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all the edges of G and determine, for a few classes of graphs, the minimum number of near
1-factors in such sets.
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1. Introduction

Weconsider only finite, simple, undirected graphs. The vertex set, edge set andmaximumdegree of a graphG are denoted
by V (G), E(G) and ∆(G), respectively. If every vertex has degree d = ∆(G), d is called the degree of G and G is said to be
d-regular.
Amatching M in a graph G is a set of mutually non-adjacent edges of G. A vertex v ∈ V (G) is said to be saturated byM if

it is the endpoint of an edge ofM , and is said to be unsaturated or to miss M otherwise. A 1-factor is a matching of G which
saturates all vertices of G, and a near 1-factor is a matching M of G that saturates all vertices except one. A 1-factorization
(near 1-factorization) is a partition of E(G) into disjoint 1-factors (near 1-factors).
If G and H are two graphs, the notation G+H will be used to denote the join of G and H , i.e. the graph obtained by taking

one isomorphic copy of G, one isomorphic copy of H, and joining every vertex of the copy of G to every vertex of the copy of
H . If G is a graph and S is a set of vertices or edges of G, the notation G− S will denote the graph obtained from G by deleting
each element of S from G, together with all the edges incident with any vertex in S. The notations G − v and G − e will be
shorthands for G− {v} and G− {e}, respectively. For undefined notions we refer the reader to [3].
Bonisoli and Cariolaro [1] define excessive factorization of a graph G of even order to be a minimum set of (not necessarily

disjoint) 1-factors of Gwhose union is E(G). They denote by χ ′e(G) the number of 1-factors in an excessive factorization and
call it excessive index of G. If G does not have an excessive factorization, the excessive index of G is conventionally set to∞. In
the same paper, Bonisoli and Cariolaro study excessive factorization of regular graphs as a natural extension of the concept
of 1-factorization.
A few open questions and conjectures appear in [1]. In particular, the following conjecture seems particularly interesting

and difficult. Recall that an r-graph is a regular graph G such that, if V1 is a subset of V (G) of odd cardinality, there are at
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least d edges in G joining V1 to V (G) \ V1, where d is the degree of G. (Notice that this implies that G has even order). The
class of r-graphs is a generalisation of the class of 1-factorizable graphs, since it is easily seen that any 1-factorizable graph
must be an r-graph.

Conjecture 1. For every r-graph G of degree d, χ ′e(G) ≤ d+ 2.

This, if true, would be best possible because the Petersen graph is an r-graph, has degree 3 and (as proven in [1])
χ ′e(P) = 5.
Graphs which admit an excessive factorization are easily characterized, since they coincide with those graphs for which

every edge is in a 1-factor. We call such graphsmatching-covered.
Notice that χ ′e(G) is defined to be∞ if and only if G does not have an excessive factorization. In particular, χ

′
e(G) = ∞ if

G has odd order. This disparity between graphs of even order and graphs of odd order is rather unpleasant.
In this respect, it may be interesting to replace (for graphs of odd order) 1-factors by near 1-factors. This is indeed the

approach thatwewill take in this paper, and the following is the natural extension of the definition of excessive factorization
for graphs of odd order.

Definition 1. An excessive near 1-factorization of a graph G is a minimum set of near 1-factors whose union contains all
the edges of G.

IfF is a set of near 1-factors of Gwhose union is E(G), we callF a near 1-factor cover. The size ofF is the number of near
1-factors inF . Notice that an excessive near 1-factorization is just a near 1-factor cover of minimum size. When all the near
1-factors are mutually disjoint, we have an ordinary near 1-factorization. Thus, we may say that the concept of excessive
near 1-factorization generalizes the concept of near 1-factorization.
Clearly, a graph G admits an excessive near 1-factorization if and only if G has odd order and every edge belongs to a

near 1-factor of G. We shall still say, in this case (with a slight abuse of terminology), that G ismatching-covered. Moreover,
instead of adopting a new notation for the size of an excessive near 1-factorization, we shall keep the notation χ ′e(G) used
for graphs of even order. Therefore, the definition of the parameter χ ′e(G) is now altered as follows:

χ ′e(G) =
{
min{|F | : F is a 1-factor cover} if G has even order, and
min{|F | : F is a near 1-factor cover} if G has odd order,

with the convention that min∅ = ∞.
Notice that there are no conflicts arising with previously used notations, since all graphs considered thus far (in this

respect) have been graphs of even order.

2. Some preliminary facts

We denote the chromatic index of a graph G (i.e. the minimum number of colours in a proper edge colouring) by χ ′(G).
The following is an easy but useful inequality.

Proposition 1. For any graph G,

χ ′e(G) ≥ χ
′(G) ≥ max

{
∆(G),

⌈
|E(G)|
b|V (G)|/2c

⌉}
.

Proof. The fact thatχ ′(G) ≥ ∆(G) is trivial. The fact thatχ ′(G) ≥
⌈
|E(G)|
b|V (G)|/2c

⌉
follows from the fact that every colour class in

an edge colouring contains at most b|V (G)|/2c edges. We now prove the first inequality. LetF be an excessive factorization
or excessive near 1-factorization. Think of F as an edge multicolouring. Now delete from each edge (if necessary) some
of the colours until each edge has a single colour. The result is clearly an edge colouring and we have used at most χ ′e(G)
colours. Thus the required inequality follows. �

The following is a basic property of near 1-factorizations.

Proposition 2. Let G be a graph of odd order andmaximum degree∆ and assume G has a near 1-factorizationF . Then |F | = ∆
or ∆+ 1. Moreover |F | = ∆+ 1 if and only if G is a complete graph.

Proof. The fact that |F | ≥ ∆ is obvious and follows directly from the definition of near 1-factorization. Suppose now that
|F | ≥ ∆+ 1. Then

|E(G)| = |F |
(|V (G)| − 1)

2
≥ (∆+ 1)

(|V (G)| − 1)
2

=
1
2
(∆|V (G)| + |V (G)| −∆− 1) ≥

1
2
∆|V (G)| ≥ |E(G)|,
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Fig. 1. An excessive near 1-factorization of P∗ .

so that all the previous inequalities are equalities and, in particular, |F | = ∆+1,∆ = |V (G)|−1 and G is∆-regular, which
implies that G is complete. Conversely, it is easy to see that the only near 1-factorization of the complete graph of odd order
has size∆+ 1, thus completing the proof. �

A graph G is called overfull if ∆(G) < |E(G)|
b|V (G)|/2c . It is easy to see that every overfull graph has odd order. For a graph G

and a vertex v, we let the deficiency of v be the integer def (v) = ∆(G) − degG(v) and we let the deficiency of G, denoted
def (G), be defined as def (G) =

∑
v∈V (G) def (v) = ∆(G)|V (G)|−2|E(G)|. It is easy to see that a graph G of odd order satisfies

def (G) < ∆(G) if and only if G is overfull. The class of graphs of odd order for which def (G) = ∆(G) (i.e.∆(G) = 2|E(G)|
|V (G)|−1 is

particularly interesting and its members will be named∆-deficient.

Proposition 3. Let G be a non-complete graph of odd order and maximum degree ∆ and assume G has a near 1-factorization.
Then G is∆-deficient.

Proof. Let |V (G)| = 2n+ 1. We have (using Proposition 2)

|E(G)| = |F |n = ∆n

which implies that

def (G) = ∆(2n+ 1)− 2|E(G)| = ∆. �

The converse of Proposition 3 does not hold, since e.g. the graph P∗, obtained by the Petersen graph by deleting one vertex,
has odd order, maximum degree 3 and, as we shall prove below, does not have a near 1-factorization, but def (P∗) = 3.
It is easy to see that P∗ has a near 1-factor cover consisting of 4 near 1-factors (see Fig. 1). Thus χ ′e(P

∗) = 4.
The following proposition characterizes near factorizations.

Proposition 4. Let G be a graph of odd order and ∆-deficient. Add a new vertex v+ and, for any vertex w ∈ V (G), add exactly
def (w) edges between v+ andw, obtaining a multigraph G+. Then G+ is 1-factorizable if and only if G is near 1-factorizable.

Proof. Every near 1-factor of G can be extended to a 1-factor of G+ using one of the edges v+w. Conversely, every 1-factor
of G+ contains a near 1-factor of G. It is clear that every 1-factorization of G+ induces a near 1-factorization of G and vice
versa. �

Using Proposition 4, we can easily see that P∗ does not have a near 1-factorization, since, if P is the Petersen graph, then
P ∼= (P∗)+, so that, if P∗ had a near 1-factorization, by Proposition 4, P would have a 1-factorization, which is impossible.
A proof identical to the proof of Proposition 4 also shows that the complete graph K2n−1 has a near 1-factorization, which

is induced by a 1-factorization of the complete graph K2n. Therefore, χ ′e(K2n−1) = χ
′
e(K2n) = 2n− 1.

A statement slightly more general than Proposition 4 is the following.

Proposition 5. Let G be a graph of odd order. Then G is near 1-factorizable if and only if there exists a 1-factorizable multigraph
G+ such that G = G+ − v.
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Proof. If G is near 1-factorizable, by Proposition 3, G is either complete or ∆-deficient. If it is complete then G+ = G + K1
is the required multigraph. If it is∆-deficient, the graph G+ of Proposition 4 is the required multigraph. For the converse, if
G+ is a 1-factorizable multigraph such that G = G+ − v, then any 1-factorization of G+ induces a near 1-factorization of G,
so that G is near 1-factorizable. �

3. Excessive near 1-factorizations

If F is an excessive near 1-factorization, the set of vertices missed by F is defined to be the set of vertices missed by at
least one element of F . We start by proving a simple inequality.

Proposition 6. Let G be a graph of even order and assume G is matching-covered. Let v ∈ V (G). Then the graph G − v is
matching-covered and

χ ′e(G− v) ≤ χ
′

e(G).

Proof. LetF be an excessive factorization of G. LetF ′ be the set of near 1-factors of G−v obtained fromF by deleting from
each 1-factor in F the edge incident with v. Then it is easily seen that F ′ is a near 1-factor cover of G− v, which proves the
desired assertion. �

Notice that the inequality of Proposition 6 can be strict. For example, if G ∼= K1 + C5, and v is chosen so that G− v ∼= C5,
then we have χ ′e(G) = 5 and χ

′
e(G − v) = 3. However, in this example there is a trivial reason for χ

′
e(G) to be larger than

χ ′e(G − v), namely the fact that the vertex v is the unique vertex of large degree of G (which forces χ
′
e(G) to be large by

Proposition 1).
An example in which this phenomenon does not occur is the Petersen graph P . It is easy to see (and was formally proven

in [1]) that χ ′e(P) = 5, but, as we have shown earlier, the graph P
∗
= P − v satisfies χ ′e(P

∗) = 4.
Thus, it is natural to ask the following question.

Question: For which graphs G of even order and vertices v ∈ V (G),we have χ ′e(G) = χ
′
e(G− v)?

This seems to be a difficult question in general. A partial answer will be given later. Here we notice the following fact,
which follows easily from the definition, but is sometimes of some use.

Proposition 7. Let G be a graph of even order and let v ∈ V (G). Let N(v) be the neighbourhood of v in G. Then we have
χ ′e(G− v) = χ

′
e(G) if and only if G− v has an excessive near 1-factorization whose set of missing vertices coincides with N(v).

Proof. LetF be an excessive near 1-factorization of G− v and suppose thatF misses precisely the vertices in N(v). Then it
is obvious that this excessive near 1-factorization extends to a 1-factor cover ofG of the same size. But then, by Proposition 6,
this 1-factor cover is necessarily an excessive factorization, which proves that χ ′e(G− v) = χ

′
e(G). Conversely, suppose that

χ ′e(G− v) = χ
′
e(G). Let F be an excessive factorization of G. Then F induces a near 1-factor cover of G− v, with respect to

which the set of missing vertices coincides with N(v). By the assumption that χ ′e(G− v) = χ
′
e(G), this near 1-factor cover

is necessarily an excessive near 1-factorization of G− v, concluding the proof. �

An easy consequence of the above proposition is the following.

Corollary 1. Let H be a matching-covered graph of odd order. Let F be an excessive near 1-factorization of H. Let X be the set
of vertices missed by F . Let G be the graph obtained by adding a new vertex x to H and joining x to each vertex in X. Then G is
matching-covered and χ ′e(G) = χ

′
e(H).

In particular, the above corollary implies the following.

Corollary 2. Let H be a matching-covered graph of odd order. There exists a matching-covered graph G of even order such that
H = G− v and χ ′e(G) = χ

′
e(H).

Thus, in principle, the problem of evaluating χ ′e(H) is reduced to the problem of evaluating χ
′
e(G) for a graph G of even

order. Unfortunately, we are not able in general to use this fact sincewe do not knowhow to construct such a graphG (unless
we construct first an excessive near 1-factorization of H).
The following proposition is also easy to prove but useful.

Proposition 8. Let G be a graph of odd order and suppose that every matching extends to a near 1-factor. Then χ ′e(G) = χ
′(G).

Proof. By Proposition 1 we have χ ′e(G) ≥ χ
′(G). For the reverse inequality, consider any edge colouring of G with exactly

χ ′(G) colours. Then extend each colour class to a near 1-factor, thus obtaining a near 1-factor cover of size χ ′(G), which
proves χ ′e(G) ≤ χ

′(G). �
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For example, using Proposition 8 we have an independent proof of the fact that the complete graph K2n−1 satisfies
χ ′e(K2n−1) = 2n− 1.
It is easy to see that, if G is regular and has even order, then χ ′e(G) = ∆(G) if and only if G is 1-factorizable (indeed this

fact was used in [1] to prove that the computation of χ ′e(G) for regular graphs is NP-hard). Proposition 3 suggests that, for
graphs of odd order, the class of graphs corresponding to the regular graphs of even order, is the class of∆-deficient graphs.
Indeed we have the following.

Proposition 9. Let G be a∆-deficient graph of odd order. Then χ ′e(G) = ∆(G) if and only if G has a near 1-factorization.

Proof. Assume G has a near 1-factorization F . Since G is not complete, by Proposition 2, |F | = ∆(G). Since any near 1-
factorization is an excessive near 1-factorization, we conclude that χ ′e(G) = ∆(G). For the converse, assume that χ ′e(G) =
∆(G). Let F be an excessive near 1-factorization of G. Since |E(G)| = ∆(G) |V (G)|−12 , and each near 1-factor has precisely
|V (G)|−1
2 edges, it follows that the near 1-factors in F are disjoint, and hence F is the required near 1-factorization. �

4. Some simple classes of graphs

We have already observed that χ ′e(K2n−1) = 2n− 1. In this section we evaluate χ
′
e(G) for some other classes of graphs.

Proposition 10. Let H = K(m, n) be a complete bipartite graph of odd order, withm ≥ n.Thenχ ′e(H) = n+1 if H = K(n+1, n)
and∞ otherwise.

Proof. It is easy to see that H has a near 1-factor if and only ifm = n+ 1. Therefore, χ ′e(H) = ∞ ifm 6= n+ 1. Assume now
m = n+ 1. Let G be the graph K(n+ 1, n+ 1). Since G is 1-factorizable, χ ′e(G) = n+ 1. Clearly H = G− v. By Proposition 6,
χ ′e(H) ≤ χ

′
e(G) = n+ 1. On the other hand, by Proposition 1, χ

′
e(H) ≥ ∆(H) = n+ 1. This proves Proposition 10. �

The proofs of the following two propositions are immediate and are left to the reader.

Proposition 11. Let Pn be a path with n vertices, n odd. Then χ ′e(Pn) = 2.

Proposition 12. Let Cn be a cycle with n vertices, n odd. Then χ ′e(Cn) = 3.

We now prove a result which partially answers the question posed earlier.

Theorem 1. Let G be a regular graph of even order and let H = G− v. Assume χ ′e(G) ≤ ∆(G)+ 1. Then χ
′
e(G) = χ

′
e(H).

Proof. By Proposition 6, H is matching-covered and χ ′e(H) ≤ χ ′e(G). If G is complete, then the result is obviously true.
Otherwise∆(G) = ∆(H). Using the assumption, we have

χ ′e(H) ≤ χ
′

e(G) ≤ ∆(G)+ 1. (1)

Assume first that χ ′e(G) = ∆(G). Then

∆(H) ≤ χ ′e(H) ≤ χ
′

e(G) = ∆(G) = ∆(H),

so that, in particular, χ ′e(G) = χ
′
e(H).

Assume now χ ′e(G) = ∆(G)+1. Since G is regular and of even order, this implies that G is Class 2 (i.e. χ
′(G) = ∆(G)+1).

But then (since G is not complete) also H = G− v is Class 2, which implies that

χ ′e(H) ≥ χ
′(H) = ∆(H)+ 1 = ∆(G)+ 1.

This, combined with (1), gives the required identity. �

We remark that the statement of Theorem 1 does not hold in general if χ ′e(G) = ∆(G) + 2, since it is false, e.g., for the
Petersen graph.

5. The excessive index of trees

We now consider the class T of trees. A few definitions will be helpful. A vertex of degree 1 in a tree is called a leaf and
its unique neighbour is called a stem. A peripheral vertex of T ∈ T is a vertex x such that there exists a vertex y in T such that
dist(x, y) = diam(T ),where diam(T ) is the diameter of T (i.e. the length of a longest path).
First we notice the following general fact, which is well known and easy to prove.

Proposition 13. Let T be a tree of even order. Then T has at most one 1-factor.

From Proposition 13, χ ′e(T ) can be immediately deduced for all trees T of even order.
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Fig. 2. An example of a matching-covered tree of odd order. The vertices of one of the two colour classes have all degree two. An excessive near 1-
factorization is shown.

Corollary 3. The only tree of even order who has finite excessive index is K2.

Proof. Indeed, if T is a tree of order more than two, then it has a vertex v of degree at least two, and, by Proposition 13, at
most one of the edges incident with v can be covered by a 1-factor of T . �

Therefore, wemay restrict ourselves to trees of odd order. Differently from the even case, there are plenty of trees of odd
order which are matching-covered (one of them is depicted in Fig. 2). We need the following definition.

Definition 2. A tree T is a bipolar tree if T has a bipartition (A, B), where all vertices in B have degree two.

Notice that every bipolar tree has necessarily odd order (because it has an even number of edges). An example of bipolar
tree is given in Fig. 2.
For convenience we shall call the vertices in B bivertices. Notice that the bivertices are precisely those vertices of a bipolar

tree which are at odd distance from any leaf.
We now prove that every bipolar tree has an excessive near 1-factorization and we give the exact value of the excessive

index.

Theorem 2. Let T be a bipolar tree and let k be the number of leaves of T . Then T is matching-covered and χ ′e(T ) = k.

Proof. Let v1, v2, . . . , vk be the leaves of T . For every i, consider the out-tree Ti obtained from T by orienting the edges away
from vi. Let Fi consist of the edges of T corresponding to the arcs of Ti joining each bivertex with its (unique) post-neighbour.
Clearly Fi is a near 1-factor of T missing the vertex vi. Obviously, ∪ki=1 Fi ⊂ E(T ). We claim that ∪

k
i=1 Fi = E(T ). Let e ∈ E(T ).

Then necessarily e = xy, where x is a bivertex. It is obvious that there exists a leaf vi such that Exy is an arc in Ti. Thus
e ∈ Fi, and hence we have the required identity. This proves that T is matching-covered and χ ′e(T ) ≤ k. We now show
that χ ′e(T ) ≥ k. For any leaf vi, let wi be the corresponding stem (which is a bivertex). Let ui be the unique neighbour of wi
different from vi. Notice that the k edges ei = wiui are distinct. We show that no two of the ei’s are in the same near 1-factor
of T . Assume that there exists a near 1-factor F containing ei and ej, where i 6= j. Then F must necessarily miss vi and vj,
which is impossible, since F is a near 1-factor. This proves that the edges e1, e2, . . . , ek belong to distinct near 1-factors, and
hence χ ′e(T ) ≥ k, concluding the proof of the theorem. �

To complete the classification of trees with respect to the excessive index we now prove that the only matching-covered
trees of odd order are the bipolar trees.

Theorem 3. Let T be a matching-covered tree of odd order. Then T is a bipolar tree.

Proof. We prove the theorem by induction on the order of T . If |V (T )| = 1 the theorem holds trivially, so let us assume that
|V (T )| > 1. Let v be a peripheral vertex of T and letw be its unique neighbour. Obviously, deg(w) ≥ 2 since T 6= K2. Assume
deg(w) > 2. Let e1, e2 be two distinct edges incident with w and different from the edge vw. Since T is matching-covered,
there exists a near 1-factor F1 containing the edge e1 and a near 1-factor F2 containing the edge e2. Obviously, F1 6= F2
because the edges e1, e2 are adjacent. Both F1 and F2 do not contain the edge vw, and hence they miss the vertex v. But then
F1 and F2 are 1-factors of the tree T1 = T − v, and hence they must coincide by Proposition 13. This contradiction shows
that degT (w) = 2. Let u be the unique neighbour of w different from v. Consider the tree T2 = T − {v,w}. Clearly T2 has
odd order.
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Claim 1. T2 is matching-covered.

Let e ∈ E(T2). Since T is matching-covered, there exists a near 1-factor F of T containing e. Obviously, F contains either
the edge vw or the edge wu. In either case the matching F − vw (or F − wu) is a near 1-factor of T2 containing the edge e.
Thus T2 is matching-covered.

Claim 2. T2 is a bipolar tree and u is not a bivertex of T2.

The fact that T2 is a bipolar tree follows from the fact that T2 is matching-covered, |V (T2)| < |V (T )| and the inductive
hypothesis. We now prove that u is not a bivertex of T2. We argue by contradiction, so let us assume that u is a bivertex of
T2. Let F be a near 1-factor of T containing the edge uw. Then F2 = F − uw is a near 1-factor of T2 missing the vertex u. But
then the graph H = T2 − umust have a 1-factor. However, it is easily seen that H is the union of bipolar trees and, since all
bipolar trees have odd order, in particular H cannot have a 1-factor. This contradiction proves the claim.
Now, by Claim 2, T2 is a bipolar tree and u is not a bivertex of T2. It follows that T is a bipolar tree. By induction, the proof

is completed. �

Thus, we are now in a position to express the excessive index of an arbitrary tree as follows.

Corollary 4. Let T be a tree. Then

χ ′e(T ) =

{1 if T = K2;
# leaves if T is a bipolar tree;
∞ otherwise.

6. Conclusion

For any class of graphs not considered here, one may ask: what is the excessive index of such graphs? The authors have,
for instance, investigated the excessive index of the complete multipartite graphs of even order [2]. It was not easy to come
up with the following solution.

Theorem 4 ([2]). Let G = K(n1, n2, . . . , nr−1, nr) be a complete multipartite graph of even order, where n1 ≥ n2 ≥ · · · ≥
nr−1 ≥ nr are the sizes of the partite sets and r ≥ 3. Then χ ′e(G) < ∞ if and only if n1 <

∑r
i=2 ni, in which case

χ ′e(G) = max{∆(G), σ1(G)}, where

σ1(G) = d|E(K(n2, n3, . . . , nr))|/(|V (G)| − 2n1)e .

The task of determining the excessive index of complete multipartite graphs of odd order appears to the authors to be an
intriguing, but formidable one.
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