Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/disc)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Multicolored parallelisms of Hamiltonian cycles^{$\dot{\ }$}

Hung-Lin Fu[∗](#page-0-1) , Yuan-Hsun Lo

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan

a r t i c l e i n f o

Article history: Received 2 October 2006 Accepted 21 July 2008 Available online 15 August 2008

In honor of Prof. A. J. W. Hilton for his dedication to Combinatorics

Keywords: Complete graph Multicolored Hamiltonian cycles Parallelism

a b s t r a c t

A subgraph in an *edge-colored* graph is *multicolored* if all its edges receive distinct colors. In this paper, we prove that a complete graph on $2m + 1$ vertices K_{2m+1} can be properly edge-colored with $2m + 1$ colors in such a way that the edges of K_{2m+1} can be partitioned into *m* multicolored *Hamiltonian* cycles.

© 2009 Published by Elsevier B.V.

1. Introduction

A *proper k-edge-coloring* of a graph *G* is a mapping from *E*(*G*) into a set of colors {1, 2, . . . , *k*} such that incident edges of *G* receive distinct colors. The *chromatic index* χ 0 (*G*) of a graph *G* is the minimum number *k* for which *G* has a proper *k*-edge-coloring.

If *G* has a *k*-edge-coloring, *G* is said to be *k*-edge-colored or *simply* edge-colored. A subgraph in an edge-colored graph is *multicolored* if all its edges receive distinct colors. The following conjecture was posed by Brualdi and Hollingsworth in [\[2\]](#page-5-0).

Conjecture A ([\[2\]](#page-5-0)). If K_{2m} is (2m-1)-edge-colored, then the edges of K_{2m} can be partitioned into m multicolored spanning trees *except when* $m = 2$ *.*

In [\[2\]](#page-5-0), they constructed two multicolored spanning trees in *K*2*^m* for any proper (2*m* − 1)-edge-coloring by making use of Rado's theorem [\[7,](#page-5-1)[8\]](#page-5-2). In [\[6\]](#page-5-3), for any (2*m*−1)-edge-coloring of *K*2*^m* with *m* > 2, Krussel et al. constructed three multicolored spanning trees. In [\[4\]](#page-5-4), Constantine used a special(2*m*−1)-edge-coloring of *K*2*^m* to partition the edges of *K*2*^m* into multicolored isomorphic spanning trees for specific values of *m*.

Theorem 1.1 ([\[4\]](#page-5-4)). For $n = 6$, $n = 2^k$ with $k \ge 3$ or $n = 5 \cdot 2^k$ with $k \ge 1$, there exists an $(n-1)$ -edge-coloring of K_n such *that the edges of* K_n *can be partitioned into* $\frac{n}{2}$ *multicolored isomorphic spanning trees.*

In [Fig. 1,](#page-1-0) the *i*th row denotes the edges of K_6 which are colored with c_i and the *j*th column denotes the edges of a multicolored spanning tree for $1 \le i \le 5$ and $1 \le j \le 3$. Therefore, we have a parallelism as defined in Cameron [\[3\]](#page-5-5), with an additional property due to color. Indeed, it is a double parallelism of *Kn*, one parallelism is present in the rows of the array (perfect matchings) and the other parallelism is present in the columns that consist of edge disjoint isomorphic

 \overrightarrow{x} Research support in part by NSC 94-2115-M-009-017.

[∗] Corresponding author.

E-mail address: hlfu@math.nctu.edu.tw (H.-L. Fu).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter © 2009 Published by Elsevier B.V. [doi:10.1016/j.disc.2008.07.018](http://dx.doi.org/10.1016/j.disc.2008.07.018)

	T_{1}	T ₂	T_3
$C1$:	35	46	12
$C2$:	24	15	36
C_3 :	25	34	16
$C4$:	26	13	45
C5:	14	23	56

Fig. 1. 3 multicolored isomorphic spanning trees in K_6 .

spanning trees. Due to this fact, we say that the complete graph *K*2*^m* admits a *multicolored tree parallelism (MTP)*, if there exists a proper (2*m* − 1)-edge-coloring of *K*2*^m* for which all edges can be partitioned into *m* isomorphic multicolored spanning trees.

Following the result given in [\[4\]](#page-5-4), Constantine made the following conjecture.

Conjecture B ($[4]$). K_{2m} *admits an MTP for each positive integer m* \neq 2*.*

This conjecture was recently proved by Akbari et al. [\[1\]](#page-5-6).

In this paper, we extend the study of parallelism to the complete graph K_{2m+1} of odd order. Since $\chi'(K_{2m+1})=2m+1$, a multicolored subgraph will have 2*m* + 1 edges. Thus, a natural subgraph to consider is a *Hamiltonian cycle*. A graph *G* with *n* vertices has a *multicolored Hamiltonian cycle parallelism (MHCP)* if there exists an *n*-edge-coloring of *G* such that the edges can be partitioned into multicolored Hamiltonian cycles. In this paper, we shall prove that for each positive integer *m*, *K*2*m*+¹ admits an *MHCP*. This result extends earlier work obtained by Constantine [\[5\]](#page-5-7) which shows that K_{2m+1} admits an MHCP when $2m + 1$ is a prime.

2. Preliminaries

It is well-known that $\chi'(K_n) = n$ if *n* is odd and $\chi'(K_n) = n - 1$ if *n* is even. Also, $\chi'(K_{n,n}) = n$ [\[9\]](#page-5-8). To color the edges of K_n when *n* is odd, the following notion plays an important role. A *latin square* of order *n* is an $n \times n$ array of *n* symbols, 1, 2, ..., n, in which each symbol occurs exactly once in each row and each column of the array. A latin square $L = [\ell_{i,j}]$ is *commutative if* $\ell_{i,j}=\ell_{j,i}$ *for each pair of distinct i and j, and L is idempotent if* $\ell_{i,i}=i$ *,* $i=1,2,\ldots,n$ *. It is well-known that* an idempotent commutative latin square of order *n* exists if and only if *n* is odd. Now, let $V(K_n) = \{v_1, v_2, \ldots, v_n\}$ and let $L = [\ell_{i,j}]$ be an idempotent commutative latin square of order *n*. Color edge $v_i v_j$ of K_n with color $\ell_{i,j}$ and observe that this produces an *n*-edge-coloring of *Kn*.

A similar idea shows that a latin square of order *n* corresponds to an *n*-edge-coloring of the complete bipartite graph *Kn*,*n*. For the convenience in the proof of our main result, we shall use a special latin square $M = [m_{i,j}]$ of order odd *n* which is a circulant latin square with 1st row $(1, \frac{n+3}{2}, 2, \frac{n+5}{2}, 3, \ldots, \frac{n+n}{2}, \frac{n+1}{2})$. [Fig. 2](#page-1-1) is such a latin square of order 7.

Now, let $\{u_1, u_2, \ldots, u_n\}$ and $\{v_1, v_2, \ldots, v_n\}$ be the two partite sets of $K_{n,n}$ and let $M = [m_{i,j}]$ be a circulant latin square of order *n* with the first row as described in the preceding paragraph. Color edge $u_i v_j$ of $K_{n,n}$ with color $m_{i,j}$ and observe that the result is a proper *n*-edge-coloring of $K_{n,n}$ with the extra property that for $1 \le j \le n$, the perfect matching $\{u_1v_1, u_2v_{j+1}, u_3v_{j+2}, \ldots, u_nv_{j+n-1}\}\$, where the indices of v_i are taken modulo *n* with $i \in \{1, 2, \ldots, n\}$, is multicolored. We note here that if we permute the entries of *M*, we obtain another *n*-edge-coloring of *Kn*,*ⁿ* which has the same property as above.

The following result by Constantine appears in [\[5\]](#page-5-7).

Theorem 2.1 (*[\[5\]](#page-5-7)*). *If n is an odd prime, then Kⁿ admits an MHCP.*

Note that this result can be obtained by using a circulant latin square of order *n* to color the edges of *Kⁿ* and the Hamiltonian cycles are corresponding to 1st, 2nd, ..., $(\frac{n-1}{2})$ th sub-diagonals, respectively. For example, in *K*₇, the edges are colored by using [Fig. 2,](#page-1-1) and the three cycles are induced by $\{v_1v_{i+1}, v_2v_{i+2}, \ldots, v_7v_{i+7}\}$ where $V(K_7) = \{v_1, v_2, \ldots, v_7\}$, $i = 1, 2, 3$, and the sub-indices are in $\{1, 2, ..., 7\}$.

In what follows, we extend [Theorem 2.1](#page-1-2) to the case when *n* is an odd, but not necessarily prime, integer.

3. The main results

We begin this section with some notations. Let *Km*(*n*) be the complete *m*-partite graph in which each partite set is of size *n*. In what follows, we will let $\mathbb{Z}_k = \{1, 2, ..., k\}$ with the usual addition modulo *k*. For convenience, let $V(K_{m(n)}) = \bigcup_{i=1}^m V_i$ where $V_i = \{x_{i,1}, x_{i,2}, \ldots, x_{i,n}\}\$. The graph $C_{m(n)}$ is a spanning subgraph of $V(K_{m(n)})$ where $x_{i,j}$ is adjacent to $x_{i+1,k}$ for all *^j*, *^k* ∈ ^Z*ⁿ* and *ⁱ* ∈ ^Z*^m* (mod *^m*). Clearly, if *^K^m* can be decomposed into *^m*−¹ 2 Hamiltonian cycles (*m* is odd), then *Km*(*n*) can be decomposed into $\frac{m-1}{2}$ subgraphs, each of which is isomorphic to $C_{m(n)}$.

In order to prove the main theorem, we need the following two lemmas.

Lemma 3.1. Let p be an odd prime and m be a positive odd integer with $p \leq m$. Let $t \in \{1, 2, \ldots, p-1\}$. Then there exists a *set* ${S_i = (a_{i,1}, a_{i,2}, \ldots, a_{i,m}) | 0 \le i \le p-1}$ *of m-tuples such that*

 (1) *S*₀ = (0, 0, ..., 0, t); (2) ${a_{i,j} \mid 0 \le i \le p-1} = {0, 1, 2, ..., p-1}$ *for each j with* 1 ≤ *j* ≤ *m*; and (3) $p \nmid w_i$ where $w_i = \sum_{j=1}^m a_{i,j}$ for each i with $0 \le i \le p-1$.

Proof. The proof follows by direct constructions depending on the choice of *t* where $1 \le t \le p - 1$. First, we let $S_0 = (0, 0, \ldots, 0, 1), S_1 = (1, 1, \ldots, 1, 2), \ldots$, and $S_{p-1} = (p-1, p-1, \ldots, p-1, 0)$ be the *p m*-tuples. For each *i* with $0 \le i \le p-1$, let $w_i = \sum_{j=1}^m a_{i,j}$ where $S_i = (a_{i,1}, a_{i,2}, \ldots, a_{i,m})$. If for each $0 \le i \le p-1$, $p \nmid w_i$, we do nothing. Otherwise, assume that $p \mid w_j$ for some $j \in \{1, 2, \ldots, p-1\}$, and note that such *j* is unique. Now, if $j \in \{1, 2, \ldots, p-2\}$, replace S_j and S_{j+1} with $(j, j, \ldots, j, j+1, j+1)$ and $(j+1, j+1, \ldots, j+1, j, j+2)$, respectively. Else, if $j = p - 1$, then replace S_{p-2} and S_{p-1} with $(p-2, p-2, \ldots, p-2, p-1, p-1, p-1)$ and $(p-1, p-1, \ldots, p-1, p-2, p-2, 0)$, respectively.

When *t* = 1, clearly, these *p m*-tuples above satisfies all the three properties. So, in what follows, we consider 2 ≤ *t* ≤ *p* − 1. Note that we initially use the same *m*-tuples constructed in the case *t* = 1 and consider that *j* causing us to adjust entries above.

Case 1. No such *j* exists.

First, interchange $a_{0,m}$ with $a_{t-1,m}$. If $w_{t-1} \neq 0$ (mod p), then we are done. On the other hand, suppose $w_{t-1} \equiv 0$ \pmod{p} . If $w_t \not\equiv 1 \pmod{p}$, then replace S_{t-1} and S_t with $(t-1, t-1, \ldots, t-1, t, 1)$ and $(t, t, \ldots, t, t-1, t+1)$, respectively. Otherwise, replace S_{t-1} and S_t with $(t-1, t-1, \ldots, t-1, t-1, t+1)$ and $(t, t, \ldots, t, t, 1)$, respectively.

Case 2.
$$
j \in \{1, 2, \ldots, p-2\}.
$$

First, interchange $a_{0,m}$ with $a_{t-1,m}$. If $w_{t-1} \not\equiv 0 \pmod{p}$, then we are done. On the other hand, suppose $w_{t-1} \equiv 0$ (mod p). If $t = j + 2$, then replace S_i and S_{i+1} with $(j, j, \ldots, j, j + 1, j + 1, j + 1)$ and $(j + 1, j + 1, \ldots, j + 1, j, j, 1)$, respectively. Otherwise, interchange *at*−1,*m*−¹ with *at*,*m*−1.

 $Case 3. i = p - 1.$

Interchange $a_{0,m}$ with $a_{t-1,m}$.

Thus, we can construct the desired p m-tuples. \blacksquare

Lemma 3.2. Let v be a composite odd integer and p be the smallest prime with p|v. Assume $v = mp$. If K_m admits an MHCP, *then Km*(*p*) *has an mp-edge-coloring that admits an MHCP.*

Proof. We prove the lemma by giving an *mp*-edge-coloring φ . Since K_m defined on $\{x_i \mid i \in \mathbb{Z}_m\}$ admits an MHCP, let μ be such an edge-coloring using the colors 1, 2, ..., m. Let $V(K_{m(p)}) = \bigcup_{i=1}^{m} V_i$ where $V_i = \{x_{i,j} \mid j \in \mathbb{Z}_p\}$ and $L = [\ell_{h,k}]$ be a circulant latin square of order p as defined before [Fig. 2.](#page-1-1) Now, we have an *mp*-edge-coloring of $K_{m(n)}$ by letting $\varphi(x_{a,b}x_{c,d})=\ell_{b,d}+(\mu(x_a x_c)-1)\cdot p$, where $a,c\in\mathbb{Z}_m$ and $b,d\in\mathbb{Z}_p$. Therefore, the edges in $K_{m(p)}$ joining a vertex of V_a to a vertex of V_c , denoted (V_a, V_c) , are colored with the entries in $L + (\mu(x_a x_c) - 1) \cdot p$. It is not difficult to see that φ is a proper edge-coloring of *Km*(*p*) . Now, it is left to show that the edges of *Km*(*p*) can be partitioned into multicolored Hamiltonian cycles.

Let $C=(x_{i_1},x_{i_2},\ldots,x_{i_m})$ be a multicolored Hamiltonian cycle in K_m obtained from the MHCP of K_m . Define $C_{m(p)}$ to be the subgraph induced by the set of edges in (V_{i_1}, V_{i_2}) , (V_{i_2}, V_{i_3}) , \dots , $(V_{i_{m-1}}, V_{i_m})$, (V_{i_m}, V_{i_1}) . Then let $S(r_1, r_2, \dots, r_m)$, where $r_j\in\{0,1,\ldots,p-1\}$ for $1\leq j\leq m$, be the set of perfect matchings $\overline{\text{in}}\;(V_{i_1},V_{i_2}),\ (V_{i_2},V_{i_3}),\ldots,(V_{i_{m-1}},V_{i_m})$ and $(V_{i_m},V_{i_1}),$ respectively, where the perfect matching in $(V_{i_j},V_{i_{j+1}})$ is the set of edges $x_{i_j,a}x_{i_{j+1},b}$ with $b-a\equiv r_j\ (\mathrm{mod}\ p)$ for each $j\in\mathbb{Z}_m$. Since these perfect matchings of $(V_{i_j}, V_{i_{j+1}})$ are multicolored, we have that $S(r_1, r_2, \ldots, r_m)$ is a multicolored 2-factor of

Fig. 3. Two multicolored Hamiltonian cycles.

 $C_{m(n)}$. Hence, we can partition the edges of $C_{m(p)}$ into *p* multicolored 2-factors due to the fact that $r_i \in \{0, 1, \ldots, p-1\}$. Note that $S(r_0, r_1, \ldots, r_{m-1})$ and $S(r'_0, r'_1, \ldots, r'_{m-1})$ are edge-disjoint 2-factors if and only if $r_i \neq r'_i$ for each $i \in \mathbb{Z}_m$.

The proof follows by selecting $(r_0,r_1,\ldots,r_{m-1})\,\in\,\mathbb{Z}_p^m$ properly in order that each 2-factor $S(r_0,r_1,\ldots,r_{m-1})$ of $C_{m(p)}$ is a Hamiltonian cycle. Observe that if $\sum_{i=0}^{m-1} r_i$ is not a multiple of *p* (odd prime), then $S(r_0,r_1,\ldots,r_{m-1})$ is a Hamiltonian cycle. From [Lemma 3.1,](#page-2-0) let *SS*0, *SS*1, . . . , *SSp*−¹ be the 2-factors of *Cm*(*p*) . This implies that we have a partition of the edges of *Cm*(*p*) into *^p* edge-disjoint multicolored Hamiltonian cycles. Moreover, since *^Km*(*p*) can be partitioned into *^m*−¹ 2 copies of *Cm*(*p*) where each $C_{m(p)}$ arises from a multicolored Hamiltonian cycle in K_m , we have a partition of the edges of $K_{m(p)}$ into $\frac{m-1}{2} \cdot p$ multicolored Hamiltonian cycles.

As an example, if $m = p = 3$, then the three multicolored Hamiltonian cycles are $S(0, 0, 1) = (x_{1,1}, x_{2,1}, x_{3,1}, x_{4,1})$ $x_{1,2}, x_{2,2}, x_{3,2}, x_{1,3}, x_{2,3}, x_{3,3}$, $S(1, 1, 2) = (x_{1,1}, x_{2,2}, x_{3,3}, x_{1,2}, x_{2,3}, x_{3,1}, x_{1,3}, x_{2,1}, x_{3,2})$, $S(2, 2, 0) = (x_{1,1}, x_{2,3}, x_{3,2}, x_{1,3}, x_{3,3})$ $x_{2,2}$, $x_{3,1}$, $x_{1,2}$, $x_{2,1}$, $x_{3,3}$). In case that $m=5$ and $p=3$, then we have 6 multicolored Hamiltonian cycles. For each $C_{5(3)}$, we have three multicolored Hamiltonian cycles of type *S*(0, 0, 0, 0, 1), *S*(1, 1, 1, 2, 2), and *S*(2, 2, 2, 1, 0).

Now, in order to partition the edges of a 9-edge-colored *K*⁹ into 4 Hamiltonian cycles, we combine *S*(0, 0, 1) with the three cliques (K_3) induced by the three partite sets V_1 , V_2 and V_3 , to obtain a 4-factor. Since these K_3 's can be edge-colored with $\{4, 5, 6\}$, $\{7, 8, 9\}$ and $\{1, 2, 3\}$, respectively, we have an edge-colored 4-factor with each color occurs exactly twice. Thus, if this 4-factor can be partitioned into two multicolored Hamiltonian cycles, then we conclude that *K*⁹ admits an *MHCP*. [Fig. 3](#page-3-0) shows how this can be done.

Notice that in the induced subgraphs $\langle V_1 \rangle$, $\langle V_2 \rangle$ and $\langle V_3 \rangle$ we have exactly one edge from each graph which is not included in the cycle with solid edges. Therefore, we may first color the edges in $\langle V_1 \rangle$, $\langle V_2 \rangle$ and $\langle V_3 \rangle$, respectively, and then adjust the colors in (V_1, V_2) , (V_2, V_3) and (V_3, V_1) , respectively, in order to obtain a multicolored Hamiltonian cycle. For example, if the color of $x_{0,0}x_{0,2}$ is 5 instead of 4, then we permute (or interchange) the two entries in 4 6 5 6 5 4 $5 \ 4 \ 6$, and thus the latin

square used to color (V_2, V_3) becomes 5 6 4 6 4 5 4 5 6 . This is an essential trick we shall use when *p* is a larger prime.

Theorem 3.3. For each odd integer $v > 3$, K_v admits an MHCP.

Proof. The proof is by induction on v. By [Theorem 2.1,](#page-1-2) the assertion is true for v is a prime. Therefore, we assume that v is a composite odd integer and the assertion is true for each odd order $u < v$. Let p be the smallest prime such that $v = p \cdot m$ and $V(K_v) = \bigcup_{i=1}^m V_i$ where $V_i = \{x_{i,j} \mid j \in \mathbb{Z}_p\}$, $i \in \mathbb{Z}_m$. By induction, K_m admits an MHCP and hence $K_{m(p)}$ can be partitioned into *^m*−¹ 2 *Cm*(*p*) 's each of which admits an *MHCP*. Moreover, by [Lemma 3.2,](#page-2-1) each *MHCP* of *Cm*(*p*) contains a multicolored Hamiltonian cycle S(0, 0, \dots , 0, 1). Here, the edge-coloring φ of $K_{m(p)}$ is induced by the edge-coloring μ of K_m defined as in [Lemma 3.2.](#page-2-1) That is, if v_iv_j is an edge of K_m with color $\mu(v_iv_j)=t\in\mathbb{Z}_m$, then the colors of the edges in (V_i,V_j) are assigned by using *M* +(*t* −1)*p* where *M* is a circulant latin square of order *p* as defined before [Fig. 2.](#page-1-1) We note here again that permuting the entries of a latin square $M + (t - 1)p$ gives another edge-coloring, but the edge-coloring is still proper.

So, in order to obtain an *MHCP* of K_v , we first give a v-edge-coloring of K_v and then adjust the coloring if it is necessary. Since $K_{m(p)}$ has an *mp*-edge-coloring φ , the edge-coloring π of K_v can be defined as follows: (a) $\pi|_{K_{m(p)}}$ $= \varphi$ and (b) $\pi|_{\langle V_i\rangle} = \psi_i$, $i = 1, 2, \ldots, m$, where ψ_i is an *p*-edge-coloring of K_p such that K_p can be partitioned into $\frac{p-1}{2}$ multicolored

Hamiltonian cycles. Moreover, the images of ψ_i are $1 + (t-1)p$, $2 + (t-1)p$, ..., $p + (t-1)p$ where $t \in \mathbb{Z}_m$ and t is the color not occurring in the edges incident to $v_i \in V(K_m)$. (Here, the colors used to color the edges of K_m are 1, 2, 3, ..., *m*.)

Fig. 5. $E^{(2)}$ ∪ 7*D*⁽²⁾ in *K*₃₅.

It is not difficult to check that π is a v-edge-coloring of K_v . We shall revise π by permuting the colors in (V_i, V_{i+1}) for some *i* and finally obtain the edge-coloring we need.

Let the edges of the K_p induced by V_1 be partitioned into $\frac{p-1}{2}$ multicolored Hamiltonian cycles $D^{(1)},$ $D^{(2)},$ \ldots , $D^{(\frac{p-1}{2})}$, and x_{1,t_i} is the neighbor with the larger index t_i of $x_{1,1}$ in $D^{(i)}$. Hence, the m copies of K_p each induces by V_i can be partitioned into *m* copies of $D^{(1)}$, $D^{(2)}$, ..., and $D^{(\frac{p-1}{2})}$. For convenience, denote them as $mD^{(i)}$, $i=1,2,\ldots,\frac{p-1}{2}$. Now, let the edges of $K_{m(p)}$ be partitioned into $C_{m(p)}^{(1)}, C_{m(p)}^{(2)}, \ldots, C_{m(p)}^{(\frac{m-1}{2})}$ *m*(*p*) \ldots *By* [Lemma 3.1,](#page-2-0) we can let each of $C^{(1)}_{m(p)}, C^{(2)}_{m(p)}, \ldots, C^{(\frac{p-1}{2})}_{m(p)}$ $\int_{m(p)}^{\infty}$ contains a multicolored Hamiltonian cycle $E^{(1)}$, $E^{(2)}$, ..., $E^{(\frac{p-1}{2})}$ of type $S(0, 0, \ldots, 0, p+1-t_i)$. Since $m \geq p$, we consider the 4-factors $E^{(i)} \cup mD^{(i)}$ where $i = 1, 2, \ldots, \frac{p-1}{2}$. Starting from $i = 1$, we shall partition the edges of $E^{(1)} \cup mD^{(1)}$ into two Hamiltonian cycles such

that both of them are multicolored. By the idea explained in [Fig. 3,](#page-3-0) we first obtain two Hamiltonian cycles from *E* (1) ∪ *mD*(1) by a similar way, see [Fig. 4](#page-4-0) for example. For the purpose of obtaining multicolored Hamiltonian cycles, we adjust the colors by permuting them in the latin square for (V_i, V_{i+1}) to make sure the first cycle does contain each color exactly once. Then, the second one is clearly multicolored. Now, following the same process, we partition the edges of *E*⁽²⁾ ∪ *mD*⁽²⁾, . . ., and $E^{({p-1 \over 2})}$ ∪mD^{(p_1}) into two multicolored Hamiltonian cycles, respectively. We remark here that if permuting entries of a latin square is necessary, then we can keep doing the same trick since $C_{m(p)}^{(1)}$, $C_{m(p)}^{(2)}$, ..., $C_{m(p)}^{(\frac{m-1}{2})}$ $\int_{m(p)}^{\infty}$ are edge-disjoint subgraphs of *Km*(*p*) . (The permutations are carried out independently.) This implies that after all the permutations are done, we obtain a *v*-edge-coloring of K_v such that K_v can be partitioned into $\frac{v-1}{2}$ multicolored Hamiltonian cycles. ■

In conclusion, we use [Figs. 4](#page-4-0) and [5](#page-4-1) to explain how our idea works. In [Fig. 4,](#page-4-0) $t_1 = 5$. The edge *xy* was colored with 26 originally by using the circulant latin square of order 5 mentioned before [Fig. 2.](#page-1-1) But, 26 occurs in the Hamiltonian cycle with solid edges already. Therefore, we use (26, 30) to permute the square to obtain the edge-coloring we would like to have. After adjusting the colors of zw , $z'w'$ and ab, respectively, we have two multicolored Hamiltonian cycles as desired. In [Fig. 5,](#page-4-1) $t_2 = 4$. For convenience, we reset V_1 , V_3 , V_5 , V_7 , V_2 , V_4 , V_6 from top to down. Following the same process, we also have two multicolored Hamiltonian cycles.

Acknowledgements

The authors would like to express their gratitude to the referees for their careful reading of this article and their many constructive comments.

References

- [1] S. Akbari, A. Alipour, H.L. Fu, Y.H. Lo, Multicolored parallelism of isomorphic spanning trees, SIAM Discrete Math. (June) (2006) 564–567.
- [2] R.A. Brualdi, S. Hollingsworth, Multicolored trees in complete graphs, J. Combin. Theory Ser. B 68 (2) (1996) 310–313.
- [3] P.J. Cameron, Parallelisms of Complete Designs, in: London Math. Soc. Lecture Notes Series, vol. 23, Cambridge University Press, 1976.
- [4] G.M. Constantine, Multicolored parallelisms of isomorphic spanning trees, Discrete Math. Theor. Comput. Sci. 5 (1) (2002) 121–125.
- [5] G.M. Constantine, Edge-disjoint isomorphic multicolored trees and cycles in complete graphs, SIAM Discrete Math. 18 (3) (2005) 577–580.
- [6] J. Krussel, S. Marshall, H. Verrall, Spanning trees orthogonal to one-factorizations of *K*2*n*, Ars Combin. 57 (2000) 77–82.
- [7] J.G. Oxley, Matroid Theory, Oxford Univ. Press, New York, 1992.
- [8] R. Rado, A theorem on independence relations, Quart. J. Math. Oxford Ser. 13 (1942) 83–89.
- [9] Douglas.B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ, 2001.