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低功率影像處理電路於腸胃道內視鏡之

研究 

研究生：林盟淳        指導教授：董蘭榮 博士 

國立交通大學電機與控制工程學系(研究所)博士班 

摘要 

對於無線腸胃道內視鏡系統，我們已經成功發展出兩種應用於膠

囊內視鏡或是吞嚥式影像膠囊的極低功率影像壓縮處理器。在無線膠

囊內視鏡系統應用中，平衡壓縮端電池壽命/效能取捨是極為重要

的。取代目前最先進的影像壓縮技術，我們首先提出一套以紅綠藍三

原色為基礎的影像壓縮演算法，簡稱為 GICam-I 且此演算法首先藉由

移除傳統影像壓縮演算法內的解碼賽克(demosaicking)技術與色彩空

間轉換(color-space transform)技術來簡化傳統影像壓縮演算法的計算

複雜度。另外，為了更進一步延長無線腸胃道內視鏡系統壓縮端的電

池使用壽命，我們接著發展出一套改良式、極低功率、以次取樣

(subsample)技術為基礎的影像壓縮演算法，簡稱為 GICam-II。藉由次

取樣技術來改良 GICam-I 演算法的計算負載，根據色彩敏感度分析的

結果，我們成功利用次取樣技術去降低綠色訊號與藍色訊號的記憶體

需求。 
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除了使用極低功率壓縮技術來節省在高解析度無線腸胃道內視

鏡系統的射頻傳輸功率損耗。對於無線/有線腸胃道內視鏡系統，如

何有效消除惱人的脈衝雜訊與強化腸胃道影像的銳利度是必然。為了

克服這些問題，低-高-中(lower-upper-middle, LUM)濾波器是最適當的

候選因為它本身同時具有平滑化與銳利化的能力。在 LUM 濾波器的

運算中，主要運算核心為排序濾波器(rank-order filtering, ROF)計算且

LUM 濾波器需要不同的順序(rank)值來完成平滑化或是銳利化的任

務。因此需要一個有彈性的 ROF 硬體來供任意選擇所需要的順序值

已完成 LUM 濾波器的運算程序且我們已經提出一個以可遮罩式記憶

體為基礎的排序濾波器架構。可遮罩式記憶體結構又稱為雙細胞隨機

存取記憶體(dual-cell random-access memory, DCRAM)是一個伴隨著

可遮罩式暫存器與雙細胞結構的靜態隨機存取記憶體 (static 

random-access memory, SRAM)的延伸變化。本論文是第一個使用可遮

罩式記憶體來實現排序濾波器，藉由一般排序濾波器演算法驅動，以

此記憶體為基礎的硬體架構具有高彈性與高規則性且同時擁有低成

本與高效能之特色。這個架構能夠應用於任意順序的尋找以及包含遞

歸(recursive)或是非遞歸(non-recursive)的排序濾波器之變形。除了針

對腸胃道影像可以消除惱人的脈衝雜訊及增加其影像銳利度外，本論

文所提出的排序濾波器之運算速度也可以應付即時影像處理應用。 
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Abstract

For wireless gastrointestinal endoscope systems, we have successfully developed two

kinds of ultra-low-power image compression processors applied for capsule endoscope or

swallowable imaging capsules. In applications of wireless endoscope systems, it is impera-

tive to balance battery life/performance trade-offs. Instead of applying state-of-the-art im-

age compression techniques, we first proposed an RGB-based compression algorithm, called

GICam-I and it firstly simplified traditional image compression algorithms by removing the

demosaicking technique and the color-space transformation. In addition, to further extend

the battery life in wireless gastrointestinal endoscope systems, another improved ultra-low-

power subsample-based GICam image compression processor, called GICam-II, is proposed.

By using the subsample technique to improve computational loads in the GICam-I, we suc-

cessfully make use of the subsample technique to reduce the memory requirements of G1,

G2 and B components according to the analysis results of color sensitivity.

Except using novel ultra-low-power compression techniques to save the power dissipa-

tion of RF transmitter in high-resolution wireless gastrointestinal endoscope systems. How

to efficiently eliminate annoying impulsive noise caused by a fault sensor and enhance the

sharpness is necessary for gastrointestinal (GI) images in wired/wireless gastrointestinal

endoscope systems. To overcome these problems, the LUM filter is the most suitable can-

didate because it simultaneously has the characteristics of smoothing and sharpening. In

the operational procedure of LUM filter, the mainly operational core is the rank-order

filtering (ROF) and the LUM filter itself needs to use different kind of rank values to ac-

complish the task of smoothing or sharpening. Therefore, we need a flexible ROF hardware

iii



to arbitrarily select wanted rank values into the operation procedure of LUM filter and we

have proposed an architecture based on a maskable memory for rank-order filtering. The

maskable memory structure, called dual-cell random-access memory (DCRAM), is an ex-

tended SRAM structure with maskable registers and dual cells. This dissertation is the

first literature using maskable memory to realize ROF. Driving by the generic rank-order

filtering algorithm, the memory-based architecture features high degree of flexibility and

regularity while the cost is low and the performance is high. This architecture can be

applied for arbitrary ranks and a variety of ROF applications, including recursive and non-

recursive algorithms. Except efficiently eliminating annoying impulsive noises and enhance

sharpness for GI images, the processing speed of ROF can also meet the real-time image

applications.
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1

Introduction

1.1 Research Objective

During the past decades, diseases of the gastrointestinal (GI) tract, such as stomach and

colon cancers, are common in most countries. Most GI cancers can be remedied if they are

diagnosed at their early phase. Current GI endoscopes can be categorized into two major

groups: wired active endoscope systems and wireless passive endoscope systems. Much

works have been studied in the wired active endoscope systems [1, 2, 3, 4, 5, 6]. Modem

fiber-optic based endoscopy made visualization of the whole stomach, upper small intestine

and colon possible. The procedures used to examine them, namely gastroscopy, small-

intestine endoscopy and colonoscopy cause discomfort and pain to the patients because

they require flexible, relatively bulky cables to be pushed into the intestine. These cables

are necessary to carry light by fiber-optic bundles, provide power and transmit video signals.

Small-intestine endoscopy in particular is severely constrained by problems of discomfort

and limitations of how far enteroscopes can be advanced into the small-intestine. Small-

bowel endoscopy in particular is constrained by problems of discomfort and limitations of

how far they can he advanced into the small bowel. There is a clinical need for improved

methods of examining the small bowel and colon, especially in patients with GI bleeding.

Despite all the drawbacks, wired active GI endoscopy is still the most effective and widely

used diagnostic procedure in detecting diseases of the GI tract. Therefore, in order to

1



support the best diagnosis results in clinics, the image enhance plays the most important

key component in wired active endoscope systems.

Although the wired active endoscope systems can enable efficient diagnosis based on

real images and biopsy samples, it causes patients discomfort and pain to push flexible,

relatively bulky cables into the digestive tube. To relief the suffering of patients, wireless

passive endoscope systems are being developed worldwide [7, 8, 9, 10, 11, 12, 13]. How-

ever, based on clinical experience; the wireless passive endoscope system still have some

drawbacks. First, the wireless passive endoscope system cannot control its heading and

moving direction itself. This drawback may cause image oversights and miss a disease.

Second, the resolution of demosaicked image is still low, and some interesting spots may

be unintentionally omitted. The first drawback is the nature of passive endoscopy. Some

papers have presented approaches for the autonomous moving function [14, 15, 16, 17].

Very few papers address the solutions of the second drawback. Increasing resolution may

alleviate the second problem; however, it would result in significant power consumption in

RF transmitter. Hence, applying a image compression technique is necessary for saving

the power dissipation of RF transmitter. Except low resolution problem in the current

wireless passive endoscope systems, the image enhancement also plays another important

issue because the interference of impulsive noise caused by a faulty sensor during image

acquisition and the visual-quality degradation during the lossy image compression process-

ing for decoded GI images. the former can efficiently use the noise reduction technique to

suppress the impulsive noise and the later can also use the sharpening technique to enhance

the edge gradient of a decoded GI image validly.

Therefore, this dissertation mainly focuses on two goals, The first goal is to solve the sec-

ond drawback of the wireless passive capsule endoscope systems, namely the low resolution

for demosaicked GI images. The second goal is to accomplish tasks of image enhancement

using a highly flexible and configurable image processor that has abilities of noise suppres-

sion and sharpness simultaneously and can deal with a full region or particular region in a

GI image.
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1.2 Organization of the Dissertation

The dissertation is organized as follows. In Chapter 2, the wired active endoscopes and

the wireless passive capsule endoscope systems will be introduced in detail. In Chapter 3,

two kinds of ultra-low-power image compression processors are proposed for capsule endo-

scope or swallowable imaging capsules. In applications of capsule endoscopy, it is imperative

to consider battery life/performance trade-offs. Instead of applying state-of-the-art video

compression techniques, Section 3.1 proposes an RGB-based compression algorithm, called

GICam-I. In which the memory size and computational load can be significantly reduced.

this algorithm first simplified traditional video compression algorithms by removing the

demosaicking technique and the color-space transformation. In addition, to further extend

the battery life of capsule endoscope, Section 3.2 quantitatively analyzes the importance

of each primary colors respectively and defines the desired subsample ratios to red, green

and blue signals in a GI image. According to the analysis of color sensitivity in Section 3.2,

Section 3.3 proposes a subsample-based GICam image compressor, called GICam-II. This

GICam-II algorithm firstly make use of the subsample technique to further reduce the

memory requirements in the coding process.

Chapter 4 proposes an architecture based on a maskable memory for rank-order filtering.

This dissertation is the first literature using maskable memory to realize the mainly oper-

ational core of lower-upper-middle (LUM) filtering processor; rank-order filtering (ROF).

Driving by the generic rank-order filtering algorithm, the memory-based architecture fea-

tures high degree of flexibility and regularity while the cost is low and the performance is

high. With the LIW instruction set, this architecture can be applied for arbitrary ranks

and a variety of ROF applications, including recursive and non-recursive algorithms. As

shown in the implementation results, the core of the processor has high performance and

low cost. The post-layout simulation shows that the power consumption can be as low as

7 mW at 256 MHz. Except efficiently eliminate annoying impulsive noises and spot-points

caused by a sensor for a noisy GI image, the processing speed can also meet the real-time

requirement of image applications in the QCIF, CIF, VGA, or SVGA formats. Finally,

Chapter 5 concludes this dissertation and discusses the related future research.
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2

Study on Wired/Wireless

Gastrointestinal Endoscope Systems

During the past decades, diseases of the gastrointestinal (GI) tract, such as stomach

and colon cancers, are common in most countries. Most GI cancers can be remedied if they

are diagnosed at their early phase. There are several methods to detect GI diseases without

adopting intrusive devices into the human body. However, the conventional GI endoscopy

is irreplaceable because it enables diagnosis based on analysis of real images and biopsy

samples. Many research institutions and industries have embarked on the effort to improve

conventional GI endoscopy procedures. Current GI endoscopes can be categorized into two

major groups: wired active endoscope systems and wireless passive endoscope systems.

In Chapter 2, the wired active endoscopes and the wireless passive endoscopes will be

introduced in detail. Through the study in Section 2.1, operations of the wired active gas-

trointestinal(GI) endoscopes will be completely exposed and we can also understand the

advantage and disadvantage obviously for the wired active gastrointestinal(GI) endoscopy.

As the same as Section 2.1, Section 2.2 also do the same thing for wireless passive gastroin-

testinal(GI) endoscopes. Finally, we will clearly indicate problems that should be solved

at the end of chapter 2.
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2.1 Study on A Wired Active Gastrointestinal Endo-

scope System

Fig.2.1 illustrates a wired active gastrointestinal endoscope system and the color image

sensor (CIS) firstly senses primary colors of each pixels through the color filtering array.

The color filtering array can filter three color arrays that include primary colors for a GI

image. Next, a GI image generated by the CIS can pass through the red route and then is

showed on the monitor of Display. A professional doctor can execute the clinic according

to the current GI image shown on the monitor. If the visual quality of current GI image

is good and there is no interference occurs, the current GI image can be stored through

the control of the Photography Requesting. On the contrary, if the doctor want to

diagnose the syndrome in detail, the Syndrome Recognition will announce information

to the Photography Requesting and then the Photography Requesting will control

the Image Enhancement to accomplish the task of syndrome enhancement. The Image

Enhancement can mainly accomplish three kinds of tasks. The first task is the image

smoothing, the second task is the edge enhancement and the third task is the syndrome en-

hancement. The image smoothing mainly eliminates the annoying impulsive noises caused

by the fault sensor. The edge enhancement should efficiently enhance the sharpness of a

GI image and the syndrome enhancement can enhance the syndrome characteristics that

doctors want to diagnose. These tasks all can process in full of regions or a particular

region for a GI image. Due to the data domain in the Image Enhancement is the type

of YCbCr, hence the Color Transform transfers RGB colors into YCbCr values before

starting the Image Enhancement. Finally, the Color Transform will transfer YCbCr

values of results into RGB colors again before displaying on the monitor of Display.

Much works have been studied in the wired active endoscope systems [1, 2, 3, 4, 5, 6].

Modem fiber-optic based endoscopy made visualization of the whole stomach, upper small

intestine and colon possible. The procedures used to examine them, namely gastroscopy,

small-intestine endoscopy and colonoscopy cause discomfort and pain to the patients be-

cause they require flexible, relatively bulky cables to be pushed into the intestine. These

cables are necessary to carry light by fiber-optic bundles, provide power and transmit video
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Figure 2.1. A wired active gastrointestinal endoscope system.

signals. Small-intestine endoscopy in particular is severely constrained by problems of dis-

comfort and limitations of how far enteroscopes can be advanced into the small-intestine.

Small-bowel endoscopy in particular is constrained by problems of discomfort and limita-

tions of how far they can he advanced into the small bowel. There is a clinical need for

improved methods of examining the small bowel and colon, especially in patients with GI

bleeding. Despite all the drawbacks, wired active GI endoscopy is still the most effective

and widely used diagnostic procedure in detecting diseases of the GI tract. Therefore, in

order to support the best diagnosis results in a clinic, the Image Enhancement plays the

most important role in wired active endoscope systems.

2.2 Study on A Wireless Passive Gastrointestinal En-

doscope System

Although the wired active endoscope systems can enable efficient diagnosis based on real

images and biopsy samples, it causes patients discomfort and pain to push flexible, relatively
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bulky cables into the digestive tube. To relief the suffering of patients, wireless passive

endoscope systems are being developed worldwide [7, 8, 9, 10, 11, 12, 13]. In the category

of wireless passive capsule endoscopes, the state-of-the-art is represented by a commercial

wireless capsule endoscope product, the Pillcam (with the previous model named M2A)

capsule [7, 8, 12] developed by an Israeli company, Given Imaging Ltd. The Pillcam capsule

is equipped with a tiny CMOS camera, a wireless transmitter to send out the images,

and a battery cell to power the device. The Pillcam capsule can be swallowed through

the patient’s mouth and it then moves completely passive with the natural peristaltic

movement of the human GI system. Similar designs of wireless passive capsule endoscopes

to the Pillcam capsule were reported by paper [10, 11]. Except the Pillcam, FS System

Lab Company of Japan is developing its own super-micro capsule endoscope code named

Norika [13]. The Norika3 is externally powered and can be controlled via external magnetic

field to move and rotate.

From these state-of-the-art products, the most popular wireless capsule endoscope prod-

uct is still the Pillcam capsule. The Pillcam capsule mainly transmits the GI images at the

resolution of 256-by-256 8-bit pixels and the frame rate of 2 frames/sec (or fps). Because of

its high mobility, it has been successfully utilized to diagnose diseases of the small intestine

and alleviate the discomfort and pain of patients. However, based on clinical experience; the

Pillcam still has some drawbacks. First, the Pillcam cannot control its heading and moving

direction itself and it needs 8 to 24 hours or more to go through the procedure. Since the

movement of the capsule is not controlled, missing diagnosis is possible. This drawback may

cause image oversights and miss a disease. Second, the resolution of demosaicked image is

still low, and some interesting spots may be unintentionally omitted. Especially, the images

will be severely distorted when physicians zoom images in for detailed diagnosis. The first

drawback is the nature of passive endoscopy. Some papers have presented approaches for

the autonomous moving function [14, 15, 16, 17]. Paper [15] proposed a magnetic actuator

for use in a capsule endoscope. This is the first time that an external actuation mechanism

for actively driving a wireless capsule endoscope is reported and the experimental studies

on a dummy capsule were carried out. It uses a permanent magnet inside the capsule and

an external rotational magnetic field to rotate the capsule. With the help of a 1mm high

spiral structure on the outer surface of the capsule, the rotational movement of the capsule
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by the external rotational magnetic field transfers to forward movement of the capsule. The

experimental study was performed on a dummy capsule structure without any endoscope

functions.

Very few papers address the solutions of the second drawback. Increasing resolution

may alleviate the second problem; however, it would result in significant power consump-

tion in RF transmitter. Hence, applying a image compression technique is necessary for

saving the power dissipation of RF transmitter [18, 19]. Although papers [18, 19] can ef-

ficiently propose modified image coding algorithms in applications of wireless GI capsule

endoscopy, these image compression algorithms still dissipate redundant computational-

power because they all require two preprocessing steps that are demosaicking and the color

space transformation before starting the coding process. The demosaicking step requires

weighted sums for color interpolation and the color space transformation requires calcula-

tion of inner products. From the view point of low-power image coding in applications of

wireless GI capsule endoscopy, it is not worth it to dissipate power for both preprocessing

steps as long as the compression quality and ratio are acceptable.

To both overcome the second drawback and balance battery life/performance trade-offs,

Fig.2.2 illustrates the wireless passive endoscope system and this system consists of two

parts, one is encoder and the other is decoder. In the encoder stage, the color image sensor

(CIS) firstly senses a 512×512 color GI image as the Bayer format while color filtering

uses Bayer patterns. Due to save the power dissipation of RF transmitter and keep the

current frame rate of 2 frames/sec (or fps) in the modern specification of these state-of-the-

art products, the compression ratio should be above 4-to-1 in the Image Coding. After

finishing the Image Coding, the Channel Coding encrypts the encoded bit streams to

avoid data loss in the channel of RF transmitting. In the decoder stage, the RF Receiver

receives the encryption datum and then the Channel Decoding restores the encryption

datum while the datum suffer distortion. The Image Decoding decodes the output datum

from the Channel Decoding and the decoded Bayer format is lossy because the Image

Coding and Image Decoding both belong to the lossy image compression procedure.

After accomplishing the task of Image Decoding, the Demosaicking uses weighted sum

for color interpolation and generates a demosaicked GI image. Next, a demosaicked GI
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image generated by the CIS can pass through the red route and then is showed on the

monitor of Display. A professional doctor can execute the clinic according to the current

GI image shown on the monitor. If the visual quality of current GI image is good and

there is no interference occurs, the current GI image can be stored through the control

of the Photography Requesting. On the contrary, if the doctor want to diagnose the

syndrome in detail, the Syndrome Recognition will announce information to the Pho-

tography Requesting and then the Photography Requesting will control the Image

Enhancement to accomplish the task of syndrome enhancement. The Image Enhance-

ment can mainly accomplish three kinds of tasks. The first task is the image smoothing,

the second task is the edge enhancement and the third task is the syndrome enhancement.

The image smoothing mainly eliminates the annoying impulsive noises caused by the fault

sensor. The edge enhancement should efficiently enhance the sharpness of a GI image be-

cause the visual-quality degradation during the lossy image compression processing and

the syndrome enhancement can enhance the syndrome characteristics that doctors want

to diagnose. These tasks all can process in full of regions or a particular region for a GI

image. Due to the data domain in the Image Enhancement is the type of YCbCr, hence

the Color Transform transfers RGB colors into YCbCr values before starting the Image

Enhancement. Finally, the Color Transform will transfer YCbCr values of results into

RGB colors again before displaying on the monitor of Display.

Chapter 3 will propose two kinds of ultra-lower-power image coding algorithm to solve

the problem of low resolution for wireless GI capsule endoscopy systems in detail and

Chapter 4 will propose a highly flexible and configurable non-linear filtering hardware

to accomplish the task of image enhance according to demands of users for wired active

endoscope systems and wireless passive endoscope systems.
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Figure 2.2. A wireless passive gastrointestinal endoscope system.
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3

Encoder for Wireless Gastrointestinal

Endoscopy

In this chapter, two kinds of ultra-low-power image compression processors are pro-

posed for capsule endoscope or swallowable imaging capsules. In applications of capsule

endoscopy, it is imperative to consider battery life/performance trade-offs. Instead of ap-

plying state-of-the-art video compression techniques, we first propose an RGB-based com-

pression algorithm, called GICam-I. In which the memory size and computational load can

be significantly reduced. We first simplified traditional image compression algorithms by

removing the demosaicking technique and the color-space transformation. In addition, to

further extend the battery life of capsule endoscope, we herein present a subsample-based

GICam image compressor, called GICam-II. The GICam-II firstly make use of the subsam-

ple technique to further reduce the memory requirements of G1, G2 and B components in

the coding process according to the analysis results of color sensitivity.
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3.1 The RGB-based GICam Image Compression Al-

gorithm (GICam-I)

Fig.3.1 illustrates the system diagram of the proposed capsule endoscope. We attached

an ultra-low-power image compressor to the CMOS sensor to deliver a compressed 512×512

image. The compression ratio is above 4-to-1 such that the frame rate can be 2 frames per

second (fps) when the wireless transmission rate is at 0.5 megabits per second. To reduce

the buffer size between the CMOS sensor and the image compressor, the scanline controller

is dedicated to scan out R, G1, G2, and B signals in a certain order.

Traditional image compression algorithms use the optimized quantization for YCbCr

image to reduce compressed image size while the visual distortion is low. In order to quan-

tize YCbCr image, the typical image compression requires two preprocessing steps that are

demosaicking and the color space transformation. However, the demosaicking step requires

weighted sums for color interpolation and the color space transformation requires calcu-

lation of inner products. From the view point of GICam, it is not worth it to dissipate

power for both preprocessing steps as long as the compression quality and ratio are accept-

able. Hence, Fig.3.2 illustrates the power saving on the GICam image compressor, called

GICam-I. First of all, the GICam-I directly processes raw images without demosaicking and

color space transform. For a 512×512 image, when using the Bayer format, the image has

512×512 Bayer patterns. Fig.3.3 shows the Bayer patterns in the CMOS image sensor. So,

the incoming image size to the 2D-DCT is 256×256×8×4 bits, where each pixel is an 8-bit

datum and each of R, G1, G2, and B components has 256×256 pixels. Since the image size

after preprocessing in the traditional algorithm is 512×512×8×3 bits, the computational

load of 2D-DCT and quantization is reduced by the factor of 3.

Traditional compression algorithms employ the YCbCr quantization to earn a good

compression ratio while the visual distortion is minimized, based on the factors related to

the sensitivity of the human visual system (HVS). However, for the sake of power saving, our

compression rather uses the RGB quantization [21] to save the computation of demosaicking

and color space transformation. As mentioned above, the advantage of applying RGB
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Figure 3.1. The system structure of GICam. (1: Len; 2,3: LEDs; 4: CMOS sensor; 5:

Image compressor; 6: Scanline controller; 7: Battery; 8: RF transmitter; 9: Antenna.

quantization is two-fold: saving the power dissipation on preprocessing steps and reducing

the computing load of 2D-DCT and quantization. Moreover, to reduce the hardware cost

and quantization power dissipation, we modified the RGB quantization tables in [21] as

shown in Fig.3.4 and the quantization multipliers are power-of two’s. In GICam-I, the

Lempel-Ziv (LZ) coding [24] is employed for the entropy coding. The reason why we

adopted the LZ coding as the entropy coding is that the LZ encoding does not need look-

up tables and complex computation. Thus, the LZ encoding can consume less power and

use smaller silicon size than the other candidates, such as the Huffman encoding and the

arithmetic coding. The target compression performance of the GICam-I is to reduce image

size by 75% at least. To meet the specification, given the quantization tables, we exploited

the cost-optimal LZ coding parameters. There are two parameters in the LZ coding to

be determined; they are the window size, w, and the maximum matching length, l. As

seen in Fig.3.5, simulating with twelve endoscopic pictures shown in Fig.3.7, (64, 16) is

the minimum (w, l) set to meet the compression ratio requirement by simulating with 12

endoscopic pictures.

When comparing the proposed image compression with the traditional one in paper

[20], the power dissipation of GICam-I can save 98.2% because of the reduction of memory

requirement. However, extending the utilization of battery life for a capsule endoscope is

still an very important issue. According to the power analysis generated by PrimePowerTM ,

the total power dissipation of GICam-I is 14.92 mW while operating at 1.8 V, in which, the

power consumption of logic part is 5.52 mW, and the memory blocks generated by Artisan
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Figure 3.2. (a) A typical image compression algorithm. (b) The GICam-I image compres-

sion algorithm.

G2
R

G2
R

G1
B

G1
B

R
G2
R

G2

G1
B

G1
B

R
G2
R

G2

G1
B

G1
B

R
G2
R

G2

G2
R

R

G1
B

G1

R
G2
R

G1
B

G1

R
G2
R

G1
B

G1

R
G2
R

G2B G2 B G2 B G2

512

512A unit of Bayer pattern

Figure 3.3. The Bayer patterns in the raw image.

14



2562562561281281286464

256128128128128646464

1281281286464643232

128128646432323216

12864643216161616

12864323216161616

6464323216161616

6432321616161616

R quantization table

102410241024512512512256256

1024512512512256256256128

512512512256256128128128

5125122562561286412864

51225625612864646432

5122561286432323232

2561281286464323232

128128646432323232

B quantization table

128128128128128646464

128128646464323232

6464646432321632

6464643232321616

646432323216816

64323216168816

323216161681616

3232321616161616

G quantization table
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Figure 3.5. The simulation results of the GICam-I image compression.
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memory compiler consume 9.40 mW. Fig.3.6 illustrates the chip layout of the GICam image

compressor. The memory access dissipates the most power in GICam-I. Therefore, in order

to achieve the target of expending the battery life, how to further reduce the memory access

is necessary.

Technology TSMC 0.18um 1P6M

Power Supply / 
Temperature  

1.8V / 25  C 

Chip Size 1255.24 1257.93 m2

Core Size 624.96 627.45 m2

Figure 3.6. The chip layout of the GICam-I image compressor.
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3.2 The Analysis of Sharpness Sensitivity In Gastroin-

testinal Images

From the Section 3.1, the ultra-low-power GICam-I image compressor has been suc-

cessfully presented for wireless capsule endoscope. It helps the endoscope can deliver a

compressed 512-by-512 image while the RF transmission rate is at 0.5 megabits per second.

In applications of capsule endoscopy, it is imperative to consider battery life/performance

tradeoffs. To further extend the battery life of capsule endoscope, we herein present a

subsample-based GICam image compressor, called GICam-II. The proposed compression

technique is motivated by the reddish feature of GI image. In order to select the desired

subsample ratios to red, green and blue signals in a GI image, Subsection 3.2.1, Subsec-

tion 3.2.2 and Subsection 3.2.3 quantitatively analyze the importance of each primary colors

respectively. As per the analysis of color sensitivity, the sensitivity of GI image sharpness

to red component is at the same level as the sensitivity to green component. This result

shows that the GI image is cardinal and different from the general image, whose sharpness

sensitivity to green component is much higher than the sharpness sensitivity to red com-

ponent. Because the GICam-II starts compressing the GI image from the Bayer-patterned

image, the GICam-II technique subsamples the green component to make the weighting of

red and green components the same. Besides, since the sharpness sensitivity to blue compo-

nent is as low as 7%, the blue component is down-sampled by four. Next, Subsection 3.2.1,

Subsection 3.2.2 and Subsection 3.2.3 will describe the analysis of color sensitivity in detail.

3.2.1 The Distributions of Primary Colors In The RGB Color

Space

In the modern color theory [22, 23], most color spaces in used today are oriented either

toward hardware design or toward product applications. Among these color spaces, the

RGB(red, green, blue) space is the most commonly used in the category of digital image

processing; especially, broad class of color video cameras and we consequently adopt the

RGB color space to analysis the importance of primary colors in the GI images. In the
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RGB color space, each color appears in its primary spectral components of red, green, and

blue. The RGB color space is based on a Cartesian coordinate system and is the cube

shown in Fig.3.8. In which, the differ colors of pixels are points on or inside the cube based

on the triplet of values (R, G, B).

In this work, we applied twelve tested GI images shown in Fig.3.7 for testcases to

evaluate the compression technique. As seen in Fig.3.9 and Fig.3.10, the distribution of GI

image pixels in the RGB color space is non-uniformed. Obviously, the GI image is reddish

and the pixels are amassed to the red region. Based on the observation in the RGB color

space, most red values are distributed between 0.5 and 1 while most green and blue values

are distributed between 0 and 0.5 for all tested GI images.

#1 #2 #3 #4

#5 #6 #7 #8

#9 #10 #11 #12

Figure 3.7. The twelve tested GI images.

To further analyze the chrominance distributions and variations in the RGB color space

for each tested GI images, two quantitative indexes are used to quantify these effects. The
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Figure 3.8. The RGB color space.

first index is to calculate the average distances between total pixels and the maximum

primary colors in each GI image and the formulas are formulated as Eq.3.2.1, Eq.3.2.2 and

Eq.3.2.3. First, Eq.3.2.1 defines the the average distance between total pixels and the most

red color (R), in which, R(i, j) means the value of red component of one GI image at (i, j)

position and the value of most red color (Rmax) is 255. In addition, M and N mean the

width and length for one GI image, respectively. In which, the M and the N are 512. Next,

Eq.3.2.2 also defines the average distance between total pixels and the most green color

(G) and the value of most green one (Gmax) is 255. Finally, Eq.3.2.3 defines the average

distance between total pixels and the most blue color (B) and the value of most blue color

(Bmax) is 255. Table 3.1 shows the statistical results of R, G and B for all tested GI images.

From Table 3.1, the results clearly show that R is the shortest average distance than G and

B. Therefore, human eyes can be very sensitive to the obviously cardinal ingredient on all

surfaces of tested GI images. Moreover, comparing G with B, G is shorter than B because

G contributes larger proportion in luminance.

R = E[(1 − R(i,j)
Rmax

)]

= ( 1
M×N

)
M−1
∑

i=0

N−1
∑

j=0

(1 − R(i,j)
Rmax

)
(3.2.1)

G = E[(1 − G(i,j)
Gmax

)]

= ( 1
M×N

)
M−1
∑

i=0

N−1
∑

j=0

(1 − G(i,j)
Gmax

)
(3.2.2)
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(e) (f)

Figure 3.9. (a) The RGB color space distribution for 1st tested GI image. (b) The RGB

color space distribution for 2nd tested GI image. (c)The RGB color space distribution

for 3rd tested GI image. (d) The RGB color space distribution for 4th tested GI image.

(e) The RGB color space distribution for 5th tested GI image. (f) The RGB color space

distribution for 6th tested GI image.

20



(a) (b)

(c) (d)

(e) (f)

Figure 3.10. (a) The RGB color space distribution for 7th tested GI image. (b) The RGB

color space distribution for 8th tested GI image. (c)The RGB color space distribution for

9th tested GI image. (d) The RGB color space distribution for 10th tested GI image. (e)

The RGB color space distribution for 11th tested GI image. (f) The RGB color space

distribution for 12th tested GI image.
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B = E[(1 − B(i,j)
Bmax

)]

= ( 1
M×N

)
M−1
∑

i=0

N−1
∑

j=0

(1 − B(i,j)
Bmax

)
(3.2.3)

Table 3.1. The analysis of average distance.

Average Distance

Test Picture ID R G B

1 0.58 0.80 0.82

2 0.55 0.74 0.79

3 0.54 0.81 0.86

4 0.55 0.76 0.81

5 0.66 0.82 0.85

6 0.66 0.84 0.87

7 0.59 0.82 0.88

8 0.68 0.81 0.83

9 0.55 0.80 0.85

10 0.53 0.81 0.84

11 0.53 0.81 0.86

12 0.62 0.80 0.85

Average 0.59 0.80 0.84

The first index has been particularly quantified the chrominance distributions through

the concept of average distance and the statistical results have also been shown that the

reason why the human eye can sense the obviously cardinal ingredient for all tested GI

images. Next, the second index is to calculate the variance between total pixels and average

distance in order to further observe the color variations in GI images and the formulas

are formulated as Eq.3.2.4, Eq.3.2.5 and Eq.3.2.6. The Table 3.2 shows that the average

variation of red signal is 0.09, the average variance of green one is 0.03, and the average

variance of blue one is 0.02. It signifies that the color information of red signal needs to be

preserved carefully more than another two primary colors; green and blue for GI images

because the dynamic range of red signal is broader than green and blue ones. In addition,
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The secondary is green signal and the last is blue signal.

V ARR = E[(1 − R(i,j)
Rmax

)2] − {E[(1 − R(i,j)
Rmax

)]}2

= ( 1
M×N

)
M−1
∑

i=0

N−1
∑

j=0

[1 − R(i,j)
Rmax

]2−

[( 1
M×N

)
M−1
∑

i=0

N−1
∑

j=0

(1 − R(i,j)
Rmax

)]2

(3.2.4)

V ARG = E[(1 − G(i,j)
Gmax

)2] − {E[(1 − G(i,j)
Gmax

)]}2

= ( 1
M×N

)
M−1
∑

i=0

N−1
∑

j=0

[1 − G(i,j)
Gmax

]2−

[( 1
M×N

)
M−1
∑

i=0

N−1
∑

j=0

(1 − G(i,j)
Gmax

)]2

(3.2.5)

V ARB = E[(1 − B(i,j)
Bmax

)2] − {E[(1 − B(i,j)
Bmax

)]}2

= ( 1
M×N

)
M−1
∑

i=0

N−1
∑

j=0

[1 − B(i,j)
Bmax

]2−

[( 1
M×N

)
M−1
∑

i=0

N−1
∑

j=0

(1 − B(i,j)
Bmax

)]2

(3.2.6)

3.2.2 The Analysis of Sharpness Sensitivity to Primary Colors

for Gastrointestinal Images

Based on the analysis of RGB color space, the importance of chrominance is quanti-

tatively demonstrated for GI images. Expect the chrominance, the luminance is another

important index because it can efficiently represent a sharpness of object. Eq.3.2.7 is the

formula of luminance (Y) and the parameters ; a1, a2 and a3 are 0.299, 0.587 and 0.114

respectively.

Y = a1 × R + a2 × G + a3 × B (3.2.7)

To efficiently analyze the importance of primary colors in the luminance, the analysis of

sensitivity is applied. Through the analysis of sensitivity, the variation of luminance can

actually reflect the influence of each primary colors. Eq.3.2.8, Eq.3.2.9 and Eq.3.2.10 define

23



Table 3.2. The analysis of variance.

Variance of Distance

Test Picture ID V ARR V ARG V ARB

1 0.08 0.02 0.02

2 0.11 0.05 0.03

3 0.10 0.03 0.02

4 0.10 0.04 0.02

5 0.07 0.02 0.01

6 0.08 0.02 0.01

7 0.09 0.02 0.01

8 0.06 0.02 0.02

9 0.09 0.03 0.01

10 0.10 0.03 0.02

11 0.10 0.03 0.02

12 0.10 0.04 0.02

Average 0.09 0.03 0.02

the sensitivity of red (S
Ri,j

Yi,j
), the sensitivity of green (S

Gi,j

Yi,j
) and the sensitivity of blue (S

Bi,j

Yi,j
)

at position (i,j) respectively for a color pixel of a GI image.

S
Ri,j

Yi,j
=

∆Yi,j/Yi,j

∆Ri,j/Ri,j
=

Ri,j

Yi,j
×

∆Yi,j

∆Ri,j
=

a1×Ri,j

Yi,j (3.2.8)

S
Gi,j

Yi,j
=

∆Yi,j/Yi,j

∆Gi,j/Gi,j
=

Gi,j

Yi,j
× ∆Yi

∆Gi,j
=

a2×Gi,j

Yi,j (3.2.9)

S
Bi,j

Yi,j
=

∆Yi,j/Yi,j

∆Bi,j/Bi,j
=

Bi,j

Yi,j
× ∆Yi

∆Bi,j
=

a3×Bi,j

Yi,j (3.2.10)

After calculating the sensitivity of each primary colors for a GI image, the average sen-

sitivity of red (SR
Y ), the average sensitivity of green (SG

Y ) and the average sensitivity of

blue (SB
Y ) are calculated by Eq.3.2.11, Eq.3.2.12 and Eq.3.2.13 for each GI images. Where,

M and N means the width and length for a GI image, respectively. Table 3.3 shows the
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average sensitivities of red, green and blue for all tested GI images. From the calculational

results, the sensitivity of blue is slightest and hence the variation of luminance arising from

the aliasing of blue is very invisible. In addition to the sensitivity of blue, the sensitivity

of red is close to the one of green and thus they both have the very close influence on the

variation of luminance.

SR
Y = ( 1

M×N
)

M−1
∑

i=0

N−1
∑

j=0

S
Ri,j

Yi,j
(3.2.11)

SG
Y = ( 1

M×N
)

M−1
∑

i=0

N−1
∑

j=0

S
Gi,j

Yi,j
(3.2.12)

SB
Y = ( 1

M×N
)

M−1
∑

i=0

N−1
∑

j=0

S
Bi,j

Yi,j
(3.2.13)

To sum up the variance of chrominance and the sensitivity of luminance, the blue is

Table 3.3. Sensitivities of red, green and blue for all tested GI images.

The sensitivity of primary colors in luminance

Test Picture ID SR
Y SG

Y SB
Y

1 0.49 0.43 0.08

2 0.44 0.48 0.08

3 0.55 0.39 0.06

4 0.47 0.46 0.07

5 0.45 0.47 0.08

6 0.48 0.45 0.07

7 0.52 0.42 0.06

8 0.44 0.48 0.08

9 0.51 0.43 0.06

10 0.54 0.40 0.06

11 0.55 0.39 0.06

12 0.49 0.44 0.07

Average 0.49 0.44 0.07

the most insensitive color in the GI images. Therefore, the blue component can be fur-

ther downsampled without significant sharpness degradation. Moreover, comparing the red
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signal with the green signal, they both have the very close influence on the variation of

luminance because of both having very close sensitivities. However, the chrominance of red

varies more violent than the chrominance of green and hence the information complete-

ness of red has higher priority than the green. Due to the proposed compression coding

belongs to the DCT-based image coding, the coding is processed in the spatial-frequency

domain. To let the priority relationship between red and green also response in the spatial-

frequency domain, the analysis of alternating current (AC) variance will be accomplished

to demonstrate the inference mentioned above in the next subsection.

3.2.3 The Analysis of AC Variance In The 2-D DCT Spatial Fre-

quency Domain For Gastrointestinal Images

According to the analysis results from the distributions of primary colors in the RGB

color space and the proportion of primary colors in the luminance for GI images, the red

signal plays a decisive role in the raw image. The green signal plays a secondary role and

the blue signal is very indecisive. To verify the validity of observation mentioned above, we

first use the two-dimensional (2-D) 8×8 discrete cosine transform (DCT) to transfer the

spatial domain into the spatial-frequency domain for each of R, G1, G2 and B components.

The 2-D 8×8 DCT transformation can be view as the process of finding for each waveform

in the 2-D 8×8 DCT basic functions and also can be formulated as Eq.3.2.14, Eq.3.2.15,

Eq.3.2.16, Eq.3.2.17 and Eq.3.2.18 for each 8×8 block in R, G1, G2 and B subimages

respectively. Where, M and N mean the width and length for one GI image respectively.

k, l=0, 1, ..., 7 and ykl is the corresponding weight of DCT basic function in the kth row

and the lth column. P means the total number of pictures and B means the total number

of 8×8 blocks in a GI images.

Rpb(kl) = c(k)
2

7
∑

i=0

[ c(l)
2

7
∑

j=0

rijcos(
(2j+1)lπ

16
)]cos( (2i+1)kπ

16
) (3.2.14)

Gpb(kl) = c(k)
2

7
∑

i=0

[ c(l)
2

7
∑

j=0

gijcos(
(2j+1)lπ

16
)]cos( (2i+1)kπ

16
) (3.2.15)

Bpb(kl) = c(k)
2

7
∑

i=0

[ c(l)
2

7
∑

j=0

bijcos(
(2j+1)lπ

16
)]cos( (2i+1)kπ

16
) (3.2.16)
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c (k) =







1√
2
, if k = 0

1, otherwise.
(3.2.17)

c (l) =







1√
2
, if l = 0

1, otherwise.
(3.2.18)

Next, we also calculate the average energy amplitude of all alternating current (AC)

coefficients of all tested GI images in order to particularity observe the variation of energy

for each of R, G1, G2 and B components and the calculations are formulated as Eq.3.2.19,

Eq.3.2.20, Eq.3.2.21.

AR(kl) = 1
P

P
∑

p=1

[
B−1
∑

b=0

|Rpb(kl)|] (3.2.19)

AG(kl) = 1
P

P
∑

p=1

[
B−1
∑

b=0

|Gpb(kl)|] (3.2.20)

AB(kl) = 1
P

P
∑

p=1

[
B−1
∑

b=0

|Bpb(kl)|] (3.2.21)

After calculating the average energy amplitude, we convert the 2-D DCT domain into the

one-dimensional (1-D) signal distribution in order to conveniently observe the variation of

frequency. Consequently, a tool to transform two-dimensional signals into one dimension

is needed. There are many schemes to convert 2-D into 1-D, including row-major scan,

column-major scan, peano-scan, and zig-zag scan. Almost all the DCT coding schemes

adopt zigzag scan to accomplish the goal of conversion, and we use it here. The benefit of

zig-zag is its property of compacting energy to low frequency regions after discrete cosine

transformation. The arrangement sorts the coefficients from low to high frequency and

Fig.3.11(a) the shows the zig-zag scanning order for 8×8 block. Fig.3.11(b) shows the 1-D

signal distribution after Zigzag scanning order and Fig.3.11(c) shows the symmetric type

of frequency for the 1-D signal distribution.

Through the converting method of Fig.3.11, the 1-D signal distributions of each R, G1,

G2, B components are shown in Fig.3.12. The variances of frequency are 1193, 1192, 1209

and 1244 for G1, G2, R and B respectively and the variance of R are very close to the ones
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Frequency

Frequency

Figure 3.11. (a) zig-zag scanning for 8×8 block. (b) 1-D signal distribution after zig-zag

scanning order. (c) The symmetric type of frequency for the 1-D signal distribution.
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Figure 3.12. (a) Spatial-frequency distribution converting into one-dimension for g1. (b)

Spatial-frequency distribution converting into one-dimension for g2. (c) Spatial-frequency

distribution converting into one-dimension for r. (d) Spatial-frequency distribution con-

verting into one-dimension for b.

of G1 and G2 from the result. However, the datum of G are twice the datum of R based

on the Bayer pattern and hence the datum of G can reduce half at most.

Based on the analysis result mentioned above, the R component is very decisive for GI

images and it needs to be compressed completely. However, the G1, G2 and B components

do not need to be compressed completely because their importance are less than the R com-

ponent. Therefore, in order to efficiently reduce the memory access to expend the battery

life of capsule endoscopy, the datum of G1, G2 and B components should be appropriately

decreased according to the proportion of their importance before the compression process.

We successfully propose a subsample-based GICam image compression algorithm, called

GICam-II and this proposed algorithm firstly uses the subsample technique to reduce the

incoming datum of G1, G2 and B components before compression process. Section 3.3 will

describe the proposed algorithm in detail.
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3.3 The Subsample-Based GICam Image Compres-

sion Algorithm (GICam-II)

Fig.3.13 illustrates the GICam-II compression algorithm. For a 512×512 raw image, the

raw image firstly divides into four parts, namely, R, G1, G2, B components and each of R,

G1, G2, and B components has 256×256 pixels. For the R component, the incoming image

size to the 2D-DCT is 256×256×8 bits, in which, the incoming image datum are completely

compressed because of the importance itself in GI images. Except the R component, the

Raw Image

R

G1

G2

B

2:1
Subsample

2:1
Subsample

4:1
Subsample

2-D
4-by-4
DCT

Entropy
Coding

Compression
Image For G1

2-D
4-by-4
DCT

Entropy
Coding

Compression
Image For G2

Non-compression
Image For B

2-D
8-by-8
DCT

Entropy
Coding

Compression
Image For R

4-by-4
Quantization

G-table

4-by-4
Quantization

G-table

Quantization
R-table

4-by-4
Zig-Zag

Scan

4-by-4
Zig-Zag

Scan

8-by-8
Zig-Zag

Scan

Figure 3.13. The GICam-II image compression algorithm.

GICam-II algorithm can use the appropriate subsample ratio to pick out the necessary

image pixels into the compression process for G1, G2 and B components and Eq.3.3.22 and

Eq.3.3.23 are formulas for the subsample technique. Where, SM16:2m is the subsample mask

for the subsample ratio 16-to-2m as shown in Eq.3.3.22 and the subsample mask SM16:2m

is generated from basic mask as shown in Eq.3.3.23. The type of subample direction is

block-based, when certain of positions in the subsample mask are one, their pixels in the

same position will be compressed, otherwise they are not processed. For the G1 and G2

components, the low subsample ratio needs to be assigned because of considering their

secondary importance in GI images. Thus, the 2:1 subsample ratio is the candidate one

and the subsample pattern is shown in Fig.3.14 (a). Finally, for the B component, the 4:1

subsample ratio is assigned and the subsample pattern is shown in Fig.3.14 (b). In the

GICam-II image compression algorithm, the 8×8 2D-DCT is still used to transfer the R
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component. However, the 4×4 2D-DCT is used for G1 and G2 components because the

incoming datum are reduced by subsample technique. Moreover, the G quantization table

is also further modified and shown in the Fig.3.15. Finally, the B component is directly

transmitted; not be compressed, after extremely decreasing the incoming datum. Due

to non-compression for the B component, the 8×8 and 4×4 Zig-Zag scanning techniques

are added into the GICam-II to further increase the compression rate for R, G1 and G2

components before entering the entropy encoding. In the GICam-II, the Lempel-Ziv (LZ)

coding [24] is also employed for the entropy coding because of non-look-up tables and low

complex computation.

SM16:2m (i, j) = BM16:2m (i mod 4, j mod 4)

m = 1, 2, 3, 4, 5, 6, 7, 8. (3.3.22)

BM16:2m =
















u (m − 1) u (m − 5) u (m − 2) u (m − 6)

u (m − 7) u (m − 3) u (m − 8) u (m − 4)

u (m − 2) u (m − 5) u (m − 1) u (m − 6)

u (m − 7) u (m − 3) u (m − 8) u (m − 4)

















where u(n) is a step function,u (n) =







1, for n ≥ 0

0, for n < 0.

(3.3.23)

Figure 3.14. (a) 2:1 subsample pattern. (b) 4:1 subsample pattern.
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Figure 3.15. (a)The modified R quantization table. (b) The modified G quantization table.

3.4 Experimental Results

In Section 3.3, we have particularly introduced how to efficiently decrease the incoming

datum with the subsmaple technique in the GICam-II compression algorithm and then the

GICam-II compressor will be experimentally analyzed the performance about the compres-

sion rate, the quality degradation and the ability of power saving.

3.4.1 The Analysis of Compression Rate for Gastrointestinal Im-

ages

There are twelve GI images are tested and shown in the Fig.3.7. First of all, the target

compression performance of the GICam-II image compression is to reduce image size by

75% at least. To meet the specification, we have to exploit the cost-optimal LZ coding

parameters. There are two parameters in the LZ coding to be determined; they are the

window size, w, and the maximum matching length,l. The larger the parameters, the higher

the compression ratio but the higher the implementation cost. In addition, there are two

kinds of LZ codings in the GICam-II compressor, one is R(w, l) for R component and the

other is G(w, l) for G1 and G2 components. We set the values of parameters by using the

compression ratio of 4:1 as the threshold. Our goal is to determine the minimum R(w, l)
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and G(w, l) sets under the constraint of 4:1 compression ratio.

The compression ratio (CR) is defined as the ratio of the raw image size to the com-

pressed image size and formulated as Eq.3.4.24. The measure of the compression ratio is

the compression rate. The formula of the compression rate is calculated by Eq.3.4.25. The

results in Fig.3.16 are shown by simulating the behavior model of GICam-II compressor;

it is generated by MATLAB. As seen in Fig.3.16, simulating with 12 endoscopic pictures,

(32, 32) and (16, 8) are the minimum R(w, l) and G(w, l) sets to meet the compression

ratio requirement.

Compression Ratio (CR) = bits before compression
bits after compression

(3.4.24)

Compression Rate = (1 − CR−1) × 100% (3.4.25)
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Figure 3.16. The simulation results of the GICam-II image compression.
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3.4.2 The Analysis of Compression Quality for Gastrointestinal

Images

Using (32, 32) and (16, 8) as the parameter sets, in Table 3.4, we can see the performance

in terms of the quality degradation and compression ratio. The measure of compression

quality is the peak signal-to-noise ratio of luminance (PSNRY). The calculation of PSNRY

is formulated as Eq.3.4.26. Where MSE is the mean square error of decompressed image

and is formulated as Eq.3.4.27. In Eq.3.4.27, αij is the luminance value of original GI

image and βij is the luminance value of decompressed GI image. The result shows that the

degradation of decompressed images is quite low while the average PSNRY is 40.73 dB.

According to the objective criterion of gastroenterology doctors, the PSNRY higher than 38

dB is acceptable. To demonstrate the results, Fig.3.17 illustrates the compression quality

of decoded test pictures. The difference between the original image and the decompressed

image is invisible.

In addition, five professional gastroenterology doctors in the Division of Gastroenterol-

ogy, Taipei Medical University Hospital are invited to verify whether the qualities of these

decoded image quality are suitable for practical diagnosis and they are Dr. Shiann Pan,

Dr. Jean-Dean Liu, Dr. Chun-Chao Chang, Dr. Jen-Juh Wang and Dr. Lou-Horng Yuan

individually. The method of evaluation is shown in Table 3.5. The score between 0 and 2

means that the diagnosis is affected, The score between 3 and 5 means that the diagnosis

is slightly affected and the score between 6 and 9 means that the diagnosis is not affected.

According to the evaluation results of Fig.3.18, all decoded GI images are very suitable

for practical diagnosis because of high evaluation score and the diagnoses are absolutely

not affected except the 5th and 8th decoded images. The degree of diagnoses are between

no affection and extremely slight affection for the 5th and the 8th decoded images. This

is because two doctors subjectively feel their diagnoses are slightly affected. However,

these two decoded images are not mistook in diagnosis completely for these professional

gastroenterology doctors.

PSNRY = 10log10(
2552

MSE
) (3.4.26)
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MSE = ( 1
M×N

)
M−1
∑

i=0

N−1
∑

j=0

(αij − βij)
2 (3.4.27)

Table 3.4. The simulation results of twelve tested GI images.

Test Picture ID PSNRY Compression rate

(dB) (%)

1 40.76 82.36

2 41.38 82.84

3 39.39 80.62

4 38.16 79.70

5 42.56 84.25

6 41.60 83.00

7 41.03 82.74

8 43.05 84.63

9 40.21 82.11

10 40.36 81.84

11 39.39 80.66

12 40.85 82.60

Average 40.73 82.28

Table 3.5. The score of evaluation.

Score Description

0 ∼ 2 diagnosis is affected

3 ∼ 5 diagnosis is slightly affected

6 ∼ 9 diagnosis is not affected

3.4.3 The Implementation and The Analysis of Power Saving

Fig.3.19 shows the architecture of the GICam-II image compressor. The GICam-II

image compressor processes the image in the order of G1, R, G2 and B. Because the data
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Figure 3.17. Demosaicked GI images.

stream from the image sensor is block-based, the GICam-II image compressor requires

intermediate memory units to hold each block of data. To validate the GICam-II image

processor, we used the FPGA board of Altera APEX 2100 K to verify the function of the

GICam-II image processor and the prototype is shown in Fig.3.20. After FPGA verification,

we used the TSMC 0.18 µm 1P6M process to implement the GICam-II image compressor.

When operating at 1.8 V, the power consumption of logic part is 3.88 mW, estimated

by using PrimePowerTM . The memory blocks are generated by Artisan memory compiler

and consume 5.29 mW. The total power consumption is 9.17 mW for the proposed design.

When comparing the proposed GICam-II image compressor with GICam-I one in Table 3.6,

the power dissipation can further save 38.5% under the approximate condition of quality

degradation and compression ratio because of the reduction of memory requirement for G1,

G2 and B components.
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Figure 3.18. The evaluation results of professional gastroenterology doctors.
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Figure 3.19. The GICam-II image compressor.
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Figure 3.20. The FPGA prototype of the GICam-II image compressor.

Table 3.6. The comparisons of performance.

Compression JPEG GICam-I GICam-II

algorithm image compressor [20] image compressor

Average

PSNRY 46.37 dB 41.99 dB 40.73 dB

Average

compression 82.20% 79.65% 82.28%

rate

Average

power 876 mW 14.92 mW 9.17 mW

dissipation
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