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ABSTRACT

In this dissertation, two novel control schemes are proposed to solve the control
problems of nonlinear systems. The first is a robust adaptive self-structuring fuzzy control
(RASFC) scheme for nonaffine nonlinear systems, and the second is a direct adaptive control
scheme using Hopfield-based dynamic neural network (DACHDNN) for affine nonlinear
systems. The RASFC scheme-'is | composed: of-a robust adaptive controller and a
self-structuring fuzzy controller: The design of the self-structuring fuzzy controller design
utilizes a novel self-structuring. fuzzy-system=(SFS) to approximate the unknown plant
nonlinearity, and the SFS can automatically grow.and prune fuzzy rules to realize a compact
fuzzy rule base. The robust adaptive controller is designed to achieve a L, tracking
performance with a desired attenuation level to stabilize the closed-loop system. Four
examples are presented to show that the proposed RASFC scheme can achieve favorable
tracking performance and relieve heavy computational burden. In the DACHDNN, a
Hopfield-based dynamic neural network is used to approximate the ideal controller, and a
compensation controller is used to suppress the effect of approximation error and disturbance.
The weightings of the Hopfield-based dynamic neural network are on-line tuned by the
adaptive laws derived in the Lyapunov sense, so that the stability of the closed-loop system
can be guaranteed. The tracking error can be attenuated to a desired level by adequately
selecting some parameters. The case of Hopfield-based neural network without the
self-feedback loop is also studied and shown to have inferior results than those of Hopfield
neural network with the self-feedback loop. Simulation results illustrate the applicability of
the proposed control scheme. The Hopfield-based dynamic neural network with a
parsimonious structure has the best potential be realized in hardware. It should be emphasized



that the self-structuring property of the SFS and the fixed parsimonious structure of the
DACHDNN eliminate the need for expert’s knowledge or error-trial process and thus provide

perfect solutions to the structuring problems of fuzzy systems and neural networks,
respectively.
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Chapter 1

Introduction

1.1 Background and Motivation

Recently, control system design for nonlinear systems has attracted a lot of research
interests. Many remarkable results have been obtained, including feedback linearization [1],
adaptive backstepping design [2], fuzzy logic control [3], neural network control [4], and
fuzzy-neural control [5]. In general, nonlinear systems can be classified into two categories,
affine nonlinear systems, i.e., systems characterized by inputs appearing linearly in the system
state equation, and nonaffine nonlinear systems, where the control input appears in a
nonlinear fashion [6]. Many systems encountered in engineering, by nature or by design, are
affine systems, such as inverted pendulum.systems [3], mass-spring-damper system [7-8],
chua’s circuit [9-10], straight-arm robot [11], DC-to-DC converter [12], etc. On the other hand,
nonaffine systems are quite common in the real world, such as Van de Pol oscillator [13-15],
magnetic servo levitation systems [16], aircraft flight control systems [17], biochemical
process [18], etc.

Fuzzy system (FS) which adopts human experience and human decision-making
behavior has been widely recognized as a powerful tool in industrial control, commercial
prediction, image processing applications, etc. [19-21]. To build a FS, there are two different
phases to be carried out. The first is the structuring phase, which is used to construct the
structure of FS, and the second is the parameter phase, which is used to determine the
parameters of FS. Constructing the structure of FS is mainly to determine the optimal
partition of fuzzy sets and the minimum number of fuzzy rules to achieve favorable
performance. The adjustments of the parameters involve the tuning of the consequences of the
fuzzy rules, the centers, widths, slopes of membership functions, etc. Traditionally, these two
phases are performed by human experts or experienced operators. However, consulting
experts may be difficult and expert knowledge is either unavailable or not helpful enough to
achieve favorable performance. Having achieved many practical successes, fuzzy control (FC)
using FS has still not been viewed as rigorous because it lacks a systematic design procedure

to determine proper membership functions with fuzzy rules, and the way to guarantee the
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global stability. Adaptive fuzzy control (AFC) has been extensively studied to tackle this
problem [21-26]. Adaptive fuzzy system can approximate the unknown system dynamics or
ideal controller through learning in the Lyapunov sense, and thus the global stability can be
guaranteed.

Although the control performances in [21-26] are acceptable, the structures of the FSs
need to be predefined by a time-consuming trial-and-error process. Generally speaking, a
more favorable performance requires more fuzzy rules, but this may lead to heavy
computational burden. On the contrary, a FS with small fuzzy rule base may result in a poor
approximation.

To solve the problem of structure determination, many researchers have focused their
efforts on the self-structuring fuzzy system (SFS) and obtained some valuable results [27-31].
In [27], the structure learning phase aims at minimizing the number of rules generated and the
number of fuzzy sets in the universe of discourse. A structure learning algorithm is proposed
based on fuzzy similarity measure, and fuzzy rules can be created from the training data. In
[28], the structure identification is accomplished automatically based only on Q-learning,
which is the most important category of reinfercement learning algorithm. The basic fuzzy
rules are used as starting points-to.reduce the-number of iterations used to find an optimal
fuzzy controller. In [29], the firing strength of a rule-is used as the degree measure to judge
whether or not to simultaneously generate @ new membership function for every input
variable (or equivalently, to generate a new rule.) Then, if the newly generated membership of
the first input variable fails to pass the similarity checking, all new membership functions are
abandoned. In [30], parameter and structure learning are performed sequentially for the
proposed fuzzy neural network. That is, the fuzzy neural network is initially constructed to
contain all possible fuzzy rules, and then the parameter training is performed. After the
parameter training is completed, a pruning process is performed to delete redundant rules and
thus leads to a concise fuzzy rule base. Note that the initially constructed rule base contains
incompatible rules, i.e., the rules with the same antecedent but different consequents. The rule
pruning strategy is that if the centroid of a set of incompatible rules is in the support of a
consequent (an output fuzzy set), the corresponding fuzzy rule is remained and all other
incompatible rules are pruned. In [31], the authors modified the fuzzy neural network
proposed in [30] and proposed rule pruning scheme that always produces a rule set without
incompatible rules.

However, although some achievements have been made in these works, there are still

some problems need to be solved. In [27], the performance of the proposed neural fuzzy
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system is acceptable, but the back propagation learning algorithm cannot guarantee the global
stability. In [28], during the training process, prior knowledge of fuzzy rules is needed to keep
safe operation of the controlled system with fast convergence speed of parameters. In [29], the
simplified similarity checking to reduce the complexity of the algorithm may weaken the
power of the checking itself. In [30], because the connection weights of the network are
unrestricted in sign, incompatible rules may be retained even rule pruning process is
performed. This is contradictory to the basic design philosophy of fuzzy systems. Besides, the
proposed sequential learning scheme is suitable for offline instead of online operation. In [31],
although the fuzzy neural network in [30] is modified to guarantee a compatible rule base, the
searching space for the connection weights is restricted to R*. This may harm the capability of
the proposed network to lower the value of residual square error. The common drawback in
[27-31] is that the structuring learning phase conducts either rule generation or rule reduction,
instead of both.

Recently, research interest has been increasing towards the usage of neural network (NN)
for controlling a wide class of complex.nenlinear systems under the restriction that complete
model information is not available:[32-36}.;Due.to their massive parallelism, fast adaptability,
and inherent approximation capabilities, NN seems to be a feasible solution to the control
problem of nonlinear systems. However, the structuring problem of NNs, which mainly refers
to determining the number of the neurons, is-an-annoying problem. This choice faces a similar
dilemma as the choice of fuzzy rule ‘number-in the FS design. Generally speaking, more
favorable performance requires more neurons, but this may lead to a complicated network
structure and heavy computational burden. On the contrary, an NN with too few neurons in
the hidden layer(s) will make it hard for the network to recognize the relationships between
the output and input parameters, and thus result in a poor approximation. In general, the
number of neurons is chosen empirically and apparently not optimized.

Two major classes of NNs, static and dynamic NNs, have become enormously important
in recent years. In static NNs, which are also called feedforward NNs, signals flows from the
input units to the output units in a forward direction. In dynamic NNs, dynamic elements are
involved in the structure of the NN, for example, in the form of feedback connections. Some
static neural networks (SNNSs), such as feedforward fuzzy neural network (FNN) or
feedforward radius basis function networks (RBFN), are frequently used as powerful tools for
modeling the ideal control input or nonlinear functions of systems. Some results are shown in
[39-42]. Although feedforward FNNs and RBFNs have achieved much theoretical success,

they leave some space for improvement. The complex structures of feedforward FNNs and
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RBFNs make the practical implementation of the control schemes infeasible, and usually a
large number of neurons are needed in the hidden layers of SNNs (in general more than the
dimension of the controlled system). The other well-known disadvantage is that SNNs are
quite sensitive to the major change that never learned in the training phase.

Despite the immense popularity of the usage of SNNs, some researchers adopt dynamic
neural networks (DNNSs) to solve the control problem of nonlinear systems. An important
motivation is that a smaller DNN is possible to provide the functionality of a much larger
SNN [43]. In addition, SNNs are unable to represent dynamic system mapping without the aid
of tapped delay, which results in long computation time, high sensitivity to external noise, and
a large number of neurons when high dimensional systems are considered [44]. This
drawback severely affects the applicability of SNNs to system identification, which is the
central part in some control techniques for nonlinear systems. On the other hand, since DNNs
have dynamic memory, they have good performance on identification, state estimation,
trajectory tracking, etc., even with the unmodeled dynamics. In [45-49], researchers first
identify the nonlinear system according.to the.measured input and output, and then calculate
the control low based on the NN miodel. The.output of the nonlinear system is forced by the
control law to track either a given. trajectory or the output of a reference model. However,
there are still some drawbacks. In [45], painful off-line identification is needed for the
proposed approach, and the propased control” scheme deals with only singular perturbed
systems. In [46], some strong assumptions.are made, such as those ones related to the
magnitude of the synaptic weightings and the stability of the closed-loop dynamics of the
neural model. In [47], although both identification and tracking errors are bounded, it seems
that the control performance is not satisfactory in the simulations. In [48], two DNNs are
utilized in the iterative learning control system to approximation the nonlinear system and
mimic the desired system output, respectively, thus increasing the complexity of the control
scheme and computation loading. The work in [49] requires a prior knowledge of the strong
relative degree of the controlled nonlinear system. Besides, an additional filter is needed to
obtain the higher derivatives of the system output. These drawbacks impose the restriction on

the applicability of the above works to practical implementation.

1.2 Major Works

To solve the structuring problem of FSs, this dissertation first proposes a novel SFS,
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which is used to approximate the unknown plant nonlinearity. The SFS considers both the
growing and pruning of fuzzy rules. In fact, it is possible that some rules are less or never
fired throughout the operation of FS. These redundant rules, which make no meaningful
contributions to the system output, are insignificant and thus should be removed to ease
computational load. Secondly, a robust adaptive self-structuring fuzzy control (RASFC)
scheme is proposed for a SISO nonaffine nonlinear system. A robust adaptive controller is
merged into the control law to achieve L, tracking performance with a desired attenuation
level of tracking error. This L, tracking performance can provide a clear expression of
tracking error in terms of the sum of lumped uncertainty and external disturbances, which has
not been shown in previous works [50-51]. Moreover, all control parameters of the RASFC
system are tuned on-line according to the adaptive laws derived in the Lyapunov sense to
achieve favorable fuzzy approximation. Then, four examples are presented. For the purpose of
interpreting the novel self-structuring algorithm, approximations of unknown nonlinear
functions are performed in Examples 2-1 and 2-2 to illustrate the rule generation and pruning
capabilities of the SFS. In Examples 2-3,and 2-4, tracking control for two nonaffine nonlinear
systems is provided to verify the effectiveness.of the proposed RASFC scheme. To highlight
the power of the proposed SFS, an adaptive FS with fixed number of rules and an SFS which
can only automatically grow rules are also adopted in the last two examples for comparison
purpose. Simulation results show'that the proposed RASFC can achieve favorable tracking
performance with a compact fuzzy rule bhase profited from the self-structuring algorithm.
Comparing with adaptive fuzzy system with fixed number of rules and SFS which can only
grow rules, the proposed SFS with both rule growing and pruning capabilities can relieve
computational load, yet still maintain the desired tracking accuracy.

To fix the drawbacks of the NN control designs mentioned in the preceding paragraphs,
and at the same time, solve the inherent structuring problem of NNs, we then propose a direct
adaptive control scheme using Hopfield-based dynamic neural networks (DACHDNN) for
SISO nonlinear systems. Direct adaptive control is one of the important categories of adaptive
control. In direct adaptive control, the parameters of the controller are directly adjusted to
reduce some norm of the output error between the plant and the reference model. The
Hopfield model was first proposed by Hopfield J.J. in 1982 and 1984 [52-53]. Because a
Hopfiled circuit is quite easy to be realized and has the property of decreasing in energy by
finite number of node-updating steps, it has many applications in different fields. The
Hopfield-based DNN can be viewed as a special kind of DNNs. The control object is to force

the system output to follow a given reference signal. The ideal controller is approximated by
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the internal state of a Hopfield-based DNN, and a compensation controller is used to
compensate the effect caused by approximation error and the bounded external disturbance.
The synaptic weightings of the Hopfiled-based DNN are on-line tuned by adaptive laws
derived in the Lyapunov sense. The control law and adaptive laws provide semi-global
stability for the closed-loop system with external disturbance. Furthermore, the tracking error
can be attenuated to a desired level by adequately choosing parameters of the control law. The
cases of Hopfield-based DNN without the self-feedback loop are also studied. We show that
these cases have inferior results than those of Hopfield-based DNN with the self-feedback
loop. The main contributions of the DACHDNN are summarized as follows. 1) The structure
of the used Hopfield-based DNN is quite parsimonious. It contains only a single neuron,
which is much less than those contained in SNNs or other DNNs for nonlinear system control.
It is shown in the simulation that such a parsimonious structure of Hopfield-based DNN does
not destroy the system performance. 2) The simple Hopfield circuit greatly improves the
applicability of the whole control scheme for practical implementation. 3) No strong
assumptions or prior knowledge of the controlled plant are needed in the development of
DACHDNN.

1.3 Dissertation Overview

The rest of this dissertation is organized as follows. Chapter 2 describes the design
procedure of the RASFC scheme for nonaffine nonlinear systems. The structure learning
phase performed by the SFS is introduced. The adaptive laws to tune the parameters,
including the means and variances of membership functions and the single consequents of the
fuzzy rules and, are derived. The stability analysis and example are also provided in this
chapter. The DACHDNN is developed in Chapter 3. The adaptive laws to tune the synaptic
weightings are derived. The stability analysis and examples are also provided in this chapter.

Finally, conclusions and future works are stated in Chapter 4.



Chapter 2
Robust Adaptive  Self-structuring Fuzzy
Control Design for Nonaffine Nonlinear

Systems

Reviewing some literatures on nonaffine nonlinear system control, we find some
problems left to be addressed. In [50], although the system stability is guaranteed in the
Lyapunov sense, the un-measurable term in the adaptive law needs to be approximated. This
will make the system stability questionable. Even the system stability can be guaranteed, the
tracking error is only ultimately uniformlysbounded. In [51], the tracking error is uniformly
asymptotically stable, but the robust contreller.to compensate the external disturbance causes
the chattering of control input.-~Although the-authors in [50] suggested some remedies to
reduce the chattering, the tracking erron may not.be UAS due to these remedies.

In this chapter, we aim at solving the control problem of SISO nonaffine nonlinear
systems. An adaptive fuzzy control scheme is developed to achieve this goal, and the resulting
structuring problem of fuzzy systems is also solved by a proposed self-structuring fuzzy
system (SFS). The automatic rule pruning and growing functions of the SFS are discussed and
separately illustrated in the Examples 2-1 and 2-2 to give more insights. Using the proposed
SFS, we will show how a novel robust adaptive self-structuring fuzzy control (RASFC)
scheme can remarkably reduce the computational burden without sacrificing the favorable

control performance for SISO nonaffine nonlinear systems.

2.1 Problem Formulation

Consider a single-input and single-output (SISO) nonaffine nonlinear system
x" = f(x,u)+d (2-1)

where x =[x x...x"™]"is the measurable state vector of the system on a domain Q_c R",



f(x,u):Q xR — R is the smooth unknown nonlinear function, u is the control input, and d
is the bounded external disturbance. Here the single output is x. It should be noted that f(x, u)
is an implicit function with respect to u. Feedback linearization is performed by rewriting (2-1)
as

x" = zu+ A(x,u)+d (2-2)
where z is a constant to be designed and A(x,u)= f(x,u)—zu . Here we assume that

of (x,u)

ou

further assume that [51, 54-55]

is nonzero for all (x,u) e Q xR with a known sign. Without losing generality, we

CIACSIN (2-3)
ou
: of (x,u)
for all f(x,u) € Q_xR. Note that for the nonaffine systems with property <0 ,
u

the control scheme can be easily defined with minor modifications discussed in section 4. The
control objective is to develop a control scheme for the nonaffine nonlinear system (2-1) so
that the output trajectory x can track a given trajectory x. closely. The tracking error is defined

as
e=— (2-4)
If the system dynamics and the external distutbance are well known, the ideal feedback

controller can be determined as

1

=y —d — A(x.u0)] (2-5)
zZ

where

u, =x," +k’e (2-6)
with e=[eé...e""]" and k=[k, &, ...k]" . Applying (2-5) to (2-2) and using (2-4)
yield the following error dynamics

e(") + kle(”_l) R kne =0 (2_7)

If ki, i=1, 2, ..., n are chosen so that all roots of the polynomial H(s)As" +k1s"_1 4ot k

lie strictly in the open left half of the complex plane, then lime(#) = 0 can be implied for any
t—w

initial conditions. However, since A(x,u)and the external disturbance d may be unknown or

perturbed, the ideal feedback controller u;; in (2-5) cannot be implemented. Thus, to achieve



the control objective, an SFS is designed to estimate the system uncertainty A(x,x) in(2-2).

2.2 Self-structuring Fuzzy System
2.2.1 Description of Fuzzy System

FSs are attractive candidates for the systems that are structurally difficult to model due
to inherent non-linearity and model complexities. Typically, a FS includes four well-known
stages: a fuzzifier, a rule base, an inference engine, and a defuzzifier. The rule base is the
collection of fuzzy rules which characterize the simple input-output relation of the system.
Note that the self-structuring algorithm introduced in this section is applicable to multi-input
and multi-output (MIMO) FS. However, without losing generality and to simplify the notation,
a multi-input and single-output (MISO) FS is adopted to describe the algorithm. A MISO FS
can be are expressed as [19]:

Rule, ., :IF X is F" and Xpis F,’rand:. and X, is F» THEN yis i (2-8)

oly

where X, j=1, 2, ..., m are input variables; y is output variable; a .. is the crisp

singleton consequent; F jlf is the-fuzzy sets-characterized by the fuzzy membership function

F ]" (X,), with i, e {1, 2,...,N j} being ‘the ordinal number of membership functions of X;.

Define a set Q which collects all possible fuzzy rules

Q={Rule,, i =12..,N;i,=L2..,Ny..,i, =1,2,..., N, |. (2-9)

The output of the FS can be expressed as [19]:

(2-10)

where Q ., < Q is the rule base. From (2-10), the output of the FS can be represented as a
linear combination of fuzzy basis functions defined as

T4, (X))
Sy = e i el 2 N L=l 2, me (2-11)

Z |:ﬁ 'uF/{'/ (Xj ):|

Jj=1

Rule; iy i,



That is, (2-10) can be rewritten as
y=a'g (2-12)

where aeR™ collects singleton consequents a,, . of all rules in Q,, EeR™

sy

collects &, , . described in (2-11), and n is the number of the existing fuzzy rules. In this

sl

chapter, a Gaussian membership function is defined as

[X, —¢) T’
~ (2-13)

J
o,

i iy _ _
,uF;./ (X;,c/,0/)=exp

where cj/ and 07 are the mean and standard deviation of the Gaussian function,

respectively.
2.2.2 Structure Learning Algorithm

The developed self-structuring algorithm consists of two parts: growing and pruning of
fuzzy rules. Effective membership functions.in the input spaces can be generated and
ineffective fuzzy rules can be pruned automatically by. the self-structuring algorithm, and thus
a concise rule base can be obtained. In order to construct the fuzzy rule base, every input
space S(X)) is partitioned into several ‘'overlapping clusters to construct the fuzzy sets of X;. It

can happen that for some incoming Xj, the-degree of belongings to all its fuzzy sets are quite
small, i.e., F;f (X,), i,=12,---,N, are quite small, as depicted in Fig. 2-1(a). This means
that the input space S(X)) is not properly clustered. Hence, the fundamental concept of the
growing of fuzz rules is developed to adjust the inappropriate clustering. Initially, create one
initial fuzzy rule with the given initial state as

Rule,, :IFX;is F' andXis F, and...and X, is F, THENyis «,, , (2-14)
where the membership functions for F jl ,j=1, 2, ..., m, are defined with the initial input X; (0)
as

Hy (X)) = exp —w . (2-15)

g,

The SFS will start operating from this single rule. Define the growing criterion as

max

Uit <0,,5=1,2,...,m (2-16)

10



membership mempersnip
function for F," function forF/

jth state variable

at time t
X ] (D cf" l'.'j
(a)
membership membership membersnip
function for 7" function for F" function for !
newly created _
membership function
o 1 :
X, (0 cf” c,
(b)
Fig. 2-1 (a) Improper fuzzy clustering of input variable Xj; (b) Newly created membership

function

where 47 = max u , (X,) is the maximum membership function degree of X; and
/ =12, F /

0O, €(0,1) is a given threshold. If at some time 7,, the growing criterion (2-16) is satisfied

for a new incoming datum, Xj(t,), 1< j<m, a new membership function is created, whose

initial mean and standard deviation are

N;+l

c;! =X,(t,) (2-17)

11



N/-+1

o,/ =q (2-18)
where ¢g>0 can be arbitrarily chosen, and it will be tuned by the adaptive law introduced in

later section. The created membership function is shown in Fig. 2-1(b). For the case that one

new membership function is created at some time, Ny X ox N, XN, % . XN, npew fuzzy

rules will be generated according to the new membership function as:

N +1

Rule, . ,:IFXiis F'..Xjis F;'".. andX,is F,, THENyis a,

SN +1,...,1

Rule, ., :IFXiis F?..Xjis F,"" .. andX,is F,, THENyis @, . |

Rule, ., , :TFXiis F". Xjis F"" .  andX,is F," , THENyis ay .
(2-19)
For example, consider a fuzzy system (m=2, N;=1, and N,=2) with the rule base:

Rule, :IFX;is F andX;is F, THENyis «,
Rule,,:IF Xiis F,' andX;is F, THENyis «,,

Assume that the growing criterion forXj is satisfied at time ¢. Then, a new membership

function
Hpo = eXp{— | } (2-20)
! (@)
is created, and two rules are grown according to'the new membership function as
Rule, : IFXjis F’ andX>is F, THENyis a,,
Rule,,: IF X1is F? and X2 is F} THEN yis a,, (2-21)

A self-structuring FS with only rule generation algorithm may suffer from the
computational load or learning failure caused by an overly large rule base which includes both
effective and redundant fuzzy rules. In the following, the strategy to prune redundant rules is
developed to solve this problem. Recall that there are n existing fuzzy rules, and then express

(2-12) as

y=0't=[a, a, ]E } (2-22)

where a, e R and «,, € R"™"*' represent the singleton consequent and the fuzzy basis

function of the kth fuzzy rule, respectively; o, € R and & e R" ™" represent the

collections of the singleton consequents and the fuzzy basis functions of the rest of fuzzy

rules, respectively. Thus, the contribution made by kth rule on the output y can be defined as

12



follows:
_ A

21w
k=1

where y, =a,&,. Now, we are ready to introduce the significance index which can help us

C, ,k=1,2,...,n (2-23)

to decide whether or not to prune a fuzzy rule. Significance index is a measurement of the
importance of every fuzzy rule. S;, which represents the significance index of the kth fuzzy
rule, is updated as follows:

Sk_{an ifC, <p

_ . k=1,2, ... (2-24)
SE, ifC, 2 p

where S;° is the most recent S, 7<(0,1) is a decay constant, and S <(0,1) is a given

constant. All S, k=1, 2, ..., n, are initialized from ones. According to (2-18), if the
contribution Cy is equal or larger than B, Si keeps invariant; if Cy is smaller than B, S will be
attenuated. An invariant significance implies that the associated rule is still important and
should be remained; a decaying .significance index implies that the associated rule is
becoming less and less important-and thus:should.be pruned. The selection of 7 will affect the
rate of pruning the fuzzy rules:The smaller the 7 is;(or the larger the B is), the faster the
significance index S; decays, and thus the faster the' ineffective fuzzy rules will be pruned.
The pruning criterion of the kth fuzzy rule is defined as follows based on this knowledge

$,<0,,k=1,2,...,n (2-25)
where ©®  €(0,1) is a selected threshold. If the pruning criterion is satisfied for S, the

associated kth rule is pruned.

Remark 2-1: Tt is a difficult task to determine the initial values of the singleton consequents of
the newly generated fuzzy rules. Because an SFS is in general equipped with a parameter
learning algorithm to automatically tune the parameters of the fuzzy rules, the initial values of
the singleton consequents can simply set as zeros. However, from (2-10), we can see that this
will cause abrupt variation of the fuzzy output y and may deteriorate the performance of the
SFS for a short period. This phenomenon can be observed in Fig. 2-5(b). To fix this drawback,
we maintain the approximation property of the SFS at the instant that new rules are generated.
Assume that at some time f,, an SFS has n fuzzy rules and the last / rules are just newly
generated. Define y, as the “pseudo fuzzy output” of the original n-A rules if 4 new rules were

not generated at z,. The initial consequents of those new rules are chosen so that y(¢,)=y,.

13



Thus, we have

n n—h
W)= DG+ 08 =, (2-26)
k=n—h+1 k=1
where «, ,., =, ,,, =-=a, =a,, . From (2-26), we can easily obtain

n—nh
yp _zakfk
P = (2-27)

new n
D%

k=n—h+1
In this way, not only the bad effect caused by the abrupt variation can be mitigated, but also
the future performance of the SFS can be improved by the 4 new rules.
Remark 2-2: While controlling, a membership function is possible to be pruned if all fuzzy
rules associated with this membership function are pruned sequentially.
Remark 2-3: In the implementations of practical systems, if computational burden is the issue

having highest priority, the threshold ®, can be chosen large enough so that more fuzzy

rules are pruned. Hence, the computational .burden will be substantially reduced at the
expense of less favorable system performance.

Fig. 2-2 shows the flowchart to summarize the self-structuring algorithm for the SFS.
The growing and pruning effects during the control périod will be illustrated in later sections

with excellent result.

14



[nitialize

Create the inintial MFs
and first fuzzy rule

[s there only
one fuzzy rule?

Calculate the
significance index
(2-24)

S, k=1,2n

Prune the kth
fuzzy rule

[s the pruning criterion
< G)psatisﬁed?

Find the maximum
membership degree n!™

,j=12,m
Create the new membership
functions according to (2-17)-
(2-18), and generate new fuzzy
rules according to (2-19)

[s the growing criterion
;<@ satisfied?

Calculate the
fuzzy output
(2-36)

‘e
Tune the parameters
by adaptive laws
(2-56)-(2-58)

No

a,¢,6

»<_End Control?

Yes
v

Stop

Fig. 2-2 The flowchart of the self-structuring algorithm for the SFS
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2.3 Design of RASFC

Now, we are ready for developing a robust adaptive self-structuring fuzzy controller
(RASFC) for the unknown nonaffine nonlinear systems. In the RASFC, an SFS is used to
estimate the system uncertainty A(x,u) in (2-2). The control law u in the RASFC system is
designed as

w=lu —u,) (2-28)
Z

where u,,. is the robust adaptive controller to achieve a L, tracking performance with a
desired attenuation level and uy is the self-structuring fuzzy controller to approximate

unknown system dynamics A(x,u). Substituting (2-28) into (2-2) and using (2-4) yield
e =x " - [um —u , +AX,u)+ d]

=x," —u, - { [A(X, u)— ufc]+ (Wt = 14) + d}

:_kTe_{[A(X’u)_u_/'c]+(urac _ulc)+d} (2-29)
or
¢ =-Ae=b|AG,w)~uy +(u,, —u,)+d| (2-30)
where
0 1 0 0
: o .0 ’
A= and b=[00...1]
0 T (|
-k, -k -k,

2.3.1 Fuzzy Approximation

The unknown nonlinear function A(Xx,u) is approximated by an SFS with inputs x and

u. In this way, the output of the SFS uy. should be directly fed back to produce u, which is one
of the input of the SFS. This kind of fuzzy system is called a recurrent fuzzy system, as
depicted in Fig. 2-3(a). However, a recurrent fuzzy system will lead to a fixed-point problem
which must be solved at every time instant and thus imposes computational burden [51,

54-55]. Thus, the following Lemma 2-1 is stated to avoid this problem [51, 54-55].
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x—] u (x Axu)

+ u SFS >

Upge I/C 9

(a)

x> u, (x Axu)

SES |~

(b)

Fig. 2-3 (a) The recurrent fuzzy system; (b) The static fuzzy system

Lemma 2-1: Let the constant ¢ satisfies the condition

LEOS ]
Z>2(auj (2-31)

Then, there exist a unique u;c which 18 a‘function of X and u,, so that u;c (x,u,, )satisfies

rac

A
l/l(x’ Z’lrac 4 u;c ) = A(X’ urac 2 uj"c ) _u;'c (X’ urac) = 0 (2-32)

forall (x,u,

rac

)eQ xR.

The Proof of Lemma 1 can be found in [51].
According to Lemma 2-1, the feedback path in Fig. 2-3(a) can be removed.
Consequently, a static FS in Fig. 2-3(b) can be used to approximate A(x,u), and thus we do

not need to solve the fixed-point problem at every time instant. For the nonaffine systems

of (x,u)
with the property 5, < 0, Lemma 2-1 can be satisfied as well by simply modifying

1rof
(2-31) as Z<2[8uj.

Define the vectors ¢ and ¢ as
c=[c,c,-¢c,] (2-33)
G:[Gl 62 "'Gm]T (2-34)

where cj:[c;...cff]and o, =[o} ...o-j”f] collect the means and standard deviations of the

17



Gaussian membership functions of Xj, j=1, 2, ..., m, respectively. Rewrite (2-12) in the vector

form as

S
T 52
y=0'¢X.c,0)=[a, a, ..a,]| ", (2-35)
éﬂ
where X =[x u,,_]" is the input vector. The output of the SFS used to approximate A(x,u)
is defined as
u, =6"E(X,8,6)=0"¢ (2-36)
where @, ¢,and 6 are the estimation vectors of @, ¢, and o, and é =&(X,¢,6) . Define

the optimal vectors @, ¢ ,and ¢ as[3]:

(@¢07)= emin hﬂp e (X) ~u (X8 6)} (&37)
where
Q. = o [o] <M, | (2-38)
Q, =g <m,| (2-39)
Q '=lo-fol<M ] (2-40)

and M,, M, , and M_ are positive constants specified by designers. The unknown
nonlinear function A(X,u) can be described as
A=a"¢X, ¢ ,6 )+to=0"8 +o (2-41)

where g* =&(X, c*,c*) and , denotes the approximation error bounded by |a)| <@, In

~

which @ is a finite positive constant. Then, modeling error 7 can be expressed as
H=A-u,=a"¢+a"+0' ¢+ (2-42)

where d=a" -6 and &=& -&. In the following, some preliminaries will be made for
adaptive online-tuning of the parameters of fuzzy rules, and thus favorable approximation
performance can be achieved in the presence of unexpected disturbances. To achieve this goal,
the Taylor linearization technique is employed to transform the nonlinear fuzzy basis function

into partially linear form as follows [25, 56]:
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78 a
3 oc 06
O A N -2 | R K
§=|"7|=|oc|| (€ -0+ g (6 -6)+0 (2-43)
S|4 s
| Oc¢ | e | O | o
or
E=gl¢+&l6+0 (2-44)

where 0 represents the higher order term, ¢=¢” -¢, 6=06" -6, and

g o|% n G (2-45)
oc oOc oe e
0 0 0
g, = % 05 O, (2-46)
06 0o oo || _.
Substituting (2-44) into (2-42) yields
T=0l&+a g’ rale e +e
=GlE+CTE 0+6lE, G+c (2-47)

where ¢7¢'¢=¢"¢ aanda’e!s =6'g 0 sinee-they are scalars, and ¢ = GTE +6’0+w 1is
the lumped uncertainty. The higher order term o'satisfies
o] =&-&ic+5;6
< el lerhel ez
< by +b,|[¢]|+ b, | (2-48)

where by, b, and b, are bounded positive constants satisfying HEHSZ)O,

gl <b,, and

Ee

are always bounded by constants. Moreover, @, ¢,and 6 satisfy

< b,. It is reasonable that by, by, and b, exist because Gaussian function and its derivative

] = o —aH S‘G*H+||&| <M, +|a (2-49)
[l =le” ~&| <Je"]+[e] < p. +[e] (2-50)
6] =[o" — 6| <|o| +[6] < m, +]6 (2-51)

Thus, the lumped uncertainty & satisfies
e = ‘ET(§15+§IE+O)+QTO+0)‘
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~ ~ o~ ~ *T
a'elc+a’ElGc+a 0+a)‘

A

o

A

<b (M, + ¢ a

)M+

)+b, (M, +

(M, +[6])

+M [b, +b, (M, +|c o

)+b, (M, +

)|+ o

A

(o

~

a

A

C

~

a

A

=[A A, A Ay A AL Y ]T

=A'T (2-52)

all |ic

where  A=[A, A, A A, A AL, A =(by+2bM, +2b,M M, +@

3

A, =bM, +b,M, , A,=2bM, , A,=2b,M, , A,=b , A,=b, , and

A

(9

A

o

A

C

A

r=[1 & [e a6

]". Since A is a bounded vector, if ' is guaranteed to be

bounded, the lumped uncertainty term & is thus bounded. We can guarantee the boundness

of I' by Lemma 2-2 given in the next subsection.
2.3.2 Parameter Learning Algorithm

Substituting (2-47) into (2-30) yields
é=Ae—ba E+C E 0+67E a+c+d+(u,, —u,)l. (2-53)
Lemma 2-2 [3]: Suppose that thé adaptive laws are chosen as (2-56)-(2-58), where Pr(-) is

the projection operator, and the symmetric positive P satisfies the following Riccati-like

equation

ATP+PA+Q+Pb(L2—é)bTP=0 (2-54)
o,

where Q is a positive definite symmetric matrix and p is an attenuation level which satisfies

l—éso. If 640)eQ,, &0)eQ,, and 6(0)eQ,, then a()eQ,, &) eQ,, and

2

P

6(t)eQ_ forall +>0 can be guaranteed.

According to Lemma 2-2, r in (2-52) is bounded, and hence the lumped uncertainty ¢
is bounded. The following theorem shows the properties of the developed control system.
Theorem 2-1: Suppose the assumption (2-3) holds. Consider a SISO nonaffine nonlinear
system (2-1) with the control law (2-28), where the self-structuring fuzzy controller is given

as

u, =a"g(X,8,6) (2-55)

c
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The adaptive laws are chosen as (2-56)-(2-58):

2 :ella ~ T ATg
Pr(;7,e"PbE), if (|&|=M, ande” Pba’& < 0)
~ TA
where 7, is the positive learning rate and Pr(;7, e’ Pb&) = -7, e’ PbE+17, e” pb 2 P’ ”
a
.+ |-ne"Pbé.a, if|e]<M, or(f¢|=M,ande  Pbe’E.a>0
b=t =) e PhS, ”u or | ”T o 2020 o5
Pr(n,e' Pbg.a), if (||c|| =M _ ande Pbe § a <0)
. .. . T e A T e A T é a (Al A
where 7, is positive learning rate and Pr(r.e” Pb§ a)=-n.e PbS a+n.e Pb——c.
&
i o] e PbE,, if[6] <M, or(j6] =M, ande"PbTE,G20)
6=—0= A -
Pr(;7,e" Pbé,a), if (|6 =M, ande”Pb6"E a <0)
~ T A
where 7, is positive learning rate and Pr(77_,e’ Pb§_a) =-7_e Pbé’; a+r.e Pb ” ”
c
The robust adaptive controller is given as
y =gl L By Tpe (2-59)
20

Note that since A is designed to 'be istable-in(2-30) and Q in (2-54) is a positive definite

symmetric matrix, therefore P must be a positive definite symmetric matrix. Then, the

RASFC system can guarantee the global stability and robustness of the closed-loop system

and achieve the following L, criterion [57-58]:

a’ (0)a(0) N ¢ (0)€(0) N 6(0)' G
21, 21, 21,

%jOTeTQedt ﬁ%e(O)TPe(O)+ © +%ZIOT(g+d)2dt

(2-60)

for 0<7T <o, where e(0), a(0), €(0), and G(0) are the initial values of e, @, €

and &, respectively.
Proof: Define the Lyapunov function candidate as

| | B 1
a’a+ ¢Te+—

+—36'5. (2-61)
2n, 27, 2,

y=Lerpes
2
Differentiating (2-61) with respect to time and using (2-53) yield

V:le Pe—i—;e Pe+La u+LETE+LE s

Na n. Mo
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rac

=%er(ATP+PA)e—eTPb[ET%+ET§cd +67E a+e+d+(u —uk,)]+laT6

e Lens (2-62)
7. 7.
Substituting (2-59) into (2-62), we obtain

14 :%eT(ATP+PA—%PbbTP)e—eTPb(g+d) -G, -G, -G, (2-63)

where G =& (e’PbE—-), G, =3¢ (e'PbEa——), and G =g (e'Pbs a-—). By using
n.

[24 c o

(2-54), we can rewrite (2-63) as
.1

4 :EeT(—Q—%PbbTP)e—eTPb(g+d) -G, -G, -G,
P

:—%eTQe—%[lePe+p(5+al)]2 +%p2(8+d)2 -G, -G, -G,.(2-64)
p

By using (2-56), we have G, =0 _for m(i” <M, or (6] =M, and e’ Pba’€ > 0)]. For
[(||&|| =M, ande’ Pba’§ < O)J , we have
a'a

T Tig
G, =n,ePb——-a-g (2-65)

a

Because ¢ belongs to the constraint set- €, we have ||&|| =M, > Ha*u. Using this fact, we

obtain ¢’q =%(Ha*uz _lall? —||E||2) < 0. Thus, (2-65) can be rewritten as
%12 A2 ~|2
G, :U?aeTPb (H(l H B Aaz —”(l” )&T&ZO_ (2-66)
a

Similarly, we have (2-67) and (2-68) by using (2-57) and (2-58) respectively.

0 if [&| < M, or (J&] =M, and e" Pbe"E 6 > 0)
x||2 A2 ~/|2
G = _ _
‘ %eTPb 0 |:|f|:|2 [ )éTF,c&ZO if (¢ = M, and e” Pbe"E i < 0)
C
(2-67)
0 if |6]|< M, or (6| =M, ande”Pb6"& a>0)
Go=1my oy o1 181" 181
’ 7°eTPb — 6'¢.a0>0 if(|6]|=M,ande’ Pb6"E_a<0)
(g
(2-68)
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Consequently, for any possible condition in (2-56)-(2-58),G, >0, G, >0, and G_ >0 are

satisfied. Thus, we can rewrite (2-64) as

V-6’ Qei petd)’ (2-69)
Assume that there exists a finite constant y so that [58]

[[(e+dydi<y, VT e[0.) (2-70)

ie, (e+d)elL,[0,T], VT €0, ). Integrating both sides of the inequality (2-69) yields
l¢er 7 ,02 T 2
V(T)-V(0) S—EIO e Qedt+7jo (6+d)’dt,0<T <. (2-71)
Since V(T') =0, the following L, criterion can be obtained.
1 T T ,02 r 2
Ejoe QedtSV(0)+7J.O (e+d)*dt, 0<T <. (2-72)

Substituting (2-61) into (2-72), we have the L, criterion shown in (2-60). This completes the
proof. Q.E.D.

From (2-72), we can see that.because J/(0).1s finite, the effect of lumped uncertainty and
external disturbance on tracking-error can be eliminated as small as possible by choosing an
arbitrarily small attenuation level p.. In other words, a smaller p. results in smaller tracking
error, which implies better tracking performance. The following Theorem 2-2 will present an

explicit formulation of tracking error.

Theorem 2-2: The tracking error ||e|| can be expressed in terms of the sum of lumped

uncertainty and external disturbance as

2V (0)+ p°
le|< |2 QP77 (2-73)
ﬂ”min (P)
Proof:
From (2-71), with the knowledge I OT e’ Qedt >0 and assumption (2-70), we have
V(T <2V (0)+ p’y, 0<T <0, (2-74)

From (2-61), it is obvious that e’ Pe<2) for any V. Because P is a positive definite
symmetric matrix, we have

A P)e]” = 2, (P)e” e <" Pe (2-75)

min

where A_. (P) isthe minimum eigenvalue of P. Thus, we obtain
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Ao (P)e]” <" Pe <2V(T) <20 (0)+ py (2-76)
from (2-74)-(2-75). Therefore (2-76) can be rearranged to yield the following important
formula

2V (0)+ p*y

s 220

(2-77)

which explicitly describe the tracking error ||e|| in terms of the sum of lumped uncertainty

and external disturbance. Q.E.D.

If initial state V(0)=0, tracking error ||e|| can be made arbitrarily small by choosing

adequate p. Unlike the results in [50-51], (2-77) is very crucial to show that the proposed
RASFC will provide the closed-loop stability rigorously in the Lyapunov sense.
Remark 2-4: Affine systems can be viewed as a special kind of nonaffine systems [59].
Consider an SISO nonlinear affine system

x"” = FX)+GX)u+d (2-78)
where x =[x x%..x"™"]" is the state vector ofthe system, F(x) and G(x) are unknown

nonlinear mapping, « is the centrol-inputi of the -system, and d is a bounded external
disturbance. By letting f(x,u)=F(X)+G(X)u, we can easily find that the nonlinear affine
system (2-78) can be viewed as a'special case of nonaffine nonlinear system (2-1). Thus, the
proposed RASFC scheme can be directly applied to such a nonlinear affine system when

necessary assumptions hold. The overall RASFC can be shown in Fig. 2-4.

robust adaptive

e —»
controller

x (M —

adaptive fuzzy |_ a,c,6
approximator

adaptive laws

A

self-structuring
algorithm

self-structuring fuzzy controller

Fig. 2-4 The block diagram of RASFC for nonaffine nonlinear systems
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Table 2-1 Three conditions in Example 2-1

desired trajectory of tracking control: x=sin(1.5¢)

number of rules consequents of newly
generated fuzzy rules
Condition
fixed (4 rules)
la
o t < 5: the same 4 rules in Condition la
Condition e
b are used. initialized from zeros
t =5: rule growing is operated
.\ t < 5: the same 4 rules in Condition la | . .. . .
Condition d initialized according to
le are use (2-27)
t =5: rule growing is operated

2.4  Simulation Results

In this section, the simulations are performed using MATLAB under Windows XP. Four
examples are presented. Approximations of unknown nonlinear functions are shown in
Examples 2-1 and 2-2 to reveal the growingr and pruning capabilities of the proposed
self-structuring algorithm, respectively. Examples 2-3 and 2-4 are used to examine the
applicability and effectiveness of the proposed RASFC system for nonaffine nonlinear control
problems. Two cases are performed in Examples 2-3 and 2-4 for comparison purpose. Case 3a
and Case 4a show the effectiveness of the SFS with both rules growing and pruning
capabilities. In Case 3b, an adaptive FS with fixed number of rules is adapted, and the
parameters of the FS are also tuned by adaptive laws (2-56)-(2-58). In Case 4b, only the

growing of fuzzy rules by SFS is considered. It can be easily shown that the following

0
examples of nonaffine system control satisfy y > 0. It should be emphasized that the
u

development of the RASFC does not need to know the exact system dynamics of the
controlled systems.
Example 2-1: Consider the following nonaffine nonlinear system [60]:

X, =X,

%, =x" +0.15u° +0.1(1+ x,” )u +sin(0. 1) (2-79)

In tracking control, the SFS 1is used to approximate an unknown function
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A(X,u) = xl2 +0.150° +0.1(1+ xz2 Ju +sin(0.1u) — cu . To illustrate the rule growing capability

of the self-structuring algorithm, the approximation is performed under three conditions as

shown in Table 2-1. Figures 2-5(a)-2-5(c) show the approximation results of Condition 1a, 1b

u|, and Fig.

and lc, respectively, Fig. 2-5(d) shows the absolute value of the modeling error,

2-5(e) shows the number of fuzzy rules. The approximation performances under Conditions
la and 1b are better than that under Condition la after # > 5. In Fig. 2-5(b), the abrupt
variations are marked by circles. These abrupt variations are obviously caused by the rule
generation so that the approximation performance is affected for a short period. In Fig. 2-5(c),
this phenomenon is mitigated by using (2-27) discussed in Remark 2-1. From Fig. 2-5(d), we
can see the approximation performance under Condition lc is the best among three

conditions.

ED T T T T T T T T T
-—- A(xu)

R Uy

ot :

20 1 L 1 1 I
0 2 4 B g 10 12 14 1B (=] 20
time (sec)
@
‘20 T T T T T T T T T

--- A(x,u)

R ug,

time (sec)

(b)
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Fig. 2-5 Approximation results in Example 2-1
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Table 2-2 Two conditions in Example 2-2

desired trajectory of tracking control:
Xe=1.5sin(t)

rule number

Condition 2a fixed (40 rules)

Condition 2b | t =0, rule pruning is operated

Example 2-2: A third-order Chua’s chaotic circuit is a simple electronic system that consists

of one linear resistor (R_), two capacitors (C,, C,), one inductor (L ), and one nonlinear

resistor (). It has been shown to own very rich nonlinear dynamics such as chaos and

bifurcations. The dynamic equations of Chua’s circuit are written as [9-10]

i 1 1

Ve, = a (E (ve, = Ve, ) —1(ve,))

i 11 .
Ve, = E(E(Vq =Vey) +1,)

- |
i = 5 (—yb =Ry ) (2-80)

where the voltages v o Ve and current i, are state variables, R, is a constant, and 7
1 2

denotes the nonlinear resistor, which is a function of the voltage across the two terminals of

c .Here, 4 is defined as a cubic function as
P=Ave erlzvé1 (2,<0,4,>0). (2-81)
The state equations in (2-80) are not in the standard canonical form. Therefore, a linear

transformation is needed to transform them into the form of (2-1). Then, the dynamic

equations of transformed Chua’s circuit can be rewritten as

X, =X,

X, =X,

X, =F+u

y=x (2-82)

where x =] X, X, X ]T is the state vector of the system which is assumed to be available; the

28



system dynamic function

14 168 1 2 28

7 3
F = X, — X, +—x, —— —x, +x (2-83)
1805 90257 % 38°° 45( 2 )

—Xx +
361 95

and u 1is the control input. The reference signal is y,(¢) =1.5sin(¢) . In tracking control, the
SFES is used to approximate an unknown function A(x,u)=F +u—cu. To illustrate the rule
pruning of the self-structuring algorithm, the approximation is performed under two
conditions as shown in Table 2-2. Figures 2-6(a)-2-6(b) show the approximation results.
Figure 2-6(c) shows the approximation error E. Figure 2-6(d) shows the number of fuzzy
rules. Taking the last pruned rule for example, we record the contribution and significance
index of the rule pruned at r=2.28 in Fig. 2-6(e). Figures. 2-6(a)-2-6(c) show that the
approximation performances of Conditions 2a and 2b are both quit well. However, the
convergence speed of |L7 | under Condition 2b is faster than that of Condition 2a. This shows
that the parameter training of a large number of fuzzy rules slow down the convergence speed
of approximation, and the pruned rules under Condition 2b are redundant and ineffective to
the approximation performance. In Fig. 2-6(e),"we show the contribution and significance
index of a certain rule pruned at /=2.28. When the contribution calculated by (2-23) is smaller
than a given constant =0.005, the significance indéx (2-24) decays with decay constant

7=0.99. Once the significance indexis smallersthan the pruning threshold ® , =0.005 at

t=2.28, this rule is insignificant thereafter.and thus pruned to ease computational load.

20
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time (sec)
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Fig. 2-6 Approximation results in Example 2-2

Example 2-3: Consider the following nonaffine nonlinear system [61]

X, =X,

X, =02(1+e")[(2+sin(x,)]|(u+e" —1)+d (2-84)
where d is a square wave with amplitude’ '£3.0, and period 5 seconds. The desired trajectory
is x, (¢) = sin(0.5¢) + cos(¢) . The initial saté§'aré chosen as x(0) =[x, (0) x,(0)]=[0 0]". The
learning rates are selected as 7, =120 and 7, =7, =1. The thresholds for growing and
pruning criteria in Case 3a are-selected as @, =0:1 and ©, =0.01, respectively. These
parameters are chosen through some ‘trials to achieve favorable transient control performance.
For a choice of Q=2I, K =[2 1]",and p° =&, we solve the Riccati-like equation shown in

(2-62) and obtain the a positive definite symmetric matrix P:

3.5 05
P- (2-85)
0.5 1.5

The simulation results for Cases 3a and 3b are shown in Figs. 2-7 and 2-8, respectively. The

tracking responses of state x; are shown in Figs. 2-7(a) and 2-8(a), the tracking responses of

Table 2-3 Comparison between two cases in Example 2-3

125x10" iterations Case 3a Case 3b

maximum number of rules at any time instant 7 4 (fixed)
accumulated sum of rule number, N, 34,577 60,000
total execution time, ¢, (sec) 12.88 18.14
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state x, are shown in Figs. 2-7(b) and 2-8(b), the associated control inputs are shown Figs.
2-7(c) and 2-8(c), and the numbers of fuzzy rules at every iteration are shown in Figs. 2-7(d)
and 2-8(d). From Figs. 2-7(a)-2-7(b) and Figs. 2-8(a)-2-8(b), we can see that the tracking
performance in Case 3a is better than that in Case 3b under the external disturbance. In Fig.
2-7(d) the maximum number of rules is 7; in Fig. 2-8(d), the number of rules is 4. Table 2-3
shows the comparison between the two cases, where N, represents the accumulated sum of
computed rules, and ¢, denotes the total execution time during the simulation. The proposed
self-structuring algorithm can relieve the heavy computational burden caused by 25,423
redundant rules (42.37% of the N,in Case 3b), and the 7, in Case 3a is nearly one-half times
faster than that in Case 3b.

4 ! I 1 1
0 5 10 15 20 25
time (sec)
(a)
4
- X 4
2k — X |
X, 0 W
2k .
4 1 ] 1 1
1] 5 10 15 20 25
time (sec)
(b)
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Fig. 2-7 Simulation results of Case 3a in Example 2-3
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Fig. 2-8 Simulation results of Case 3b in Example 2-3
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Table 2-4 Comparison between two cases in Example 2-4

125x10* iterations Case 4a Case 4b
maximum number of rules at any time instant 7 28
accumulated sum of computed fuzzy rules, N, 39,973 227,650
total execution time, ¢, (sec) 12.72 64.89

Example 2-4: The Van der Pol oscillator is the main model of self-oscillatory system with
two dimensional phase space [13-15]. The oscillator and its extensions have been
implemented in various types of electrical circuits. The nonaffine second-order Van der Pol
oscillator with nonlinear damping is described as [62]

X=X,

X, ==X, £, +u+(x]2 +x22)(

i* ¢ yox’x,+d (2-86)
—e

where d is a white noise with power 2 which occurs after £>15 The desired trajectory is
x, (t) =sin(t) +cos(0.5¢) , and the initial state'is' x(0) =[x, (0) x,(0)]=[0.6 0.5]". All other
parameter settings are chosen the same as those in Example 2-3. The simulation results for
Cases 4a and 4b are shown in Figs. 2-9 and 2-10, respectively. The tracking responses of state
x; are shown in Figs. 2-9(a) and 2-10(a), the tracking responses of state x, are shown in Figs.
2-9(b) and 2-10(b), the associated control inputs are shown Figs. 2-9(c) and 2-10(c), and the
numbers of fuzzy rules at every iteration are shown in Figs. 2-9(d) and 2-10(d). From the
simulation results, we can see that that the proposed RASFC scheme in Case 4a can achieve
the same favorable tracking performance as that in Case 4b even an external disturbance
suddenly occurs. In Fig. 2-9(d), rule growing plays the major role in SFS within 0 < ¢ < 0.25
and thus the rule number is increased from one to produce a suitable control effort to suppress
the tracking error. For # >0.25, to reduce tracking error, the pruning of unnecessary rules will
be activated in SFS and thus the number of rules decreases gradually. After a large external
disturbance occurs at ¢ >15, the rule number apparently increases to eliminate the effect
caused by the disturbance. When tracking error is again suppressed to a small level, the rule
pruning effect will be activated again. In Fig. 2-10(d), the number of rules increases very

rapidly from the beginning to the end of control. Throughout the control process, the
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maximum number of rules is 7 in Case 4a and 28 in Case 4b. Table 2-4 shows the comparison
between two cases. From Table 2-4, it is obvious that our proposed self-structuring algorithm
can relieve the heavy computational burden caused by the 187,677 redundant rules (82.44 %
of the N, in Case 4b), and the ¢, in Case 4a is over 5 times faster than that in Case 4b. It can be
imagined that the relief of computational load caused by the redundant rules will become

more and more remarkable as the control period continues.
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time (sec)

(b)
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Fig. 2-10 Simulation results of Case 4b in Example 2-4
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It is worth noting that in Examples 2-3 and 2-4, the tracking control is started with only
one fuzzy rule, and thereafter a compact rule base is constructed automatically without human
knowledge. In addition, the same parameter settings, including constants to be designed,
learning rates, thresholds of growing and pruning, and the positive definite symmetric matrix
P, are adopted in these two examples. These parameter settings are chosen for Example 2-3 to
achieve favorable transient tracking performance, and they may be not equally suitable for
Example 2-4. Nevertheless, as we can see, satisfactory tracking performance is still achieved

in these two examples.
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Chapter 3
Direct Adaptive Control Design Using
Hopfield-Based Dynamic Neural Network for

Affine Nonlinear Systems

A dynamic neural network (DNN) is a collection of dynamic neurons which are fully
interconnected to a function of their own output. On the contrary, in a static neural network
(SNN), the output is directly calculated from the input through feedforward interconnections.
DNNs are proven to be more suitable for representing dynamic systems. In this chapter, we
aim at solving the control problem of ;SISO. affine nonlinear systems. A direct adaptive
control scheme using a Hopfield-based DNIN-is-developed to achieve this goal. Meantime, the
structuring problem of NNs is solved by .the proposed parsimonious structure of the
Hopfield-based DNN, that is, only a single Hopfield-neuron is needed to control any affine

nonlinear system.

3.1 Hopfield-Based Dynamic Neural Network
3.1.1 Description of DNN Model

DNNs are made of recurrent and interconnected dynamic neurons which distinguish
DNNs from feedforward neural works, where the output of one neuron is connected only to
neurons in the next layer. Consider a DNN described by a nonlinear differential equation of
the following form [47]

%= Ax+BWe(V3) + B¥o(V,0)y(w) (-1)
where x=[y, 7, x,] €R" is the state vector, W=[i, U, -i,| €R™ is the input
vector, 6:R" —>R*, AeR™ is a Hurwitz matrix. B =diag{h,b,,---,b,}cR"™" ,

WeR™, V,eR™, ¥YeR™, V,eR™, ¢:R" >R",and y:R" - R". Here ¥ is
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X

\4

v

Fig. 3-1 The structure of the dynamic neural network

the state of the DNN, W and ¥ are the weight matrices describing output layer
connections, V, and V, are the weight matrices describing the hidden layer connections,
o(-) is a sigmoid vector function responsible for nonlinear state feedbacks, and y(-) is a
differentiable input function. A DNN in (3-1) satisfying

r=s=n, V=V, =1, ¢0)=1,, (3-2)

is a simplest DNN without any hidden layers. It can be expressed as

¥ = Ay +BWa(y) + BPy(u) (3-3)
Following the literatures [45, 47, 63], we choose k=n, A= diag{— a, —a, -~ —a, }, where
a,>0,i=1,2,..,n,and y(u)= [ﬁ O]T € R", where n>m to simply our further analysis.

Then, the expression in (3-3) can be modified as
¥ =Ay+BWao(y)+ BOu (3-4)
where @ € R™" satisfying ¥ = [G) O]T . The structure of the DNN is shown in Fig. 3-1.
The output of every neuron in Fig. 3-1 can be expressed as
o=—ax, +bWe(x)+bOu, i=12,---,n (3-5)
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where W." =[w, w,,---w, ] and ©," =[6,6,,---6, ] are the ith rows of W and @,

1 1

respectively. Solve the differential equation (3-5), we obtain
i = bi (WT&W,i + ®iT§®,i )+ eia[tlio - eiaitbi (W;Tg(l/)V,i + 8?&0@),1' )= i=12,-,n (3-6)
where ;' is the initial state of y,; &, , € R" and &,, € R" are the solutions of

&y, =—at, +6(x) (3-7)

and

S0, =080, +U (3-8)
respectively; &, , and &g, are initial states of &, , and &, respectively. Note that
ey’ and e b, (WiTé';(V)VJ +0O; %0@),,-) in (3-6) will exponentially decay with time due to the

fact a, > 0.

3.1.2 Hopfield-based DNN Approximator

A DNN approximator for continueus functions can be:defined as
Xi = bi (Vf/iTgW,i + é)iTgG,i )+ e_ait/?./io = e_aitbi (Vf/iT“;gV,i + éiTg()@,i ), i= 1, 29 e, R (3‘9)

where Wl and C:)i are the estimations of W, and ©., respectively. Define optimal vectors

}

(3-10)

W' and ©; as

1

(Wi*’ ®:): argi’fesz;,r,lgleno:{xEnstl.Kuv ‘(D" _[b" (W"TéWJ +®iré®»i )+einft7(f0 _eia‘tbi (Vi}lTé(V)Vl +®iT§0®,i )]

where D, cRY and D, cR" are compact sets; Q, ={Vf/l.: /4 SMW,-} and

Q :{(:)i :H(:)"HSMQ'} are constraint sets for Wl and (:)i. Then, a continuous vector
function @ =[®, @, ---® | € R" can be expressed as
w1 «T —at 0 —ait «T 0 «T 0 .
O, = b5, + 0] 80, e gt —e b e, +0)EL, S A i=12, (-1

where A, is the approximation error. Note that the optimal vectors W, and ©, are

1

difficult to be determined and might not be unique. The modeling error ¥, is defined as
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)71‘ :(Di —X

| e vor e, et e s, 0], )
B liE, +6leg, e 4t - b (i + 07, )|
=b,(77e,, +07e,, ) - b (77E), + BT, )+ A, i=12-n (3-12)
where W, =W, —W,,and ©, =0 -0, .
In this paper, a Hopfield-based dynamic neural network is adopted as the approximator.
It is known as a special case of DNN with a, =1/(R,C;) and b, =1/C,, where R, >0 and
C. >0 representing the resistance and capacitance at the ith neuron, respectively [25],[29].
The sigmoid functione(y) =[o(x,)o(x,) --c(x,)]" is defined by a hyperbolic tangent
function as
o(y,)=tanh(x,y,), i=12,---,n (3-13)
where «; is the slope of tanh(-) at the origin. It is known that tangent function is bounded

by —1<tanh(:)<I.

3.2 Problem Formulation

Let ScR" be an open set, Dg S be and compact set. Consider the nth-order
nonlinear dynamic system of the form
x" = f(X)+gu+d
y=x (3-14)
where x =[x,%,---,x”""]" is the state vector., f:D, — R is a uncertain, continuous
functions, g is an unknown constant, u € R is continuous control input of the system, y e R

is the output of the system, and d € R is a bounded external disturbance. We consider only
the nonlinear systems which can be represented in (3-14). In order for (3-14) to be

controllable, it is required that g = 0. Without losing generality, we assume that 0 < g <.
The control objective is to force the system output y to follow a given bounded reference

signal y, € C", h>n. The reference signal vector y, and the error vector e are defined as

e=[e,é,--,e" "] eR” (3-15)
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with e=y, —x=y, —y.
If the functions f{(x) and g are known and the system is free of external disturbance, the ideal

controller can be designed as

uy =L £+ 1K) (3-16)
g

where k_ = [kn k,, -k ]T. Applying (3-16) to (3-14), we have the following error dynamics

n—

system

e +ke" 4otk e=0. (3-17)

If ki, i=1, 2, ..., n are chosen so that all roots of the polynomial H(s)As" +hs" etk

lie strictly in the open left half of the complex plane, then }gg €(l‘ ) =0 can be implied for

any initial conditions. However, since the system dynamics may be unknown or perturbed, the

ideal feedback controller u,, in (3-16) cannot be implemented.

3.3 Design of DACHDNN

To solve this problem, a new+ditect adaptive control scheme using Hopfield neural
networks for SISO nonlinear systems is proposed. In the DACHDNN, a Hopfield-based DNN

is used to estimate the ideal controller u,,. The direct adaptive Hopfield-based DNN
controller takes the following form

Uy = Uy T U (3-18)
where 4, is the Hopfield-based DNN controller used to approximate the ideal controller
u, in (3-16); y_ is the compensation controller employed to compensate the effects of

external disturbance and the approximation error introduced by the Hopfield-based DNN
approximation (described later). The overall DACHDNN is shown in Fig. 3-2, wherein the
adaptive laws are described later. Substituting (3-18) into (3-14) and using (3-16) yield

e=Ae+gB (u,, —uypy —u,)—B.d

~Ae+gB (i—u)-B.d (3-19)
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supervisory u X + -
¢ controller plant Ve
e
HNN controller |« .0 adaptive laws [4—§,
e ——»
<—€®
Fig. 3-2 The Block diagram of the DACHDNN
0 1 0 0 0
where A, =| . ' O. L€ R™, B, =|.|eR",and U =u,, —Upyy-
-k, -k, -k, 1

Note that the ideal controller u,, is a scalar, and thus the Hopfield-based DNN used to
approximate u,, contains only a single neuron. The output of such a Hopfield-based DNN

can be EXpress as

1 1
Unpny = %(W‘:W +®T‘:® )+e i ”IoiDNN we & %(Wg(!/)l/ +(:)T§2)) (3-20)
where u),,, is the initial value of u,,,, . Note that W and &, are scalars, and the input

signal of the Hopfield-based DNN is u = [e é]T. Fig. 3-3 shows the electric circuit of the

Hopfield-based DNN containing only a single neuron.

Fig. 3-3 The electric circuit of the Hopfield-based DNN containing only a single neuron
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Substituting (3-20) into (3-19) yields
1 1
e=A_e+gB, { (gw ch‘V)V]_Fé@T(a@_e ch‘)@j-pA—us}—Bcd (3-21)

where A is the approximation error. In order to derive the one of the main theorems in this

chapter, the following assumption and lemma is required.

. 1 . .
Assumption: Let ¢ = A——d . Assume that there exists a finite constant x so that
g

[[edr<p, 0<r<o. (3-22)

Lemma: Choose W°eQ, and ©" €Q_, where W° and ©° are the initial values of W

and O, respectively. If the adaptive laws are designed as

1 1
’BgeTPBC[Y;W - eRf’g;’VJ if (\W\ <M, )or {W =M, and eTPBCVf/[é’;W - eRC’g;’VJz o}

VCW ¢’ PB (gw —eRIC’g‘;VH if[

ﬂ@’ e'PB (ée —e_RICtﬁ‘é)J if(“@“<M® )or[Hé =M, andeTPBC(:)(gg —e'RIC'gng o]

e Pyl o))

W

1
=M, andeTPBcW(F;W —e Rctﬁﬂyj<oj

(3-23)

(3-24)
where S, and [, are positive learning rates; the symmetric positive definite matrix P

satisfies the following Riccati-like equation
AP+PA, +Q+PBC(L2—%)BZP=O (3-25)
p

. . .. . 11 o
where Q is a symmetric positive matrix and _Z_ES 0; the projection operators Pr[*]
P

are defined as

P{%%TPBC[&W —eRIC’g‘;VH:ﬂCW eTPBc[gw —e"lctng]+eTPBc [ JW (3-26)

and
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>

(3-27)

1
1 1 ®T(§®_e ke é%}
— —t
P, @eTPBC g, —e RCEY _Po e'PB | &, —e " &) |+e"PB, - ¢}
C C o

then W and © are bounded by ‘W‘SMW and H(:)HSMG forall £+>20 [3,61].

Following the preceding consideration, we have the following theorem.
Theorem 3-1: Suppose the Assumption (3-22) holds. Consider the plant (3-14) with the
control law (3-18). The Hopfield-based DNN controller u,,, . is given by (3-20) with the

adaptive laws (3-23) and (3-24). The compensation controller u, is given as

1

.= B/ Pe (3-28)
20g,

u

where g, >0 is a known constant satisfying g, < g(x) <oo. Then, the overall control

scheme guarantees the following properties:

; W, ©!0 252
i) lj eTQedrsleoTPe0+ o, Z0Z0 g, &P jgzdr (3-29)
270 2 28, 2B 2 o

for 0<t<o, where e, VIN/O, and @0 are the: initial values of e, VI~/, and @,

respectively.

i1) The tracking error ||e|| can be expressed in terms of the lumped uncertainty as

o] < (e Ps (3-30)
A, (P)

where V' is the initial value of a Lyapunov function candidate defined later and A _, (P) is
the minimum eigenvalue of P.
Proof:
1) Define the Lyapunov function candidate as
1 T 1~ 2 1~ T
V =—e Pe+ we+ (ONC) (3-31)
2 21y 21
where 7, = ﬂ_W and p, = '8—9. Differentiating (3-31) with respect to time and using (3-21)

yield
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V=Leper LeTPes L + 876
2 2 Nw Mo

1 1
:%eT(AfCP+PAL,)e+geTPB{%VI~/[§W —e kC g;j+%€){§® —e kC &%]+A—u3:|

—¢'PB d+LVI7V17+—®T(f)

c

Nw Mo
= %eT (ATP+PA )e—ge'PB u_+ge'P BC[A - ld} +V, +V, (3-32)
‘ g
where
~[1 , ey 1 =~
V,=gW|—e PB_| &, —e k&, |+—W (3-33)
c Py
and
~rl 1 ! 0 1 =
Vo=g0" | —e PB |, —e &, [+—O|. (3-34)
C Po
Substituting (3-28) into (3-32), we have
= Lo (A7 P+ PA JesmB(e'PB)(B.Pe)+ ge’ PBc+V, +V,.  (3-35)
2 ‘ 20 g,
Due to the facts 6 >0 and g/gy 2 I, we-canrewtite (3-35) as
Vv S%eT(AZP+ PAC)e-%(eTP B,)(B,Pe)+ge'PB c+V, +V,
_ | 1 T T
—Ee (A P+ PAC-EPBCBC Pe+ge'PB e+V, +V, (3-36)
By using the Riccati-like equation (3-25), (3-36) can be rewritten as
V= %er (—Q-%PBCBCTP)e +ge'PB e+ V, +V,
P
1 11 "
=——e'Qe-—| —B/Pe-gpe | +—g’p’e’ +V, +V, (3-37)
2 2| p 2
Using (3-23), we have
0 if(\vff\ <M, )o{ | =m, andeTPBCVf/{gw —e RCE J > o]
(& WT(@W _eRCtg(v)VJ 1
-£epB W if{ | =M, ande’PB W{gw —eRCté(;VJ< oj
C c A2 c
/4
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(3-38)

1
For the condition Ul/f/‘ =M, andeTPBCW(é;W _e kC §;J<O]’ we have ‘I/f/‘ =M, Z‘W*
because " belongs to the constraint set € . Using this fact, we obtain

~ A

W = %(W*2 —W?-W?)<0. Thus, the second line of (3-38) can be rewritten as

1
Wf[aw —e RC’«%‘;VJ
L =—-5_¢’Pb _ W —W-W)<0. (3-39)
2C i
Similarly, we obtain
. . . 1,
0 i (16f < 1, Jo [@ v 65, e 5 |2 OJ
Ve = A T( e 0 J
078y —e % &g |
—%eTPBC — 676 if(“@)“ =M, and eTPBC(:)T(ge —e_Rf’gg)j < o]

(3-40)
and the second line of (3-40) can'be rewritten as
1
e’ Co—€ RC%%
g r 2 1alF &P
Vo =5 ¢'Ph — (e -|é —H@H )<0 (3-41)
fof
Using the knowledge that V,, <0 and V, <0, we can further rewrite (3-37) as
Vs-leTQe+lg2p252 (3-42)
2 2
Integrating both sides of the inequality (3-43) yields
Lee p g’ P’
VO-ro)<- j e’ Qedz + Tjog dt (3-43)
for 0<t<o.Since V(¢)=0, we obtain
lrerQedT <V(0)+ g'p’ jngdt (3-44)
270 B 2 Yo '

Substituting (3-31) into (3-44), we can prove (3-29).

i1) From (3-44) and since J-OteT Qedt >0, we have
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V() <2V 0+ g2 p’u, 0<t<oo (3-45)
From (3-31), it is obvious that e’Pe <2V, forany V. Because P is a positive definite
symmetric matrix, we have

i PVe|” = A (P)e” e < " Pe (3-46)

Thus, we obtain

Ao (P)e|” < e Pe <2V (1) <2V (0)+ g* p u (3-47)
from (3-45)-(3-46). Therefore, from (3-47), we can easily obtain (3-30), which explicitly
describe the bound of tracking error ||e|| . If initial state }J(0)=0, tracking err0r||e|| can be made
arbitrarily small by choosing adequate p. Equation (3-30) is very crucial to show that the

proposed DACHDNN will provide the closed-loop stability rigorously in the Lyapunov sense
under the Assumption (3-22). Q.E.D.

Remark: Equation (3-30) shows the relations among ||e

, p,and A_(P). For more insight
of (3-30), we first choose p* =9 in (3:25).to simplify the analysis. Thus, from (3-25), we
can see that A_ (P) is fully affected bygtheschoice of A (Q) in the way that a larger
A (Q) leads to a larger A_ (P),'and vice veérsa."Now, one can easily observe form (3-30)
that the norm of tracking error can be.attenuated to any desired small level by choosing p

and A_(Q) as small as possible. However, this may lead to a large control signal which is

usually undesirable in practical systems.

3.4 Simulation Results

In this section, two examples are presented to illustrate the effectiveness of the proposed
DACHDNN. It should be emphasized that the development of the DACHDNN does not need
to know the exact dynamics of the controlled system.

Example 3-1: Chaotic dynamic systems are known for their complex, unpredictable behavior
and extreme sensitivity to initial conditions as well as parameter variations. Consider a
second-order chaotic dynamic system, the well known Duffing’s equation, which describes a
special nonlinear circuit or a pendulum moving in a viscous medium under control [65]:

X, =X,

X, =—pX—p,x—p,x’ +qcos(wt)+u

y=x (3-48)
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Fig. 3-4 The Phase plane of uncontrolled chaotic system

where p, p,, p,, q and w are real constants. Depending on the choices of these
constants, the solutions of system (3-49) may. display complex phenomena, including various
periodic orbits behaviors and some chaotic. behaviors [66]. Fig. 3-4 shows the complex
open-loop system behaviors simiilated with-#.=0, p=04, p, =-1.1, p, =10, w=1.8,
¢g=195, and [x, x,]" =[0 0] 2 Assume the system:is free of external disturbance in this

example. The reference signal is y, (¢) = sin(0.5¢) # cos(¢) .Some initial parameter settings of
DACHDNN are chosen as |v," x,°| =[0.5 0], w,y, =0, &% =0, &% =[0 0] ,#° =0,

and ©° = [11]". These initial settings are chosen through some trials to achieve favorable
transient control performance. The learning rates of weights adaption are selected as
By =P =7.5; the slope of tanh(-) at the origin are selected as x=1; g, =0.1 and
0 =0.5 for the compensation controller. The resistance and capacitance are chosen
asR=5Q andC =0.005 F . Solving the Riccati-like equation (3-25) for a choice of Q =101,

15

k, =[21], we have P= { s 5} . The simulation results for are shown in Figs. 3-5, where

the tracking responses of state x, and x, are shown in Figs. 3-5(a) and 3-5(b), respectively,

the associated control inputs are shown Fig. 3-5(c), and the trained weightings are shown in
Fig. 3-5(d). From the simulation results, we can see that the proposed DACHDNN can

achieve favorable tracking performances without external disturbance.
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Fig. 3-5 Simulation results of Example 3-1

Example 3-2:

Consider the following nonlinear dynamic system described as [58, 67]

0 P e
i o (3-49)
where d =0.5sin(z) is the external bounded disturbance which occurs at ¢#>10. The

reference signal is y, (¢) = cos(?) + sin(0.5¢). Some initial parameter settings of DACHDNN
are chosen as [x,(0) x,(0) x,(0)]" =[0.51 0], u’,,v =0.,&% =0, &2 =[000], W°=0,
and ©, = [0 0 0] . These initial settings are chosen through some trials to achieve favorable
transient control performance. Other parameter settings are S, = S, =25; x=1; g, =0.1,
0=0.5, R=5Q,and C=0.01F. Solving the Riccati-like equation (3-25) for or a choice of

5.7969 3.8594 0.5
Q=3I, k,=[375],wehave P=|3.8594 6.5 0.7656 |. The simulation results for
0.5 0.7656 0.4531

are shown in Figs. 3-6, where the tracking responses of state x,, x, and x; are shown in

Figs. 3-6(a), 3-6(b), and 3-6(c), respectively, the associated control inputs are shown in Fig.
3-6(d), and the trained weightings are shown in Fig. 3-6(e). From Fig. 3-6(a), we can observe
that the output of the system well tracks the reference signal throughout the whole control
process, even with the external disturbance occurring in the middle time (¢ >10). This fact
shows the strong disturbance-tolerance ability of the proposed system.
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Fig. 3-6 Simulation results of Example 3-2

3.5 Performance analysis of Hopfield-based DNNs with and without the self-feedback loop

The performance of Hopfield-based DNNs with and without the self-feedback loop will
be compared in this section. Hopfield networks are sometimes composed of neurons without
self-feedback loops in some applications, such as pattern recognition [68]. This is to minimize
the number of potential stable states so as to increase the recognition rate [68]. However, is
it true that a Hopfield-based DNN composed of neurons without self-feedback loops performs
better in the control problem of SISO affine nonlinear systems? We will try to answer this
question by the following discussions and simulation results.

Because the proposed Hopfield-based DNN contains only a single neuron for SISO

affine nonlinear systems, we can simply set W =0 (and hence W' = W =W =0) when a
neuron without self-feedback loop is used. Thus, repeating the discussions with W =0 in

sections 3.1 and 3.3, we have the following theorem:
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Theorem 3-2: Suppose the required assumption holds. Consider the plant (3-14) with the

control law (3-18), where the Hopfield-based DNN controller u,,,, 1s given as

1 1
Uppnw = %(:)Tg@ +e ¢ ”101DNN —e e’ %é)T‘taO@ (3-50)

with the adaptive law (3-24). The compensation controller u  is given as (3-28). Then, the

overall control schemes guarantees that

. HE) 2 52
i) lj'eTQearrsleOT1>e0+ g 8P [(e?ar (3-51)
210 2 25, 2 o

for 0<t< .

11) The tracking error ||e|| can be expressed in terms of the lumped uncertainty as

NNt S (3-30)
A (P)

Proof: Theorem 3-2 can be easily proven by following the proof of Theorem 3-1 under the
premise that W =W" =W =W =0. Q.E.D.
From Theorem 3-2, we ascertainthat the|convergence performance of the Hopfield-based
DNN without the self-feedback loop-can still bé guaranteed.

Next, simulations for the ‘Hopfield-based DNN without the self-feedback loop are

performed. For Example 3-1, the tracking responses of state x, and x, are shown in Figs.

3-7(a) and 3-7(b), respectively. The norms of error vectors, ||e , for the cases of

Hopfield-based DNN with and without the self-feedback loop are shown in Fig. 3-8(c). For

example 3-2, the tracking responses of state x,, x,, and x, are shown in Figs. 3-8(a),
3-8(b), and 3-8(c), respectively; Fig. 3-8(d) shows the ||e|| for both cases. From the

simulation results, we can see that as we expect, a Hopfield-based DNN without the
self-feedback loop can also result in acceptable tracking performance. However, form Figs.
3-8(c) and 3-8(d), it can be easily observed that a Hopfield-based DNN with the self-feedback
loop perform better in the tracking control problem of SISO nonlinear systems. This fact is
totally opposite to the knowledge that a Hopfield network without the self-feedback loop can

be used to increase recognition rate in pattern recognition. [68].
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Fig. 3-7 Simulation results of Example 3-1 using Hopfield-based DNN without the feedback
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Chapter 4

Conclusions and Future Works

For decades, many researchers and designers, from such broad areas as aircraft and
spacecraft control, robotics, process control, and biomedical engineering, have shown an
active interest in the control problem of nonlinear systems. Among these research efforts,
adaptive fuzzy control and adaptive NN control have been shown to be powerful and effective
methodologies for nonlinear control. However, in the control design, the structure
determination is a difficult task for both FSs and NNs. More specifically, choosing the
number of fuzzy rules, inherently involving fuzzy partitioning of input and output spaces, can
greatly affect the approximation capability of fuzzy systems; similarly, the number of neurons
can be a decisive factor to the performance of NNs.

In Chapter 2, the proposed self-structuring fuzzy system (SFS) can construct a compact
fuzzy rule base by automatic rule generation and.pruning. The problems of determining the
fuzzy partitions of input spaces and the number of fuzzy rules are solved simultaneously. The
provided systematic method can‘cope-with'the-tradeoff between the approximation accuracy
and computational load of FS. New: rules-are ‘generated according to the newly added
membership functions to adjust the improper fuzzy clustering of the input spaces.
Insignificant rules with negligible contribution toward the output of FS will be removed after
a short period. Further, a robust adaptive self-structuring fuzzy control (RASFC) scheme for
the uncertain or ill-defined nonlinear nonaffine systems is proposed. Some adaptive laws for
on-line tuning the parameters of fuzzy rules are derived in the Lyapunov sense to realize
favorable fuzzy approximation. As shown in Chapter 2, the RASFC can achieve a L, tracking
performance with arbitrarily attenuation level. This L, tracking performance can provide a
clear expression of tracking error in terms of the sum of lumped uncertainty and external
disturbance, which has not been shown in previous works. Several examples are illustrated to
show that the RASFC can achieve favorable tracking performance in the presence of external
disturbance, yet heavy computational burden is relieved.

In Chapter 3, we propose a direct adaptive control scheme using Hopfield-based dynamic
neural networks for SISO nonlinear systems. A simple Hopfield-based DNN is used to

approximate the ideal controller and the synaptic weights Hopfield-based DNN are on-line
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tuned by adaptive laws. A compensation controller is merged into control law to suppress the
effect of modeling error and external disturbance. By Lyapunov stability analysis, we prove
that the closed-loop system is stable, and the tracking error can be attenuated to a desired level.
Note that no strong assumptions and prior knowledge of the controlled plant are needed in the
development of DACHDNN. Simulation results demonstrate the effectiveness and robustness
of the proposed DACHDNN in the presence of external disturbance. The case of
Hopfield-based neural network without the self-feedback loop is also studied. We show that
this case has inferior results than those of Hopfield neural network with the self-feedback loop.
The most important is, for SISO affine nonlinear systems, we propose an adaptive control
scheme which results in a Hopfield-based DNN containing only one neuron but still maintain
good tracking performance. The parsimonious structure of the Hopfield-based DNN solve the
structuring problem of NNs, and the simple Hopfield circuit makes the DACHDNN much
easier to implement and more reliable in practical purposes.

Although we have basically solved the control problem of nonlinear systems by the
fuzzy and NN control schemes with automatic.structuring processes, some underlying details
need to be examined to make the solutions.more perfect and practical. The first is the
universal approximation property of the SFS./It has-been proven by many researchers that
fuzzy systems can approximate any nonlinear function'to any desired accuracy because of the
universal approximation theorem. However, the wvalidness of the universal approximation
property for a fuzzy system with variable number of rules, such as the proposed SFS, is still
left to be explored. Although the research results in our work and many other literatures have
provided strong collateral evidences, a direct and rigorous proof of the universal
approximation theorem for fuzzy systems with variable structure is indispensable. This will
be one of our future works. The implementation of the proposed RASFC scheme in a real
hardware platform is also a problem. Although the concepts of rule pruning and growing are
quite intuitive and simple; however, it is not an easy task to realize them in hardware.

On the other hand, in Chapter 3, the parsimonious structure makes the proposed
DACHDNN scheme has the best chance to be realized in hardware for real world applications.
However, the proposed DACHDNN scheme Chapter 3 is now only applicable to SISO
nonlinear systems. In the future, we will work on extending the research results to the

MIMO nonlinear systems.
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