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Image Enhancement for

Gastrointestinal Endoscopy

In Chapter 3, the low-power image encoders have been successfully proposed for gas-

trointestinal(GI) endoscopes. GI images shot can be encoded and then transmitted to the

storage device through the RF transmitter for the treatment of a patient. A encoded bit-

stream can be decoded and restored a color image using the color interpolation technique

before a professional doctor begins to diagnose. All decoded GI images can be very suitable

for practical diagnosis according to analysis results of Subsection 3.4.2; however, these de-

coded GI images could be further accomplished the assignment of image enhancement due

to the interference of impulsive noise caused by a faulty sensor during image acquisition and

the visual-quality degradation during the lossy image compression processing. the former

can efficiently use the noise reduction technique to suppress the impulsive noise and the

later can also use the sharpness technique to enhance a edge gradient of decoded GI image

validly.

Standard linear filtering methods are conceptually pleasing and extremely useful in the

field of image enhancement while uniformly smoothing images are little or no sharp grey

level variation before the addition of corruptive influence. A linear smoother may indeed

prove to be very effective. However, our world is nature and particularly contains objects,
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lines, and boundaries whose two-dimensional projections onto photographic films and other

recording media evokes sharp grey-level variations along boundaries, which may be regarded

as edges. It is clear that edges are an important factor in the subjective evaluation of

an image and the human visual system (HVS) has been noted to contain edge-sensitive

elements. An unfortunate property of linear-type smoothers that effectively remove high-

frequency noise components is the accompanying blurring of information-bearing edges and

loss of detail due to the band-limiting nature of such filters. Conversely, a linear high-pass

filter may preserve or even accentuate edge-type signals, but such filters are extremely noise-

sensitive, and tend to suppress smooth features which correspond to real-world surfaces and

regions of slowly varying reflectance.

Therefore, if we require a filtering method which will effectively remove high-frequency

noise components while simultaneously preserving the edge structure of an image, we must

resort to nonlinear techniques. In the class of nonlinear technique, rank-order filtering

(ROF), or order-statistical filtering, has been widely applied for various speech and image

processing applications [25]-[31]. Unlike linear filtering, the ROF can remove sharp dis-

continuities of small duration without blurring the original signal. Most of recent works

in nonlinear rank-order filters have focused on the problem of noise suppression [32]-[44].

Some rank-order-based sharpeners have been proposed [45]-[48]. However, these rank-order

filters mentioned above do not have abilities of noise suppression and sharpness simulta-

neously. To overcome these problems, paper [49] has successfully proposed a new class of

rank-order-based filter, lower-upper-middle (LUM) filter and the LUM filter has two pa-

rameters, one for noise suppression and the other for sharpness. Varying the parameter of

noise suppression can change the level of smoothing from no smoothing to median filtering

and varying the parameter of sharpness also have excellent detail-preserving characteristics

to avoid shortcomings of conventional linear filters, the ringing effect and the amplification

of background noise. Different values of parameters will cause different degree of smoothing

and sharpening for the LUM filter, hence a flexible and configurable hardware of the LUM

filter should be developed to satisfy the demands of users.

Next, Section 4.1 introduces definitions of LUM filters in detail and also respectively

analyze the performance using the LUM smoother and the LUM sharpener for GI images.
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Section 4.2 proposes a novel rank-order filtering design, the main core of the LUM filter

and this novel design first uses the dual-cell random-access memory (DCRAM) to imple-

ment the generic bit-sliced rank-order filtering algorithm. Section 4.3 shows the basic non-

recursive/recursive rank-order-filtering for 1-D/2-D applications. In addition, Section 4.4

further extends the ROF architecture to a fully-pipelined version at the expense of area

in order to increase the schedulability. Section 4.5 implements the chip design. Finally,

Section 4.6 compares the existing ROF architecture with our proposed design.

4.1 The LUM Filters

In this section, the LUM filters are defined. First a subclass of LUM filter that re-

ferred to as the LUM smoother is defined in Subsection 4.1.1 and then a second subclass

of LUM filter, the LUM sharpener, which can enhance edges is also defined in Subsec-

tion 4.1.2. Finally, the general class of LUM filter that includes the LUM smoother and

the LUM sharpener as a special case is introduced in Subsection 4.1.3 and the LUM filter

can simultaneously enhance edges and suppress impulsive noise itself. In the beginning,

we consider a window function (W ) containing a set of N samples centered about the

sample x∗ before defining the LUM filters. This set of observations will be denoted W =

{x(1), x(2), ..., x(n)}, in which, N is assumed to be odd. For a 2-D image, let the window

be a simple (2m + 1) × (2m + 1) = N square. The rank-ordered set can be written as

x(1) ≤ x(2) . . . x(N).

4.1.1 The Definition of LUM Smoother

The LUM smoother is defined below. The output of the LUM smoother with parameter

k is given by

y∗ = med{x(k), x∗, x(N−k+1)} (4.1.1)

in which, 1 ≤ k ≤ (N + 1)/2. Thus, the output of the LUM smoother is x(k) if x∗ < x(k).

If x∗ > x(N−k+1) , then the output of the LUM is x(N−k+1). Otherwise the output of the

LUM smoother is simply x∗.
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The reasoning behind comparing the middle sample x∗ to the lower- and upper-order

statistics is that these order statistics form a range of normal-valued samples. If x∗ lies

in this range it is not modified. If x∗ lies outside this range it is replaced by a sample

that lies closer to the median. This creates a smoothing function. For example, if x∗ is

an impulse it is likely to fall outside the range of the upper- and lower-order statistics. It

would then be replaced with a value closer to that of the median, and the outlier would be

removed. The tuning parameter k controls the smoothing characteristics of the filter and

can be adjusted to best balance the tradeoffs between noise smoothing and signal-detail

preservation. Note that for k = (N + 1)/2 the output of the LUM smoother is the median

of W , and this is the maximum amount of smoothing that can be performed. As k is

decreased the filter exhibits improved detail-preserving characteristics; when k = 1, the

LUM smoother becomes an identity filter (i.e., y∗ = x∗).

4.1.2 The Definition of LUM Sharpener

The LUM smoother and other rank-order smoothers obtain smoothing characteristics

by shifting samples toward the median. To obtain sharpening characteristics, samples must

be moved away from the median to more extreme order statistics. This is how the LUM

sharpener operates. Before defining the LUM sharpener, let us first define a value centered

between the lower- and upper-order statistics, x(l) and x(N−l+1). This midpoint or average,

denoted tl , is given by

tl = (x(l) + x(N−l+1))/2 (4.1.2)

We define the LUM sharpener as follows. The output of the LUM sharpener with parameter

l is given by

y∗ (n) =



















x(l), if x(l) < x∗ ≤ t(l)

x(N−l+1), if t(l) < x∗ < x(N−l+1)

x∗, otherwise.

(4.1.3)

Thus, if x(l) < x∗ < x(N−l+1) then x∗ is shifted outward to x(l) or x(N−l+1) according

to which is closest to x∗. Otherwise the sample x∗ is unmodified. The reasoning behind

this sharpening operation is that if x(l) < x∗ < x(N−l+1) then x∗ is interpreted as being
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a transition sample in a slope region. By shifting it to an extreme-order statistic we are

removing the transition points and creating a steeper slope and in many cases an ideal step

edge. By changing the parameter l, various levels of sharpening can be achieved. In the

case where x(l) = (N + 1)/2, no sharpening occurs and the LUM sharpener is simply an

identity filter. In the case where x(l) = 1, a maximum amount of sharpening is achieved

since x∗ is being shifted to one of the extreme-order statistics x(1) or x(N).

4.1.3 The Definition of LUM Filter

To obtain an enhancing filter that is robust and can reject outliers, the philosophies of

the LUM smoother and LUM sharpener must be combined. This leads us to the general

LUM filter. Before we define this filter, let us first define a lower and upper statistic as

follows

xL = med{x(k), x∗, x(l)} (4.1.4)

xU = med{x(N−k+1), x∗, x(N−l+1)} (4.1.5)

where 1 ≤ k ≤ l ≤ (N + 1)/2. Note that xL ≤ xU . The output of the general LUM filter

is given by the statistic xL or xU that is closest to the center sample x∗. The parameters

k and l can be considered tuning parameters that allow the LUM filter to have a variety

of characteristics. More will be said below about these parameters. Two mathematically

equivalent, but slightly different, definitions of the LUM filter are given below. Eq.4.1.7 is

perhaps the most direct.

y∗ (n) =







xL, if x∗ ≤ (xL + xU)/2

xU , otherwise.
(4.1.6)

y∗ (n) =











































x(k), if x∗ < x(k)

x(l), if x(l) < x∗ ≤ t(l)

x(N−l+1), if t(l) < x∗ < x(N−l+1)

x(N−k+1), if x(N−l+1) < x∗

x∗, otherwise.

(4.1.7)

where t(l) is the midpoint between x(l) and x(N−l+1) defined in Eq.4.1.2
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Regardless of how it is implemented, the LUM filter performs a relatively simple func-

tion. The LUM outputs the sample x(k) if x∗ < xk. Similarly, if x∗ > x(N−k+1) the output

of the LUM filter is x(N−k+1). Thus, just like in the LUM smoother, the samples x(k) and

x(N−k+1) form bounds on the LUM-filter output. On the other hand, if x(l) < x∗ < x(N−l+1)

then the center sample is shifted outward to x(l) or x(N−l+1) according to which of these

lies closest to x∗, as in the LUM sharpener. If x∗ lies such that x(k) ≤ x∗ ≤ x(l) or

x(N−l+1) ≤ x∗ ≤ x(N−k+1) then the sample is unmodified by the filtering operation. By

manipulating the parameters k and l, the LUM filter takes on a variety of characteristics.

In addition, the LUM filter can become the LUM smoother while l = (N + 1)/2 and k is

varied and the LUM filter can become the LUM sharpener while k = 1 and l is varied.

4.1.4 Impulsive Noise Reduction and Image Sharpness for Gas-

trointestinal Images

In this subsection, we firstly illustrate the impulsive noise reduction characteristic of the

LUM filter. The impulsive noises are caused by a faulty sensor during image acquisition.

Fig.4.1(a) and Fig.4.1(b) show original mouth cavity pictures of a pick and each picture

has a resolution of 256×256. Fig.4.1(c) shows the output of the LUM smoother with a

3×3 window and parameter k=2 and l=5. Comparing Fig.4.1(c) with Fig.4.1(e), the LUM

smoother subjectively has better image quality than 3×3 median filtering under the same

ability of impulsive noise reduction. Similarly, Comparing Fig.4.1(d) with Fig.4.1(f), the

LUM smoother has also better image quality than 3×3 median filtering with the same

smoothing. According to simulation results of Fig.4.1(c) and Fig.4.1(d), different parts of

gastrointestinal images need to use different parameters of the LUM smoother to eliminate

the impulsive noise.

In addition to the impulsive noise reduction characteristic of the LUM filter, we next

illustrate the sharpening characteristic of the LUM filter. The decoded GI images need

to be sharpened due to the visual-quality degradation during the lossy image compression

processing. Fig.4.2 (a) and Fig.4.2 (c) are respectively the second and the fourth decoded

GI images and their image quality suffers tiny quality degradation. Fig.4.2 (b) shows the
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output of the LUM sharpener with a 3×3 window and parameter k=1 and l=1. Comparing

Fig.4.2(a) with Fig.4.2(b), the LUM sharpener can efficiently emphasize the image sharp-

ness to improve the image quality. Similarly, Comparing Fig.4.2(c) with Fig.4.2(d), the

LUM sharpener can also efficiently emphasize the image sharpness to improve the image

quality. According to simulation results mentioned above, different parts of gastrointesti-

nal images also need to use different parameter of the LUM sharpener to accomplish the

sharpening.

To sum up, different parameters of the LUM filter can significantly cause different degree

of smoothing and sharpening according to the demand of a user. Therefore, a flexible and

configurable hardware of the LUM filter will be proposed in the next subsection.

4.1.5 The Proposed LUM Filtering Processor

Fig.4.3 illustrates the conceptual diagram of the LUM filtering processor. The instruc-

tion sequencer is used for the generation of instruction codes and the control of input/output

streams. Two parameters of LUM filter, l and k, can be set to generate desired ranks

through their rank generators by users and then these ranks sequentially enter the circuit

of rank-order filtering (ROF). The ROF is the mainly operational core in the LUM filtering

processor and it can generate the correct rank value according to the driving of instruction

codes and the current rank. In order to let the LUM filtering itself can use different kind

of rank values to adaptively accomplish tasks of smoothing and/or sharpening, we need

a highly flexible ROF hardware to select suitable rank values into the comparison circuit

and the output of the LUM filtering can be generated after the comparison rule shown in

Eq.4.1.7.

In order to design the hardware of ROF that has highly flexible and configurable abili-

ties, Subsection 4.2 presents a novel memory architecture for rank-order filtering based on

a generic rank-order filtering algorithm. The generic rank-order filtering algorithm uses

the threshold decomposition to bitwisely determine the rank-order result from the most

significant bit (MSB) to the least significant bit (LSB) and applies the polarization simul-

taneously to polarize impossible candidates. The design procedure of the proposed ROF
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4.1. (a) The 1st picture of mouth cavity for a pick. (b) The 2nd picture of mouth

cavity for a pick. (c) Output of the 3x3 LUM smoother where k=2 and l=5. (d) Output

of the 3x3 LUM smoother where k=3 and l=5. (e) Output of the 3x3 median filter. (f)

Output of the 3x3 median filter. 46



(a) (b) 

(c) (d) 

Figure 4.2. (a) The 2nd decoded GI image. (b) Output of the 3x3 LUM sharpener where

k=1 and l=1. (c) The 4th decoded GI image. (d) Output of the 3x3 LUM smoother where

k=1 and l=2.
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L K

Figure 4.3. The conceptual diagram of LUM filtering processor.

hardware will be described in Subsection 4.2 in detail.

4.2 Design of Rank-Order Filtering Using The Dual-

Cell RAM Architecture

Given a sequence of input samples {xi−k, xi−k+1, ..., xi, ..., xi+l}, the basic operation of

rank order filtering is to choose the r-th largest sample as the output yi, where r is the

rank-order of the filter. This type of ROF is normally classified as the non-recursive ROF

. Another type of ROF is called the recursive ROF. The difference between the recur-

sive ROF and the non-recursive ROF is that the input sequence of the recursive ROF is

{yi−k, yi−k+1, ..., yi−1, xi, ..., xi+l}. Unlike linear filtering, ROF can remove sharp disconti-

nuities of small duration without blurring the original signal; therefore, ROF becomes a

key component for signal smoothing and impulsive noise elimination. To provide this key

component for various signal processing applications, we intend to design a configurable

rank-order filter that features low cost and high speed.

Many approaches for hardware implementation of rank-order filtering have been pre-
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sented in the past decades [50]-[65]. Many of them are based on sorting algorithm [52], [63],

[64], [66]-[69]. They considered the operation of rank-order filtering as two steps: sorting

and choosing. Papers [51], [60] have proposed systolic architectures for rank-order filtering

based on sorting algorithms, such as bubble sort and bitonic sort. These architectures

are fully pipelined for high throughput rate at the expense of latency, but require a large

number of compare-swap units and registers. To reduce the hardware complexity, papers

[50], [53], [55], [56], [70]-[73] present linear-array structures to maintain samples in sorted

order. For a sliding window of size N, the linear-array architectures consist of N processing

elements and require three steps for each iteration: finding the proper location for new

coming sample, discarding the eldest one, and moving samples between the newest and

eldest one position. The three-step procedure is called delete-and-insert (DI). Although

the hardware complexity is reduced to O(N), they require a large latency for DI steps.

Paper [72] further presents a micro-programmable processor for the implementations of the

median-type filters. Paper [61] presents a parallel architecture using two-phase design to

improve the operating speed. In this paper, they first modified the traditional content-

addressable memory (CAM) to a shiftable CAM (SCAM) processor with shiftable memory

cells and comparators. Their architecture can take advantages of CAM for parallelizing the

DI procedure. Then, they use two-phase design to combine delete and insert operations.

Thereafter, the SCAM processor can quickly finish DI operations in parallel. Although the

SCAM processor has significantly increased the speed of the linear-array architecture, it

can only process a new sample at a time and cannot efficiently process 2-D data. For a

window of size n-by-n, the SCAM processor needs n DI procedures for each filtering com-

putation. To have an efficient 2-D rank-order filter, papers [53], [68] present solutions for

2-D rank-order filtering at the expense of area.

In addition to the sorting algorithm, the paper [76] applies the threshold decomposition

technique for rank-order filtering. To simplify the VLSI complexity, the proposed approach

uses three steps : decomposition, binary filtering, and recombination. The proposed ap-

proach significantly reduce the area complexity from exponential to linear. Papers [51],

[54], [57]-[59], [62], [74], [75] employ the bit-sliced majority algorithm for median filtering,

the most popular type of rank-order filtering. The bit-sliced algorithm [77], [78] bitwisely

selects the ranked candidates and generates the ranked result one bit at a time. Basically,
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the bit-sliced algorithm for median filtering recursively executes two steps: majority cal-

culation and polarization. The majority calculation, in general, dominates the execution

time of median filtering. Papers [51], [58] and [78] present logic networks for implemen-

tation of majority calculation. However, the circuits are time-consuming and complex so

that they cannot take full advantages of bit-sliced algorithm. Some papers claim that this

type of algorithm is impractical for logic circuit implementation because of its exponential

complexity [72]. Paper [62] uses an inverter as a voter for majority calculation. It signifi-

cantly improves both cost and processing speed, but the noise margin will become narrow

as the number of inputs increases. The narrow noise margin makes the implementation

impractical and limits the configurability of rank-order filtering.

Instead of using logic circuits, this section presents a novel memory architecture for rank-

order filtering based on a generic rank-order filtering algorithm. The generic rank-order

filtering algorithm uses the threshold decomposition to bitwisely determine the rank-order

result from the most significant bit (MSB) to the least significant bit (LSB) and applies

the polarization simultaneously to polarize impossible candidates. Using this algorithm, we

can pick the result, bit-by-bit, for a specific rank-order without sorting the numbers. Note

that the sorting is the most complex part in conventional ROF implementations. Basically,

there are three major tasks in the generic algorithm; they are parallel read, threshold de-

composition, and parallel polarization. This section presents a maskable memory structure,

motivated from CAM architecture, to realize these tasks efficiently. The maskable memory

structure, called dual-cell random-access memory (DCRAM), is an extended SRAM struc-

ture with maskable registers and dual cells. The maskable registers allow the architecture

to selectively read or write bit-slices, and hence speed up ”parallel read” and ”parallel

polarization” tasks. The control of maskable registers is driven by a long-instruction-word

(LIW) instruction set. The LIW makes the proposed architecture programmable for various

rank-order filtering algorithms, such as recursive and non-recursive ROFs. The proposed

architecture has been implemented using TSMC 0.18um 1P6M technology and successfully

applied for 1-D/2-D ROF applications. For 9-point 1-D and 3-by-3 2-D ROF applications,

the core size is 356.1 × 427.7um2. As shown in the post-layout simulation, the DCRAM-

based processor can operate at 290 MHz for 3.3V supply and 256 MHz for 1.8V supply.

Except efficiently eliminate annoying impulsive noises and spot-points caused by a sensor
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for a noisy GI image, the performance of the proposed processor also can process video

clips of SVGA format in real-time image processing.

4.2.1 The Generic Bit-Sliced Rank-Order Filtering Algorithm

Let Wi={xi−k, xi−k+1, ..., xi, ..., xi+l} be a window of input samples. The binary code

of each input xj is denoted as uB−1
j · · · u1

ju
0
j . The output yi of the r -th order filter is

the r -th largest sample in the input window Wi, denoted as vB−1
i · · · v1

i v
0
i . The algorithm

sequentially determines the r -th order value bit-by-bit starting from the most significant

bit (MSB) to the least significant bit (LSB). To start with, we first count 1’s from the

MSB bit-slice of input samples and use ZB−1 to denote the result. The b-th bit-slice of

input samples is defined as ub
i−ku

b
i−k+1 . . . ub

i . . . ub
i+l. If ZB−1 is greater than or equal to r,

then vB−1
i is 1; otherwise, vB−1

i is 0. Any input sample whose MSB has the same value

as vB−1
i is considered as one of candidates of the r -th order sample. On the other hand,

if the MSB of an input sample is not equal to vB−1
i , the input sample will be considered

as a non-candidate. Non-candidates will be then polarized to either the largest or smallest

value. If the MSB of an input sample xj is 1 and vB−1
i is 0, the rest bits (or lower bits) of xj

are set to 1’s. Contrarily, if the MSB of an input sample xj is 0 and vB−1
i is 1, the rest bits

(or lower bits) of xj are set to 0’s. After the polarization, the algorithm counts 1’s from

the consecutive bit-slice and then repeats the polarization procedure. Consequently, the

r -th order value can be obtained by recursively iterating the steps bit-by-bit. The following

pseudo code illustrates the generic bit-sliced rank-order filtering algorithm:

Given the input samples, the window size N=l+k+1, the bitwidth B and the rank r,

do:

Step 1: Set b=B-1.

Step 2: (Bit counting)

Calculate Zb from {ub
i−k, u

b
i−k+1, . . . , ub

i , . . . , ub
i+l}.

Step 3: (Threshold decomposition)
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If Zb ≥ r,vb
i =1; otherwise vb

i =0.

Step 4: (Polarization)

If ub
j 6= vb

i , um
j = ub

j for 0 ≤ m ≤ b − 1 and i − k ≤ j ≤ i + l

Step 5: b=b-1.

Step 6: If b ≥ 0 go to Step 2.

Step 7: Output yi.

Fig.4.4 illustrates a bit-sliced ROF example for N=7, B=4, and r=1. Given that the in-

put samples are 7(01112), 5(01012), 11(10112), 14(11102), 2(00102), 8(10002), and 3(00112),

the generic algorithm will produce 14(11102) as the output result. At the beginning, the

”Bit counting” step will calculate the number of 1’s at MSBs, which is 3. Since the number

of 1’s is greater than r, the ”Threshold decomposition” step sets the MSB of yi to ’1’.

Then, the ”Polarization” step will consider the inputs with u3
j = 1 as candidates of the

ROF output and polarize the lower bits of the others to all 0’s. After repeating the above

steps with decreasing b, the output yi will be 14(11102).

4.2.2 The Dual-Cell RAM Architecture for Rank-Order Filtering

As mentioned above, the generic rank-order filtering algorithm generates the rank-order

value bit-by-bit without using complex sorting computations. The main advantage of this

algorithm is that the calculation of rank-order filtering has low computational complexity

and can be mapped to a highly parallel architecture. In the algorithm, there are three

main tasks: bit counting, threshold decomposition, and polarization. To have these tasks

efficiently implemented, this paper presents an ROF processor based on a novel maskable

memory architecture, as shown in Fig.4.5. The memory structure is highly scalable with the

window size increasing, by simply adding memory cells. Furthermore, with the instruction

decoder and maskable memory, the proposed architecture is programmable and flexible for

different kinds of ROFs.
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Figure 4.4. An example of the generic bit-sliced ROF algorithm for N=7, B=4, and r=1.
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Figure 4.5. The proposed rank-order filtering architecture.

The dual-cell random-access memory (DCRAM) plays a key role in the proposed ROF

architecture. In the DCRAM, there are two fields for reusing the input data and pipelining

the filtering process. For the one-dimensional (1-D) ROF, the proposed architecture receives

one sample at a time. For the n-by-n two-dimensional (2-D) ROF, the architecture reads

n samples into the input window within a filtering iteration. To speed up the process of

rank-order filtering and pipeline the data loading and filtering calculation, the data field

loads the input data while the computing field is performing bit-sliced operations. Hence,

the execution of the architecture has two pipeline stages: data fetching and rank-order

calculation. In each iteration, the data fetching first loads the input sample(s) into the

data field and then makes copies from the data field to the computing field. After having

the input window in the computing field, the rank-order calculation bitwisely accesses the

computing field and executes the ROF tasks.

The computing field is in the maskable part of DCRAM. The maskable part of DCRAM

performs parallel reads for bit counting and parallel writes for polarization. The read-mask

register (RMR) is configured to mask unwanted bits of the computing field during read
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operation. The value of RMR is one-hot-encoded so that the bit-sliced values can be read

from the memory in parallel. The bit-sliced values will then go to the Level-Quantizer for

threshold decomposition. When the ROF performs polarization, the write-mask register

(WMR) is configured to mask untouched bits and allow the polarization selector (PS)

to polar lower bits of noncandidate samples. Since the structure of memory circuits is

regular and the maskable scheme provides fast logic operations, the maskable memory

structure features low cost and high speed. It obviously outperforms logic networks on

implementation of bit counting and polarization.

To start with the algorithm, the RMR is one-hot-masked according to the value b in the

generic algorithm and then the DCRAM outputs a bit-sliced value {ub
i−k, u

b
i−k+1, . . . , ub

i ,

. . . , . . . ub
i+l} on “c d”. The bit-sliced value will go to both the Level-Quantizer and PS.

The Level-Quantizer performs the Step 2 and Step 3 by summing up bits of the bit-sliced

value to Zb and comparing Zb with the rank value r. The rank value r is stored in the

rank register (RR). The bitwidth w of Zb is dlogN
2 e. Fig.4.6 illustrates the block diagram of

the Level-Quantizer, where FA denotes the full adder and HA denotes the half adder. The

signals “S” and “C” of each FA or HA represent sum and carry, respectively. The circuit in

the dash-lined box is a comparator. The comparator is implemented by a carry generator

because the comparison result of Zb and r can be obtained from the carry output of Zb plus

the two’s complement of r. The carry output is the quantized value of the Level-Quantizer.

Normally, the comparison can be made by subtracting r from Zb. Since Zb and r are

unsigned numbers, to perform the subtraction, both numbers have to reformat to two’s

complement numbers by adding a sign bit. In this paper, the reformatted numbers of Zb

and r are expressed as Zb,S and rS, respectively. Since both numbers are positive, their sign

bits are equal to ’0’. If Zb,S is less than rS, the result of subtraction, ∆, will be negative;

that is, the sign bit (or MSB) of ∆ is ’1’. Eq.4.2.8 shows the inequation of the comparison,

where rS denotes the one’s complement of rS and 1 denotes (00 . . . 01)2. Because the MSB

of Zb,S is ’0’ and the MSB of rS is ’1’, to satisfy Eq.4.2.8, the carry of Zw−1
b,S + rw−1

S must

be equal to ’0’ so that the sign bit of ∆ becomes ’1’. To simplify the comparison circuit,

instead of implementing an adder, we use the carry generator to produce the carry of

Zw−1
b,S + rw−1

S . Each cell of the carry generator is a majority (Maj) circuit that performs
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Figure 4.6. The block diagram of the Level-Quantizer.

the boolean function shown in Eq.4.2.9. Furthermore, we use an OR gate at the LSB stage

because of Eq.4.2.10. Thus, the dash-lined box is an optimized solution for comparison of

Zb and r without implementing the bit-summation and signed-extension parts.

∆ = Zb,S + rS + 1 < 0. (4.2.8)

Maj(A,B,C) = AB + BC + AC. (4.2.9)

Z0
b · r0 + Z0

b · 1 + 1 · r0 = Z0
b + r0. (4.2.10)

After the Level-Quantizer finishes the threshold decomposition, the quantized value goes

to the LSB of the shift register, “sr[0]”. Then, the polarization selector (PS) uses exclusive

ORs (XORs) to determine which words should be polarized, as shown in Fig.4.7. Obviously,

the XORs can examine the condition of ub
j 6= vb

i and select the word-under-polarization’s

(WUPs) accordingly. When “c wl” is ’1’, the lower bits of selected words will be polarized;

the lower bits are selected by WMR. According to the Step 4, the polarized value is ub
j which
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is the inversion of vb
i . Since vb

i is the value of sr[0], we inverse the value of “sr[0]” to “c in”,

as shown in Fig.4.5.

Q

Q
SET

CLR

D

sr[0]

Q

Q
SET

CLR

D

c_wl [0]

c_d[0]

c_wl [1]

c_d[1]

Q

Q
SET

CLR

D

c_wl [s-1]

c_d[s-1]

Figure 4.7. The polarization selector (PS).

As seen in the generic algorithm, the basic ROF repeatedly executes Bit-counting,

Threshold decomposition, and Polarization until the LSB of the ROF result being gen-

erated. Upon executing B times of three main tasks, the ROF will have the result in

the Shift Register. A cycle after, the result will then go to the output register (OUTR).

Doing so, the proposed architecture is able to pipeline the iterations for high-performance

applications.

4.2.3 Implementation of Dual-Cell Random-Access Memory

Fig.4.8 illustrates a basic element of DCRAM. Each element has two cells for data field

and computing field, respectively. The data cell is basically an SRAM cell with a pair of

bitlines. The SRAM cell is composed of INV1 and INV2 and stores a bit of input sample

57



addressed by the wordline “d wl[i]”. The computing cell performs three tasks: copy, write,

and read. When the copy-line “cp” is high, through INV5 and INV6, the pair of INV3

and INV4 will have the copy of the 1-bit datum in the data cell. The copy operation is

unidirectional, and the pair of INV5 and INV6 can guarantee this directivity. When the

one-bit value stored in the computing cell needs to be polarized, the “wm[j]” and “c wl[i]”

will be asserted, and the computing cell will perform the write operation according to

the pair of bitlines “c bl[j]” and “c bl[j]”. When the ROF reads the bit-sliced value, the

computing cell uses an NMOS, gated by “rm[j]”, to output the complement value of the

stored bit to the dataline “c d[i]”. The datalines of computing cells of each word will be

then merged as a single net. Since the RMR is one-hot configured, each word has only a

single bit being activated during the read operation.

As shown in Fig.4.9, the dataline “c d[i]” finally goes to an inverter to pull up the

weak ’1’, which is generated by the “rm[j]”-gated NMOS, and hence the signal “c d[i]”

has the value of the i-th bit of each bit-slice. Because the ROF algorithm polarizes the

non-candidate words with either all zeros or all ones, the bitline pairs of computing cells

are merged as a single pair of “c in” and “c in”.

d_bl[j] d_bl[j]

d_wl[i]

c_bl[j] c_bl[j]

c_wl[i]

cp wm[j]

c_d[i]

rm[j]Data Cell Computing Cell

INV1

INV2

INV6

INV5

INV3

INV4

Figure 4.8. A basic element of DCRAM.

Fig.4.10 illustrates the implementation of DCRAM with the floorplan. Each Di − Ci
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(n-1)
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(n-2)

d_bl[n-2]

d_bl[n-2]

rm[n-2]

c_bl[n-2]
c_bl[n-2]

wm[n-2]

C_cell
(n-2)

D_cell
(0)

d_bl[0]

d_bl[0]

rm[0]

c_bl[0]
c_bl[0]

wm[0]

C_cell
(0)

c_d[i]

c_wl[i]

c_in

c_in

Figure 4.9. A DCRAM word mixing data field and computing field. D cell(i) denotes the

data field of i-th bit and C cell(i) denotes the computing field of i-th bit.

pair is a maskable memory cell where Di denotes D cell(i) and Ci denotes C cell(i). Each

word is split into higher and lower parts for reducing the memory access time and power

dissipation [79]. The control block is an interface between control signals and address

decoder. It controls wordlines and bitlines of DCRAM. When the write signal “wr” is not

asserted, the control block will disassert all wordlines by the address decoder.

4.2.4 Instruction Set of Proposed ROF Processor

The proposed ROF processor is a core for the impulsive noise removal and enabled by

an instruction sequencer. Fig.4.11 illustrates the conceptual diagram of the ROF processor.

The instruction sequencer is used for the generation of instruction codes and the control

of input/output streams. The instruction sequencer can be a microprocessor or dedicated

hardware.

Fig.4.12 lists the format of the instruction set. An instruction word contains two sub-

words: the data field instruction and the computing field instruction. Each instruction

cycle can concurrently issue two field instructions for parallelizing the data preparation

and ROF execution; hence, the proposed processor can pipeline ROF iterations. When one

of the field instructions performs “no operation”, DF_NULL or CF_NULL will be issued. All

59



O
utput block

C7D7

Address
Decoder

hi_subword1 lo_subword1

lo_subwords-1hi_subwords-1

Input block Input blockControl
block

C6D6 C5D5 C4D4 C3D3 C2D2 C1D1 C0D0

hi_subword0 lo_subword0

cp wr c_in

c_in

addr

rm, wm, d_in[7:4] rm, wm, d_in[3:0]

c_d,
c_wl

Figure 4.10. The floorplan of DCRAM.

Instruction
Sequencer

I/O
Interface ROFI/O

Figure 4.11. The conceptual diagram of the ROF processor.
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registers in the architecture are updated a cycle after instruction issued.

The instruction SET resets all registers and set the rank register RR for a given rank-

order r. The instruction LOAD loads data from “d in” by asserting “wr” and setting “addr”.

The instruction COPY/DONE can perform the “COPY” operation or “DONE” operation.

When the bit value of c is ’1’, the DCRAM will copy a window of input samples from the

data field to the computing field. When the bit value of d is ’1’, the DCRAM wraps up an

iteration by asserting “en” and puts the result into OUTR.

The instruction P_READ is issued when the ROF algorithm executes bit-sliced operations.

The field <mask> of P_READ is one-hot coded. It allows the DCRAM to send a bit-slice to

the Level-Quantizer and PS for the Threshold decomposition task. The instruction P_WRITE

is issued when the ROF algorithm performs the Polarization task. The field <mask> of

P_WRITE is used to set a consecutive sequence of 1’s. The sequence can mask out the higher

bits for polarization.

maskc_modeaddress, rank-order,
or control code

d_mode

078910131415

data field instruction computer field instruction

SET <rank>

rank-order value0 0

10131415

LOAD <address>

address0 1

10131415

COPY/DONE

1 1 c d1 0

10131415

DF_NULL

1 1 1 11 1

10131415

P_READ <mask>

mask0 0

0789

P_WRITE <mask>

mask0 1

0789

CF_NULL

1 1 1 1 1 1 1 11 1

0789

c=1, copy; d=1, done

Figure 4.12. The format of the instruction set.

Given a 1-D rank order filter application with N=9 and r=3, for instance, the pseudo-
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code for programming the ROF processor is as follows:

SET 3;

i=0; -- IS

start loop; -- IS

LOAD i, P_READ 00000001;

COPY, P_READ 10000000;

DONE, P_WRITE 01111111;

P_READ 01000000;

P_WRITE 00111111;

P_READ 00100000;

P_WRITE 00011111;

P_READ 00010000;

P_WRITE 00001111;

P_READ 00001000;

P_WRITE 00000111;

P_READ 00000100;

P_WRITE 00000011;

P_READ 00000010;

P_WRITE 00000001;

i++; -- IS

i=i mod 9; -- IS

end loop; -- IS

To generate instructions to the ROF processor, the complete 1-D non-recursive ROF

circuit includes an instruction sequencer, as shown in Fig.4.13. Based on the pseudo-code

of the 1-D ROF, the instruction sequencer will generate the instruction codes to the ROF

processor. In the pseudo-code, the lines with the comment “--IS” are not parts of the

instruction sequence, but realized in the instruction sequencer. Given the above pseudo-

code, the instruction sequencer will generate instructions as shown below. The instructions

other than “SET 3;” will be repeatedly sent to the instruction decoder.
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Instruction
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Filter
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done
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8
instruction
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8

Figure 4.13. Block diagram of the 1-D non-recursive ROF.

SET 3;

LOAD 0000, P_READ 00000001;

COPY, P_READ 10000000;

DONE, P_WRITE 01111111;

P_READ 01000000;

P_WRITE 00111111;

P_READ 00100000;

P_WRITE 00011111;

P_READ 00010000;

P_WRITE 00001111;

P_READ 00001000;

P_WRITE 00000111;

P_READ 00000100;

P_WRITE 00000011;

P_READ 00000010;

P_WRITE 00000001;

LOAD 0001, P_READ 00000001;

COPY, P_READ 10000000;

DONE, P_WRITE 01111111;

P_READ 01000000;
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P_WRITE 00111111;

P_READ 00100000;

P_WRITE 00011111;

P_READ 00010000;

P_WRITE 00001111;

P_READ 00001000;

P_WRITE 00000111;

P_READ 00000100;

P_WRITE 00000011;

P_READ 00000010;

P_WRITE 00000001;

...

...

...

LOAD 1000, P_READ 00000001;

COPY, P_READ 10000000;

DONE, P_WRITE 01111111;

P_READ 01000000;

P_WRITE 00111111;

P_READ 00100000;

P_WRITE 00011111;

P_READ 00010000;

P_WRITE 00001111;

P_READ 00001000;

P_WRITE 00000111;

P_READ 00000100;

P_WRITE 00000011;

P_READ 00000010;

P_WRITE 00000001;

LOAD 0000, P_READ 00000001;

COPY, P_READ 10000000;
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DONE, P_WRITE 01111111;

...

...

...

Since the instruction set is in the format of long-instruction-word (LIW), the data fetch-

ing and ROF computing can be executed in parallel. So, the generated instruction stream

can pipeline the ROF iterations, and the data fetching is hidden in each ROF latency.

Fig.4.14 shows the reservation table of the 1-D ROF example. As seen in the reserva-

tion table, the first iteration and the second iteration are overlapped at the seventeenth,

eighteenth and nineteenth clock steps. At the seventeenth clock step, the second iteration

starts with loading a new sample while the first iteration processes the LSB bit-slice. At

the eighteenth clock step, the second iteration copies samples from the data field to the

computing field, and reads the MSB bit-slice. At the same time, the first iteration prepares

the first ROF result for OUTR. At the nineteenth clock step, the first iteration sends the

result out while the second iteration performs the first polarization. Thus, the iteration

period for each iteration is 15 cycles.

1 2 3 4 5 6 7 8 9 10Cycle Time
RR

DF of DCRAM
CF of DCRAM

RMR
Level Quantizer

WMR
PS

Shift Register
OUTR

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

...

The  first  iteration The  second  iteration The  third  iteration

Figure 4.14. Reservation table of the 1-D non-recursive ROF.

4.3 Application of The Proposed ROF Processor

In Section 4.2.4, we use 1-D non-recursive ROF as an example to show the programming

of the proposed ROF processor. Due to the programmable design, the proposed ROF

processor can implement a variety of ROF applications. The following subsections will

illustrate the optimized programs for three examples: 1-D RMF, 2-D non-recursive ROF,

and 2-D RMF.
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4.3.1 1-D Recursive Median Filter

The recursive median filtering (RMF) has been proposed for signal smoothing and

impulsive noise elimination. It can effectively remove sharp discontinuities of small duration

without blurring the original signal. The RMF recursively searches for the median results

from the most recent median values and input samples. So, the input window of RMF

can be denoted as {yi−k, yi−k+1, ..., yi−1, xi, ..., xi+l}, where yi−k, yi−k+1, ..., yi−1 are the most

recent median values and xi, ..., xi+l are the input samples, and the result yi is the d(l + k +

1)/2e-th value of the input window.

Fig.4.15 demonstrates the implementation of the 1-D RMF. To recursively perform

RMF with previous median values, the i-th iteration of 1-D RMF loads two inputs to the

DCRAM; one is xi+l and the other is yi−1. As shown in Fig.4.15, the 2-to-1 multiplexer is

used to switch the input stream to the data field, controlled by the instruction sequencer;

the input stream is from either “d in” or “d out”. When the proposed ROF processor

receives the input stream, the program will arrange the data storage as shown in Fig.4.15.

The date storage shows the data reusability of the proposed ROF processor.

Instruction
Sequencer

Programmable
Rank-Order

Filter
d_out

done

8

8
instruction

d_in

8

input_sel

8

8

0

1

Figure 4.15. Block diagram of the 1-D RMF.

Given a 1-D RMF application with N=9 and r=5, the pseudo-code is written as follows:

SET 5;
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Address Data Field

0000 x0

0001 0
0010 0
0011 0
0100 y-5

0101 0
0110 0
0111 0
1000 0

Address Data Field

0000 x0

0001 x1

0010 0
0011 0
0100 y-5

0101 y-4

0110 0
0111 0
1000 0

Address Data Field

0000 x0

0001 x1

0010 x2

0011 0
0100 y-5

0101 y-4

0110 y-3

0111 0
1000 0

Address Data Field

0000 x0

0001 x1

0010 x2

0011 x3

0100 y-5

0101 y-4

0110 y-3

0111 y-2

1000 0

Address Data Field

0000 x0

0001 x1

0010 x2

0011 x3

0100 x4

0101 y-4

0110 y-3

0111 y-2

1000 y-1

Address Data Field

0000
0001
0010
0011
0100
0101
0110
0111
1000

Address Data Field

0000
0001
0010
0011
0100
0101
0110
0111
1000

y0

x1

x2

x3

x4

x5

y-3

y-2

y-1

y0

y1

x2

x3

x4

x5

x6

y-2

y-1

...

Address Data Field

0000 0
0001 0
0010 0
0011 0
0100 0
0101 0
0110 0
0111 0
1000 0

Address Data Field

0000
0001
0010
0011
0100
0101
0110
0111
1000

y0

y1

y2

x3

x4

x5

x6

x7

y-1

The  symbol " " points  to  position

for  the  newest median value

The  symbol " " points  to  position
for  the  newest  input  sample

(1) (2) (3) (4) (5)

(6) (7) (8) (9)

Figure 4.16. The flow for data storage of the 1-D RMF.

i=0;

start loop; -- IS

set input_sel, 0; -- IS

LOAD i, CF_NULL;

DONE, CF_NULL;

set input_sel, 1; -- IS

LOAD ((i+4) mod 9), CF_NULL;

COPY, P_READ 10000000;

P_WRITE 01111111;

P_READ 01000000;

P_WRITE 00111111;

P_READ 00100000;

P_WRITE 00011111;

P_READ 00010000;

P_WRITE 00001111;

P_READ 00001000;

P_WRITE 00000111;

P_READ 00000100;

P_WRITE 00000011;
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P_READ 00000010;

P_WRITE 00000001;

P_READ 00000001;

i++; -- IS

i=(i mod 9); -- IS

end loop; -- IS

As mentioned above, the input stream to the DCRAM comes from either “d in””

or “d out””. The statements of “set input_sel, 0;” and “set input_sel, 1;” can

assert the signal “input sel” to switch the input source accordingly. The statements of

“LOAD i, CF_NULL;” and “LOAD i, CF_NULL;” is employed for the data stream, as per

Fig.4.16. As seen in Fig.4.17, the throughput rate is limited by the recursive execution

of the 1-D RMF; that is, the second iteration cannot load the newest median value until

the first iteration generates the result to the output. However, we still optimized the

throughput rate as much as possible. At the twentieth clock step, the program overlaps

the first iteration and the second iteration so that the data fetching and result preparing

can be run at the same time. As the result, the sample period is 18 cycles.

2 3 4 5 6 7 8 9 10 11Cycle Time
RR

DF of DCRAM
CF of DCRAM

RMR
Level Quantizer

WMR
PS

Shift Register
OUTR

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

...

32 33 34 35 36 37 38 39 40 41

The  first  iteration The  second  iteration The  third  iteration

1

Figure 4.17. Reservation table of the 1-D RMF.

4.3.2 2-D Non-Recursive Rank-Order Filter

Fig.4.18 illustrates the block diagram for the 2-D non-recursive ROF. From Fig.4.19,

each iteration needs to update three input samples (the pixels in the shadow region) for the

3× 3 ROF; that is, only n input samples need to be updated in each iteration for the n×n

ROF. To reuse the windowing data, the data storage is arranged as shown in Fig.4.20. So,

for the 2-D ROF, the data reusability of our process is high; each iteration updates only
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n input samples for an n × n window. Given a 2-D n × n ROF application with n=3 and

r=5, the optimized reservation table can be scheduled as Fig.4.21.

Instruction
Sequencer

Programmable
Rank-Order

Filter
d_out

pixel input

Scan Line

done

8

8 instruction

d_in

8

D

Scan Line

D

D

2

input_sel

8

00

01

10

N-1 words

N-1 words

Figure 4.18. Block diagram of the 2-D non-recursive ROF with 3-by-3 window.
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255

current window
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i

j

Figure 4.19. The windowing of the 3 × 3 non-recursive ROF.

Given a 2-D n×n ROF application with n=3 and r=5, the optimized reservation table

can be scheduled as Fig.4.21 and the following is the pseudo-code:

SET 5;

i=0; -- IS

start loop; -- IS

input_sel=0; -- IS

LOAD i, P_READ 00000010;
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x(1,3)
x(2,3)

Address Data Field

0000 x(3,3)
0001
0010
0011 x(3,1)
0100 x(2,1)
0101 x(1,1)
0110 x(3,2)
0111 x(2,2)
1000 x(1,2)

Address Data Field

0000
0001
0010
0011
0100
0101
0110
0111
1000

Address Data Field

0000
0001
0010
0011
0100
0101
0110
0111
1000

...

x(3,3)
x(2,3)
x(1,3)
x(3,4)
x(2,4)
x(1,4)
x(3,2)
x(2,2)
x(1,2)

x(3,3)
x(2,3)
x(1,3)
x(3,4)
x(2,4)
x(1,4)
x(3,5)
x(2,5)
x(1,5)

Address Data Field

0000
0001
0010
0011
0100
0101
0110
0111
1000

x(3,6)
x(2,6)
x(1,6)
x(3,4)
x(2,4)
x(1,4)
x(3,5)
x(2,5)
x(1,5)

Address Data Field

0000
0001
0010
0011
0100
0101
0110
0111
1000

x(3,6)
x(2,6)
x(1,6)
x(3,7)
x(2,7)
x(1,7)
x(3,5)
x(2,5)
x(1,5)

The  symbols " " point  to  positions
for  the  newest  input  samples

(1) (2) (3)

(4) (5)

Figure 4.20. The data storage of the 2-D non-recursive ROF.
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input_sel=1; -- IS

LOAD i+1, P_WRITE 00000001;

input_sel=2; -- IS

LOAD i+2, P_READ 00000001;

COPY, P_READ 10000000;

DONE, P_WRITE 01111111;

P_READ 01000000;

P_WRITE 00111111;

P_READ 00100000;

P_WRITE 00011111;

P_READ 00010000;

P_WRITE 00001111;

P_READ 00001000;

P_WRITE 00000111;

P_READ 00000100;

P_WRITE 00000011;

i++; -- IS

i=3*(i mod 3); -- IS

end loop; -- IS

1 2 3 4 5 6 7 8 9 10Cycle Time
RR

DF of DCRAM
CF of DCRAM

RMR
Level Quantizer

WMR
PS

Shift Register
OUTR

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

...

The  first  iteration The  second  iteration The  third  iteration

Figure 4.21. Reservation table of the 2-D ROF.

4.3.3 2-D Recursive Median Filter

Similar to the 1-D RMF, the two-dimensional(2-D) n-by-n RMF finds the median value

from the window formed by some previous-calculated median values and input values.

Fig.4.22(a) shows the content of the 3 × 3 window centered at (i, j). At the end of each
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iteration, the 2-D 3× 3 RMF substitutes the central point of the current window with the

median value. The renewed point will then be used in the next iteration. The windowing

for 2-D RMF iterations is shown in Fig.4.22(b), where the triangles represent the previous-

calculated median values and the pixels in the shadow region are updated at the beginning

of each iteration. According to the windowing, Fig.4.23 illustrates the data storage for high

degree of data reusability. Finally, we can implement the 2-D RMF as the block diagram

illustrated in Fig.4.24. Given a 2-D 3×3 RMF application, the optimized reservation table

can be scheduled as Fig.4.25.

(a)

0 1 2 3 4 5 6 7 254 255
0

1

2

3

4

254

255

current window

previous window

i

j

(b)

x(i+1,j+1)

x(i,j+1)

y(i-1,j+1)

x(i+1,j)

x(i,j)

y(i-1,j)

x(i+1,j-1)

y(i,j-1)

y(i-1,j-1)

Figure 4.22. (a) The content of the 3 × 3 window centered at (i, j). (b) The windowing of

the 2-D RMF.

Given a 2-D 3 × 3 RMF application, the optimized reservation table can be scheduled

as Fig.4.25 and the pseudo-code is written as follows:

SET 5;

i=0; -- IS
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Address Data Field

0000 x(3,3)
0001 x(2,3)
0010 y(1,3)
0011 x(3,1)
0100 y(2,1)
0101 y(1,1)
0110 x(3,2)
0111 x(2,2)
1000 y(1,2)

Address Data Field

0000
0001
0010
0011
0100
0101
0110
0111
1000

Address Data Field

0000
0001
0010
0011
0100
0101
0110
0111
1000

...

x(3,3)
x(2,3)
y(1,3)
x(3,4)
x(2,4)
y(1,4)
x(3,2)
y(2,2)
y(1,2)

x(3,3)
y(2,3)
y(1,3)
x(3,4)
x(2,4)
y(1,4)
x(3,5)
x(2,5)
y(1,5)

Address Data Field

0000
0001
0010
0011
0100
0101
0110
0111
1000

x(3,6)
x(2,6)
y(1,6)
x(3,4)
y(2,4)
y(1,4)
x(3,5)
x(2,5)
y(1,5)

Address Data Field

0000
0001
0010
0011
0100
0101
0110
0111
1000

x(3,6)
x(2,6)
y(1,6)
x(3,7)
x(2,7)
y(1,7)
x(3,5)
y(2,5)
y(1,5)

The  symbols " " point  to  positions
for  the newest  input  samples

The symbols " "
for  the windowing median values

(1) (2) (3)

(4) (5)

point  to  positions

Figure 4.23. The data storage of 2-D RMF.

Instruction
Sequencer

Programmable
Rank-Order

Filter
d_out

pixel input

Scan Line

done

8

8 instruction

d_in

8

D

D

2

input_sel

8

Scan Line

00

01

10

11

N-2 words

N-1 words

Figure 4.24. Block diagram of the 2-D RMF with 3-by-3 window.
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start loop; -- IS

input_sel=0; -- IS

LOAD (i mod9), P_WRITE 00000001;

input_sel=1; -- IS

LOAD (i+1 mod 9), P_READ 00000001;

input_sel=2; -- IS

LOAD (i+2 mod 9), CF_NULL;

DONE, CF_NULL;

input_sel=3; -- IS

LOAD (i+4 mod 9), CF_NULL;

COPY, P_READ 10000000;

P_WRITE 01111111;

P_READ 01000000;

P_WRITE 00111111;

P_READ 00100000;

P_WRITE 00011111;

P_READ 00010000;

P_WRITE 00001111;

P_READ 00001000;

P_WRITE 00000111;

P_READ 00000100;

P_WRITE 00000011;

P_READ 00000010;

i=i+3; -- IS

end loop; -- IS

2 3 4 5 6 7 8 9 10 11Cycle Time
RR

DF of DCRAM
CF of DCRAM

RMR
Level Quantizer

WMR
PS

Shift Register
OUTR

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

The  first  iteration The  second  iteration The  third  iteration

42 43

...

1

Figure 4.25. Reservation table of optimal pipeline for 2-D recursive median filter.
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4.4 The Fully-Pipelined DCRAM-based ROF Archi-

tecture

As seen in Section 4.3, the reservation tables are not tightly scheduled because the

dependency of bit-slicing read, threshold decomposition, and polarization forms a cycle.

The dependency cycle limits the schedulability of ROF tasks. To increase the schedulability,

we further extended the ROF architecture to a fully-pipelined version at the expense of

area. The fully-pipelined ROF architecture interleaves three ROF iterations with triple

computing fields. As shown in Fig. 4.26, there are three computing fields which process

three tasks alternatively. To have the tightest schedule, we pipelined the Level-Quantizer

into two stages, LQ1 and LQ2, so the loop (computing field, Level-Quantizer, Shift Register)

has three pipeline stages for the highest degree of parallelism. The LQ1 is the FA/HA tree

and the LQ2 is the carry generator.

OUTR

d_in

Data
Field

Computing
Field 1

instruction

addr wr

done

cp
rank

c_d

d_out

sr[0]

c_wlc_in

DCRAM

c_in

ren

clock

clk
rst

A
dd

re
ss

 D
ec

od
er

Reset
Circuit

reset

PS

Shift Register

en

sen

Computing
Field 2

Computing
Field 3

c_in c_inc_in c_in

Level Quantizer

RR

w_cf

cm
wm

WMR

rm

r_cf
RMR

Instruction Decoder

LQ2LQ1

Figure 4.26. The fully-pipelined ROF architecture.

Since there exists three iterations being processed simultaneously, a larger memory is

required for two more iterations. Hence, we extended the DCRAM to an (N + 2δ)-word

memory, where N is the window size of ROF and δ is the number of updating samples for

each iteration. The value of δ is 1 for 1-D ROF, and n for 2-D n-by-n ROF. To correctly

access the right samples for each iteration, the signal “cm” is added to mask the unwanted
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samples during the copy operation. In each computing field, the unwanted samples are

stored as all zeros. Doing so, the unwanted samples will not affect the rank-order results.

Fig.4.27 illustrates the modified computing cell for fully-pipelined ROF. The INV5 and

INV6 are replaced with GATE1 and GATE2. When “cm[i]” is ’0’ the computing cell will

store ’0’; otherwise, the computing cell will have the copy of the selected sample from the

data cell. Finally, we use “cp”, “w cf”, and “r cf” to selectively perform read, write,

or copy on computing fields. To efficiently program the fully-pipelined architecture, the

instruction set is defined as shown in Fig.4.28. The fields <c cf> of COPY,<w cf> of

P_WRITE, and <r cf> of P_READ are used to control “cp”, “w cf”, and “r cf”. Given a

1-D non-recursive rank order filter application with N=9 and r=3, the reservation table

can be optimized as shown in Fig.4.29.

c_bl[j] c_bl[j]

c_wl[i]

cp
wm[j]

c_d[i]

rm[j]Computing Cell

from output of INV1

INV3

INV4
cm[i]

GATE1

GATE2

from output of INV2

Figure 4.27. A modified circuit of computing cell for fully-pipelined ROF.

4.5 Chip Design and Simulation Results

To exercise the proposed architecture, we have implemented the ROF architecture,

shown in Fig.4.5, using TSMC 0.18 µm 1P6M technology. First, we verified the hardware

in VHDL at the behavior level. The behavior VHDL model is cycle-accurate. Although

the ROF is the mainly operational core in the LUM filter, the ROF itself also has good

performances in fields of smoothing and sharpening. As the result of simulation, the imple-
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Sub instruction 3

23                         12

Sub instruction 4Sub instruction 2Sub instruction 1

11                                  025                   2441                           26

Sub instruction 1
SET <rank value> LOAD <address>

COPY <c_cf> <cp_mask> SI1_NULL

Sub instruction 3P_WRITE <w_cf> <mask> SI3_NULL

Sub instruction 4P_READ <r_cf> <mask>

20

maskw_cf00

1219212223

1 1 1 1 1 1 1 1 1 111

12212223

SI4_NULL

8

maskr_cf00

0791011

1 1 1 1 1 1 1 1 1 111

091011

rank value1 1 1 1 1 1 1 1 10 0 0

29         2638                 3041   39

DONE

cp_maskc_cf0 1 0

263638 3741   39

1 1 1 1 1 1 1 1 1 1 1 1 11 1 1

38                        2641    39

Sub instruction 2

d0

2425

11

2425

SI2_NULL

address1 1 1 1 1 1 1 1 10 0 1

29         2638                 3041   39

Data field instruction

Computing field instruction

Figure 4.28. The format of the extended instruction set for the fully-pipelined ROF archi-

tecture.

Cycle Time
RR

DF  of  DCRAM

CF3 of  DCRAM
RMRS

LQ1

WMRS
PS

Shift Register
OUTR

...

The  first  iteration The  second  iteration The  third  iteration

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

LQ2

CF1 of  DCRAM
CF2 of  DCRAM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The fourth iteration The  fifth  iteration The  sixth  iteration

Figure 4.29. Reservation table of the 1-D non-recursive ROF for fully-pipelined ROF

architecture.

77



mentations of the above examples are valid. Fig.4.30 and Fig.4.31 demonstrate the results

of VHDL simulations for the 2-D ROF and RMF, respectively. Fig.4.30(a) is a noisy “Lena”

image corrupted by 8% of impulsive noise. After being processed by 2-D ROFs with r=4,

5, and 6, the denoise results are shown in Fig.4.30(b), (c), and (d), respectively. Fig.4.31(a)

is a noisy “Lena” image corrupted by 9% of impulsive noise. After being processed by the

2-D 3 × 3 RMF, the denoise result is shown in Fig.4.31(b). The results are the same as

those of Matlab simulation.

(a)                                  (b) 

(c)                                  (d) 

Figure 4.30. Simulation results of a 2-D ROF application. (a) The noisy “Lena” image

corrupted by 8% of impulsive noise. (b) The “Lena” image processed by the 3×3 4th-order

filtering. (c) The “Lena” image processed by the 3× 3 5th-order filtering. (d) The “Lena”

image processed by the 3 × 3 6th-order filtering.

Upon verifying the proposed ROF processor using the cycle-accurate behavior model,

we then implemented the processor in the fully-custom design methodology. Because of

high regularity of memory, the proposed memory-based architecture saves the routing area
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(a)                                  (b) 

Figure 4.31. Simulation results of a 2-D RMF application. (a) The noisy “Lena” image

corrupted by 9% of impulsive noise. (b) The “Lena” image processed by the 3 × 3 RMF.

while comparing with the logic-based solutions. Fig.4.32 (a) shows the overall chip layout

and the dash-lined region is the core. The die size is 1063.57× 1069.21µm2 and the pinout

count is 40. Fig.4.32 (b) illustrates the detail layout of the ROF core. The core size

is 356.1 × 427.7µm2 and the total transistor count is 3942. Fig.4.32 (c) illustrates the

floorplan and placement. The physical implementation has been verified by the post-layout

simulation. Table 4.1 shows the result of timing analysis, obtained from NanoSim. As seen

in the table, the critical path is the path 3 and the maximum clock rate can be 290 MHz at

3.3V and 256 MHz at 1.8V. As the result of post-layout simulation, the power dissipation of

the proposed ROF is quite low. For the 1-D/2-D ROFs, the average power consumption of

the core is 29mW at 290MHz or 7mW at 256MHz. The performance sufficiently satisfies the

real-time requirement of video applications in the formats of QCIF, CIF, VGA, and SVGA.

The chip is submitting to Chip Implementation Center (CIC), Taiwan for the fabrication.

Furthermore, We have successfully built a prototype which is composed of a FPGA

board and DCRAM chips to validate the proposed architecture before fabricating the cus-

tom designed chip. The FPGA board is made by Altera and the FPGA type is APEX

EP20K. The FPGA board can operate at 60 MHz at the maximum. The DCRAM chip

was designed by full-custom CMOS technology. Fig.4.33(a) shows the micrograph of the

DCRAM chip. The chip implements a subword part of DCRAM and the Fig.4.33(b) illus-

trates the chip layout. The fabricated DCRAM chip was layouted by full-custom design

flow using TSMC 0.35 2P4M technology. As shown in Fig.4.34, with the supply voltage
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(a)                                (b)

(c)

Figure 4.32. The result of chip design using TSMC 0.18um 1P6M technology. (a) The

chip layout of proposed rank-order filter. (b) The core of the proposed ROF processor. (c)

The floorplan and placement of (b). (1: Instruction decoder; 2: Reset circuit, 3: WMR, 4:

RMR, 5: RR, 6: DCRAM, 7: PS; 8: Level Quantizer; 9: Shift Register; 10: OUTR.)

80



Table 4.1. Timing analysis of the proposed ROF processor.

Path Description 1.8V 3.3V

supply supply

1 From the output of RR to the input of the shift register. 1.2 ns 0.78 ns

2 From the output of RMR, thru DCRAM to the input of the 1.8 ns 1.1 ns

PS.

3 From the output of RMR, thru DCRAM and the Level- 3.9 ns 3.44 ns

Quantizer, to the input of the shift register.

4 From the shift register, thru the inverter connected to “c in”, 3.02 ns 1.96 ns

to the SRAM cell of the computing field.

5 From “d in” to the SRAM cell of the data field. 3.05 ns 1.85 ns

6 From the SRAM cell of the data field to the SRAM cell of the 1.24 ns 1.09 ns

computing field.

of 3.3V, the DCRAM chip can operate at 25 MHz. Finally, we successfully integrated the

FPGA board and the DCRAM chips into a prototype as shown in Fig.4.35 The prototype

was validated with ROF algorithms mentioned above.

4.6 Comparison of Existing ROF Architectures

Since this design is the first one that uses SRAM-like memory as the kernel of the

ROF processor, it is hard to quantitatively compare the proposed memory-based architec-

ture with existing logic-based architecture. Therefore, we qualitatively make comparisons

with the other ROF architectures. The follows will address on comparisons in terms of

complexity, flexibility and regularity.

A variety of ROF architectures have been published in literature. We classified them into

three types: 2-D sorting array, linear sorting array, and bit-serial logic network. The 2-D

sorting array is fast, but costly. This type of ROF requires a large number of compare-swap

units and registers. It has the hardware complexity of O(BN 2), where N is the window size

and B is the bitwidth of input samples. The latency of the 2-D sorting array is proportional
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(a) (b) 

Figure 4.33. (a) The micrograph of DCRAM chip. (b) The layout of the DCRAM chip.

to N . Comparing with the 2-D sorting array, the proposed ROF architecture has lower

hardware complexity and latency complexity because the hardware complexity and latency

complexity of the proposed ROF architecture are O(BN) and O(B), respectively.

The linear sorting array presents the linear structure to maintain samples in sorted

order. For a sliding window of size N , the linear sorting array consists of N processing

elements and repeatedly executes the delete-and-insert procedure, called DI. The DI con-

tains three steps: finding the proper location for new coming sample, discarding the eldest

one, and moving samples between the newest and eldest one position. Although the linear

sorting array can reduce the hardware complexity to O(N), it requires a large latency for

DI steps and has the latency complexity of O(N). Obviously, our architecture outperforms

most of linear sorting arrays. Paper [61] presents a shiftable memory, called SCAM, for

reducing the the latency complexity, but the reduction is true only when applying their

architecture for 1-D applications. For a window of size n-by-n, the SCAM processor needs

n DI procedures for each filtering computation because each iteration of the 2-D ROF up-

dates at least n samples. To have an efficient 2-D rank-order filter, papers [53, 68] present

the linear sorting arrays for 2-D rank-order filtering at the expense of area. Comparing

with them, our approach has higher degree of flexibility for 1-D and 2-D applications while

the hardware cost is low.
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Figure 4.34. Measured waveform of the DCRAM chip.
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Figure 4.35. The system prototype of rank-order filtering processor.

Based on the bit-sliced algorithm, the bit-serial logic network can bitwisely select the

ranked candidates and generates the ranked result one bit at a time. The bit-serial logic

network recursively executes two steps: majority calculation and polarization. This type

of ROFs can reduce the latency complexity to O(B); however, many of them use complex

logic networks to implement the majority calculation. Paper [62] uses an inverter as a voter

for majority calculation. It significantly improves both hardware cost and processing speed;

nevertheless, the noise margin will become narrow as the number of inputs increases.

The proposed architecture basically takes the advantages of the bit-sliced algorithm:

(1) the latency is independent of the window size, and (2) the result can be obtained

without exhaustive comparisons. Comparing with the bit-serial logic network, the proposed

architecture has higher degree of flexibility and regularity because of the DCRAM structure.

The DCRAM structure reduces not only the complexity of the majority calculation, but

also the routing area between components.

Another major strength of the proposed ROF processor is the programmability. Paper

[72] is one of the pioneer on programmable ROF processor; however their application is

limited to median filtering. Thanks to the DCRAM structure, the proposed ROF processor

is flexible with the variation of the rank order r and algorithms. As shown in Section 4.3,

our ROF processor can be programmed for any rank order r and diverse applications.

Furthermore, the proposed architecture can reuse input data as many as possible and
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hence reduce the power consumption on memory access.
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5

Conclusions and Future Works

In this dissertation, we have successfully developed two kinds of ultra-low-power im-

age compression processors for capsule endoscope or swallowable imaging capsules. In

applications of capsule endoscopy, it is imperative to consider battery life/performance

trade-offs. Instead of applying state-of-the-art image compression techniques, we first pro-

pose an RGB-based compression algorithm, called GICam-I. In which the memory size

and computational load can be significantly reduced. We first simplified traditional im-

age compression algorithms by removing the demosaicking technique and the color-space

transformation. As shown in the result, the GICam-I only costs 31K gates at 2 frames per

second, consumes 14.92 mW, and reduces the video size by 75 percents at least. In addi-

tion, to further extend the battery life of capsule endoscope, we herein present an improved

ultra-low-power subsample-based GICam image compression processor, called GICam-II

for capsule endoscope or swallowable imaging capsules. By using the subsample technique

to improve computational loads in the GICam-I, we successfully make use of the subsample

technique to reduce the memory requirements of G1, G2 and B components according to

the analysis results of color sensitivity. As shown in the simulation result, the GICam-II can

efficiently save the power dissipation than GICam-I by 38.5% under the same compression

performance.
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Except using novel ultra-low-power compression techniques to save the power dissipation

of RF transmitter in the high-resolution capsule endoscope. How to efficiently eliminate

annoying impulsive noise caused by a fault sensor and enhance the sharpness is necessary

for a GI image and LUM filter is the most suitable candidate because it simultaneously

has the characteristics of smoothing and sharpening. In the operational procedure of LUM

filter, the mainly operational core is the rank-order filtering (ROF) and the LUM filter

itself needs to use different kind of rank values to accomplish the task of smoothing or

sharpening. Therefore, we need a flexible ROF hardware to arbitrarily select wanted rank

values into the operation procedure of LUM filter. In this dissertation, we have proposed an

architecture based on a maskable memory for rank-order filtering. This dissertation is the

first literature using maskable memory to realize ROF. Driving by the generic rank-order

filtering algorithm, the memory-based architecture features high degree of flexibility and

regularity while the cost is low and the performance is high. With the LIW instruction

set, this architecture can be applied for arbitrary ranks and a variety of ROF applications,

including recursive and non-recursive algorithms. As shown in the implementation results,

the core of the processor has high performance and low cost. The post-layout simulation

shows that the power consumption can be as low as 7 mW at 256 MHz. Except efficiently

eliminating annoying impulsive noises and enhance the sharpness for GI images, the pro-

cessing speed of ROF can also meet the real-time image applications in the QCIF, CIF,

VGA, or SVGA formats.

Next, we will begin to develop and realize the GICam endoscope system and then

practically use this novel wireless endoscope system in the clinical diagnosis to benefit

patients.
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