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A Study of Image Processing and Computer Vision
Techniques for Driving Assistance Systems

Student : Chuan-Tsai Lin Advisor : Prof. Bing-Fei Wu

Department of Electrical and Control Engineering
National Chiao Tung University

ABSTRACT

The dissertation aims to explore techniques of image processing and computer vision
applicable to driving assistance system, including lane detection, vehicle detection, estimation of
the distance to the preceding car, error estimation, and dynamic calibration of cameras. The
vision-based driving assistance systemifilms the front road scenes with a camera equipped on the
intelligent vehicle, computes lane positions and the. distance to the preceding car by the lane and
vehicle detection and then adopts the obtained information to improve driving safety. The
dissertation mainly includes threg sections:—Fhe: first section is a brief introduction of the
application of computer vision technigues to the.driving assistance system. The second section
presents analyses of the information obtained from lane detection and approaches for reducing
errors. The third section proposes some algorithms and their application to the range estimation,
error estimation, dynamic calibration, and detection of lanes and vehicles.

The dissertation presents several approaches to estimate the range between the preceding
vehicle and the intelligent vehicle, to compute vehicle size and its projective size, and to
dynamically calibrate cameras. First, a camera model is developed to transform coordinates from
the ground plane onto the image plane to estimate the relative positions between the detected
vehicle and the camera. Then, a new estimation method is proposed to estimate the actual and
projective size of the preceding vehicle. This method can estimate the range between the
preceding vehicle and the camera with the information of the contact points between vehicle tires
and the ground and then estimate the actual size of the vehicle according to the positions of its
vertexes in the image. Because the projective size of a vehicle varies with its distance to the

camera, a simple and rapid method is presented to estimate the vehicle’s projective height, which



allows a reduction of the computation time in the size estimation of the real-time systems.

Errors caused by the application of different camera parameters are also estimated and
analyzed in this study. The estimation results are used to determine suitable parameters during
camera installation to reduce estimation errors. Finally, to guarantee robustness of the detection
system, a new efficient approach of dynamic calibration is presented to obtain accurate camera
parameters, even when they are changed by camera vibration arising from on-road driving.
Experimental results demonstrate that our approaches can provide accurate and robust estimation
of range and size of the target vehicles.

In the dissertation, an approach for rapidly computing the projective lane width is presented
to predict the projective lane positions and widths. Lane Marking Extraction (LME) Finite State
Machine (FSM) is designed to extract points with features of lane markings in the image and a
cubic B-spline is adopted to conduct curve fitting to reconstruct road geometry. A statistical
search algorithm is also proposed to correctly and adaptively determine thresholds under various
kinds of illumination. Furthermore, parameters of the camera in a moving car may change with
vibration, so a dynamic calibration-algorithm/is-applied to calibrate camera parameters and lane
widths based on the information of lane projection. Besides, a fuzzy logic is used to discern the
situation of occlusion. Finally, an ROl (Region of-Interest) determination strategy is developed to
narrow the search region and make the déetection morerobust with respect to the occlusion on the
lane markings or complicated changes of curves'and road boundaries.

The developed fuzzy-based vehicle detection method, Contour Size Similarity (CSS),
performs the comparison between the projective vehicle sizes and the estimated ones by fuzzy
logic. The aim of vehicle detection is to detect the closest preceding car in the same lane with the
intelligent vehicle. Results of the experiments demonstrate that the proposed approach is
effective in vehicle detection. Furthermore, the approach can rapidly adjust to the changes of
detection targets when another car cuts in the lane of the intelligent vehicle. Finally, a conclusion

and future works are also presented.

Vi
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Chapter 1

Introduction

1.1 Motivation

Driving assistance systems have become an active research area in recent years for
developing intelligent transportation systems (ITS). On average, there is at least one man
dying of vehicle crash every minute and more than 10 million people getting injured in the
auto accidents, 2 or 3 million of whom are seriously wounded. Therefore, researches
concerning crash avoidance, the reduction of mjury and accidents, and the manufacture of
safer vehicles are very important. Vehicle aceident statistics reveal that the greatest threat to a
driver comes from other vehicles. Aceordingly,-the objective of automatic driving assistance
systems is to provide drivers with the information with respect to the surrounding traffic
environment to lower the possibility of collision [1]-[3].

Currently, various sensors have been applied to driving assistance systems. Driving
assistance systems require information regarding lanes, the preceding vehicle and its range to
the intelligent vehicle. Lane detection usually entails vision-based techniques, which require
the use of single cameras or stereo cameras. Approaches to vehicle detection and range
estimation are multiple. Besides vision-based techniques, laser sensors are often adopted. If
a system involves several or many kinds of sensors, the cost will rise and the complexity of
the system will increase. By contrast, the use of only a single camera can significantly reduce
the cost.

The preceding lane scenes can be filmed by the camera mounted in a vehicle. Parameters of



the camera can affect the results of range estimation; however, the parameters are easily
changed by the vibration caused by the vehicle movements. Therefore, setting parameters
correctly to reduce errors and dynamic camera calibration are necessary issues for researches.
Besides, vehicles often move rapidly so driving assistance systems should be able to promptly
respond to results of lane and vehicle detection to avoid the occurrence of traffic accidents.
Hence, the acceleration of detection is also a major research issue. Furthermore, adaptive lane
and vehicle detection systems are required to cope with changes of weather and illumination
in the outdoor environment. Accordingly, the objective of this study is to develop

methodologies for adaptive and real-time driving assistance systems [4]-[8].

1.2 Literature Survey

1.2.1 Range Estimation and Dynamic-Calibration

Previous studies often adopted laser, radar or/ computer vision techniques in range
estimation issues. For example, Chen [9] presented a radar-based detector to find obstacles in
the forward collision warning system, where a vision-based module was adopted to confirm
that the detected object is not an overhead structure to avoid false alarms of the warning
system. Segawa et al. [10] developed a preceding vehicle detection system for collision
avoidance by using a combination of stereo images and non-scanning millimeter-wave radar.
In Hautiere et al.’s method [11], a depth map of the road environment is computed and
applied for detecting the vertical objects on the road. Stereo-vision based techniques can also
be applied on range estimation. By comparing the disparities of two images, obstacles can be
detected and their distance to the experimental vehicle can also be estimated [11][12].
However, the methods above need multiple cameras or at least one set of radar to detect
obstacles and estimate the range. If only one single camera is required, the cost and the

complexity of the system will be significantly decreased. Nevertheless, the estimation results



of a single camera are often influenced by external camera parameters and thus serious errors
arise. For example, an outdoor camera is often affected by the wind or rain. Furthermore,
camera parameters vary with the pressure of tires, unbalanced load or bumpy roads when the
camera is mounted on a moving vehicle. Therefore, automatic calibration is necessary to deal
with the above issues. Studies of camera calibration usually adopted points in the world
coordinates or certain distinctive patterns [13]-[15]. For instance, Wang and Tsai [13]
proposed a camera calibration approach using a planar hexagon pattern drawn on the ground.
However, this approach may only be suitable for calibration of fixed cameras. Schoepflin and
Dailey [14] supposed the camera swing angle was zero and searched for the vanishing point
by extending lane markings in the image to calibrate the tilt angle. Nevertheless, when the
camera swing angle is not zero, errors may arise. Liang, et al. [15] calibrated the tilt angle of a
moving camera with the coordinate of the vanishing point. However, the assumption of
vehicles staying in the center of lanes may not.be reasonable under typical driving conditions
and thus such methods may cause more errors-on roads with curves. Therefore, it is better if
calibration targets are objects available on-the road and errors caused by incomplete
assumptions should be estimated. In fact, camera intrinsic parameters are usually fixed while
extrinsic parameters such as angles and heights are variable. Intrinsic parameters can be
obtained by analyzing a sequence of images captured by cameras [16]-[19]. To solve the
problem of changing extrinsic parameters, we propose an approach of automatic calibration to
provide robust range estimation for vision-based systems.

Object features, like sizes and shapes, are widely employed in the recognition of objects
[20]-[25]. Yilmaz ef al.[20] adopted a method of contour-based object tracking to detect
pedestrians and to solve the problem of occlusion between objects. Lin et al.[21] computed
the number of people in crowded scenes by detecting features of human heads. Pang et al.[22]

analyzed vehicle projections with geometry and divided their occlusions in the images to



provide essential information to the traffic surveillance systems. Broggi et al.[23] utilized
inverse perspective mapping to transfer images of the front driving lanes into a bird’s view of
parallel lanes to detect and identify vehicles with a bounding box. However, most of the
above-mentioned approaches may need the prior information about the projective size and
shape of the target object, and it may not be possible to obtain this information accurately and
rapidly in many situations. Moreover, the loss of dimensional information during the
transformation from 3-D coordinates to 2-D image coordinates often increases difficulties in
estimating the projective size and shape of the target object. To solve the problem, we regard
a vehicle as a cuboid and with the world coordinates of the cuboid’s vertex on the ground, we
can estimate the world coordinates of other vertices in the cuboid, determine their projective
positions and estimate the size of the cuboid. Since vehicle sizes are within certain ranges,
cuboids on the drive lanes whose sizes fit general vehicle sizes should be vehicles. So our

method can be applied to vehicle-recognition.

1.2.2 Lane Detection

There are many ways lane detection can be achieved. In early studies, Dickmanns et al.
[26]-[28] conducted 3-D road recognition by adopting horizontal and vertical mapping models,
the approach of extracting features with edge elements, and recursive estimation techniques.
The results were applied to their test vehicle (VaMoRs) to function as autonomous vehicle
guidance. Broggi et al. [29][30] used /PM (Inverse Perspective Mapping ) to transfer a 3-D
world coordinate to a 2-D image coordinate, and detected road markings using top-view
images. Kreucher and Lakshmanan [31] suggested detecting lane markings with frequency
domain features that capture relevant information about edge-oriented features. The objectives
of many studies on lane detection include autonomous vehicle guidance and driving

assistance such as lane-departure-warning and Driver-Attention Monitoring systems. Some



assumptions in common are as follows: 1) The road is flat or follows a precise model. 2) The
appearance of lane markings follows strict rules. 3) The road texture is consistent. The main
difficulty in lane detection is how to recognize roads efficiently in various situations,
including complex shadowing and changes in illumination [32][33]. Furthermore, the
vibration of a moving camera causes changes in camera parameters and thus leads to errors in
geometric transformation. To solve the problem, dynamic calibration of cameras is required to
improve robustness [34]-[36].

The task of lane detection can be summarized as two main sections: 1) The acquirement of
features. 2) A road model for reconstructing road geometry. In addition, to accelerate the
detection and make it robust, some approaches are added such as narrowing the search region,
the determination of ROI (Region of Interest), dynamic calibration for the camera and
position-tracking methods using consecutive images.

The first step of detecting lanes is.to extract their. features. On most occasions there are lane
markings on both the left and the right side-of the driving lane, while sometimes only the
boundaries of the road exist without any. lane marking. Most parts of the lane markings are
like two parallel ribbons with some variations, for example, being straight or curved, solid
lines or dashed lines, and in the color of white, yellow or red. The occlusion of trees and
buildings and their shadows makes it more difficult to detect positions of lanes. Also,
visibility varying with illumination increases difficulty to detections [37]-[41].

In acquiring features, there are four major types of methods: pixel-based, edge
detection-based, marking-based, and color-based methods. The pixel-based type is to classify
pixels into certain domains and put pixels of the road boundaries in one category [42]-[44].
The edge detection-based type involves conducting edge detection in the image first. Then,
find straight lines with Hough transform [45][46] or adopt an ant-based approach to start a

bottom-up search for possible path of the road boundary in the image [47]-[50] or determine



search regions by road models for detection of road boundaries [1][51]-[53]. Those two
methods are time-consuming, and easily cause errors when complex shadows or obstacle
occlusion exist. The marking-based type is based on features of lane markings. For example,
Bertozzi and Broggi [29] proposed /PM and black-white-black transitions to detect lane
markings. This method may effectively deal with some situations of shadows or obstacle
occlusions. However, the vibration caused by the moving vehicle may influence the extrinsic
parameters of the camera, and thus arouse unexpected mapping distortions on images, which
may cause errors on lane detection results. The color-based type is to utilize color information
of the road in the image [44][54]-[56]. In this way, there is more information about the lane
and better abilities to resist noise. However, it takes more computation time to extract color
features of interest.

Since shadows of trees or other noises usually exist and some lane markings are dash lines,
the detected features of road boundaries are.often incomplete. Therefore, the methods of
interpolation or curve fitting are needed-to-treconstruct the road geometry. Kreucher and
Lakshmanan [31] used a deformabletemplate shape model to detect lanes. They believed that
two sides of a road respectively approximate a quadratic equation, so they established their
coefficients to determine the curvature and orientation of the road. However, curve fitting
cannot be done by a quadratic equation on the lanes with S-shaped turns. So Wang et al. [57]
adopted spline interpolation which can be used in various curves to connect line segments.
However, when there are vehicles in the lane occluding parts of the lane boundary, some
errors may arise, because this approach found a vanishing point depending on Hough
transform followed by line-length voting. Thus, vehicles on the lanes may form spurious lines
which may influence the determination of the vanishing line. Furthermore, Hough transform
and Canny edge detector utilized in Wang et al.’s approaches may take more computation

time.



Another issue to promote lane detection efficiency and depress noise sensitivity is to set
appropriate ROI. Lin et al.[58] applied the information of both lane boundaries obtained from
initial detection in the first frame to the finding of ROl on Hough domain. Then ROI was
adopted as search parameters of lane boundaries in the subsequent frames. The method can
effectively accelerate lane detection process on a straight lane but errors may arise on road
curves. Chapuis et al.’s method [59] utilized an initially determined ROI to recursively
recognize a probabilistic model to conduct iterative computation, and adopted a training phase
to define the best interesting zone. The initially set ROI is effective in the general roads;
however, diverse road curves may make the initial ROI too large on the farther part of the
road and thus raise noise sensitivity. Therefore, an effective method is needed for adaptive
determination of RO/ and adjustment to changes of road curves in the image sequences, and
thus ROI can be significantly narrowed to obtain. more accurate and faster lane detection

results.

1.2.3 Vehicle Detection

Besides lane detection, detections of obstacles and vehicles are also important issues in the
research of crash avoidance and vehicle following. Some investigations exploited stereo
visual systems to detect obstacles by comparing differences between two images [60][61].
Two cameras were required by those approaches, and thus the cost increased. In some
previous studies, an obstacle was recognized as a vehicle by its shape and symmetry
[12][62]-[64]. Practically, features of the vehicles presented in the images are also helpful to
the detection. Sun et al. analyzed features of vehicles in the images, segmented and
recognized vehicles with a Gabor filter and neural network techniques. In their study, the
possible positions of vehicles were checked with hypothesis generation (HG) first and then

the presence of the vehicles was verified by hypothesis verification (HV) [65][66]. Some



researchers performed optical flow analysis to detect obstacles. In consecutive images,
positions of an object only have slight changes. Therefore, in the subsequent images, an object
is found by the prediction of its motion based on its previous position [67]-[69]. Still, some
problems may increase the detection time and make it difficult to achieve real-time vehicle
detection. For example, the range between the camera and a recognizable vehicle is about
5-60m. The size of the vehicle in the range of Sm has changed enormously from that in the
60m. Besides, the diversity of vehicle colors, shapes, and sizes complicates the design of
classifiers in vehicle recognition. Therefore, to detect vehicles rapidly, the feature of a
rectangle-like contour in most vehicles should be adopted and the problem that projective
sizes of vehicles vary with their range to the camera should be taken into consideration.

In vehicle detection, an approach of geometry transformation is proposed to estimate the
projective sizes of vehicles. Furthermore, Contour Size Similarity (CSS) approach is
presented to discover vehicles that threaten driving- safety. With only one single camera
applied, the cost of CSS is far less than-that.of a stereco vision approach. Furthermore, the
search area of the vehicle detection. can_be.narrowed based on results of lane detection,
because only the closest preceding car in the lane of the autonomous vehicle is interested.
Once the closest car is detected, the approach of vehicle detection starts to compute its range
to the camera [70][71]. When another vehicle cuts in, the approach can also shift its detection

target immediately.

1.3 Research Objectives and Organization of the Thesis

The objective of this dissertation is to develop advanced vision-based methodologies for
driving assistance systems. The developed approaches consist of range and size estimation,
error analysis of the estimated results, dynamic camera calibration, lane model, lane detection,

the approach of Contour Size Similarity, and vehicle detection. For driving assistance systems,



information concerning the positions of lanes and the preceding vehicles are important. In the
study, a camera model is first adopted to estimate the actual and the projective sizes of the
detected targets and approaches to reduce detection errors and accelerate detection are also
developed. Then, lane positions in the images are extracted by Lane Marking Extraction
(LME) Finite State Machine (FSM) based on information of properties of lane markings.
B-spline is also used to reconstruct road boundaries. Afterwards, the approach of contour size
similarity is presented to detect vehicles within the driving lane and estimate their range to the
camera. The obtained information is applied to driving assistance systems to improve driving
safety.

The material in dissertation is organized according to the approaches used in driving
assistance systems. A simplified overview is shown in Fig. 1-1. In Chapter 2, the dissertation
presents new approaches to estimate the range-between the preceding vehicle and the
intelligent vehicle, to estimate vehicle size and.its projective size, and to dynamically calibrate
cameras. A lane model is presented in.Chapter-3. Forlane detection, a LME FSM is designed
to extract lane markings with a lane‘'model. Then, the obtained lane boundaries can be applied
to determine the search region of vehicle detection. In Chapter 4, the developed fuzzy-based
vehicle detection method, Contour Size Similarity (CSS), performs the comparison between
the projective vehicle sizes and the estimated ones to recognize the target vehicle by fuzzy
logic. The target of vehicle detection is the closest preceding car in the same lane with the
intelligent vehicle. The experimental results demonstrate that our approaches effectively

detect vehicles under different situations.
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Chapter 2

Range Estimation and Dynamic

Calibration

2.1 Introduction

Accurate and real-time detection of vehicle position, speed and traffic flows are important
issues for driving assistance systems_and traffic-surveillance systems [1][72]-[74]. During the
detection, errors often arise because of|icamera’ vibration and constraints such as the
limitations of image resolution, ‘quantization errors, and lens distortions [34][75]. Therefore,
accurate error estimation is impoOrtant in vehicle+detection issues, and image processing
techniques for position estimation or motion detection are necessary in many situations
[7][76]-[78]. However, most of the previous studies have not involved methods of reducing
errors caused by changes of camera parameters, while some important issues like error
estimation and the way to set appropriate camera parameters were seldom considered. This
may influence the determination of camera parameters and the specifications of a detection
system. Therefore, we propose an effective strategy to reduce errors of range estimation by
determining the most suitable camera parameters.

In this study, we apply error estimation to determine proper camera parameters and then
estimate actual and projective sizes of target objects to facilitate vehicle recognition. An
approach to rapidly compute projective sizes is also proposed to significantly reduce the
computational cost of vehicle detection process for real-time and embedded systems. Then, a
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dynamic calibration approach is presented to calibrate the tilt and swing angles of the camera
with information of lane markings and vehicles in the image. The experimental results
demonstrate that our work can provide accurate and robust range and size estimation of target
vehicles. The rest of this chapter is organized as follows: Section 2.2 presents position and
size estimation using projective geometry. Section 2.3 explores range estimation and error
estimation with various camera parameters. Section 2.4 proposes a dynamic calibration
approach to deal with the problem of camera vibration and variation in camera angle. Section
2.5 displays experimental results of range and height estimation, dynamic calibration of

camera angles, and comparisons with other approaches.

2.2 Position and Size estimation using Projective Geometry

The position of any point in the:3-D werld coordinates (X, Y, Z) projected to a 2-D image
plane (x, y) can be calculated through perspective transformation [13]. Mapping a 3-D scene
onto the 2-D image plane is a many-to-one transformation. However, mapping a point on the
front horizon of the camera onto an image ‘plane is a one-to-one transformation. Therefore, the
relative position between the camera and any point on the ground can be estimated by the

coordinate transformation between image plane and ground plane.

2.2.1 Coordinates Transformation Model

Figure 2-1 shows the coordinate transformation between image plane and ground plane,
where O,, denotes the origin of the world coordinates (X, Y, Z), and O represents the origin of
the image coordinates (i, v). Let 4 be the focal length of the camera; p denote the lens center;
h represent the height. As shown in Fig.2-2(a), there is a cuboid C associated with a target
object, whose lengths, widths and heights are L;, W), and H), respectively. Let P(X, 0, Z) be
located on the ground, then P,=(X, H,, Z), Ps=(X + W1, 0, Z), and P s=(X, 0, Z+L,), which are

12



inferred from the size of C. Other vertices can be estimated in the same way. Based on the
cuboid’s size and the position of its vertex, P;, the projective positions of other vertices in a

cuboid can be estimated to accurately estimate the contour and size of the cuboid’s projection.

Optical axis

____________ A /
‘“Pf
Gl
Ground
Plane

Fig. 2-1. Coordinate transformation between image plane and ground plane.

Figure 2-2(b)(c) presents the side view and top. view of the image formation. In the figure,
tilt angle a denotes the angle between the Z-axis and the optical axis, pE. Pi(X, 0, Z) projects

onto ij(u, v) on the image plane, and the transformation between the two coordinates can be
expressed as (2.1) and (2.2) by applying trigonometric function properties and our previous
study [34], where ||Z|| and ||X|| respectively denote the range and lateral position between P,

and the camera.

Z(v):h-tan& % - j—tan1 (%D (2.1
X(u,v)z—%xh-tan(( % - j—tan"1 (%D (2.2)
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Fig. 2-2. The projective geometry of a camera model. (a) A cuboid C. (b) Side view. (c) Top

view.
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Let P, and Ps respectively project onto ix(u, v2) and i3(us, v3). The ﬁ is the height of
cuboid C, whose projective height is ;1> in (2.3). The distance between P; and Ps is the width
of C; its projective width is w;j3 in (2.4).

Based on (2.1)-( 2.4), if P; of the cuboid can be found in the image, then the position and
size of the cuboid can be estimated. Likewise, the relation between v, and H; can be obtained

by (2.3), as shown as (2.5). Further by applying (2.5), we can have the height of the cuboid C

as in (2.6).
hy,=v=y,, (2.3)
where v(Z):)than{(%—a)—tan"(%ﬂ, vz(Z):Axtan{(%—aj—tan‘ (h—LHlﬂ
W, =W, x% (2.4)
Sy tan(g_aj_{ Z’Z’} (2.5)

~
|
>
N—
~

v, -[Z-tan(;[—a

A 7L-tan(£—a)—v2
2

2.6)

H = h-tan(%—aJ—Z—

2.2.2 Rapid Estimation of Projective Height

A cuboid’s projective size varies with its relative position with the camera. From (2.3), we
can estimate its projective height. When applied to driving assistance, the rapid size
estimation of the front vehicle’s projection can provide helpful information for vehicle

recognition and determination of vehicle size.

15



V(Z):A h-tan(Z—aj—Z 2.7)

h+Z-tan(7Z—aj
2

From (2.1), we can obtain the relation between Z and v as shown in (2.7). In Fig. 2-2 (b),
there is an object whose height is H;. Therefore, supposing that P,(X, 0, Z) projects onto 7;(u,
v), we can re-write (2.3) to turn 4;12(v) into a linear equation shown in (2.8). Since the camera
is mounted on an experimental vehicle for object detection, when a is too large, the farther
part of the lane will not appear in the image. Therefore, a is usually between 0-6 degrees.
Also, the height of the camera is restricted by the height of the vehicle roof, to be lower than
1.5 meters. Furthermore, the range Z of the preceding vehicle is usually over 10m, and thus
we can obtain (2.9) and (2.10). Then, substitute (2.9) and (2.10) into (2.8) to get (2.11). Also,
by substituting (2.1) into (2.11), we obtain 4;;5(v). as shown in (2.12). Equation (2.13) means
the first derivative for v to h;12(v): Let &= (/2= 0), and 7 = tan” (v/2). (2.15), (2.16) and (2.17)

derive from (2.13) and (2.14). In this|study, let a<6°, so &>84°, to get (2.18) and (2.19).

Then they are substituted to (2.17).to obtain (2.20) and (2.21). (2.21) shows the first

derivative of h;12(v) is a constant. Therefore, the relation between the projective height of

@, hi12(v), and the projected v-coordinate of P; can be expressed by a linear equation as

(2.22).

h-tan(ﬁ—aj—Z (h—Hl)'tan(ﬂ—aj—Z
A 2 _ 2 (2.8)

hnz(v): T T
h+Z-tan E_a (h—H))+Z-tan E_a

h+Z-tan(§—a}zZ~tan[%—aj (2.9)

where h<1.5, a < 6", Z> 10.
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(h—H1)+Z~tan(§—aj;Z~tan(%—aj (2.10)

where H, < 2.

_Hx)
h, (v): 2 (2.11)
hi12 (V)E Hl XA (2'12)

h-tan[( ~a ]—tan1 (D
2
/A -1
iy, (v) _ H, xxxdcm({ 2 j_tan (D (2.13)
v h dv |
N 1+tan(§)><tan(T)

cor(t-0) = e
dhy, (v) ~ H XA % Jidels (2.15)

dv h (tan(c‘i)—tan(r))2

d(1+ tan(&)xtan(r)) ’

where [, =(tan (&) tan(1))x =

d(tan(é)—tan(r)) '

dv

fin= (1+tan(§)>< tan(r))x

dh,, (v)

dv

3 (mn(a)_;jx d(1+ tan(a)xU _(H tan(é)xmx d[tan(a)—;j

dv i dv
(tan(2)- 7 )

~

H, x

1

h

(2.16)

dhy, (v) _H xA ) [tan(é)—;jx tanl(ﬁ) _(1+tan(§)xzjx(—ij 2.17)
dv h h v 2
(tan(é)—/lj
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tan () >>% (2.18)

where &> 84",

tan (&) x tan (&) >> [%xtan(&ﬁ%j (2.19)

= > 2.20
T ()] -
dh,,, (v) _H
A (2.21)
hm(v);%xv+q (2.22)

where C; is a constant.

From the sequential images, we get the actual projective height of PP, . Let the projective

height of @ be 4;12(va) when Pyprojects onto v, and the height be 4;12(v,) when projecting

onto v,. Then, by substituting the obtained 4;12(v,) and 4;12(vy) into (2.22), C; and H; can be

obtained as expressed in (2.23) and (2.24).

he[ s (v) = oo (v4) ] (2.23)
(Va W )

Hl

I

C =h, (vﬂ)—%xva (2.24)

By comparing (2.3) and (2.22), we can find that the proposed approach of projective height
estimation significantly reduces the computation cost. Also, the comparison between (2.6) and
(2.23) shows that the proposed approach requires much less computation timing for

estimating the actual height of the target object.
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2.3 Range and Error Estimation

Inaccurate camera parameters often cause estimation errors. Even if the parameters are
initially set accurately, they could be changed by external forces, or by the use of mechanical
devices, causing the estimated value to be different from the real value. The range estimation

results are discussed below.

2.3.1 Digitalized Equation of Range Estimation

To estimate range with a single camera, the equation evolved by the camera model should
be digitalized first. Therefore, an affine transformation from real image coordinates (u, v) to
bitmap image coordinates (M, N) can be obtained by (2.25). Figure 2-3 displays the
relationship between the M-N bitmap.itage coordinates and the u-v real image coordinates,
where the left bottom images denetes the origin O(0, 0).

M =—d xu+M, /2, N==d; xviN, /2, (2.25)

where d, and d, are respectively horizontal and vertical physical distances between adjacent

pixels, and the frame size is M,, by N, pixels.

Table 2-1 Relations between N and Z coordinates

Z-coordinate (Meter)

Parameters

N=0 N=100 N=200 N=300 N=400 N=492
0=0° A=8mm 5715 9.63 30.56 o © ©
o=0° A=lé6mm 1143 19.25 61.11 o o o
o=2° A=8mm 4.91 7.61 16.76 © o o
o=2° A=l6mm 8.71 12.66 23.12 130.82 o

0=6° /=16mm 5.87 7.48 10.26 16.27  38.66 «
a=8° A=16mm 5.03 6.19 8.01 11.29 18.94 49.35

The units of N and Z are the numbers of pixels and meters respectively.
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Table 2-2  Error analysis of range estimation
Error ratio
Z=10 7=20 7Z=30 Z=40 7Z=50 Z=60
a=0° /=8mm  0.36% 0.72% 1.08% 1.44% 1.82% 2.18%
a=0° /=l6mm  — 036% 0.54% 0.72% 0.90% 1.08%
a=2° /=8mm  0.36% 0.72% 1.08% 1.44% 1.82% 2.18%
a=2° /=l6mm 0.18% 0.36% 0.54% 0.72% 0.90% 1.08%

* “—*“means beyond the field of view.

Parameters

The relation between N-coordinates and v-coordinates is shown in (2.25). Substitute (2.25)
into (2.1), we have the coordinate transformation of Z and N as shown in (2.26), which is the

digitalized equation of range estimation.

Z =h~tan{( % -a j—tan‘l(((N”/2)_N)Xdy]] (2.26)

A

The Range Estimation is analyzed.as follows. This study utilized a Hitachi KP-F3 camera
with a physical pixel size of 7.4(H)x 7.4(V) pm, that is d. = d, =7.4 pm, the number of pixels
is 644x493, and ~A=1.3 meters. In the analyses, . with different camera parameters, Table 2-1
shows the mapping relation betweeén the N-coordinate and the Z-coordinate based on (2.26).
N=0 is mapped to the smallest Z-coordinate in the field of view. The table shows that the
smaller Z-coordinate can be included in the field of view when the focal length is smaller or
the tilt angle is larger. When a=0°, the mapping of N>246 is Z=«. Here o means that the
Z-coordinate approaches infinity. Therefore, with a larger a, a smaller Z-coordinate is still in
the field of view. The range of the N-coordinate onto which the Z-coordinate is mapped will
be relatively larger. For example, the mapping range is N=[0, 246] when a=0°, and N=[0, 492]
when a=8°. So a larger a leads to a compact mapping, thus the estimation errors can be
accordingly reduced. However, if a is too large, the mapping range of Z shrinks and distant
objects are out of the field of view. When 0=8° and /=16 mm, the Z-coordinate will be [5.03,
49.35] meters in the camera’s field of view. Hence, it should make the focal length smaller or

a<8°, the range of estimation can be larger than 49.35 m.
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Fig. 2-3. Relation between M-N image coordinates and u-v image coordinates.

2.3.2 Error Estimation

Factors influencing the accuracy of range estimation will be discussed and their impact will

be estimated in this section.

2.3.2.1 Quantization errors

Image digitization may causes quantization errors, errors in range estimation are
particularly caused by spatial quantization, and are within + ' pixels [79][80]. The results of
range estimation are dominated by the projective v-coordinate of P;. Therefore, the largest
quantization error in mapping to the Z-coordinate can be estimated with the condition that the
errors of v are within +' pixels. Based on (2.26), when Y=0, the range of Z should be
between the largest range Z; and the smallest range Zgas shown in (2.27)( 2.28) and e, the

percentage of the largest quantization error is displayed in (2.29).
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Table 2-3  Error analysis of range estimation caused by change of tilt angles

Error ratio

Z=10 Z=20 Z=30 7=40 Z=50 7=60
0=0° o=1° 12.04%  21.25%  28.75% 34.93% 40.17%  44.5%
0=0° o=2° 21.53%  35.10% 44.71% 51.85% 57.36% 61.73%
0=2° o;=3° 12.04%  21.25%  28.75% 34.93% 40.17% 44.5%
0=2° o=4° 21.53%  35.10% 44.71%  51.85% 57.36% 61.73%

Parameters

Table 2-2 displays the largest quantization error in the range Z=[10, 60] m with specific o
and A. As can be seen from Table 2-1, the relation between quantization errors and the
N-coordinate can be derived from the relation between Z and N-coordinate. In Table 2-2, the
largest quantization error grows with an increasing Z. The larger the focal length of the
camera is, the smaller the quantization errors become. The tilt angle of the camera will not

influence the largest quantization error according to the analysis results shown in Table 2-2.

Z =h~tan(( % “a )—tanl{((Nn /2)_IZ_O~5)><dy D (2.27)
2 ht(( z g j_tan-l[(wn”)—f +05)xd, B (2.28)

o — max(|Z—-Z, |,|Z—-Z; )

q 7 (2.29)

2.3.2.2 Influence of changes in translation

The analyses of translation can be divided into the directions of X, ¥ and Z. The origin of
the world coordinates is on the ground below the camera, so the Z-coordinate is the range
between the preceding vehicle and the camera. Therefore, the subsection will analyze how the
changes of X and Y translation influence the range estimation on the Z-coordinate.

X-translation: in (2.1), the projective position of P; onto the v-coordinate determines the

Z-coordinate. Figure 2-2(b) shows that the changes of X-translation rarely affect the mapping
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position of P; onto the v-coordinate. So X-translation seldom influences the accuracy of range
estimation.

Y-translation: if the ground is flat, the Y-translation of every point on the ground is zero.
When the ground is uneven or when the height of the camera is changed because of vibrations,
then the initially determined camera height # may be influenced. Let /# denote the initially
determined height, and /4, denote the actual height. According to (2.26), the Z-coordinate
mapping result can be obtained by (2.30). If the original height 4 is adopted, then the error
coming from changes of height will be Z; in (2.31) and the error ratio is e, in (2.32).
Accordingly, errors caused by the Y-translation can be suppressed by increasing the camera

height or making the changes of height smaller.

Z,=h, ~tan[( i -a j—tan_1 [((N" /2)_N)Xdy \J (230)
2 A
Zy = (h—hz)'tan[( % -a J—tan'1 (y((N"/z);N)Xd”J (2’31)
Z, Ah-h,
PR ( - ) 2.32)

2.3.2.3 Influence of changes in camera tilt angles

If vibrations cause the tilt angle of the camera to change from a to oy, the result of
mapping is computed by (2.33). Therefore, if the original a is applied, the error ratio of range

estimation caused by changes of tilt angles is e,, in (2.34).

zZ :h.tal{( g j—tanl(((N"/z)_N)Xdy D (2.33)

A

e :|ZQI_Z|

234
= (2.34)
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To estimate errors caused by tilt angle changes of the camera during the range estimation,
let 4 be 1.3 meters, and focal length 4 be 8 mini-meters. The analysis of errors is shown in
Table 2-3. As depicted in Table 2-3, when both a=0° and a=2° have a variation of 1°, the
obtained errors are the same. So the initially set tilt angle does not influence the errors of
results. However, errors increase when changes of tilt angle grow larger. The error ratio is
about 40% at Z=50 meters with a change of 1° on the tilt angle, revealing that changes of
angles significantly affect the results of range estimation. With the same camera parameters
but the focal length being changed to 16mm, the result will remain unchanged, which
demonstrates that the focal length is not related to errors arising from changes of tilt angles.
This is because when the focal length varies, the estimated ranges Z and Zo,; will still remain

the same, representing that the error ratio will still keep constant.

2.3.2.4 Influence of changes in camera-pan angles

Table 2-4 Variationratio between P; and P; on the Z-coordinate

0 Z4 (m) Variation ratio
/=30m  /=40m
1° 0.024 0.08% 0.006%
5° 0.122 0.41% 0.31%
10° 0.243 0.81% 0.61%

Figure 2-2(c) shows the condition that the Z-axis parallels the preceding direction of
vehicles, denoted by S. However, the condition may not be always valid. For example, in

Fig. 2-4, the pan angle between S and the Z-axis is 6, the variation between P; and P3 on the
Z-coordinate 1s Z,, as expressed in (2.35) and the variation ratio is modeled by (2.36). When
the distance between P; and P is 1.4m, the related value of Z;, and the variation ratio are
shown in Table 2-4. In Table 2-4, the influence turns smaller with a smaller pan angle or a
larger range. Even when 6=10°and the range is 30m, the variation ratio is still less than 1%,

which shows that pan angles have little influence on the range estimation.
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Z,, =W xcosf (2.35)

Ip

_Zw 2.36
=" (2.36)

2.3.2.5 Influence of changes in camera swing angles

The swing angle, i.e. the u-v image plane rotation angle, denotes the angle between the
u-axis in the image coordinates and the X-axis in the world coordinates. As shown in Fig. 2-5,
let P, project onto i; and let i; be (u, v) on the u —v plane and (u’, v’) on the u” —’ plane. (&, v)
and (u’, v’) are the coordinates when w= 0 and y=0, respectively. The transformation of the

two coordinates can be computed by (2.37).

{u}:{c?s W .. .-sin w}{u} 237)
v | |sinw coswe ||v

If =0, from (1), we can obtain theresults of range estimation by using (2.38).
Table 2-5 shows that the variation between the two-coordinates grows with the increasing y,
u and v. Even if y is very small, it still has a-great influence when the coordinates are far away

from the image center.

ST (o o ) 2

Table 2-5 Variations between (u, v) and (u’, v’)
(u, v) W, V)

’ w=1° y=2°
(100,200) (98.24,101.73) (96.45,103.43)
(200,200) (196.48,203.46) (192.90,206.86)
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2 Ground plane

Fig. 2-5. Relation between the Coordinates (u, v) and (u’, v’)
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2.4 Dynamic Calibration Method

Error estimation shows that the variation of camera swing and tilt angles significantly
affects the range estimation results. Therefore, an approach is proposed to reduce estimation
errors by automatically calibrating camera angles.

The proposed approach can obtain the swing angle y by finding a line that is parallel to the
X-axis. In Fig. 2-4, when the direction of the camera is the same as the moving direction of
the preceding vehicle, the camera’s pan angle to the vehicle can be reasonably supposed to be
zero. Let contact points between the ground and the two rear wheels of the preceding vehicle

be P; and Ps as shown in Fig. 2-2 (a). The world coordinates of the two points have the same

Z-coordinate, so @ is parallel to X-axis. In Fig. 2-6, let P, and P; respectively project onto

i1 (u, v) and i3(us, v3). The slope of E is the’same as u’-axis. Then, the angle between E

and u-axis is the swing angle y. Therefore, ycan be derived from #(u, v) and i3(us, v3) as

computed by (2.39).

1//=tan_1[v_v3} (2.39)

The analyses in Table 2-4 show that when the swing angle y=0, even if the camera pan
angle 6= 0, the Z-coordinates of P, and P; are still very close and the mapped v-coordinates of

the two points are almost the same. So the influence of the pan angle can be neglected and the
angle between E and the u-axis can be regarded as the swing angle v as shown in Fig. 2-6.

When the distance between a point on the ground to the camera approaches infinity, its
projective point onto the image is named by a vanishing point. When two parallel lines on the
ground project to the image coordinates, they tend to converge in a vanishing point. In Fig.
2-6, let the convergent point of the extended driving markings L, and L, be py (1, v). Then, py
is a vanishing point. Suppose that the associated world coordinate of p, be P,,(X, 0, Z,) whose

range to the camera approaches infinity. Based on (2.38), we can compute a by (2.40).
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Equation (2.41) is derived according to 7z — . Eq. (2.42) is formed by substituting (2.41)

into (2.40).Therefore, we can obtain a by substituting a vanishing point (uy, vy) into (2.42).

azz_tan1{—sin\|/xuv+coswxvv}_tan1 (i} (2.40)
2 A h
lim tan" (5):5 (2.41)
Z,—>® h 2
a:_tan_l(—sm\yxuv; coswxvv) (2.42)

i d 14

!

V

Swing Angle

Fig. 2-6. Projection of a vehicle and lane markings in the image coordinates.

2.5 Application and Experimental Results

The proposed approach can be applied to range and position estimation for vision-based

on-road vehicle detection systems.
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2.5.1 Performance evaluation on range estimation

We conduct experiments to compare the differences between the estimated and measured
results concerning the range and size of the experimental objects. The height of experimental
target is 1 meter; the parameters of the camera, Hitachi KP-F3, were set to be a=0°, #/=1.3m
and A=10mm. An image was taken at every meter at the range of 11—60 meters.

In Fig. 2-7, the horizontal axis denotes the range between the experimental target and the
camera, while the vertical axis represents the contact points between the experimental target
and the ground, P;, which projects onto the N-coordinate. ‘Manual’ curve shows the result of
manual measurement and ‘Estimated’ is the result of range estimation using (2.26). The two
curves approximately match each other, and these results demonstrate that the proposed range

estimation approach yields similar results to those of the actual measurements.
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Fig. 2-7. A comparison between the manual range measurement and the estimated range.

In Fig. 2-8, the horizontal axis denotes the contact point,P; ,which projects onto the
N-coordinate, while the vertical axis indicates the projective height of the experimental target.

The figure reveals that the results of manual measurement closely match those of the
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estimated ones by our proposed method. Figure 2-9 also reveals that the manually measured
results and those estimated by our proposed method are quite close. The experimental target is
estimated as 0.98 m by our approach to height estimation, which shows a slight error of 0.02
m when compared with the actual height 1 meter. Those results demonstrate that the proposed
approach is efficient in the estimation of vehicle heights and can be used to determine the

vehicle sizes.

140
120 S —e— Manual —
=100 N —— Estimated |
2 80 =N
Bt 60 N
o G TR
5w e
g 20
% 0 1 |

0 50 100 150 200 250

N-coordinate

Fig. 2-8. A comparison between the manual height measurement and the estimated height.

Figure 2-9 indicates that the dynamic calibration of angles can improve the accuracy of
estimations when the camera angles change. In the experiments, #=1.32m; A= 20mm; o = 5°,
6= 0°; w= 4.8°. To capture images of a calibrated target, measurements were taken every 5
meters within a distance of 15—50m. The proposed approach was then applied to estimate the
camera’s swing angle based on those images. The estimated average of y was 4.71°, and the
standard deviation was 0.256°. Compared with the setting of = 4.8°, the estimation error was
about 0.09°. The estimated results and errors of Schoepflin and Dailey’s [14] approach in the

same case are compared with ours as shown in Table 2-6, where Schoepflin and Dailey
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suppose y=0°. However, the hypothesis of y=0° differs from the actual situation and thus
leads to larger errors in tilt angle estimation. In Fig. 2-9, curve ‘A’ shows the difference
between manual range measurement and estimated range results using a=4.70° obtained by
Schoepflin and Dailey’s approach. The comparison in the ‘B’ curve uses our approach whose
computed 0=4.93°. The comparison between curve ‘A’ and ‘B’ shows that errors of range

estimation are significantly suppressed using our approach.
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Fig. 2-9. A comparison of estimation results between Schoepflin’s approach and ours.

Table 2-6  Experimental results of camera angle estimation

estimated y,  Estimate a,

Approach

error error
Schoepflin and Dailey [14] 0°, 4.8° 4.70°, 0.30°
Our approach 4.71°,0.09°  4.93°,0.07°
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Fig. 2-10. Estimation of'a euboid’s projective height.

2.5.2 Simulation Results of Height Estimation

Figure 2-10 depicts the analytical results of the height estimation. We set the camera height
h=1.3m and the height @ of the target object to be 1m; as shown in Fig. 2-2(a). Then, as
shown in Fig. 2-10, the horizontal axis represents the projective N-coordinate of P; and the
vertical axis is the projective height of @ . Lines (A) and (B) show that if a=0°, the changes
in focal length seem not to influence the relationship between the projective N-coordinate of
P and the projective height of ﬁ Conversely, Lines (C) and (D) display that if a=0°,

differences in focal length can change their relationship. In Fig. 2-10, the projective height of

PP, varies with the projective position of P in the N-coordinate, and their relationship can
be approximated by the linear equation, as in (4.5). In Fig. 2-10, the slopes of lines (A) and (B)

are the same, -0.769, while in line (C), it is -0.767, and line (D) -0.768. From the proposed

approach of fast height estimation in (2.22), the slope H,/h, can be estimated to be -0.769,
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which shows that our fast computation model can provide quite accurate estimation results.
The computation using (2.3) requires 2 fan operations, 2 tanm' operations, 3 division, 2
multiplications, and 5 deductions, however, our approach needs only 1 multiplication and 1

addition, which obviously promotes executive efficiency.

2.5.3 Dynamic calibration of the swing angle

The camera mounted on the experimental vehicle is slightly adjusted to an incline of y=4°
based on the manual estimation. In the experiments, with the experimental vehicle driving on
the road, 500 frames were taken to detect the nearest vehicle in the front driving lane and the
contact points between its two rear wheels and the ground. The mean and variance of y were

estimated to be 3.859° and 0.99°, respectively.
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Fig. 2-11. Dynamic calibration of the swing angle.

In this study, we analyze errors caused by image digitalization, algorithmic limitations, lens
distortion, the vibration of the experimental vehicle, and the uneven surfaces of the roads. The

mean and variance obtained by a tracking process with a Kalman filter were 3.861° and 0.58°
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respectively. In Fig. 2-11, the curve “Original” is the value of the swing angle derived by the
original algorithm without the tracking process. The curve “Kalman” displays the results of
utilizing a Kalman filter to improve the robustness of the estimation results. The experiments
confirm that the proposed dynamic calibration approach can efficiently and accurately

estimate the camera parameters.

2.5.4 Comparative Performance Evaluation

The proposed approach was compared with the well-known methods shown in Table 2-7
[13][15]. Wang and Tsai [13] utilized a hexagon as the calibration target. However, the
hexagon is not available under the moving camera, and needs to be pre-determined in the field
of view. Conversely, calibration targets applied in other approaches are objects appearing in
general traffic scenes, so require no_additional effort on manual setting of the calibration
target. The camera angle calibration in the range estimation depends only on the tilt a and the
swing angle w, so only the access. to_ these-two _angles were compared. Liang et al. [15]
assumed that the vanishing point would be in the center of the image, and accordingly
estimated an approximate tilt a. Liang et al’s hypothesis is valid only in the conditions that
the location of the camera is in the middle of the driving lane and the lane markings are
straight lines. However, even when vehicles are driving on an ideal straight lane, it is still not
easy to keep them stably in the center of lanes. Figure 2-12(a) and (b) are two cases of
comparisons between Liang et al’s and our approach to estimate the tilt angle. Liang et al. [15]
proposed extending the lane markings to search for the vanishing line V), (u,, v) and
estimating a by V. In Fig. 2-12, the convergent point of the u-axis and v-axis is O, the center
of the image. L, and L, respectively represent the extensions of the right and left lane
markings, and their convergent point is a vanishing point, V,;. Liang et al’s approach

estimated tilt angle by V). P and P; are the right and left contact points between the
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preceding vehicle and the ground. The two points are applied to (2.39) to acquire the swing
angle by our methods. The estimated a and estimated errors of camera angles are shown in
Table 2-8, where case 1 and case 2 present the situation of Fig. 2-12(a) and Fig. 2-12(b)
respectively. The camera setting in Fig. 2-12(a) is y=6° and 0=3.5°, and in Fig. 2-12(b) is

[¢]

w=0°, 0=2.5°. As shown in Table 2-8, the estimated results of tilt angle by Liang et al’s
approach may have larger errors in these cases. That is because the camera is not at the center
of the lane, the swing angle is not correctly estimated, and the lane markings are not straight.
Comparatively, in our method, the swing angle can be correctly obtained by (2.39) and then
the tilt angle can also be appropriately estimated by (2.42). Therefore, in these cases, our
approach can obtain more accurate results without the limitations due to some pre-determined
conditions. Among the three approaches in Table 2-7, only Liang et al’s and our approach use

calibration targets on the road to. achieve dynamic calibration, when the moving camera

causes continuously variations of'tilt angle ¢.

Table 2-7¢ Comparison of Approaches

Approach Calibration Target ~ Calibration angle Occasion
Wang and Tsai [13]  Hexagon v, o Fixed camera
Liang et al. [15] Lane marking Approximation of & Moving camera
Our approach Lane marking, v, o Moving camera

Vehicle

Table 2-8 A comparison in estimation results of camera angle and errors

Case 1, Case 2,
Approach P=6°; 0=3.5°. w=0°, 0=2.5°
a error a error
Liang et al. [15]  0.52°  2.98° 2.81° 0.31°
Our approach 3.51° 0.01° 2.29° 0.21°
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Fig. 2-12. The swing angle calculated by Liang et al’s and our approaches. (a) Straight lane

markings. (b) The curve of lane markings.
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Chapter 3

L_ane Detection

3.1 Introduction

In the driving assistance systems, traffic information can be acquired by sensors to make
driving safe and easy [81][82]. For example, vision-based driving assistance systems can
determine positions of lanes and obstacles preceding a host vehicle, and the detected
information can serve as guidance for driving safety of vehicles [83]-[85]. In the system, the
detection of lane is based on imageprocessing techniques to search for the road edges or the
lane markings [37][59] and then the lane information is applied to the detection of obstacles in
determining obstacle positions« [7][33][70].-However, occlusions of obstacles on lane
markings may affect results of lane detection [86]: Therefore, lane detection requires not only
fast executive speed to achieve real time detection, but also a solution to occlusions.

This dissertation applied geometry transformation and a method of rapid computation of
lane width to predict the projective positions and widths of lanes and markings. Then, an
approach named LME FSM is designed to find lane markings efficiently. A statistical search
algorithm is also proposed to correctly and adaptively determine thresholds under various
illumination conditions. Furthermore, a dynamic calibration algorithm is presented to update
the information of a camera’s parameters and lane widths. Besides, a fuzzy logic scheme is
adopted to judge the correctness of the detected lane markings and the results are applied to
the selection of knots when reconstructing road geometry by B-spline. Finally, the ROI

determination strategy is proposed to constrain the search region to make the detection more
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robust and fast. Therefore, even though obstacles occlude parts of the lane markings, road
boundaries still can be reconstructed correctly. Besides, the relative positions between lane
markings and cameras can be more precisely estimated with the camera tilt obtained through
dynamic calibration.

The rest of this chapter is organized as follows: Section 3.2 presents image analyses using a
camera model and the approach of dynamic calibration; Section 3.3 describes the proposed
approaches to lane detection, including analyses of lane features, a novel lane marking
extraction method adopting a finite state machine, a strategy for determining ROI, post
processing by fuzzy reasoning, the determination of road boundaries by B-spline curve fitting
and overall process of lane detection. Then, the experimental results of the lane detection and

analyses are shown in section 3.4.

3.2 Camera model with-dynamic-calibration

The position of any point in thé-3-D-world-coordinates (X, Y, Z) projected onto a 2-D image
plane (u#, v) can be obtained through ‘perspective transformation [15]. According to an
assumption of a flat ground, mapping a point of the ground plane onto an image plane is a
one-to-one transformation. This transformation of the two coordinates can be employed to

estimate the distance between the camera and any point on the ground.

3.2.1 Camera Model

In our previous work [37], a simple camera model was presented to estimate lane projection.
In this study, this camera model is extended. Based on this new model, some techniques have
been developed. Figure 3-1 shows the projective geometry of a camera model, where O,,
denotes the origin of the world coordinates (X, Y, Z), and O represents the origin of the image
coordinates (u, v, w). Let 4 be the focal length of the camera, p the lens center, /4 the height
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between p and O,, so (0, &, 0) would be the lens center in the world coordinate.

In Fig. 3-1(a), the parameter a is the tilt angle, representing the angle between the Z-axis
and the optical axis, p_E In Fig. 3-1(a), a point in Pi(X, 0, Z) in the world coordinates is
mapped onto v(u, v) in the image coordinates. The relation between Z and v is shown as (3.1),

and the vertical distance between P, and the camerais O,Z , where

Z=h~tan(( z -a j—tan_l (KD (3.1)
2 A

Figure 3-1(b) is a top view of the actual lane. As illustrated, 4; (Xi, 0, Z) is a point on the
left lane marking and B;(X2, 0, Z) a point on the right one. With the known Z-coordinate

obtained from (3.1), the X-coordinate determines where in the u-coordinate 4; and B; are

projected onto. In Fig. 3-1 (b), the lane_width is 4 B, and the width of its projection in the

image is @. Based on similar. triangles, the relation between ﬁ and 4,8, 1is shown as

(3.2).

ah, = AB, X~ (3.2)
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(b)
Fig. 3-1. The projective geometry.'of a camera .model. (a) The mapping of the Y and Z
coordinates on the v-coordinate; (b)-The-mapping of the X and Z coordinates on the

u-coordinate.
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Fig. 3-2. Relation between w;, (v) and the v-coordinate.
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According to (3.1) and (3.2), the projective lane width can be appropriately predicted and
can be applied to the following lane detection process. Similarly, the projective width of lane

markings can also be correctly estimated.

3.2.2 Rapid Estimation of the Projective Width

With the known lane width on the world coordinate, the corresponding projective width of
the lane can be computed by (3.1) and (3.2). However, the computation of trigonometric
functions is time-consuming. In the study, an approach for rapid estimation of projective lane
width is proposed, in which Wy represents the width of a lane in the world coordinates, and
its associated width of lane projection in the y-coordinate is wz(v). The relation between w; (v)
and the v-coordinate can be expressed byraslinear equation as shown in (3.3). The approach
can suppress the computation cost of trigonometric: functions. The proof is presented in

appendix A.
w, (v);(%)xv+c (3.3)

where ¢ is a translation.

In Fig. 3-2, take the internal parameters of the Hitachi KP-F3 camera for example. The
relation between wy, (v) and the v-coordinate is computed by (3.2) and (3.3).The physical pixel
size is 7.4um(H) x 7.4pum (V); and focal length /=15mm. The height % is 1.32m, and the lane
width is set to be 3.3m. The horizontal axis represents the v-coordinate of the lane projection,
while the vertical stands for the projective width. Line (W) shows the estimation result of
projective lane width when o= 3°, and Line(W3) demonstrates the result when o= 10°. As

shown in the Fig. 3-2, with a fixed parameter of the camera, the relation between w;(v) and
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the v-coordinate is linear. To estimate ¢ in (3.3), let the projective lane width be w; when it is
projected onto v;. w; is obtained from the computation of (3.1) and (3.2). Substitute v; and w;
for v and wy(v) in (3.3) respectively, and ¢ derives from (3.4). Therefore, the relation
between w; and the v-coordinate can be depicted in (3.5). Take two points on the line from the
slope in Fig. 3-2, and the slope is computed as 2.51. Compared with the slope Wy, / h=2.5 in
(3.3), these two results are very similar. Therefore, the calculation of (3.2) and (3.3) can be

replaced with the approach of rapid computation of the width to reduce computation cost.

W;ZVL )XV, (3.4)

= (vt - () (5)

Likewise, the projective width of the lane markings, w,,, can be shown by (3.6).
w, () =(%)><v+cl (3.6)

where W, denotes the actual width of lane'markings.

c1: a translation.

3.2.3 Dynamic Calibration

In computing lane width with coordinate transformation, if the tilt angle of the camera is
not accurate, huge errors may arise [34]. However, even though the preset tilt angle of the
camera is known, there are still some errors because of the road bumps and vibration of
moving vehicles. In this paper, an accurate tilt angle and actual lane width can be obtained by
using the extracted lane markings in each frame.

1) Calibration of the tilt angle of camera: In the study, lane markings are supposed to be
two parallel lines, and thus their intersection Z; would be at infinity. In the image, the

intersection of the extension of the two lane markings is the vanishing point Vp(u,,, vp),
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which mappings onto Z; According to (3.1), the relation of a, Z; and v,, is shown as (3.7).

Substitute (3.8) into (3.7), and o is shown as (3.9). Therefore, a can be obtained through Vp.

Furthermore, let the four points of the Z-coordinate =Zy;, and Z y; on the left and right lane

markings, i.e. Or1, QO 12, O r1, Oz respectively mapping onto Py, Pra, Pri, and Py in the

image plane. As shown in Fig. 3-3, suppose that the lane width is fixed, Q,,0,, =0,,0:,,

and the area enclosed by the closed area formed by the four points will be a parallelogram in

the world coordinate. Extend P, F,, and P, FP,,, and the intersection of them is also a

vanishing point, Vp. Then, v,, derives from (3.10). In the study, Vp is determined this way to

avoid the wrong calculation caused by the blur or occlusion in the farther part of the lane

marking.
/4 LR _ .
a==%tan | =& |—tan 1(—’} (3.7)
2 A
. =i Al - Z
Zhir}o tan (—j— 5 (3.8)
vV
a=rtan” (—pJ (3.9
v, = é R (3.10)
A
where fl — Vri =™ Vro Vi~V ,
Upy —Upy Uy —Up
f = (”LIVLZ “ Vit ]( VrL ~ Vr2 J_( Vi " Vio J[”RIVRZ ~Vrilro ]
2 s
Up —Up, Upy —Upy Up —Up, Upy —Upy

the coordinates of Py, P12, Pri, and Pg; are respectively (ur1, vi1), (Ur2, vi2), (Ur1, Vr1),

and (uRz, VRz).
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Fig. 3-3. The estimated vanishing point.
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o
v into (3.1) and (3.2), and then%?%,}ﬁgne wid “in the world coordinates, A4 B, , can be
L

estimated. It shows that the lane width can be obtained depending on the detected lane
markings. Likewise, the actual width of lane markings can be acquired by applying the
width of detected lane markings. Thus, those widths can be accurately gained even when

they vary with changes of the environment.
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Fig. 3-4. Lane Marking Model on a road with lane.markings. (a)Actual lane marking image;
(b)The gray level distribution of (a); (¢) The gray level distribution of lane markings in the

image coordinates; (d) The variancé/of gray level'in a row of lane marking.

3.3 Lane Detection

Both sides of road markings are supposed to be parallel on the ground plane and their
widths are assumed to stay stable or have very slight changes. An approach of extracting lane

markings based on a lane model is presented in this section.

3.3.1 Model of Lane Markings

Lane markings usually appear as white, yellow, or red curves and lines. Their intensity in
the image is usually higher than that of the ground because they reflect more brightness than

road colors. Fig. 3-4 is the analysis of a lane marking model. Fig. 3-4(a) shows a segment of
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one lane marking. The M-coordinate and the N-coordinate respectively denote the horizontal
and vertical coordinates. Fig. 3-4(b) is the gray level distribution of the pixels in Fig. 3-4(a).
In these figures, it can be observed that the gray level of the lane marking is much higher than
that of the ground. Fig. 3-4(c) shows both the gray level ranges of lane markings and ground
in the image coordinates. As can be seen, G,y and G, respectively denote the lane marking’s
largest and smallest gray levels, while Ggyand Gy respectively represent the largest and
smallest of the ground’s gray levels. Fig. 3-4(d) shows the gradient model of the gray level in
each row of the lane marking, where Dy, is the range of ground’s gray level. Dy, is the range
of lane markings’ gray level. D5 is the difference between G,; and Ggp. A statistical search
algorithm is proposed to adaptively determine Dgi, Dy, and Dgio. They are adaptively
adjusted under various illumination conditions. Dgi, Dg, and Dgj» can be determined by
(3.11), and the detail explanation is given in Appendix B. The zone between M; and M, is the
left border of the lane named BS with an upwatd trend of the gray level, while the zone
between M3 and My is the right bordet called BT whose gray levels decline. These features of
lane markings are called Bright Featute Transition (BFT). The distance between BS and BT
represents the length of BFT, and is named by B;. A lane marking can be reconstructed by

searching BFT row by row and connecting BF'Ts in each row.

Dglng 'GgL > DgZZGmH‘GmL > Dgl2:GmL‘ GgH (311)

3.3.2 Lane Marking Extraction

In the image, the BFT approximates to the width of the lane markings and is possibly part
of the lane markings. In this subsection, a LME FSM is proposed to extract BFT similar to the
lane marking width in the images. First, set a BFT detector in each row of the image, which

contains two detection points, P,and Pg. The distance between these two points is d,,, shown
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in (3.12). When this BFT detector moves from the left to the right, the difference of the gray
levels between P4 and P, named G4 P4, Pg), will be updated with respect to the detector’s
move to the right. When the BFT detector moves one pixel rightward, G4P4, Ps) is
accordingly updated and served as a new input signal of the LME FSM. If bright features are
found within the current range of the BFT detector where P,and Pp are moving, the input of
G4(P,4, Pg) would accordingly transfer the state of LME FSM from state 0 to state 5. Therefore,
bright features in every row can be detected according to the transitions of the processing state.
If its B, approximates to the computed width of the lane marking w,, obtained from (3.6), then

the likelihood of its being an actual lane marking is high.
dm(N):%xwm(N) (3.12)

where w,,(N) denotes the projective width ‘of the lane marking in the N-coordinate. d,,(N)
represents the distance between Py and Pp in the N-th-row. The distance is set to be half of the
estimated width of the lane marking w;, in the same row. When BFT detector is applied to
detect lane markings, the associated change of Gi(P4, Pp) passing the lane markings can be

shown as Fig. 3-5.

State Initialize and Start

3 P8 P4
Sl e =

.
State

5

Fig. 3-5. The lane marking’s relative positions to P4 and P in different states.
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Otherwise

Fig. 3-6. State diagram of LME FSM.

In Fig. 3-5, when lane markings'appear in‘the image, the range of G, P4, Pg) will change
by five states, associated with BFT detector shifting rightward across a lane marking. In State
1, the interval where the detector is located is ‘a lowland zone. In State 2, the part where the
detector lies in is an uphill zone. In State 3, the section with the detector is a plateau zone. In
State 4, the detector is in a downhill zone. In State 5, the detector comes back to the lowland
zone. Table 3-1 shows the range of predictive G, in those states. If Gi(P4, Ps)=Ga1, Ga(P4, P3)
can match the G, condition |G, < Dg. Likewise, the G, condition of Ga, Ga3, and Gg4 can be
obtained from Table 3-1 in the same way. Figure 3-6 is the State Diagram. The transitional
operations of the five states are described as follows.

In State 0, LME FSM is in the initial state, and no bright feature has been detected yet in
this state. When G4(P,4, Pp) satisfies the condition G4, BFT is possibly within the search
region and FSM moves into State 1.

In State 1, the BFT detector lies in the lowland zone. If G4(P4, P3) still meets G, then the
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next state will still be State 1; if G4(P4, Pp) satisties Gz, FSM will move into State 2.
Otherwise F'SM goes back to State 0.

In State 2, the BFT detector is located in the uphill zone. If G(P,4, Pz) meets G4, the next
state will still be State 2; if G4 P4, Pg) meets Gy3, FSM will move into State 3. Otherwise FSM
goes back to State 0. As soon as FSM enters State 2, P4 may shift to the region between M,
and M, as in Fig. 3-4(d), the left border between the lane marking and the gray ground. In this
condition, the gray level of P,would be larger than that of Ps.

In State 3, the BFT detector is in the plateau zone. if G4 P4, Pg) meets Gz3, the next state is
still State 3; if G4 P4, Pp) meets Gy, FSM will move into State 4. Otherwise, FISM goes back
to State 0. When F'SM enters State 3, the BFT detector may have already shifted to the range
between M, and M5 as in Fig. 3-4(d). Now the gray level of P,is similar to that of Ps.

In State 4, the BFT detector is situated in the downhill zone. if G4(P,4, Pg) meets G, next
state is State 4; if G4(Py, Pg) meets Ggi, FSM moves into State 5. Otherwise FSM goes back to
State 0. When FSM moves into State 4, P4may-have shifted to the zone between M; and M,
as in Fig. 3-4(d), the right border between thelane marking and the road ground. Then the
gray level of P, is smaller than that of Pj.

In State 5, the BFT detector returns to the lowland zone. If FSM enters State 5, that means
BFT has been detected and F'SM will go back to State 0 to find the next BFT.

LME FSM is efficient in detecting BFT and computing B;. It is also suitable for hardware

implementation.
Table 3-1 Denotations of the five G, conditions
State Denotations in different G; Conditions G, Conditions
State 1 Gn |Gd|<Dg1
State 2 Go Gi>Dg12
State 3 Ga |Ga|<Dg>
State 4 Gu -G4>Dg12
State 5 Gai |Ga|<Dg
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3.3.3 ROI Determination Strategy

In this subsection, two properties of changes about positions of lane boundaries are
introduced. 1). Longitudinal consistency property: From the nearby position to the farther
position, lane markings appear to be lines or curves which are either continuous or dashed.
Therefore, by observing the positions of the closer lane markings, the possible positions of the
farther parts can be accordingly predicted. 2). Lateral consistency property: Vehicles often
move in the middle of the lane, so lateral changes of a lane marking’s position are usually
slight in the sequential road-scene images. Thus, the possible position of the lane marking in
the next frame can be predicted according to that of the current one. The predictive area of the
lane marking is the Region of Interest (ROI), also the search area of BFT. If the ROI is too
large, the computation cost would increase and the ROI may be stained by noise. On the other
hand, if the ROI is too small, the actual position of the lane marking may not be appropriately
covered. Therefore, the ROI should 'be the smallest area which can still include the area of the
lane markings. Strategies for detérmining the-RO! and three determination approaches to the
ROI are presented in the subsection. Choosing the best strategy for the associated case is an

effective way to reduce errors and computation costs.

Single mode ? S

l Yes
Fixed area Tracking
approach approach

[——
Expansion

approach

Y
Reach
No Ne ?

B>

Fig. 3-7. The flow chart of the selection of ROI determination strategies.
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Roi(M ,N,)={I(M,N)|M e[M,,M,;N=N,} (3.13)

The ROI is illustrated as (3.13), where /(M, N) represents the image coordinates; The

M-coordinate and the N-coordinate respectively denote the horizontal and vertical coordinates.

Here the left bottom coordinate is defined as the origin shown in Fig. 3-8. The ROI in the

N,—th row is denoted by Roi(M,, N,); where M e [M;, M], and M, is the left border within

the range, and Mg the right border. Our proposed lane detection method consists of two modes:

1) Single mode: only the information of the current processed frame is considered. 2)

Sequential mode: using the temporal information of the previous frames to shrink the search

area of the current frame so as to accelerate the detection and reduce errors. The selection of

the suitable RO! determining strategies for different models are given as follows.

In every row, the sequence of ROI is determined following the bottom-up direction on
the N-coordinate and starting « from =0 row to, the preset terminal row ..

In single mode, the fixed ared approachs as depicted in the following subsection (3.1), is
first applied to determine the front parts-oftwo'lane markings and then the coordinates of
the detected lane markings are considered the start coordinates of the left and right lane
markings. Afterwards, the ROI of the farther parts of lane markings is determined by the
expansion approach to follow the bottom-up direction on N-coordinate to the terminal,
N,, as described in subsection (3.2).

In sequential mode, the ROI is determined by the tracking approach as described in
subsection (3.3). If the information of the previous frames does not include N,, then the

expansion approach will be conducted to continue the detection to reach N..

The flow chart of selecting ROI determination strategies is given in Fig. 3-7.

The following subsections will present three kinds of ROI decision approaches.

1) Fixed Area Approach: This approach is to detect the position of the nearby part of the

lane marking. As shown in Fig. 3-8, the determination of the coordinates N; and N, was based
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on their mappings onto the two Z-coordinates, respectively 8 meters and 25 meters on the
ground plane because lane markings in this range are usually very clear. After determining N,
and N, let the two hexagonal areas be the ROI, and these sections are divided by the v axis.
The BFT detected on the left side are the possible positions of the left lane markings and the
ones on the right side are the possible right lane markings. The search area of this approach is

larger and it is used when no temporal information of lane markings is available.

N A

N, / ROI of
ROI of Left Right
Markin Markin

M g/\ g

©, 0)

M

- -

Fig. 3-8. ROI of fixed area.

2) Expansion Approach: This approach includes two phases. Phase 1 is a bi-directional
expansion scheme. In this scheme, the latest detected position of the BFT is considered as a
center, and then the ROI is determined by expanding row by row along the direction of the
N-coordinate, as shown in (3.14) and (3.15). Fig. 3-9(a) illustrates the ROI set in this way,
where the ROI is the area within the two blue dotted lines along the two sides of the lane
markings. In this way, the ROI is set by linear equations as in (3.14) and (3.15). The approach
is simple and rapid, but the ROl may expand when the distance between the current row and
the last row is extended. Phase 2 is a tendency expansion scheme. This approach is performed
by computing the slope of the lane marking to predict its trend and expanding along the

direction of the N-coordinate to determine the ROI. The computation method of the slope is
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shown in Fig. 3-9(b), where m; denotes the slope of the lane marking. If a BFT is detected
continuously in some rows, but can not be detected in the following several consecutive rows,
then let Mpgvr)be the BS on the latest BFT, and Mps; be the BS on the BFT in the previous
rows of Mzgni). Then the slope of the lane markings can be computed using these two points.
With the slope, the ROI can be determined by (3.16) and (3.17). The ROI calculated in this
way is smaller, where the lane marking is included; however, the computational cost of the

slope may increase.

ML:(MBS(NL)_D)_(NP_NL)Xtan(le) (3.14)

s

where

Mpsvry: the M-coordinate of BS in the N, row.
Nr: the row where BFT is latest detected.

Ds: the fixed shift range.

Ls1: the fixed angle of expansion;
My = (M 70, FD)+EN, =N, ) xtan (B, ) (3.15)
where
Mprry: the M-coordinate of BT in the N, row.
M, =(M sy~ D)+(N, =N, )/m, (3.16)

where
Mgsni) = (mgs, Ni)
mps denotes the M-coordinate of BS.

Mps1=(m, n;) represents another M.

B=tan" [—NL — J
Myg —Mm,
myp = tan(f+f2)

Ps2: the fixed angle of expansion.
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N,-N,
MR=(MBT(NL)+DS)+ (3.17)
mR
where
my = tan(B_Bsz)
Lane marking

--...,_?Ds
N Msi

Lane marking

(b)

Fig. 3-9. (a)Bi-directional expansion scheme; (b) Tendency expansion scheme.
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3) Tracking approach: Based on the lane marking features found in previous frames, the
ROI can be found by (3.18) and (3.19). The ROI area found in this way is the smallest one, so
it is the best choice for the sequential prediction mode of lane detection.

M, =M, ,—D (3.18)

where
Ms3si-1): the M-coordinate of BS in the N, row in the previous frame.
t: the current frame. t-1:the last frame.

My =M, +D, (3.19)

where
Mpr-1y: the M-coordinate of BT in the N, row in the previous frame.

Figure 3-10 shows the acqu1s1t10n of BFFT ,m a ﬁxed area. The detection distance is set to be

about 25m. In the figure, black Lfné? a;?p' -d”nl? \:?yhen the distance between BFT on both
..... = b 1
~ i -

s .:l l.‘=

sides approximates to wy. F1guré:3 11 1s tl}ﬁ%%feeﬂod of the ROI and its range. In (a), (b) and

- ) ."_.a-

insion phase are applied in turn, while the

P —

(¢), the two-side expansion phase-@hd <
'_l'“I
,;* H

tracking approach is adopted in (d). In' Fig H'Bﬁff the black lines on the two sides of the lane

markings respectively represent M and My of those rows. On the lane markings of both sides,

there are totally four big black points denote P, P12, P z1, and Pg; for calibrating o.

Fig. 3-10. The acquirement of BFT in a fixed area.
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(b)
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(d)

Fig. 3-11. The selection of ROI and its range. (a)(b)(c) The application of the expansion

approach; (d) The adoption of the tracking approach.
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3.3.4 Post processing by Fuzzy Reasoning

Some objects or noises whose features are similar to those of lane markings may exist in
the image, so they may also be extracted simultaneously. In this study, a post-processing
scheme based on fuzzy logic is adopted to determine whether the potential objects are actual
lane markings in the extracted image. The following rules are applied to the identification of
lane markings.

1) When the length of BFT, B;(N), detected in the N-th row of the image approximates closer
to the computed width of the lane markings, w,,(&V), the BFT has a higher possibility of being
part of the lane markings. A triangular fuzzy number is used as a membership grade, u, to
represent the degrees of their similarity as in (3.20). The larger the membership grade is, the
higher possibility it is for the detected BFT to be part of the actual lane markings. Otherwise,
a smaller membership grade reveals that the detected BF'T may just be noise.

2) Given a row on the image plane, a pair of BFTSs is detected within RO/ of both the left and
right lane markings, and then thé.two-BFTs-may possibly be parts of the lane markings. The
possibility rises with the distance between ithe two BFT, Dp, getting more close to the
computed width of the projected lane marking, w;. The notation wu(N) represents the degrees

of similarity between Dy and wy in (3.21).

(B,(N)-w, (N))/w, (N)+1,

if 0<B,(N)<w,(N)
w(N)=4-(B,(N)-w, (N))/w, (N)+1,
if w,(N)<B,(N)<2xw,(N)

(3.20)

0,others

where Br(N) means the length of BFT first detected by FSM in the N-th row and w,(N)
denotes the width of the lane marking projected on the N-th row by (3.6). The notation ()

represents the degrees of similarity between w,,(N)and B.(N).
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(3.21)

0,others

where Dp(N) represents the distance between two BFTs on the N—th row and w;(N) means the
projective lane width on the N—th row by (3.3); and u»(N) denotes the similarity between Dp(N)
and wz(N).

3) Suppose that all lane markings are longitudinally consistent, thus, the BFT detected within
the ROI on the left or right lane markings should be parts of them. Let the range of the
projective lane markings be the rows of [0, N.] on the N-coordinate, then each BFT detected
within the area can obtain a membership grade ui.. Let a fuzzy set F), denote the set of u; on
the same lane marking as in (3.22). All membership grades in F),should be similar since they
belong to the BFT on the same lane’ marking. Therefore, if u; of one BFT matches the
condition in (3.23), then the BFT is regarded as a part of the lane marking; otherwise, it is

noise.
Fy ={(N.1, (V)N [0, N,]f (3.22)

where N, represent the preset terminal row.
[ (V) -, [<o/’ (3.23)
where Ly, is the mean of [ (N) in Fuzzy set Fjy.
o1” is the variance of p;(N) in Fuzzy set Fy.
4) Let lane projections be within the range [0, N,] in the N-coordinate. If BFT is detected
within the left and right areas of the RO/, then u»(N) can be obtain by (3.21). Let Fuzzy set F},
denote the set of x4 on the same lane as in (3.24). Suppose that changes of lane width are

slight, then each u,(N) computed based on the BFT should be similar. The existence of lane
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markings on both sides in the N row is determined by (3.25) and u»(N). Accordingly,
whether lane markings exist on both sides can be determined. Besides, search the BFTs on the
same lane marking which meet rule 3, and next compute the associated Z-coordinates of those
BFTs’ v-coordinates by (3.1). If the Z-coordinates between two neighboring BFTs exceed 10
meters, it means that the area between them is occluded. Then one side of the lane marking

should be compensated by the other side.

F, = {(N, 1, (N))IN €[o, Ne]} (3.24)

1, (N) =1y, [< 0,7 (3.25)

where [ is the mean of up(N) in the fuzzy set F.

05" is the variance of () in the fuzzy set F.

The application of the rules is desctibed-as-follows: first, compute z;(N) and u2(N) by rule 1
and 2. Then, choose the BFT which satisfies most conditions of lane markings by rule 3. Next,
rule 4 is applied to judge whether‘ther¢ is any oc¢lusion on the left and right lane markings.
Finally, determine the positions of knots based on rules 3 and 4 to reconstruct the lane as

shown in the following section.

3.3.5 Reconstruction Process of Occluded lanes

Some lane markings are dashed lines and some may be occluded by obstacles; thus, the
detected lane markings cannot completely reveal the driving lane in the whole area. To
overcome these issues, the B-spline technique is used to interpolate the positions of lane
markings to obtain the complete lane boundaries. The Cubic B-spline is a smooth curve with
continuous second order derivatives [57][87]-[90], fitting curves of various lane markings by

using several control points.
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(1) Decision of control points
Let C; be the i™ control point in the control point set Cy, as expressed in (3.26), and then the
cubic B-spline is B(s), as shown in (3.27); which contains connected curve segments gi(s).

C, ={C|i=12,.n) (3.26)

where the coordinates of C; are (M;, N;). M; and N; respectively represent the M-coordinate

and N-coordinate in the image. i ranges from 1 to n, which means the number of control

points is 7.
B(s)=Y g/(s),0<s<1 (3.27)
where
gl.(s)z(Ml.(s),Nl(s))
11 1T
6 2 2 6 c
l -1 l 0 CH
=[s3s2s1] 12 21 Ci
_ 0 _ 0 i+1
2 2 Ci+2
1 1
- Z =0
L6 3 6 |

where 1=2, 3, ...., n-2.
s 1s a normalized curve length.

Lane markings may appear in straight lines, curves, and even S-shape turns. Therefore, it is
difficult to completely model lane markings with various forms with linear or quadratic
equation models. In this study, a B-spline of connected curve segments gi(s) is applied to
fitting the curved lane markings. A variety of lane markings with general characteristics can
be modeled by this approach. To enable B-spline to go through the first and last control points,
the two control points are repeated three times. Five control points are determined to be C, C,
Ci, Gy, C3, C4, Cs, Cs, Cs as shown in Fig. 3-12. The connected points of the curves are named

knot points. The positions of the control points can be determined according to those of the
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knot points. Substituting s=0 into (3.27) and the results in (3.28) can be obtained. Then, based
on (3.28), three knot points k,, k3, and k4 on the lane marking are selected between C; and Cs

to obtain three control points C,, Cs, and Cy as shown in (3.29).

C zéki _lX(CH +C,.) (3.28)
2 4
where
i=2,3,..., n-2
Js o4 303 1]
o[ 57w
cl=| — -2 = 2~ |§ (3.29)
c 14 T 7 7 14 ‘
o3 3 s s
56 28 7 28 56 |LGs

Fig. 3-12. The B-spline model for lane marking detection.
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(2) Decision of knot points

In this study, a lane marking is formed by connecting five knot points using B-spline. The
position of 2™ knot point, », is selected by the mapping position in the image of the lane
marking near Z-coordinate =10m; in the 3" knot, k3, the associated Z-coordinate is about 25m.
The lines passing through k3 and &, intersect at the bottom row of the image coordinate, and
the associated intersection is denoted by k;. Knot 5 is at the end of the lane marking, and knot
4 is chosen from a suitable place between knots 3 and 5 which is the most probable position
of a BFT on a lane marking by Fuzzy rule. Knot 1 and 5 are determined by this way as well,

and they are the control points C; and Cs.

Selection ROl Detection of
@ P of Mode Determination BFT by
Strategy LME FSM

Y

h 4

Reconstruction Dynamic Calibration !
of Road |, and Promotion of | Fuzzy
Boundary Robustness Reasoning

Fig. 3-13. Procedures of the lane marking detection.

3.3.6 Overall Process of Lane Detection

In single mode, the Fixed Area ROI approach is first applied to the LME FSM process to
extract lane markings. After lane markings are found, the lane width and the tilt angle of the
camera are updated by the dynamic calibration process, and then the Expansion ROI approach
is applied again to extracting lane markings. This process can provide more accurate detection
results. Because the calibration of the camera tilt angle and lane widths requires information

of two lane markings, therefore, in the single mode, the information of the two lane markings
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in the fixed ROI is needed. If only the information of the left or right lane marking is available,

it is possible that one side of the lane marking is occluded.

The information of this occluded lane marking can be compensated by the information of
the previously detected lane width and the other side of the lane marking. The procedures are
shown in Fig. 3-13.

Step 1: Selection of Modes. Apply the sequential mode when the previous information is
logical and adequate; otherwise, use the single mode.

Step 2: ROI Determination Strategy.

Step 3: Detection of BFT by LME FSM.

Step 4: Fuzzy Reasoning. Determine the points used to calibrate the tilt angle of the camera
and the knots adopted to reconstruct road boundaries.

Step 5: Dynamic Calibration and Promotion of Robustness. Apply dynamic calibration to
obtain the actual tilt angle-of camera and lane width. Then, apply the Kalman filters to
stabilize the calibration results.

Step 6: Reconstruction of Road Boundaries. Reconstruct road boundaries using B-spline, and

then go back to step 1.

3.4 Experimental Results

In this section, comparative experiments on lane detection are conducted. This study
utilizes a Hitachi KP-F3 camera mounted in an experimental intelligent car with a physical
pixel size of 7.4um (H)x7.4 um (V), and the image resolution is 644x493. The height of
the camera is set at 1.32m, the focal length /~15mm, and tilt angle a about 4 degree. Our
experimental system is a PC with CPU Pentium IV 2.8GHz. Suppose the width of the lane
marking is 0.1meters and the initial lane width is 3.3m. The farthest distance of detection is

60 meters, and the associated computed projective width of the lane marking is about 5 pixels.
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The experimental conditions and results are shown as Table 3-2. The average computation
time that the proposed method required is less than 13ms per frame. Under general conditions,

the average detection ratio can reach above 98% and exceed 95% when there are occlusions.

Table 3-2 The computation timings under different conditions by the proposed system

Conditions The number of Average computation time Detection ratio
frames
Straight road 3500 4.5 ms 99.1%
Curve road 2200 7.3 ms 98.7%
Daytime occluded 1250 12.2 ms 96.4%
Shadow 1100 9.5 ms 96.5%
Strong sunlight 500 9.3 ms 97.2%
Night 2100 7.2ms 98.3%
Night occluded 1200 12.9 ms 95.1%

3.4.1 Lane Detection Results

1) Dynamic calibration of camera.tilt angle

Figure 3-14 demonstrates the result of the dynamic calibration of camera’s tilt angle. In the
figure, “Original” means the calculated tilt“angle in each frame. “Kalman” denotes the
processed tilt angle by a Kalman filter. The/Kalman filter can provide the robust estimation of
the current tilt angles through recursive functions [91][92]. This process provides the more
stable and robust calibration results of the tilt angle for the lane detection system. Figure 3-14

shows that the change of ”Kalman™ gets smaller.

™

.

— Kalman

Original

Tilt angle
(degree)
(o]

o

| 201 401 601 801
Frames

Fig. 3-14. The result of the dynamic calibration of camera’s tilt angle.
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Lane Width (m)

CA) Original 3m
) (B) Kalman 3m
= (C) Original Sm
(D) Kalman 5Sm

(0] 200 400 600

Frame

Fig. 3-15. The estimated lane width in every frame.
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(d)
Fig. 3-16. The gray level of lane markings under different illumination. (a) General light; (b)

Strong sunshine; (c)Dusk ; (d) Night.
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Table 3-3 Results of lane width estimation in the four situations

Curve (A) (B) (©) (D)
Mean (m) 3422 3421 3423 3424
Standard deviation (m) 0.1221 0.0874 0.1217 0.0885
Average error (m) 0.022 0.021 0.023 0.024

2) Lane width refinement

In lane detection, the initial settings are based on general width of lanes, i. e. 3m-5m, and
the actual lane widths will later be adaptively refined based on the detected positions of the
left and right lane markings in the image. Besides, to promote the robustness of lane width
refinement, a Kalman filter is also adopted to stabilize and refine the process of lane width
estimation.

Figure 3-15 shows the estimated lane widths with different preset widths and with/without
Kalman filters in the sequential frames, where curve ‘(A) original 3m’and ‘(C) original 5Sm’
respectively represent the estimated lane widths with initial lane widths in 3m and 5m. The
initial lane width of curve (A) and (C) were respectively set to be 3m and Sm. The curve ‘(B)
Kalman 3m’and ‘(D) Kalman 5m’ respectively denote the estimated lane widths of curve (A)
and (C) refined by the Kalman filter. By observing those results, the estimated lane widths
with different preset lane widths will finally be refined to be closer to the actual ones. The
application of the Kalman filter ensures stable and robust estimate results of the lane widths in
the world coordinates. Table 3-3 displays the mean, standard deviation and average errors of
the estimated lane widths in curve (A), (B), (C), and (D), and the actual lane width is about
3.4m. As can be seen, the estimated results in sequential frames are all quite close to the
actual lane width and all of the average errors are under 0.024m. Furthermore, when the
initially set lane width changes within the range from 3-5m, the obtained estimation results
are still similar and close to the actual lane widths. The results show that our approach of lane

width refining is robust and accurate.
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3) Results of adaptation to illumination conditions

Dyg1, Dgy, and Dy, are determined by a statistical search algorithm based on the following
two principles. (a) All gray level of lane markings is higher than those of the ground. (b) The
variations of the gray levels of the ground and lane markings are within a reasonably fixed
range. To demonstrate that our approaches are robust and adaptive to changes of illumination,
variations of the gray levels of lane markings and grounds under four different illuminations
are analyzed. The results are shown as Fig. 3-16, where lanes and lane markings display
different gray level and contrast under different illumination. As can be seen from this fact,
the principles (a) and (b) are appropriately followed under different illumination conditions,
and the proposed statistical search algorithm can correctly and adaptively determine Dy, Dg,
and Dy, under various illumination conditions. Table 3-4 displays Dy, Dg, and Dy, obtained
from the four sample road scenes under different illumination conditions in Fig. 3-16, where
Dygi, Dg, and Dygy, are adaptively adjusted with various illuminations. As shown in Figs.
3-17~3-21, the adaptively determined thresholds can provide satisfactory lane detection

results under different illumination cenditions.

Table 3-4 The obtained parameters under different illumination conditions

Illumination conditions Dy Dy Dg12
(a)General light 35 60 55
(b)Strong sunshine 30 10 85
(c)Dusk 25 20 50
(d)Night 70 110 75

Figure 3-17 shows the conditions of curves and a slope. In these figures, the roads with
sharp curves and slopes still can be described by B-spline with four segments. Figure 3-18 is
the situations with occlusion of obstacles. (a) The near front vehicle occluded lane markings
of both sides. (b) The vehicle occluded the right lane marking. (c) The vehicle moved back to
the road center. (d) The vehicle occluded the left lane marking. (¢) The vehicles approached

lane markings. (f) Another vehicle occluded the right lane marking. The figures prove the
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problem of occlusion can be solved by the proposed approaches. The information of the side
which is not occluded can be used to substitute the occluded one. When both sides of the lane

markings are occluded, then only the parts that are not occluded can be shown.

(b)
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(d)

Fig. 3-17. (a) Curves; (b) A slope; (c)(d) A cloverleaf interchange.
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(b)
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(d)
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Fig. 3-18. (a)(b)(c)(d)(e)(f) Situations of occlusion with different obstacles.
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Figure 3-19 displays the detection results at night in situations including roads with or

without road lamps and textures on the road surface, roads with curves and occlusion.
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(d)

Fig. 3-19. Results of the nighttime road scene. (a)(b) With road lamps; (¢)(d) Without road

lamps.
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Figure 3-17~3-19 present that F'SM can extract BFT in various situations regardless of the
influences of patterns on the road surface and illumination, and B-spline with four sections is

able to display a variety of road conditions.
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(d)

Fig. 3-20. The detection results under strong sunlight. (a)(b) No occlusion of vehicles; (c)(d)

with the occlusion of a vehicle.
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Figure 3-20 is the detection result under strong sunlight. The proposed approach can

correctly detect the lane markings without being influenced by the strong sunlight.

(b)

Fig. 3-21. The detection result of a motorcycle inside and outside the lane. (a) Inside; (b)

Outside.
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Figure 3-21(a) and (b) respectively show a clear discrimination of a motorcycle inside and
outside the lane. Obstacles inside the lane will affect driving safety. However, most
contemporary lane detection approaches may not be able to discriminate whether an obstacle
is inside or outside the lane when obstacles appear near the lane so they cannot correctly
detect lane markings. In contrast, the proposed approach can resolve the problem of obstacle

occlusion to reconstruct correct lane markings.

3.4.2 Comparative Performance Evaluation

In this subsection, comparative experiments on Jung and Kelber’s method [46] and the
proposed approach is conducted to evaluate their performances on lane detection under
different conditions. The following is a comparison of acquiring BFT by FSM and other
approaches:

Figures 3-22~3-26 are respectively the comparativé results of Jung and Kelber’s [46] and
our proposed approach under different situations, where (a) is Jung and Kelber’s approach
and (b) is our proposed approach. Figure 3-22 is the condition that the lane markings are
occluded with shadows, signs of braking and other vehicles. Jung and Kelber adopted Sobel
edge features of lane boundaries, which left large gradient points in the thresholded edge
image, as shown in Fig. 3-22(a), the surrounding vehicle may cause false detection in the edge
feature extraction process and result in detective errors. As shown in Fig. 3-22(b), the
proposed approach successfully extracts features of lane markings with the BF'T detector. The
end part of the reconstructed lane boundary is the position of the last BF7, and the missing
part at the end of the left-side lane marking is reconstructed with the information of the lane

width and of the right-side lane marking.
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)

(b

Fig. 3-22. Results of the road scene that the lane markings are occluded with shadows, signs

of braking. (a) Results of Jung and Kelber’s [46]; (b) Results of the proposed approach.
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(b)

Fig. 3-23. Results of road scenes with a curve lane and occlusion. (a)Results of Jung and

Kelber’s [46]; (b) Results of the proposed approach.
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Figure 3-23 shows the results of the road scene consisted of curve lane and occlusion.
Figure 3-23(a) shows that the lane markings obtained by Jung and Kelber’s method have
errors occurring on curves of roads when edge features of vehicles are mis-detected as the
lane markings. Figure 3-23(b) demonstrates that our BFT approach can compensate the

influences of appearing vehicles.

(b)

Fig. 3-24. Results of the road scene under strong sunlight. (a)Results of Jung and Kelber [46];

(b) Results of the proposed approach.
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Figure 3-24 displays the detection results under strong sunlight. In Fig. 3-24 (a), edge
features of vehicles associated with significant gradient features under strong sunlight cause
possibly wrong determination of lane features. As shown in Fig. 3-24(b), with the BFT
method, the proposed approach will not capture positions without lane markings to avoid
wrong judgments in the far end of the lane. Therefore, lane boundaries can be reconstructed
successfully.

Figure 3-25 displays the detection results at night. In Fig. 3-25(a), larger gradient arouses
detection errors because of the opposite vehicle light and the light reflection of the preceding
vehicle. The proposed approach can detect lane markings efficiently and correctly as shown in
Fig. 3-25(b), because it takes projective sizes and sequences of lane markings into
consideration in capturing BF'T.

Figure 3-26 shows the detectioniresults of therroad scene with an S-shape lane. In Fig.
3-26(a), the S-shaped lane cannot be completely reconstructed when Jung and Kelber applied
a linear-parabolic model to reconstruct-lane-boundaries. Figure 3-26(b) demonstrates that the
proposed approach can successfully reconstructthe S-shaped lane boundary.

As can be seen from the above comparative results, the proposed approach can obtain
satisfactory detection results under different situations, such as different illumination
conditions, curve roads, and occlusions. This is because lane markings are extracted by the
proposed BFT detector, and extraction errors can be effectively reduced by the proposed
dynamic calibration method, ROI determination strategy and fuzzy rule-based scheme, and
road boundaries are effectively reconstructed by the B-spline technique. Besides, when both
sides of lane markings do not exist, or are occluded at the farther parts of the road, the range
of the reconstructed lane is determined by the actual visible position of the lane, so the
information obtained from previous frames will not be misused to reconstruct false lanes and

driving safety can be improved.
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(b)

Fig. 3-25. Results of the nighttime road scene. (a). Results of Jung and Kelber’s [46]; (b)

Results of the proposed approach.
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Fig. 3-26. Results of the road scene with an S-shaped lane. (a)(b) Results of Jung and Kelber’s

[46]; (c)(d) Results of the proposed approach.
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3.4.3 Comparative Analysis

In this subsection, a comparative analysis on Jung and Kelber [46], Jeong and Nedevschi
[43], Cheng ef al. [56], and the proposed method is provided as shown in Table 3-5. Cheng et
al. adopted a color camera, while others used monochrome cameras. The color camera is able
to obtain information on colors in the images, but it costs more and takes more time to process
more information.

As to the extraction methods, Jung and Kelber [46] used a Sobel mask to conduct edge
extraction, in which processing one pixel required 10 additions, 4 multiplications, and a
Hough Transform to carry out line detection, so this method suffers high computation cost.
Jeong and Nedevschi [43] applied a Gabor filter, which required complicated computational
cost for exponential and trigonometric_ functions. Cheng et al. [56] adopted three
multivariable Gaussian distributions to show:three classes of lane-mark colors and computed
the probability distribution of pixels belongimg to the lane-mark, which also involved more
complicated computations to analyze three color classes. The proposed LME FSM needs only
simple linear equation in every row to0“determine widths of lanes and lane markings, and it
only requires one subtraction to calculate the difference in gray level of each pixel. Therefore,
the computation cost is the smallest and is applicable to an embedded system. The proposed
ROI could effectively choose a suitable strategy to narrow down the detection area and greatly
reduce the time for detection. Furthermore, only the proposed approaches obtains both the
camera tilt angle and the lane width with the information of images, and solved the problem
of moving camera vibrations and occlusion on the lane marking without the information of
colors. Besides, the proposed approach adopts the statistical search algorithm to determine the
gray level range of ground and lane markings, so it enables BFT detector to effectively extract

lane markings in various conditions of illumination.
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Table 3-5 Comparison of different algorithms

Camera Extraction Dynamic  Occlusion Compu Illumination
Method type method calibration  handling -tational  condition
cost adapting
Jung and Mono Sobel mask N/A Poor High Fair
Kelber -chrome  and Hough
[46] Transform
Jeongand  Mono Gabor filter N/A Poor High Fair
Nedevschi  -chrome
[43]
Cheng et Color  Multivariable Tilt Fair Medium Fair
al. [56] Gaussian
distributions
Our Mono LME FSM Tilt, Good Low Good
proposed  -chrome + ROI width of
method strategy lane
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Chapter 4

Vehicle Detection

4.1 Introduction

A vision-based vehicle and lane detection system can detect vehicles and lanes with a
camera mounted on a vehicle, compute the range between the camera and the vehicles in
lanes, provide the results of lane and vehicle detection for driving assistance systems to avoid
collisions [62][93][94]. This kind of the intelligent vehicle system identifies lanes, obstacles,
vehicles, texts and patterns on the surface of the'road and shadows from 2D images by means
of image processing techniques. So.far, the researches in this area are still open questions
[95]-[98].

This chapter is organized as follows: Section 4.2 presents features of rectangle-like
obstacles. Section 4.3 provides the approach, CSS, used to detect rectangle-like obstacles. The

experimental results are shown in Section 4.4.

4.2 Vehicle Model

If the size of a rectangle-like object inside the driving lane resembles that of a vehicle, it is
regarded as a vehicle. The closest preceding vehicle in the lane of the autonomous vehicle,
whose influence on the movement of the autonomous vehicle is the greatest, is the main
target of the vehicle detection. The proposed approach aims to detect the target vehicle based

on its feature of rectangle-like contour and the estimation of its projective size.
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4.2.1 Vehicle Features

Vehicles in the image look like rectangles. Rectangular obstacles contain all of the
following features 1, 2 and 3.

e Feature 1: The contact plane between the road surface and a rectangular obstacle
projects a horizontal line on the image, as w; shown in Fig. 4-1(a).

o Feature 2: The left and right sides of rectangular obstacles project vertical lines on
the image, as /; shown in Fig. 4-1(a). Conversely, objects such as lane markings or
shadows on the road do not project vertical lines in the image as shown in Fig.
4-1(b).

Based on features 1 and 2, the projection of a rectangular obstacle contains both horizontal
and vertical lines.

o Feature 3: The projective size of an‘object in the image varies with its distance to

the camera. In Fig.®4-1(c), p 1s the lens cénter and Z; projects on v;. Based on the
properties of similat triangles,-the-relation between Z; and v; is shown as (4.1),
where Z; represents the ‘vertical ‘range between the obstacle and the camera.
Besides, the projective height of the obstacle H,, is 4; and their relation is shown
in (4.2). Similarly, in Fig. 4-1(a), the projective width of the obstacle W,, is w; in

(4.3). Based on (4.1)-(4.3), the projective height and width are predictable.

Z =10 (4.1)
vl

B =2 (4.2)
Zl

A (4.3)
Zl
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Fig. 4-1. (a) The projection of an obstacle in the image. (b) The projection of a pattern in the

image. (c) The relation between H,, and A;.
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4.2.2 Adaptive Edge Detection

The proposed vehicle detection approach adopts the feature that the contours of vehicles
are mostly made of horizontal and vertical lines. So edges of an object in the image are

detected first with Sobel masks.

The result of edge detection is closely related to thresholds. If the threshold is too low,
noise will be generated, which reduces the accuracy and performance of the detection. In
contrast, if the threshold is too high, important information may be gone, which also affects
the detection results. Furthermore, when the brightness changes from regular to strong
illumination, the preset threshold must be adjusted accordingly to prevent errors. The
experimental results have discovered the most suitable thresholds under various levels of
illumination. Moreover, sampling .the images, by (4.4) accelerates the acquisition of
illumination. With the information, the threshold. can be adjusted automatically in different

surroundings, meaning the approach of edge detection-is adaptable.

i, PP, v) (4.4)

%, T,
where f(u, v) is the gray level at point (#, v) in the image.
is represents the total gray value of the sampled points, showing the illumination of the
surroundings.
R, and R, are the sampled points. R, is taken from every p pixels in the u axis and R,

from every g pixels in the v axis.

4.3 Vehicle Detection Based on Contour Size Similarity

Contour Size Similarity (CSS) is an algorithm with the function of detecting objects similar
to rectangles, such as vehicles. Since vehicle sizes are within certain range, estimation of their

projective sizes can be fulfilled by geometry projection. If the contour of a detected object
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resembles the projective contour of a vehicle, the object is probably a vehicle.

4.3.1 Vehicle Detection Procedures

The main target of the detection is the closest preceding vehicle in the lane of the
autonomous vehicle and the cutting—in vehicle. To reduce the detection time, vehicles and
obstacles outside the lane of the autonomous vehicle are skipped, because they have little
influence on its movement. Therefore, the ROI of vehicle detection is determined to be
inside the current lane of the autonomous vehicle. A technique of temporal consistency is
generally adopted to make the detection of the target vehicle more robust. For example, the
surrounding area of the target vehicle in the previous frame is considered the preset region of
vehicle detection (PROVD) in the following frame. However, when another vehicle cuts in
the lane of the autonomous vehicle to bejthernew target vehicle, the technique will not be
suitable because the position of the new target 1s not always within PROVD. Therefore, in
our approach, the search region"of vehicles‘is-set to be the lane of autonomous vehicle and
the detection is conducted from the near to the far searching for the closest preceding vehicle.
When another car cuts in the lane of the autonomous vehicle, this car will be detected first
because it becomes the closest vehicle instead. The flowchart of the vehicle detection is
shown in Fig. 4-2. As can be seen, the lane detection is followed by the edge detection
conducted on the lane regions. The detection of horizontal lines starts upward row by row in
the current frame. In each row, the detection is performed rightward to look for neighboring
pixels with the same gray level in the thresholded image and count the number of pixels in
each horizontal line, which represents the length of the horizontal lines. Once the length of
horizontal line approximates a vehicle width, the detection of vertical line starts upward
from the current row and the number of pixels in each vertical line is counted. Rectangle-like

obstacles project approximately horizontal and vertical edges on the image. If these
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horizontal and vertical edges form a joint contour, the object may be a vehicle. Then, its size
is compared with the estimated sizes of vehicles. If they match, the object is recognized as a

vehicle.

| Lane Dﬁtection |

Edge Detection

Next Row

Find Horizontal Line
x.;::.':_'_'_fHéﬂr-izontal Match—l-»

l No

Find Vertical Line

* 0
—-Veh1cle Match
No

No

Next Frame

Fig. 4-2. Vehicle detection flowchart.
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4.3.2 Fuzzy Match

The detected heights and widths of an object are compared with the estimated ones of a
vehicle projection. In Fig. 4-3, 4,,1s a rectangular obstacle, whose projection on the image is
A; In Fig. 4-3(a), the width of A4; is A;, and the height is A,. The size of 4; changes with the
range between the camera and 4,,. In Fig. 4-3(b), B,, is a vehicle, whose projection is B; in the
image. The width of B; is B;, with B, being the height. If an image includes an object whose

dimensions match both B; and the projective position, then the object is considered a vehicle.

Obstacle Vehicle

1l I o
/|- Lane /= Lane

7 -+

."‘ ’; /o ,I' ’! F
e % !.r A 4 ‘,"
|7 [

A, Al B,|Bi],

T ARk ™ Bhk
image image
(a) (b)

Fig. 4-3. (a) Size of the obstacle projected on the image. (b) Size of the vehicle projected on
the image.

By and B, can be estimated by (4.2) and (4.3). Once 4; is found, 4, is compared with B,
and A4, with B, respectively. If the width and height of 4; are similar to those of B;, 4, may be
the vehicle B;. Some fuzzy sets shown in (4.5)-(4.8) are proposed to express their degree of
similarity. In (4.5), Fjrepresents the degree of similarity between the horizontal width of A4;
and B;, and F, denotes that between the vertical length of 4; and B; as shown in (4.6).
Equations (4.7)-(4.8) are their membership functions. In Fig. 4-4(a), 4, denotes the width of
the detected object while ugn(A4,) represents the degree of similarity between A4; and the

vehicle width, B;. With the growth of 4, upi(4,) presents three changing phases of being
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rising, declining and flat. 1) The rising phase: By, represents the widths of small cars. When
Ap= Bys, upn(Ay) 1s defined as k. If Ay is larger than By, ug(Ay) rises accordingly. 2) The
declining phase: B; denotes the width of a medium vehicle. When 4,= By, upi(A;) is 1, the
largest value of ugy(As). If A is larger than By, upn(A4;) declines. 3) The flat phase: the width of
a large-sized vehicle is named Bj.. On condition that A= B, urn(A4y) is defined as h,. If 4,>
B, urn(Ay) stays unchanged as ;. The reason to keep ugn(A4;) stable in this phase is that the
width of the detected object appearing larger than that of a large-sized vehicle may be because
of the overlap of objects. Therefore, the detected object may still be part of the vehicle, and
urn(An) will not drop under the situation. Likewise, 4, denotes the height of the detected
object while up,(4,) represents the degree of similarity between A, and a vehicle height, B,.

Fig. 4-4(b) reveals a similar relation between A4, and uz,(4,).

Fr={4,,1:,(4,)]| 4, € N} (4.5)
where F}, is a fuzzy set, representing the degree of similarity between the horizontal width of
A; and B;. upn (Ay) is the membership function of F,.

F,={4,,1:,(4,)] 4, € N} (4.6)
where F, represents the degree of similarity between the vertical length of 4; and B,. up, (4,)

is the membership function of F).

O’Ah _Bhv
1-h
1+ (4,-B,),B, <A,<B,
Bh_Bhs
MFh(Ah)z - (4-7)
1+ 3 —ghc](Ah ~B,),B,<4,<B,
h,,A, > B,.
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0,4,<B

vs

I{Bi:vI;VSJ(A” ~B,),B, <4, <B,
(4.8)

1+( 17v, ](AV—BV),BV <A <B,
BV_BVC

v,,A, > B,

He (4,) =

where B, is the minimum vehicle height.
B, represents the height of a medium-sized vehicle.

B, denotes the height of a large-sized vehicle; v; and v, are constants.

(b)

Fig. 4-4. (a) The membership function of F;, (b) The membership function of F,.
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The detection of the target vehicle starts with the search of horizontal lines from left to
right side of the image. When a horizontal line exceeding By, is found, the search of vertical
lines starts upwardly from the current row. When the width and height of the detected object
is obtained, the fuzzy rules in section 3.3.3 will be applied to identify whether the object is a

vehicle.
4.3.3 Vehicle Recognition Based on Fuzzy Rules

The following fuzzy rules can verify the likelihood of 4; being Bi.
o Fuzzy Rulel: If 4; exceeds By, then 4; may be B, and the degree of horizontal
similarity is ug, (Ap).
e  Fuzzy Rule2: If 4, is larger than B,,, then 4; may be Bi, and ur, (4,) is their
degree of vertical similarity.
As shown in (4.9), uen, (An, A,)means the-degreeof similarity between 4; and B;. The way

to compose two fuzzy sets is to use an algebraic product.

Heen, €y, A = (A ) X 11, (A,) (4.9)

4.3.4 Vehicle Recognition based on a Defuzzifier

The detected object is recognized as a car when both its width and height are larger than the
minimum level of a vehicle. Equation (4.10) presents the requirements for objects to be
recognized as vehicles.

Mgy (A, A,) 2 By x v, (4.10)
4.4 Experimental Results

This study utilizes a Hitachi KP-F3 camera equipped in an experimental smart car, Taiwan
its-1, with a screen resolution of 644 x493, whose every physical pixel size is 7.4(H)x7.4(V)

um. The camera is mounted at the height of 1.32m. The equipment adopted in the system
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includes a PC with CPU Pentium 2.8G and 512MB DRAM. The average processing time of
lane detection is less than 9 ms, and edge and vehicle detection takes about 23 ms.
Experiments of vehicle detection are conducted in conditions with diverse illumination, roads
with patterns, and vehicles cutting in the lane of the autonomous vehicle. The results of

vehicle detection are shown as follows.

4.4.1 Vehicle Detection Results

The proposed approach of vehicle detection is applied to situations with regular
illumination or strong sunshine, and roads with text as shown in Figs 4-5, 4-6 and 4-7. Figure
4-5 reveals a successful detection of the closest preceding vehicle on the lane of the
autonomous vehicle. Even though the bqr j?[_n part of the vehicle contour is not a straight
horizontal line, its shadow below gﬁi’f fo é%ltal line in the image. So the vehicle and

its shadow still compose a quasfn{otan 1%§‘egitgur ig the image.
=

Fig. 4-5. Vehicle detection with regular illumination.
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Figure 4-6 is a road with some patterns, such as lane markings, text markings and crossing
line. Patterns on the road do not affect our vehicle detection, because they can not form any

vertical edges in the images.

Fig. 4-7. Vehicle detection under sunny conditions.
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Fig. 4-8. The results of vehicle detection with vehicles cutting in the lane of the autonomous

vehicle.

Figure 4-7 displays the experimental results under sunny conditions. Although the

reflection of light generated noise, the proposed algorithm still recognized the target vehicle
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efficiently in this adverse condition.

Figure 4-8 exhibits detection results of consecutive images. At the bottom of every image
is a number showing the distance between the camera and the preceding vehicle computed
by (4.1). In frame 518, the range to the closest preceding car was 41.5 meters. In frame 581,
the car in the right lane cut in, so the detected distance changed to 14.7 meters. Likewise, the
detected range to the preceding vehicle was 32 meters in frame 1182, and became 25.2
meters in frame 1233 when a car cut in.

Figure 4-9 shows results of lane and vehicle detections in the freeway. The distance

between the vehicle and the camera is estimated to be 35.5 m.

Fig. 4-9 Results of lane and vehicle detection.

4.4.2 Comparative Analysis

The experimental results were compared with other systems in terms of lane and vehicle

detection in Table 4-1 [29][66]. As it can be observed, GOLD [29] adopted a stereo camera,
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and the cost is higher than the other two. In computation cost, GOLD could effectively detect
lane markings by IPM and black-white-black transitions on the flat roads. Although IPM may
require plenty of time for computation, the application of a pre-computed table helps rapidly
create top-view images. However, with various road conditions, the vibration of the camera
may cause extra mapping distortion and errors. Besides, vehicle detection of GOLD requires a
comparison of disparity between two cameras so more time is needed. Sun. et al [66] applied
the Gabor filter and SVM (support vector machines) to detect vehicles. These approaches are
time-consuming because the algorithms involve high computation complexity. The proposed
approach in this study conducts lane detection first and then defines the current lane region as
ROI for vehicle detection to achieve real time lane and vehicle detection and reduce errors.
Besides, in our vehicle detection, a Kalman filter is designed to process the estimated range

between the preceding vehicle and the camera,rand to enhance the robustness of range

estimation.
Table 4-1 Comparison of‘approaches in lane and vehicle detection
Approach Camera Compu Lane detection Vehicle detection
Type -tational . . .
Cost Straight  Curvature ROI Vehicle  Techniques
Roadway Roadway Selection Detection of
& Cut-in  Temporal
Manage  Consistency
-ment
GOLD Stereo  Medium Good N/A N/A Good N/A
[29]
Sun. et Single High N/A N/A N/A Good N/A
al.[60]
The Single  Low Good Good Within Good Kalman
proposed the Lane filter
approach
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Chapter 5

Conclusion and Future Works

5.1 Range Estimation and Dynamic Calibration

In this study, we have presented several approaches for the estimation of the range between
the preceding vehicle and the camera, range errors, the actual height of vehicles and the
projective height of the detected vehicles in various positions. The results of error estimation
can be adopted as a reference to determine the preset camera parameters, suppress estimation
errors and facilitate rapid and accurate estimation of vehicle sizes.

According to the error analyses,. the variations. of camera tilt and swing angles lead to
significant errors in range estimation-tesults.-A dynamic calibration approach has been
proposed to effectively reduce errors‘ofrange estimation. A Kalman filter is also integrated in
order to more stably estimate swing angles so that the estimation results can be sufficiently
robust and estimation errors can be further reduced. Experimental results demonstrate that our
approaches can provide accurate and robust estimations of range and size of target vehicles.
The proposed approaches can serve as reference for designers of vision-based driving

assistance systems to improve the efficiency of vehicle detection and range estimation.

5.2 Lane detection

To apply lane detection for the guidance of autonomous vehicles and driving assistance
system, a variety of road conditions should be considered, such as changes of illumination, a

great diversity of road curvature, difference in the configurations of lane markings like

106



continuous, dashed or occluded road markings. A lane detection system should have high
efficiency, robustness, and reliability to make driving at high speed safe.

This study has proposed a rapid computation of lane width to predict the projective
positions and widths of lane markings and an approach LME FSM is designed to extract lane
markings efficiently. A statistical search algorithm is also proposed to correctly and
adaptively determine thresholds under various kinds of illumination conditions. Moreover, a
dynamic calibration algorithm is applied to update the information of a camera’s parameters
and lane width. Additionally, a method of fuzzy reasoning is adopted to determine whether
the lane marking is continuous, dashed and occluded. Finally, the strategy of the ROI is
proposed to narrow the search region and make the detection more robust. Experimental
results shows that even when obstacles occlude parts of the lane markings or lane markings
have complicated curvature, road boundaries still can be reconstructed correctly by B-spline
with four segments. In conclusion, even with.the information of lanes, there are still many
threats from surrounding vehicles and.obstacles-when driving. Thus, the function of obstacle
detection should be combined withlane. detection systems to make the guidance of

autonomous vehicles and driving assistance systems better in the future.

5.3 Vehicle detection

A real-time obstacle detection system to detect obstacles and vehicles whose shapes are
similar to rectangles is presented. When detecting, we start with edge detection, and then
identify obstacles and recognize whether they are vehicles according to their contour sizes in
the vertical and horizontal edges. Many obstacles can be found in the detection and their
distance to the camera can be acquired. With the information of lane detection, the closest
preceding car in the lane of the autonomous vehicle can successfully be detected in real time.

This work can be applied in vehicle detector for the driving assistance system.
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5.4 Future Works

Some directions for future study are recommended below:

(1)

2

3)

In the future, simultaneous detections of several lanes and vehicles will be conducted
and the obtained information will be applied to the throttle and brake systems of
vehicles to support the automatic driving of intelligent autonomous vehicles.

The changeable illumination and weather condition of outdoor surroundings and the
high speed of vehicle movements increase the difficulty of lane and vehicle detection.
More robust and rapid approaches should be proposed to make the driving assistance
systems real-time and adaptive.

Besides vehicles, pedestrians, motorcycles and other obstacles also can affect driving
safety. Therefore, techniques for detecting those objects should be developed to

increase the feasibility of the drivingassistance system and improve driving safety.
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APPENDIX A

Relation of Projected Width and v-coordinate

If the lane width is Wy and the projective lane width on the v-coordinate is wy (v), then
(A-1) can be obtained from (1) and (2). (A-2) means the first derivative for v to w; (v). Let £ =
(/2- @), and 7 = tan'(v/4). Then (A-4) and (A-5) can be derived from (A-2) and (A-3). Since
the camera was placed in a vehicle to detect the lane, when a is large, the farther part of the
lane would not appear in the image. Therefore, a is usually between 0-6 degrees. In the study,
let the tilt angle a<10°, and then the value of ¢ will be larger than 80°, and they are
substituted in (A-6)(A-7). Next, they are applied to (A-5) to obtain (A-8) and (A-9). (A-9)
shows the first derivative of w; (v) is a constant. The relation between w; (v) and v can be

expressed by a linear equation as (A-=10).

(1) = S R (A
h-tan[( = -a ]—tan1 (D
dw, (v) I x[d cot[( T a j—tan‘1 (i]j/dv]
dv 2
(A-2)
~ _1+tan(§)><tan(T)
CO‘[(}; T) - tan(g)—tal’l(’l?) (A-3)
de(v):WWLX)LX(KXd_OJ_(DXﬁj/Kz (A-4)
dv h dv dv

where ®=1+tan(&)xtan(t); x=tan(§)xtan(t).
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dw, (v) _ Wy x A y (tan(g) _j\jx tanl(é) _(H tan(&)X;)X(—ij (A-5)

dv h (tan(&)—;)
tan (&) >>% (A-6)
where &> 80°.
tan (&) x tan (&) >> (lxtan(§)+l) (A-7)
A A A
tan (&

i ), ()5 »

dv h (tan (&) )

dw, (V) W .
dvyen. h (8-9)

wL(v);(VZl—WL)ch (A-10)
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APPENDIX B

Adaptation to Illumination Conditions

The proposed statistical search algorithm determines Ggpn, Gor, Gun, and G,z in the region
of interest (ROI) for detecting lane markings. The procedures for determining the thresholds
in each row are given as follows:

Step 1) Setting search windows: Set a window in each N-th row to search for Gen, Gor, G,
and G,,.. The width of the search window on the N-th row, W,,(N), is shown as (B-1). Here the
left border of the search window is also the left border of the search region of the lane

marking on the N-th row.

w

W (V)= SXWm(N),if(SRZSme(N)) (B-1)
Sy otherwise

where w,,(N) is the estimated widthiof the lane‘marking on the N-th row. Sk denotes the search

region.

Search Window

A 4

P ; [MmL, MmR] ;

z | i i
2 [MwL, MgL]: \[MgR, MwiRr]

E i Lowland § | i \Lowland:

S
L 0

| -
Mwl Mol Mmnl MmRMzR MwR

M-coordinate

Fig. B-1. The gray level distribution with a row of lane marking in the search window.
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Step 2) Finding zone of lane marking and ground in the window: Since the gray levels of lane
markings are obviously higher than those of the ground’s, the distribution of gray levels in a
search window can be divided into three main zones if a row of lane markings appears close
to the center of the search window. The three main zones in sequence are a lowland, a plateau,
and again a lowland of gray level groups. These three zones can be determined according to
the representative bright and dark levels of the lane markings and the ground, which are
respectively the average gray levels of lane markings and the ground. Let G denote the gray
levels in M-coordinate in the search window, as shown in (B-2). Compute the pixel number of
the lane marking and the ground in the window, respectively 4,, and 4, by (B-3). Let a set, L,
be the ordered gray levels of the pixels in G, which are arranged from large to small as in
(B-4), where L;, Ly, respectively represent the highest and lowest gray level in G. L, is the
average gray levels of lane markings, 1. e. the average of the brightest 4,, pixels with the
highest gray level among the set L.'L,'is the average gray levels of the ground, also the
average of the darkest 4, pixels with the lowest gray level among L as shown in (B-5). After
finding the representative bright and dark levels of the lane markings and the ground, three
zones of interest can be found based on the following definitions. In the search window, the
left and right borders of the lane marking, M,,;, and M,, is respectively defined as the leftest
and rightest pixel whose gray levels are larger than L,. The left border of ground, M, is
defined as the pixel whose gray level is lower than L, and being closest to M,,;. The right
border of the ground, My, 1s defined as the pixel with gray level lower than L, and closest to
Mg Figure B-1 shows the gray level of each pixel in G when a row of the lane marking
exists in the search window. As can be seen, the plateau zone, [M,,., M,,z] of the lane marking
in G can be found by L,, and the lowland zone, union [M,;, M, and [M,r, M,r] of the

ground by L.

wL >

G={G,|Me[M, .M, (B-2)
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where Gy, denotes the gray level in M-coordinate. M,,; and M, respectively represent the left

and right boundaries of the search window.

A =r xA;r =—2 L g =g —4; (B-3)

where A4,, is the number of pixels in the search window; r,, denote the ratio of w,(N) to

W,(N).

={L,|je[L4,] (B-4)
1 A, 1 A,
LmzA—mJZ_;Lj, g=A— ; (B-5)

Step 3) Determining Gy, Gz, Gerrand Gy Determine the highest and lowest gray levels in
the plateau zone, G,z and G,,, using ' (B-6), and the highest and lowest in the lowland zone,

Gg[-[, and GgL by (B-7).

G,y =max{GM |M e MmL,MmR]};

(B-6)
G, =min{G, |Me[M,, .M, .1}

Gy = max{GM M e {[MwL,MgL]U[MgR,MwR]}};

(B-7)
G, =min{G, |M {[M,,. M, UM ..M . }}:

Step 4) Verifying Guu, Gmr, Ggr, and Ggr: Check whether the determined Gop, Ggr, Gup, and
G are correct by verifying that Ggy 1s smaller than G,,;. If so, substitute Gen, Ger, Gur, Gt
in (11) to obtain the corresponding Dy, Dy, Dg1> on this row and go to step 6. Otherwise, go
to step 3.

Step 5) Checking whether Sk is completely searched: If so, let Dg1, Dgo, Dyi2 in this row be
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the same as those in the previous row and go to step 6. Otherwise, shift the window rightward

for the distance of w,,(N) and return to step 2.

Step 6) Terminate the determination process of the N-th row, and export the results of Gz,

GmL, GgH, and GgL.
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