among the tested

pipeline architectures. These findings indicate that the proposed design meets the

requirements of high effective pipeline FFT/IFFT processor for SoC IP.

(a) The layout view of proposed R42SDF design.

 87

(b) The layout view of proposed R43SDF design.

Fig. 30: The layout view of proposed 4096-point pipeline FFT/IFFT processor.

Table 10: The Gate Count Usage of Each Building Block in the Proposed Design.
Categories Control Butterfly

Cores
Complex
Multiplier

Constant
Multipliers

Shift
Registers

R42SDF 0.33 % 10.1 % 9.83 % 2.4 % 77.34 %
R43SDF 0.35 % 10.6 % 5.03 % 3.3 % 80.72 %

 88

5.6 Summary

This work develops two high effective R42SDF and R43SDF pipeline VLSI architectures

that support the long-length FFT/IFFT computations. The proposed R43SDF pipeline

FFT/IFFT architecture has lower multiplicative complexity and higher hardware utilization

rate with smaller cost than R42SDF and other pipeline architectures. Following with

fixed-point analysis in 40dB AWGN environment, the proposed R42SDF and R43SDF based

4096-point FFT/IFFT designs are successfully implemented in 0.13 µm CMOS technology

with an internal word-length of 14 and 13-bits, respectively. The proposed R42SDF and

R43SDF based design have a low power consumption of 6.3725 and 5.985 mW @20 MHz at

1.2V supply voltage. Thus, these features ensure that the proposed R43SDF pipeline

4096-points FFT/IFFT processor design certainly meets the high effective VLSI architecture.

 89

Chapter 6 Effeeeective Triple-Mode Reconfigurable Pipeline

FFT/IFFT/2D-DCT Processor

 Tell et al. [8] presented the FFT/WALSH/1-D DCT processor for multiple radio

standards of the upcoming 4th generation wireless systems. Conversely, some designs [8-10]

only support 1-D DCT computation, and have no 2-D DCT support. However, 2-D DCT is

desirable for the video compression among wireless communication applications. This study

not only presents a single reconfigurable architecture for the 256-point FFT/IFFT modes and

the 8×8 2-D DCT mode, but also achieves high cost-efficiency in portable multimedia

applications. Results of comprehensive comparison further indicate that the proposed

R42SDF-based pipeline processor achieves a higher utilization with a smaller hardware

requirement than R22SDF-based pipeline processor [31] in the 256-point FFT/IFFT mode,

and thus has higher cost efficiency. The proposed R42SDF-based design also achieves

satisfactory performance for the DV encoding standard with the lowest cost in the 8×8 2D

DCT mode. The organization of this chapter is structured as follows. A new R42SDF

FFT/IFFT and 8×8 2D DCT algorithm is given in Section 6.1. Section 6.2 demonstrates the

proposed FFT/IFFT/2-D DCT pipeline architecture using the R42SDF algorithm. The finite

wordlength analysis is given in Section 6.3, and indicates that the proposed architecture

achieves the required system performance in both 256-point FFT/IFFT and 8×8 2-D DCT

modes with the lowest hardwire cost. Section 6.4 tabulates the comparison results in terms of

hardware utilization and cost to demonstrate the high cost-efficiency of the proposed

architecture, and also discusses the chip implementation. The section 6.5 draws conclusions.

 90

6.1 8×8 2D FFT and 8×8 2D DCT Formula

Two concurrent 2D DCTs can be calculated by the single 2D shifted FFT (SFFT)

algorithm [74] from the input reordering and post computation. This study presented a

high-speed pipeline processor to support the triple-mode 256-point FFT/IFFT/8×8 2D DCT

with the radix-42 algorithm. Two concurrent 2D DCTs results can be obtained by the

proposed radix-42 based architecture in the 8×8 2D DCT mode. The 8×8 2D DCT C[k1, k2] of

the input signal x(n1, n2) is given by

∑
+

∑ ⋅=
= =

7

0

117

0
212121

1 2

)
8

)
2

1
(

cos(),()()(
4

1
],[

n n

kn
nnxkbkbkkC

π
)

8

)
2

1
(

cos(
22 kn +

⋅
π

. (88)

This study neglects the post-scaling factor of)()(
4

1
21 kbkb in (88). The input data x(n1, n2)

could then be reordered as

)2,2(),(2121 iixiiy = ,

)12,2()7,(2121 +=− iixiiy ,

)2,12(),7(2121 iixiiy +=− ,

)12,12()7,7(2121 ++=−− iixiiy , (89)

where i1 = i2 = 0,1,2,3. After the scaling and input data reordering of (89), (88) can be recast as

)
16

)41(
cos()

16

)41(
cos(),(],[227

0

117

0
2121

1 2

nknk
nnykkX

n n

+
⋅∑

+
∑ ⋅=

= =

ππ . (90)

The value of X[k1, k2] is then calculated with the 8×8 2D SFFT with a time-domain shift of

1/4 samples. The detail description of the transfer function between 8×8 2D SFFT and 8×8 2D

DCT could be found in Appendix A.

∑ ⋅∑ ⋅=
=

++

=

7

0

)
4

1
(

8

)
4

1
(

8

7

0
2121

1

2211

2

),(],[
n

knkn

n
s WWnnykkY

2211

1 2

21

88

7

0

7

0
21

4

1

8
4

1

8),(knkn

n n

kk
WWnnyWW ⋅∑ ∑⋅⋅=

= =
],[21

4

1

8
4

1

8
21

kkYWW
kk

⋅⋅= , (91)

where 7,,,0 2121 ≤≤ nnkk . In (91), the 8×8 2D FFT Y[k1, k2] of the input signal y(n1, n2) is

given by

∑ ⋅∑ ⋅=
= =

7

0
88

7

0
2121

1

2211

2

),(],[
n

knkn

n
WWnnykkY , (92)

 91

where 7,,,0 2121 ≤≤ nnkk . Since the input data y(n1,n2) form a real-valued sequence, the

second half output can be derived as

∑ ⋅∑ ⋅=−
=

+−+

=

7

0

)
4

1
(

8

)8)(
4

1
(

8

7

0
2121

1

2211

2

),(],8[
n

knkn

n
s WWnnykkY

∑ ⋅∑ ⋅⋅−=
=

++−

=

7

0

)
4

1
(

8

)
4

1
(

8

7

0
21

1

2211

2

),()(
n

knkn

n
WWnnyj (93)

where 7,,,0 2121 ≤≤ nnkk . By combining of the eqs. (91) and (93), the 8×8 2D DCT output

can be recast as

 []{ })],8(Im[),(Re
2

1
],[212121 kkYkkYkkX SS −−= (94)

where 7,0 21 ≤≤ kk . Equation (94), adopts only the real value of YS(k1,k2) and the imaginary

value of YS(8−k1,k2) to calculate the X[k1, k2]. By combining two reordered input sequences

{ y1(n1,n2)}, { y2(n1,n2)} for two independent sequences {x1(n1,n2)},{ x2(n1,n2)}, and forming a

complex input sequence {y(n1,n2)=y1(n1,n2)+jy2(n1,n2)}, the double throughput of 2D 8×8

DCT of {x1(n1,n2)},{ x2(n1,n2)} can be derived by single 2D 8×8 SFFT computation.

Consequently, two independent 8×8 2D DCTs X1[k1,k2], X2[k1,k2] of x1(n1,n2), x2(n1,n2),

respectively, can then be created as

{ })]8,8(Re[)],(Re[
4

1
],[2121211 kkYkkYkkX ss −−−=

{ })]8,(Im[)],8(Im[
4

1
2121 kkYkkY ss −+−− , (95a)

{ })]8,8(Im[)],(Im[
4

1
],[2121212 kkYkkYkkX ss −−−=

{ })]8,(Re[)],8(Re[
4

1
2121 kkYkkY ss −+−+ . (95b)

To help understand the serial pipeline operation, the 2D location X[k1, k2] and x(n1, n2) can be

substituted as X[8k1+k2] and x(8n1+n2), respectively. Then, the specific two-dimensional (2D)

linear index map is applied as follows:

12111 4 nnn += ,

12111 2 kkk += ,

where 10 11 ≤≤ n , 30 12 ≤≤ n , 70 2 ≤≤ n ,

10 12 ≤≤ k , 30 11 ≤≤ k and 70 2 ≤≤ k . (96)

The word numbers of the shift registers in the post-computation of the fourth stage can be

 92

minimized by following the specific mapping in (96). The 8×8 2-D FFT CFA form can then

be written as

[]21211 816 kkkY ++ 22

2 12

1211121211

11
8

7

0

3

0

)2(
8

4
8

1

0
21211)832(kn

n n

kknkn

n
WWWnnny∑











∑












∑ ++=

= =

+

=

22

2 12

12111212
8

7

0

3

0

)2(
821232)8(kn

n n

kknk WWnnB∑











∑ +=

= =

+

21112221112

2

221112 ,,
8

,,7

0
82

,
8)(kkk

odd
kkkk

even
n

knkk BWBWnB +=∑=
=

. (97)

The butterfly structures for 8×8 2D DCT, corresponding to above equations (88)-(97), are

summarized as follows:

Butterfly stage I:

)328()1()8()8(21221221232
1212 ++−++=+ nnynnynnB kk .

Butterfly stage II:





 +−+=)8()()()(23282322

,
8

121112121112 nBjWnBnB kkkkkk

[] [])32()()16()1(232
3
8232

2
8

121112121112 +++−+ nBjWnBW kkkkkk .

Butterfly stage III:

{ })6()()4()1()2()()0(111221112211122111221112 ,
8

,
8

,
8

,
8

,, kkkkkkkkkkkkkk
even BjBBjBB +−+−+= ,

{ })7()()5()1()3()()1(111221112211122111221112 ,
8

,
8

,
8

,
8

,, kkkkkkkkkkkkkk
odd BjBBjBB +−+−+= .

The additional stage of 2-D DCT:

2111222111221112 ,,
8

,,
2

,,
1)(kkk

odd
kkkk

even
kkk BWBnB += .

The time-domain shift stage of 2-D DCT:

]8[]8[21

)(
4

1

821
21

kkYWkkY
kk

s +⋅=+
+

.

Butterfly stage IV:

{ })]872(Re[)]8(Re[
4

1
]8[2121211 kkYkkYkkX ss −−−+=+

{ })]]88(Im[)864(Im[
4

1
2121 kkYkkY ss −+−+−− ,

 93

{ })]872(Im[)]8(Im[
4

1
]8[2121212 kkYkkYkkX ss −−−+=+

{ })]]88(Re[)864(Re[
4

1
2121 kkYkkY ss −+++−+ . (98)

Two 8×8 2D DCT computation results X1[8k1+k2] and X2[8k1+k2] are calculated

concurrently in the post-computation of the butterfly stage IV. The 8×8 2-D IDCT

computation can also be obtained following a similar decomposition procedure. Because of

the cost-effective constraint in the physical design, this study only considers the triple-mode

FFT/IFFT and 2-D DCT computations. The derivation results of the radix-42 based

FFT/IFFT/2-D DCT algorithm indicate that all butterfly computation can be easily

implemented with four four-input complex adders and some shuffle circuits. The radix-4

butterfly structure has no multipliers. Additionally, the regular structure can be easily derived

in both the 8×8 2-D DCT and 256-point FFT/IFFT pipeline processor architecture.

6.2 Pipeline 256-Point FFT/IFFT/8×8 2D-DCT Processor

Architecture

 He et al. presented several pipeline FFT/IFFT architectures [31]. The serial delay

feedback (SDF) based architecture is known to have a low hardware cost and high

cost-efficiency advantages with the feedback type shift registers architecture [31, 32, 34]. The

delay-feedback type shift register approaches are always more efficient than other

corresponding approaches in terms of memory utilization since the butterfly output share the

same storage with its input [31]. The R22SDF pipeline architecture has the same computation

complexity as the radix-4 algorithm, and few hardware requirements as the radix-2 algorithm.

This work presents a R42SDF reconfigurable pipeline architecture with a low computation

complexity as the radix-16 algorithm, and low hardware requirements as the radix-4

algorithm. Significantly, the proposed triple-mode radix-4 butterfly structure, like the radix-2

butterfly structure, does not require a complex multiplier or constant multiplier. Section 6.4

presents detailed comparisons between the R42SDF and R22SDF architectures. This section

describes a novel radix-42 single-path delay feedback (R42SDF) architecture to support the

three modes, 256-point FFT, 256-point IFFT, and 8×8 2D DCT, based on the radix-42 DIF

FFT algorithm obtained in the previous section. Figure 31 shows a block diagram of the

 94

purposed R42SDF-based 256-point FFT/IFFT and 8×8 2-D DCT pipeline processor. Based on

the proposed R42SDF pipeline architecture, the cost-effective 256-point FFT/IFFT processor

is first constructed. This processor only requires four butterfly stages with 255-word shift

registers, two constant multipliers and one complex multiplier with one coefficient ROM,

represented by black solid color in Fig. 31. Figure 31 indicates that a single data stream passes

through two constant multipliers and one complex multiplier to realize different combinations

of k1, k2 and k3 of X[k1+4k2+16k3], as illustrated in (90). Using some control circuits, one

additional radix-2 butterfly (R2-BF) with an one-word shift register and additional eight-word

shift register, two concurrent 2D-DCT operations are calculated from the single 2D-SFFT

computation as depicted in (89), (95a), and (95b). These extra circuits were embedded at the

first butterfly stage, the additional stage and the fourth butterfly stage, which is represented by

the gray color in Fig. 31. These circuits complete the input reordering, time domain shift and

post-computation in the 8×8 2-D DCT computation, respectively. Notably, only one radix-2

butterfly and nine-word shift register are needed to support additional two 8×8 2D DCT

computations in the original pipeline SDF-based FFT/IFFT architecture. The proposed

architecture has, in total, four radix-4 butterflies, one radix-2 butterfly, two constant

multipliers, one complex multiplier, one coefficient ROM and a 264-word shift register. To

help understand the corresponding functions of each building block, the respective equation

numbers related to each element are shown in Table 11. The detailed operations of each

element are described as follows.

Fig. 31: Block diagram of the R42SDF-based 256-point FFT/IFFT and 8×8 2D-DCT architecture.

 95

Fig. 32: Block diagram of the radix-4 butterfly architecture.

Table 11 The Corresponding Equation Numbers for Each Building Block.

Building

Blocks

BFI Cons.

Mult. I

BFII Comp.

Mult.

BFIII Cons.

Mult. II

BFIV R2-

BF

FFT Eq. # (79) (81) (81) (80) (79) (81) (81) N/A

IFFT Eq. # (84a) (84b) (84b) (83) (84a) (84b) (84b) N/A

DCT Eq. # (89), (97) (97) (97) (91) (97) (97) (95) (97)

6.2.1 Radix-4 Butterfly and Radix-2 Butterfly

The derivation results of the radix-42 based algorithm reveal that both the FFT/IFFT

butterfly computation in (79), (81), (84a), (84b), and the 8×8 2D-DCT butterfly computation

in (98), can be easily completed with the radix-4 based butterfly architecture. The only

difference between the 8×8 2D-DCT and the 256-point FFT/IFFT butterfly computation is the

summands and minuends at the butterfly stage one and four, which can be easily realized with

the multiplex circuits in the radix-4 butterfly structure. Significantly, the number of the two

first stages in the 8×8 2D-DCT computation can be completed concurrently at the first

butterfly stage in parallel. Additionally, the input reordering operation at the first stage and

the post-computation operation at the fourth stage of the 8×8 2D-DCT mode are described in

detail. Figure 32 illustrates the proposed radix-4 butterfly structure, which only includes four

four-input complex adders with no complex multipliers inside. This configuration means that

the proposed radix-4 butterfly structure has a low hardware cost of higher-radix butterfly

 96

structures. Moreover, the proposed radix-42 algorithm has the same complex multiplication

complexity as the radix-16 algorithm, so has the high cost efficiency of lower radix

architectures. To obtain the additional stage of the 8×8 2D DCT mode in (98), one additional

SDF-based radix-2 butterfly structure with one word shift register is required, as illustrated in

Fig. 31. The additional stage of the 2D DCT mode only requires two 2-input complex adders

and one shift register, giving it a small hardware penalty.

6.2.2 Memory Structure

The memory structure of butterfly stage is well known to be an important issue for the high

cost-effective FFT/IFFT pipeline processor design. From the exiting researches, there are

mainly two different approaches: delay commutator (DC) [31] and delay feedback (DF) [31,

32, 34]. In this study, the DF based memory structure is adopted and depicted in Fig. 31. In

order to compute the radix-4 based butterfly computations, the input data and the intermediate

results have to be reordered as four concurrently data streams using memory as shown in Fig.

32. Each radix-4 butterfly unit applies the three parallel memories to store the serial data input

and butterfly output in the feedback paths as presented in Fig. 31. The timing sequence of

N-point FFT computation can be divided into four stages, each containing N/4 clock cycles.

In the first N/4 cycles (i.e. first stage), the butterfly units simply store the input samples into

the first feedback memory. Similarity, the second and third feedback memory are filled in the

second and third stages. After the 3N/4 cycles, the butterfly units retrieves the x(n), x(n+N/4)

and x(n+2N/4) samples from the feedback memory, performs corresponding operations with

the sample x(n+3N/4) and then feeds the output into the next butterfly units as depicted in Fig.

31. The required number of memory cells for the kth stage is 3×N/(4k). Thus, the 256-points

FFT/IFFT computations require the 64×3, 16×3, 4×3 and 1×3 word shift registers in the first,

second, third and fourth butterfly stages, respectively. Significantly, the SDF based pipeline

FFT/IFFT structure is highly regular, which has the high effective memory structure with the

simpler routing complexity [31, 32, 34]. In this study, the shift registers were all realized by

the cascaded flip-flops, which are composed of two latch circuits.

 97

)15:8(0
32B

)23:16(0
32B

)23:16(1
32B

)7:0(0
32B

)31:24(0
32B

)31:24(1
32B

(a) The proposed 12 reconfigurable operation mechanisms of the first butterfly stage.

0 7 8 1516 23 24 3132 39 40 47 48 5556 63 0 7

Clock

Clock #
(Block #)

Input

Operation
Machanisms #

x0 x7 x8 x15 x16 x23 x24 x31 x32 x39 x40 x47 x48 x55 x56 x63 x7x0

4 5 6 7 8 9 10 11 4

Output
)3(

0
32B

)20(

1
32B

)27(

1
32B

)28(

0
32B

)11(

0
32B

)12(

0
32B

)4(

0
32B

)20(

0
32B

)19(

0
32B

)27(

0
32B

)28(

0
32B

)12(

1
32B

)11(

1
32B

)3(

1
32B

)4(

1
32B

)20(

1
32B

)19(

1
32B

)27(

1
32B

(0) (1) (2) (3) (4) (5) (6) (7) (0)

(b) The timing sequences of operation mechanism in the first butterfly stage.

 98

 x(8:15) (1)

 x' (16:23) x' (0:7)

 x' (32:39) x(48:55) (6)

 x' (40:47) x' (56:63)

 x' (8:15) x' (24:31)

x(0:7) (0)
x(32:39) (4)
x(40:47) (5)
x(56:63) (7)

x(16:23) (2)
x(24:31) (3)

40 8 8 8

Shifter
Register
Size: 64x3

Only Input,
No Storage

Storage Segment
Swapping
SegmentPower Saved Segment

(c) The storage content in SSR in the 8×8 2D-DCT mode.

)16(0
32B)23(0

32B)17(0
32B)22(0

32B)18(0
32B)21(0

32B)19(0
32B)20(0

32B)24(0
32B)31(0

32B)25(0
32B)30(0

32B)26(0
32B)29(0

32B)27(0
32B)28(0

32B

)16(1
32B)23(1

32B)17(1
32B)22(1

32B)18(1
32B)21(1

32B)19(1
32B)20(1

32B)24(1
32B)31(1

32B)25(1
32B)30(1

32B)26(1
32B)29(1

32B)27(1
32B)28(1

32B

)8(1
32B)15(1

32B)9(1
32B)14(1

32B)10(1
32B)13(1

32B)11(1
32B)12(1

32B)0(1
32B)7(1

32B)1(1
32B)6(1

32B)2(1
32B)5(1

32B)3(1
32B)4(1

32B

)8(0
32B)15(0

32B)9(0
32B)14(0

32B)10(0
32B)13(0

32B)11(0
32B)12(0

32B)0(0
32B)7(0

32B)1(0
32B)6(0

32B)2(0
32B)5(0

32B)3(0
32B)4(0

32B

(d) The content of the 8×8 2-D DCT computation result in SSR.

Fig. 33: Block diagram of the proposed first radix-4 butterfly stage in the R42SDF-based

256-point FFT/IFFT and 8×8 2D-DCT architecture.

 99

6.2.3 Input Re-ordering and First Butterfly Computation
Consider the new radix-42 algorithm presented in section 6.1. The proposed SDF

architecture is estimated to need 64×3-word shift registers at the first butterfly stage in the

256-point FFT/IFFT mode. Although the 8×8 2D DCT mode only requires 16×3-word shift

registers at the first butterfly stage, the 8×8 2D DCT mode needs a swapping buffer to

complete the input re-ordering and post-computation in (89) and (95) from the 8×8 2D SFFT

computation. Notably, the number of shift registers at the fourth butterfly stage for the post

computation in the 8×8 2D DCT mode depends on the sequential order of the input data at the

first butterfly stage. Following the specific linear mapping in (96), the number of shift

registers can be reduced to only eight words at the fourth butterfly stage, as revealed in Fig.

31. Comparing with the other linear mapping, the proposed architecture could reduce at least

96% shift registers cost. The segmented shift registers (SSR) structure is also proposed to

realize both the input re-ordering and butterfly computation operation at the first stage to

support the 256-point FFT/IFFT and 8×8 2D DCT modes.

Figure 33(a) shows the 12 proposed operation mechanisms of the first butterfly stage to

finish the input reordering and the first-stage computation. Operation mechanisms 0–3 are

adopted in the FFT/IFFT computation, and operation mechanisms 4–11 are adopted in the

8×8 2D DCT computation. In the 8×8 2D DCT mode, reconfigurable operation mechanisms 5

and 6 are adopted for the butterfly computation, and reconfigurable operation mechanisms 4

and 7–11 are adopted for the input reordering. Figure 33(b) lists the corresponding timing

sequence of the first butterfly stage, which discusses the relationships among the input data,

output data and respective operation mechanisms during each clock (block number) in the

8×8 2D DCT mode. Additionally, Figs. 33(c) and 33(d) illustrate the data content before and

after the butterfly computation in SSR, respectively. The first stage butterfly computation is

completed by applying operation mechanisms 5 and 6. Most results of 8×8 2D DCT

computation are then pushed back into the SSR, as shown in Fig. 33(d), where 12
32
kB denotes

the computation results from (98). Fig. 33(d) presents the complete computation results. The

64×3-word shift register is segmented as (40+8+16)×3, which is easily realized by three

dependent clock domains with a simple 3-bit counter controller, as depicted in Fig. 33(c).

These three segments in the SSR are called the power-saving, swapping and storage segments,

and their sizes are 40×3, 8×3 and 16×3, respectively. Since 2D DCT mode as depicted in (97)

has a low computation complexity, the first, second and third butterfly stages have shift

registers comprising 40×3, 8×3 and 2×3 words, respectively. These shift registers are set as

 100

power-saving segments, and gated to reduce power consumption. To perform the input

re-ordering operation, 64 serial input data words are split into eight blocks of eight words, as

shown in Figs. 33(b) and 33(c). The block numbers, written inside the brackets in Figs. 33(b)

and 33(c), denote the serial input sequential order of eight-word blocks. In Fig. 33(c), the

terms x′ and x respectively represent the 2D DCT image data in the previous and current

frame, which both contain 64 points in each frame. Following the operation mechanisms 4, 7,

8, 9, 10 and 11 in Fig. 33(a), the serial input data of each block adopt the swapping segment

as the swapping space to achieve the required storage ordering in the storage segment.

The detail timing sequence of the proposed 8×8 2D DCT computations is given as follow.

Operation mechanism 4 pushes the input data x(0:7) into the swapping segment from the

clock number 0 to 7 (block number 0). At the same time, the original data x’(56:63) in the

swapping segment are simultaneously pushed into the storage segment as illustrated in Figs.

33(a) and 33(c). In the following 16 clock cycles, operation mechanisms 5 and 6 replace the

swapping segments with the input data x(8:15) and x(16:23) (i.e. block number 1 and 2), as

presented in Figs. 33(a), 33(b) and 33(c). Operation mechanisms 5 and 6 provide the original

swapping segment data x′(8:15) and x’(24:31) for the first butterfly stage computation in (98),

along with the data in the storage segment. At the same time, 48 new 8×8 2D DCT results of

)8(21232
12 nnBk + , as listed in the top 3 rows of Fig. 33(d), are pushed into the storage segment by

the feedback path. Furthermore, the other 16 new 8×8 2D DCT results, which are listed in the

final row in Fig. 33(d), are pushed directly to the second butterfly stage, as shown in Fig.

33(b). Notably, the 48 different 2D DCT results in the storage segment are pushed out

one-by-one due to the swapping operation by the swapping segment data in the following 48

clock cycles. Following a similar procedure, the serial input data of block numbers 3, 4, 5 and

7 complete their respective swapping operations by operation mechanisms 7, 8, 9 and 11. The

block number 6 is stored into the storage segment directly by operation mechanism 10 as

illustrated in Figs. 33(a) and 33(c). The input re-ordering operation is finished after a period

of 64 clock cycles, which includes 7 clock cycles of input swapping latency.

 101

6.2.4 Constant Multiplier

Based on the derivation results in Section II, the radix-42 algorithm requires some complex

multiplications, namely 1
16
kW (1

16
nW −), 12

16
kW (12

16
nW−), 13

16
kW (13

16
nW−) in the 256-point FFT/IFFT mode

in (81), (84), and 12
8
kW , 122

8
kW , 123

8
kW , 2

8
kW in the 8×8 2D DCT mode in (98). Due to the finite

range of k1 and n1 in Eqs. (81) and (84b), namely 0–3, the three complex multiplications,

1
16
kW (1

16
nW −), 12

16
kW (12

16
nW−) and 13

16
kW (13

16
nW−) can be written as

{ 0
16W (0

16
−W), 1

16W (1
16
−W), 2

16W (2
16
−W), 3

16W (3
16
−W)}, { 0

16W (0
16
−W), 2

16W (2
16
−W), 4

16W (4
16
−W), 6

16W (6
16
−W)} and

{ 0
16W (0

16
−W), 3

16W (3
16
−W), 6

16W (6
16
−W), 9

16W (9
16
−W)}. Following the similar procedure, 12

8
kW , 122

8
kW ,

123
8

kW and 2
8
kW in (98) can be expanded as {0

8W , 1
8W }, { 0

8W , 2
8W }, { 0

8W , 3
8W } and

{ 0
8W , 1

8W , 2
8W , 3

8W , 4
8W , 5

8W , 6
8W , 7

8W }. The system has in total 38 different twiddle factor values,

which could be implemented as 38 different constant multipliers by only shifters and adders.

Based on the SDF based architecture, the proposed design only has to calculate one complex

multiplication in Eqs. (81), (84) and (97) during each clock cycle. The 38 twiddle factor

values can thus be reduced to the extension of two different values of 1
16W and 2

16W using the

complex conjugate symmetry rule. Accordingly, the other 36 twiddle factor values can be

expressed as the real-imaginary swapping or sign inversion of these two constant values.

Moreover, the repeated shifters and adders of two constant multipliers could be simplified

using the subexpression elimination algorithm [65] as illustrated in Fig. 34. According to our

implementation results, the small cost penalty for the multiplexer control (i.e. S0, S1 and S2)

could be neglected as shown in Fig. 34.

 Following the three steps to reduce the complex multipliers to the most economical

constant multipliers are summarized as below. First, the twiddle factors from Eqs. (81), (84)

and (98) are realized as the constant multipliers, which only contain shifters and adders as

shown in Fig. 31. Second, the complex conjugate symmetry rule is applied to decrease the

number of complex multiplications (90) to only two constant multiplications per stage with

some shuffle circuits as shown in Fig.5, thus achieving a constant multiplier cost reduction of

94.7%. Finally, the subexpression elimination algorithm [65] is adopted to reduce the number

of shift circuits by more than 20%, and the number of complex adders by 50% in the one

constant multiplier, as depicted in Fig. 34. The strictest constant multiplier is obtained in the

purposed architecture by following these three steps. The cost penalty of the constant

multiplier is thus minimized.

 102

>>4

>>8

>>7

>>9

>>1

>>3

>>6

>>12
+

+

+

“0”

+

+

>>3

>>12

>>7

>>1

>>4

>>6

>>8 +

+

+

“0”

+

+

>>2

S0

Real
input

Imaginary
input

Real
output

Imaginary
output

2's

2's

Constant Multiplier

 [Real]
Constant 1: 0.923828 = 1-2-4-2-7-2-8-2-9

Constant 2: 0.707092 = 2-1+2-3+2-4+2-6+2-8+2-12

 [Imaginary]
Constant 1: 0.382629 = 2-2+2-3+2-7-2-13+2-12

Constant 2: 0.707092 = 2-1+2-3+2-4+2-6+2-8+2-12

S1

S1 S1 S2

S1 S2

Complex
Adders: 5
(reduced 50%)
Shifts: 17
(reduce 20%)

S0

S0

S0

S0

S0
S0

Fig. 34: Block diagram of the proposed constant multiplier architecture.

 103

6.2.5 Eight-Folded Complex Multiplier

The proposed architecture has only one complex multiplier and one coefficient ROM to

realize the complex multiplication of twiddle factors)4(213 kkn
NW + in (78),)4(213 nnk

NW +− in (83)

and
()214

1

8

kk
W

+
 in (98). Significantly, the implementation of the time-domain shift for 8×8

2D-DCT computation needs one feedback path. To decrease the ROM size, the complex

conjugate symmetry rule and subexpression elimination [65] is applied to devise one

eight-folded complex multiplier as shown in Fig. 35. The proposed eight-folded complex

multiplier only has to store 32 words in the coefficient ROM, reducing the ROM size by

87.5%. The ROM address and data control circuit are also easily realized by the 8-bit counter

controller given in Table 12.

96
256W

64
256W

32
256W

0
256W

224
256W

192
256W

140
256W

128
256W

Fig. 35: The block diagram of eight-folded algorithm in the coefficient ROM.

Table 12 The Data Control of The Coefficient ROM.

H = n3(k1+4k2) Address Mode

(H[5])

ROM address Data Mode

(H[7:5])

ROM

data

0~32 0 Two’s complement of H[5:0] 0 a+jb

33~63 1 H[5:0] 1 b+ja

64~95 0 Two’s complement of H[5:0] 2 -b+ja

96~127 1 H[5:0] 3 -a+jb

128~159 0 Two’s complement of H[5:0] 4 -a-jb

160~191 1 H[5:0] 5 -b-ja

192~223 0 Two’s complement of H[5:0] 6 b-ja

224~255 1 H[5:0] 7 a-jb

 104

6.2.6 Post Computation

Clearly, the 256-point FFT/IFFT modes only require 1×3 word shift registers at the fourth

butterfly stage of the proposed R42SDF architecture. However, the 8×8 2D DCT mode has to

implement the post-computation at the fourth butterfly stage in (95a) and (95b). As described

in Subsection 6.2.1, the proposed architecture follows the specific linear mapping in (97) to

minimize the number of shift registers at the fourth stage. Figure 36(a) depicts the analysis of

the order of the fourth butterfly results following the specific linear mapping. Notably, the

gray solid line in Fig. 36(a) represents the input data order that do not follow the required

sequence. For instance, {]17[sY ,]23[sY }, {]18[sY ,]22[sY } and {]19[sY ,]21[sY } should

be regarded as three groups for the fourth butterfly computation. However, the sequence of

the input data at the fourth butterfly stage is]17[sY ,]18[sY ,]19[sY ,]21[sY ,]22[sY ,

]23[sY . Then,]23[sY and]21[sY should be re-ordered. Thus, the proposed overturn shift

register (OSR) structure at fourth butterfly stage resolves this simple re-ordering procedure

without any performance degradation, as depicted in Fig. 36(b). The desired ordering is

obtained with the OSR structure at the fourth butterfly stage, along with the input re-ordering

operation at the first butterfly stage as discussed in Subsection 6.2.1. The full-pipeline

R42SDF architecture can then easily follow the two concurrent 8×8 2D DCT outputs.

(a) The data context of the fourth butterfly stage in the 8×8 2D DCT mode.

 105

Q D

Q D Q D

Q D Q D Q D

Q D Q D

Q D

Q D

Q D

S S

Radix-4
Computation

X[k]The input of 4th stage:
x[n]

CLK0

CLK1

CLK2

CLK4

CLK5

CLK3

2D DCT
mode

2D DCT
mode

2D DCT
mode

(b) The OSR structure of the fourth butterfly stage.

Fig. 36: Block diagram of the proposed fourth butterfly stage in the R42SDF-based 256-point

FFT/IFFT and 8×8 2D-DCT architecture.

6.3 Finite Wordlength Analysis

The next generation mobile-multimedia system can handle high-quality multimedia

operations with embedded 256-point FFT/IFFT and 8×8 2D DCT pipeline processor [3]-[5].

The system performance should then satisfy the relative specifications. A higher system

performance undoubtedly implies a larger chip cost and greater power consumption, owing to

the wider internal wordlength. Since the chip cost and system performance are known to be a

trade-off, this study performed a finite wordlength analysis to estimate the appropriate

word-length for both 256-point FFT/IFFT and 8×8 2D DCT system requirements.

 106

6.3.1 Pipeline 256-Point FFT/IFFT

In the 256-point FFT/IFFT modes, the output signal to noise ratio (SNR) performance was

estimated under different noise environment. First, the input data of the double floating-point

precision were generated from the ideal IFFT(FFT) model by passing the additive white

Gaussian noise (AWGN) channel model under five noise levels: 20dB, 40dB, 60dB, 80dB

and 100dB. The input data with noise were sent into the proposed R42SDF pipeline FFT/IFFT

architecture, which was modeled at different fixed-point levels. The output SNR was obtained

by comparing the original input data with the fixed-point model output. The results after

100,000 iterations were averaged as depicted in Fig. 37, where the x-axis and y-axis represent

the data word-length and the whole system output SNR, respectively. These analytical results

demonstrate that the output SNR saturated as the data word length increased. The output SNR

was increased by 20dB for each additional three bits. The 13-bit internal wordlength for each

function units produced satisfactory results under 40dB noise environments, satisfying the

IEEE 802.16e WiMAX [44] standard.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

20

40

60

80

100

120

Internal Wordlength (bits)

O
ut

pu
t

S
N

R
 (

dB
)

SNR = 100 dB

SNR = 80 dB

SNR = 60 dB

SNR = 40 dB

SNR = 20 dB

Fig. 37: Finite wordlength analysis of the proposed pipeline R42SDF-based 256 points

FFT/IFFT architecture.

 107

6.3.2 Pipeline 8×8 2-D DCT

In the 8×8 2-D DCT mode, the performance of the proposed R42SDF pipeline architecture

was measured in common video compression standards, including the high-quality DV

standard [75]. The DV standard defines some tolerances that the 8×8 2-D DCT computation

maintains the accuracy and consequently an acceptable reconstructed video quality [75][76].

The DV standard applies four measured error criteria, namely the probability of occurrence of

error, mean square errors (MSE), peak mean square error (PMSE) and steady AC coefficients

[76]. Following the procedure in the preceding subsection, the double floating-point precision

is assumed to be precise in comparing with the fixed-point computation. The zero-mean white

input sequences are generated by a random-number generator in the range [−128, 127]. After

the repeated 100,000 loops, the probability of occurrence of error, which is greater than 1, is

less than 1×10−15 . Moreover, the steady AC coefficients of the proposed fixed-point 2D 8×8

DCT model are all zero under the equal-values input. Figures 38(a) and 38(b) depict the MSE

and PMSE simulation results, respectively. Notably, the proposed architecture could satisfy

the limitation of MSE and PMSE of the DV standard, when the internal wordlength is greater

than 12 bits. Thus, the 13-bit internal word length for each function units is the qualified

internal wordlength for the DV standard. Figures 38(c) and 38(d) indicate that the overall

mean error (OME) is below 0.01, and the peak signal to noise ratio (PSNR) is close to 60dB,

which has the required video compression quality under the configuration of the 13-bit

internal wordlength [77]. According to the finite wordlength analysis of the proposed R42SDF

256-point FFT/IFFT pipeline architecture a 13-bit internal wordlength achieves the

satisfactory results under the 40dB noise quality, thus satisfying the IEEE 802.16e standard.

The 13-bit internal wordlength was thus chosen for the proposed R42SDF 256-point

FFT/IFFT/2-D DCT RSoC IP to meet the requirements of next-generation handheld

applications.

 108

Fig. 38: Finite wordlength analysis of the proposed pipeline R42SDF-based 8×8 2D DCT

architecture. (a). Overall mean square error analysis. (b) Peak Mean Square Error analysis. (c).

Overall Mean Error analysis. (d). Peak Mean Error analysis.

 109

6.4 Comparison and Chip Implementation

6.4.1 Comparison between R42SDF and R22SDF

He et al. presented the efficient pipeline FFT processor, several reliable architectures

and the detailed comparison of their hardware costs [31]. A comparison of these

architectures indicates that R22SDF has the highest butterfly utilization of 50%, a the

highest complex multiplier utilization of 75%, and the lowest hardware resource

requirement [31][34]. Additionally, the SDF-based design has the structural merits of

high regularity and modularity with simple wiring complexity, making it very appropriate

for the VLSI implementation of the pipeline FFT processor design [31, 32, 34]. This

section presents the comprehensive comparison results of several famous pipeline

FFT/IFFT architectures to demonstrate the high cost-efficiency of the proposed R42SDF

FFT/IFFT architecture. The architectures were compared in two indices, namely cost and

utilization, to express the cost efficient of the proposed FFT/IFFT architecture, as listed in

Tables 13 and 14. Table 13 lists the required hardware resources, where T denotes the

number of complex adders required in the implementation of the constant multiplier.

Significantly, the proposed constant multiplier is minimized using complex conjugate

symmetry rule and subexpression elimination algorithm. The area of the complex

multiplier is known to be one dominant cost index in the pipeline FFT/IFFT design. The

comparison results in Table 14 clearly demonstrate that the proposed R42SDF

based-FFT/IFFT architecture has the fewest complex multipliers requirement among

other pipeline architectures. The 256-point FFT/IFFT architecture only needs one

complex multiplier, which is 67% and 95% below the requirement of the R22SDF and

R8MDC FFT/IFFT architectures, respectively. Additionally, the proposed architecture

applies the feedback type memory structure to maintain the minimum shift registers

requirement. Although the proposed R42SDF based architecture needs slightly more

complex adders than the R22SDF based architecture, this small cost penalty is acceptable.

To estimate the total chip cost in the 256-point FFT/IFFT architectures, which includes

the number of complex multipliers, complex adders and memory size, the conventional

comparative methodology [26, 32] with the unit of equivalent adders was adopted to

estimate the cost of each different architecture. Based on the implementation results in

our process, we convert the area of each complex multiplier and complex memory to the

50 and 1.3 complex adder, respectively, when adopting 13-bit precision, and the scheme

 110

with three real multiplications and five real additions, in the implementation. The

rightmost column of Table 13 lists the area indexes of the equivalent adder of the

256-point FFT/IFFT architecture. Clearly, the proposed R42SDF-based 256-point

FFT/IFFT architecture has the lowest hardware requirements. The R42SDF-based

256-point FFT/IFFT architecture has a 16% lower cost than the R22SDF-based 256-point

FFT/IFFT architecture. Significantly, the cost advantage of our proposed architecture

becomes more evident when the transform length is larger. Thus, the proposed

R42SDF-based architecture has a lower hardware cost than R22SDF and other famous

pipeline FFT/IFFT architecture in terms of the number of ROMs, complex multipliers,

complex adders, constant multipliers and shift registers.

Table 14 shows the comprehensive comparison of the hardware utilization rate in terms

of the utilization rate of complex multipliers, complex adders and complex memory.

Clearly, the proposed architecture achieves the highest complex multiplier utilization rate

among pipeline architecture (87.5%). Additionally, the proposed architecture maintains

the maximum complex memory utilization rate of 100%. Furthermore, the proposed

architecture, including the constant multipliers, has the highest complex adder utilization

rate of 56.25%. Thus, the purposed architecture achieves a higher hardware utilization

rate than R22SDF and other well-known pipeline FFT/IFFT architecture in terms of the

utilization rate of complex multipliers, complex adders, constant multipliers and complex

memory. Although the R2MDC, R4MDC and R8MDC architectures have the higher

throughput rate (output/cycle) of 2, 4 and 8 than SDF based architecture, these

approaches require large hardware requirement, such as complex multipliers, adders and

memory size, as shown in Table 13. Therefore, this investigation focuses on the

“hardware-oriented” architecture, in which the arithmetic operations can be tightly

scheduled for efficient hardware utilization. This study demonstrates that the proposed

R42SDF based pipeline FFT/IFFT architecture has the lowest hardware cost and highest

hardware utilization. Conversely, the proposed R42SDF based pipeline FFT/IFFT

architecture is the most cost-efficient.

 111

6.4.2 8×8 2-D DCT Comparison

Many DCT implementations exist spanning a broad spectrum of architectures,

focusing on different applications. Lee et al. [78] presented a highly parallel approach

with high arithmetic cost and high power consumption for the high-performance

application. The systolic implementation of Lee et al. [78] employs the row-column

decomposition to derive the configurable 2D N×N DCT in three steps with each step

implemented in systolic form. This work concentrates on high-speed FFT/IFFT/2D DCT

architectures with a throughput rate of at least one output sample per cycle, targeted for

applications in next-generation handheld devices needing a high data-processing rate.

Moreover, the proposed architecture has high cost efficiency and low cost in a portable

consumer device. This subsection lists the hardware requirement comparison between six

different implementations in terms of the number of real (complex) multipliers, real

(complex) adders, twiddle factors realization, total transistor count, hardware complexity,

throughput, internal wordlength, interconnect complexity and support for triple-mode, as

shown in Table 15. Clearly, the proposed pipeline R42SDF-based FFT/IFFT/2D-DCT

processor has the fewest complex multipliers and lowest hardware complexity, an

acceptable throughput rate and moderate interconnect complexity. Although the number

of the complex adders in the proposed processor is greater than the designs in [79] and

[80], the total area including complex multiplier is still lower than others. The total

number of transistors indicates that the proposed design achieves the smallest chip cost

among architectures supporting FFT/IFFT mode.

 112

Table 13 Hardware Cost Comparisons of the Pipelined FFT/IFFT Architecture.

Pipeline archi-
tecture

Mult.
complexity

Complex
Mult.

Complex
adders

(including
constant mult.)

Complex
Memory Size

Equivalent
area in 256

points

R2SDF Radix-2 log2N-2 2log2N N-1 647.5
R4SDF Radix-4 log4N-1 8log4N N-1 513.5
R8SDF Radix-8 log8N-1 (24+2T)log8N N-1 617.5
R22SDF Radix-22 log4N-1 4log4N N-1 497.5
R23SDF Radix-23 2(log8N-1) 6log8N N-1 655.5
R2MDC Radix-2 log2N-2 2log2N 1.5N-2 812.6
R22MDC Radix-22 log2N-2 2log2N 1.5N-2 812.6
R4MDC Radix-4 3log4N-3 4log2N 2.5N-4 1308.8
R8MDC Radix-8 7log8N-7 (24+2T)log8N 4.5N-8 2673.2
Proposed
R42SDF

Radix-42 log16N-1 (8+T)log16N N-1 415.5

Table 14 Hardware Utilization Rate Comparisons of the Pipelined FFT/IFFT

Architecture.
Pipeline

architecture
Utilization rate of

complex Mult.
Utilization rate of
complex adders

(including
constant mult.)

Utilization rate of
complex memory

Throughput
(Output/Cycle)

R2SDF 50% 50% 100% 1
R4SDF 75% 25% 100% 1
R8SDF 87.5% 12.5% 100% 1
R22SDF 75% 50% 100% 1
R23SDF 87.5% 50% 100% 1
R2MDC 50% 50% 50% 2
R22MDC 37.5% 50% 50% 2
R4MDC 25% 25% 25% 4
R8MDC 12.5% 12.5% 12.5% 8
Proposed
R42SDF

87.5% 56.25% 100% 1

Table 15 Hardware Requirement Comparison of 8×8 2D DCT Architecture.

8×8 DCT Lee et al. [78]
(parallel)

Chang &
Wang [81]

(2D systolic)

Hsiao and Shiue
[79]

(linear-array)

Ruetz et al. [80]
(linear-array)

Madisetti et al.
[82]

(parallel MAC)

Proposed
(R42SDF)

Real multipliers 28 64 - - - -
Real adders 134 88 - - - -

Complex multipliers - - 3 8 14 1
Complex adders - - 9 18 32 26
Twiddle factors

realization
Hardwired
Multiplier

Hardwired
Multiplier

ROM based LUT ROM based LUT Hardwired
Multiplier

Hardwired Multiplier
& ROM based LUT

Total transistor count ~ 400 K ~ 340 K ~ 105 K N/A ~ 67 K ~60 K
Hardware complexity O(NlogN) O(N2) O(logN) O(logN) O(log8N) O(log16N)

Throughput
(Output/cycle)

16 8 2 2 4 2

 113

Internal Wordlength 18 16 16 14 22 13
Interconnect
complexity

Complex Simple Moderate Moderate Simple Moderate

FFT/IFFT/2-D DCT
triple modes

No No No No No Yes

1 A gate count was determined and the number of transistors was determined by assuming
four transistors per gate.
2 An unknown gate count was indicated by “N/A”

6.4.3 Chip Implementation

Following the functional verification in the Matlab environment, the 256-point

FFT/IFFT/2-D DCT architecture in which the internal word length of the entire design is

13-bit was synthesized by the Design Compiler with TSMC 0.13µm CMOS technology.

The floorplan and post-layout were performed by Astro. The post-simulation was issued

by NC-Simulator to verify the functionality after back-annotation was performed from the

Start-RC extractor. The static timing check can be signed-off by PrimeTime. Finally, the

power analysis and DRC were conducted using Astro Rail and Dracula, respectively. The

core area of the post layout was 0.6mm2. The reported equivalent gate count is 60086

gates, which approaches 60k gates. The gate count usage for each building block is listed

in Table 16. It is obviously that 264 words shift register dominates the chip cost of

54.58%. The implementation result without the 2D DCT indicates that the total gate count

decreased to 55.2k.The implementation reports in this study reveal that the routing cost

penalty incurred by the additional 8×8 2D DCT mode is small. The chip operated at

100MHz, thus satisfying the high throughput requirement After the conversion, the

proposed R42SDF design in 8×8 2D DCT mode could provide high frame rates of 505

 114

kfps and 1042 kfps for frame sizes of 176×144 and 128×96 (pixel2), respectively.

Concerning the speed performance, because the pipelined multiplier operation is easy to

design at a clock rate of 100 MHz or even higher, the proposed architecture can achieve a

high clock rate by simple pipelining techniques for the involved arithmetic components.

The chip properties shown in Fig.6.9 demonstrate that the average power dissipation of

the 256-point FFT/IFFT/2-D DCT design was 22.37mW@100 MHz at 1.2V supply

voltage. The layout view as shown in Fig. 39 has 64 I/O pins, of which eight pins are

power supply pins. The proposed R42SDF based 256-point FFT/IFFT/2-D DCT

implementation not only satisfies the system performance of DV standards in 8×8 2D

DCT mode, but also achieves the satisfactory results with 40dB performance in 256-point

FFT/IFFT modes. Additionally, the proposed R42SDF based 256-point FFT/IFFT/2D

DCT implementation has a low power consumption (22.37 mW), and the lowest hardware

requirement of all pipeline architectures. These findings indicate that the proposed design

is suitable for the highly cost-efficient FFT/IFFT/2-D DCT triple-mode RSoCs IP for

next-generation handheld devices.

 115

Mode Selection 256-point FFT/IFFT and 8×8 2D-DCT
Architecture R42SDF pipeline
Technology 0.13 µm CMOS
Core Size 807(µm) x 754(µm) = 0.6 mm2
Power Consumption / Freq. 22.37 mW / 100 MHz
Accuracy / internal wordlength 40dB in DV standard / 13-bits
Input/Output/Power Pins # 29 / 27 / 8

Fig. 39: The layout view and design characteristics of proposed pipeline 256-point
FFT/IFFT/8×8 2D DCT processor.

Table 16 The Gate Count Usage of Each Building Blocks.
Categories Control Butterfly

Cores
Complex
Multiplier

Constant
Multipliers

Shift Registers

Area 1.3 % 21.74 % 18.9 % 3.48 % 54.58 %

 116

6.5 Summary

This investigation develops a triple-mode reconfigurable pipeline R42SDF VLSI

architecture that supports the 256-point FFT/IFFT and 8×8 2-D DCT computations. The

comparison results demonstrate that the proposed R42SDF pipeline FFT/IFFT architecture

has a lower hardware cost and higher utilization than R22SDF and other pipeline

architectures. Following the fixed-point analysis the proposed 256-point FFT/IFFT/8×8

2-D DCT chip design is successfully implemented in 0.13µm CMOS technology with an

internal wordlength of 13 bits. This design has a power consumption of 22.37 mW@100

MHz at 1.2V supply voltage. These features ensure that the proposed reconfigurable

processor design is certainly amenable to the next-generation mobile communications.

The upcoming fourth-generation wireless system requires the simultaneous application of

many computing algorithms including MPEG-4 AVC [83] and Walsh transform [84], in

the same handheld device. The reconfigurable hardware core for supporting more

transforms is a significant topic for future work.

 117

Chapter 7 Conclusion and Future Work

 In this thesis, we focus on the specific ASIC design for the effective pipeline

FFT/IFFT processor. Considering the hardware-orientated architecture for most efficiency,

the specific FFT/IFFT processor not only minimizes the computation complexity and area

cost, but also increase the hardware utilization rate with an appropriate throughput rate for

different applications. For the purpose of demonstrating the effective computations in

different real-time applications, four different standards have been considered, which

include DTMF [12-15], MIMO-OFDM WLAN [22, 23], DVB-T [27, 28] and next

generation mobile multimedia standards [5-7, 44].

For the high channel density DTMF systems, one new recursive DFT/IDFT algorithm

and architecture based on a hybrid of input strength reduction scheme, the Chebyshev

polynomial and register-splitting scheme is devised in this framework. The analyzed

results show that the proposed VLSI algorithm leads to the fewest computation cycle and

the highest throughput rate. Moreover, the proposed 212/106-point recursive DFT/IDFT

chip design has been successfully implemented in 0.13 µm CMOS technology and

possesses the power-efficiency consumption of 9.77 uW@20 MHz at 1.2V supply voltage

for each channel. These features guarantee that the proposed high-throughput and

power-efficient VLSI architecture is amenable to high channel density DTMF systems.

For the MIMO-OFDM system, we proposes a hardware-orientated approach for high

efficiency to minimize the complex multiplicative complexity, area cost and achieve

100% butterfly utilization with an appropriate throughput rate. By adopting the proposed

R8-FFT unit combined with the MAW method, two efficient serial blockwise type

64-point FFT/IFFT processors are constructing for the 2×2 and 4×4 MIMO-OFDM

WLAN systems. For the 2×2 MIMO-OFDM system, the proposed R28MDF design has

the best performance in terms of lowest complex multiplicative complexity, appropriate

throughput rate of 2R, highest butterfly utilization and the fewest complex multipliers,

when compared with other existing 64-point FFT/IFFT processor architectures. For the

4×4 MIMO-OFDM system, the proposed R28MDC outperforms existing FFT/IFFT

pipeline processor architectures and has the lowest complex multiplicative complexity, an

appropriate throughput rate of 4R, highest utilization rate (100%) of all components and

the lowest hardware cost. According to the IEEE 802.11n standard [23], execution time

for the 128-point and 64-point FFT/IFFT processor with 1–4 simultaneous data sequences

must be calculated within 3.6 or 4.0 µs. In total, eight operational modes of the FFT/IFFT

 118

processor are required in the IEEE 802.11n standard. The effective reconfigurable

FFT/IFFT processor [73] supports eight operational modes in the IEEE 802.11n standard,

consumes small hardware and little power, is easily reused, and is an important topic for

future work.

For the long-length based FFT computations, we develops two high effective R42SDF

and R43SDF pipeline VLSI architectures that support the long-length FFT/IFFT

computations. The proposed R43SDF pipeline FFT/IFFT architecture has lower

multiplicative complexity and higher hardware utilization rate with smaller cost than

R42SDF and other pipeline architectures. Following with fixed-point analysis in 40dB

AWGN environment, the proposed R42SDF and R43SDF based 4096-point FFT/IFFT

designs are successfully implemented in 0.13 µm CMOS technology with an internal

word-length of 14 and 13-bits, respectively. The proposed R42SDF and R43SDF based

design have a low power consumption of 6.3725 and 5.985 mW @20 MHz at 1.2V

supply voltage. Thus, these features ensure that the proposed R43SDF pipeline processor

design certainly meets the high effective VLSI architecture.

For the next-generation mobile applications, we develops a triple-mode

reconfigurable pipeline R42SDF VLSI architecture that supports the 256-point FFT/IFFT

and 8×8 2-D DCT computations. The comparison results demonstrate that the proposed

R42SDF pipeline FFT/IFFT architecture has a lower hardware cost and higher utilization

than R22SDF and other pipeline architectures. Following the fixed-point analysis the

proposed 256-point FFT/IFFT/8×8 2-D DCT chip design is successfully implemented in

0.13µm CMOS technology with an internal wordlength of 13 bits. This design has a

power consumption of 22.37 mW@100 MHz at 1.2V supply voltage. These features

ensure that the proposed reconfigurable processor design is certainly amenable to the

next-generation mobile communications. The upcoming fourth-generation wireless

system requires the simultaneous application of many computing algorithms including

MPEG-4 AVC [83] and Walsh transform [84], in the same handheld device. Then, the

reconfigurable hardware core for supporting more transforms is a significant topic for

future work. Furthermore, the fixed word-length analysis for each building block to

reduce more hardware cost is also important future investigations. According to the

comprehensive comparisons and implementation results, we could provide that the

proposed RDFT, R28MDF/R28MDC, R42SDF/ R43SDF and Triple-Mode designs

achieve the high effective advantages for DTMF, MIMO-OFDM WLAN, DVB-T and

next-generation applications.

 119

Bibliography

[1] W. W. Smith, J. M. Smith, Handbook of Real-Time Fast Fourier Transforms.

Piscataway, NJ: IEEE Press, 1995.

[2] E. Oran Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ,

1974.

[3] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of

Complex Fourier Series, “Mathematics of Computation, Vol. 19, p. 297, 1965.

[4] G. Goertzel, “An algorithm for the evaluation of finite trigonometric series,”

American Math. Monthly, vol. 65, pp. 34-35, Jan. 1958.

[5] S. M. Chai, S. Chiricescu, R. Essick, B. Lucas, P. May, K. Moat, J. M. Norris and M.

Schuette,” Streaming Processors for Next-Generation Mobile Imaging Application,”

IEEE Comm. Mag., vol. 43, issue 12, pp. 81-89, Dec. 2005.

[6] R. K. Kolagotla, J. Fridman, M. M. Hoffiman, W. C. Anderson, B. C. Aldrich, D. B.

Witt, M. S. Allen, R. R. Dunton and L. A. Booth, “ A 333-MHz dual-MAC DSP

architecture for next-generation wireless application,” IEEE Inter. Conf. on Acou.,

Speech, and Signal Proc., vol. 2, pp. 1013-1016, May 2001.

[7] M. Vorbach and J. Becker, “Reconfigurable processor architectures for mobile

phones,” IEEE Inter. Symp. Parallel and Distributed Proc., 22-26, Apr. 2003.

[8] E. Tell, O. Seger and D. Liu, “A converged hardware solution for FFT, DCT and

Walsh transform,” IEEE Inter. Symp. Signal Proc. and its Applications, vol. 1, pp.

609-612, July 2003.

[9] R. Storn, “Efficient input reordering for the DCT based on a real-valued

decimation-in-time FFT,” IEEE Signal Proc. Letters, vol. 3, no. 8, pp. 242-244, Aug.

1996.

[10] C. Diab, M. Oueidat and R. Prost, “A New IDCT-DFT Relationship Reducing the

IDCT Computational Cost,” IEEE Trans. On Signal Proc., vol. 50, no. 7, pp.

1681-1684, July 2002.

[11] ITU Blue Book, Recommendation Q. 24: Multi-Frequency Push-Bottom Signal

Reception, Geneva, Switzerland, 1989.

[12] S. L. Gay, J. Hartung, and G. L. Smith, “Algorithms for muti-channel DTMF

detection for the WE DSP32 family,” in Proc. IEEE Int. Conf. Acoustics, Speech, and

Signal Processing, pp. 1134-1137, Apr. 1989.

 120

[13] M. D. Felder, J. C. Mason, and B. L. Evans, “Efficient dual-tone multifrequency

detection using the nonuniform discrete Fourier transform,” IEEE Signal Processing

Lett., vol. 5, pp. 160-163, Jul. 1998.

[14] J. P. Min, J. L. Sang and H. Y. Dal, “Signal detection and analysis of DTMF

detector with quick Fourier transform,” The 30th Annual Conf. of the IEEE Industrial

Electronics Society, pp. 2058-2064, Nov. 2004.

[15] D. Vanzquez, M. J. Avedillo, G. Huertas, J. M. Quintana, M. Pauritsh, A. Rueda and

J. L. Huertas, “A low-voltage low-power high performance fully integrated DTMF

detector,” IEEE International Solid-State Circuit Conf. , pp. 353-356 Sep. 2001.

[16] Conferencing chip specification, High-density conference meeting for the telephone

systems, ADT Inc. Available: http: //www.adaptivedigital.com/pdf/adt_conf_c64x_

chip.pdf

[17] Texas Instruments technical white paper, Carrier Class, High Density VoP white

Paper, Jan, 2001, Available: http://focus.ti.com/lit/ml/spey003/spey003.pdf.

[18] Voice over Packet Processor Product Specification, AC491xxx High Density Voice

over Packet Processor Family. AudioCodes Inc. Available:

http://www.audiocodes.com/Objects/LTRT-00270_DS_AC 491.pdf.

[19] Voice Gateway Product Specification, Single and High-Density Voice over IP

Support for the Ciso AS5300/Voice Gateway, Cisco Inc. Available:

http://www.cisco.com/warp/public/cc/pd/as/as5300/prodlit/vffc_ds.pdf.

[20] M. Ding, Z. Shen, and B. L. Evans, “An achievable performance upper bound for

discrete multitone equalization,” IEEE Global Telecommunications Conf., vol. 4, pp.

2297-2301, Dec. 2004.

[21] R. K. Martin, K. Vanbleu, M. Ding, G. Yebaert, M. Milosevic, B. L. Evans, M.

Moonen and C. R. Johson, Jr., “ Unification and evaluation of equalization structures

and design algorithms for discrete multitone modulation systems,” IEEE Trans.

Signal Processing, vol. 53, no. 10, pp. 3880-3894, Oct. 2005.

[22] R. V. Nee and R. Prasad, “OFDM for wireless multimedia communications,

“ Norwood, MA: Artch House, 2000.

[23] Mujtaba et al.: ‘TGn Sync Proposal Tech. Specification for IEEE 802.11 Task

Group 2005’, IEEE 802.11-04/0889r3, 2005

[24] D. Borkowski, and L. Bruhl,: “Optimized hardware architecture for real-time

equalization in single- and multi-carrier MIMO systems, “ Proc. 3rd Workshop on

 121

Software Radio, Karlsruhe, Germany, 2004.

[25] S. Ludwig and Z. Ernst: “Optimized FFT architecture for MIMO application,” Proc.

13th European Signal Processing Conference, Antalya, Sep. 2005.

[26] T. Sansaloni, A. Perez-Pascual, V. Torres and J. Valls, “Efficient pipeline FFT

processors for WLAN MIMIO-OFDM systems,” IEE Electronics Letters, vol. 41,

issues 19, pp.1043-1044, Sep. 2005.

[27] ETSI, “Digital Video Broadcasting (DVB): Transmission System for Handheld

Terminals (DVB-H),” ETSI EN302304.

[28] C. T. Lin and Y. C. Yu, “Cost-Effective Pipeline FFT/IFFT VLSI Architecture for

DVB-H System,” National Symp. on Telecommunication, pp. 295-299, Nov. 2007.

[29] C. L. Wang and C. H. Chang, “A new memory-based FFT processor for VDSL

transceivers, “ IEEE Inter. Symp. on Circuits and System, vol. 4, pp. 670-673, May

2001.

[30] M. Jun, Y. Yahat and K. Yamaguchi, “A study on annoyance of musical signal using

LAeq measurement and digital signal processing, “ IEEE Inter. Conf. on Acoustics,

Speech and Signal Proc., vol. 11, pp. 1281-1284, Apr. 1986.

[31] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM

(de)modulation, “ in Proc. URSI Int. Symp. Signals, Syst., Electron., pp. 257-262,

1998.

[32] W. C. Yeh and C. W. Jen, “High-speed and low-power split-radix FFT,” IEEEE

Trans. on Signal Processing, vol. 51, no. 3, pp. 864-874, Mar. 2003.

[33] K. Maharatna, E. Grass and U. Jaghold, “A 64-point Fourier transform chip for

high-speed wireless LAN application using OFDM,” IEEE J. Solid-State Circuits, vol.

39, issue 3, pp. 484-493, Mar. 2004.

[34] W. H. Chang and T. Nguyen, “An OFDM-specified lossless FFT architecture,

“ IEEE Trans. on Circuits and Systems I, vol. 53, issue 6, pp. 1235-1243, June 2006.

[35] L. Jia, Y. Gao and H. Tenhunen, “ Efficient VLSI implementation of radix-8 FFT

algorithm,” IEEE Pacific Rim Conf. on Comm., Computers and Signal Proc., pp.

468-471, Aug. 1999.

[36] Y. Jung, Y. Tak, J. K. J. Park, D. Kim and H. Park, “Efficient FFT Algorithm for

OFDM Modulation”, IEEE Int. Conf. on Electrical and Electronic Tech. , vol. 2, pp.

 122

676-678, Aug. 2001.

[37] W. Li and L. Wanhammar, “A pipeline FFT processor,” in Proc. IEEE Workshop

on Signal Processing Systems, pp. 654-662, 1999.

[38] A. P. Chandrakasan and R. W. Brodersen, “Low Power Digital CMOS Design”,

Kluwer Academic Publishers, 1995.

[39] L. R. Rabiner and B. Gold, “Theory and Application of Digital Signal Processing”,

Prentice-Hall, Inc., NJ, 1975.

[40] E. E. Swatzlander, W. K. W. Young and S. J. Joseph, “A radix 4 delay commutator

for fast Fourier transform processor implementation”, IEEE J. Solod-State Circuits,

SC-19(5), pp. 702-709, Oct. 1984.

[41] K. Maharatna, E. Grass and U. Jaghold, “A 64-point Fourier transform chip for

high-speed wireless LAN application using OFDM,” IEEE J. Solid-State Circuits, vol.

39, issue 3, pp. 484-493, Mar. 2004.

[42] E. H. Wold and A. M. Despain, “Pipeline and parallel pipeline FFT processors for

VLSI implementation, “ IEEE Trans. Comput., C-33, pp. 414-426, May 1984.

[43] A. M. Despain, “Fourier transform computer using CORDIC iterations,” IEEE

Trans. Comput., , C-23, pp. 993-1001, Oct. 1974.

[44] IEEE Standard 802.16-2004,” IEEE Standard for Local and Metropolitan Area

Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” New

York: IEEE, 2004.

[45] Z. Liu, Y. Song, T. Ikenaga and S. Goto, “A VLSI array processing oriented fast

Fourier transform algorithm and hardware implementation,” IEICE Trans.

Fundamentals, vol.E88-A, no. 12, pp. 3523-3530, Dec. 2005.

[46] Z. Wang, G. A. Jullien and W. C. Miller, “Recursive algorithms for the forward and

inverse discrete cosine transform with arbitrary length,” IEEE Signal Processing Lett.,

vol. 1, no. 7, pp. 101-102, Jul. 1994.

[47] C. H. Chen, B. D. Liu, J. F. Yang, and J. L. Wang, “Efficient recursive structures for

forward and inverse discrete cosine transform,” IEEE Trans. Signal Processing, vol.

 123

52, pp. 2665-2669, Sep. 2004.

[48] M. F. Aburdene, J. Zheng and R. J. Kozick, “Computation of discrete cosine

transform using Clenshaw’s recurrence formula,” IEEE Signal Processing Lett., vol.

2, no. 8, pp. 155-156, Aug. 1995.

[49] V. V. Cizek, “Recursive calculation of Fourier transform of discrete signal,” IEEE

Int. Conf. Acoustics, Speech, and Signal Processing, pp. 28-31, May 1982.

[50] T. E. Curtis and M. J. Curtis, “Recursive implementation of prime radix and

composite radix Fourier transforms,” IEE Colloquium on Signal Processing

Applications of Finite Field Mathematics, pp. 2/1-2/9, Jun. 1989.

[51] L. D. Van and C. C. Yang, "High-speed area-efficient recursive DFT/IDFT

architectures," in Proc. IEEE Int. Symp. Circuits Syst., vol. 3, pp. 357-360, May 2004.

[52] J. F. Yang and F. K. Chen, “Recursive discrete Fourier transform with unified IIR

filter structures,” Elsevier Science B.V., Signal Processing, vol. 82, pp. 31-41, Jan.

2002.

[53] C. P. Fan and G. A. Su, “Novel recursive discrete Fourier transform with compact

architecture,” IEEE Asia-Pacific Conf. Circuits Syst., pp. 1081-1084, Dec. 2004.

[54] L. D. Van, Y. C. Yu, C. M. Huang, C. T. Lin, "Low computation cycle and high

speed recursive DFT/IDFT: VLSI algorithm and architecture," in Proc. IEEE

Workshop on Signal Processing Systems (SiPS), pp. 579-584, Nov. 2005.

[55] L. D. Van, C. T. Lin and Y. C. Yu, “VLSI architecture for the low-computation cycle

and power-efficient recursive DFT/IDFT Design,” IEICE Trans. Fundamentals,

vol.E90

[56] C.C.W. Hui, T.J. Ding, and J. V. McCanny, “A 64-point Fourier transform chip for

video motion compensation using phase correlation,” IEEE J. Solid-State Circuits, ,

vol. 31, issues 11, pp. 1751-1761, Nov. 1996.

[57] C. T. Lin, Y. C. Yu and L. D. Van, “A Low Power 64-Point FFT/IFFT Design for

IEEE 802.11a wireless LAN Application,” Proc. IEEE Int. Symp. On Circuits and

System, pp. 4523-4526, May. 2006.

[58] E. Cornu, N. Destrez, A. Dufaux, H. Sheikhzqadeh and R. Brennan, “An ultra low
power, ultra miniature voice command system based on hidden markov models,”
IEEE Inter. Conf. on Acoustics, Speech, and Signal Proc., vol. 4, pp. 3800-3803, May
2002.

[59] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A New Radix-2/8 FFT

Algorithm for Length-q x 2m DFTs,” IEEE Trans. On Circuits and Systems I, vol. 51,

 124

pp.1723-1732, Sep. 2004.

[60] L. Jia., Y. Gao, J. Isoaho, and H. Tenhunen,” A new VLSI-oriented FFT algorithm

and implementation,” Proc. Eleventh Annu. IEEE Int. ASIC Conf., pp. 33-341, 1998.

[61] Y. Jung, H. Yoon and K. Jaeseok, ”New efficient FFT algorithm and pipeline

implementation results for OFDM/DMT applications,” IEEE Trans. on Consumer

Electronics, vol. 49, issues 1, pp. 14-20, Feb. 2003.

[62] A. V. Opppenheim and R. W. Schafer, Discrete-Time Signal Processing. Englewood

Cliffs, NJ: Prentice-Hall, 1989.

[63] P. Duhamel and H. Hollmann, “Split-radix FFT algorithm,” Electronic Letters, vol.

20, No. 1, pp. 14-16, Jan., 1984.

[64] C. S. Burrus, “Index mapping for multidimensional formulation of the DFT and

convolution, ” IEEE Trans. Acoust., Speech, Signal Processing, ASSP-25(3): 239-242, June

1977.

[65] K. K. Parhi, “VLSI Digital Signal Processing Systems: Design and
Implementation,” NY: Wiley, 1999.

[66] L. D. Van, Y. C. Yu, C. M. Huang, C. T. Lin, "Low computation cycle and high

speed recursive DFT/IDFT: VLSI algorithm and architecture," in Proc. IEEE

Workshop on Signal Processing Systems (SiPS), pp. 579-584, Nov. 2005.

[67] L. R. Rabiner and B. Gold, “Theory and Application of Digital Signal Processing,”

NJ Prentice-Hall Inc., 1975.

[68] S. C. Chen, C. T. Yu, C. L. Tsai, and J. J. Tang, “A new IFFT/FFT hardware

implementation structure for OFDM applications,” IEEE Asia-Pacific Conf. on

Circuits and Systems, vol. 2, pp.1093-1096, Dec. 2004.

[69] A. M. Despain, “Fourier transform computer using CORDIC iterations,” IEEE

Trans. Comput., C-23, pp. 993-1001, Oct. 1974.

[70] G. Bi and E. V. Jones, “A pipelined FFT processor for word-sequential data,” IEEE

Trans. Acoust., Speech, Signal Processing, vol. 37, pp. 1982-1985, Dec. 1989.

[71] J. Garcia, J. A. Michell and A. M. Buron, “VLSI configurable delay commutator for

a pipeline split radix FFT architecture,” IEEE Trans. Signal Processing, vol. 47, pp.

3098-3107, Nov. 1999.

[72] H. Jiang, H. Luo, J. Tian and W. Song, “Design of an efficient FFT processor for

OFDM systems,” IEEE Trans. On Consumer Electronics, vol. 51, pp. 1099-1103,

Nov. 2005.

[73] Y. W. Lin and C. Y. Lee, “Design of an FFT/IFFT Processor for MIMO OFDM

 125

Systems,” IEEE Trans. On Circuits and Systems I, vol. 54, issues 4, pp. 807-815, Apr.

2007.

[74] S. F. Hsiao, Y. H. Hu, T. B. Juang and C. H. Lee, “Efficient VLSI Implementations

of Fast Multiplierless Approximated DCT Using Parameterized Hardware Modules

for Silicion Intellectual Property Design,” IEEE Trans. on Circuits and Systems I, vol.

52, no. 8, pp. 1568-1579, Aug. 2005.

[75] “DVCAM format overview,” Sony, http://www.sony.ca/dvcm/brochures.htm.

[76] A. Silva, P. Gouveia, and A. Navarro, “Fast multiplication-free QWDCT for DV

coding standard, “ IEEE Trans. on Consumer Elec., vol. 50, no. 1, Feb. 2004.

[77] A. Ichigaya, M. Kurozumi, N. Hara, Y. Nishida and E. Nakasu, “A method of

estimating coding PSNR using quantized DCT coefficients”, IEEE Trans. Circuits

Syst. Video Technol., vol. 16, no. 2, Feb. 2006.

[78] Y. P. Lee, T. H. Chen, L. G. Chen, M. J. Chen, and C. W. Ku, “A cost effective

architecture for 8×8 two-dimensional DCT/IDCT using direct method,” IEEE Trans.

Circuits Syst. Video Technol., vol. 7, pp. 459-467, June 1997.

[79] S. F. Hsiao and W. R. Shiue, “ A new hardware-efficient algorithm and architecture

for computation of 2-D DCTs on a linear array”, IEEE Trans. Circuits Syst. Video

Technol., vol. 11, no. 11, pp. 1149-1159, Nov. 2001.

[80] P. A Ruetz, P. Tong, D. Bailey, D. A. Luthi, and P. H. Ang, “A high performance

full-motion video compression chip set, “ IEEE Trans. Circuits Syste. Video Technol.,

vol. 2, no. 2, pp. 111-121, June 1992.

[81] Y.-T. Chang and C.-L. Wang, “New systolic array implementation of the 2-D

discrete cosine transform and its inverse,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 5, pp. 150-157, Apr. 1995.

[82] A. Madisetii and A. N. Willson, “A 100 MHz 2-D 8×8 DCT/IDCT processor for

HDTV application, “ IEEE Trans. Circuits Syst. Video Technol., vol. 5, no. 2, pp.

158-164, Apr. 1995.

[83] G. A. Jian, C. D. Chien and J. I. Guo, “A memory-based hardware accelerator for

real-time MPEG-4 Audio Coding and Reverberation,” IEEE Inter. Symp. on Circuit

and Syst., pp. 1569-1572, May 2007.

[84] R. Pandey and M. L. Bushnell, “Architecture for variable-length combined FFT,

DCT and MWT transform hardware for multi-modeWireless system,” IEEE Inter.

Conf. on Embedded Syst., pp. 121-126, Jan. 2007.

 126

Appendix A

The Transfer Function between 8×8 2D SFFT and 8×8 2D DCT

Equation (90) reveals that the 2D DCT result of X[k1,k2] can be derived from the 8×8 2D

SFFT with a time-domain shift of 1/4 samples.

∑ ⋅∑ ⋅=
=

++

=

7

0

)
4

1
(

8

)
4

1
(

8

7

0
2121

1

2211

2

),(],[
n

knkn

n
s WWnnykkY

∑
+++

∑ ⋅=
= =

7

0

1111
7

0
21

1 2

)]
16

)41(
sin()

16

)41(
[cos(),(

n n

nk
j

nk
nny

ππ

)]
16

)41(
sin()

16

)41(
[cos(2222 nk

j
nk +++⋅ ππ

where 7,,,0 2121 ≤≤ nnkk . Because the input data y(n1,n2) is a real-valued sequence,

the second half output of the 8×8 2D-shifted SFFT can be calculated as

∑ ⋅∑ ⋅=−
=

+−+

=

7

0

)
4

1
(

8

)8)(
4

1
(

8

7

0
2121

1

2211

2

),(],8[
n

knkn

n
s WWnnykkY

∑ ⋅⋅∑ ⋅=
=

++−+

=

7

0

)
4

1
(

8

)
4

1
(

8

)
4

1
(8

8

7

0
21

1

22111

2

),(
n

knknn

n
WWWnny

∑ ⋅∑ ⋅⋅−=
=

++−

=

7

0

)
4

1
(

8

)
4

1
(

8

7

0
21

1

2211

2

),()(
n

knkn

n
WWnnyj

∑
+−+

∑ ⋅⋅−=
= =

7

0

1111
7

0
21

1 2

)]
16

)41(
sin()

16

)41(
[cos(),()(

n n

nk
j

nk
nnyj

ππ

)]
16

)41(
sin()

16

)41(
[cos(2222 nk

j
nk +++⋅ ππ

According to Eq. (6.2) in the original manuscript, X[k1,k2] can only result from the

product of two real parts of the twiddle factors
11)

4

1
(

8

kn
W

+
 and

22)
4

1
(

8

kn
W

+

)
16

)41(
cos()

16

)41(
cos(),(],[22

7

0

11
7

0
2121

1 2

nknk
nnykkX

n n

+⋅∑
+

∑ ⋅=
= =

ππ
.

(8 9)

 127

Furthermore, the real value of YS(k1,k2) and the imaginary value of YS(8−k1,k2) can be

written as

∑ −+⋅+
∑ ⋅=

= =

7

0

2211
7

0
2121

1 2

)
16

)41(
cos()

16

)41(
{cos(),(]},[Re{

n n
s

nknk
nnykkY

ππ

)}
16

)41(
sin()

16

)41(
sin(2211 nknk +⋅+ ππ

−∑ ∑
+⋅+⋅=−

= =

7

0

7

0

2211
2121

1 2

)
16

)41(
sin()

16

)41(
{sin(),(]},8[Im{

n n
s

nknk
nnykkY

ππ

)}
16

)41(
cos()

16

)41(
cos(2211 nknk +⋅+ ππ

The 8×8 2D DCT result can thus be expressed as a subtraction of the imaginary value

of YS(8−k1,k2) from the real value of YS(k1,k2) and.

[]{ })],8(Im[),(Re
2

1
],[212121 kkYkkYkkX SS −−=

Only the real value of YS(k1,k2), the imaginary value of YS(8−k1,k2) and the real value of

the input port y(n1,n2) are adopted to obtain the single X[k1, k2] in the 2D 8×8 SFFT

based design. However, the proposed R42SDF design is a complex system. Two

reordered input sequences {y1(n1,n2)},{ y2(n1,n2)} for two independent real input

sequences {x1(n1,n2)},{ x2(n1, n2)} can be combined to form a complex input sequence

{ y(n1,n2) = y1(n1,n2) + jy2(n1,n2)}, and the double throughput of 2D 8×8 DCT of

{ x1(n1,n2)},{ x2(n1,n2)} can be derived by the single 2D 8×8 SFFT computation.

Consequently, two independent 8×8 2D DCTs X1[k1,k2], X2[k1,k2] of x1(n1,n2), x2(n1,n2),

respectively, can then be obtained as below:

{ })]8,8(Re[)],(Re[
4

1
],[2121211 kkYkkYkkX ss −−−=

{ })]8,(Im[)],8(Im[
4

1
2121 kkYkkY ss −+−− ,

{ })]8,8(Im[)],(Im[
4

1
],[2121212 kkYkkYkkX ss −−−=

{ })]8,(Re[)],8(Re[
4

1
2121 kkYkkY ss −+−+ .

Two different 8×8 2D DCT results are obtained from one single 8×8 2D SFFT

computation as above.

 128

VITA
姓名： 余遠渠

性別： 男

生日： 民國 61 年 10 月 7 日

籍貫： 台灣省桃園縣

學歷：

1. 民國 78年 6 月苗栗市建台高級中學畢業

2. 民國 82年 6 月私立逢甲大學自動控制工程系學士畢業

3. 民國 84年 6 月私立逢甲大學自動控制工程系碩士畢業

4. 民國 92年 9 月國立交通大學電機與控制工程學系博士班

經歷：

1. 民國 86年 6 月~民國 86年 10月(4 個月): 楊宇科技—專案經理

2. 民國 88年 9 月~民國 90年 2 月(1 年 5 個月):

宏碁電腦—數位電路設計, 資深工程師

3. 民國 90年 2 月~民國 97年 1 月(6 年 11個月):

義隆電子—數位 IC 設計,副理

4. 民國 97年 1 月迄今(3 個月): 智微科技—數位 IC 設計,經理

PUBLICATION LISTS

期刊部分期刊部分期刊部分期刊部分：：：：

[1] Lan-Da Van, Chin-Teng Lin and Yuan-Chu Yu, “VLSI Architecture for the
Low-Computation Cycle and Power-Efficient Recursive DFT/IDFT Design,” IEICE
Trans. on Electronics, Information and Communication Engineers, Vol. E90-A, No.
8, Aug. 2007.

[2] Chin-Teng Lin, Yuan-Chu Yu and Lan-Da Van, “Cost-Effective Triple-Mode
Reconfigurable Pipeline FFT/IFFT/2-D DCT Processor, “ IEEE Trans. on VLSI,
Accepted, 2007.

[3] Chin-Teng Lin and Yuan-Chu Yu, “Design of an Effective Pipeline FFT/IFFT
Processor, “ International Journal of Electrical Engineering (IJEE), Accepted, 2008.

會議論文會議論文會議論文會議論文部分部分部分部分：：：：

[1] Lan-Da Van, Yuan-Chu Yu, Chun-Ming Huang, Chin-Teng Lin, "Low computation
cycle and high speed recursive DFT/IDFT: VLSI algorithm and architecture," in
Proc. IEEE Workshop on Signal Processing Systems (SiPS 2005), Nov. 2005, pp.

 129

579-584, Athens, Greece.
[2] Chin-Teng Lin, Yuan-Chu Yu, and Lan-Da Van, “A Low Power 64-Point FFT/IFFT

Design for IEEE 802.11a WLAN Application”, IEEE Int. Symp. on Circuits and Syst.

2006 (ISCAS 2006), May 21-24, 2006.
[3] Chin-Teng Lin, and Yuan-Chu Yu “Cost-Effective Pipeline FFT/IFFT VLSI

Architecture for DVB-T System”, National Symp. on Telecommunications 2007

(NST 2007), Oct. 28, Taipie, Taiwan.

申請之專利申請之專利申請之專利申請之專利部分部分部分部分：：：：

[1] Chin-Teng Lin, Lan-Da Van and Yuan-Chu Yu, “可正反轉共用之遞迴式離散傅力葉

處理器單核心裝置及其應用, “0007-158, 公告中, 2007.
[2] Chin-Teng Lin, Yuan-Chu Yu and Lan-Da Van, “快速傅立葉轉換及其反轉換裝置與

方法, “096135456, 公告中, 2007.

