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具自動建構特性之模糊與類神經網路控制架構於非

線性動態系統之應用 

 

研究生：陳品程          指導教授：李祖添 博士 

           王啟旭 博士 

國立交通大學電機與控制工程系博士班 

 

摘 要       

 

  為解決非線性系統控制問題，本論文發展兩個嶄新的控制架構。首先針

對非仿射的非線性動態系統，提出具自我建構特性的強健適應性模糊控制

架構。此架構中的控制器包含一個自我建構的模糊控制器和一個強建控制

器。自我建構的模糊控制器用來近似未知的系統非線性，並可以自動刪除

及產生模糊規則以建立簡潔的模糊規則庫;強健控制器用來達成 L2 追蹤表

現，並抑制誤差至要求的範圍以使系統穩定。我們舉出四個例子顯示此控

制架構不但能有良好的控制表現，也可大量減少運算量。其次針對仿射的

非線性動態系統，提出使用以霍普菲爾為基礎的動態類神經網路的直接適

應性控制架構。在此架構中，以霍普菲爾為基礎的動態類神經網路用來近

似一個理想控制器；監督控制器則用來抑制近似誤差和外界干擾的影響。

藉由 Lypunov 方法可堆導出適應法則，用以調整網路的權重值使得系統穩

定。經由適當地選取參數，可將追蹤物差抑制到要求的範圍內。經由模擬

證實了此架構的可行性及良好效果。僅含一個神經元的以霍普菲爾為基礎

的動態類神經網路使得此架構易於以硬體實現，另外，我們亦探討由無自

我回授神經元建構而成的以霍普菲爾為基礎的動態類神經網路。經比較發

現，採用具有自我回授神經元的以霍普菲爾為基礎的動態類神經網路之控



 ii

制架構，其控制表現較佳。值得注意的是，本論文中所提出的自我建構模

糊系統和固定架構的以霍普菲爾為基礎的動態類神經網路皆不需要專家的

知識或是試誤過程來決定其架構，因此解決了模糊系統和類神經網路的架

構問題。 
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Dr. Chi-Hsu Wang 

Department of Electrical and Control Engineering 

National Chiao Tung University 

 

ABSTRACT 
 

In this dissertation, two novel control schemes are proposed to solve the control 

problems of nonlinear systems. The first is a robust adaptive self-structuring fuzzy control 

(RASFC) scheme for nonaffine nonlinear systems, and the second is a direct adaptive control 

scheme using Hopfield-based dynamic neural network (DACHDNN) for affine nonlinear 

systems. The RASFC scheme is composed of a robust adaptive controller and a 

self-structuring fuzzy controller. The design of the self-structuring fuzzy controller design 

utilizes a novel self-structuring fuzzy system (SFS) to approximate the unknown plant 

nonlinearity, and the SFS can automatically grow and prune fuzzy rules to realize a compact 

fuzzy rule base. The robust adaptive controller is designed to achieve a L2 tracking 

performance with a desired attenuation level to stabilize the closed-loop system. Four 

examples are presented to show that the proposed RASFC scheme can achieve favorable 

tracking performance and relieve heavy computational burden. In the DACHDNN, a 

Hopfield-based dynamic neural network is used to approximate the ideal controller, and a 

compensation controller is used to suppress the effect of approximation error and disturbance. 

The weightings of the Hopfield-based dynamic neural network are on-line tuned by the 

adaptive laws derived in the Lyapunov sense, so that the stability of the closed-loop system 

can be guaranteed. The tracking error can be attenuated to a desired level by adequately 

selecting some parameters. The case of Hopfield-based neural network without the 

self-feedback loop is also studied and shown to have inferior results than those of Hopfield 

neural network with the self-feedback loop. Simulation results illustrate the applicability of 

the proposed control scheme. The Hopfield-based dynamic neural network with a 

parsimonious structure has the best potential be realized in hardware. It should be emphasized 
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that the self-structuring property of the SFS and the fixed parsimonious structure of the 

DACHDNN eliminate the need for expert’s knowledge or error-trial process and thus provide 

perfect solutions to the structuring problems of fuzzy systems and neural networks, 

respectively. 
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Chapter 1 

Introduction 
 

 

1.1 Background and Motivation 

 

Recently, control system design for nonlinear systems has attracted a lot of research 

interests. Many remarkable results have been obtained, including feedback linearization [1], 

adaptive backstepping design [2], fuzzy logic control [3], neural network control [4], and 

fuzzy-neural control [5]. In general, nonlinear systems can be classified into two categories, 

affine nonlinear systems, i.e., systems characterized by inputs appearing linearly in the system 

state equation, and nonaffine nonlinear systems, where the control input appears in a 

nonlinear fashion [6]. Many systems encountered in engineering, by nature or by design, are 

affine systems, such as inverted pendulum systems [3], mass-spring-damper system [7-8], 

chua’s circuit [9-10], straight-arm robot [11], DC-to-DC converter [12], etc. On the other hand, 

nonaffine systems are quite common in the real world, such as Van de Pol oscillator [13-15], 

magnetic servo levitation systems [16], aircraft flight control systems [17], biochemical 

process [18], etc.  

Fuzzy system (FS) which adopts human experience and human decision-making 

behavior has been widely recognized as a powerful tool in industrial control, commercial 

prediction, image processing applications, etc. [19-21]. To build a FS, there are two different 

phases to be carried out. The first is the structuring phase, which is used to construct the 

structure of FS, and the second is the parameter phase, which is used to determine the 

parameters of FS. Constructing the structure of FS is mainly to determine the optimal 

partition of fuzzy sets and the minimum number of fuzzy rules to achieve favorable 

performance. The adjustments of the parameters involve the tuning of the consequences of the 

fuzzy rules, the centers, widths, slopes of membership functions, etc. Traditionally, these two 

phases are performed by human experts or experienced operators. However, consulting 

experts may be difficult and expert knowledge is either unavailable or not helpful enough to 

achieve favorable performance. Having achieved many practical successes, fuzzy control (FC) 

using FS has still not been viewed as rigorous because it lacks a systematic design procedure 

to determine proper membership functions with fuzzy rules, and the way to guarantee the 
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global stability. Adaptive fuzzy control (AFC) has been extensively studied to tackle this 

problem [21-26]. Adaptive fuzzy system can approximate the unknown system dynamics or 

ideal controller through learning in the Lyapunov sense, and thus the global stability can be 

guaranteed. 

Although the control performances in [21-26] are acceptable, the structures of the FSs 

need to be predefined by a time-consuming trial-and-error process. Generally speaking, a 

more favorable performance requires more fuzzy rules, but this may lead to heavy 

computational burden. On the contrary, a FS with small fuzzy rule base may result in a poor 

approximation.  

To solve the problem of structure determination, many researchers have focused their 

efforts on the self-structuring fuzzy system (SFS) and obtained some valuable results [27-31]. 

In [27], the structure learning phase aims at minimizing the number of rules generated and the 

number of fuzzy sets in the universe of discourse. A structure learning algorithm is proposed 

based on fuzzy similarity measure, and fuzzy rules can be created from the training data. In 

[28], the structure identification is accomplished automatically based only on Q-learning, 

which is the most important category of reinforcement learning algorithm. The basic fuzzy 

rules are used as starting points to reduce the number of iterations used to find an optimal 

fuzzy controller. In [29], the firing strength of a rule is used as the degree measure to judge 

whether or not to simultaneously generate a new membership function for every input 

variable (or equivalently, to generate a new rule.) Then, if the newly generated membership of 

the first input variable fails to pass the similarity checking, all new membership functions are 

abandoned. In [30], parameter and structure learning are performed sequentially for the 

proposed fuzzy neural network. That is, the fuzzy neural network is initially constructed to 

contain all possible fuzzy rules, and then the parameter training is performed. After the 

parameter training is completed, a pruning process is performed to delete redundant rules and 

thus leads to a concise fuzzy rule base. Note that the initially constructed rule base contains 

incompatible rules, i.e., the rules with the same antecedent but different consequents. The rule 

pruning strategy is that if the centroid of a set of incompatible rules is in the support of a 

consequent (an output fuzzy set), the corresponding fuzzy rule is remained and all other 

incompatible rules are pruned. In [31], the authors modified the fuzzy neural network 

proposed in [30] and proposed rule pruning scheme that always produces a rule set without 

incompatible rules. 

However, although some achievements have been made in these works, there are still 

some problems need to be solved. In [27], the performance of the proposed neural fuzzy 
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system is acceptable, but the back propagation learning algorithm cannot guarantee the global 

stability. In [28], during the training process, prior knowledge of fuzzy rules is needed to keep 

safe operation of the controlled system with fast convergence speed of parameters. In [29], the 

simplified similarity checking to reduce the complexity of the algorithm may weaken the 

power of the checking itself. In [30], because the connection weights of the network are 

unrestricted in sign, incompatible rules may be retained even rule pruning process is 

performed. This is contradictory to the basic design philosophy of fuzzy systems. Besides, the 

proposed sequential learning scheme is suitable for offline instead of online operation. In [31], 

although the fuzzy neural network in [30] is modified to guarantee a compatible rule base, the 

searching space for the connection weights is restricted to R+. This may harm the capability of 

the proposed network to lower the value of residual square error. The common drawback in 

[27-31] is that the structuring learning phase conducts either rule generation or rule reduction, 

instead of both.  

Recently, research interest has been increasing towards the usage of neural network (NN) 

for controlling a wide class of complex nonlinear systems under the restriction that complete 

model information is not available [32-36]. Due to their massive parallelism, fast adaptability, 

and inherent approximation capabilities, NN seems to be a feasible solution to the control 

problem of nonlinear systems. However, the structuring problem of NNs, which mainly refers 

to determining the number of the neurons, is an annoying problem. This choice faces a similar 

dilemma as the choice of fuzzy rule number in the FS design. Generally speaking, more 

favorable performance requires more neurons, but this may lead to a complicated network 

structure and heavy computational burden. On the contrary, an NN with too few neurons in 

the hidden layer(s) will make it hard for the network to recognize the relationships between 

the output and input parameters, and thus result in a poor approximation. In general, the 

number of neurons is chosen empirically and apparently not optimized.  

Two major classes of NNs, static and dynamic NNs, have become enormously important 

in recent years. In static NNs, which are also called feedforward NNs, signals flows from the 

input units to the output units in a forward direction. In dynamic NNs, dynamic elements are 

involved in the structure of the NN, for example, in the form of feedback connections. Some 

static neural networks (SNNs), such as feedforward fuzzy neural network (FNN) or 

feedforward radius basis function networks (RBFN), are frequently used as powerful tools for 

modeling the ideal control input or nonlinear functions of systems. Some results are shown in 

[39-42]. Although feedforward FNNs and RBFNs have achieved much theoretical success, 

they leave some space for improvement. The complex structures of feedforward FNNs and 
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RBFNs make the practical implementation of the control schemes infeasible, and usually a 

large number of neurons are needed in the hidden layers of SNNs (in general more than the 

dimension of the controlled system). The other well-known disadvantage is that SNNs are 

quite sensitive to the major change that never learned in the training phase.   

Despite the immense popularity of the usage of SNNs, some researchers adopt dynamic 

neural networks (DNNs) to solve the control problem of nonlinear systems. An important 

motivation is that a smaller DNN is possible to provide the functionality of a much larger 

SNN [43]. In addition, SNNs are unable to represent dynamic system mapping without the aid 

of tapped delay, which results in long computation time, high sensitivity to external noise, and 

a large number of neurons when high dimensional systems are considered [44]. This 

drawback severely affects the applicability of SNNs to system identification, which is the 

central part in some control techniques for nonlinear systems. On the other hand, since DNNs 

have dynamic memory, they have good performance on identification, state estimation, 

trajectory tracking, etc., even with the unmodeled dynamics. In [45-49], researchers first 

identify the nonlinear system according to the measured input and output, and then calculate 

the control low based on the NN model. The output of the nonlinear system is forced by the 

control law to track either a given trajectory or the output of a reference model. However, 

there are still some drawbacks. In [45], painful off-line identification is needed for the 

proposed approach, and the proposed control scheme deals with only singular perturbed 

systems. In [46], some strong assumptions are made, such as those ones related to the 

magnitude of the synaptic weightings and the stability of the closed-loop dynamics of the 

neural model. In [47], although both identification and tracking errors are bounded, it seems 

that the control performance is not satisfactory in the simulations. In [48], two DNNs are 

utilized in the iterative learning control system to approximation the nonlinear system and 

mimic the desired system output, respectively, thus increasing the complexity of the control 

scheme and computation loading. The work in [49] requires a prior knowledge of the strong 

relative degree of the controlled nonlinear system. Besides, an additional filter is needed to 

obtain the higher derivatives of the system output. These drawbacks impose the restriction on 

the applicability of the above works to practical implementation. 

 

 

1.2 Major Works 

 

To solve the structuring problem of FSs, this dissertation first proposes a novel SFS, 
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which is used to approximate the unknown plant nonlinearity. The SFS considers both the 

growing and pruning of fuzzy rules. In fact, it is possible that some rules are less or never 

fired throughout the operation of FS. These redundant rules, which make no meaningful 

contributions to the system output, are insignificant and thus should be removed to ease 

computational load. Secondly, a robust adaptive self-structuring fuzzy control (RASFC) 

scheme is proposed for a SISO nonaffine nonlinear system. A robust adaptive controller is 

merged into the control law to achieve L2 tracking performance with a desired attenuation 

level of tracking error. This L2 tracking performance can provide a clear expression of 

tracking error in terms of the sum of lumped uncertainty and external disturbances, which has 

not been shown in previous works [50-51]. Moreover, all control parameters of the RASFC 

system are tuned on-line according to the adaptive laws derived in the Lyapunov sense to 

achieve favorable fuzzy approximation. Then, four examples are presented. For the purpose of 

interpreting the novel self-structuring algorithm, approximations of unknown nonlinear 

functions are performed in Examples 2-1 and 2-2 to illustrate the rule generation and pruning 

capabilities of the SFS. In Examples 2-3 and 2-4, tracking control for two nonaffine nonlinear 

systems is provided to verify the effectiveness of the proposed RASFC scheme. To highlight 

the power of the proposed SFS, an adaptive FS with fixed number of rules and an SFS which 

can only automatically grow rules are also adopted in the last two examples for comparison 

purpose. Simulation results show that the proposed RASFC can achieve favorable tracking 

performance with a compact fuzzy rule base profited from the self-structuring algorithm. 

Comparing with adaptive fuzzy system with fixed number of rules and SFS which can only 

grow rules, the proposed SFS with both rule growing and pruning capabilities can relieve 

computational load, yet still maintain the desired tracking accuracy.  

To fix the drawbacks of the NN control designs mentioned in the preceding paragraphs, 

and at the same time, solve the inherent structuring problem of NNs, we then propose a direct 

adaptive control scheme using Hopfield-based dynamic neural networks (DACHDNN) for 

SISO nonlinear systems. Direct adaptive control is one of the important categories of adaptive 

control. In direct adaptive control, the parameters of the controller are directly adjusted to 

reduce some norm of the output error between the plant and the reference model. The 

Hopfield model was first proposed by Hopfield J.J. in 1982 and 1984 [52-53]. Because a 

Hopfiled circuit is quite easy to be realized and has the property of decreasing in energy by 

finite number of node-updating steps, it has many applications in different fields. The 

Hopfield-based DNN can be viewed as a special kind of DNNs. The control object is to force 

the system output to follow a given reference signal. The ideal controller is approximated by 
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the internal state of a Hopfield-based DNN, and a compensation controller is used to 

compensate the effect caused by approximation error and the bounded external disturbance. 

The synaptic weightings of the Hopfiled-based DNN are on-line tuned by adaptive laws 

derived in the Lyapunov sense. The control law and adaptive laws provide semi-global 

stability for the closed-loop system with external disturbance. Furthermore, the tracking error 

can be attenuated to a desired level by adequately choosing parameters of the control law. The 

cases of Hopfield-based DNN without the self-feedback loop are also studied. We show that 

these cases have inferior results than those of Hopfield-based DNN with the self-feedback 

loop. The main contributions of the DACHDNN are summarized as follows. 1) The structure 

of the used Hopfield-based DNN is quite parsimonious. It contains only a single neuron, 

which is much less than those contained in SNNs or other DNNs for nonlinear system control. 

It is shown in the simulation that such a parsimonious structure of Hopfield-based DNN does 

not destroy the system performance. 2) The simple Hopfield circuit greatly improves the 

applicability of the whole control scheme for practical implementation. 3) No strong 

assumptions or prior knowledge of the controlled plant are needed in the development of 

DACHDNN. 

 

 

1.3 Dissertation Overview 

 

The rest of this dissertation is organized as follows. Chapter 2 describes the design 

procedure of the RASFC scheme for nonaffine nonlinear systems. The structure learning 

phase performed by the SFS is introduced. The adaptive laws to tune the parameters, 

including the means and variances of membership functions and the single consequents of the 

fuzzy rules and, are derived. The stability analysis and example are also provided in this 

chapter. The DACHDNN is developed in Chapter 3. The adaptive laws to tune the synaptic 

weightings are derived. The stability analysis and examples are also provided in this chapter. 

Finally, conclusions and future works are stated in Chapter 4. 
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Chapter 2 

Robust Adaptive Self-structuring Fuzzy 

Control Design for Nonaffine Nonlinear 

Systems 
 

 

Reviewing some literatures on nonaffine nonlinear system control, we find some 

problems left to be addressed. In [50], although the system stability is guaranteed in the 

Lyapunov sense, the un-measurable term in the adaptive law needs to be approximated. This 

will make the system stability questionable. Even the system stability can be guaranteed, the 

tracking error is only ultimately uniformly bounded. In [51], the tracking error is uniformly 

asymptotically stable, but the robust controller to compensate the external disturbance causes 

the chattering of control input. Although the authors in [50] suggested some remedies to 

reduce the chattering, the tracking error may not be UAS due to these remedies. 

In this chapter, we aim at solving the control problem of SISO nonaffine nonlinear 

systems. An adaptive fuzzy control scheme is developed to achieve this goal, and the resulting 

structuring problem of fuzzy systems is also solved by a proposed self-structuring fuzzy 

system (SFS). The automatic rule pruning and growing functions of the SFS are discussed and 

separately illustrated in the Examples 2-1 and 2-2 to give more insights. Using the proposed 

SFS, we will show how a novel robust adaptive self-structuring fuzzy control (RASFC) 

scheme can remarkably reduce the computational burden without sacrificing the favorable 

control performance for SISO nonaffine nonlinear systems. 

 

 

2.1  Problem Formulation 

 

Consider a single-input and single-output (SISO) nonaffine nonlinear system 

dufx n += ),()( x                                (2-1) 

where Tnxxx ]   [ )1( −= K&x is the measurable state vector of the system on a domain nR⊂xΩ , 
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( ) RRuf →×xΩx :,  is the smooth unknown nonlinear function, u is the control input, and d 

is the bounded external disturbance. Here the single output is x. It should be noted that f(x, u) 

is an implicit function with respect to u. Feedback linearization is performed by rewriting (2-1) 

as 

duzux n +∆+= ),()( x                             (2-2) 

where z is a constant to be designed and zuufu −=∆ ),(),( xx . Here we assume that 

u
uf

∂
∂ ),(x is nonzero for all Ru ×Ω∈ xx ),(  with a known sign. Without losing generality, we 

further assume that [51, 54-55] 

0
),(
>

∂
∂

u
uf x                               (2-3) 

for all Ruf ×∈ xΩx ),( . Note that for the nonaffine systems with property 0
),(
<

∂
∂

u
uf x  , 

the control scheme can be easily defined with minor modifications discussed in section 4. The 

control objective is to develop a control scheme for the nonaffine nonlinear system (2-1) so 

that the output trajectory x can track a given trajectory xc closely. The tracking error is defined 

as 

xxe c −=                                  (2-4) 

If the system dynamics and the external disturbance are well known, the ideal feedback 

controller can be determined as 

        )],([1 udu
z

u lcid x∆−−=                          (2-5) 

where 

ek Tn
clc xu += )(                             (2-6) 

with Tneee ]   [ )1( −= K&e  and T
nn kkk ]   [ 11 K−=k . Applying (2-5) to (2-2) and using (2-4) 

yield the following error dynamics 

      0)1(
1

)( =+++ − ekeke n
nn L                        (2-7) 

If ki, i=1, 2, …, n are chosen so that all roots of the polynomial n
nn kskssH +++∆ − L1

1)(  

lie strictly in the open left half of the complex plane, then 0)(lim =
∞→

te
t

can be implied for any 

initial conditions. However, since ),( ux∆ and the external disturbance d may be unknown or 

perturbed, the ideal feedback controller uid in (2-5) cannot be implemented. Thus, to achieve 
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the control objective, an SFS is designed to estimate the system uncertainty ),( ux∆  in (2-2). 

 

 

2.2  Self-structuring Fuzzy System 

 

2.2.1 Description of Fuzzy System 

 

FSs are attractive candidates for the  systems that are structurally difficult to model due 

to inherent non-linearity and model complexities. Typically, a FS includes four well-known 

stages: a fuzzifier, a rule base, an inference engine, and a defuzzifier. The rule base is the 

collection of fuzzy rules which characterize the simple input-output relation of the system. 

Note that the self-structuring algorithm introduced in this section is applicable to multi-input 

and multi-output (MIMO) FS. However, without losing generality and to simplify the notation, 

a multi-input and single-output (MISO) FS is adopted to describe the algorithm. A MISO FS 

can be are expressed as [19]: 

miii ,,, 21
Rule K : IF X1 is 1

1
iF  and X2 is 2

2
iF  and … and Xm is mi

mF  THEN y is 
miii ,,, 21 Kα   (2-8) 

where Xj, j=1, 2, …, m are input variables; y is output variable; 
miii ,,, 21 Lα  is the crisp 

singleton consequent; ji
jF  is the fuzzy sets characterized by the fuzzy membership function 

)( j
i
j XF j , with { }jj Ni  ,,2 ,1 K∈  being the ordinal number of membership functions of Xj. 

Define a set Ω  which collects all possible fuzzy rules 

{ }mmiii NiNiNi
m

 , 2, ,1 , ; , 2, ,1  ; , 2, ,1|Rule 2211,,, 21
KKKKK ====Ω .    (2-9) 

The output of the FS can be expressed as [19]:  

∑ ∏

∑ ∏

∈ =

∈ =

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

=

submiii

ji
j

submiii

ji
jm

m

j
jF

m

j
jFiii

X

X
y

Ω

Ω

,,2,1

,,2,1

21

Rule 1

Rule 1
,,,

)(

)(

K

K

K

µ

µα

                     (2-10) 

where ΩΩ ⊆sub  is the rule base. From (2-10), the output of the FS can be represented as a 

linear combination of fuzzy basis functions defined as 

∑ Π

Π

∈ =

=

⎥
⎦

⎤
⎢
⎣

⎡
=

submiii

ji
j

ji
j

m

jF

m

j

jF

m

j
iii

X

X

Ω,,2,1

21

Rule 1

1
,,,

)(

)(

K

L

µ

µ
ξ , { }jj Ni  ,,2 ,1 K∈ , j=1, 2, …, m.    (2-11) 
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That is, (2-10) can be rewritten as 

ξαTy =                                   (2-12) 

where 1×∈ nRα  collects singleton consequents 
miii ,,, 21 Kα  of all rules in subΩ , 1×∈ nRξ  

collects 
miii ,,, 21 Kξ  described in (2-11), and n is the number of the existing fuzzy rules. In this 

chapter, a Gaussian membership function is defined as 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −
−=

2

2][
exp),,(

j

j

jj
ji

j i
j

i
jji

j
i
jjF

cX
cX

σ
σµ                    (2-13) 

where ji
jc  and ji

jσ  are the mean and standard deviation of the Gaussian function, 

respectively. 

 

2.2.2 Structure Learning Algorithm 

 

The developed self-structuring algorithm consists of two parts: growing and pruning of 

fuzzy rules. Effective membership functions in the input spaces can be generated and 

ineffective fuzzy rules can be pruned automatically by the self-structuring algorithm, and thus 

a concise rule base can be obtained. In order to construct the fuzzy rule base, every input 

space S(Xj) is partitioned into several overlapping clusters to construct the fuzzy sets of Xj. It 

can happen that for some incoming Xj, the degree of belongings to all its fuzzy sets are quite 

small, i.e., )( j
i
j XF j , jj Ni ,,2,1 L=  are quite small, as depicted in Fig. 2-1(a). This means 

that the input space S(Xj) is not properly clustered. Hence, the fundamental concept of the 

growing of fuzz rules is developed to adjust the inappropriate clustering. Initially, create one 

initial fuzzy rule with the given initial state as 

,11,1,Rule L : IF X1 is 1
1F  and X2 is 1

2F  and… and Xm is 1
mF  THEN y is 1,,1,1 Kα     (2-14) 

where the membership functions for 1
jF , j=1, 2, …, m, are defined with the initial input Xj (0) 

as 

.
](0)[

exp)( 21

2

1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −
−=

j

jj
jF

XX
X

j σ
µ                       (2-15) 

The SFS will start operating from this single rule. Define the growing criterion as 

gj Θ<  maxµ , j=1, 2, …, m                      (2-16) 
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jth state variable 
at time t

jN
jF

1
jF

membership 
function for 

membership 
function for
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at time t

jN
jF

1
jF

membership 
function for 

membership 
function for

 
 

(a) 

 
membership 
function for

membership 
function for

membership 
function forjN

jF 1
jF

1N
j

jF +

newly created 
membership function

membership 
function for

membership 
function for

membership 
function forjN

jF 1
jF

1N
j

jF +

newly created 
membership function

 
(b) 

Fig. 2-1 (a) Improper fuzzy clustering of input variable Xj; (b) Newly created membership 
function 

 

where )(max
,,2,1

max
jFNij Xji

jjj

µµ
K=

=  is the maximum membership function degree of Xj and 

)1 ,0(∈Θ g  is a given threshold. If at some time tg, the growing criterion (2-16) is satisfied 

for a new incoming datum, Xj(tg), mj ≤≤1 , a new membership function is created, whose 

initial mean and standard deviation are 

)(1
gj

N
j tXc j =+

                            (2-17) 
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qjN
j =+1σ                                 (2-18) 

where q>0 can be arbitrarily chosen, and it will be tuned by the adaptive law introduced in 

later section. The created membership function is shown in Fig. 2-1(b). For the case that one 

new membership function is created at some time, mjj NNNN ××××× +− KK 111  new fuzzy 

rules will be generated according to the new membership function as: 

1,,1,1,Rule KK +jN : IF X1 is 1
1F …Xj is 1+jN

jF … and Xm is 1
mF , THEN y is 1,,1,,1 KK +jNα  

1,,1,2,Rule KK +jN : IF X1 is 2
1F …Xj is 1+jN

jF … and Xm is 1
mF , THEN y is 1,,1,,2 KK +jNα  

mj NNN ,,1,,1
Rule KK + : IF X1 is 1

1
NF …Xj is 1+jN

jF … and Xm is mN
mF , THEN y is 

mj NNN ,,1,,1 KK +α  

 (2-19) 

For example, consider a fuzzy system (m=2, N1=1, and N2=2) with the rule base: 

1,1Rule : IF X1 is 1
1F  and X2 is 1

2F  THEN y is 1,1α    

21,Rule : IF X1 is 1
1F  and X2 is 2

2F  THEN y is 2,1α  

Assume that the growing criterion for X1 is satisfied at time t. Then, a new membership 

function 

⎭
⎬
⎫

⎩
⎨
⎧ −
−= 22

1

2
11

)(
)]([

exp2
1 σ

µ
tXX

F                           (2-20) 

is created, and two rules are grown according to the new membership function as 

12,Rule : IF X1 is 2
1F  and X2 is 1

2F  THEN y is 1,2α  

  22,Rule : IF X1 is 2
1F  and X2 is 2

2F  THEN y is 2,2α            (2-21) 

A self-structuring FS with only rule generation algorithm may suffer from the 

computational load or learning failure caused by an overly large rule base which includes both 

effective and redundant fuzzy rules. In the following, the strategy to prune redundant rules is 

developed to solve this problem. Recall that there are n existing fuzzy rules, and then express 

(2-12) as 

      ⎥
⎦

⎤
⎢
⎣

⎡
==

rm

k
rmk

Ty
ξ

αξα
ξ

α ] [                            (2-22) 

where Rk ∈α  and 1)1( ×−∈ n
rm Rα  represent the singleton consequent and the fuzzy basis 

function of the kth fuzzy rule, respectively; 1)1( ×−∈ n
rm Rα  and 1)1( ×−∈ n

rm Rξ  represent the 

collections of the singleton consequents and the fuzzy basis functions of the rest of  fuzzy 

rules, respectively. Thus, the contribution made by kth rule on the output y can be defined as 
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follows: 

∑
=

= n

k
k

k
k

y

y
C

1

, k=1, 2, …, n                       (2-23) 

where kkky ξα= . Now, we are ready to introduce the significance index which can help us 

to decide whether or not to prune a fuzzy rule. Significance index is a measurement of the 

importance of every fuzzy rule. Sk, which represents the significance index of the kth fuzzy 

rule, is updated as follows: 

⎩
⎨
⎧

≥
<

=
  if     ,
  if  ,
β
βτ

k
rc
k

k
rc
k

k CS
CS

S , k=1, 2, …, n                (2-24) 

where rc
kS  is the most recent Sk, 1) ,0(∈τ  is a decay constant, and )1 ,0(∈β  is a given 

constant. All Sk, k=1, 2, …, n, are initialized from ones. According to (2-18), if the 

contribution Ck is equal or larger than β, Sk keeps invariant; if Ck is smaller than β, Sk will be 

attenuated.  An invariant significance implies that the associated rule is still important and 

should be remained; a decaying significance index implies that the associated rule is 

becoming less and less important and thus should be pruned. The selection of τ will affect the 

rate of pruning the fuzzy rules. The smaller the τ is (or the larger the β is), the faster the 

significance index Sk decays, and thus the faster the ineffective fuzzy rules will be pruned. 

The pruning criterion of the kth fuzzy rule is defined as follows based on this knowledge 

       pkS Θ< , k=1, 2, …, n                         (2-25) 

where )1 ,0(∈Θ p  is a selected threshold. If the pruning criterion is satisfied for Sk, the 

associated kth rule is pruned.  

Remark 2-1: It is a difficult task to determine the initial values of the singleton consequents of 

the newly generated fuzzy rules. Because an SFS is in general equipped with a parameter 

learning algorithm to automatically tune the parameters of the fuzzy rules, the initial values of 

the singleton consequents can simply set as zeros. However, from (2-10), we can see that this 

will cause abrupt variation of the fuzzy output y and may deteriorate the performance of the 

SFS for a short period. This phenomenon can be observed in Fig. 2-5(b). To fix this drawback, 

we maintain the approximation property of the SFS at the instant that new rules are generated. 

Assume that at some time tg, an SFS has n fuzzy rules and the last h rules are just newly 

generated. Define yp as the “pseudo fuzzy output” of the original n-h rules if h new rules were 

not generated at tg. The initial consequents of those new rules are chosen so that pg yty =)( . 
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Thus, we have 

p

hn

k
kk

n

hnk
knewg yty =+= ∑∑

−

=+−= 11

)( ξαξα                       (2-26) 

where newnhnhn αααα ==== +−+− L21 . From (2-26), we can easily obtain 

∑

∑

+−=

−

=

−
= n

hnk
k

hn

k
kkp

new

y

1

1

ξ

ξα
α                              (2-27) 

In this way, not only the bad effect caused by the abrupt variation can be mitigated, but also 

the future performance of the SFS can be improved by the h new rules. 

Remark 2-2: While controlling, a membership function is possible to be pruned if all fuzzy 

rules associated with this membership function are pruned sequentially. 

Remark 2-3: In the implementations of practical systems, if computational burden is the issue 

having highest priority, the threshold pΘ  can be chosen large enough so that more fuzzy 

rules are pruned. Hence, the computational burden will be substantially reduced at the 

expense of less favorable system performance. 

Fig. 2-2 shows the flowchart to summarize the self-structuring algorithm for the SFS. 

The growing and pruning effects during the control period will be illustrated in later sections 

with excellent result. 
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pkS Θ<

mzx
jµ

ξα ˆˆ T

fc
u =

σcα ˆ ,ˆ ,ˆ

nkSk  2, ,1 , =

mj
j

 2, ,1 ,max =µ

 
 

Fig. 2-2 The flowchart of the self-structuring algorithm for the SFS 
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2.3 Design of RASFC 

 

Now, we are ready for developing a robust adaptive self-structuring fuzzy controller 

(RASFC) for the unknown nonaffine nonlinear systems. In the RASFC, an SFS is used to 

estimate the system uncertainty ),( ux∆  in (2-2). The control law u in the RASFC system is 

designed as  

 ( )fcrac uu
z

u −=
1                             (2-28) 

where urac is the robust adaptive controller to achieve a L2 tracking performance with a 

desired attenuation level and ufc is the self-structuring fuzzy controller to approximate 

unknown system dynamics ),( ux∆ . Substituting (2-28) into (2-2) and using (2-4) yield 

[ ]duuuxe fcrac
n

c
n +∆+−−= ),()()( x                          

[ ]{ }duuuuux lcracfclc
n

c +−+−∆−−= )(),()( x  

[ ]{ }duuuue lcracfc
T +−+−∆−−= )(),(xk                (2-29) 

or 

[ ]duuuu lcracfc +−+−∆−= )(),(xbAee&                (2-30) 

where 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

=

− 11

100
0
0010

kkk nn LL

LL

OOOM

L

A  and T]1  0 0[ K=b  

 

2.3.1 Fuzzy Approximation 

 

The unknown nonlinear function ),( ux∆  is approximated by an SFS with inputs x and 

u. In this way, the output of the SFS ufc should be directly fed back to produce u, which is one 

of the input of the SFS. This kind of fuzzy system is called a recurrent fuzzy system, as 

depicted in Fig. 2-3(a). However, a recurrent fuzzy system will lead to a fixed-point problem 

which must be solved at every time instant and thus imposes computational burden [51, 

54-55]. Thus, the following Lemma 2-1 is stated to avoid this problem [51, 54-55]. 
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(a) 
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fc

x∆≈

racu
 

(b) 

 

Fig. 2-3 (a) The recurrent fuzzy system; (b) The static fuzzy system 
 

 

Lemma 2-1: Let the constant c satisfies the condition 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

>
u
fz

2
1                              (2-31) 

Then, there exist a unique *
fcu  which is a function of x and racu  so that ),(*

racfc uu x satisfies 

 0),(),,(),,( *** =−∆=
∆

racfcfcracfcrac uuuuuu xxxψ            (2-32) 

for all Rurac ×∈ xΩx ),( . 

The Proof of Lemma 1 can be found in [51]. 

According to Lemma 2-1, the feedback path in Fig. 2-3(a) can be removed. 

Consequently, a static FS in Fig. 2-3(b) can be used to approximate ),( ux∆ , and thus we do 

not need to solve the fixed-point problem at every time instant. For the nonaffine systems 

with the property 0
),(
<

∂
∂

u
uf x

, Lemma 2-1 can be satisfied as well by simply modifying 

(2-31) as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

<
u
fz

2
1 .  

Define the vectors c and σ  as 
T

m ][ 21 cccc L=                              (2-33) 

T
m ][ 21 σσσσ L=                             (2-34) 

where ][ 1 jN
jjj cc L=c and ][ 1 jN

jjj σσ L=σ  collect the means and standard deviations of the 
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Gaussian membership functions of Xj, j=1, 2, …, m, respectively. Rewrite (2-12) in the vector 

form as 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

n

n
Ty

ξ

ξ
ξ

ααα
M
2

1

21 ]...[),, σcX(ξα                   (2-35) 

where  ]  [ T
racuxX = is the input vector. The output of the SFS used to approximate ),( ux∆  

is defined as 

ξασ,c(Xξα ˆˆ)ˆˆ,ˆ TT
fcu ==                          (2-36) 

where α̂ , ĉ , and σ̂  are the estimation vectors of α , c , and σ , and )ˆ,ˆ,(ˆ σcXξξ = . Define 

the optimal vectors *α , *c , and *σ  as [3]: 

⎥⎦

⎤
⎢⎣

⎡ −=
×∈∈∈∈

)ˆ,ˆ,ˆ,()(  sup min arg),,(
ˆ,ˆ,ˆ

*** σcαXXσcα
xσcα ΩXΩσΩcΩα

fcfc
R

uu              (2-37) 

where  

{ }αα ααΩ M≤= ˆ:ˆ                            (2-38) 

   { }cc ccΩ M≤= ˆ:ˆ                             (2-39) 

{ }σσ σσΩ M≤= ˆ:ˆ                            (2-40) 

and αM , cM , and σM  are positive constants specified by designers. The unknown 

nonlinear function ),( ux∆  can be described as 

      ωω +=+=∆ *** ), ξασ,cX(ξα TT **                   (2-41) 

where ),( *** σ,cXξξ =  and ω  denotes the approximation error bounded by ωω ≤ , in 

which ω  is a finite positive constant. Then, modeling error u~  can be expressed as 

ω+++=−∆= ξαξαξα ~~~ˆˆ~~ TTT
fcuu                   (2-42) 

where ααα ˆ~ * −=  and ξξξ ˆ-~ *= . In the following, some preliminaries will be made for 

adaptive online-tuning of the parameters of fuzzy rules, and thus favorable approximation 

performance can be achieved in the presence of unexpected disturbances. To achieve this goal, 

the Taylor linearization technique is employed to transform the nonlinear fuzzy basis function 

into partially linear form as follows [25, 56]:  



 19

o+−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤
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⎢
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⎢
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⎢

⎣

⎡

∂

∂

∂

+−

⎥
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢
⎢
⎢

⎣

⎡

∂

∂

∂

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢
⎢
⎢

⎣

⎡

=
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~

~
~
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ˆ

2

1

ˆ

2

1

2

1

σσ

σ
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σ
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c

c

c

ξ

σσ

*
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nnn ξ

ξ

ξ

ξ

ξ

ξ

ξ

ξ
ξ

MM
M

              (2-43) 

or 

             oTT ++= σξcξξ σc
~~~                           (2-44) 

where o represents the higher order term, ccc ˆ~ * −= , σ-σσ * ˆ~ = , and 

cc

c ccc
ξ

ˆ

21

=

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

= nξξξ
L                       (2-45) 

 
σσ

σ σσσ
ξ

ˆ

21

=
⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

= nξξξ
L                      (2-46) 

Substituting (2-44) into (2-42) yields 

ε+++= σξαcξαξα σc
~ˆ~ˆˆ~~ TTTTTu  

ε+++= αξσαξcξα σc ˆ~ˆ~ˆ~ TTT                        (2-47) 

where αξccξα cc ˆ~~ˆ TTT = and αξσσξ σσα ˆ~~ˆ TTT =  since they are scalars, and ωε ++= oTT αξα ˆ~~  is 

the lumped uncertainty. The higher order term o satisfies 

σξcξξ σc
~~~ TTo +−=  

                       σξcξξ σc
~~~ TT ++≤  

σc ~~
210 bbb ++≤            (2-48) 

where b0, b1, and b2 are bounded positive constants satisfying 0
~ b≤ξ , 1bT ≤cξ , and 

2bT ≤σξ . It is reasonable that b0, b1, and b2 exist because Gaussian function and its derivative 

are always bounded by constants. Moreover, α~ , c~ , and σ~  satisfy 

αααααα α ˆˆˆ~ ** +≤+≤−= M                  (2-49) 

cccccc c ˆˆˆ~ ** +≤+≤−= M                      (2-50) 

σσσσσσ σ ˆˆˆ~ ** +≤+≤−= M                  (2-51) 

Thus, the lumped uncertainty ε  satisfies 

ωε ++++= ooTT TT ασξcξα σc ˆ)~~(~  
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ω+++= oTTT *~~~~ ασξαcξα σc
TT   

)ˆ)(ˆ()ˆ)(ˆ( 21 σαcα σαcα +++++≤ MMbMMb  

ω++++++ )]ˆ()ˆ([ 210 σc σcα MbMbbM  

T]ˆˆ  ˆˆ  ˆ  ˆ  ˆ  1][     [ 654321 σαcασcαΛΛΛΛΛΛ=    

ΓΛT=  (2-52) 

where T]     [ 654321 ΛΛΛΛΛΛ=Λ , ω+++=Λ ασc MMbMbb )22( 2101 , 

σc MbMb 212 +=Λ , αMb13 2=Λ , αMb24 2=Λ , 15 b=Λ , 26 b=Λ , and 

T]ˆˆ  ˆˆ  ˆ  ˆ  ˆ  1[ σαcασcαΓ = . Since Λ  is a bounded vector, if Γ  is guaranteed to be 

bounded, the lumped uncertainty term ε  is thus bounded. We can guarantee the boundness 

of Γ  by Lemma 2-2 given in the next subsection. 

 

2.3.2 Parameter Learning Algorithm 

 

Substituting (2-47) into (2-30) yields 

)](ˆ~ˆ~ˆ~[ lcrac
TTT uud −+++++−= εαξσαξcξαbAee σc& .          (2-53) 

Lemma 2-2 [3]: Suppose that the adaptive laws are chosen as (2-56)-(2-58), where )(⋅Pr  is 

the projection operator, and the symmetric positive P satisfies the following Riccati-like 

equation  

011
=−+++ P)bPb(QPAPA T

δρ 2
T                     (2-54) 

where Q is a positive definite symmetric matrix and ρ is an attenuation level which satisfies 

011
2 ≤−

δρ
. If αΩα ∈)0(ˆ , cΩc ∈)0(ˆ , and σΩσ ∈)0(ˆ , then αΩα ∈)(ˆ t , cΩc ∈)(ˆ t , and 

σΩσ ∈)(ˆ t  for all 0≥t  can be guaranteed.  

According to Lemma 2-2, Γ  in (2-52) is bounded, and hence the lumped uncertainty ε  

is bounded. The following theorem shows the properties of the developed control system. 

Theorem 2-1: Suppose the assumption (2-3) holds. Consider a SISO nonaffine nonlinear 

system (2-1) with the control law (2-28), where the self-structuring fuzzy controller is given 

as 

)ˆ,ˆ,(ˆ σcXξαT
fcu =                             (2-55) 
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The adaptive laws are chosen as (2-56)-(2-58): 

 
,)ˆ(

    ,ˆ~ˆ
⎪⎩

⎪
⎨
⎧−

=−=
ξPbePr

ξPbeαα α
T

T

αη
η&&

                    )0ˆˆ and  ˆ( if
)0ˆˆ and  ˆ(or  ˆ if

<=
≥=<

ξαPbeα
ξαPbeαα

α

αα
TT

TT

M
MM

      (2-56) 

where αη  is the positive learning rate and α
α
ξαPbeξPbeξPbePr ˆ

ˆ

ˆˆˆ)ˆ( 2

T
TTT

ααα ηηη +−= . 

⎪⎩

⎪
⎨
⎧−

=−=
,)ˆˆ(

      ,ˆˆ~ˆ
αξPbePr

αξPbecc
c

c
T

c

T
c

η
η&&

                  )0ˆˆandˆ( if
)0ˆˆandˆ(or  ˆ if

<=
≥=<

αξcPbe  c
αξcPbe  cc

cc

ccc
TT

TT

M
MM

   (2-57) 

where cη  is positive learning rate and c
c

αξc
PbeαξPbeαξPbePr c

ccccc ˆ
ˆ

ˆˆ
ˆˆ)ˆˆ( 2

T
TTT ηηη +−= . 

⎪⎩

⎪
⎨
⎧ −

=−=
,)ˆˆ(

   ,ˆˆ~ˆ
αξPbePr

αξPbeσσ
σσ

σσ
T

T

η
η&&

                   )0ˆˆandˆ( if
)0ˆˆandˆ(or  ˆ if

<=
≥=<

αξσPbe  σ
αξσPbe  σσ

σσ

σσσ
TT

TT

M
MM

  (2-58) 

where ση  is positive learning rate and σ
σ

αξσ
PbeαξPbeαξPbePr σ

σσσσσ ˆ
ˆˆ

ˆˆ)ˆˆ( 2

T
TTT ηηη +−=  

The robust adaptive controller is given as 

PebT
lcrac uu

δ2
1

+=                          (2-59) 

Note that since A is designed to be stable in (2-30) and Q in (2-54) is a positive definite 

symmetric matrix, therefore P must be a positive definite symmetric matrix. Then, the 

RASFC system can guarantee the global stability and robustness of the closed-loop system 

and achieve the following L2 criterion [57-58]: 

αη2
)0(~)0(~

)0()0(
2
1

2
1

0

ααPeeQee
T

TT T dt +≤∫
σηη 2

)0(~)0(~

2
)0(~)0(~ σσcc T

c

T

++ ∫ ++
T

dtd
0

2
2

)(
2

ερ  

(2-60) 

for ∞<≤ T0 , where )0(e , ),0(~α  ),0(~c  and )0(~σ  are the initial values of e , α~ , ,~c  

and σ~ , respectively.  

Proof: Define the Lyapunov function candidate as 

σσccααPee ~~
2

1~~
2
1~~

2
1

2
1 TT

c

TTV
σα ηηη

+++= .                (2-61) 

Differentiating (2-61) with respect to time and using (2-53) yield 

σσccααPeeePe &&&&&& ~~1~~1~~1
2
1

2
1 TT

c

TTTV
σα ηηη

++++=  
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αξcξαb PeePAPAe c ˆ~ˆ~[)(
2
1 TTTTT +−+= αααξσ σ

&~~1)](ˆ~ T
lcrac

T uud
αη

ε +−++++   

σσcc && ~~1~~1 T

c

T

c ηη
++  (2-62) 

Substituting (2-59) into (2-62), we obtain 

)()1(
2
1 dV TTTT +−−+= ε

δ
PbeePPbbPAPAe&

σcα GGG −−−          (2-63) 

where )
~

ˆ(~
αη
αξPbeαα

&
−= TTG , )

~
ˆ(~

c
c

TTG
η
cαPbξecc

&
−= , and )

~
ˆ(~

ση
σαPbξeσσ

&
−= σ

TTG . By using 

(2-54), we can rewrite (2-63) as 

)()1(
2
1

2 dV TTT +−−−= ε
ρ

PbeePPbbQe&
σcα GGG −−−  

2])(1[
2
1

2
1 dρ

ρ
TT ++−−= εePbeQe σcα GGGd −−−++ 22 )(

2
1 ερ . (2-64) 

By using (2-56), we have 0=αG  for [ ])0ˆˆ and  ˆ(or  ˆ ≥=≤ ξαPbeαα αα
TTMM . For 

[ ] )0ˆˆ and  ˆ( <= ξαPbeα α
TTM , we have 

ξα
α
ααPbeα

ˆˆ
ˆ

ˆ~
2

T
T

TG αη=                          (2-65) 

Because *α  belongs to the constraint set αΩ , we have *ˆ αα α ≥= M . Using this fact, we  

obtain 0)~ˆ(
2
1ˆ~ 222* ≤−−= αααααT . Thus, (2-65) can be rewritten as  

0ˆˆ
ˆ

)~ˆ(

2 2

222*

≥
−−

= ξα
α

ααα
Pbeα

TTG αη .            (2-66) 

Similarly, we have (2-67) and (2-68) by using (2-57) and (2-58) respectively. 

⎪
⎪
⎩

⎪⎪
⎨

⎧

<=≥
−−

≥=<

=
                       )0ˆˆ and  ˆ( if 0ˆˆ

ˆ

)~ˆ(

2

   )0ˆˆ and  ˆ(or  ˆ  if                                                        0

2

222*

αξcPbecαξc
c

ccc
Pbe

αξcPbecc

ccc
c

ccc

c TTTT

TT

M

MM

G η

  (2-67) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

<=≥
−−

≥=<

=
                    )0ˆˆ and  ˆ( if0ˆˆ

ˆ

)~ˆ(

2

)0ˆˆ and  ˆ(or  ˆ  if                                                       0

2

222*

αξσPbeσαξσ
σ

σσσ
Pbe

αξσPbeσσ

σσσ
σ

σσσ

σ TTTT

TT

M

MM

G η

 (2-68) 
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Consequently, for any possible condition in (2-56)-(2-58), 0≥αG , 0≥cG , and 0≥σG  are 

satisfied. Thus, we can rewrite (2-64) as 

22 )(
2
1

2
1 dV T ++−≤ ερQee&                       (2-69) 

Assume that there exists a finite constant γ so that [58] 

γε ≤+∫
T

dtd
0

2)( , ) ,0[ ∞∈∀T                     (2-70) 

i.e., ],0[)( 2 TLd ∈+ε , ) ,0[ ∞∈∀T . Integrating both sides of the inequality (2-69) yields 

∫∫ ++−≤−
TT T dtddtVTV
0

2
2

0
)(

22
1)0()( ερQee , ∞<≤ T0 .        (2-71) 

Since 0)( ≥TV , the following L2 criterion can be obtained. 

∫∫ ++≤
TT T dtdVdt
0

2
2

0
)(

2
)0(

2
1 ερQee , ∞<≤ T0 .          (2-72) 

Substituting (2-61) into (2-72), we have the L2 criterion shown in (2-60). This completes the 

proof.                                                                 Q.E.D. 

From (2-72), we can see that because V(0) is finite, the effect of lumped uncertainty and 

external disturbance on tracking error can be eliminated as small as possible by choosing an 

arbitrarily small attenuation level ρ.. In other words, a smaller ρ. results in smaller tracking 

error, which implies better tracking performance. The following Theorem 2-2 will present an 

explicit formulation of tracking error. 

Theorem 2-2: The tracking error e  can be expressed in terms of the sum of lumped 

uncertainty and external disturbance as 

)(
)0(2

min

2

P
e

λ
γρ+

≤
V                           (2-73) 

Proof: 

From (2-71), with the knowledge 0
0

≥∫
T T dtQee  and assumption (2-70), we have 

 γρ 2)0(2)(2 +≤ VTV , ∞<≤ T0 .                   (2-74) 

From (2-61), it is obvious that VT 2≤Pee  for any V. Because P is a positive definite 

symmetric matrix, we have 

PeeeePeP TT ≤= )()( min
2

min λλ                   (2-75) 

where )(min Pλ  is the minimum eigenvalue of P. Thus, we obtain 
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γρλ 22
min )0(2)(2)( +≤≤≤ VTVT PeeeP              (2-76) 

from (2-74)-(2-75). Therefore (2-76) can be rearranged to yield the following important 

formula 

)(
)0(2

min

2

P
e

λ
γρ+

≤
V                          (2-77) 

which explicitly describe the tracking error e  in terms of the sum of lumped uncertainty 

and external disturbance.  Q.E.D. 

If initial state V(0)=0, tracking error e can be made arbitrarily small by choosing 

adequate ρ. Unlike the results in [50-51], (2-77) is very crucial to show that the proposed 

RASFC will provide the closed-loop stability rigorously in the Lyapunov sense. 

Remark 2-4: Affine systems can be viewed as a special kind of nonaffine systems [59]. 

Consider an SISO nonlinear affine system  

duGFx n ++= )()()( xx                           (2-78) 

where Tnxxx ]...[ )1( −= &x  is the state vector of the system, )(xF  and )(xG  are unknown 

nonlinear mapping, u  is the control input of the system, and d is a bounded external 

disturbance. By letting uGFuf )()(),( xxx += , we can easily find that the nonlinear affine 

system (2-78) can be viewed as a special case of nonaffine nonlinear system (2-1). Thus, the 

proposed RASFC scheme can be directly applied to such a nonlinear affine system when 

necessary assumptions hold. The overall RASFC can be shown in Fig. 2-4. 

 

racu

fcu

x

e

Σ u

kj S ,maxµn

σcα ˆ ,ˆ ,ˆ

cxxδ
e

)(n
c

x

  

Fig. 2-4 The block diagram of RASFC for nonaffine nonlinear systems 
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Table 2-1 Three conditions in Example 2-1 

desired trajectory of tracking control: xc=sin(1.5t) 

 
number of rules consequents of newly 

generated fuzzy rules 

Condition 
1a 

fixed (4 rules) 
 

Condition 
1b 

t < 5: the same 4 rules in Condition 1a 
are used. 
t ≧5: rule growing is operated 

initialized from zeros 

Condition 
1c 

t < 5: the same 4 rules in Condition 1a 
are used 
t ≧5: rule growing is operated 

initialized according to 
(2-27) 

 

 

2.4 Simulation Results 

 

In this section, the simulations are performed using MATLAB under Windows XP. Four 

examples are presented. Approximations of unknown nonlinear functions are shown in 

Examples 2-1 and 2-2 to reveal the growing and pruning capabilities of the proposed 

self-structuring algorithm, respectively. Examples 2-3 and 2-4 are used to examine the 

applicability and effectiveness of the proposed RASFC system for nonaffine nonlinear control 

problems. Two cases are performed in Examples 2-3 and 2-4 for comparison purpose. Case 3a 

and Case 4a show the effectiveness of the SFS with both rules growing and pruning 

capabilities. In Case 3b, an adaptive FS with fixed number of rules is adapted, and the 

parameters of the FS are also tuned by adaptive laws (2-56)-(2-58). In Case 4b, only the 

growing of fuzzy rules by SFS is considered. It can be easily shown that the following 

examples of nonaffine system control satisfy 0
),(
>

∂
∂

u
uf x

. It should be emphasized that the 

development of the RASFC does not need to know the exact system dynamics of the 

controlled systems. 

Example 2-1: Consider the following nonaffine nonlinear system [60]: 

21 xx =&  

                          )1.0sin()1(1.015.0 2
2

32
12 uuxuxx ++++=&  (2-79) 

In tracking control, the SFS is used to approximate an unknown function 
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cuuuxuxu −++++=∆ )1.0sin()1(1.015.0),( 2
2

32
1x . To illustrate the rule growing capability 

of the self-structuring algorithm, the approximation is performed under three conditions as 

shown in Table 2-1. Figures 2-5(a)-2-5(c) show the approximation results of Condition 1a, 1b 

and 1c, respectively, Fig. 2-5(d) shows the absolute value of the modeling error, u~ , and Fig. 

2-5(e) shows the number of fuzzy rules. The approximation performances under Conditions 

1a and 1b are better than that under Condition 1a after t ≥ 5. In Fig. 2-5(b), the abrupt 

variations are marked by circles. These abrupt variations are obviously caused by the rule 

generation so that the approximation performance is affected for a short period. In Fig. 2-5(c), 

this phenomenon is mitigated by using (2-27) discussed in Remark 2-1. From Fig. 2-5(d), we 

can see the approximation performance under Condition 1c is the best among three 

conditions. 
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Fig. 2-5 Approximation results in Example 2-1 
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Table 2-2 Two conditions in Example 2-2 

desired trajectory of tracking control:  
xc=1.5sin(t) 

 rule number 

Condition 2a fixed (40 rules) 

Condition 2b t ≧0, rule pruning is operated 

 

Example 2-2: A third-order Chua’s chaotic circuit is a simple electronic system that consists 

of one linear resistor ( cR ), two capacitors ( 1C , 2C ), one inductor ( L ), and one nonlinear 

resistor (η ). It has been shown to own very rich nonlinear dynamics such as chaos and 

bifurcations. The dynamic equations of Chua’s circuit are written as [9-10]  

))()(1(1
2121

1
CCCC vvv

RC
v η−−=&    

))(1(1
212

2
LCCC ivv

RC
v +−=&    

)(1
01 LCL iRv

L
i −−=&     (2-80)     

        
 

where the voltages 
1Cv , 

2Cv  and current Li  are state variables, 0R  is a constant, and η  

denotes the nonlinear resistor, which is a function of the voltage across the two terminals of 

1C .Here, φ  is defined as a cubic function as 

3
21 11 CC vv λλφ +=  ( 0,0 21 >< λλ ).                   (2-81) 

The state equations in (2-80) are not in the standard canonical form. Therefore, a linear 

transformation is needed to transform them into the form of (2-1). Then, the dynamic 

equations of transformed Chua’s circuit can be rewritten as 

21 xx =&                 

32 xx =&  

uFx +=3&  

1xy =  (2-82) 

where Txxx ][ 321=x  is the state vector of the system which is assumed to be available; the 
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system dynamic function 

3
321321 )

95
7

361
28(

45
2

38
1

9025
168

1805
14 xxxxxxF ++−+−=           (2-83) 

and u  is the control input. The reference signal is )sin(5.1)( ttyr = . In tracking control, the 

SFS is used to approximate an unknown function cuuFu −+=∆ ),(x . To illustrate the rule 

pruning of the self-structuring algorithm, the approximation is performed under two 

conditions as shown in Table 2-2. Figures 2-6(a)-2-6(b) show the approximation results. 

Figure 2-6(c) shows the approximation error E. Figure 2-6(d) shows the number of fuzzy 

rules. Taking the last pruned rule for example, we record the contribution and significance 

index of the rule pruned at t=2.28 in Fig. 2-6(e). Figures. 2-6(a)-2-6(c) show that the 

approximation performances of Conditions 2a and 2b are both quit well. However, the 

convergence speed of u~  under Condition 2b is faster than that of Condition 2a. This shows 

that the parameter training of a large number of fuzzy rules slow down the convergence speed 

of approximation, and the pruned rules under Condition 2b are redundant and ineffective to 

the approximation performance. In Fig. 2-6(e), we show the contribution and significance 

index of a certain rule pruned at t=2.28. When the contribution calculated by (2-23) is smaller 

than a given constant β=0.005, the significance index (2-24) decays with decay constant 

τ=0.99. Once the significance index is smaller than the pruning threshold 005.0=Θ p  at 

t=2.28, this rule is insignificant thereafter and thus pruned to ease computational load. 
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Fig. 2-6 Approximation results in Example 2-2 
 

Example 2-3: Consider the following nonaffine nonlinear system [61] 

 21 xx =&  

deuxex uxx +−+++= )1)](sin(2)[(1(2.0 22
21&         (2-84) 

where d is a square wave with amplitude 0.3±  and period 5 seconds. The desired trajectory 

is )cos()5.0sin()( tttxd += . The initial sates are chosen as Txx 0]  0[)]0(  )0([)0( 21 ==x . The 

learning rates are selected as 120=αη  and 1== σc ηη . The thresholds for growing and 

pruning criteria in Case 3a are selected as 1.0=Θ g  and 01.0=Θ p , respectively. These 

parameters are chosen through some trials to achieve favorable transient control performance. 

For a choice of Q=2I, T]12[=K , and δρ =2 , we solve the Riccati-like equation shown in 

(2-62) and obtain the a positive definite symmetric matrix P:  

⎥
⎦

⎤
⎢
⎣

⎡
=

1.50.5
0.5  3.5

P                             (2-85) 

The simulation results for Cases 3a and 3b are shown in Figs. 2-7 and 2-8, respectively. The 

tracking responses of state x1 are shown in Figs. 2-7(a) and 2-8(a), the tracking responses of  

 

Table 2-3 Comparison between two cases in Example 2-3 

41025.1 ×  iterations Case 3a Case 3b 

maximum number of rules at any time instant 7 4 (fixed) 

accumulated sum of rule number, aN  34,577 60,000 

total execution time, et  (sec) 12.88 18.14 
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state x2 are shown in Figs. 2-7(b) and 2-8(b), the associated control inputs are shown Figs. 

2-7(c) and 2-8(c), and the numbers of fuzzy rules at every iteration are shown in Figs. 2-7(d) 

and 2-8(d). From Figs. 2-7(a)-2-7(b) and Figs. 2-8(a)-2-8(b), we can see that the tracking 

performance in Case 3a is better than that in Case 3b under the external disturbance. In Fig. 

2-7(d) the maximum number of rules is 7; in Fig. 2-8(d), the number of rules is 4. Table 2-3 

shows the comparison between the two cases, where Na represents the accumulated sum of 

computed rules, and te denotes the total execution time during the simulation. The proposed 

self-structuring algorithm can relieve the heavy computational burden caused by 25,423 

redundant rules (42.37% of the Na in Case 3b), and the te in Case 3a is nearly one-half times 

faster than that in Case 3b.  
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Fig. 2-7  Simulation results of Case 3a in Example 2-3 
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Fig. 2-8  Simulation results of Case 3b in Example 2-3 
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Table 2-4 Comparison between two cases in Example 2-4 

41025.1 ×  iterations Case 4a Case 4b 

maximum number of rules at any time instant 7 28 

accumulated sum of computed fuzzy rules, aN 39,973 227,650 

total execution time, et  (sec) 12.72 64.89 

 

Example 2-4: The Van der Pol oscillator is the main model of self-oscillatory system with 

two dimensional phase space [13-15]. The oscillator and its extensions have been 

implemented in various types of electrical circuits. The nonaffine second-order Van der Pol 

oscillator with nonlinear damping is described as [62] 

21 xx =&  

       dxx
e
exxuxxx u

u

+−
−
+

++++−= −

−

2
2

1
2

2
2

1212 )
1
1)((&                  (2-86) 

where d is a white noise with power 2 which occurs after t≥15 The desired trajectory is 

)5.0cos()sin()( tttxd += , and the initial state is Txx 0.5]  6.0[)]0(  )0([)0( 21 ==x . All other 

parameter settings are chosen the same as those in Example 2-3. The simulation results for 

Cases 4a and 4b are shown in Figs. 2-9 and 2-10, respectively. The tracking responses of state 

x1 are shown in Figs. 2-9(a) and 2-10(a), the tracking responses of state x2 are shown in Figs. 

2-9(b) and 2-10(b), the associated control inputs are shown Figs. 2-9(c) and 2-10(c), and the 

numbers of fuzzy rules at every iteration are shown in Figs. 2-9(d) and 2-10(d). From the 

simulation results, we can see that that the proposed RASFC scheme in Case 4a can achieve 

the same favorable tracking performance as that in Case 4b even an external disturbance 

suddenly occurs. In Fig. 2-9(d), rule growing plays the major role in SFS within 0 ≤ t < 0.25 

and thus the rule number is increased from one to produce a suitable control effort to suppress 

the tracking error. For t >0.25, to reduce tracking error, the pruning of unnecessary rules will 

be activated in SFS and thus the number of rules decreases gradually. After a large external 

disturbance occurs at t ≥15, the rule number apparently increases to eliminate the effect 

caused by the disturbance. When tracking error is again suppressed to a small level, the rule 

pruning effect will be activated again. In Fig. 2-10(d), the number of rules increases very 

rapidly from the beginning to the end of control. Throughout the control process, the 
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maximum number of rules is 7 in Case 4a and 28 in Case 4b. Table 2-4 shows the comparison 

between two cases. From Table 2-4, it is obvious that our proposed self-structuring algorithm 

can relieve the heavy computational burden caused by the 187,677 redundant rules (82.44 % 

of the Na in Case 4b), and the te in Case 4a is over 5 times faster than that in Case 4b. It can be 

imagined that the relief of computational load caused by the redundant rules will become 

more and more remarkable as the control period continues. 
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Fig. 2-9  Simulation results of Case 4a in Example 2-4 
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Fig. 2-10  Simulation results of Case 4b in Example 2-4 
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It is worth noting that in Examples 2-3 and 2-4, the tracking control is started with only 

one fuzzy rule, and thereafter a compact rule base is constructed automatically without human 

knowledge. In addition, the same parameter settings, including constants to be designed, 

learning rates, thresholds of growing and pruning, and the positive definite symmetric matrix 

P, are adopted in these two examples. These parameter settings are chosen for Example 2-3 to 

achieve favorable transient tracking performance, and they may be not equally suitable for 

Example 2-4. Nevertheless, as we can see, satisfactory tracking performance is still achieved 

in these two examples. 
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Chapter 3 

Direct Adaptive Control Design Using 

Hopfield-Based Dynamic Neural Network for 

Affine Nonlinear Systems 
 

 

A dynamic neural network (DNN) is a collection of dynamic neurons which are fully 

interconnected to a function of their own output. On the contrary, in a static neural network 

(SNN), the output is directly calculated from the input through feedforward interconnections. 

DNNs are proven to be more suitable for representing dynamic systems. In this chapter, we 

aim at solving the control problem of SISO affine nonlinear systems. A direct adaptive 

control scheme using a Hopfield-based DNN is developed to achieve this goal. Meantime, the 

structuring problem of NNs is solved by the proposed parsimonious structure of the 

Hopfield-based DNN, that is, only a single Hopfield neuron is needed to control any affine 

nonlinear system.  

 

 

3.1 Hopfield-Based Dynamic Neural Network 

 

3.1.1 Description of DNN Model 

 

DNNs are made of recurrent and interconnected dynamic neurons which distinguish 

DNNs from feedforward neural works, where the output of one neuron is connected only to 

neurons in the next layer. Consider a DNN described by a nonlinear differential equation of 

the following form [47] 

)()()( 21 uγχVφBΨχVBWσAχχ ++=&                   (3-1) 

where [ ] nT
n R∈= χχχ    21 Lχ  is the state vector, [ ] mT

m Ruu ∈=   u 21 Lu  is the input 

vector, kr RR → :σ , nnR ×∈A  is a Hurwitz matrix. { } nn
n Rbbb ×∈=  , , ,diag 21 LB , 

knR ×∈W , nrR ×∈1V , lnR ×∈Ψ , nsR ×∈2V , nls RR ×→ :φ , and nm RR → :γ . Here χ  is  
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Fig. 3-1 The structure of the dynamic neural network 

  

the state of the DNN, W  and Ψ  are the weight matrices describing output layer 

connections, 1V  and 2V  are the weight matrices describing the hidden layer connections, 

)(⋅σ  is a sigmoid vector function responsible for nonlinear state feedbacks, and )(⋅γ  is a 

differentiable input function. A DNN in (3-1) satisfying  

nsr == , nnI ×== 21 VV , nnI ×=⋅)(φ                    (3-2) 

is a simplest DNN without any hidden layers. It can be expressed as  

)()( uγBΨχBWσAχχ ++=&                         (3-3) 

Following the literatures [45, 47, 63], we choose nk = , { }naaadiag −−−=    21 LA , where 

0>ia , i=1, 2, …, n , and [ ] nT R∈= 0uuγ  )( , where mn ≥  to simply our further analysis. 

Then, the expression in (3-3) can be modified as  

uBΘχBWσAχχ ++= )(&                           (3-4) 

where mnR ×∈Θ  satisfying [ ]T0ΘΨ = . The structure of the DNN is shown in Fig. 3-1.  

The output of every neuron in Fig. 3-1 can be expressed as  

uχσ T
ii

T
iiii bWbaχ Θ++−= )(χ i& ,  ni  , 2, ,1 L=                  (3-5) 
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where [ ]inii
T

i wwwW   21 L=  and [ ]imii
T

i θθθ   21 L=Θ  are the ith rows of W  and Θ , 

respectively. Solve the differential equation (3-5), we obtain  

( ) ( )0
,

0
,

0
,, i

T
iiW

T
ii

ta
i

ta
i

T
iiW

T
iii WbeeWb ii

Θ
−−

Θ Θ+−+Θ+= ξξξξ χχ ,   ni  , 2, ,1 L=     (3-6) 

where 0
iχ  is the initial state of iχ ; n

iW R∈,ξ  and m
i R∈Θ,ξ  are the solutions of  

)(,, χσξξ +−= iWiiW a&                               (3-7) 

and 

uξξ +−= ΘΘ iii a ,,
&                                 (3-8) 

respectively;  0
,iWξ  and 0

,iΘξ  are initial states of iW ,ξ  and i,Θξ , respectively. Note that 

0
i

taie χ−  and ( )0
,

0
, i

T
iiW

T
ii

ta Wbe i
Θ

− Θ+ ξξ  in (3-6) will exponentially decay with time due to the 

fact 0>ia .  

 

3.1.2 Hopfield-based DNN Approximator 

  

A DNN approximator for continuous functions can be defined as 

( ) ( )0
,

0
,

0
,,

ˆˆˆˆ
i

T
iiW

T
ii

ta
i

ta
i

T
iiW

T
iii WbeeWb ii

Θ
−−

Θ Θ+−+Θ+= ξξξξ χχ ,   ni  , 2, ,1 L=      (3-9) 

where iŴ  and iΘ̂  are the estimations of iW  and iΘ , respectively. Define optimal vectors 

*
iW  and *

iΘ  as  

( ) ( ) ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧

Θ+−+Θ+−Φ=Θ Θ
−−

Θ
∈∈∈Θ∈ Θ

0
,

0
,

0
,,

 ,ˆ ,ˆ
** ˆˆˆˆ supmin arg , i

T
iiW

T
ii

ta
i

ta
i

T
iiW

T
iii

DDW
ii WbeeWbW ii

UiiiWi

ξξξξ
uχΩΩ

χ
χ

 

(3-10) 

where NRD ⊂χ  and m

U
RD ⊂ are compact sets; { }

ii WiiW MWW ≤= ˆ:ˆΩ  and 

{ }
ii

Mii ΘΘ ≤ΘΘ= ˆ:ˆΩ  are constraint sets for iŴ  and iΘ̂ . Then, a continuous vector 

function [ ] nT
n R∈ΦΦΦ=    21 LΦ can be expressed as 

( ) ( ) ii
T

iiW
T

ii
ta

i
ta

i
T

iiW
T

iii WbeeWb ii ∆+Θ+−+Θ+=Φ Θ
−−

Θ
0

,
*0

,
*0

,
*

,
* ξξξξ χ , ni  , 2, ,1 L=    (3-11) 

where i∆  is the approximation error. Note that the optimal vectors *
iW  and *

iΘ  are 

difficult to be determined and might not be unique. The modeling error iχ
~   is defined as 
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iii χχ −Φ=~     

( ) ( )[ ]ii
T

iiW
T

ii
ta

i
ta

i
T
iiW

T
ii WbeeWb ii ∆+Θ+−+Θ+= Θ

−−
Θ

0
,

*0*,
,

*0
,

**
,

* ξξξξ χ  

( ) ( )[ ]0
,

0
,

0
,,

ˆˆˆˆˆˆ i
T
iiW

T
ii

ta
i

ta
i

T
iiW

T
ii WbeeWb ii

Θ
−−

Θ Θ+−+Θ+− ξξξξ χ  

( ) ( ) niWbeWb ii
T
iiW

T
ii

ta
i

T
iiW

T
ii

i  ,,2 ,1        ~~~~ 0
,

0
,,, L=∆+Θ+−Θ+= Θ

−
Θ ξξξξ  (3-12) 

where iii WWW ˆ~ * −= , and iii Θ−Θ=Θ ˆ~ * . 

In this paper, a Hopfield-based dynamic neural network is adopted as the approximator. 

It is known as a special case of DNN with )/(1 iii CRa =  and ii Cb /1= , where 0>iR  and 

0>iC  representing the resistance and capacitance at the ith neuron, respectively [25],[29].  

The sigmoid function T
n )](  )( )([)( 21 χσχσχσ L=χσ  is defined by a hyperbolic tangent 

function as  

)tanh()( iii χκχσ = ,   ni  , 2, ,1 L=                    (3-13) 

where iκ  is the slope of )tanh(⋅  at the origin. It is known that tangent function is bounded 

by 1)tanh(1 <⋅<− .                         

 

 

3.2  Problem Formulation 

 

Let nRS ⊂  be an open set, SDS ⊂  be and compact set. Consider the nth-order 

nonlinear dynamic system of the form 

dgufx n ++= )()( x                              

xy =  (3-14) 

where Tnxxx ] , , ,[ )1( −= L&x  is the state vector., RDf →s :  is a uncertain, continuous 

functions, g is an unknown constant, Ru∈  is continuous control input of the system, Ry∈  

is the output of the system, and Rd ∈  is a bounded external disturbance. We consider only 

the nonlinear systems which can be represented in (3-14). In order for (3-14) to be 

controllable, it is required that 0≠g . Without losing generality, we assume that ∞<< g0 . 

The control objective is to force the system output y to follow a given bounded reference 

signal h
r Cy ∈ , nh ≥ . The reference signal vector ry  and the error vector e are defined as 

nTn Reee ∈= − ] , , ,[ )1(L&e                           (3-15) 
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with yyxye rr −=−= .  

If the functions f(x) and g are known and the system is free of external disturbance, the ideal 

controller can be designed as 

 [ ]ekx T
c

n
rid yf

g
u ++−= )()(1                       (3-16) 

where [ ]Tnnc kkk 11    L−=k . Applying (3-16) to (3-14), we have the following error dynamics 

system 

0  )1(
1

)( =+++ − ekeke n
nn L .                       (3-17) 

If ki, i=1, 2, …, n are chosen so that all roots of the polynomial n
nn kskssH +++∆ − L1

1)(  

lie strictly in the open left half of the complex plane, then ( )lim 0
t

e t
→∞

=  can be implied for 

any initial conditions. However, since the system dynamics may be unknown or perturbed, the 

ideal feedback controller idu  in (3-16) cannot be implemented. 

 

 

3.3  Design of DACHDNN  

 

To solve this problem, a new direct adaptive control scheme using Hopfield neural 

networks for SISO nonlinear systems is proposed. In the DACHDNN, a Hopfield-based DNN 

is used to estimate the ideal controller idu . The direct adaptive Hopfield-based DNN 

controller takes the following form 

sHDNNd uuu +=                             (3-18) 

where HDNNu  is the Hopfield-based DNN controller used to approximate the ideal controller 

idu  in (3-16); su  is the compensation controller employed to compensate the effects of 

external disturbance and the approximation error introduced by the Hopfield-based DNN 

approximation (described later). The overall DACHDNN is shown in Fig. 3-2, wherein the 

adaptive laws are described later. Substituting (3-18) into (3-14) and using (3-16) yield 

duuug csHDNNidealcc BBeAe −−−+= )(&  

duug cscc BBeA −−+= )~(   (3-19) 
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Fig. 3-2 The Block diagram of the DACHDNN 

  

where nn

nn

c R

kkk

×

−

∈

⎥
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⎤
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⎢
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⎣

⎡
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11

100
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LL
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OOOM

L
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⎦
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⎣

⎡

=

1

0
0

M
B , and HDNNideal uuu −=~ . 

Note that the ideal controller idu  is a scalar, and thus the Hopfield-based DNN used to 

approximate idu  contains only a single neuron. The output of such a Hopfield-based DNN 

can be express as 

( ) ( )00
1

0
1

ˆˆ1ˆˆ1
Θ

−−

Θ Θ+−+Θ+= ξξξξ T
W

t
RC

HDNN

t
RCT

WHDNN W
C

eueW
C

u         (3-20) 

where 0
HDNNu  is the initial value of HDNNu . Note that Ŵ  and Wξ  are scalars, and the input 

signal of the Hopfield-based DNN is [ ]Teeu & = . Fig. 3-3 shows the electric circuit of the 

Hopfield-based DNN containing only a single neuron.  
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Fig. 3-3 The electric circuit of the Hopfield-based DNN containing only a single neuron 
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Substituting (3-20) into (3-19) yields 

due
C

eW
C

g cs

t
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W

t
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Wcc BξξξξBeAe −
⎪⎭

⎪
⎬
⎫
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⎪
⎨
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⎛
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 ~1~1 0

1
0

1

&    (3-21) 

where ∆  is the approximation error. In order to derive the one of the main theorems in this 

chapter, the following assumption and lemma is required. 

Assumption: Let d
g
1

−∆=ε . Assume that there exists a finite constant µ  so that 

µτε ≤∫ d
t

0

2 , ∞<≤ t0 .                           (3-22) 

Lemma: Choose WW Ω∈0ˆ  and Θ∈Θ Ω0ˆ , where 0Ŵ  and 0Θ̂  are the initial values of W  

and Θ , respectively. If the adaptive laws are designed as 
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where Wβ  and Θβ  are positive learning rates; the symmetric positive definite matrix P  

satisfies the following Riccati-like equation 

 011
=−+++ P)B(PBQPAPA T

c2cc
T

c ρ δ
                   (3-25) 

where Q  is a symmetric positive matrix and 011
2 ≤−

δρ
; the projection operators ][∗Pr  

are defined as  
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and 
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then Ŵ  and Θ̂  are bounded by WMW ≤ˆ  and Θ≤Θ Mˆ  for all 0≥t  [3, 61]. 

Following the preceding consideration, we have the following theorem. 

Theorem 3-1: Suppose the Assumption (3-22) holds. Consider the plant (3-14) with the 

control law (3-18). The Hopfield-based DNN controller HDNNu  is given by (3-20) with the 

adaptive laws (3-23) and (3-24). The compensation controller su  is given as 

  PeBT
c

L
s g

u
δ2
1

=                             (3-28) 

where 0>Lg  is a known constant satisfying ∞<< )(xgg L . Then, the overall control 

scheme guarantees the following properties: 

i)           ∫∫ +Θ
ΘΘ

++≤
Θ

tT

W

Tt T dgWW
d

0

2
22

0000
000 22

~~

2

~~

2
1

2
1 τερ

ββ
τ

&&
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for ∞<≤ t0 , where 0e , 0
~W , and 0

~
Θ  are the initial values of e , W~ , and Θ

~ , 

respectively. 

ii) The tracking error e  can be expressed in terms of the lumped uncertainty as 

)(
2

min

220

P
e

λ
µρgV +

≤                              (3-30) 

where 0V  is the initial value of a Lyapunov function candidate defined later and )(min Pλ  is 

the minimum eigenvalue of P.  

Proof: 

i) Define the Lyapunov function candidate as 
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Θ
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1 2 T
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T WV
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where 
g
W

W
β

η =  and 
g
Θ

Θ =
β

η . Differentiating (3-31) with respect to time and using (3-21) 

yield 
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where  
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Substituting (3-28) into (3-32), we have 
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Due to the facts 0>δ  and 1/ ≥Lgg , we can rewrite (3-35) as 
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By using the Riccati-like equation (3-25), (3-36) can be rewritten as 
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Using (3-23), we have  
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  (3-38) 

For the condition 
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Similarly, we obtain  
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and the second line of (3-40) can be rewritten as 
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Using the knowledge that 0≤WV  and 0≤ΘV , we can further rewrite (3-37) as 

222

2
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2
1 ερgV T +−≤ eQe&                          (3-42) 

Integrating both sides of the inequality (3-43) yields 
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for ∞<≤ t0 . Since 0)( ≥tV , we obtain  
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Substituting (3-31) into (3-44), we can prove (3-29). 

ii) From (3-44) and since 0
0

≥∫
t T dtQee , we have 
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µρ 22)0(2)(2 gVtV +≤ ,   ∞<≤ t0                    (3-45) 

From (3-31), it is obvious that 2 ,  for any T V V≤e Pe . Because P is a positive definite 

symmetric matrix, we have 

PeeeePeP TT ≤= )()( min
2

min λλ                      (3-46) 

Thus, we obtain 

µρλ 222
min )0(2)(2)( gVtVT +≤≤≤ PeeeP                  (3-47) 

from (3-45)-(3-46). Therefore, from (3-47), we can easily obtain (3-30), which explicitly 

describe the bound of tracking error e . If initial state V(0)=0, tracking error e can be made 

arbitrarily small by choosing adequate ρ. Equation (3-30) is very crucial to show that the 

proposed DACHDNN will provide the closed-loop stability rigorously in the Lyapunov sense 

under the Assumption (3-22).                                   Q.E.D. 

Remark: Equation (3-30) shows the relations among e , ρ , and )(min Pλ . For more insight 

of (3-30), we first choose δρ =2  in (3-25) to simplify the analysis. Thus, from (3-25), we 

can see that )(min Pλ  is fully affected by the choice of )(min Qλ  in the way that a larger 

)(min Qλ  leads to a larger )(min Pλ , and vice versa. Now, one can easily observe form (3-30) 

that the norm of tracking error can be attenuated to any desired small level by choosing ρ  

and )(min Qλ  as small as possible. However, this may lead to a large control signal which is 

usually undesirable in practical systems. 

 

3. 4  Simulation Results 

 

In this section, two examples are presented to illustrate the effectiveness of the proposed 

DACHDNN. It should be emphasized that the development of the DACHDNN does not need 

to know the exact dynamics of the controlled system. 

Example 3-1: Chaotic dynamic systems are known for their complex, unpredictable behavior 

and extreme sensitivity to initial conditions as well as parameter variations. Consider a 

second-order chaotic dynamic system, the well known Duffing’s equation, which describes a 

special nonlinear circuit or a pendulum moving in a viscous medium under control [65]: 

21 xx =&                

uwtqxpxpxpx ++−−−= )cos(3
212 &&  

1xy =    (3-48) 
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Fig. 3-4 The Phase plane of uncontrolled chaotic system 

 

where p , 1p , 2p , q  and w  are real constants. Depending on the choices of these 

constants, the solutions of system (3-49) may display complex phenomena, including various 

periodic orbits behaviors and some chaotic behaviors [66]. Fig. 3-4 shows the complex 

open-loop system behaviors simulated with 0=u , 4.0=p , 1.11 −=p , 0.12 =p , 8.1=w , 

95.1=q , and [ ] [ ]TTxx 0 0 21 = . Assume the system is free of external disturbance in this 

example. The reference signal is )cos()5.0sin()( tttyr += .Some initial parameter settings of 

DACHDNN are chosen as [ ] [ ]TT
xx 0 5.0 0

2
0

1 = , 00, =HNNu , 00 =Wξ , [ ]T 0 00 =Θξ , 0ˆ 0 =W , 

and [ ]T 1 1ˆ 0 =Θ . These initial settings are chosen through some trials to achieve favorable 

transient control performance. The learning rates of weights adaption are selected as 

5.7== ΘββW ; the slope of )tanh(⋅  at the origin are selected as 1=κ ; 1.0=Lg  and 

5.0=δ  for the compensation controller.  The resistance and capacitance are chosen 

as Ω= 5R  and FC 005.0= . Solving the Riccati-like equation (3-25) for a choice of IQ 10= , 

[ ]Tc 1 2=k , we have ⎥
⎦

⎤
⎢
⎣

⎡
=

55
515

P . The simulation results for are shown in Figs. 3-5, where 

the tracking responses of state 1x  and 2x  are shown in Figs. 3-5(a) and 3-5(b), respectively, 

the associated control inputs are shown Fig. 3-5(c), and the trained weightings are shown in 

Fig. 3-5(d). From the simulation results, we can see that the proposed DACHDNN can 

achieve favorable tracking performances without external disturbance. 
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Fig. 3-5 Simulation results of Example 3-1 

 

Example 3-2: 

Consider the following nonlinear dynamic system described as [58, 67] 

21 xx =&   

32 xx =&   

duxxx ++= 213&   

1xy =   (3-49) 

where )sin(5.0 td =  is the external bounded disturbance which occurs at 10≥t . The 

reference signal is )5.0sin()cos()( tttyr += . Some initial parameter settings of DACHDNN 

are chosen as [ ] [ ]TTxxx 0 1 5.0)0( )0( (0) 321 = , 00 =HDNNu , 00 =Wξ , [ ]T0 0 00 =Θξ , 0ˆ 0 =W , 

and [ ]T0 0 0ˆ
0 =Θ . These initial settings are chosen through some trials to achieve favorable 

transient control performance. Other parameter settings are 25== ΘββW ; 1=κ ; 1.0=Lg , 

5.0=δ , Ω= 5R , and FC 01.0= . Solving the Riccati-like equation (3-25) for or a choice of 

IQ 3= , [ ]Tc 5 7 3=k , we have  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

4531.07656.05.0
7656.05.68594.3

5.08594.37969.5
P . The simulation results for 

are shown in Figs. 3-6, where the tracking responses of state 1x , 2x  and 3x  are shown in 

Figs. 3-6(a), 3-6(b), and 3-6(c), respectively, the associated control inputs are shown in Fig. 

3-6(d), and the trained weightings are shown in Fig. 3-6(e). From Fig. 3-6(a), we can observe 

that the output of the system well tracks the reference signal throughout the whole control 

process, even with the external disturbance occurring in the middle time ( 10≥t ). This fact 

shows the strong disturbance-tolerance ability of the proposed system.  
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Fig. 3-6 Simulation results of Example 3-2 

 

 

3.5  Performance analysis of Hopfield-based DNNs with and without the self-feedback loop 

 

The performance of Hopfield-based DNNs with and without the self-feedback loop will 

be compared in this section. Hopfield networks are sometimes composed of neurons without 

self-feedback loops in some applications, such as pattern recognition [68]. This is to minimize 

the number of potential stable states so as to increase the recognition rate [68].  However, is 

it true that a Hopfield-based DNN composed of neurons without self-feedback loops performs 

better in the control problem of SISO affine nonlinear systems? We will try to answer this 

question by the following discussions and simulation results. 

Because the proposed Hopfield-based DNN contains only a single neuron for SISO 

affine nonlinear systems, we can simply set 0=W  (and hence 0~ˆ* === WWW ) when a 

neuron without self-feedback loop is used. Thus, repeating the discussions with 0=W  in 

sections 3.1 and 3.3, we have the following theorem: 
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Theorem 3-2: Suppose the required assumption holds. Consider the plant (3-14) with the 

control law (3-18), where the Hopfield-based DNN controller HDNNu  is given as 

0
1

0
1

ˆ1ˆ1
Θ

−−

Θ Θ−+Θ= ξξ Tt
RC

HDNN

t
RCT

HDNN C
eue

C
u .                (3-50) 

with the adaptive law (3-24). The compensation controller su  is given as (3-28). Then, the 

overall control schemes guarantees that  
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~~
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for ∞<≤ t0 . 

ii) The tracking error e  can be expressed in terms of the lumped uncertainty as 

)(
2

min

220

P
e

λ
µρgV +

≤ .                             (3-30) 

Proof:  Theorem 3-2 can be easily proven by following the proof of Theorem 3-1 under the 

premise that 0~ˆ* ==== WWWW .  Q.E.D. 

From Theorem 3-2, we ascertain that the convergence performance of the Hopfield-based 

DNN without the self-feedback loop can still be guaranteed.  

Next, simulations for the Hopfield-based DNN without the self-feedback loop are 

performed. For Example 3-1, the tracking responses of state 1x  and 2x  are shown in Figs. 

3-7(a) and 3-7(b), respectively. The norms of error vectors, e , for the cases of 

Hopfield-based DNN with and without the self-feedback loop are shown in Fig. 3-8(c). For 

example 3-2, the tracking responses of state 1x , 2x , and 3x  are shown in Figs. 3-8(a), 

3-8(b), and 3-8(c), respectively; Fig. 3-8(d) shows the e  for both cases. From the 

simulation results, we can see that as we expect, a Hopfield-based DNN without the 

self-feedback loop can also result in acceptable tracking performance. However, form Figs. 

3-8(c) and 3-8(d), it can be easily observed that a Hopfield-based DNN with the self-feedback 

loop perform better in the tracking control problem of SISO nonlinear systems. This fact is 

totally opposite to the knowledge that a Hopfield network without the self-feedback loop can 

be used to increase recognition rate in pattern recognition. [68].  
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Fig. 3-7 Simulation results of Example 3-1 using Hopfield-based DNN without the feedback 

loop 
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Fig. 3-8 Simulation results of Example 3-2 using Hopfield-based DNN without the feedback 

loop 
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Chapter 4 

Conclusions and Future Works 
 

 

For decades, many researchers and designers, from such broad areas as aircraft and 

spacecraft control, robotics, process control, and biomedical engineering, have shown an 

active interest in the control problem of nonlinear systems. Among these research efforts, 

adaptive fuzzy control and adaptive NN control have been shown to be powerful and effective 

methodologies for nonlinear control. However, in the control design, the structure 

determination is a difficult task for both FSs and NNs. More specifically, choosing the 

number of fuzzy rules, inherently involving fuzzy partitioning of input and output spaces, can 

greatly affect the approximation capability of fuzzy systems; similarly, the number of neurons 

can be a decisive factor to the performance of NNs.  

In Chapter 2, the proposed self-structuring fuzzy system (SFS) can construct a compact 

fuzzy rule base by automatic rule generation and pruning. The problems of determining the 

fuzzy partitions of input spaces and the number of fuzzy rules are solved simultaneously. The 

provided systematic method can cope with the tradeoff between the approximation accuracy 

and computational load of FS. New rules are generated according to the newly added 

membership functions to adjust the improper fuzzy clustering of the input spaces. 

Insignificant rules with negligible contribution toward the output of FS will be removed after 

a short period. Further, a robust adaptive self-structuring fuzzy control (RASFC) scheme for 

the uncertain or ill-defined nonlinear nonaffine systems is proposed. Some adaptive laws for 

on-line tuning the parameters of fuzzy rules are derived in the Lyapunov sense to realize 

favorable fuzzy approximation. As shown in Chapter 2, the RASFC can achieve a L2 tracking 

performance with arbitrarily attenuation level. This L2 tracking performance can provide a 

clear expression of tracking error in terms of the sum of lumped uncertainty and external 

disturbance, which has not been shown in previous works. Several examples are illustrated to 

show that the RASFC can achieve favorable tracking performance in the presence of external 

disturbance, yet heavy computational burden is relieved. 

In Chapter 3, we propose a direct adaptive control scheme using Hopfield-based dynamic 

neural networks for SISO nonlinear systems. A simple Hopfield-based DNN is used to 

approximate the ideal controller and the synaptic weights Hopfield-based DNN are on-line 
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tuned by adaptive laws. A compensation controller is merged into control law to suppress the 

effect of modeling error and external disturbance. By Lyapunov stability analysis, we prove 

that the closed-loop system is stable, and the tracking error can be attenuated to a desired level. 

Note that no strong assumptions and prior knowledge of the controlled plant are needed in the 

development of DACHDNN. Simulation results demonstrate the effectiveness and robustness 

of the proposed DACHDNN in the presence of external disturbance. The case of 

Hopfield-based neural network without the self-feedback loop is also studied. We show that 

this case has inferior results than those of Hopfield neural network with the self-feedback loop. 

The most important is, for SISO affine nonlinear systems, we propose an adaptive control 

scheme which results in a Hopfield-based DNN containing only one neuron but still maintain 

good tracking performance. The parsimonious structure of the Hopfield-based DNN solve the 

structuring problem of NNs, and the simple Hopfield circuit makes the DACHDNN much 

easier to implement and more reliable in practical purposes. 

Although we have basically solved the control problem of nonlinear systems by the 

fuzzy and NN control schemes with automatic structuring processes, some underlying details 

need to be examined to make the solutions more perfect and practical. The first is the 

universal approximation property of the SFS. It has been proven by many researchers that 

fuzzy systems can approximate any nonlinear function to any desired accuracy because of the 

universal approximation theorem. However, the validness of the universal approximation 

property for a fuzzy system with variable number of rules, such as the proposed SFS, is still 

left to be explored. Although the research results in our work and many other literatures have 

provided strong collateral evidences, a direct and rigorous proof of the universal 

approximation theorem for fuzzy systems with variable structure is indispensable. This will 

be one of our future works. The implementation of the proposed RASFC scheme in a real 

hardware platform is also a problem. Although the concepts of rule pruning and growing are 

quite intuitive and simple; however, it is not an easy task to realize them in hardware.  

On the other hand, in Chapter 3, the parsimonious structure makes the proposed 

DACHDNN scheme has the best chance to be realized in hardware for real world applications. 

However, the proposed DACHDNN scheme Chapter 3 is now only applicable to SISO 

nonlinear systems.  In the future, we will work on extending the research results to the 

MIMO nonlinear systems.  
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