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中文摘要中文摘要中文摘要中文摘要    

 

本篇論文針對傅立葉轉換，設計其高效能之管線式處理器。論文以四種不同之即時

應用為範例來提出其對應之高效能設計，其包括：雙聲多頻偵測器在高通道密度之

VoP 應用、多輸入多輸出之正交多頻的無線區域網路、多輸入點之長快速傅立葉轉

換運算在手機之數位影像傳波系統應用、以及快速傅立葉正(反)轉換/二維數位餘弦

轉換在下代手機之多媒體應用。針對這四種明顯不同之應用，本論文提出了六種特

定之硬體導向設計，以達到最高效能之管線式處理器架構，其評估之指標包括: 單

位時間輸出量、計算延遲時間、運算複雜度、硬體成本與硬體使用之利用率。在雙

聲多頻偵測器之應用上，本論文採用：精簡式輸入序列架構、分散式記憶體以及柴

比雪夫多項式為基準之改良式遞迴式轉換器，來達到低計算週期、高能量利用率之

優點。所架構之單聲多頻偵測器單核心，可在相同之運算速度及運算時間內，達到

雙倍之資料運算量。對於 2×2 以及 4×4 多輸入多輸出之正交多頻的無線區域網路，

本論文提出兩種高效能之快速傅立葉正(反)轉換處理器：積數 2/8 之多回授路徑架

構(R28MDF)與積數 2/8 之多延遲整流路徑架構(R28MDC)。依據精簡式之基數 8 快速

傅立葉轉換單元(R8-FFT)，配合先寫後讀(MAW)之技巧，此兩架構達到了 100%之蝴

蝶器利用率，同時更在單位時間內達到高輸出量已滿足 2×2 以及 4×4 多輸入多輸出

之正交多頻之無線區域網路需求。針對多輸入點之長快速傅立葉轉換運算應用上，

本論文提出兩個新式架構：基數 4
2
單一迴授路徑架構與基數 4

3
單一迴授路徑架構，

其以較少之基數 4 理論來達到高基數 16 與基數 64 之低運算複雜度效能。在跟其他

數個已存在之管線式處理器比較後，可證明本論文所提出之架構，以最少之硬體成

本達到最高之硬體使用率，因此達到了高效能之應用需求。最後根據基數 4
2
單一迴

授路徑架構，配合區段移位暫存器與翻轉移位暫存器架構，架構了一”三模處理器”

來支援 256 點之快速傅立葉正(反)轉換運算與二維數位餘弦轉換運算。同樣地，在

跟其他數個現存之管線式處理器比較後，可證明本論文所提出之架構，以最少之硬

體成本達到最高之硬體使用率，因此達到了高效能之應用需求。在本論中六個處理

器皆以用 TSMC 0.13µm CMOS 製程完成實現與驗證，根據實現結果與嚴謹之比較，我

們可證明本文所提出之 RDFT、R28MDF/R28MDC、R4
2
SDF/ R4

3
SDF 與三模處理器，在

雙聲多頻偵測器、多輸入多輸出之正交多頻的無線區域網路、多輸入點之長快速傅

立葉轉換運算、下代手機之多媒體應用上皆達到高處理效能之優點。 
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ABSTRACT 

   In this thesis, the design and implementation of effective pipeline processors for 

Fourier transform are presented. Four different real-time applications are introduced, 

which includes dual tone multi-frequency (DTMF) detector in the high channel density 

voice over packet (VoP) application, multiple-input multiple-output orthogonal frequency 

division multiplexing (MIMO-OFDM) wireless LAN (WLAN) system, long-length based 

FFT/IFFT computations in digital video broadcasting－handheld (DVB-T) standard and 

FFT/IFFT/2D-DCT computations in next generation mobile multimedia applications. 

According to these four standards, six specific hardware-orientated designs for most 

effective pipeline processors have been proposed in terms of throughput, computation 

latency, computation complexity, hardware cost and hardware utilization.  

For the DTMF standards, one low-computation cycle and power-efficient recursive 

DFT/IDFT processor adopting a hybrid of input strength reduction, the Chebyshev 

polynomial, and register-splitting schemes has been proposed. Appling this novel 

low-computation cycle architecture, we could double the throughput rate and the channel 

density without increasing the operating frequency for the DTMF detector in the high 

channel density VoP application. Two effective FFT/IFFT processors, namely adix-2/8 

multiple-path delay feedback (R28MDF) based and raidx-2/8 multiple-path delay 

commutator (R28MDC) based FFT/IFFT processors for the 2×2 and 4×4 MIMO-OFDM 

WLAN systems, respectively. By applying the retrenched 8-point FFT (R8-FFT) unit 

combined with the proposed multiplication-after-write (MAW) method, the R28MDF and 

R28MDC architectures resulted in 100% butterfly utilization and an appropriate 

throughput rate with few hardware resources for the 2×2 and 4×4 MIMO-OFDM 

applications, respectively. For the long-length based FFT/IFFT computations, two novel 

radix-42 single-path delay feedback (R42SDF) design and radix-43 single-path delay 

feedback (R43SDF) design with the low computational complexities of the radix-16 and 

radix-64 algorithms and the low hardware requirement of the radix-4 algorithm achieve 
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the smallest hardware cost and the highest hardware utilization among the tested 

architectures and thus has the highest efficiency. Base on the effective R42SDF 

architecture with the segment shift register (SSR) and overturn shift register (OSR) 

structure, the proposed triple-mode processor not only supports both 256-point FFT/IFFT 

and 8×8 2-D DCT computations, but also has the smallest hardware requirement and 

largest hardware utilization among the tested architectures for the FFT/IFFT computation, 

and thus has the highest cost efficiency.  

In this thesis, six processors all implemented under TSMC 0.13µm CMOS process. 

According to the comprehensive comparisons and implementation results, we could 

demonstrate that the proposed RDFT, R28MDF/R28MDC, R42SDF/ R43SDF and 

Triple-Mode designs achieve the high effective advantages for DTMF, MIMO-OFDM 

WLAN, DVB-T and next-generation applications. 
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Chapter 1 Introduction 
 

   The increased demand for communication, multimedia, and other consumer products 

has created the need for low-cost, low-power consumption and high throughput based 

processor that can use Fourier transforms for their signal processing or data manipulation. The 

discrete Fourier transform (DFT) is an equation for converting time domain data into 

frequency domain data [1]. Discrete means that the signal is sampled in time rather than being 

continuous. Therefore, DFT is an approximation for the continuous Fourier transform [2]. The 

DFT equation, unlike the continuous Fourier transform, covers a finite time and frequency 

span.  Base on the requirements of the DFT results, there are possible two categories for the 

effective algorithms of DFT computations: 1) fast Fourier transform (FFT) algorithm, 2) 

recursive algorithm. FFT based algorithms are a group of algorithms for significantly 

speeding up the computation of the DFT, when all N points of DFT results are required. The 

most widely known of these algorithms is attributed to Cooley and Tukey [3] and is used for a 

number of point N equal to a power-of-two. In the realistic world, many applications require 

spectrum analysis only over a subset of the N center frequencies via the DFT computation 

instead of the overall results of the FFT. An effective derivative of DFT is the recursive based 

algorithm, which emerges better performance than the FFT algorithm when only some sparse 

DFT results need to be obtained by completing a single complex DFT spectral bin value for 

every N input time instances. The most famous of the recursive algorithms is the Goertzel 

algorithm [4], which use the periodicity properties to reduce DFT computations. Base on the 

required portions of DFT results, two effective DFT processors could be found: 1) FFT based 

processor, 2) recursive based processor. In this study, one high effective recursive processor 

has been presented. Base on the different requirements, five different pipeline FFT/IFFT 

processors are also presented in this work.  

 

 

 

 

 

 



 

 2

1.1 Motivation 

Many researchers have concentrated on designing an optimized reconfigurable DSP 

processor to achieve a high processing rate and low power consumption in next-generation 

mobile multimedia applications [5][6]. The software based architecture such as the 

co-processor and dual-MAC designs have been proposed by Chai et al. [5] and Kolagotla et al. 

[6], respectively. However, they induce the large chip size because of the high flexibility. 

Vorbach et al. have also presented hardware-based concepts such as the processing element 

(PE) array [7], which achieves a high processing rate with reasonable flexibility. However, the 

processing kernel has the flaw of a low utilization rate with a large array memory and 

muti-MACs, leading to poor cost efficiency. The specific ASIC based design on a fast 

computation algorithm provides high cost efficiency [8]-[10]. Base on the different real-time 

applications, some design decisions for ASIC based FFT processor should be made following 

with the different specification:  

� Required portions of DFT results: The primary advantage of recursive based algorithms 

is that it allows a subset of the DFT’s N output terms to be efficiently calculated. 

Considering the computation complexity, the direct evaluation of DFT of all N values 

requires a total of N2 complex multiplications and N(N-1) complex additions. If only M 

values of N DFT results are required, the computation complexity of Goertzel and 

radix-2 based FFT algorithm are NM and Nlog2N, respectively. It is obviously that the 

computation saving of radix-2 based FFT algorithm is not significant —less than a factor 

of two. Then, the Goertzel algorithm demonstrates the good efficient for certain 

applications, such as: the dual tone multi-frequency (DTMF) standards [11-16] for voice 

over packet (VoP) network [17-19], discrete multi-tone equalizer of multi-carrier 

modulation system [20, 21], and speed detection. 

� Number of FFT channels: Future broadband wireless access systems including wireless 

LANs (WLAN) and fourth-generation (4G) mobile radio systems need much higher 

spectral efficiency and service quality than the current standards do [22, 23]. A 

multiple-input-multiple-output (MIMO) wireless system has been extensively studied 

recently due to the potential for raising system capacity [24, 25, 26]. The orthogonal 

frequency division multiplexing (OFDM) modulation scheme not only decreases the 

receiver complexity, but also improves the performance on highly dispersive channels. 

An especially promising candidate for the next-generation fixed and mobile wireless 

systems is the combination of MIMO technology with OFDM, called the MIMO-OFDM 
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system. A MIIMO-OFDM system with k antennas in the transmitter and the receiver 

comprises k OFDM baseband processors working in parallel, and thus requires k FFT 

processors, one for each antenna [24-26]. Then, a high throughput FFT processor, which 

could compute the multi-channel FFT computations, would be required. 

� Transform length of FFT computation: The size of the transform will directly affect 

frequency resolution, memory requirements, and the speed at which the computation can 

be done. In the realistic world, many applications require the FFT/IFFT implementations 

that can perform long-length computations while exhibiting low cost, low power 

consumption and high throughput. The long-length based FFT/IFFT processor has been 

widely applied in many real time applications, such as: DVB-H(Digital Video 

Broadcasting－Handheld)[27, 28], VDSL(Very-high-speed Digital Subscriber Line) [29], 

and audio measurement [30]. Since such long-length FFT computations are rather 

time-consuming, the efficient FFT processors are necessary to meet the real time 

operations. Furthermore, the handheld devices include multimedia mobile phones with 

color displays as well as personal digital assistant (PDA) and pocket PC, which should 

consider some specific advantages — small, lightweight, portable, battery-powered 

devices. 

� Number of dimension: All multidimensional FFTs are done as a sequence of 

one-dimensional FFTs. The importance of knowing how many dimensions (one, two, or 

three, usually) there are determines how many FFTs will be need and how the data must 

be organized to do the multiple dimensions. This will affect chip processing load and the 

choice of architecture. To improve the radix-2 based FFT algorithm, He et al. [31] has 

presented radix-22 and radix-23 algorithms for the higher computation efficiency. Then, 

the design in [31] achieves the high hardware utilization and low hardware resource 

usage.  

� Algorithm construction: The algorithm used will affect the computational complexity the 

algorithm requires and computation speed the design does. The low radix based 

algorithm is well known to have higher multiplicative complexity than the high radix 

based algorithm. Notably, the design with the highest complex multiplicative complexity 

has the highest power consumption [26, 28, 31-33]. 

� Architectures: Many researches were concentrated on the efficient FFT realizations [26, 

31, 34-36]. The appropriated algorithm and architecture for the FFT processor should be 

chosen trading off its processing speed and its chip cost. The pipeline architecture 

processes regularity, modularity, local connection, and high throughput rate with lower 
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clock frequency [37]. Furthermore, pipeline FFT processor is characterized by 

non-stopping processing on a clock frequency of the input data sampling. An analysis 

has depicted that a unique operating frequency, which is close or equivalent to the 

sampling frequency is preferable to the FFT processor when the power consumption is 

confined by the application environment, such as handheld communications [26, 31, 32, 

34, 38]. Basically, there are mainly two different pipeline architectures: multipath delay 

commutator (MDC) architectures [33, 36, 39, 40] and single-path delay feedback (SDF) 

architectures [31, 32, 34, 35, 42, 43]. The SDF architectures are well known to be more 

efficient than MDC architectures in terms of memory utilization since the butterfly 

output share the same storage with its input [31, 32, 34]. Therefore, this investigation 

focuses on the “hardware-oriented” pipeline architecture, in which the arithmetic 

operations can be tightly scheduled for effective hardware utilization. 

 

 

 

1.2 Objectives 

The objectives of this thesis are to propose the high effective pipeline processors for 

the DFT computations in different real-time applications. Four different applications have 

been taken into consideration, which are recursive based DFT computation in DTMF standard 

[12-15], multiple-input multiple-output orthogonal frequency division multiplexing 

(MIMO-OFDM) wireless LAN (WLAN) [22, 23], long-length based FFT/IFFT computations 

in digital video broadcasting－handheld (DVB-T) standard [27, 28] and FFT/IFFT/2D-DCT 

computations in next generation mobile multimedia applications [5-7, 44]. The objective 

descriptions of these four designs are provided as below: 

1. Recursive DFT/IDFT Design: The Goertzel algorithm has been widely applied to the 

dual tone multi-frequency (DTMF) standards [11]-[16] for voice over packet (VoP) 

network [17]-[19] to compute the interested spectra, the discrete multitone equalizer of 

multicarrier modulation system [20]-[31], and speed detection. Considering the 

state-of-the-art applications, the high channel-density dual-tone detector [17]-[19] is 

demanded. Some advanced DTMF detectors for the high density VoP network 

application have been realized by one embedded DSP processor [12]-[14], [17]-[19]. 

Although, the DSP processor based design could keep the maximum flexibility, it may 
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not meet the cost effective considerations. On the other hand, the DSP processor based 

design may lose the advantages of high-throughput, low power, and small area 

compared with the application-specific integrated circuits (ASIC) designs [45]. In [13], 

the DSP processor based DTMF detectors needs a large amount of memory to decode 

only 24 channels, which requires 800 words data memory and 1000 words program 

memory with 16-bit wordlength for each words. Also, it has to operate on the higher 

frequency of 24 MHz. For the purpose of optimizing the whole system performance and 

cost, much research [46]-[53] has concentrated on the dedicated core design. In 

[15]-[17], the recursive expressions for the DCT computation that are suitable for VLSI 

implementation are presented. It is worth noticing that the recursive algorithms are 

solely used to design recursive DCT architectures rather than the recursive DFT 

architectures in [46]-[48]. In the past two decades, several recursive DFT algorithms and 

architectures have been explored [49]-[53]. Compared with the conventional 

second-order recursive DFT/IDFT architecture, Van et al. [51] utilized resource-sharing 

and register-splitting schemes to reduce two multipliers and speedup the computation, 

respectively. Yang et al. [52] proposed two unified IIR filter structures to save the 

hardware cost for the DFT computation. Nevertheless, neither Van et al. [51] nor Yang 

et al. [52] improve the computation cycle. In [53], Fan et al. applied the previous 

proposed method to reduce the computation cycles but the performance is limited. On 

the other hand, Fan et al. only proposed the recursive DFT algorithm but the IDFT 

algorithm is not yet ready in [53]. In essence, a short description of the proposed 

algorithm has been presented in the associated conference [54, 55]. In this thesis, the 

detailed descriptions of a high-performance and power-efficient VLSI algorithm and 

architecture by the hybrid of input strength reduction scheme, Chebyshev polynomial, 

and register-splitting scheme for the DTMF application have been fully provided. The 

derived recursive algorithm and devised architecture [54, 55] possesses the following 

features: low-computation cycle (i.e., high throughput) and power efficiency at the 

expense of slightly increased area overhead compared with the existing recursive 

DFT/IDFT structures. 

2. MIMO-OFDM FFT design: Future broadband wireless access systems including 

wireless LANs (WLAN) and fourth-generation (4G) mobile radio systems need much 

higher spectral efficiency and service quality than the current standards do [22, 23]. A 

multiple-input-multiple-output (MIMO) wireless system has been extensively studied 

recently due to the potential for raising system capacity [24-26]. The orthogonal 
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frequency division multiplexing (OFDM) modulation scheme not only decreases the 

receiver complexity, but also improves the performance on highly dispersive channels. 

An especially promising candidate for the next-generation fixed and mobile wireless 

systems is the combination of MIMO technology with OFDM, called the MIMO-OFDM 

system. A MIIMO-OFDM system with k antennas in the transmitter and the receiver 

comprises k OFDM baseband processors working in parallel, and thus requires k FFT 

processors, one for each antenna [24-26]. Because of the high throughput requirements 

of the FFT computation in the MIMO-OFDM system, three 4×4 MIMO-FFT 

architectures, parallel multi-path architecture, serial multi-stream architecture and serial 

blockwise architecture, as depicted in Fig. 1(a)-(c), respectively, have been presented 

[25]. A parallel multi-path architecture includes k FFT blocks for k antennas, as depicted 

in Fig. 1(a). The figure indicates that the area cost of parallel multi-path based system 

rises linearly with the number of antennas (i.e. k times the FFT block area). Conversely, 

the serial multi-stream architecture and serial blockwise architecture only requires one 

FFT block to handle the concurrent computation of k antennas. However, the serial 

multi-stream architecture applies one lower throughput rate FFT processor embedded 

with the k times buffer size for intermediate computation, as depicted in Fig. 1(b). For k 

channel computation, the serial multi-stream architecture must operate at a higher clock 

frequency than sampling data frequency of Fs to satisfy the higher throughput 

requirements. Analytical results indicate that the operating frequency of serial 

multi-stream based system grows linearly with the number of antennae (i.e. k times the 

sampling frequency of Fs). Based on the serial blockwise FFT architecture, the input 

data of the FFT block can be provided in parallel with k embedding input buffer, as 

depicted in Fig. 1(c). Applying one higher throughput rate FFT processor, the serial 

blockwise FFT based processor can complete k channel FFT computations concurrently. 

Among these three architectures, the serial blockwise architecture only requires one FFT 

block operating at the same clock frequency with the data sampling frequency of Fs. An 

analysis has depicted that a unique operating frequency, which is close or equivalent to 

the sampling frequency of Fs, is preferable to the FFT processor when the power 

consumption is confined by the application environment, such as mobile 

communications [26, 31, 38, 56, 57]. Considering the memory cost, the serial blockwise 

architecture should slightly increase the cost with one extra buffer of size N than other 

architectures. However, the memory cost problem for serial blockwise architecture 

becomes increasingly minor when the number of antennae in the MIMO-OFDM system 
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is larger. Consequently, the serial blockwise-based MIMO-FFT architecture applies 

single FFT block to achieve the appropriate throughput and minimizes power 

consumption for MIMO-OFDM WLAN applications. 
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(b) Serial multi-stream MIMO-FFT architecture. 
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 (c) Serial blockwise MIMO-FFT architecture. 

 
Fig. 1: MIMO-FFT architectures.  

 

3. Long-Length FFT Design: The FFT and IFFT are essential in the field of digital signal 

processing (DSP) and communication systems. In the realistic world, many applications 

require the FFT/IFFT implementations that can perform long-length computations while 

exhibiting low cost, low power consumption and high throughput. The long-length 
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based FFT/IFFT processor has been widely applied in many real time applications, such 

as: DVB-H(Digital Video Broadcasting－Handheld)[27, 28], VDSL(Very-high-speed 

Digital Subscriber Line) [29], and audio measurement [30]. DVB-H is a digital 

broadcast standard offering high data rate audio/video content delivery to handheld 

devices, which requires a 4096-point FFT computation (i.e. 4k mode) for the flexible 

networking design in single frequency networks (SFNs) [27, 28]. The VDSL transceiver 

and audio analyzer need to involve the complicated FFT computations, where the 

transform length is also 4096-point [29, 30]. Since such long-length FFT computations 

are rather time-consuming, the efficient FFT processors are necessary to meet the real 

time operations. Furthermore, the handheld devices include multimedia mobile phones 

with color displays as well as personal digital assistant (PDA) and pocket PC, which 

should consider some specific advantages — small, lightweight, portable, 

battery-powered devices. 

4. Triple-mode reconfigurable FFT/IFFT/2-D DCT design: generation mobile multimedia 

applications, including mobile phones and personal digital assistant (PDAs), require 

much sufficiently high processing power for multimedia applications. Multimedia 

applications include video/audio codecs, speech recognition and echo cancellers. The 

speech recognition requires the speech extraction and autocorrelation coefficient 

computations [58] in the voice command application. The video codec is the most 

challenging element of a multimedia application, since it requires much processing 

power and bandwidth. Hence, a flexible and low cost pipeline processor with the 

superiority of high processing rate is required to realize necessary computation-intensive 

algorithms, such as 256-point FFT/IFFT and 8×8 2-D DCT [5]-[7]. Additionally, a major 

integration challenge is to design the digital baseband and accompanying control logic. 

The WiMAX baseband is constructed around orthogonal frequency division 

multiplexing (OFDM) technology requiring high processing throughput. The fixed, 

IEEE 802.16e [44], version of WiMAX also needs a 256-point FFT computation. Many 

researchers have recently concentrated on designing an optimized reconfigurable DSP 

processor to achieve a high processing rate and low power consumption in 

next-generation mobile multimedia applications [5][6]. The software based architecture 

such as the co-processor and dual-MAC designs have been proposed by Chai et al. [5] 

and Kolagotla et al. [6], respectively. However, they induce the large chip size because 

of the high flexibility. Vorbach et al. have also presented hardware-based concepts such 

as the processing element (PE) array [7], which achieves a high processing rate with 
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reasonable flexibility. However, the processing kernel has the flaw of a low utilization 

rate with a large array memory and muti-MACs, leading to poor cost efficiency. The 

specific ASIC based design on a fast computation algorithm provides high cost 

efficiency [8]-[10]. Tell et al. [8] presented the FFT/WALSH/1-D DCT processor for 

multiple radio standards of the upcoming 4th generation wireless systems. Conversely, 

some designs [8]-[10] only support 1-D DCT computation, and have no 2-D DCT 

support. However, 2-D DCT is desirable for the video compression among wireless 

communication applications. This study not only presents a single reconfigurable 

architecture for the 256-point FFT/IFFT modes and the 8×8 2-D DCT mode, but also 

achieves high cost-efficiency in portable multimedia applications. 

 

 

 

1.3 Contributions 

For the purpose of supporting these four applications, six ASIC based pipeline 

processors, namely recursive DFT/IDFT (RDFT) based processor, radix-2/8 multiple-path 

delay feedback (R28MDF) based processor, radix-2/8 multiple-path delay commutator 

(R28MDC) based processor, radix-42 single-path delay feedback (R42SDF) based processor, 

radix-43 single-path delay feedback (R43SDF) based processor and reconfigurable triple-mode 

FFT/IFFT/2-D DCT processor, have been presented in this thesis. The contributive 

descriptions are presented as below:  

1. RDFT Design: Based on the proposed RDFT architecture, one high-throughput (i.e. high 

channel density) and power-efficient DTMF detector has been proposed. For the purpose 

of achieving the high power efficiency, we perform the bit level SNR simulation to 

decide the best configuration for the DTMF detector system. The results show that the 

proposed design only needs 9-bit word-length, which is one-bit less than the second 

order Goertzel structure, to land the satisfactory resolution under 15 dB SNR 

environment. In this paper, the resulting DTMF detector uses 12-bit word-length, where 

the additional 3 bits are used for design margins so as to obtain better performance. On 

the other hand, the novel design saves 4-bit cost compared with the 16-bit based DSP 

processor design [12]-[14]. In summary, the proposed DTMF structure not only saves 

more area cost, but also reduces the power consumption due to the register-splitting 
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scheme [51] and a smaller word-length requirement. Most importantly, the computation 

cycles can be reduced to 50% and thus a double throughput rate and channel density can 

be easily obtained without increasing the operation frequency. Our proposed DFT/IDFT 

chip is able to offer over 128-channel telephone signals for the high channel density 

DTMF detector [16] without any DSP processor inside. Each channel consumes 9.77 uW 

under 1.2V@20 MHz in TSMC 0.13 1P8M CMOS process. This is a significant 

contribution, as the high channel density and low power characteristics are demanded for 

the communication systems.  

2. R28MDF and R28MDC Design: This investigation presents two new efficient designs, 

R28MDF based and R28MDC based FFT/IFFT processors for the 2×2 and 4×4 

multiple-input multiple-output orthogonal frequency division multiplexing 

(MIMO-OFDM) wireless LAN (WLAN) system, respectively. The novel radix-2/8 

algorithm reduces the half constant multiplier requirement in the proposed retrenched 

8-point FFT (R8-FFT) unit compared with that of the conventional radix-2/8 algorithm, 

and has low multiplicative complexity as a radix-8 based algorithm. By applying the 

R8-FFT unit combined with the proposed multiplication-after-write (MAW) method, the 

R28MDF and R28MDC architectures resulted in 100% butterfly utilization and an 

appropriate throughput rate with few hardware resources for the 2×2 and 4×4 

MIMO-OFDM applications, respectively. Implementation results indicate that two chips 

consume only 19.42mW and 23.57mW under 1.2V@20 MHz in a TSMC 0.13µm 1P8M 

CMOS process. The comparison results among the existing 64-point FFT/IFFT processor 

architectures are comprehensively discussed. The architecture analyses and chip 

implementation indicate that the proposed FFT/IFFT processor architectures are suitable 

for MIMO-OFDM WLAN systems. 

3. R42SDF and R43SDF Design: In this investigation, we proposes the novel radix-42 and 

radix-43 algorithms with the low computational complexities of the radix-16 and 

radix-64 algorithms and the low hardware requirement of the radix-4 algorithm. Base on 

the multiplierless radix-4 butterfly structure, the proposed R42SDF design and R43SDF 

design support the 4096-point FFT/IFFT computations. Moreover, the retrenched 

constant multiplier and eight-folded complex multiplier structures are adopted to 

decrease the multiplier cost and the coefficient ROM size with the complex conjugate 

symmetry rule and subexpression elimination technology. To further decrease the chip 

cost, a finite word-length analysis is provided to indicate that the proposed R42SDF and 

R43SDF architectures only require 14 and 13-bit internal word-length to achieve 40dB 
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SNR performance in the 4096-point FFT/IFFT computation. The comprehensive 

comparison results indicate that the proposed R43SDF design has the smallest hardware 

cost and the highest hardware utilization among the tested architectures for the FFT/IFFT 

computation, and thus has the highest efficiency. The implementation results show that 

the proposed R42SDF and R43SDF based 4096-point pipeline FFT/IFFT processors only 

consumes 6.3725 and 5.985 mW@20 MHz at 1.2V supply voltage in TSMC 0.13 µm 

CMOS process. 

4. The triple-mode reconfigurable FFT/IFFT/2D-DCT Design: Applying the R42SDF 

architecture with the specific linear mapping of common factor algorithm (CFA), the 

proposed triple-mode design supports both 256-point FFT/IFFT and 8×8 2-D DCT 

modes following with the high efficient feedback shift registers architecture. The 

segment shift register (SSR) and overturn shift register (OSR) structure are adopted to 

minimize the register cost for the input re-ordering and post computation operations in 

the 8×8 2-D DCT mode, respectively. Moreover, the retrenched constant multiplier and 

eight-folded complex multiplier structures are adopted to decrease the multiplier cost and 

the coefficient ROM size with the complex conjugate symmetry rule and subexpression 

elimination technology. To further decrease the chip cost, a finite wordlength analysis is 

provided to indicate that the proposed architecture only requires a 13-bit internal 

wordlength to achieve 40dB SNR performance in 256-point FFT/IFFT modes and high 

digital video (DV) compression quality in 8×8 2-D DCT mode. The comprehensive 

comparison results indicate that the proposed cost effective reconfigurable design has the 

smallest hardware requirement and largest hardware utilization among the tested 

architectures for the FFT/IFFT computation, and thus has the highest cost efficiency. The 

derivation and chip implementation results show that the proposed pipeline 256-point 

FFT/IFFT/2-D DCT triple-mode chip consumes 22.37mW@100 MHz at 1.2V supply 

voltage in TSMC 0.13µm CMOS process, which is very appropriate for the RSoCs IP of 

next-generation handheld devices. 
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1.4 Organization 

The remainder of this thesis is organized as follows. 

 

Chapter 2 reviews the literature of the work presented in this thesis and four topics are 

reviewed. The first topic is a review of the Goertzel algorithm and respective hardware 

architecture. The second topic is a review of mixed-radix based FFT algorithms. The third 

topic is a comparative review of high-radix based FFT algorithms. The final topic is a review 

the DCT algorithm.  

Chapter 3 describes a new recursive DFT/IDFT algorithm and architecture by the hybrid of 

input strength reduction, Chebyshev polynomial, and register-splitting schemes is revealed. 

Applying this new architecture, the DTMF application has been demonstrated. After the 

bit-level SNR simulation, the 212/106-point DFT/IDFT chip has been successfully 

implemented for the DTMF detector system. Furthermore, the comparison results are 

tabulated in terms of the amount of computation cycles for each output as well as N-point 

DFT/IDFT, the maximum number of the channel density, the clock period, and the number of 

real multipliers.  

 

Chapter 4 describes a modified radix -2/8 FFT/IFFT algorithm. Using this mixed-radix based 

algorithm, we discuss the corresponding R28MDF and R28MDC fabrics and the detailed 

timing considerations. Furthermore, the implementation issues are discussed. Finally, the 

comparison results of the 64-point FFT/IFFT architectures for the 2×2 and 4×4 

MIMO-OFDM system have been summarized. 

 

Chapter 5 describes a new radix-42 and radix-43 FFT/IFFT algorithms. Applying these 

algorithms, the proposed R42SDF and R43SDF VLSI architectures could be demonstrated. 

Base on the finite word-length analysis, we could prove that the proposed architectures 

achieve the satisfactory system performance. Furthermore, the comparison results in terms of 

hardware utilization and cost demonstrate the high cost-efficiency of the proposed 

architectures. The chip implementation is also presented. 

 

Chapter 6 describes a new triple-mode radix-42 FFT/IFFT and 8×8 2D DCT algorithm. Using 

the proposed radix-42 algorithm, the proposed R42SDF based FFT/IFFT/2-D DCT pipeline 

architecture is demonstrates. The finite wordlength analysis indicates that the proposed 
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architecture achieves the required system performance in both 256-point FFT/IFFT and 8×8 

2-D DCT modes with the lowest hardwire cost. According to the comparison results in terms 

of hardware utilization and cost, we could demonstrate the high cost-efficiency of the 

proposed architecture. Finally, the chip implementation is presented.  
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Chapter 2 Literature Review 
 

   The research work described in this thesis pertains to the design and realization of high 

effective pipeline processor for DFT/IDFT computations in different applications as discussed 

in Chapter 1. In this chapter, we consider a number of algorithms for computing the DFT. The 

algorithms vary in efficiency, but all of them require fewer multiplications and additions than 

does direct evaluation of DFT. This chapter will review four different topics relating to four 

different applications as discussed in the chapter 1. First, a review of the Goertzel algorithm 

and respective hardware architecture is presented. Second, a r eview of mixed-radix based 

FFT algorithms is presented. Third, a comparative review of high-radix based FFT algorithms 

is discussed. Finally, the algorithm mapping between FFT and DCT is detail reviewed.  
 

 

 

 

 

 

 

 

2.1 The Goertzel Algorithm 

   In this section, we first discuss the Goertzel’s algorithm [4], which requires computation 

proportional to N2, but with a smaller constant proportionality than that of the direct 

computation of DFT. Notably, the Goertzel’s algorithm is that it is not restricted to 

computation of the DFT, but is in fact equally valid for the computation of any desired set of 

samples of the Fourier transform of a sequence. Adopting the periodicity of the sequence 

kn
NW  , the Goertzel algorithm efficiently reduce the computation complexity of DFT 

computation.  
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2.1.1 The Recursive DFT Algorithm 

Given input sequence and DFT output sequence denoted as x[n] and X[K],  respectively, 

the N-point DFT can be defined as 

kn
N

N

n
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−
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][][ ,                                                    (1) 

where Nj
N eW /2π−= . The Goertzel algorithm [4] making use of the periodicity of the 

sequence kn
NW  can be used to reduce computation. For convenience of deriving a new 

architecture, we begin a review of the recursive DFT expression based on Goertzel 

algorithm by noting that  
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Because of Eq. (2), we may multiply the right side of Eq. (1) by kN
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In order to simplify the final expression, let us define the sequence 
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From Eqs. (3) and (4) and the fact that x[n]=0 for n<0 and n≧N , it follows that  

Nnk nykX == ][][ .                                                    (5) 

Eq. (4) can be interpreted as a discrete convolution of the finite-duration sequence x[n], 

0≦n≦N-1, with the ][nuW kn
N
− . As a consequence, )(nyk  can be regarded as the 

response of a system with impulse response ][nuW kn
N
−  to a finite-length input x[n]. In 

particular, X[k] is the value of the output when n=N. Taking the z-transform of Eq. (4), we 

can obtain the first-order transfer function as  

11

1
][ −−−

=
zW

zH
k

N
k .                                                   (6) 

It is possible to retain this simplification while reducing the number of multiplications by 

a factor of 2. To see how this may be treated, the transfer function of the first-order 

recursive DFT structure can be noted. Multiplying both the numerator and the 
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denominator of Hk(z) by the factor )1( 1−− zWk
N , we obtain second-order transfer function 

as 

21

1

11

1

)2cos(21

1

)1)(1(

1
][ −−

−

−−−

−

+−
−=

−−
−=

zzN
k

zW

zWzW

zW
zH

k
N

k
N

k
N

k
N

k π
.                  (7)  

 

 

 

2.1.2 The Recursive DFT Architecture 

 

     

                 (a)                                    (b) 

Fig. 2: (a) Block diagram of the first-order recursive DFT structure and (b) a 

multiplexer-type dash-line implementation with down-sampling value of N. 

 

Eq. (6) can be mapped into the first-order recursive DFT structure as shown in Fig. 

2(a), where initial rest conditions are assumed and the vertical dash-line denotes the 

down-sample operation with N for each crossing signal path. Note that the dash-line as 

shown in Fig. 2(a) can be possibly implemented by multiplexer-type or register-type 

down-sampling realization. Here, we adopt the multiplexer-type down-sampling 

realization as shown in Fig. 2(b) due to the advantages of less area and exact mapping 

from the equation to the architecture. In Fig. 2(b), if sel=1, the lower-side signal is passed 

to the output; otherwise, the upper-side signal is selected as the output signal for the 

multiplexer. In this correspondence, since the input x[n] and the coefficient k
NW− are in 

the complex domain, the computation of each new value of yk[n] through the first-order 

recursive DFT structure as shown in Fig. 2(a) requires four real multiplications and four 

real additions. All the intervening values yk[1], yk[2],… yk[N-1] must be computed in 

order to compute yk[N]=X[k], so the use of the first-order recursive DFT structure as a 
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computational algorithm requires 4N real multiplications and 4N real additions to 

compute X[k] for a particular value of k. However, a large number of multiplications are 

required for the first-order recursive DFT architecture, even if the one avoids the 

computation or storage of the coefficients kn
NW  in Eq. (1) at each nth time index.  

Eq. (7) can be mapped into the second-order recursive DFT structure as shown in Fig. 3.  

 

Fig. 3: Block diagram of the second-order recursive DFT structure.  

 

In Fig. 3, only two real multiplications per sample are required to implement the poles of 

this system as shown in Fig. 3. Note that, in the denominator of Eq. (7), the coefficients 

are real and the factor –1 need not be counted as a multiplication. It is worthy of 

emphasizing that the complex multiplication by k
NW−  required to implement the zero of 

the transfer function need not be performed at every iteration of the difference equation, 

but only after the Nth iteration. Thus, the total computation is 2N real multiplications and 

4N real additions for the poles plus four real multiplications and four real additions for the 

zero. The coefficients kn
NW  are again computed implicitly in the iteration of the 

recursion formula implied in Fig. 3. The second-order recursive DFT structure can 

decrease the number of multiplications by Goertzel algorithm; however, the amount of 

multipliers and the value of the critical period are sacrificed. Hence, the structures in Figs. 

2(a) and 3 are not efficient. 
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2.2 The Review of FFT Algorithm 

   Due to the large computation load of DFT computation, the direct evaluation of the entire 

DFT results will cause the serious quantization noise error. FFT are a group of algorithms for 

significantly speeding up the computation of the DFT. Furthermore, FFT based algorithms 

reduce the number of computations to achieve the low quantization. Notably, the design with 

the highest computation complexity also means the highest power consumption [26, 28, 

31-33]. The most widely known of these algorithms is attributed to Cooley and Tukey and is 

used for a number of points N equal to a power-of-two [3]. The number of applications for 

specific FFTs continues to grow and includes such diverse areas as: speech recognition, 

video/audio codecs and MIMO-OFDM based mobile communication. There are many ways 

to measure the complexity and efficiency of an implementation or algorithm, and a final 

assessment depends on both the available technology the intended application [62]. The 

arithmetic multiplications and additions are well known to be the good measurements of 

computational complexity. In this section, some popular FFT algorithms are first reviewed. 

Some famous pipeline FFT architectures are also detail discussed. Later, some design issues 

are reminded, such as: high-throughput and long-length based FFT design.  

   According to the variant of decomposing sequence, two common FFT algorithms could be 

found, namely decimation in time (DIT) and decimation in frequency (DIF) based FFT 

algorithms.  Significantly, the in-place computation could conveniently make the conversion 

between these two algorithms [62]. There is no difference in computational complexity and 

signal flow graph (SFG) between two types of algorithms; herein we only focus on DIF FFT 

algorithm. In this thesis, we focus on the discussion of DIF based FFT algorithms. Since the 

low computational complexity of FFT algorithms is desired for high speed and low power 

consideration in VLSI implementation as discussed before. In this sub-section, the radix-2, 

radix-4 and radix-8 DIF based equations will be first discussed to demonstrate the 

computation complexity between different FFT algorithms.  
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2.2.1 Radix-2 DIF FFT Algorithm 

   The DIF FFT algorithms are all based on structuring the DFT computation by forming 

smaller and smaller subsequences of the output sequence X[k]. To restrict the formula to N a 

power of 2, the radix-2 DIF FFT algorithm is to consider computing separately the 

even-numbered frequency samples and the odd-numbered frequency samples. By separating 

X[k] into 2r and 2r+1, we obtain the following equations. 
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where r=0,1,……(N/2 - 1). Due to the periodicity of rn
NW2 , we could substitute the variables 

in the second term of summation to obtain the following equations. 
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Following with the similar decomposition procedure, two N/2 points DFT results can be 

further decomposed and then four N/4 points DFT results are produced. After log2N time 

recursive decompositions, we can obtain the radix-2 DIF FFT algorithm.  

Considering the computation complexity, the direct DFT computation requires a total of 
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N2 complex multiplications and N(N-1) complex additions. It is well known that each 

complex multiplication requires four real multiplications and two real additions, and each 

complex addition requires two real additions. Then, the direct computation of DFT of a 

sequence x[n] totally requires 4N2 real multiplications and N(4N-2) real additions. From the 

eqs. (10) and (11), the radix-2 algorithm requires Nlog2N complex multiplications and 

complex additions. Alternately, the radix-2 algorithm requires 8
2

7
log

2

3
2 +− NN

N
 real 

multiplications and 8
2

7
log

2

5
2 +− NN

N
 real additions.  

 

 

 

2.2.2 Radix-4 DIF FFT Algorithm 

   From the discussion in subsection 2.2.1.1, it is obviously that the radix-2 DIF FFT 

algorithm could efficiently compute the DFT results than direct method. Comparing with the 

radix-2 algorithm, the radix-4 algorithm can further reduce the computation complexity with 

keeping the same regularity in each butterfly computation. A radic-4 DIF FFT algorithm can 

be derived from recursively decimating the frequency series into four subsets. By separating 

X[k] into 4r , 4r+1, 4r+2 and 4r+3, we obtain the following equations. 
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where r=0,1,……(N/4 - 1). Due to the periodicity of rn
NW4 , we could substitute the variables 

in the 2nd, 3rd and 4th term of summation to obtain the following equations. 
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Following with the similar decomposition procedure, four N/4 points DFT results can be 

further decomposed and then sixteen N/16 points DFT results are produced. After log4N time 

recursive decompositions, we can obtain the radix-4 DIF FFT algorithm.  

Considering the computation complexity, the radix-4 algorithm requires Nlog4N complex 

multiplications and complex additions from the eq. (16) and (19). Alternately, the radix-4 

algorithm requires 33log
8

9
2 +− NN

N
 real multiplications and 33log

8

9
2 +− NN

N
 real 

additions. 
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2.2.3 Radix-8 DIF FFT Algorithm 

   Following with the similar decomposition produce, a radix-8 DIF FFT algorithm can be 

derived from recursively decimating the frequency series into eight subsets. After the 

separation of X[k] into 8r , 8r+1, 8r+2, 8r+3, 8r+4, 8r+5, 8r+6 and 8r+7, we adopt the 

periodicity of rn
NW8  to obtain the following equations. 
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where r=0,1,……(N/8 - 1). Following with the similar decomposition procedure, eight N/8 

points DFT results can be further decomposed and then 64 N/64 points DFT results are 

produced. After log8N time recursive decompositions, we can obtain the radix-8 DIF FFT 

algorithm.  

Considering the computation complexity, the radix-8 algorithm requires Nlog8N complex 

multiplications and complex additions from the eq. (20) to (17). Alternately, the radix-8 

algorithm requires 4
8

25
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24

21
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 real multiplications and 

4
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24

738
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NT

 real additions, where T denotes the number of real additions for 

the realization of coefficient lW8 . 
 

 

 

 

 

2.2.4 Radix-2/4 DIF FFT Algorithm 

   Duhamel et al. [63] presented the radix-2/4 and radix-2/8 FFT algorithms, which achieve 

the few multiplications and additions. The radix-2/4 algorithm takes the advantages of both 

radix-2 and radix-4 algorithms. On the other hand, the radix-2/8 has the advantages of both 
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radix-2 and radix-8 algorithms. However, the radix-2/4 and radix-2/8 algorithms are less 

regular than the fixed-radix based algorithms. To decimate the frequency series into 

even-numbered points and odd-numbered points, the radix-2/4 DIF FFT algorithm can be 

obtained. After the separation of X[k] into 2r , and 2r+1, we adopt the radix-4 decomposition 

with the periodicity of rn
NW2  and sn

NW4  to obtain the following equations. 
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where r=0,1,……(N/2 - 1) and s=0,1,……(N/4 – 1) . Considering the computation complexity, 

the radix-2/4 algorithm requires 43log2 +− NNN  real multiplications and 

43log3 2 +− NNN  real additions. 
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2.2.5 Radix-2/8 DIF FFT Algorithm 

   Following the similar decomposition produce with radix-2/4 algorithm, the radix-2/8 

algorithm can be derived by recursively decimating the frequency series into even-numbered 

points and odd-numbered points. After the separation of X[k] into 2r , and 2r+1, we adopt the 

radix-8 decomposition with the periodicity of rn
NW2  and sn

NW8  to obtain the following 

equations. 
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where r=0,1,……(N/2 - 1) and s=0,1,……(N/8 – 1) . Considering the computation complexity, 

the radix-2/8 algorithm requires MR(N) real multiplications and MR(N)+2Nlog2N real additions. 

The notation of MR(N) could be defined as 
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2.2.6 Radix-22 DIF FFT Algorithm 

   He et al. [31] presented the radix-22 and radix-23 FFT algorithms, which achieve the low 

computational complexities of the radix-4 and radix-8 algorithms but the low hardware 

requirement of the radix-2 algorithm. The radix-22 algorithm takes the advantages of both 

radix-2 and radix-4 algorithms. On the other hand, the radix-23 has the advantages of both 

radix-2 and radix-8 algorithms. Furthermore, the radix-22 and radix-23 algorithms keep the 

regularity with the fixed-radix based algorithms. Applying a 3-dimensional linear index map, 

the parameters n and k of eq. (1) could be expressed as the combinations of n1, n2, n3 and k1, 

k2, k3, respectively. 
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where 0 ≦ n1, n2, k1, k2 ≦ 1.The common factor algorithm (CFA) [64] form can be written as 

[ ]321 42 kkkX ++ ∑ ∑ ∑ ++=
−

= = =

++++1
4

0

1

0

1

0

)42)(
42

(

321
3 2 1

321321
)

42
(

N

n n n

kkknn
N

n
N

NWnn
N

n
N

x

















∑
















∑ +=
−

=

++

=

+1
4

0

)42)(
4

(1

0

)
4

(

32

23

3232

2

132
1 )

4
(

N

n

kknn
N

N
n

knn
N

N
k
N WWnn

N
B

,                         (38) 

where the butterfly structure of the first stage takes the form 
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Following a similar decomposition procedure, Eq. (38) can be decomposed as 



 

 28

33

3

21321

4

1
4

0

)2(
3

,

4

321 )(]42[ kn
N

N

n

kkn
N

kk
N WWnBkkkX



















∑=++
−

=

+ ,                        (40) 

Meanwhile, the butterfly structure of the second stage can be obtained as 

)
4

()()()( 3

2

)2(
3

2

3
,

4

121121 N
nBjnBnB k

N
kkk

N
kk

N +−+= + ,                                   (41) 

From eqs (38) and (40), it is obviously that the radix-22 algorithm reduces the non-trivial 

multiplications as the radix-4 algorithm. Furthermore, the radix-22 algorithm still keeps the 

radix-2 butterfly structure as depicted in (39) and (41). 

 

 

 

2.2.7 Radix-23 DIF FFT Algorithm 

Applying another 4-dimensional linear index map in (1), the parameters n and k could be 

expressed as the combinations of n1, n2, n3, n4 and k1, k2, k3, k4 , respectively. 
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where 0 ≦ n1, n2, n3, k1, k2, k3 ≦ 1. The common factor algorithm (CFA) [64] form can be 
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where the butterfly structure of the each stage takes the form 
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From eqs (43), it is obviously that the radix-23 algorithm reduces the non-trivial 

multiplications as the radix-8 algorithm. Furthermore, the radix-23 algorithm still keeps the 

radix-4 butterfly structure as depicted in (44). 

In 1998, He and Torkeson suggested radix-22 FFT algorithm [31]. The reason to develop a 

radix-22 algorithm instead of conventional radix-4 and radix-2 FFT is that the number of the 

non-trivial multiplications can be further reduced in implementation. The radix-22 algorithm is 

characterized with the same multiplication complexity as the radix-4 algorithm but still retain 

the radix-2 butterfly structure. A radix-22 DIF FFT algorithm can be derived by recursively 

decimating the frequency series into four subsets. By substituting k for 4r+2s2+s1, it follows 

from equation (1) that 
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2.3 The Review of Pipeline FFT Architecture 

   Many researches were concentrated on the design of efficient FFT architecture. For the 

purpose of achieving the most effective architecture, the appropriated algorithm and 

architecture for the FFT processor should be chosen trading off its processing speed and its 

chip cost. We could use five performance measures to define the efficiency of related FFT 

architectures, which includes: input data organization, output data organization, internal data 

bus loading, throughput and computation latency [1]. There are two types of data buffering 

structures for pipelined-based FFT architecture, that are delay-commutator (DC) and 

delay-feedback (DF). Base on these two structures, three different pipeline architectures could 

be found: single-path delay feedback (SDF), multiple-path delay commutator (MDC) and 

single-path delay commutator (SDC) architecture. Base on these three pipeline architectures, 

figure 4 lists the radix-4 based 256-points pipeline FFT processors. According to the five 

measures, the SDF architecture is well known to be more efficient than MDC and SDC 

architectures in terms of input data ordering, output data ordering and internal bus loading. 

Due to memory sharing in SDF architecture, the butterfly output uses the same storage with 

its input. Although, the MDC architecture has the higher throughput rate than SDF 

architecture, the MDC architecture spends the larger chip cost than SDF architecture. In Fig. 4, 

the R4MDC architecture has four times throughput rate than R4SDF architecture. However, 

the R4MDC architecture also increases 3 and 1.7 times of complex multipliers and memories 

in the 256-points FFT computation. The most effective FFT processor should consider the 

tightly hardware scheduling and chip cost at the same time. 

 

 
(a) The R4SDF architecture. 

 

(b) The R4MDC architecture. 
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(c) The R4SDC architecture. 

Fig. 4: Three 256-points pipeline FFT architecture. 

 

 

 

 

 

 

2.4 The MIMO-FFT Architecture 

The High Throughput Task Group, which established the IEEE 802.11n standard, is going 

to develop the next-generation wireless LAN (WLAN) based on the 802.11 a/g, which 

comprises the current OFDM-based WLAN standards [23]. According to the IEEE 802.11n 

standard [23], 128-point and 64-point FFT/IFFT processors are utilized to support four 

different throughput rates —R, 2R, 3R and 4R—within 3.6 or 4 µs. The transmitted signal 

bandwidths are 40 and 20 MHz for the 128-point and 64-point FFT/IFFT processors, 

respectively. In this study, we focus our 64-point FFT/IFFT design on 2×2 and 4×4 

MIMO-OFDM WLAN systems, which require the high throughput rate of 2R and 4R. 

Sansaloni et al. presented a detail comparison of several 64-points FFT/IFFT algorithms for 

the MIMO-OFDM WLAN system [26]. According to that comparison, the multi-path delay 

commutator (MDC) based design, which was built by the serial blockwise architecture, is the 

most cost-efficient architecture for the MIMO-OFDM system. For a 4×4 MIMO-OFDM 

system, the radix-4 multi-path delay commutator (R4MDC) architecture can achieve the 

lowest hardware requirement, where the operating frequency equals the sampling frequency, 

while the radix-2 multi-path delay commutator (R2MDC) architecture is the most 

cost-efficient architecture for the 2×2 MIMO-OFDM system. However, the R4MDC- and 
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R2MDC- based 64-point FFT/IFFT designs both have higher complex multiplicative 

complexities than the radix-8, radix-2/4/8 and radix-2/8 based designs as listed in Table 1. 

The design with the highest complex multiplicative complexity has the highest power 

consumption [26, 31, 32, 36, 56, 57]. Maharatna et al. [41] recently presented a modified 

radix-8 multi-path delay commutator (R8MDC) based 64-point FFT/IFFT WLAN processor 

to reduce the hardware cost than the conventional R8MDC design with the appropriate 

throughput rate of 5.33R. Although, the modified R8MDC design achieves the low complex 

multiplicative complexity as radix-8 based algorithm, the large amount of memory and four 

constant multipliers still lead to a large chip cost.  

Table 1: Number of complex multiplication needed for the computation of a 64 point 
FFT/IFFT processor. 

 Complex Multiplication Constant Multiplication 
Radix-2 98 N/A 
Radix-22 76 N/A 
Radix-4 76 N/A 
Radix-2/4 72 N/A 
Radix-2/4/8 48 32 
Radix-8 48 32 
Radix-2/8 48 32 
 

Bouguezel et al. [59] reported the comprehensive analysis of the data transfer, address 

generation and twiddle factor evaluation or access to the lookup table. The comparison results 

of [59] reveal that the radix-2/8 algorithm has fewer arithmetic operations than other 

low-radix and mixed-radix algorithms. Additional, Yeh et al. [32] indicate that the radix-2/8 

algorithm is computationally superior to all other algorithms, since it has most trivial 

multiplications (i.e., 1± and j± ). Therefore, the radix-2/8 based architecture is presented for 

the few constant multipliers, high utilization and low complex multiplicative complexity. Yeh 

et al. [32] apply the radix-2/8 algorithm to present the radix-2/8 single path delay feedback 

(R28SDF) -based 64-point FFT/IFFT processors. However, the single path delay feedback 

(SDF) based architecture [32] has the lowest throughput rate of R. This investigation adopts 

the novel radix-2/8 algorithm, which is different from the conventional radix-2/8 algorithm 

[32, 59, 60], to further reduce the constant multiplier requirement in the proposed retrenched 

8-point FFT (R8-FFT) unit. Lin et al. briefly described the algorithm that is adopted in the 

SISO-OFDM application [57]. This work adopts this novel radix-2/8 algorithm and the 
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multiplier after write (MAW) scheme [57] to devise two architectures, radix-2/8 multiple-path 

delay feedback (R28MDF) and radix-2/8 multiple-path delay commutator (R28MDC), for the 

high throughput rate system of 2R and 4R, respectively. 
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Chapter 3 The Low-Computation Cycle and Power-Efficient 

Recursive DFT/IDFT Design 

 
 

   In this chapter, we focus on the design of low-computation cycle and power-efficient 

recursive DFT/IDFT design. The detailed descriptions of a high-performance VLSI algorithm 

and architecture by the hybrid of input strength reduction scheme, Chebyshev polynomial, 

and register-splitting scheme for the DTMF application have been fully provided. The derived 

algorithm and devised architecture [23] possesses the following features: low-computation 

cycle (i.e., high throughput) and power efficiency at the expense of slightly increased area 

overhead compared with the existing recursive DFT/IDFT structures. This chapter is 

organized as follows. A new recursive DFT/IDFT algorithm and architecture by the hybrid of 

input strength reduction, Chebyshev polynomial, and register-splitting schemes is revealed in 

Section 3.1. In Section 3.2, the DTMF application using this new architecture has been 

demonstrated. After the bit-level SNR simulation, the 212/106-point DFT/IDFT chip has been 

successfully implemented for the DTMF detector system. In Section 3.3, the comparison 

results are tabulated in terms of the amount of computation cycles for each output as well as 

N-point DFT/IDFT, the maximum number of the channel density, the clock period, and the 

number of real multipliers. At last, the concise statements conclude this chapter in Section 3.4. 
 

3.1 New Recursive Algorithm and Architecture 

   The DFT of the N-point input x[n] is defined as   
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where Nj
N eW /2π−= . By reducing the input strength of the DFT algorithm, equation (45) 

can be folded as 
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In (47), we can define ]1[][][ nNxWnxnr k
Nk −−′⋅+′= − . Replacing n by N/2-1-n, equation 

(47) can be rewritten as 

∑ ⋅=
−

=

12/

0
)

2
cos(][][

N

n
kDCT N

kn
nrky

π
∑

−−⋅−−=
−

=

12/

0
)

)12/(2
cos(]12/[

N

n
k N

nNk
nNr

π
 

( )
∑

+⋅−−−=
−

=

12/

0
)

12
cos(]12/[)1(

N

n
k

k

N

nk
nNr

π ( ) ( )kgN
k

12/1 −⋅−= ,        (49) 

where 
( )

∑
+⋅−−=

−

=
−

12/

0
12/ )

12
cos(]12/[)(

N

n
kN N

nk
nNrkg

π
.  Let 

N

k
k

πθ 2= , and 

( )kgN 12/ −  can be generalized as 

( ) ( )( )∑ +⋅−=
=

i

n
kki nnirkg

0
1cos][ θ , where 12 −= Ni                             (50) 

It is known that Chebyshev polynomials are well defined as 
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The z-transform of (53) can be denoted as 
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For the DST part in (48), by letting ]1[][][ nNxWnxns k
Nk −−′⋅−′= − and replacing n by 

nN −−12/ , ][kyDST  can be derived as 
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The z-transform of (56) can be denoted as 
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Equations (54) and (57) can be easily mapped into the recursive DFT structures as shown in 

Fig. 5(a) and (b), respectively. Compared with the conventional architectures [51, 52, 62], it is 

clear that by using the proposed DFT algorithm and architecture can reduce computations 

cycles by 50%. In other words, with respect to the algorithm derivation, the throughput rate 

can be easily doubled without increasing the operating frequency. 
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Fig. 5: Block diagram of low-computation cycle for (a) DCT part and (b) DST part of the 

DFT computation. 

For the power-efficiency issue, we adopt the register-splitting scheme [51] (i.e., a type of 

retiming schemes) to reduce the critical path. There are two main advantages of using 

retiming scheme [65]: one is high speed and the other is low power. In this paper, we consider 

this technique for lowering the power consumption where the speed does not need to be 

increased. The resulting DCT part is depicted in the upper diagram of Fig. 6, where <=1  

denotes a hardwired shifter with one-bit left shift. Similarly, the DST part can be modified as 

the lower diagram of Fig. 6. In order to maintain the minimum clock period for the recursive 

DFT computation, the forward pipeline register, , is exploited for the final sum output. 

Later combining these two new parts into one, a novel recursive DFT architecture that 

possesses lower computation cycle and more power-efficiency than the conventional DFT 

structures can be obtained.  
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Fig. 6: Block diagram of the proposed low-computation cycle and power-efficiency recursive 

DFT architecture. 

The IDFT of the N-point input y[k] is defined as 
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To develop the low-computation cycle recursive IDFT algorithm, equation (58) using the 

input strength reduction scheme can be modified as 
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In (60), we can define ]1[][][ kNyWkykr n
Nn −−′⋅+′= . Replacing k by N/2-1-k, equation 

(60) can be rewritten as 
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Using the recursive identity stated in (51), equation (63) can be deduced as  
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The z-transform of (64) can be denoted as 
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For the IDST part in (61), by letting −′= ][][ kyksn ]1[ kNyWn
N −−′⋅ and replacing k by 

kN −−12/ , ][nxIDST  can be derived in similar behavior as 
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The z-transform of (67) can be denoted as 
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After using the register-splitting scheme, equations (65) and (68) can be easily mapped 

into the modified structures as shown in Fig. 7. Again, from the proposed algorithm and 

architecture, it is obviously found that the 50% computation cycle reduction can be achieved 

by contrast with that of [50, 51, 62]. That means double the throughput rate can be achieved 

under the same operating frequency. 
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Fig. 7: Block diagram of the proposed low-computation cycle and power-efficient recursive 

IDFT architecture.  

 

 

 

 

 

3.2 The Proposed DTMF Receiver and Chip Implementation 

 
In this chapter, we are encouraged to design a low-computation cycle (i.e., high throughput) 

and power-efficient (i.e., cost-effective) recursive DFT/IDFT architecture for the high channel 

density DTMF detector in the VoP application. So as to reach this purpose, we follow two 

down-to-earth steps to optimize our target design. First, according to the dataflow of the 

DTMF detection as shown in Fig. 8 [13], we could find that the DTMF detector enables one 

channel telephone [13] to provide 14 different recursive DFT computations. The total 

computations for the DTMF detector include 6 106-sample frames and 8 212-sample frames. 

Thus, we proposed one high channel density DTMF detector to handle both 212 and 

106-sample frames based on the proposed recursive core architecture as shown in Fig. 9. The 

proposed architecture in the first 106-sample frame needs full 106 clock cycles because it 

involves extra 53 clock cycles for the input data latency. The other 5 106-sample frames only 

require 53x5 clock cycles, and 8 212-sample frames only require 106x8 clock cycles. Besides, 

the RDFT unit needs 14 reset clock cycle to initialize each frame computation. In total, one 

channel DTMF detection process would only require 1,233 clock cycles per window. On the 

contrary, based on the second-order Goertzel structure, one channel DTMF detection would 

require 2,346 clock cycles for each window, which is almost twice the latency of the proposed 
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framework.  

The high channel density DTMF detector as depicted in Fig. 9 consists of the recursive DFT 

(RDFT) units, an input unit, and a control unit. The behaviors of the above units are described 

as follows: 

RDFT Unit: The RDFT unit as depicted in Fig. 9 consists of one pre-processing element 

and one recursive processing element (PE). The pre-processing element is able to provide the 

intermediary data ks and kr to the following recursive PE. Recalling (49), (55), (62), and (66), 

our proposed VLSI algorithm only needs N/2 clock cycles to accomplish each output data 

sequence.  

Input Unit: The input unit is composed of a dual port SRAM that can store 318 complex 

data sequences. It could serve two sizes of input data buffer: 106 and 212 samples. According 

to the proper scheduling, the input unit can provide the dual data ][' nx  and ]1[' nNx −−  for 

the pre-processing element of the RDFT unit. 

Control Unit: The control unit not only plays the role of the data sequence controller but 

also a parameter controller, which feeds the proper coefficients to the RDFT units. In this 

paper, since the input data and output data of the proposed architecture are all controlled in 

the serial manner, the desired output data can be obtained for each N/2 clock cycles.  
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Fig. 8: Dataflow of the DTMF detection [21]. 
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Fig. 9: Block diagram of the proposed high channel density DTMF architecture. 
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Fig. 10: Bit level SNR simulation environment. 

 

Fig. 11: Bit level SNR simulation results. 

Next, we adopt the bit-level SNR simulation to estimate the appropriate word-length 

under the ITU specification [11] to further reduce the chip area and power consumption. We 

know that the DTMF detector must operate properly under 15dB SNR or higher. Thus, we set 

the simulation environment as depicted in Fig. 10 under 15dB with additive white Gaussian 
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noise (AWGN) channel model. Then, we will only consider the DFT part in the receiver side 

for the DTMF detector. In Fig. 10, the input signal x[n] passes thought IDFT block and then 

propagates through the channel, where the above operations run at floating point simulation. 

In the receiver side, the receiver signal is quantized into the fixed bits and performs the 

fixed-point DFT calculation. We perform the system simulation of 212/106-sample frames at 

the 8 DTMF signal frequency bins: 697, 770, 852, 941, 1209, 1336, 1477 and 1633 Hz as 

shown in Fig. 8. In Fig. 11, the x-axis and y-axis denote the data word-length and the whole 

system output SNR, respectively. We can observe that the output SNR will saturate as data 

word-length increases. It is manifest that the proposed recursive architecture only needs 9-bit 

resolution, which is less than 10-bit of the second-order Goertzel structure. That means we 

need less hardware resources to achieve the ITU performance requirements under our 

proposed architecture. In other words, if we select the same word-length for the proposed and 

Goertzel based designs, the former is able to offer the higher design margin for better system 

performance. In this case, because 3-bit design margin is sufficient, we choose the data 

word-length as 12-bit wide. 

   Concerning the chip implementation, our target is 212/106-point DFT/IDFT for high 

channel density DTMF detector [17-19]. As we know, the ITU timing specification indicates 

that the durations of DTMF signal detection and non-detection must be at least 40 ms and less 

than 23 ms, respectively. At a sampling rate of 8K Hz, a 106-sample frame size corresponds 

to a 13.3 ms window. After each window, the detected signal is compared to the last and 

second-to-last values. If the result of the new window is the same as the last, but different 

from the second-to-last, then a new valid DTMF signal has been found [13]. Recall that the 

proposed architecture requires 1233 clock cycles to finish one channel DTMF detection for 

each window. In this paper, the operating frequency and guard time are targeted at 20 MHz 

and 31.6 ms, respectively. That means we only need 61.65 µs (i.e., 1233x50 ns) to finish one 

window computation for one channel DTMF detection. Accompany with the DTMF FSM 

controller [13], the proposed design can detect up to 128-channel DTMF signals, which is 

superior to [12-14]. The implementation processes are as follows. First, the Cadence 

NC-Simulator is used as the Verilog functional verification, so the outputs from the RTL 

model are validated against a standard LabVIEW model. Then, the 212/106-point recursive 

DFT/IDFT architecture in which the internal word-length is 12-bit has been synthesized with 

the Design Compiler in TSMC 0.13 µm CMOS technology. After the post simulation, at the 

present stage, the critical path is 43.12 ns in TSMC 0.13µm CMOS process. Consequently, 

the proposed design is very suitable for DTMF detector system. The floorplan as well as the 
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post-layout have been carried out using Astro. After the back-annotation from Start-RC 

extractor, the post-simulation has been issued by NC-Simulator to verify the functionality. 

The static timing check can be signed-off by PrimeTime. Finally, the power analysis and LVS 

can be done by Astro Rail and Dracula, respectively. For post layout, the core area is 0.18 

mm2. The chip characteristics listed in Table 2 shows that the average power dissipation of 

the proposed high channel density DTMF detector is 1.25 mW@20 MHz at 1.2V supply 

voltage. It is worth to notice that the proposed design could handle the 128 DTMF channel, 

that means each channel only consumes 9.77 µW after the division of 128. The 

microphotograph of the 212/106-point recursive DFT/IDFT core design as shown in Fig. 12 

has been implemented as one hard IP (Intellectual Property). In this way, the proposed 

architecture and chip can be reused in the system-on-a-chip (SOC) platform. The proposed 

212/106-point recursive DFT/IDFT design not only meets 40 ms timing specification for ITU 

standard, but also achieves the low power consumption due to the register-splitting scheme 

and smaller bit-width requirement compared with the design of [12-14]. 

Table 2: Chip Characteristics of the Proposed DTMF detector. 

Maximum Channel 128 
DFT Length (N) 212/106 points 
Input Word Length (w) 12 bits 
Critical Delay Time 43.12 ns 
Chip Area 387 µm x 469 µm 

Power Consumption per 9.77 µW@20 
Process Technology TSMC 0.13 µm 
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Fig. 12: The 212/106-point recursive DFT/IDFT chip layout. 
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3.3 The Comparison of Different Recursive DFT/IDFT 

Architecture 

In this section, we give a comprehensive comparison result as listed in Table 3 in 

terms of the number of computation cycles for each DFT/IDFT output as well as N-point 

DFT/IDFT calculation, the maximum number of channel density, the clock period, and 

the number of real multipliers. Note that the operation time of a complex multiplication 

requires am TT + . Our proposed work [66] based on the input strength reduction scheme 

can save half computation cycles for each DFT/IDFT output compared with the existing 

works [51, 52, 62] at the expense of slightly increased area cost. Note that we make a 

comparison between our proposed work and the best case design of [52], FAST 

fixed-coefficient recursive DFT (FFR-DFT), in terms of specific terminologies in Table 3. 

At the same time, the reference structure of [62] is the block diagram as shown in Fig. 9.2 

of [62]. Compared with the results of the recursive algorithm in [53] which, for example, 

requires 2794 computational cycles to obtain all 64-point DFT outputs, the proposed 

core-type architecture requires 2048 computational cycles. In other words, our proposed 

work exploiting the input strength reduction scheme has the lowest computation cycles 

among existing structures [51-53, 62]. As a consequence, our proposed architecture is 

capable of providing the highest channel density in the DTMF communication system. 

From the implementation results, it is obviously seen that the channel amount of the 

proposed architecture is double compared with other designs [51, 52, 62]. Since 

exploiting the register-splitting scheme, the proposed one inherently has higher speed 

than the recursive structures of [51, 52, 62] and possesses the same operating frequency 

as that of our previous work [51]. According to the critical path comparison in Table 3, 

the proposed DFT/IDFT fabric owns am TT 2+  clock period and the clock periods in [52, 

53, 62] are of am TT 3+ , am TT 2+ , and am TT 52 + , respectively. As mentioned in 

Section 3.1, the register-splitting scheme either achieves high speed or low power 

computation. In this article, we consider this technique for lowering the power 

consumption where the speed does not need to be increased [65]. In Table 3, if the 

architecture possesses a shorter clock period, less power consumption can be achieved 

while keeping the same clock rate. However, considering the hardware complexity, the 

proposed DFT/IDFT architecture requires two more multipliers than the previously 

proposed one [51]. Furthermore, based on the proposed work, we can easily construct a 
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parallel-type recursive DFT/IDFT architecture for other applications such as the matching 

filter and equalizer. The parallel-type architecture can significantly reduce the number of 

computation cycles for N-point DFT/IDFT from 2/2N  to 




⋅
P

NN

2
, where P is the 

number of RDFT and  ••••  indicates the minimum integer value greater than or equal to 

•••• . Thus, the maximum throughput can be achieved. As a consequence, in Table 3, it 

reveals that our proposed architecture has characteristics of the lowest computation cycle 

(i.e., highest throughput), the maximum number of channel density, and power efficiency. 

Table 3: Comparison Results among the Recursive DFT/IDFT Architectures. 
Parameters Second Order 

DFT/IDFT [2] 
V-Ys’ Structure 
[20] (Core Type) 

Y-Cs’ Structure 
[21] (FFR-DFT) 

Proposed Work 

# of Computation 
Cycles for Each 
y[k] or x[n] 

N  N  N  2/N  

# of Computation 
Cycles for 
N-Point 
DFT/IDFT 

2N  2N  2N  2/2N  

Maximum of 
Channel Density 
(in TSMC 0.13 
µm) 

64 64 64 128 

Clock Period am TT 3+  am TT 2+  am TT 52 ++++  am TT 2++++  

# of Real 
Multipliers 

6 4 6  
(Pre-processing 

Excluded) 

6    
(Pre-processing 

Excluded) 
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3.4 Summary 

One new recursive DFT/IDFT algorithm and architecture based on a hybrid of input 

strength reduction scheme, the Chebyshev polynomial and register-splitting scheme is 

devised in this framework. The analyzed results show that the proposed VLSI algorithm 

leads to the fewest computation cycle and the highest throughput rate. Moreover, the 

proposed 212/106-point recursive DFT/IDFT chip design has been successfully 

implemented in 0.13 µm CMOS technology and possesses the power-efficiency 

consumption of 9.77 uW@20 MHz at 1.2V supply voltage for each channel. These 

features guarantee that the proposed high-throughput and power-efficient VLSI 

architecture is certainly amenable to high channel density DTMF systems.  
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Chapter 4 Effective FFT/IFFT Processors for MIMO-OFDM 

WLAN Systems 

 
 

   In this chapter, we adopts the novel radix-2/8 algorithm, which is different from the 

conventional radix-2/8 algorithm [32, 59, 60], to further reduce the constant multiplier 

requirement in the proposed retrenched 8-point FFT (R8-FFT) unit. Accompany with the 

multiplier after write (MAW) scheme [57], this work adopts the novel radix-2/8 algorithm 

to devise two 64-points FFT/IFFT architectures, radix-2/8 multiple-path delay feedback 

(R28MDF) and radix-2/8 multiple-path delay commutator (R28MDC), for the high 

throughput rate system of 2R and 4R, respectively. A detailed comparison of the 64-point 

FFT/IFFT processors among several existing chips has been presented for the 2×2 

MIMO-OFDM system, revealing that the new R28MDF implementation achieves the low 

complex multiplicative complexity, high butterfly utilization, low hardware cost and 

appropriate throughput rate. In the 4×4 MIMO-OFDM system, the proposed R28MDC 

implementation further applies the fully pipeline architecture to achieve 100% utilization 

of the complex multipliers, adders and memory. Comparison results indicate that the 

R28MDC architecture achieves the lower multiplicative complexity and lower chip cost 

than the R4MDC [40, 61] and other pipeline FFT/IFFT architectures. Thus, the proposed 

R28MDF and R28MDC architectures clearly achieve the high efficiency advantages for 

the 2×2 and 4×4 MIMO-OFDM WLAN application, respectively. The organization of this 

chapter is listed as follows. Section 3.1 describes the proposed modified radix -2/8 

FFT/IFFT algorithm. Section 4.2 then discusses the corresponding R28MDF and 

R28MDC fabrics and the detailed timing considerations. The implementation issues are 

discussed in Section 4.3. Section 4.4 summarizes the comparison results of the 64-point 

FFT/IFFT architectures for the 2×2 and 4×4 MIMO-OFDM system.  Conclusions are 

finally drawn in Section 4.5. 
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4.1 The Proposed Modified Radix-2/8 FFT/IFFT Algorithm 

 

   The discrete Fourier transform (DFT) of the N-point input X[n] is given by   

kn
N

N

n
WnXkZ ⋅∑=

−

=

1

0
][][ ,                                                 (69) 

where Nj
N eW /2π−=  and Z[k] represents the DFT output sequences for 

10 −≤≤ Nk . Based on the decomposition of the radix-8 algorithm, (69) can be rewritten 

as 
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Equation (4.2) indicates that the 64-point DFT can be separated into two-dimensional 

8-point FFTs, where 8== TM . The 8-point FFT computation in (70) can then be 

written as: 
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The notations Xi and Yi indicate the input data and output result of the 8-point FFT 

computation, respectively, where 70 ≤≤ i . After eliminating the °180 and °90  

redundancies of twiddle factors, another simple matrix result can easily be calculated. By 

re-ordering the output sequence, the alternative matrix representation (72) can be 

obtained. 
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Clearly, the four quarters of the transform matrix (72) all exhibit the same symmetric 

property. Thus, the 8-point FFT transform matrix in (72) can be decomposed as  
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In the similar behaviors, the IFFT equation representation can easily be calculated. 

The detailed expression is given in [57]. The difference between the FFT and IFFT 

equations is the sign bit in the matrixes 1G , 2G , 1H and 2H , which can easily 

implement the FFT and IFFT processor in a single chip. Significantly, the presented 

algorithm has the similar results as the conventional radix-2/8 algorithm with the 

parameter “q=1, m=6” [59]. The conventional radix-2/8 algorithm [32, 59, 60] splits the 

8-point FFT computation results into odd-half and even-half components in (72). Then, 

the butterfly computation requires two constant multiplications, which can be calculated 

by an “L” shaped butterfly. To implement radix-8 FFT algorithm more efficiently, the 

purposed 8-point butterfly computations decomposed into another index map, which is 

different from the conventional decimation-in-frequency (DIF) based radix-2/8 algorithm. 

The derivation results of modified radix-2/8 algorithm in (72) indicates that 3
8W  can be 

replaced by 1
8jW− . Thus, the “L” shaped butterfly can be modified as illustrated in Fig. 

13. 
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Fig. 13:  The “L” shaped butterfly of novel radix-2/8 FFT algorithm. 
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4.2 The Proposed MIMO-FFT Architecture 

Applying the proposed radix-2/8 algorithm, we propose two 64-point R28MDF and 

R28MDC FFT/IFFT architecture, for the high throughput rate system of 2R and 4R, 

respectively. 

 

 

4.2.1 R28MDF-based 64-Point FFT/IFFT Processor for 2×2 

MIMO-OFDM system 
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Fig. 14: Block diagram of the proposed R28MDF-based 64-point FFT/IFFT architecture 

for 2X2 MIMO-OFDM system. 
 

The R28MDF design comprises two input units (IU), one retrenched 8-point FFT 

(R8-FFT) unit, one multiplier unit (MU), one delay feedback memory (DFM) and one 

control unit (CU) as shown in Fig. 14. The detailed operations of each building unit are 

described as follows. 

IU: The IU contains one register bank, which can store 64 complex 16-bit word-length 

data. These 64 complex registers are split into 8 parallel shift-register lines as illustrated 

in Fig. 14. Each shift-register line can be easily controlled independently by the simple 

clock-gated controller. In Figs. 16 and 18, the subscripts of each element are represented 

as radix-8 based notation. Figure 14 shows that the proposed R28MDF-based serial 

blockwise architecture contains two input units to store two channel input data for the 2×2 
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MIMO-OFDM system, represented as X  and X , to realize the functionality of the 

input buffer as discussed in the chapter 1. To prevent the input data overflow, the 

R28MDF architecture groups these 16 shift-register lines into four blocks, namely, block0, 

block1, block2 and block3, each of which contains four parallel shift-register lines. In the 

consequent timing frames, the proposed input unit applies two different combinations of 

these four blocks to store two-channel input data to prevent input data overflow as 

depicted in Fig. 15. Each timing frame contains 64 clock cycles. In Fig. 15, X(0:63), 

X(64:127) and X(128:191) denote input data in the first, second and third timing frames, 

respectively.  

In the first timing frame, block0 and block1 are utilized to store input data X(0:31) and 

X(32:63), block2 and block3 are used to store input data )31:0(X  and )63:32(X  as 

shown in Fig. 15. The proposed R28MDF architecture requires 32 cycles to complete the 

64-point FFT/IFFT computations, which is described in detail in the following subsection. 

In the preceding 32 cycles of the second timing frame, the data X(0:63) in block0 and  

block1 are pushed into the R8-FFT unit in parallel. Simultaneously, input data X(64:95) 

and )95:64(X  can seamlessly replace the data contexts in block0 and block1. During 

cycles 96–127, the proposed design completes the 64-point FFT/IFFT computation of 

data )63:0(X in block2 and block3, and input data X(96:127) and 

)127:96(X concurrently replace the data contexts in block2 and block3. Based on these 

block-based input unit architectures with appropriate multiplexing control, two channel 

input data can be easily pushed to the R8-FFT unit using128 words shift-registers as 

depicted in Fig. 14. 
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Fig. 15: The timing sequence of the purposed block based input unit. 
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Fig. 16: Block diagram of the proposed R8-FFT/IFFT unit. 

 
R8-FFT unit: By sharing one constant multiplier in the radix-8 based butterfly in two 

clock cycles, the proposed equation (72) could produce a low cost and high-efficiency 

8-point FFT/IFFT butterfly kernel as illustrated in Fig. 16, called the R8-FFT unit. The 

constant multiplier in the R8-FFT unit is fully implemented with the shift-and-add circuits, 

while the proposed parallel type multiplier unit (MU) is fully implemented with eight 

constant multipliers. The IFFT architecture can be easily obtained by controlling the 

mode signal in Fig. 16, and the operations of IFFT are similar to those of FFT. The 

detailed description is omitted here.  

MU: The MU as illustrated in Fig. 17 comprises eight constant multipliers to realize 

different multiplications of the sl
MTW  in (70). For the purpose of completing the 64-point 

FFT/IFFT computation in (70), the 64-point FFT/IFFT operation sequence can be 

separated into two operational stages, namely the multiplication stage (MS) and the 
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output stage (OS), as illustrated in Figs. 18(a) and 18(b), where the number inside 

brackets denotes the usage of the constant name in the MU. Notably, the MU can only be 

adopted in the MS. Thus, the input ports of the MU should be gated during the OS to 

further reduce the power consumption. The MU contains five independent multiplication 

pair-ports in parallel, which has one more port than the modified R8MDC design [41]. 

The modified R8MDC design has to been halted for five clock cycles during FFT 

computation because of the resource conflictions. The proposed architecture adopts this 

port to resolve the performance degradation. The conflict clearly occurs in four different 

clock cycles, with clock cycle numbers of 6, 10, 11 and 14, as revealed in Fig. 18(a). In 

the clock cycles 8, 11, 12, 13 and 16, the fifth pair-port P(4), could re-serve the 

multiplication to re-fill the data )4(62R , )8(64R , )4(45R , )4(74R  and )4(66R  to DFM, 

which is called MAW. Using the MAW method, the proposed architecture is capable of 

completing the computation in 16 clock cycles for each operational stage. The R28MDF 

architecture only needs 32 clock cycles to complete the two operational stages. The 

R28MDF architecture can thus complete two 64-Point FFT/IFFT computations in 64 

clock cycles. Hence, the proposed R28MDF architecture can achieve a higher throughput 

rate of 2R, which is the twice that of the R22SDF architecture as illustrated in Fig. 18(c). 
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Fig. 17: Block diagram of the proposed MAW-based multiplier unit. 
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(b) The second stage: Output Stage. 
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(c) The timing sequence of   (d) The pipeline timing sequence of  
R28MDF design.           R28MDC design. 

Fig. 18: The timing sequence of the proposedR28MDF and R28MDC architectures. 
 

DFM: The DFM contains one register bank, which can store 64 complex 16-bit 

wordlength data. The DFM is adopted to store the intermediate coefficient parameters 

from R8-FFT unit, as illustrated in Fig. 14. To save power, the DFM is built by one 

matrix based buffer architecture with the proper-gated control, as illustrated in Fig. 14. 

CU: The CU contains a 6-bit master counter to manage the entire procedures, and gates 

the unused parts during the redundant period to minize power consumption. Although the 

proposed CU should pay very small area effort to realize the MAW, the proposed design 

still raises the throughput rate of 2R with only one constant multiplier.  
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4.2.2 R28MDC-based 64-Point Pipeline FFT/IFFT          
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 Fig. 19: Block diagram of the proposed R28MDC-based 64-point FFT/IFFT architecture 
for 4X4 MIMO-OFDM system. 

 
For the 4×4 MIMO-OFDM WLAN application, another R28MDC design based on 

pipeline architecture is presented to further raise the throughput rate to 4R, which is 

double than that of the R28MDF architecture. The R28MDC design comprises four input 

units (IU), two retrenched 8-point FFT (R8-FFT) units, one multiplier unit (MU), one 

delay commutator memory (DCM) and one control unit (CU) as shown in Fig. 19. 

Additionally, the R28MDC architecture has four IUs, allowing it to store four-channel 
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data for the 4×4 MIMO-OFDM system. Based on the block-based input buffer 

architecture, which is similar to the R28MDF design, the R28MDC architecture groups 

32 shift-register lines into 16 blocks. Each block contains two parallel shift-register lines. 

Applying two different combinations of these 16 blocks with a simple clock gated 

controller in CU, these four IUs can prevent input data overflow in the consequent timing 

frames for the 4×4 MIMO-OFDM system. For the 2×2 MIMO-OFDM WLAN system, 

the R28MDF design apply the feedback path to reduce the number of R8-FFT unit to only 

one with the 100% butterfly utilization rate as illustrated in Fig. 14. Compared with the 

R28MDF architecture, the R28MDC architecture adopts the feedforward path rather than 

the feedback path as illustrated in Fig. 19. Thus, the feedback-type memory architecture 

of the DFM is replaced by the feedforward-type delay commutator memory (DCM) 
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architecture. Additionally, another R8-FFT unit should be inserted following the DCM. 

Otherwise, the structures of the R8-FFT unit and the MU are the same as those in the 

R28MDF architecture, but two intermediate multiplexes have been eliminated.  

The MAW scheme can finish the computation period of each stage in the R28MDC 

architecture within 16 clock cycles without any performance degradation. In the R28MDF 

architecture, the same R8-FFT unit should execute the computation of MS and OS with 

the feedback path. The throughput rate of the R28MDF architecture is 2R. However, the 

first R8-FFT unit only performs the MS computation, and the second R8-FFT unit only 

performs the OS computation in the R28MDC architecture. Thus the R28MDC 

architecture can provide the double throughput rate of the R28MDF. Hence, the four 

channels computation can be completed in 64 clock cycles for the 4×4 MIMO-OFDM 

system, as illustrated in Fig. 18(d). The proposed R28MDC architecture attains a high 

throughput rate of 4R, which is the same as that of the R4MDC design.  

 

 

 

4.3 Circuit Implementation 

This work presents the R28MDF and R28MDC implementations for 2×2 and 4×4 

MIMO-OFDM WLAN applications [23], respectively. As is well known, the processing 

time of 64-point FFT/IFFT for IEEE 802.11n standard has to be within 3.2µs without the 

guard interval [23]. The proposed 64-point FFT/IFFT design can maintain an appropriate 

throughput in the sampling data frequency of 20MHz for the MIMO-OFDM system. The 

R28MDF and R28MDC design thus achieves throughput rates of 2R and 4R to meet the 

IEEE 802.11n standard, respectively. Following functional verification by MATLAB, the 

proposed design was modeled in Verilog and verified using an NC-Verilog simulator. In 

this investigation, the proposed design with an internal word length of 16 bits was 

synthesized using a Design Complier based on TSMC 0.13µm 1P8M CMOS technology. 

The floorplan and the post-layout were performed by Astro. Following the 

back-annotation from Start-RC extractor, the post-simulation was performed by the 

NC-Verilog simulator to verify the functionality. The static timing check was signed-off 

by PrimeTime. Finally, the power analysis was performed by Astro Rail. Figure 20(a) and. 

20(b) show the core layouts of the R28MDF and R28MDC designs, respectively. For the 

post layout, the core area of R28MDF was 0.75 mm2, which includes power rings and 
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power straps as depicted in Fig. 20(a). The average power dissipation of the proposed 

R28MDF design was 19.42mW@20 MHz at 1.2V supply voltage. The core area of 

R28MDC was 0.98 mm2, as depicted in Fig. 20(b), and the power dissipation was 

23.57mW@20 MHz at 1.2V supply voltage. Table 4 lists the gate count usage of each 

building unit. In Table 4, the small gate count usages in CU show that the small area 

expense for supporting the MAW can be ignored. Significantly, the matrix-based DFM 

architecture in the R28MDF design reduces routing complexity compared with the serial 

architecture in [57]. The routing area of the physical design in our previous scheme was 

reduced. Base on implementation results, the R28MDC implementation further has a 

smaller routing area than R28MDF implementation using the feedforward path 

architecture. Following the back-annotation, the static timing analyses indicate that the 

critical paths of the R28MDF and R28MDC design are 48.3ns and 47.8ns, respectively. 

The implementation results demonstrate that the proposed 64-point FFT/IFFT design 

satisfies the 3.2µs timing specification of IEEE 802.11n standard for the 2×2 and 4×4 

MIMO-OFDM wireless applications. 
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 (a) The R28MDF implementation.        (b) The R28MDC implementation. 

Fig. 20: Layout view of the proposed 64-point FFT/IFFT processors. 

 

Table 4: Area usage of each building block in the proposed R28MDF and R28MDC 
design. 

Implementation IU R8-FFT MU DFM/DCM  CU 
R28MDF 37.6 % 6.6 % 27 % 27.9 % 0.9 % 
R28MDC 53.2 % 9.2 % 17.2 % 20 % 0.4 % 
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4.4 The Comparison Discussion of MIMO-FFT Architecture 

Considering the most efficient pipeline FFT processor in a single-input single-output 

OFDM (SISO-OFDM) WLAN application, He et al. have presented several reliable 

architectures and the detailed comparison of their hardware costs [31]. The comparison of 

these architectures indicates that the radix-22 single-path delay feedback (R22SDF) has the 

highest 50% butterfly utilization and lowest hardware resource consumption [31, 34]. 

However, the radix-22 based algorithm has a higher complex multiplicative complexity than 

high-radix and other mixed-radix FFT algorithms, as revealed in Table 1. Furthermore, the 

SDF based architecture has the lowest throughput rate of R, which can not meet the 

requirements of the MIMO-OFDM applications. Considering the most efficient pipeline FFT 

processor in the MIMO-OFDM WLAN applications, the comparison results of [26] indicates 

that the R4MDC architecture meets the most efficient 64-points FFT/IFFT processor for the 

4×4 MIMO-OFDM WLAN system. Although several R4MDC based 64-point FFT chips 

have been discussed [40, 61, 72], only the design of Swartzlander et al. [40] can operate at the 

data sampling frequency in the 4×4 MIMO-OFDM systems. Notably, Hui et al. [56] proposed 

a digit-serial architecture base on radix-4 decomposition, with higher hardware utilization 

(100%) than the R4MDC based design [40] in the SISO-OFDM system. Hui et al. made good 

tradeoffs between the digit size and throughput rate in the SISO system. However, the radix-4 

based design has a higher complex multiplicative complexity than high-radix and other 

mixed-radix FFT algorithms, too. This work focuses on the high throughput rate design with 

the low multiplicative complexity to fit the requirements of 2×2 and 4×4 MIMO-OFDM 

systems. 

This section presents detailed comparisons among the two proposed architectures, R28MDF 

and R28MDC, and several famous FFT architectures in the 2×2 and 4×4 MIMO-OFDM 

systems. An effective design is well to be dictated by considerations on area, timing, power 

consumption and easily reuse. In this investigation, the systems were compared using five 

indices —MIMO-FFT architecture, complex multiplicative complexity, throughput rate, 

utilization and cost— to assess the effectiveness of FFT/IFFT processors. For the purpose of 

estimating the area index between the different architectures, the conventional comparative 

methodology [26] with the unit of equivalent adders was adopted. Based on the 

implementation results of our process, one complex multiplier is equivalent to 50 complex 

adders if it utilizes 16-bit precision and the scheme of three real multiplications and five real 

additions. The 16-bit complex memory was converted to 1.3 complex adders. The area report 
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of the logic synthesis tool demonstrates that one proposed MU is considered to equal 3.2 

complex multipliers. Furthermore, the area of proposed constant multiplier is equivalent to 

one-eighth times that of the proposed MU. Restated, one constant multiplier is approximately 

equivalent to 0.4 complex multipliers.  

 

 

 

 

4.4.1 2×2 MIMO-OFDM WLAN Application 

Table 5: Comparison results of the 64-point FFT/IFFT chip designs in 2x2 MIMO-OFDM 
system. 

Cost Architecture MIMO-FFT architecture 
(Frequency, MHz) 

Complex 
Multipli-c
ation # 

Through-
put rate 

Butterfly 
Utilization 
 ROM # complex  

multipliers 
# 

constant  
multipliers 
# 

Area without 
memory (Area 
with memory) 

Modified R22SDF [34] Parallel Multi-Path (20) 76 R 50% 2 4 0 224 (390.4) 
R28SDF [32] Parallel Multi-Path (20) 48 R 25% 4 4 8 304 (470.4) 
R2MDC [67] Serial Blockwise (20) 98 2R 100 % 4 4 0 424 (834.8) 
R4MDC [40] Serial  Blockwise (20) 76 4R 50% 6 6 0 324 (776.4) 
Modified R4MDC [61] Serial Multi-Stream (80) 76 4R 50% 4 4 0 340 (1120) 
Modified R8MDC [41] Serial Blockwise (20) 48 5.33R 25% 0 3.2 4 228 (709) 
Proposed R28MDF Serial Blockwise (20) 48 2R 100 % 0 3.2 1 197 (446.6) 

 
Table 5 presents the comprehensive comparison results of seven existing 64-point 

FFT/IFFT processors and the proposed R28MDF design in terms of MIMO-FFT architecture, 

complex multiplicative complexity, throughput rate, butterfly utilization, the number of 

ROM/complex multipliers/constant multipliers and the area index. Table 5 shows that the 

proposed R28MDF and R8MDC design achieve the lowest complex multiplicative 

complexity among the tested design. In terms of butterfly utilization, the proposed R28MDF 

design achieved the highest butterfly utilization (100%) among those tested. The R28SDF [32] 

and R22SDF [34] designs clearly have lowest throughput rates of R than other designs. 

Significantly, the R8MDC-based FFT/IFFT architecture in [41] has two butterfly stages, 

which only needs 12 and 11 clock cycles respectively. Base on the serial blockwise 

architecture, the parallel input data for each butterfly stages in [41] could be provided 

simultaneously to achieve the higher throughput rate. Table 5 shows that the modified 

R8MDC [41] and R4MDC [40] design could attain higher throughput rates of 5.33R and 4R, 

respectively, but both of them have lower butterfly utilization and higher chip cost than the 

proposed R28MDF design. Sansaloni et al. [26] indicated that the MIMO-FFT processor with 
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throughput rates of 2R and 4R with the least amount of hardware was more appropriate than 

other architectures for 2×2 and 4×4 MIMO-OFDM applications, respectively.  

Based on the serial blockwise architecture, the proposed R28MDF design should incur a 

small cost penalty on two IUs and one DFM memory in the 2×2 MIMO-OFDM system. 

When considering the memory area, the cost of the R28MDF design increases the area index 

to 14.4% higher than that obtained with the R22SDF [34] design. However, the R2SDF design 

increases the multiplicative complexity by 58.3% and reduces the butterfly utilization to 50% 

of that of the R28MDF design. Furthermore, the proposed design and that of Maharatna et al. 

[41], which only adopt one parallel type multiplier unit, do not require any coefficient ROM. 

Following comprehensive comparison between different architectures, this investigation 

demonstrates that the proposed R28MDF implementation minimizes the chip cost problem 

associated with the R8MDC, R4MDC architectures, low throughput rate problem of R22SDF 

and R28SDF architectures, and the high multiplicative complexity problem of R22SDF and 

R2MDC architectures. Thus, the proposed R28MDF design makes an effective tradeoff 

between complex multiplicative complexity, throughput rate, butterfly utilization and cost for 

the 2×2 MIMO-OFDM application. 

 

 

 

 

 

 

 

 

 

4.4.2 4×4 MIMO-OFDM WLAN Application 

For a 4×4 MIMO-OFDM system, Table 6 presents the comprehensive comparison result 

of several pipeline FFT/IFFT architectures in terms of the MIMO-FFT architecture, 

throughput rate, complex multiplicative complexity, the utilization of all components, the 

number of complex multipliers/complex adders/memory size and the area index of the entire 

system. Table 6 shows that the proposed R28MDC design achieves the lowest complex 
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multiplicative complexity among the tested design. Furthermore, the proposed R28MDC and 

R4MDC [40] achieved the highest utilization (100%) for all components; thus R28MDC and 

R4MDC design were the best among all pipeline architectures tested for the 4×4 

MIMO-OFDM application. Although the R4MDC architecture [40] achieved 100% utilization 

for all components, it also resulted in a chip area 25.6% larger than that of the R28MDC 

architecture, when considering the memory cost. Regardless of whether memory cost is 

considered, the proposed R28MDC architecture had the smallest chip area among all pipeline 

architectures tested in the 4×4 MIMO-OFDM system. The R28MDC architecture did not 

require any coefficient ROM, also representing an improvement over the R4MDC 

architecture. Then, the R28MDC architecture achieved the lowest complex multiplicative 

complexity, appropriate throughput of 4R, highest utilization for all components and lowest 

chip cost, making it very suitable for the 4×4 WLAN MIMO-OFDM application. 

 

Table 6: Comparison results of the 64-point pipelined FFT/IFFT architecture in 4x4 
MIMO-OFDM system. 

Pipeline 
Architecture 

MIMO-FFT 
architecture 

Complex 
multipli-c
ation # 
 

Through-
put rate  

Complexm
ultiplier # 
(Utilization) 

Complex adder 
# (Butterfly 
Utilization) 

Memory Size 
(Utilization) 

Area without 
memory (Area 
with memory) 

R2SDF [42] Parallel Multi-Path 98 R  20 (50%) 48 (50%) 252 (100%) 1048 (1375.6) 
R22SDF [34] Parallel Multi-Path 76 R 8 (75%) 48 (50%) 252 (100%) 448 (775.6)  
R23SDF [31] Parallel Multi-Path 48 R 8 (87.5%) 48+16T (50%) 252 (100%) 528 (855.6) 
R24SDF [68] Parallel Multi-Path 76 R  8 (75%) 48 (50%) 252 (100%) 448 (775.6) 
R4SDF [69] Parallel Multi-Path 76 R 8 (75%) 96 (25%) 252 (100%) 496 (823.6) 
R4SDC [70] Parallel Multi-Path 76 R  8 (75%) 36 (25%) 504 (100%) 436 (1091.2) 
R28SDF [32] Parallel Multi-Path 48 R  8 (12.5%) 64+8T (25%) 252 (100%) 504 (831.6) 
R2MDC [67] Parallel Multi-Path 98 2R 8 (100%) 24 (100%) 316 (100%) 424 (834.8) 
R23MDC [36] Parallel Multi-Path 48 2R 8 (87%) 24+8T (100%) 316 (100%) 464 (874.8) 
R24MDC [71] Parallel Multi-Path 76 2R  16 (75%) 56 (71.2%) 380 (100%) 856 (1350) 
R4MDC [40] Serial Blockwise 76 4R  6 (100%) 24 (100%) 348 (100%) 324 (776.4) 
Modify 
R4MDC [61] 

Serial Multi-Stream 76 4R  4 (100%) 80+12T (100%) 600 (100%) 340 (1120) 

Modify 
R8MDC [41] 

Serial Blockwise 48 5.33R 3.2 (75%) 48+4T (75%) 370 (75%) 228 (709) 

Proposed 
28MDC 

Serial Blockwise 48 4R  3.2 (100%) 32+2T (100%) 320 (100%) 202 (618) 
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4.5 Summary 

   This work proposes a hardware-orientated approach for high efficiency to minimize the 

complex multiplicative complexity, area cost and achieve 100% butterfly utilization with an 

appropriate throughput rate. By adopting the proposed R8-FFT unit combined with the MAW 

method, two efficient serial blockwise type 64-point FFT/IFFT processors are constructing for 

the 2×2 and 4×4 MIMO-OFDM WLAN systems. For the 2×2 MIMO-OFDM system, the 

proposed R28MDF design has the best performance in terms of lowest complex multiplicative 

complexity, appropriate throughput rate of 2R, highest butterfly utilization and the fewest 

complex multipliers, when compared with other existing 64-point FFT/IFFT processor 

architectures. For the 4×4 MIMO-OFDM system, the proposed R28MDC outperforms 

existing FFT/IFFT pipeline processor architectures and has the lowest complex multiplicative 

complexity, an appropriate throughput rate of 4R, highest utilization rate (100%) of all 

components and the lowest hardware cost. According to the IEEE 802.11n standard [23], 

execution time for the 128-point and 64-point FFT/IFFT processor with 1–4 simultaneous 

data sequences must be calculated within 3.6 or 4.0 µs. In total, eight operational modes of the 

FFT/IFFT processor are required in the IEEE 802.11n standard. The effective reconfigurable 

FFT/IFFT processor [73] supports eight operational modes in the IEEE 802.11n standard, 

consumes small hardware and little power, is easily reused, and is an important topic for 

future work. 
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Chapter 5 Long-Length based Effective Pipeline FFT/IFFT 

Processor 
 

   In order to demonstrating the high efficiency for the long-length FFT/IFFT 

computations, the proposed effective architecture focus on the design of 4096-point FFT/IFFT 

processor ensuring the reasonable operating times for low chip cost and on the features of the 

high hardware utilization rate. In this chapter, two high effective 4096-point pipeline 

FFT/IFFT processors have been presented, namely R42SDF and R43SDF design, to achieve 

the less complex multiplicative complexities as radix-16 and radix-64 based algorithm with 

only radix-4 based algorithm. Results of comprehensive comparison further indicate that the 

proposed R42SDF and R43SDF based pipeline processors achieve a higher utilization with a 

smaller hardware requirement than R22SDF [31, 34] and other pipeline processors in the 

4096-point FFT/IFFT computation, and thus have the higher hardware efficiency. Then, the 

proposed architectures are very appropriate for the long-length based FFT/IFFT system. The 

organization of this chapter is structured as follows. A new R42SDF and R43SDF FFT/IFFT 

algorithms are given in Section 5.1. Section 5.2 demonstrates the proposed R42SDF and 

R43SDF VLSI architectures. The finite word-length analysis is given in Section 5.3, and 

indicates that the proposed architectures achieve the satisfactory system performance. Section 

5.4 tabulates the comparison results in terms of hardware utilization and cost to demonstrate 

the high cost-efficiency of the proposed architectures. The chip implementation is discussed 

in Section 5.5. The section 5.6 draws conclusions. 
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5.1 New Radix-42 and Radix-43 based FFT/IFFT Algorithm 

 

 

 

5.1.1 Radix-42 based FFT Formula 

The FFT of the N-point input x[n] is given by   
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where Nj
N eW /2π−= . Applying a 3-dimensional linear index map, the parameters n and k 

could be expressed as the combinations of n1, n2, n3 and k1, k2, k3, respectively. 
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where 0 ≦ n1, n2, k1, k2 ≦ 3.The common factor algorithm (CFA) [64] form can be written as 
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where the butterfly structure of the first stage takes the form 
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Following a similar decomposition procedure, Eq. (78) can be decomposed as 
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Meanwhile, the butterfly structure of the second stage can be obtained as 
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Clearly, the decomposition creates three multipliers: 1
16
kW , 22

16
kW  and 33

16
kW , as 
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written in (81). Three full complex multipliers from the second butterfly stage 

can be simplified as one single constant multiplier in the proposed R42SDF 

architecture. The constant multiplier cost can be further reduced by applying the 

subexpression elimination algorithm. The detailed hardware structure of 

constant multiplier is described in the next section. The second radix-4 butterfly 

structure in (81) is the same as the first radix-4 butterfly structure in (79) after 

simplification of the common factor of the constant multiplier. The complete 

radix-42 decimation-in-frequency (DIF) FFT algorithm is obtained by applying 

the CFA procedure recursively to the remaining FFTs of length N/16 in (80), as 

illustrated in Fig. 21. Figure 21 indicate that the proposed radix-42 algorithm 

decomposes the N-points FFT computation by cascading the number of log16N 

radix-16 based butterfly (R16-BF) computations, which can be split into two 

cascading radix-4 based butterfly (R4-BF) computations as depicted in (79) and 

(81). When the variables of k1, k2 and k3 were treated as constants for each single 

output X[k1+ 4k2 +16k3] as depicted in (78) and (80), the summation rages 

indicate that the required computation results of first and second radix-4 

butterfly stage were N/4 and N/16, respectively, as depicted in Fig. 21. The 

radix-42 algorithm has the same multiplicative complexity as the radix-16 

algorithm, but still retains the radix-4 butterfly structure. Significantly, the 

radix-16 algorithm clearly has a lower multiplicative complexity than other 

low-radix algorithm, such as a radix-22 algorithm. For instance, the number of 

complex multiplications of the 256-point FFT computation adopting the radix-22 

and radix-42 algorithms are 1539 and 224, respectively. Thus, the proposed 

design based on the new radix-42 algorithm has a lower multiplication 

complexity (85.4%) than the R22SDF design [31][34]. Furthermore, as 

mentioned above, the radix-42 algorithm does not require any multiplication in 

the single butterfly structure. 
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Fig. 21: The CFA decomposition procedure of the proposed radix-42 based N-point FFT algorithm. 
 
 

5.1.2 Radix-42 based IFFT Formula 

Following the similar procedure, the radix-42 IFFT algorithm can be obtained as below. The 

IFFT of the N-point input X[k] is given by  
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In (82), the coefficient 
N

1
 can be implemented with the simple right-shift circuit. Thus, 

the IFFT derivation results can be written as 
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where the butterfly structure of the first and second stage has the form 
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Notably, the only difference between FFT and IFFT algorithm are the sign bits 

as given in (79), (81) (84a) and (84b). Therefore, the pipeline FFT/IFFT 

processor can be easily implemented with a single module by controlling the 

sign coefficient. Additionally, the proposed pipeline IFFT processor has a similar 

butterfly structure and a single constant multiplier structure with the proposed 

pipeline FFT processor, which could replace the three multipliers: 1
16

nW − , 22
16

nW−  

and 33
16

nW− . 

 

 

 

5.1.3 Radix-43 based FFT/IFFT Formula 

Applying another 4-dimensional linear index map in (76), the parameters n and k could be 

expressed as the combinations of n1, n2, n3, n4 and k1, k2, k3, k4 , respectively. 
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where 0 ≦ n1, n2, n3, k1, k2, k3 ≦ 3. The common factor algorithm (CFA) [64] form can be 

written as 
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where the butterfly structure of the each stage takes the form 

The first butterfly stage: 
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The complete radix-43 DIF FFT algorithm is obtained by applying the CFA 

procedure recursively to the remaining FFTs of length N/64 in (86). Thus, the 

radix-43 algorithm has few multiplicative complexities as the radix-64 algorithm, 

but still retains the simple radix-4 butterfly structure. For instance, the numbers 

of complex multiplications in the 4096-point FFT computation adopting the 

radix-22, radix-42 and radix-43 algorithms are 13996, 7425 and 3969, 

respectively. Thus, the proposed radix-43 algorithm has a lower multiplication 

complexity (71.6%) than the radix-22 algorithm [31, 34]. Significantly, the 

radix-43 algorithm clearly has a lower multiplicative complexity than the 

purposed radix-42 algorithm and other low-radix algorithms. According to the 

similar radix-4 based butterfly architecture with only some sign inversions, the 

radix-43 DIF IFFT computation could be obtained. 
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5.2 Pipeline 4096-Point R42SDF and R43SDF based FFT/IFFT 

VLSI Architecture 

Base on the new proposed radix-42 and radix-43 DIF FFT algorithms, the 

novel R42SDF and R43SDF architectures for supporting the 4096-point 

FFT/IFFT computations are shown in Fig. 22 and 23, respectively. Two 

proposed architectures both require six butterfly stages with 4095-word shift 

registers. The R42SDF based 4096-point FFT/IFFT pipeline processor requires 

three constant multipliers and two complex multipliers. The R43SDF based 

4096-point FFT/IFFT pipeline processor requires four constant multipliers and 

one complex multiplier. Comparing with the R42SDF design, the R43SDF design 

replaces one complex multiplier with one constant multiplier in the 4096-point 

FFT/IFFT computation. The detailed operations of each element are described as 

follows.  
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Fig. 22: Block diagram of the R42SDF-based 4096-point FFT/IFFT VLSI architecture. 
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Fig. 23: Block diagram of the R43SDF-based 4096-point FFT/IFFT VLSI architecture. 
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5.2.1 Radix-4 Butterfly 

The derivation results of the radix-42 and radix-43 algorithms reveal that both the FFT/IFFT 

butterfly computation in (78) and (86), can be easily computed with the same radix-4 butterfly 

architecture. Notably, the radix-4 butterfly structure only requires trivial multiplication, which 

involves real-imaginary swapping and sign inversion, and which does not require any 

complex multiplication. Figure 24 illustrates the proposed radix-4 butterfly structure, which 

only includes four four-input complex adders. Without any complex multiplier, the radix-4 

based butterfly structure is more cost-efficient than higher-radix based butterfly structures. 

Moreover, the proposed radix-42 algorithm has the same complex multiplication complexity 

as the radix-16 algorithm, and radix-43 algorithm further has the few complex multiplication 

complexity as the radix-64 algorithm. Thus, the proposed two pipeline architectures have the 

high cost efficiency of lower radix architectures.  

 
Fig. 24: Block diagram of the radix-4 butterfly architecture. 
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5.2.2 Memory Structure 

The memory structure of each butterfly stage is well known to be an important issue for the 

effective pipeline FFT/IFFT processor. In this work, the delay feedback based memory 

structure is adopted. In order to compute the radix-4 based butterfly computations, the input 

data and the intermediate results have to be reordered as four concurrently data streams using 

memory as shown in Fig. 24. In the radix-4 butterfly structure, four proposed operation modes 

can finish the data reordering and the butterfly computation as shown in Fig. 25(a). Operation 

modes 0–2 are adopted in the data reordering, and operation mode 3 is adopted in the 

FFT/IFFT computation. Each radix-4 butterfly unit applies three parallel Fist-In First-Out 

(FIFO) shift registers to store the serial data input and butterfly output in the feedback paths 

as presented in Fig. 25(a). The timing sequence of N-point FFT/IFFT computation can be 

divided into four stages, each stage contains N/4 clock cycles as presented in Fig. 25(b). The 

required number of memory cells for the kth stage is 3×N/(4k). Significantly, the SDF based 

pipeline FFT/IFFT structure is highly regular, which has the highly effective memory 

structure with the simpler routing complexity [31, 32, 34, 35, 42, 43]. 

x(0 : N/4-1)

x(N/4 : N/2-1)

x(N/2 : 3N/4-1)

X[N/4 : N/2-1]

X[N/2 : 3N/4-1]

Mode 0 Mode 1 Mode 2 Mode 3

X[3N/4 : N-1]

  

(a) The proposed 4 operation modes in the radix-4 based butterfly stages. 
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(b) The timing sequences of 4 operation modes in the proposed pipeline architecture. 
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Fig. 25: The proposed 4 operation modes of the radix-4 butterfly stage in the R42SDF and 

R43SDF based 4096-point FFT/IFFT VLSI architecture. 

 

The dual port memory is well known to be an intuitive implementation for the FIFO shifts 

register. However, each cell in the dual port memory takes an area 33% larger than the 

corresponding single port RAM cell. Furthermore, the dual port memory would consume 

more power than single port memory [31]. In this study, the memory implementation of stage 

I and II are realized by the single port SRAM. The proposed FIFO shift registers architecture 

in the butterfly stage I is depicted in Fig. 26(a), where the notations of the input/output ports 

denote the respective operators in (79) for the proposed operation mode 3. Due to the few 

memory cell requirements, the stage III, IV, V and VI adopt the synchronize flip-flops to 

implement the FIFO shift registers for the small chip cost. Accompany with the six words 

synchronize flip-flops, the proposed FIFO architecture has a wide data width of six-words to 

provide a six-words reading at a time as shown in Fig. 26(a). Base on the proposed FIFO 

shifter registers as depicted in Fig. 26(a), the proposed memory architecture can concurrently 

provide three operators for the radix-4 based butterfly unit in the current and consequent 

cycles. Therefore, the size of single port SRAMs are 512×6 and 128×6 words in the stage I 

and II, respectively. Accompany with the control signals of word selection, the proposed 

single port SRAM adopts the simple word-control circuits to provide the ability of 

independent-word writing in the same address as shown in Fig. 26(b). That means the 

proposed single port SRAM, which has the wide data width, can easily achieve the 

independent-word writing for the data reordering in the operation modes 0–2 as shown in Fig. 

25(a). The detail data arrangement in the proposed single port memory is listed as Fig. 26(c). 

In Fig. 26(c), the notation A(n) and B(n) denote the combinative data sets of three input data 

and butterfly results after data reordering and butterfly computations, respectively. In the 

butterfly stage I, A(n) and B(n) could be expressed as {x(n), x(n+N/4), x(n+N/2)} and 

{ B0
N/4(n), B1

N/4(n), B2
N/4(n)}, respectively. Notably, each radix-4 butterfly unit could store the 

input data and output results in the same SRAM for the highest memory utilization rate. The 

read and write operations are interleaved and each of them is active every other clock cycle as 

shown in Fig. 26(d), which can prevent the read/write conflict. Figure 26(d) shows the detail 

timing sequence of the proposed memory architecture in the operation mode 3. 
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(a) The proposed FIFO shift registers architecture on the butterfly stage I. 
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(b) The proposed single port SRAM with independent word control. 
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(c) The memory context on the purposed butterfly stage I. 



 

 78

CLK

DI

DO A(n-1)
& A( n)

A(n-3)
& A( n-2)

B(n-5)
& B( n-4)

B(n-3)
& B( n-2)

B(n-1)
& B( n)

Write_EN
 

(d) The timing sequence of proposed memory architecture in the operation mode 3. 

Fig. 26: The proposed memory architecture of the butterfly stage I and II in the R42SDF and 

R43SDF based 4096-point FFT/IFFT VLSI architecture. 

 

 

 

5.2.3 Constant Multiplier 

Based on the derivation results in Section 5.1, the radix-42 algorithm requires some 

complex multiplications, namely 1
16
kW , 12

16
kW  and 13

16
kW  in the 4096-point FFT/IFFT 

computation in (81). According to the SDF based architecture as depicted in Fig. 22, a single 

data stream passes through the constant multipliers and complex multipliers. There is only 

one complex multiplication, which is computed in (81) during each cycle. Then, the three full 

complex multipliers can be simplified as a single constant multiplier. This subsection follows 

three steps to reduce the complex multipliers to the most economical constant multipliers in 

the R42SDF and R43SDF architecture. The implementation of constant multiplier in the 

R42SDF architecture is presented as below. First, the multiplication of twiddle factors from Eq. 

(81) is realized as the constant multiplier, which only contains shifters and adders as shown in 

Fig. 27. Second, the complex conjugate symmetry rule is applied to decrease the number of 

complex multiplications to only two constant multiplications per stage with some shuffle 

circuits as shown in Fig. 27, thus achieving a constant multiplier cost reduction of 83%. 

Finally, the subexpression elimination algorithm [65] is adopted to reduce the number of shift 

circuits by more than 20%, and the number of complex adders by 50% in one constant 

multiplier, as depicted in Fig. 27. The strictest constant multipliers are obtained in the 
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purposed architectures by following these three steps. The cost penalty of the constant 

multiplier is thus minimized. Similarity, the radix-43 algorithm has two retrenched constant 

multipliers as depicted in (78). The constant multiplier of second stage in R43SDF design is 

the same as the constant multiplier in R42SDF design. Following the similar reduction steps, 

the constant multiplier of the third stages in R43SDF based design requires eight constant 

multiplications with the cost reduction of 83%. Considering the chip cost in R43SDF design, 

the constant multiplier in third stage increases slightly control complexity than the constant 

multiplier in second stage. 

>>4

>>8

>>7

>>9

>>1

>>3

>>6

>>12
+

+

+

“0”

+

+

>>3

>>12

>>7

>>1

>>4

>>6

>>8 +

+

+

“0”

+

+

>>2

S0

Real
input

Imaginary
input

Real
output

Imaginary
output

2's

2's

Constant Multiplier

[Real]
Constant 1:  0.923828 =  1-2-4-2-7-2-8-2-9

Constant 2:  0.707092 =  2-1+2-3+2-4+2-6+2-8+2-12

[Imaginary]
Constant 1:  0.382629 =  2-2+2-3+2-7-2-13+2-12

Constant 2:  0.707092 =  2-1+2-3+2-4+2-6+2-8+2-12

S1

S1 S1 S2

S1 S2

Complex
Adders:  5
(reduced 50%)
Shifts:  17
(reduce 20%)

S0

S0

S0

S0

S0
S0

 

Fig. 27: Block diagram of the proposed constant multiplier in R42SDF design.  
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5.2.4 Eight-Folded Complex Multiplier 

The proposed 4096-point R43SDF design has only one complex multiplier and one 

coefficient ROM to realize the complex multiplication of twiddle factors )164( 3214 kkkn
NW ++  in 

(86). However, the proposed 4096-point R42SDF design requires two complex multipliers and 

two coefficient ROMs to realize the )4( 213 kkn
NW +  in (79). To decrease the ROM size, the 

complex conjugate symmetry rule and subexpression elimination [65] is applied to devise one 

eight-folded complex multiplier as shown in Fig. 28. The proposed eight-folded complex 

multiplier could reduce the storage size of 87.5 % for each coefficient ROM. In the proposed 

R42SDF design, the first and second coefficient ROMs store 31 and 511 words, respectively. 

However, the proposed R43SDF design only has one complex multiplier, which stores 511 

words in the coefficient ROM.  Comparing with the R43SDF design, the R42SDF design 

requires a larger chip cost of two complex multipliers and two coefficient ROMs to complete 

the 4096-point FFT/IFFT computation. The ROM address and data control circuit of R43SDF 

design are easily realized by the 12-bit counter controller given in Table 6. 
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Fig. 28: The block diagram of eight-folded algorithm in the coefficient ROM. 
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Table 7: The Data Control of The Coefficient ROM in the R43SDF design. 
H = n3(k1+4k2) Address Mode 

(H[9]) 
ROM address Data Mode 

(H[7:5]) 
ROM 
data 

0~511 0 Two’s complement of H[9:0] 0 a+jb 
512~1023 1 H[9:0] 1 b+ja 
1024~1535 0 Two’s complement of H[9:0] 2 -b+ja 
1536~2047 1 H[9:0] 3 -a+jb 
2048~2559 0 Two’s complement of H[9:0] 4 -a-jb 
2560~3071 1 H[9:0] 5 -b-ja 
3072~3583 0 Two’s complement of H[9:0] 6 b-ja 
3584~4095 1 H[9:0] 7 a-jb 

 

 

 

5.3 Finite Word-Length Analysis 

Due to the requirements of handheld devices, several specific issues should be 

considered — small dimensions, light weight, and battery-power operation. The system 

performance should then satisfy the relative specifications. A higher system performance 

undoubtedly implies a larger chip cost and greater power consumption, owing to the wider 

internal word-length. Since the chip cost and system performance are known to be a trade-off, 

this study performed a finite word-length analysis to estimate the appropriate word-length for 

the R42SDF and R43SDF based 4096-point FFT/IFFT processors. In this work, the output 

signal to noise ratio (SNR) performance of 4096-point FFT/IFFT processor is estimated under 

40dB additive white Gaussian noise (AWGN) channel. In our fixed-point simulation 

environment, the input data of the double floating-point precision were generated from the 

ideal IFFT (FFT) model by passing the 40 dB AWGN channel model in Matlab. The input 

data with noise are sent into the proposed R42SDF and R43SDF pipeline FFT/IFFT 

architectures, which are modeled at different fixed-point levels for each function unit. The 

output SNR is obtained by comparing the original input data with the fixed-point model 

output. The results after 100,000 iterations are averaged as depicted in Fig. 29, where the 

x-axis and y-axis represent the internal word-length and the whole system output SNR, 

respectively. These analytical results demonstrate that the output SNR saturated as the internal 

word-length increased. It is obviously that the proposed R43SDF only requires 13-bit internal 

word-length for each function unit to produce satisfactory performance under 40dB noise 

environments, satisfying the DVB-H specification [27, 28]. Significantly, the proposed 

R42SDF requires one more bit than R43SDF, which is 14-bit internal word-length for each 
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function units. That means the R42SDF design has the larger chip cost than R43SDF design in 

the 4096-point FFT/IFFT computation. 

  
Fig. 29: Finite word-length analysis of the proposed pipeline R42SDF and R43SDF-based 

4096 points FFT/IFFT architecture. 
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5.4 The Comparison of Pipeline FFT/IFFT Architecture 

This section presents the comprehensive comparison results of several famous pipeline 

FFT/IFFT architectures to demonstrate the high efficiency of the proposed R42SDF and 

R43SDF FFT/IFFT architectures. The architectures are compared in two indices, namely cost 

and utilization, to express the hardware efficiency of the proposed FFT/IFFT architecture, as 

listed in Tables 8 and 9. Table 8 lists the required hardware resources, where T denotes the 

number of complex adders required in the implementation of the constant multiplier. 

Significantly, the area of the complex multiplier and memory are well known to be the 

dominant cost index in the pipeline FFT/IFFT design. The comparison results in Table 8 

clearly demonstrate that the proposed R43SDF based-FFT/IFFT architecture has the fewest 

complex multipliers requirement among other pipeline architectures. The R43SDF based 

4096-point FFT/IFFT architecture only needs one complex multiplier, which is 80% and 95% 

below the requirement of the R22SDF and R8MDC FFT/IFFT architectures, respectively. 

Additionally, the proposed architectures maintain the minimum shift registers requirement 

among the tested pipeline architectures. Although the proposed R42SDF and R43SDF based 

architectures need slightly more complex adders than the R22SDF based architecture, this 

small cost penalty is acceptable. To estimate the total chip cost in the 4096-point FFT/IFFT 

architectures, which includes the number of complex multipliers, complex adders and 

memory size, the conventional comparative methodology [26, 34] with the unit of equivalent 

adders was used to estimate the cost value between the different architectures. Based on the 

implementation results in our process, we convert the area of each complex multiplier and 

complex memory to the 50 and 1.3 complex adder, respectively, and the scheme with three 

real multiplications and five real additions, in the complex multiplier implementation. The 

rightmost column of Table 8 lists the area indexes of the equivalent adder of the 4096-point 

FFT/IFFT architecture. Clearly, the proposed R43SDF-based 4096-point FFT/IFFT 

architecture has the lowest hardware requirements. Significantly, the cost advantages of our 

proposed architectures become more evident when the transform length is larger. That means 

the proposed architectures are very appropriate for the long-length FFT/IFFT computation. 

Thus, the proposed R43SDF architectures have lower hardware cost than R42SDF and other 

famous pipeline FFT/IFFT architectures in terms of the number of ROMs, complex 

multipliers, complex adders, constant multipliers and shift registers. 
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Table 8: Hardware Cost Comparisons of the Pipelined FFT/IFFT Architecture. 
Pipeline archi- 

tecture 
Mult. 

Comp-lexity 
Complex 

Mult.  
Complex adders  

(including 
constant mult.) 

Complex 
Memory 

Size 

Equivalent 
area in 4096 

points 
R2SDF [17] Radix-2 log2N-2  2log2N N-1 5847.5 
R4SDF [18] Radix-4 log4N-1  8log4N N-1 5621.5 
R8SDF [8] Radix-8 log8N-1  (24+2T)log8N N-1 5609.5 
R22SDF [6] Radix-22 log4N-1 4log4N N-1 5597.5 
R23SDF [5] Radix-23 2(log8N-1) 6log8N N-1 5647.5 

R2MDC [13] Radix-2 log2N-2 2log2N 1.5N-2 8508.6 
R22MDC [9] Radix-22 log2N-2 2log2N 1.5N-2 8508.6 
R4MDC [14] Radix-4 3log4N-3 4log2N 2.5N-4 14104.8 
R8MDC [15] Radix-8 7log8N-7 (24+2T)log8N 4.5N-8 30664.4 

Proposed R42SDF Radix-42 log16N-1 (16+T)log16N N-1 5470.5 
Proposed R43SDF Radix-43 log64N-1 (24+2T)log64N N-1 5429.5 

Table 9: Hardware Utilization Rate Comparisons of the Pipelined FFT/IFFT Architecture. 
Pipeline architecture Utilization rate of 

complex Mult. 
Utilization rate of 
complex adders 

(including constant 
mult.) 

Utilization rate of 
complex memory 

R2SDF [17] 50% 50% 100% 
R4SDF [18] 75% 25% 100% 
R8SDF [8] 87.5% 12.5% 100% 
R22SDF [6] 75% 50% 100% 
R23SDF [5] 87.5% 50% 100% 

R2MDC [13] 50% 50% 50% 
R22MDC [9] 37.5% 50% 50% 
R4MDC [14] 25% 25% 25% 
R8MDC [15] 12.5% 12.5% 12.5% 

Proposed R42SDF 87.5% 56.25% 100% 
Proposed R43SDF 96.9% 60.42% 100% 
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Table 9 shows the comprehensive comparison of the hardware utilization rate in terms of 

the utilization rate of complex multipliers, complex adders and complex memory. Clearly, the 

proposed R43SDF architecture achieves the highest complex multiplier utilization rate among 

the tested pipeline architectures (96.9%). Additionally, the proposed architecture maintains the 

maximum complex memory utilization rate of 100%. Furthermore, the proposed R43SDF 

architecture, including the constant multipliers, has the highest complex adder utilization rate 

of 60.42%. Thus, the purposed R43SDF architecture achieves a higher hardware utilization 

rate than R42SDF and other well-known pipeline FFT/IFFT architectures in terms of the 

utilization rate of complex multipliers, complex adders, constant multipliers and complex 

memory. 

 

 

 

 

 

 

5.5 Chip Implementation 

Following the functional verification in the Matlab environment, the proposed R42SDF and 

R43SDF based 4096-point FFT/IFFT architectures in which the internal word-length of entire 

design are 14-bit and 13-bit, respectively, were synthesized by the Design Compiler with 

TSMC 0.13µm CMOS technology. Using the standard logic process rules, the single port 

SRAM applies the 6T bit cell. The floorplan and post-layout were performed by Astro. The 

post-simulation was issued by NC-Simulator to verify the functionality after back-annotation 

was performed from the Start-RC extractor. The static timing check can be signed-off by 

PrimeTime. Finally, the power analysis and DRC were conducted using Astro Rail and 

Dracula, respectively. The core area of the post layout for the R42SDF and R43SDF design are 

1.01 and 0.89 mm2, which includes power rings and power straps as depicted in Fig. 30(a) and 

30(b) , respectively. The gate count usage of each building block for R42SDF and R43SDF 

design are listed in Table 10. Comparing with the R42SDF architecture, the R43SDF 

architecture can replace one complex multiplier with one constant multiplier in the 4096-point 

FFT/IFFT computation as depicted in Fig. 22 and 23. Then, the R43SDF design reduces the 

multiplier cost of 3.9 % than the R42SDF design as listed in Table 10, which includes the 

complex and constant multipliers. It is obviously that 4095 words feedback memory 



 

 86

dominates the chip of 77.34 % and 80.72 % for the R42SDF and R43SDF design, respectively. 

Both of these two chips could operate at 20 MHz, thus satisfying the high throughput 

requirement. Concerning the speed performance, because the pipelined multiplier operation is 

easy to design at a clock rate of 20 MHz or even higher, the proposed architectures can 

achieve a high clock rate by simple pipelining techniques for the involved arithmetic 

components. The average power dissipation of the R42SDF and R43SDF based 4096-point 

FFT/IFFT design are 6.3725 and 5.985 mW@20 MHz at 1.2V supply voltage. The layout 

view of R42SDF design as shown in Fig. 30(a) has 68 I/O pins, of which eight pins are power 

supply pins. Due to the few datawidth requirements, the layout view of R43SDF design as 

shown in Fig. 30(b) has only 64 I/O pins. The proposed R42SDF and R43SDF based 

4096-point FFT/IFFT implementation satisfies the system performance of DVB-H standard. 

Additionally, the proposed R43SDF based 4096-point FFT/IFFT implementation has a low 

power consumption (5.985 mW), and the lowest hardware requirement among the tested 

pipeline architectures. These findings indicate that the proposed design meets the 

requirements of high effective pipeline FFT/IFFT processor for SoC IP. 

 

 

(a) The layout view of proposed R42SDF design. 
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(b) The layout view of proposed R43SDF design. 

Fig. 30: The layout view of proposed 4096-point pipeline FFT/IFFT processor. 
 

Table 10: The Gate Count Usage of Each Building Block in the Proposed Design. 
Categories Control Butterfly 

Cores 
Complex 
Multiplier 

Constant 
Multipliers 

Shift 
Registers 

R42SDF  0.33 % 10.1 % 9.83 % 2.4 % 77.34 % 
R43SDF 0.35 % 10.6 % 5.03 % 3.3 % 80.72 % 
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5.6 Summary 

This work develops two high effective R42SDF and R43SDF pipeline VLSI architectures 

that support the long-length FFT/IFFT computations. The proposed R43SDF pipeline 

FFT/IFFT architecture has lower multiplicative complexity and higher hardware utilization 

rate with smaller cost than R42SDF and other pipeline architectures. Following with 

fixed-point analysis in 40dB AWGN environment, the proposed R42SDF and R43SDF based 

4096-point FFT/IFFT designs are successfully implemented in 0.13 µm CMOS technology 

with an internal word-length of 14 and 13-bits, respectively. The proposed R42SDF and 

R43SDF based design have a low power consumption of 6.3725 and 5.985 mW @20 MHz at 

1.2V supply voltage. Thus, these features ensure that the proposed R43SDF pipeline 

4096-points FFT/IFFT processor design certainly meets the high effective VLSI architecture. 
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Chapter 6 Effeeeective Triple-Mode Reconfigurable Pipeline 

FFT/IFFT/2D-DCT Processor 

 
 

   Tell et al. [8] presented the FFT/WALSH/1-D DCT processor for multiple radio 

standards of the upcoming 4th generation wireless systems. Conversely, some designs [8-10] 

only support 1-D DCT computation, and have no 2-D DCT support. However, 2-D DCT is 

desirable for the video compression among wireless communication applications. This study 

not only presents a single reconfigurable architecture for the 256-point FFT/IFFT modes and 

the 8×8 2-D DCT mode, but also achieves high cost-efficiency in portable multimedia 

applications. Results of comprehensive comparison further indicate that the proposed 

R42SDF-based pipeline processor achieves a higher utilization with a smaller hardware 

requirement than R22SDF-based pipeline processor [31] in the 256-point FFT/IFFT mode, 

and thus has higher cost efficiency. The proposed R42SDF-based design also achieves 

satisfactory performance for the DV encoding standard with the lowest cost in the 8×8 2D 

DCT mode. The organization of this chapter is structured as follows. A new R42SDF 

FFT/IFFT and 8×8 2D DCT algorithm is given in Section 6.1. Section 6.2 demonstrates the 

proposed FFT/IFFT/2-D DCT pipeline architecture using the R42SDF algorithm. The finite 

wordlength analysis is given in Section 6.3, and indicates that the proposed architecture 

achieves the required system performance in both 256-point FFT/IFFT and 8×8 2-D DCT 

modes with the lowest hardwire cost. Section 6.4 tabulates the comparison results in terms of 

hardware utilization and cost to demonstrate the high cost-efficiency of the proposed 

architecture, and also discusses the chip implementation. The section 6.5 draws conclusions. 
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6.1 8×8 2D FFT and 8×8 2D DCT Formula 

    

Two concurrent 2D DCTs can be calculated by the single 2D shifted FFT (SFFT) 

algorithm [74] from the input reordering and post computation. This study presented a 

high-speed pipeline processor to support the triple-mode 256-point FFT/IFFT/8×8 2D DCT 

with the radix-42 algorithm. Two concurrent 2D DCTs results can be obtained by the 

proposed radix-42 based architecture in the 8×8 2D DCT mode. The 8×8 2D DCT C[k1, k2] of 

the input signal x(n1, n2) is given by 
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This study neglects the post-scaling factor of )()(
4

1
21 kbkb  in (88). The input data x(n1, n2) 

could then be reordered as 

)2,2(),( 2121 iixiiy = , 

)12,2()7,( 2121 +=− iixiiy , 

)2,12(),7( 2121 iixiiy +=− , 

)12,12()7,7( 2121 ++=−− iixiiy ,                                          (89) 

where i1 = i2 = 0,1,2,3. After the scaling and input data reordering of (89), (88) can be recast as 
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The value of X[k1, k2] is then calculated with the 8×8 2D SFFT with a time-domain shift of 

1/4 samples. The detail description of the transfer function between 8×8 2D SFFT and 8×8 2D 

DCT could be found in Appendix A. 
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where 7,,,0 2121 ≤≤ nnkk . In (91), the 8×8 2D FFT Y[k1, k2] of the input signal y(n1, n2) is 

given by 
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where 7,,,0 2121 ≤≤ nnkk . Since the input data y(n1,n2) form a real-valued sequence, the 

second half output can be derived as 
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where 7,,,0 2121 ≤≤ nnkk . By combining of the eqs. (91) and (93), the 8×8 2D DCT output 

can be recast as 

 [ ]{ })],8(Im[),(Re
2

1
],[ 212121 kkYkkYkkX SS −−=                                   (94) 

where 7,0 21 ≤≤ kk . Equation (94), adopts only the real value of YS(k1,k2) and the imaginary 

value of YS(8−k1,k2) to calculate the X[k1, k2]. By combining two reordered input sequences 

{ y1(n1,n2)}, { y2(n1,n2)} for two independent sequences {x1(n1,n2)},{ x2(n1,n2)}, and forming a 

complex input sequence {y(n1,n2)=y1(n1,n2)+jy2(n1,n2)}, the double throughput of 2D 8×8 

DCT of {x1(n1,n2)},{ x2(n1,n2)} can be derived by single 2D 8×8 SFFT computation. 

Consequently, two independent 8×8 2D DCTs X1[k1,k2], X2[k1,k2] of x1(n1,n2), x2(n1,n2), 

respectively, can then be created as 

{ })]8,8(Re[)],(Re[
4

1
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4

1
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To help understand the serial pipeline operation, the 2D location X[k1, k2] and x(n1, n2) can be 

substituted as X[8k1+k2] and x(8n1+n2), respectively. Then, the specific two-dimensional (2D) 

linear index map is applied as follows:  

12111 4 nnn += , 

12111 2 kkk += , 

where 10 11 ≤≤ n , 30 12 ≤≤ n , 70 2 ≤≤ n , 

10 12 ≤≤ k , 30 11 ≤≤ k  and 70 2 ≤≤ k .                                 (96) 

The word numbers of the shift registers in the post-computation of the fourth stage can be 
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minimized by following the specific mapping in (96). The 8×8 2-D FFT CFA form can then 

be written as 
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The butterfly structures for 8×8 2D DCT, corresponding to above equations (88)-(97), are 

summarized as follows: 

Butterfly stage I:  

)328()1()8()8( 21221221232
1212 ++−++=+ nnynnynnB kk . 

Butterfly stage II:  
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Butterfly stage III:  

{ })6()()4()1()2()()0( 111221112211122111221112 ,
8

,
8

,
8

,
8

,, kkkkkkkkkkkkkk
even BjBBjBB +−+−+= , 

{ })7()()5()1()3()()1( 111221112211122111221112 ,
8

,
8

,
8

,
8

,, kkkkkkkkkkkkkk
odd BjBBjBB +−+−+= . 

The additional stage of 2-D DCT:  
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The time-domain shift stage of 2-D DCT:  
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Butterfly stage IV:  
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{ })]872(Im[)]8(Im[
4

1
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Two 8×8 2D DCT computation results X1[8k1+k2] and X2[8k1+k2] are calculated 

concurrently in the post-computation of the butterfly stage IV. The 8×8 2-D IDCT 

computation can also be obtained following a similar decomposition procedure. Because of 

the cost-effective constraint in the physical design, this study only considers the triple-mode 

FFT/IFFT and 2-D DCT computations. The derivation results of the radix-42 based 

FFT/IFFT/2-D DCT algorithm indicate that all butterfly computation can be easily 

implemented with four four-input complex adders and some shuffle circuits. The radix-4 

butterfly structure has no multipliers. Additionally, the regular structure can be easily derived 

in both the 8×8 2-D DCT and 256-point FFT/IFFT pipeline processor architecture. 

 

 

 

6.2 Pipeline 256-Point FFT/IFFT/8×8 2D-DCT Processor 

Architecture 

   He et al. presented several pipeline FFT/IFFT architectures [31]. The serial delay 

feedback (SDF) based architecture is known to have a low hardware cost and high 

cost-efficiency advantages with the feedback type shift registers architecture [31, 32, 34]. The 

delay-feedback type shift register approaches are always more efficient than other 

corresponding approaches in terms of memory utilization since the butterfly output share the 

same storage with its input [31]. The R22SDF pipeline architecture has the same computation 

complexity as the radix-4 algorithm, and few hardware requirements as the radix-2 algorithm. 

This work presents a R42SDF reconfigurable pipeline architecture with a low computation 

complexity as the radix-16 algorithm, and low hardware requirements as the radix-4 

algorithm. Significantly, the proposed triple-mode radix-4 butterfly structure, like the radix-2 

butterfly structure, does not require a complex multiplier or constant multiplier. Section 6.4 

presents detailed comparisons between the R42SDF and R22SDF architectures. This section 

describes a novel radix-42 single-path delay feedback (R42SDF) architecture to support the 

three modes, 256-point FFT, 256-point IFFT, and 8×8 2D DCT, based on the radix-42 DIF 

FFT algorithm obtained in the previous section. Figure 31 shows a block diagram of the 
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purposed R42SDF-based 256-point FFT/IFFT and 8×8 2-D DCT pipeline processor. Based on 

the proposed R42SDF pipeline architecture, the cost-effective 256-point FFT/IFFT processor 

is first constructed. This processor only requires four butterfly stages with 255-word shift 

registers, two constant multipliers and one complex multiplier with one coefficient ROM, 

represented by black solid color in Fig. 31. Figure 31 indicates that a single data stream passes 

through two constant multipliers and one complex multiplier to realize different combinations 

of k1, k2 and k3 of X[k1+4k2+16k3], as illustrated in (90). Using some control circuits, one 

additional radix-2 butterfly (R2-BF) with an one-word shift register and additional eight-word 

shift register, two concurrent 2D-DCT operations are calculated from the single 2D-SFFT 

computation as depicted in (89), (95a), and (95b). These extra circuits were embedded at the 

first butterfly stage, the additional stage and the fourth butterfly stage, which is represented by 

the gray color in Fig. 31. These circuits complete the input reordering, time domain shift and 

post-computation in the 8×8 2-D DCT computation, respectively. Notably, only one radix-2 

butterfly and nine-word shift register are needed to support additional two 8×8 2D DCT 

computations in the original pipeline SDF-based FFT/IFFT architecture. The proposed 

architecture has, in total, four radix-4 butterflies, one radix-2 butterfly, two constant 

multipliers, one complex multiplier, one coefficient ROM and a 264-word shift register. To 

help understand the corresponding functions of each building block, the respective equation 

numbers related to each element are shown in Table 11. The detailed operations of each 

element are described as follows. 

Fig. 31: Block diagram of the R42SDF-based 256-point FFT/IFFT and 8×8 2D-DCT architecture. 
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Fig. 32: Block diagram of the radix-4 butterfly architecture. 

 

Table 11  The Corresponding Equation Numbers for Each Building Block. 

Building 

Blocks 

BFI Cons. 

Mult. I 

BFII Comp. 

Mult.  

BFIII Cons. 

Mult. II  

BFIV R2- 

BF 

FFT Eq. # (79) (81) (81) (80) (79) (81) (81) N/A 

IFFT Eq. # (84a) (84b) (84b) (83) (84a) (84b) (84b) N/A 

DCT Eq. # (89), (97) (97) (97) (91) (97) (97) (95) (97) 

 

 

 

6.2.1 Radix-4 Butterfly and Radix-2 Butterfly 

The derivation results of the radix-42 based algorithm reveal that both the FFT/IFFT 

butterfly computation in (79), (81), (84a), (84b), and the 8×8 2D-DCT butterfly computation 

in (98), can be easily completed with the radix-4 based butterfly architecture. The only 

difference between the 8×8 2D-DCT and the 256-point FFT/IFFT butterfly computation is the 

summands and minuends at the butterfly stage one and four, which can be easily realized with 

the multiplex circuits in the radix-4 butterfly structure. Significantly, the number of the two 

first stages in the 8×8 2D-DCT computation can be completed concurrently at the first 

butterfly stage in parallel. Additionally, the input reordering operation at the first stage and 

the post-computation operation at the fourth stage of the 8×8 2D-DCT mode are described in 

detail. Figure 32 illustrates the proposed radix-4 butterfly structure, which only includes four 

four-input complex adders with no complex multipliers inside. This configuration means that 

the proposed radix-4 butterfly structure has a low hardware cost of higher-radix butterfly 
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structures. Moreover, the proposed radix-42 algorithm has the same complex multiplication 

complexity as the radix-16 algorithm, so has the high cost efficiency of lower radix 

architectures. To obtain the additional stage of the 8×8 2D DCT mode in (98), one additional 

SDF-based radix-2 butterfly structure with one word shift register is required, as illustrated in 

Fig. 31. The additional stage of the 2D DCT mode only requires two 2-input complex adders 

and one shift register, giving it a small hardware penalty. 

 

 

 

6.2.2 Memory Structure 

The memory structure of butterfly stage is well known to be an important issue for the high 

cost-effective FFT/IFFT pipeline processor design. From the exiting researches, there are 

mainly two different approaches: delay commutator (DC) [31] and delay feedback (DF) [31, 

32, 34]. In this study, the DF based memory structure is adopted and depicted in Fig. 31. In 

order to compute the radix-4 based butterfly computations, the input data and the intermediate 

results have to be reordered as four concurrently data streams using memory as shown in Fig. 

32. Each radix-4 butterfly unit applies the three parallel memories to store the serial data input 

and butterfly output in the feedback paths as presented in Fig. 31. The timing sequence of 

N-point FFT computation can be divided into four stages, each containing N/4 clock cycles. 

In the first N/4 cycles (i.e. first stage), the butterfly units simply store the input samples into 

the first feedback memory. Similarity, the second and third feedback memory are filled in the 

second and third stages. After the 3N/4 cycles, the butterfly units retrieves the x(n), x(n+N/4) 

and x(n+2N/4) samples from the feedback memory, performs corresponding operations with 

the sample x(n+3N/4) and then feeds the output into the next butterfly units as depicted in Fig. 

31. The required number of memory cells for the kth stage is 3×N/(4k). Thus, the 256-points 

FFT/IFFT computations require the 64×3, 16×3, 4×3 and 1×3 word shift registers in the first, 

second, third and fourth butterfly stages, respectively. Significantly, the SDF based pipeline 

FFT/IFFT structure is highly regular, which has the high effective memory structure with the 

simpler routing complexity [31, 32, 34]. In this study, the shift registers were all realized by 

the cascaded flip-flops, which are composed of two latch circuits.  
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(a) The proposed 12 reconfigurable operation mechanisms of the first butterfly stage. 
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(b) The timing sequences of operation mechanism in the first butterfly stage. 
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(c) The storage content in SSR in the 8×8 2D-DCT mode. 
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(d) The content of the 8×8 2-D DCT computation result in SSR. 

Fig. 33: Block diagram of the proposed first radix-4 butterfly stage in the R42SDF-based 

256-point FFT/IFFT and 8×8 2D-DCT architecture. 
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6.2.3 Input Re-ordering and First Butterfly Computation  
Consider the new radix-42 algorithm presented in section 6.1. The proposed SDF 

architecture is estimated to need 64×3-word shift registers at the first butterfly stage in the 

256-point FFT/IFFT mode. Although the 8×8 2D DCT mode only requires 16×3-word shift 

registers at the first butterfly stage, the 8×8 2D DCT mode needs a swapping buffer to 

complete the input re-ordering and post-computation in (89) and (95) from the 8×8 2D SFFT 

computation. Notably, the number of shift registers at the fourth butterfly stage for the post 

computation in the 8×8 2D DCT mode depends on the sequential order of the input data at the 

first butterfly stage. Following the specific linear mapping in (96), the number of shift 

registers can be reduced to only eight words at the fourth butterfly stage, as revealed in Fig. 

31. Comparing with the other linear mapping, the proposed architecture could reduce at least 

96% shift registers cost. The segmented shift registers (SSR) structure is also proposed to 

realize both the input re-ordering and butterfly computation operation at the first stage to 

support the 256-point FFT/IFFT and 8×8 2D DCT modes.  

Figure 33(a) shows the 12 proposed operation mechanisms of the first butterfly stage to 

finish the input reordering and the first-stage computation. Operation mechanisms 0–3 are 

adopted in the FFT/IFFT computation, and operation mechanisms 4–11 are adopted in the 

8×8 2D DCT computation. In the 8×8 2D DCT mode, reconfigurable operation mechanisms 5 

and 6 are adopted for the butterfly computation, and reconfigurable operation mechanisms 4 

and 7–11 are adopted for the input reordering. Figure 33(b) lists the corresponding timing 

sequence of the first butterfly stage, which discusses the relationships among the input data, 

output data and respective operation mechanisms during each clock (block number) in the 

8×8 2D DCT mode. Additionally, Figs. 33(c) and 33(d) illustrate the data content before and 

after the butterfly computation in SSR, respectively. The first stage butterfly computation is 

completed by applying operation mechanisms 5 and 6. Most results of 8×8 2D DCT 

computation are then pushed back into the SSR, as shown in Fig. 33(d), where 12
32
kB  denotes 

the computation results from (98). Fig. 33(d) presents the complete computation results. The 

64×3-word shift register is segmented as (40+8+16)×3, which is easily realized by three 

dependent clock domains with a simple 3-bit counter controller, as depicted in Fig. 33(c). 

These three segments in the SSR are called the power-saving, swapping and storage segments, 

and their sizes are 40×3, 8×3 and 16×3, respectively. Since 2D DCT mode as depicted in (97) 

has a low computation complexity, the first, second and third butterfly stages have shift 

registers comprising 40×3, 8×3 and 2×3 words, respectively. These shift registers are set as 
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power-saving segments, and gated to reduce power consumption. To perform the input 

re-ordering operation, 64 serial input data words are split into eight blocks of eight words, as 

shown in Figs. 33(b) and 33(c). The block numbers, written inside the brackets in Figs. 33(b) 

and 33(c), denote the serial input sequential order of eight-word blocks. In Fig. 33(c), the 

terms x′ and x respectively represent the 2D DCT image data in the previous and current 

frame, which both contain 64 points in each frame. Following the operation mechanisms 4, 7, 

8, 9, 10 and 11 in Fig. 33(a), the serial input data of each block adopt the swapping segment 

as the swapping space to achieve the required storage ordering in the storage segment.  

The detail timing sequence of the proposed 8×8 2D DCT computations is given as follow. 

Operation mechanism 4 pushes the input data x(0:7) into the swapping segment from the 

clock number 0 to 7 (block number 0). At the same time, the original data x’(56:63) in the 

swapping segment are simultaneously pushed into the storage segment as illustrated in Figs. 

33(a) and 33(c). In the following 16 clock cycles, operation mechanisms 5 and 6 replace the 

swapping segments with the input data x(8:15) and x(16:23) (i.e. block number 1 and 2), as 

presented in Figs. 33(a), 33(b) and 33(c). Operation mechanisms 5 and 6 provide the original 

swapping segment data x′(8:15) and x’(24:31) for the first butterfly stage computation in (98), 

along with the data in the storage segment. At the same time, 48 new 8×8 2D DCT results of 

)8( 21232
12 nnBk + , as listed in the top 3 rows of Fig. 33(d), are pushed into the storage segment by 

the feedback path. Furthermore, the other 16 new 8×8 2D DCT results, which are listed in the 

final row in Fig. 33(d), are pushed directly to the second butterfly stage, as shown in Fig. 

33(b). Notably, the 48 different 2D DCT results in the storage segment are pushed out 

one-by-one due to the swapping operation by the swapping segment data in the following 48 

clock cycles. Following a similar procedure, the serial input data of block numbers 3, 4, 5 and 

7 complete their respective swapping operations by operation mechanisms 7, 8, 9 and 11. The 

block number 6 is stored into the storage segment directly by operation mechanism 10 as 

illustrated in Figs. 33(a) and 33(c). The input re-ordering operation is finished after a period 

of 64 clock cycles, which includes 7 clock cycles of input swapping latency.  
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6.2.4 Constant Multiplier 

Based on the derivation results in Section II, the radix-42 algorithm requires some complex 

multiplications, namely 1
16
kW ( 1

16
nW − ), 12

16
kW ( 12

16
nW− ), 13

16
kW ( 13

16
nW− ) in the 256-point FFT/IFFT mode 

in (81), (84), and 12
8
kW , 122

8
kW , 123

8
kW , 2

8
kW  in the 8×8 2D DCT mode in (98). Due to the finite 

range of k1 and n1 in Eqs. (81) and (84b), namely 0–3, the three complex multiplications, 

1
16
kW ( 1

16
nW − ), 12

16
kW ( 12

16
nW− ) and 13

16
kW ( 13

16
nW− ) can be written as 

{ 0
16W ( 0

16
−W ), 1

16W ( 1
16
−W ), 2

16W ( 2
16
−W ), 3

16W ( 3
16
−W )}, { 0

16W ( 0
16
−W ), 2

16W ( 2
16
−W ), 4

16W ( 4
16
−W ), 6

16W ( 6
16
−W )} and 

{ 0
16W ( 0

16
−W ), 3

16W ( 3
16
−W ), 6

16W ( 6
16
−W ), 9

16W ( 9
16
−W )}. Following the similar procedure, 12

8
kW , 122

8
kW , 

123
8

kW  and 2
8
kW  in (98) can be expanded as {0

8W , 1
8W }, { 0

8W , 2
8W }, { 0

8W , 3
8W } and 

{ 0
8W , 1

8W , 2
8W , 3

8W , 4
8W , 5

8W , 6
8W , 7

8W }.  The system has in total 38 different twiddle factor values, 

which could be implemented as 38 different constant multipliers by only shifters and adders. 

Based on the SDF based architecture, the proposed design only has to calculate one complex 

multiplication in Eqs. (81), (84) and (97) during each clock cycle. The 38 twiddle factor 

values can thus be reduced to the extension of two different values of 1
16W  and 2

16W  using the 

complex conjugate symmetry rule. Accordingly, the other 36 twiddle factor values can be 

expressed as the real-imaginary swapping or sign inversion of these two constant values. 

Moreover, the repeated shifters and adders of two constant multipliers could be simplified 

using the subexpression elimination algorithm [65] as illustrated in Fig. 34. According to our 

implementation results, the small cost penalty for the multiplexer control (i.e. S0, S1 and S2) 

could be neglected as shown in Fig. 34. 

 Following the three steps to reduce the complex multipliers to the most economical 

constant multipliers are summarized as below. First, the twiddle factors from Eqs. (81), (84) 

and (98) are realized as the constant multipliers, which only contain shifters and adders as 

shown in Fig. 31. Second, the complex conjugate symmetry rule is applied to decrease the 

number of complex multiplications (90) to only two constant multiplications per stage with 

some shuffle circuits as shown in Fig.5, thus achieving a constant multiplier cost reduction of 

94.7%. Finally, the subexpression elimination algorithm [65] is adopted to reduce the number 

of shift circuits by more than 20%, and the number of complex adders by 50% in the one 

constant multiplier, as depicted in Fig. 34. The strictest constant multiplier is obtained in the 

purposed architecture by following these three steps. The cost penalty of the constant 

multiplier is thus minimized. 
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Fig. 34: Block diagram of the proposed constant multiplier architecture. 
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6.2.5 Eight-Folded Complex Multiplier 

The proposed architecture has only one complex multiplier and one coefficient ROM to 

realize the complex multiplication of twiddle factors )4( 213 kkn
NW +  in (78), )4( 213 nnk

NW +−  in (83) 

and 
( )214

1

8

kk
W

+
 in (98). Significantly, the implementation of the time-domain shift for 8×8 

2D-DCT computation needs one feedback path. To decrease the ROM size, the complex 

conjugate symmetry rule and subexpression elimination [65] is applied to devise one 

eight-folded complex multiplier as shown in Fig. 35. The proposed eight-folded complex 

multiplier only has to store 32 words in the coefficient ROM, reducing the ROM size by 

87.5%. The ROM address and data control circuit are also easily realized by the 8-bit counter 

controller given in Table 12. 

96
256W

64
256W

32
256W

0
256W

224
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192
256W

140
256W

128
256W

 

Fig. 35: The block diagram of eight-folded algorithm in the coefficient ROM. 

Table 12  The Data Control of The Coefficient ROM.  

H = n3(k1+4k2) Address Mode 

(H[5]) 

ROM address Data Mode 

(H[7:5]) 

ROM 

data 

0~32 0 Two’s complement of H[5:0] 0 a+jb 

33~63 1 H[5:0] 1 b+ja 

64~95 0 Two’s complement of H[5:0] 2 -b+ja 

96~127 1 H[5:0] 3 -a+jb 

128~159 0 Two’s complement of H[5:0] 4 -a-jb 

160~191 1 H[5:0] 5 -b-ja 

192~223 0 Two’s complement of H[5:0] 6 b-ja 

224~255 1 H[5:0] 7 a-jb 
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6.2.6 Post Computation 

Clearly, the 256-point FFT/IFFT modes only require 1×3 word shift registers at the fourth 

butterfly stage of the proposed R42SDF architecture. However, the 8×8 2D DCT mode has to 

implement the post-computation at the fourth butterfly stage in (95a) and (95b). As described 

in Subsection 6.2.1, the proposed architecture follows the specific linear mapping in (97) to 

minimize the number of shift registers at the fourth stage. Figure 36(a) depicts the analysis of 

the order of the fourth butterfly results following the specific linear mapping. Notably, the 

gray solid line in Fig. 36(a) represents the input data order that do not follow the required 

sequence. For instance, { ]17[sY , ]23[sY }, { ]18[sY , ]22[sY } and { ]19[sY , ]21[sY } should 

be regarded as three groups for the fourth butterfly computation. However, the sequence of 

the input data at the fourth butterfly stage is ]17[sY , ]18[sY , ]19[sY , ]21[sY , ]22[sY , 

]23[sY . Then, ]23[sY  and ]21[sY  should be re-ordered. Thus, the proposed overturn shift 

register (OSR) structure at fourth butterfly stage resolves this simple re-ordering procedure 

without any performance degradation, as depicted in Fig. 36(b). The desired ordering is 

obtained with the OSR structure at the fourth butterfly stage, along with the input re-ordering 

operation at the first butterfly stage as discussed in Subsection 6.2.1. The full-pipeline 

R42SDF architecture can then easily follow the two concurrent 8×8 2D DCT outputs. 

 

  

(a) The data context of the fourth butterfly stage in the 8×8 2D DCT mode. 
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(b) The OSR structure of the fourth butterfly stage. 

 

Fig. 36: Block diagram of the proposed fourth butterfly stage in the R42SDF-based 256-point 

FFT/IFFT and 8×8 2D-DCT architecture. 

 

 

 

 

 

 

6.3 Finite Wordlength Analysis 

The next generation mobile-multimedia system can handle high-quality multimedia 

operations with embedded 256-point FFT/IFFT and 8×8 2D DCT pipeline processor [3]-[5]. 

The system performance should then satisfy the relative specifications. A higher system 

performance undoubtedly implies a larger chip cost and greater power consumption, owing to 

the wider internal wordlength. Since the chip cost and system performance are known to be a 

trade-off, this study performed a finite wordlength analysis to estimate the appropriate 

word-length for both 256-point FFT/IFFT and 8×8 2D DCT system requirements. 
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6.3.1 Pipeline 256-Point FFT/IFFT 

In the 256-point FFT/IFFT modes, the output signal to noise ratio (SNR) performance was 

estimated under different noise environment. First, the input data of the double floating-point 

precision were generated from the ideal IFFT(FFT) model by passing the additive white 

Gaussian noise (AWGN) channel model under five noise levels: 20dB, 40dB, 60dB, 80dB 

and 100dB. The input data with noise were sent into the proposed R42SDF pipeline FFT/IFFT 

architecture, which was modeled at different fixed-point levels. The output SNR was obtained 

by comparing the original input data with the fixed-point model output. The results after 

100,000 iterations were averaged as depicted in Fig. 37, where the x-axis and y-axis represent 

the data word-length and the whole system output SNR, respectively. These analytical results 

demonstrate that the output SNR saturated as the data word length increased. The output SNR 

was increased by 20dB for each additional three bits. The 13-bit internal wordlength for each 

function units produced satisfactory results under 40dB noise environments, satisfying the 

IEEE 802.16e WiMAX [44] standard. 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

20

40

60

80

100

120

Internal Wordlength (bits)

O
ut

pu
t 

S
N

R
 (

dB
)

SNR = 100 dB

SNR = 80 dB

SNR = 60 dB

SNR = 40 dB

SNR = 20 dB

  

Fig. 37: Finite wordlength analysis of the proposed pipeline R42SDF-based 256 points 

FFT/IFFT architecture. 
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6.3.2 Pipeline 8×8 2-D DCT 

In the 8×8 2-D DCT mode, the performance of the proposed R42SDF pipeline architecture 

was measured in common video compression standards, including the high-quality DV 

standard [75]. The DV standard defines some tolerances that the 8×8 2-D DCT computation 

maintains the accuracy and consequently an acceptable reconstructed video quality [75][76]. 

The DV standard applies four measured error criteria, namely the probability of occurrence of 

error, mean square errors (MSE), peak mean square error (PMSE) and steady AC coefficients 

[76]. Following the procedure in the preceding subsection, the double floating-point precision 

is assumed to be precise in comparing with the fixed-point computation. The zero-mean white 

input sequences are generated by a random-number generator in the range [−128, 127]. After 

the repeated 100,000 loops, the probability of occurrence of error, which is greater than 1, is 

less than 1×10−15 . Moreover, the steady AC coefficients of the proposed fixed-point 2D 8×8 

DCT model are all zero under the equal-values input. Figures 38(a) and 38(b) depict the MSE 

and PMSE simulation results, respectively. Notably, the proposed architecture could satisfy 

the limitation of MSE and PMSE of the DV standard, when the internal wordlength is greater 

than 12 bits. Thus, the 13-bit internal word length for each function units is the qualified 

internal wordlength for the DV standard. Figures 38(c) and 38(d) indicate that the overall 

mean error (OME) is below 0.01, and the peak signal to noise ratio (PSNR) is close to 60dB, 

which has the required video compression quality under the configuration of the 13-bit 

internal wordlength [77]. According to the finite wordlength analysis of the proposed R42SDF 

256-point FFT/IFFT pipeline architecture a 13-bit internal wordlength achieves the 

satisfactory results under the 40dB noise quality, thus satisfying the IEEE 802.16e standard. 

The 13-bit internal wordlength was thus chosen for the proposed R42SDF 256-point 

FFT/IFFT/2-D DCT RSoC IP to meet the requirements of next-generation handheld 

applications. 
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Fig. 38: Finite wordlength analysis of the proposed pipeline R42SDF-based 8×8 2D DCT 

architecture. (a). Overall mean square error analysis. (b) Peak Mean Square Error analysis. (c). 

Overall Mean Error analysis. (d). Peak Mean Error analysis. 
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6.4 Comparison and Chip Implementation 

 

6.4.1 Comparison between R42SDF and R22SDF 

He et al. presented the efficient pipeline FFT processor, several reliable architectures 

and the detailed comparison of their hardware costs [31]. A comparison of these 

architectures indicates that R22SDF has the highest butterfly utilization of 50%, a the 

highest complex multiplier utilization of 75%, and the lowest hardware resource 

requirement [31][34]. Additionally, the SDF-based design has the structural merits of 

high regularity and modularity with simple wiring complexity, making it very appropriate 

for the VLSI implementation of the pipeline FFT processor design [31, 32, 34]. This 

section presents the comprehensive comparison results of several famous pipeline 

FFT/IFFT architectures to demonstrate the high cost-efficiency of the proposed R42SDF 

FFT/IFFT architecture. The architectures were compared in two indices, namely cost and 

utilization, to express the cost efficient of the proposed FFT/IFFT architecture, as listed in 

Tables 13 and 14. Table 13 lists the required hardware resources, where T denotes the 

number of complex adders required in the implementation of the constant multiplier. 

Significantly, the proposed constant multiplier is minimized using complex conjugate 

symmetry rule and subexpression elimination algorithm. The area of the complex 

multiplier is known to be one dominant cost index in the pipeline FFT/IFFT design. The 

comparison results in Table 14 clearly demonstrate that the proposed R42SDF 

based-FFT/IFFT architecture has the fewest complex multipliers requirement among 

other pipeline architectures. The 256-point FFT/IFFT architecture only needs one 

complex multiplier, which is 67% and 95% below the requirement of the R22SDF and 

R8MDC FFT/IFFT architectures, respectively. Additionally, the proposed architecture 

applies the feedback type memory structure to maintain the minimum shift registers 

requirement. Although the proposed R42SDF based architecture needs slightly more 

complex adders than the R22SDF based architecture, this small cost penalty is acceptable.  

To estimate the total chip cost in the 256-point FFT/IFFT architectures, which includes 

the number of complex multipliers, complex adders and memory size, the conventional 

comparative methodology [26, 32] with the unit of equivalent adders was adopted to 

estimate the cost of each different architecture. Based on the implementation results in 

our process, we convert the area of each complex multiplier and complex memory to the 

50 and 1.3 complex adder, respectively, when adopting 13-bit precision, and the scheme 
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with three real multiplications and five real additions, in the implementation. The 

rightmost column of Table 13 lists the area indexes of the equivalent adder of the 

256-point FFT/IFFT architecture. Clearly, the proposed R42SDF-based 256-point 

FFT/IFFT architecture has the lowest hardware requirements. The R42SDF-based 

256-point FFT/IFFT architecture has a 16% lower cost than the R22SDF-based 256-point 

FFT/IFFT architecture. Significantly, the cost advantage of our proposed architecture 

becomes more evident when the transform length is larger. Thus, the proposed 

R42SDF-based architecture has a lower hardware cost than R22SDF and other famous 

pipeline FFT/IFFT architecture in terms of the number of ROMs, complex multipliers, 

complex adders, constant multipliers and shift registers. 

Table 14 shows the comprehensive comparison of the hardware utilization rate in terms 

of the utilization rate of complex multipliers, complex adders and complex memory. 

Clearly, the proposed architecture achieves the highest complex multiplier utilization rate 

among pipeline architecture (87.5%). Additionally, the proposed architecture maintains 

the maximum complex memory utilization rate of 100%. Furthermore, the proposed 

architecture, including the constant multipliers, has the highest complex adder utilization 

rate of 56.25%. Thus, the purposed architecture achieves a higher hardware utilization 

rate than R22SDF and other well-known pipeline FFT/IFFT architecture in terms of the 

utilization rate of complex multipliers, complex adders, constant multipliers and complex 

memory. Although the R2MDC, R4MDC and R8MDC architectures have the higher 

throughput rate (output/cycle) of 2, 4 and 8 than SDF based architecture, these 

approaches require large hardware requirement, such as complex multipliers, adders and 

memory size, as shown in Table 13. Therefore, this investigation focuses on the 

“hardware-oriented” architecture, in which the arithmetic operations can be tightly 

scheduled for efficient hardware utilization. This study demonstrates that the proposed 

R42SDF based pipeline FFT/IFFT architecture has the lowest hardware cost and highest 

hardware utilization. Conversely, the proposed R42SDF based pipeline FFT/IFFT 

architecture is the most cost-efficient. 
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6.4.2 8×8 2-D DCT Comparison 

Many DCT implementations exist spanning a broad spectrum of architectures, 

focusing on different applications. Lee et al. [78] presented a highly parallel approach 

with high arithmetic cost and high power consumption for the high-performance 

application. The systolic implementation of Lee et al. [78] employs the row-column 

decomposition to derive the configurable 2D N×N DCT in three steps with each step 

implemented in systolic form. This work concentrates on high-speed FFT/IFFT/2D DCT 

architectures with a throughput rate of at least one output sample per cycle, targeted for 

applications in next-generation handheld devices needing a high data-processing rate. 

Moreover, the proposed architecture has high cost efficiency and low cost in a portable 

consumer device. This subsection lists the hardware requirement comparison between six 

different implementations in terms of the number of real (complex) multipliers, real 

(complex) adders, twiddle factors realization, total transistor count, hardware complexity, 

throughput, internal wordlength, interconnect complexity and support for triple-mode, as 

shown in Table 15. Clearly, the proposed pipeline R42SDF-based FFT/IFFT/2D-DCT 

processor has the fewest complex multipliers and lowest hardware complexity, an 

acceptable throughput rate and moderate interconnect complexity. Although the number 

of the complex adders in the proposed processor is greater than the designs in [79] and 

[80], the total area including complex multiplier is still lower than others. The total 

number of transistors indicates that the proposed design achieves the smallest chip cost 

among architectures supporting FFT/IFFT mode. 
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Table 13 Hardware Cost Comparisons of the Pipelined FFT/IFFT Architecture. 

Pipeline archi- 
tecture 

Mult. 
complexity 

Complex 
Mult.  

Complex 
adders  

(including 
constant mult.) 

Complex 
Memory Size 

Equivalent 
area in 256 

points 

R2SDF Radix-2 log2N-2  2log2N N-1 647.5 
R4SDF Radix-4 log4N-1  8log4N N-1 513.5 
R8SDF Radix-8 log8N-1  (24+2T)log8N N-1 617.5 
R22SDF Radix-22 log4N-1 4log4N N-1 497.5 
R23SDF Radix-23 2(log8N-1) 6log8N N-1 655.5 
R2MDC Radix-2 log2N-2 2log2N 1.5N-2 812.6 
R22MDC Radix-22 log2N-2 2log2N 1.5N-2 812.6 
R4MDC Radix-4 3log4N-3 4log2N 2.5N-4 1308.8 
R8MDC Radix-8 7log8N-7 (24+2T)log8N 4.5N-8 2673.2 
Proposed 
R42SDF 

Radix-42 log16N-1 (8+T)log16N N-1 415.5 

 

 
Table 14  Hardware Utilization Rate Comparisons of the Pipelined FFT/IFFT 

Architecture. 
Pipeline 

architecture 
Utilization rate of 

complex Mult. 
Utilization rate of 
complex adders 

(including 
constant mult.) 

Utilization rate of 
complex memory 

Throughput 
(Output/Cycle) 

R2SDF 50% 50% 100% 1 
R4SDF 75% 25% 100% 1 
R8SDF 87.5% 12.5% 100% 1 
R22SDF 75% 50% 100% 1 
R23SDF 87.5% 50% 100% 1 
R2MDC 50% 50% 50% 2 
R22MDC 37.5% 50% 50% 2 
R4MDC 25% 25% 25% 4 
R8MDC 12.5% 12.5% 12.5% 8 
Proposed 
R42SDF 

87.5% 56.25% 100% 1 

 

Table 15 Hardware Requirement Comparison of 8×8 2D DCT Architecture. 

8×8 DCT Lee et al. [78] 
(parallel) 

Chang & 
Wang [81] 

(2D systolic) 

Hsiao and Shiue 
[79] 

(linear-array)  

Ruetz et al. [80] 
(linear-array)  

Madisetti et al. 
[82] 

(parallel MAC)  

Proposed 
(R42SDF) 

Real multipliers 28 64 - - - - 
Real adders 134 88 - - - - 

Complex multipliers - - 3 8 14 1 
Complex adders - - 9 18 32 26 
Twiddle factors 

realization 
Hardwired 
Multiplier  

Hardwired 
Multiplier  

ROM based LUT ROM based LUT Hardwired 
Multiplier 

Hardwired Multiplier 
& ROM based LUT 

Total transistor count ~ 400 K ~ 340 K ~ 105 K N/A ~ 67 K ~60 K 
Hardware complexity O(NlogN) O(N2) O(logN) O(logN) O(log8N) O(log16N) 

Throughput 
(Output/cycle) 

16 8 2 2 4 2 
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Internal Wordlength 18 16 16 14 22 13 
Interconnect 
complexity 

Complex Simple Moderate Moderate Simple Moderate 

FFT/IFFT/2-D DCT 
triple modes 

No No No No No Yes 

1 A gate count was determined and the number of transistors was determined by assuming 
four transistors per gate. 
2 An unknown gate count was indicated by “N/A” 
 

 

 

 

 

 

 

 

 

 

 

 

 

6.4.3 Chip Implementation 

Following the functional verification in the Matlab environment, the 256-point 

FFT/IFFT/2-D DCT architecture in which the internal word length of the entire design is 

13-bit was synthesized by the Design Compiler with TSMC 0.13µm CMOS technology. 

The floorplan and post-layout were performed by Astro. The post-simulation was issued 

by NC-Simulator to verify the functionality after back-annotation was performed from the 

Start-RC extractor. The static timing check can be signed-off by PrimeTime. Finally, the 

power analysis and DRC were conducted using Astro Rail and Dracula, respectively. The 

core area of the post layout was 0.6mm2. The reported equivalent gate count is 60086 

gates, which approaches 60k gates. The gate count usage for each building block is listed 

in Table 16. It is obviously that 264 words shift register dominates the chip cost of 

54.58%. The implementation result without the 2D DCT indicates that the total gate count 

decreased to 55.2k.The implementation reports in this study reveal that the routing cost 

penalty incurred by the additional 8×8 2D DCT mode is small. The chip operated at 

100MHz, thus satisfying the high throughput requirement After the conversion, the 

proposed R42SDF design in 8×8 2D DCT mode could provide high frame rates of 505 
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kfps and 1042 kfps for frame sizes of 176×144 and 128×96 (pixel2), respectively. 

Concerning the speed performance, because the pipelined multiplier operation is easy to 

design at a clock rate of 100 MHz or even higher, the proposed architecture can achieve a 

high clock rate by simple pipelining techniques for the involved arithmetic components. 

The chip properties shown in Fig.6.9 demonstrate that the average power dissipation of 

the 256-point FFT/IFFT/2-D DCT design was 22.37mW@100 MHz at 1.2V supply 

voltage. The layout view as shown in Fig. 39 has 64 I/O pins, of which eight pins are 

power supply pins. The proposed R42SDF based 256-point FFT/IFFT/2-D DCT 

implementation not only satisfies the system performance of DV standards in 8×8 2D 

DCT mode, but also achieves the satisfactory results with 40dB performance in 256-point 

FFT/IFFT modes. Additionally, the proposed R42SDF based 256-point FFT/IFFT/2D 

DCT implementation has a low power consumption (22.37 mW), and the lowest hardware 

requirement of all pipeline architectures. These findings indicate that the proposed design 

is suitable for the highly cost-efficient FFT/IFFT/2-D DCT triple-mode RSoCs IP for 

next-generation handheld devices. 
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Mode Selection 256-point FFT/IFFT and 8×8 2D-DCT 
Architecture R42SDF pipeline 
Technology 0.13 µm CMOS  
Core Size 807(µm) x 754(µm) = 0.6 mm2  
Power Consumption / Freq.  22.37 mW / 100 MHz  
Accuracy / internal wordlength 40dB in DV standard / 13-bits 
Input/Output/Power Pins # 29 / 27 / 8 

Fig. 39: The layout view and design characteristics of proposed pipeline 256-point 
FFT/IFFT/8×8 2D DCT processor. 

 
 

Table 16 The Gate Count Usage of Each Building Blocks. 
Categories Control Butterfly 

Cores 
Complex 
Multiplier 

Constant 
Multipliers 

Shift Registers 

Area 1.3 % 21.74 % 18.9 % 3.48 % 54.58 % 
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6.5 Summary 
 

This investigation develops a triple-mode reconfigurable pipeline R42SDF VLSI 

architecture that supports the 256-point FFT/IFFT and 8×8 2-D DCT computations. The 

comparison results demonstrate that the proposed R42SDF pipeline FFT/IFFT architecture 

has a lower hardware cost and higher utilization than R22SDF and other pipeline 

architectures. Following the fixed-point analysis the proposed 256-point FFT/IFFT/8×8 

2-D DCT chip design is successfully implemented in 0.13µm CMOS technology with an 

internal wordlength of 13 bits. This design has a power consumption of 22.37 mW@100 

MHz at 1.2V supply voltage. These features ensure that the proposed reconfigurable 

processor design is certainly amenable to the next-generation mobile communications. 

The upcoming fourth-generation wireless system requires the simultaneous application of 

many computing algorithms including MPEG-4 AVC [83] and Walsh transform [84], in 

the same handheld device. The reconfigurable hardware core for supporting more 

transforms is a significant topic for future work. 
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Chapter 7 Conclusion and Future Work 

   In this thesis, we focus on the specific ASIC design for the effective pipeline 

FFT/IFFT processor. Considering the hardware-orientated architecture for most efficiency, 

the specific FFT/IFFT processor not only minimizes the computation complexity and area 

cost, but also increase the hardware utilization rate with an appropriate throughput rate for 

different applications. For the purpose of demonstrating the effective computations in 

different real-time applications, four different standards have been considered, which 

include DTMF [12-15], MIMO-OFDM WLAN [22, 23], DVB-T [27, 28] and next 

generation mobile multimedia standards [5-7, 44].  

For the high channel density DTMF systems, one new recursive DFT/IDFT algorithm 

and architecture based on a hybrid of input strength reduction scheme, the Chebyshev 

polynomial and register-splitting scheme is devised in this framework. The analyzed 

results show that the proposed VLSI algorithm leads to the fewest computation cycle and 

the highest throughput rate. Moreover, the proposed 212/106-point recursive DFT/IDFT 

chip design has been successfully implemented in 0.13 µm CMOS technology and 

possesses the power-efficiency consumption of 9.77 uW@20 MHz at 1.2V supply voltage 

for each channel. These features guarantee that the proposed high-throughput and 

power-efficient VLSI architecture is amenable to high channel density DTMF systems. 

For the MIMO-OFDM system, we proposes a hardware-orientated approach for high 

efficiency to minimize the complex multiplicative complexity, area cost and achieve 

100% butterfly utilization with an appropriate throughput rate. By adopting the proposed 

R8-FFT unit combined with the MAW method, two efficient serial blockwise type 

64-point FFT/IFFT processors are constructing for the 2×2 and 4×4 MIMO-OFDM 

WLAN systems. For the 2×2 MIMO-OFDM system, the proposed R28MDF design has 

the best performance in terms of lowest complex multiplicative complexity, appropriate 

throughput rate of 2R, highest butterfly utilization and the fewest complex multipliers, 

when compared with other existing 64-point FFT/IFFT processor architectures. For the 

4×4 MIMO-OFDM system, the proposed R28MDC outperforms existing FFT/IFFT 

pipeline processor architectures and has the lowest complex multiplicative complexity, an 

appropriate throughput rate of 4R, highest utilization rate (100%) of all components and 

the lowest hardware cost. According to the IEEE 802.11n standard [23], execution time 

for the 128-point and 64-point FFT/IFFT processor with 1–4 simultaneous data sequences 

must be calculated within 3.6 or 4.0 µs. In total, eight operational modes of the FFT/IFFT 
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processor are required in the IEEE 802.11n standard. The effective reconfigurable 

FFT/IFFT processor [73] supports eight operational modes in the IEEE 802.11n standard, 

consumes small hardware and little power, is easily reused, and is an important topic for 

future work. 

For the long-length based FFT computations, we develops two high effective R42SDF 

and R43SDF pipeline VLSI architectures that support the long-length FFT/IFFT 

computations. The proposed R43SDF pipeline FFT/IFFT architecture has lower 

multiplicative complexity and higher hardware utilization rate with smaller cost than 

R42SDF and other pipeline architectures. Following with fixed-point analysis in 40dB 

AWGN environment, the proposed R42SDF and R43SDF based 4096-point FFT/IFFT 

designs are successfully implemented in 0.13 µm CMOS technology with an internal 

word-length of 14 and 13-bits, respectively. The proposed R42SDF and R43SDF based 

design have a low power consumption of 6.3725 and 5.985 mW @20 MHz at 1.2V 

supply voltage. Thus, these features ensure that the proposed R43SDF pipeline processor 

design certainly meets the high effective VLSI architecture. 

For the next-generation mobile applications, we develops a triple-mode 

reconfigurable pipeline R42SDF VLSI architecture that supports the 256-point FFT/IFFT 

and 8×8 2-D DCT computations. The comparison results demonstrate that the proposed 

R42SDF pipeline FFT/IFFT architecture has a lower hardware cost and higher utilization 

than R22SDF and other pipeline architectures. Following the fixed-point analysis the 

proposed 256-point FFT/IFFT/8×8 2-D DCT chip design is successfully implemented in 

0.13µm CMOS technology with an internal wordlength of 13 bits. This design has a 

power consumption of 22.37 mW@100 MHz at 1.2V supply voltage. These features 

ensure that the proposed reconfigurable processor design is certainly amenable to the 

next-generation mobile communications. The upcoming fourth-generation wireless 

system requires the simultaneous application of many computing algorithms including 

MPEG-4 AVC [83] and Walsh transform [84], in the same handheld device. Then, the 

reconfigurable hardware core for supporting more transforms is a significant topic for 

future work. Furthermore, the fixed word-length analysis for each building block to 

reduce more hardware cost is also important future investigations. According to the 

comprehensive comparisons and implementation results, we could provide that the 

proposed RDFT, R28MDF/R28MDC, R42SDF/ R43SDF and Triple-Mode designs 

achieve the high effective advantages for DTMF, MIMO-OFDM WLAN, DVB-T and 

next-generation applications.  
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Appendix A 

The Transfer Function between 8×8 2D SFFT and 8×8 2D DCT 

 
 

Equation (90) reveals that the 2D DCT result of X[k1,k2] can be derived from the 8×8 2D 

SFFT with a time-domain shift of 1/4 samples. 
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where 7,,,0 2121 ≤≤ nnkk . Because the input data y(n1,n2) is a real-valued sequence, 

the second half output of the 8×8 2D-shifted SFFT can be calculated as 
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According to Eq. (6.2) in the original manuscript, X[k1,k2] can only result from the 

product of two real parts of the twiddle factors 
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Furthermore, the real value of YS(k1,k2) and the imaginary value of YS(8−k1,k2) can be 

written as 

∑ −+⋅+
∑ ⋅=

= =

7

0

2211
7

0
2121

1 2

)
16

)41(
cos()

16

)41(
{cos(),(]},[Re{

n n
s

nknk
nnykkY

ππ
           

)}
16

)41(
sin()

16

)41(
sin( 2211 nknk +⋅+ ππ

   

−∑ ∑
+⋅+⋅=−

= =

7

0

7

0

2211
2121

1 2

)
16

)41(
sin()

16

)41(
{sin(),(]},8[Im{

n n
s

nknk
nnykkY

ππ
 

)}
16

)41(
cos()

16

)41(
cos( 2211 nknk +⋅+ ππ

 

The 8×8 2D DCT result can thus be expressed as a subtraction of the imaginary value 

of YS(8−k1,k2) from the real value of YS(k1,k2) and.  
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Only the real value of YS(k1,k2), the imaginary value of YS(8−k1,k2) and the real value of 

the input port y(n1,n2) are adopted to obtain the single X[k1, k2] in the 2D 8×8 SFFT 

based design. However, the proposed R42SDF design is a complex system. Two 

reordered input sequences {y1(n1,n2)},{ y2(n1,n2)} for two independent real input 

sequences {x1(n1,n2)},{ x2(n1, n2)} can be combined to form a complex input sequence 

{  y(n1,n2) = y1(n1,n2) + jy2(n1,n2)}, and the double throughput of 2D 8×8 DCT of 

{ x1(n1,n2)},{ x2(n1,n2)} can be derived by the single 2D 8×8 SFFT computation. 

Consequently, two independent 8×8 2D DCTs X1[k1,k2], X2[k1,k2] of x1(n1,n2), x2(n1,n2), 

respectively, can then be obtained as below:  
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Two different 8×8 2D DCT results are obtained from one single 8×8 2D SFFT 

computation as above.  
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