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影像處理與電腦視覺技術應用於駕駛輔助系統之研究 

 
研究生：林全財                        指導教授：吳炳飛教授 

國立交通大學電機與控制工程學系博士班 

中文摘要 

本論文主要探討應用於駕駛輔助系統之影像處理與電腦視覺技術，包括車道偵測、車

輛偵測、前車距離估測、誤差估測及攝影機動態校正。電腦視覺為基礎(Vision-based)的駕

駛輔助系統利用安裝在智慧車內的攝影機拍攝前方路況，透過車道與車輛偵測技術估測車

道位置、前方車輛與智慧車的距離，這些資訊可以用來提高駕駛安全。本論文主要包含三

個部份，第一部份簡介電腦視覺技術應用於駕駛輔助系統。第二部份為分析偵測道路所得

的資訊及降低誤差的方法，第三部份則提出一些演算法，以應用於估測車輛距離及誤差、

動態校正、以及車道與車輛偵測。 

本論文提出一些新的方法來估測前車與智慧車的距離、快速估計前方物件的大小、距

離與物件大小估測結果的誤差分析、及動態校正攝影機參數以降低誤差。首先，利用攝影

機模型將世界座標的地平面座標轉換成影像座標，用以估計前方車輛與攝影機的相對位

置，然後，利用一個新的估計方法估計前車的大小與投射的大小。這個方法利用前方車輛

輪胎與地面的接觸點估計前車與攝影機的距離，並且利用前方車輛的其它頂點之投射位

置，估計車輛的真實大小。因為前車投射的大小會隨著其與攝影機之距離而改變，論文中

提出一個簡單且快速估計投射高度的方法，它能簡化繁複計算及降低計算時間，使得此設

計能應用於即時處理系統。 

距離估測的誤差分析結果顯示出當估測車輛與攝影機之間的距離時，攝影機的安裝參

數也會影響到估測的結果，我們藉由誤差分析來找出最合適的攝影機參數以降低誤差。此
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外，因為車輛會因路況不平或載重不平衡而晃動或傾斜，安裝在車上的攝影機的外在參數

也會隨著車輛的行進晃動而改變，因此，我們亦提出了動態校正的方法，以取得正確的攝

影機參數，降低估測誤差。實驗結果顯示我們的方法可以準確的估測車輛大小及距離。 

論文中也提出了一個快速估測投射的車道與車道線寬度的方法，用以預測車道的可能

位置。另外，設計了一個車道線擷取狀態機 Lane Marking Extraction (LME) Finite State 

Machine (FSM)，用以辨識影像中的車道線；並將 cubic B-spline 應用於曲線擬合以重建道路

邊界。另外還發展了一個統計搜尋演算法用以決定在不同亮度條件下所設定的車道線擷取

門檻值。此外，有時會有部份車道線被遮蔽而影響偵測，我們應用模糊演算法來判斷車道

線可能被遮蔽的情形，進而利用已有的車道線資訊及估算的車道寬度補償被遮蔽的部份資

訊。最後，為了加速偵測、減少偵測誤差及影像雜訊干擾，亦規劃一個 ROI (Region of Interest)

決定策略，它能提高偵測系統的穩健性並加快偵測速度。 

另外，本論文發展了一個以模糊邏輯演算法為基礎的外形大小相似性演算法(Contour 

Size Similarity, CSS)。利用偵測和估測的影像中車輛大小的比較結果及模糊規則來辨識車

輛。車輛偵測主要針對和智慧車相同車道的前方車輛。實驗結果顯示提出的方法可以有效

的偵測車輛並估計其距離，而且當有車輛切入前方車道時，偵測的目標也會轉移到目前因

切入而成為離智慧車最近的這一輛車。最後章節呈現了本篇論文的結論與未來的研究展望。 
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ABSTRACT 
The dissertation aims to explore techniques of image processing and computer vision 

applicable to driving assistance system, including lane detection, vehicle detection, estimation of 

the distance to the preceding car, error estimation, and dynamic calibration of cameras. The 

vision-based driving assistance system films the front road scenes with a camera equipped on the 

intelligent vehicle, computes lane positions and the distance to the preceding car by the lane and 

vehicle detection and then adopts the obtained information to improve driving safety. The 

dissertation mainly includes three sections. The first section is a brief introduction of the 

application of computer vision techniques to the driving assistance system. The second section 

presents analyses of the information obtained from lane detection and approaches for reducing 

errors. The third section proposes some algorithms and their application to the range estimation, 

error estimation, dynamic calibration, and detection of lanes and vehicles.  

The dissertation presents several approaches to estimate the range between the preceding 

vehicle and the intelligent vehicle, to compute vehicle size and its projective size, and to 

dynamically calibrate cameras. First, a camera model is developed to transform coordinates from 

the ground plane onto the image plane to estimate the relative positions between the detected 

vehicle and the camera. Then, a new estimation method is proposed to estimate the actual and 

projective size of the preceding vehicle. This method can estimate the range between the 

preceding vehicle and the camera with the information of the contact points between vehicle tires 

and the ground and then estimate the actual size of the vehicle according to the positions of its 

vertexes in the image. Because the projective size of a vehicle varies with its distance to the 

camera, a simple and rapid method is presented to estimate the vehicle’s projective height, which 
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allows a reduction of the computation time in the size estimation of the real-time systems.  

Errors caused by the application of different camera parameters are also estimated and 

analyzed in this study. The estimation results are used to determine suitable parameters during 

camera installation to reduce estimation errors. Finally, to guarantee robustness of the detection 

system, a new efficient approach of dynamic calibration is presented to obtain accurate camera 

parameters, even when they are changed by camera vibration arising from on-road driving. 

Experimental results demonstrate that our approaches can provide accurate and robust estimation 

of range and size of the target vehicles. 

In the dissertation, an approach for rapidly computing the projective lane width is presented 

to predict the projective lane positions and widths. Lane Marking Extraction (LME) Finite State 

Machine (FSM) is designed to extract points with features of lane markings in the image and a 

cubic B-spline is adopted to conduct curve fitting to reconstruct road geometry. A statistical 

search algorithm is also proposed to correctly and adaptively determine thresholds under various 

kinds of illumination. Furthermore, parameters of the camera in a moving car may change with 

vibration, so a dynamic calibration algorithm is applied to calibrate camera parameters and lane 

widths based on the information of lane projection. Besides, a fuzzy logic is used to discern the 

situation of occlusion. Finally, an ROI (Region of Interest) determination strategy is developed to 

narrow the search region and make the detection more robust with respect to the occlusion on the 

lane markings or complicated changes of curves and road boundaries. 

The developed fuzzy-based vehicle detection method, Contour Size Similarity (CSS), 

performs the comparison between the projective vehicle sizes and the estimated ones by fuzzy 

logic. The aim of vehicle detection is to detect the closest preceding car in the same lane with the 

intelligent vehicle. Results of the experiments demonstrate that the proposed approach is 

effective in vehicle detection. Furthermore, the approach can rapidly adjust to the changes of 

detection targets when another car cuts in the lane of the intelligent vehicle. Finally, a conclusion 

and future works are also presented.     
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Chapter 1 

 Introduction 

1.1 Motivation 

Driving assistance systems have become an active research area in recent years for 

developing intelligent transportation systems (ITS). On average, there is at least one man 

dying of vehicle crash every minute and more than 10 million people getting injured in the 

auto accidents, 2 or 3 million of whom are seriously wounded. Therefore, researches 

concerning crash avoidance, the reduction of injury and accidents, and the manufacture of 

safer vehicles are very important. Vehicle accident statistics reveal that the greatest threat to a 

driver comes from other vehicles. Accordingly, the objective of automatic driving assistance 

systems is to provide drivers with the information with respect to the surrounding traffic 

environment to lower the possibility of collision [1]-[3]. 

 Currently, various sensors have been applied to driving assistance systems. Driving 

assistance systems require information regarding lanes, the preceding vehicle and its range to 

the intelligent vehicle. Lane detection usually entails vision-based techniques, which require 

the use of single cameras or stereo cameras. Approaches to vehicle detection and range 

estimation are multiple.  Besides vision-based techniques, laser sensors are often adopted. If 

a system involves several or many kinds of sensors, the cost will rise and the complexity of 

the system will increase. By contrast, the use of only a single camera can significantly reduce 

the cost. 

The preceding lane scenes can be filmed by the camera mounted in a vehicle. Parameters of 
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the camera can affect the results of range estimation; however, the parameters are easily 

changed by the vibration caused by the vehicle movements. Therefore, setting parameters 

correctly to reduce errors and dynamic camera calibration are necessary issues for researches. 

Besides, vehicles often move rapidly so driving assistance systems should be able to promptly 

respond to results of lane and vehicle detection to avoid the occurrence of traffic accidents. 

Hence, the acceleration of detection is also a major research issue. Furthermore, adaptive lane 

and vehicle detection systems are required to cope with changes of weather and illumination 

in the outdoor environment. Accordingly, the objective of this study is to develop 

methodologies for adaptive and real-time driving assistance systems [4]-[8]. 

 

1.2 Literature Survey 

1.2.1 Range Estimation and Dynamic Calibration 

Previous studies often adopted laser, radar or computer vision techniques in range 

estimation issues. For example, Chen [9] presented a radar-based detector to find obstacles in 

the forward collision warning system, where a vision-based module was adopted to confirm 

that the detected object is not an overhead structure to avoid false alarms of the warning 

system. Segawa et al. [10] developed a preceding vehicle detection system for collision 

avoidance by using a combination of stereo images and non-scanning millimeter-wave radar. 

In Hautiere et al.’s method [11], a depth map of the road environment is computed and 

applied for detecting the vertical objects on the road. Stereo-vision based techniques can also 

be applied on range estimation. By comparing the disparities of two images, obstacles can be 

detected and their distance to the experimental vehicle can also be estimated [11][12]. 

However, the methods above need multiple cameras or at least one set of radar to detect 

obstacles and estimate the range. If only one single camera is required, the cost and the 

complexity of the system will be significantly decreased. Nevertheless, the estimation results 
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of a single camera are often influenced by external camera parameters and thus serious errors 

arise. For example, an outdoor camera is often affected by the wind or rain. Furthermore, 

camera parameters vary with the pressure of tires, unbalanced load or bumpy roads when the 

camera is mounted on a moving vehicle. Therefore, automatic calibration is necessary to deal 

with the above issues. Studies of camera calibration usually adopted points in the world 

coordinates or certain distinctive patterns [13]-[15]. For instance, Wang and Tsai [13] 

proposed a camera calibration approach using a planar hexagon pattern drawn on the ground. 

However, this approach may only be suitable for calibration of fixed cameras. Schoepflin and 

Dailey [14] supposed the camera swing angle was zero and searched for the vanishing point 

by extending lane markings in the image to calibrate the tilt angle. Nevertheless, when the 

camera swing angle is not zero, errors may arise. Liang, et al. [15] calibrated the tilt angle of a 

moving camera with the coordinate of the vanishing point. However, the assumption of 

vehicles staying in the center of lanes may not be reasonable under typical driving conditions 

and thus such methods may cause more errors on roads with curves. Therefore, it is better if 

calibration targets are objects available on the road and errors caused by incomplete 

assumptions should be estimated. In fact, camera intrinsic parameters are usually fixed while 

extrinsic parameters such as angles and heights are variable. Intrinsic parameters can be 

obtained by analyzing a sequence of images captured by cameras [16]-[19]. To solve the 

problem of changing extrinsic parameters, we propose an approach of automatic calibration to 

provide robust range estimation for vision-based systems. 

Object features, like sizes and shapes, are widely employed in the recognition of objects 

[20]-[25]. Yilmaz et al.[20] adopted a method of contour-based object tracking to detect 

pedestrians and to solve the problem of occlusion between objects. Lin et al.[21] computed 

the number of people in crowded scenes by detecting features of human heads. Pang et al.[22] 

analyzed vehicle projections with geometry and divided their occlusions in the images to 
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provide essential information to the traffic surveillance systems. Broggi et al.[23] utilized 

inverse perspective mapping to transfer images of the front driving lanes into a bird’s view of 

parallel lanes to detect and identify vehicles with a bounding box. However, most of the 

above-mentioned approaches may need the prior information about the projective size and 

shape of the target object, and it may not be possible to obtain this information accurately and 

rapidly in many situations. Moreover, the loss of dimensional information during the 

transformation from 3-D coordinates to 2-D image coordinates often increases difficulties in 

estimating the projective size and shape of the target object. To solve the problem, we regard 

a vehicle as a cuboid and with the world coordinates of the cuboid’s vertex on the ground, we 

can estimate the world coordinates of other vertices in the cuboid, determine their projective 

positions and estimate the size of the cuboid. Since vehicle sizes are within certain ranges, 

cuboids on the drive lanes whose sizes fit general vehicle sizes should be vehicles. So our 

method can be applied to vehicle recognition. 

 

1.2.2 Lane Detection 

There are many ways lane detection can be achieved. In early studies, Dickmanns et al. 

[26]-[28] conducted 3-D road recognition by adopting horizontal and vertical mapping models, 

the approach of extracting features with edge elements, and recursive estimation techniques. 

The results were applied to their test vehicle (VaMoRs) to function as autonomous vehicle 

guidance. Broggi et al. [29][30] used IPM (Inverse Perspective Mapping ) to transfer a 3-D 

world coordinate to a 2-D image coordinate, and detected road markings using top-view 

images. Kreucher and Lakshmanan [31] suggested detecting lane markings with frequency 

domain features that capture relevant information about edge-oriented features. The objectives 

of many studies on lane detection include autonomous vehicle guidance and driving 

assistance such as lane-departure-warning and Driver-Attention Monitoring systems. Some 
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assumptions in common are as follows: 1) The road is flat or follows a precise model. 2) The 

appearance of lane markings follows strict rules. 3) The road texture is consistent. The main 

difficulty in lane detection is how to recognize roads efficiently in various situations, 

including complex shadowing and changes in illumination [32][33]. Furthermore, the 

vibration of a moving camera causes changes in camera parameters and thus leads to errors in 

geometric transformation. To solve the problem, dynamic calibration of cameras is required to 

improve robustness [34]-[36].  

The task of lane detection can be summarized as two main sections: 1) The acquirement of 

features. 2) A road model for reconstructing road geometry. In addition, to accelerate the 

detection and make it robust, some approaches are added such as narrowing the search region, 

the determination of ROI (Region of Interest), dynamic calibration for the camera and 

position-tracking methods using consecutive images.  

The first step of detecting lanes is to extract their features. On most occasions there are lane 

markings on both the left and the right side of the driving lane, while sometimes only the 

boundaries of the road exist without any lane marking. Most parts of the lane markings are 

like two parallel ribbons with some variations, for example, being straight or curved, solid 

lines or dashed lines, and in the color of white, yellow or red. The occlusion of trees and 

buildings and their shadows makes it more difficult to detect positions of lanes. Also, 

visibility varying with illumination increases difficulty to detections [37]-[41]. 

In acquiring features, there are four major types of methods: pixel-based, edge 

detection-based, marking-based, and color-based methods. The pixel-based type is to classify 

pixels into certain domains and put pixels of the road boundaries in one category [42]-[44]. 

The edge detection-based type involves conducting edge detection in the image first. Then, 

find straight lines with Hough transform [45][46] or adopt an ant-based approach to start a 

bottom-up search for possible path of the road boundary in the image [47]-[50] or determine 
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search regions by road models for detection of road boundaries [1][51]-[53]. Those two 

methods are time-consuming, and easily cause errors when complex shadows or obstacle 

occlusion exist. The marking-based type is based on features of lane markings. For example, 

Bertozzi and Broggi [29] proposed IPM and black-white-black transitions to detect lane 

markings. This method may effectively deal with some situations of shadows or obstacle 

occlusions. However, the vibration caused by the moving vehicle may influence the extrinsic 

parameters of the camera, and thus arouse unexpected mapping distortions on images, which 

may cause errors on lane detection results. The color-based type is to utilize color information 

of the road in the image [44][54]-[56]. In this way, there is more information about the lane 

and better abilities to resist noise. However, it takes more computation time to extract color 

features of interest. 

Since shadows of trees or other noises usually exist and some lane markings are dash lines, 

the detected features of road boundaries are often incomplete. Therefore, the methods of 

interpolation or curve fitting are needed to reconstruct the road geometry. Kreucher and 

Lakshmanan [31] used a deformable template shape model to detect lanes. They believed that 

two sides of a road respectively approximate a quadratic equation, so they established their 

coefficients to determine the curvature and orientation of the road. However, curve fitting 

cannot be done by a quadratic equation on the lanes with S-shaped turns. So Wang et al. [57] 

adopted spline interpolation which can be used in various curves to connect line segments. 

However, when there are vehicles in the lane occluding parts of the lane boundary, some 

errors may arise, because this approach found a vanishing point depending on Hough 

transform followed by line-length voting. Thus, vehicles on the lanes may form spurious lines 

which may influence the determination of the vanishing line. Furthermore, Hough transform 

and Canny edge detector utilized in Wang et al.’s approaches may take more computation 

time.  
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Another issue to promote lane detection efficiency and depress noise sensitivity is to set 

appropriate ROI. Lin et al.[58] applied the information of both lane boundaries obtained from 

initial detection in the first frame to the finding of ROI on Hough domain. Then ROI was 

adopted as search parameters of lane boundaries in the subsequent frames. The method can 

effectively accelerate lane detection process on a straight lane but errors may arise on road 

curves. Chapuis et al.’s method [59] utilized an initially determined ROI to recursively 

recognize a probabilistic model to conduct iterative computation, and adopted a training phase 

to define the best interesting zone. The initially set ROI is effective in the general roads; 

however, diverse road curves may make the initial ROI too large on the farther part of the 

road and thus raise noise sensitivity. Therefore, an effective method is needed for adaptive 

determination of ROI and adjustment to changes of road curves in the image sequences, and 

thus ROI can be significantly narrowed to obtain more accurate and faster lane detection 

results. 

 

1.2.3 Vehicle Detection 

Besides lane detection, detections of obstacles and vehicles are also important issues in the 

research of crash avoidance and vehicle following. Some investigations exploited stereo 

visual systems to detect obstacles by comparing differences between two images [60][61]. 

Two cameras were required by those approaches, and thus the cost increased. In some 

previous studies, an obstacle was recognized as a vehicle by its shape and symmetry 

[12][62]-[64]. Practically, features of the vehicles presented in the images are also helpful to 

the detection. Sun et al. analyzed features of vehicles in the images, segmented and 

recognized vehicles with a Gabor filter and neural network techniques. In their study, the 

possible positions of vehicles were checked with hypothesis generation (HG) first and then 

the presence of the vehicles was verified by hypothesis verification (HV) [65][66]. Some 
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researchers performed optical flow analysis to detect obstacles. In consecutive images, 

positions of an object only have slight changes. Therefore, in the subsequent images, an object 

is found by the prediction of its motion based on its previous position [67]-[69]. Still, some 

problems may increase the detection time and make it difficult to achieve real-time vehicle 

detection. For example, the range between the camera and a recognizable vehicle is about 

5-60m. The size of the vehicle in the range of 5m has changed enormously from that in the 

60m. Besides, the diversity of vehicle colors, shapes, and sizes complicates the design of 

classifiers in vehicle recognition. Therefore, to detect vehicles rapidly, the feature of a 

rectangle-like contour in most vehicles should be adopted and the problem that projective 

sizes of vehicles vary with their range to the camera should be taken into consideration. 

In vehicle detection, an approach of geometry transformation is proposed to estimate the 

projective sizes of vehicles. Furthermore, Contour Size Similarity (CSS) approach is 

presented to discover vehicles that threaten driving safety. With only one single camera 

applied, the cost of CSS is far less than that of a stereo vision approach. Furthermore, the 

search area of the vehicle detection can be narrowed based on results of lane detection, 

because only the closest preceding car in the lane of the autonomous vehicle is interested. 

Once the closest car is detected, the approach of vehicle detection starts to compute its range 

to the camera [70][71]. When another vehicle cuts in, the approach can also shift its detection 

target immediately. 

 

1.3 Research Objectives and Organization of the Thesis 

The objective of this dissertation is to develop advanced vision-based methodologies for 

driving assistance systems. The developed approaches consist of range and size estimation, 

error analysis of the estimated results, dynamic camera calibration, lane model, lane detection, 

the approach of Contour Size Similarity, and vehicle detection. For driving assistance systems, 
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information concerning the positions of lanes and the preceding vehicles are important. In the 

study, a camera model is first adopted to estimate the actual and the projective sizes of the 

detected targets and approaches to reduce detection errors and accelerate detection are also 

developed. Then, lane positions in the images are extracted by Lane Marking Extraction 

(LME) Finite State Machine (FSM) based on information of properties of lane markings. 

B-spline is also used to reconstruct road boundaries. Afterwards, the approach of contour size 

similarity is presented to detect vehicles within the driving lane and estimate their range to the 

camera. The obtained information is applied to driving assistance systems to improve driving 

safety.  

The material in dissertation is organized according to the approaches used in driving 

assistance systems. A simplified overview is shown in Fig. 1-1. In Chapter 2, the dissertation 

presents new approaches to estimate the range between the preceding vehicle and the 

intelligent vehicle, to estimate vehicle size and its projective size, and to dynamically calibrate 

cameras. A lane model is presented in Chapter 3. For lane detection, a LME FSM is designed 

to extract lane markings with a lane model. Then, the obtained lane boundaries can be applied 

to determine the search region of vehicle detection. In Chapter 4, the developed fuzzy-based 

vehicle detection method, Contour Size Similarity (CSS), performs the comparison between 

the projective vehicle sizes and the estimated ones to recognize the target vehicle by fuzzy 

logic. The target of vehicle detection is the closest preceding car in the same lane with the 

intelligent vehicle. The experimental results demonstrate that our approaches effectively 

detect vehicles under different situations. 
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Fig. 1-1. Structure of the thesis. 

 

 



 11

Chapter 2  

Range Estimation and Dynamic 

Calibration  

2.1 Introduction 

Accurate and real-time detection of vehicle position, speed and traffic flows are important 

issues for driving assistance systems and traffic surveillance systems [1][72]-[74]. During the 

detection, errors often arise because of camera vibration and constraints such as the 

limitations of image resolution, quantization errors, and lens distortions [34][75]. Therefore, 

accurate error estimation is important in vehicle detection issues, and image processing 

techniques for position estimation or motion detection are necessary in many situations 

[7][76]-[78]. However, most of the previous studies have not involved methods of reducing 

errors caused by changes of camera parameters, while some important issues like error 

estimation and the way to set appropriate camera parameters were seldom considered. This 

may influence the determination of camera parameters and the specifications of a detection 

system. Therefore, we propose an effective strategy to reduce errors of range estimation by 

determining the most suitable camera parameters. 

In this study, we apply error estimation to determine proper camera parameters and then 

estimate actual and projective sizes of target objects to facilitate vehicle recognition. An 

approach to rapidly compute projective sizes is also proposed to significantly reduce the 

computational cost of vehicle detection process for real-time and embedded systems. Then, a 
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dynamic calibration approach is presented to calibrate the tilt and swing angles of the camera 

with information of lane markings and vehicles in the image. The experimental results 

demonstrate that our work can provide accurate and robust range and size estimation of target 

vehicles. The rest of this chapter is organized as follows: Section 2.2 presents position and 

size estimation using projective geometry. Section 2.3 explores range estimation and error 

estimation with various camera parameters. Section 2.4 proposes a dynamic calibration 

approach to deal with the problem of camera vibration and variation in camera angle. Section 

2.5 displays experimental results of range and height estimation, dynamic calibration of 

camera angles, and comparisons with other approaches.  

 

2.2 Position and Size estimation using Projective Geometry 

The position of any point in the 3-D world coordinates (X, Y, Z) projected to a 2-D image 

plane (x, y) can be calculated through perspective transformation [13]. Mapping a 3-D scene 

onto the 2-D image plane is a many-to-one transformation. However, mapping a point on the 

front horizon of the camera onto an image plane is a one-to-one transformation. Therefore, the 

relative position between the camera and any point on the ground can be estimated by the 

coordinate transformation between image plane and ground plane. 

 

2.2.1 Coordinates Transformation Model 

Figure 2-1 shows the coordinate transformation between image plane and ground plane, 

where Ow denotes the origin of the world coordinates (X, Y, Z), and O represents the origin of 

the image coordinates (u, v). Let λ be the focal length of the camera; p denote the lens center; 

h represent the height. As shown in Fig.2-2(a), there is a cuboid C associated with a target 

object, whose lengths, widths and heights are L1, W1, and H1, respectively. Let P1(X, 0, Z) be 

located on the ground, then P2=(X, H1, Z), P 3=(X + W1, 0, Z), and P 5=(X, 0, Z+L1), which are 
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inferred from the size of C. Other vertices can be estimated in the same way. Based on the 

cuboid’s size and the position of its vertex, P1, the projective positions of other vertices in a 

cuboid can be estimated to accurately estimate the contour and size of the cuboid’s projection. 

 

Fig. 2-1. Coordinate transformation between image plane and ground plane. 

 

Figure 2-2(b)(c) presents the side view and top view of the image formation. In the figure, 

tilt angle α denotes the angle between the Z-axis and the optical axis, pE . P1(X, 0, Z) projects 

onto i1(u, v) on the image plane, and the transformation between the two coordinates can be 

expressed as (2.1) and (2.2) by applying trigonometric function properties and our previous 

study [34], where ||Z|| and ||X|| respectively denote the range and lateral position between P1 

and the camera. 
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(a) 

 

(b)  

 

(c)  

Fig. 2-2.  The projective geometry of a camera model. (a) A cuboid C. (b) Side view. (c) Top 

view. 
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Let P2 and P3 respectively project onto i2(u2, v2) and i3(u3, v3). The 1 2PP  is the height of 

cuboid C, whose projective height is hi12 in (2.3). The distance between P1 and P3 is the width 

of C ; its projective width is wi13 in (2.4). 

Based on (2.1)-( 2.4), if P1 of the cuboid can be found in the image, then the position and 

size of the cuboid can be estimated. Likewise, the relation between v2 and H1 can be obtained 

by (2.3), as shown as (2.5). Further by applying (2.5), we can have the height of the cuboid C 

as in (2.6). 
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2.2.2 Rapid Estimation of Projective Height 

A cuboid’s projective size varies with its relative position with the camera. From (2.3), we 

can estimate its projective height. When applied to driving assistance, the rapid size 

estimation of the front vehicle’s projection can provide helpful information for vehicle 

recognition and determination of vehicle size. 
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From (2.1), we can obtain the relation between Z and v as shown in (2.7). In Fig. 2-2 (b), 

there is an object whose height is H1. Therefore, supposing that P1(X, 0, Z) projects onto i1(u, 

v), we can re-write (2.3) to turn hi12(v) into a linear equation shown in (2.8). Since the camera 

is mounted on an experimental vehicle for object detection, when α is too large, the farther 

part of the lane will not appear in the image. Therefore, α is usually between 0-6 degrees. 

Also, the height of the camera is restricted by the height of the vehicle roof, to be lower than 

1.5 meters. Furthermore, the range Z of the preceding vehicle is usually over 10m, and thus 

we can obtain (2.9) and (2.10). Then, substitute (2.9) and (2.10) into (2.8) to get (2.11). Also, 

by substituting (2.1) into (2.11), we obtain hi12(v) as shown in (2.12). Equation (2.13) means 

the first derivative for v to hi12(v). Let ξ = (π/2- α), and τ = tan-1(v/λ). (2.15), (2.16) and (2.17) 

derive from (2.13) and (2.14). In this study, let α<6°, so ξ >84°, to get (2.18) and (2.19). 

Then they are substituted to (2.17) to obtain (2.20) and (2.21). (2.21) shows the first 

derivative of hi12(v) is a constant. Therefore, the relation between the projective height of 

1 2PP , hi12(v), and the projected v-coordinate of P1 can be expressed by a linear equation as 

(2.22). 
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where h<1.5, α < 6°, Z > 10. 
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( )tan v
ξ >>

λ
                                 (2.18) 

where ξ > 84°. 

( ) ( ) ( )tan 1tan tanvξ ⎛ ⎞ξ × >> × ξ +⎜ ⎟
⎝ ⎠2λ λ λ

                      (2.19) 

( ) ( ) ( )

( )( )
12 1

2
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tan

tan
idh v H
dv h

ξ
ξ ××

≅ ×
ξ

λ λ                       (2.20) 

( )12 1idh v H
dv h

≅                                (2.21) 

( ) 1
12 1i

Hh v v C
h

≅ × +                             (2.22) 

where C1 is a constant.  

 

From the sequential images, we get the actual projective height of 1 2PP . Let the projective 

height of 1 2PP  be hi12(va) when P1 projects onto va, and the height be hi12(vb) when projecting 

onto vb. Then, by substituting the obtained hi12(va) and hi12(vb) into (2.22), C1 and H1 can be 

obtained as expressed in (2.23) and (2.24).  

    ( ) ( )
( )

12 12
1

i a i b

a b

h h v h v
H

v v
⋅ −⎡ ⎤⎣ ⎦≅

−
                           (2.23) 

( ) 1
1 12i a a

HC h v v
h

≅ − ×                               (2.24) 

By comparing (2.3) and (2.22), we can find that the proposed approach of projective height 

estimation significantly reduces the computation cost. Also, the comparison between (2.6) and 

(2.23) shows that the proposed approach requires much less computation timing for 

estimating the actual height of the target object. 
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2.3 Range and Error Estimation 

Inaccurate camera parameters often cause estimation errors. Even if the parameters are 

initially set accurately, they could be changed by external forces, or by the use of mechanical 

devices, causing the estimated value to be different from the real value. The range estimation 

results are discussed below. 

 

2.3.1 Digitalized Equation of Range Estimation 

To estimate range with a single camera, the equation evolved by the camera model should 

be digitalized first. Therefore, an affine transformation from real image coordinates (u, v) to 

bitmap image coordinates (M, N) can be obtained by (2.25). Figure 2-3 displays the 

relationship between the M-N bitmap image coordinates and the u-v real image coordinates, 

where the left bottom images denotes the origin Q(0, 0). 

 1 1/ 2, / 2,x m y nM d u M N d v N− −= − × +  = − × +                       (2.25) 

where dx and dy are respectively horizontal and vertical physical distances between adjacent 

pixels, and the frame size is Mm by Nn pixels. 

 

 

Table 2-1  Relations between N and Z coordinates 
 
 
 
 
 
 
 
 
 

The units of N and Z are the numbers of pixels and meters respectively. 
 

 

Z-coordinate (Meter) Parameters 
N=0 N=100 N=200 N=300 N=400 N=492 

α=0° λ=8mm 5.715 9.63 30.56 ∞  ∞  ∞  
α=0°  λ=16mm 11.43 19.25 61.11 ∞  ∞  ∞  
α=2° λ=8mm 4.91 7.61 16.76 ∞  ∞  ∞  
α=2°  λ=16mm 8.71 12.66 23.12 130.82 ∞  ∞  
α=6° λ=16mm 5.87 7.48 10.26 16.27 38.66 ∞  
α=8°  λ=16mm 5.03 6.19 8.01 11.29 18.94 49.35 
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Table 2-2  Error analysis of range estimation 
Error ratio Parameters 

Z=10 Z=20 Z=30 Z=40 Z=50 Z=60 
α=0° λ=8mm 0.36% 0.72% 1.08% 1.44% 1.82% 2.18% 
α=0°  λ=16mm  — 0.36% 0.54% 0.72% 0.90% 1.08% 
α=2° λ=8mm 0.36% 0.72% 1.08% 1.44% 1.82% 2.18% 
α=2°  λ=16mm 0.18% 0.36% 0.54% 0.72% 0.90% 1.08% 
* “—“ means beyond the field of view. 

 

The relation between N-coordinates and v-coordinates is shown in (2.25). Substitute (2.25) 

into (2.1), we have the coordinate transformation of Z and N as shown in (2.26), which is the 

digitalized equation of range estimation.  

( )( )1 / 2
tan   -  tan

2
n yN N d

Z h −
⎛ ⎞⎛ ⎞− ×⎛ ⎞⎜ ⎟= ⋅ − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

π
α

λ
                  (2.26) 

The Range Estimation is analyzed as follows. This study utilized a Hitachi KP-F3 camera 

with a physical pixel size of 7.4(H)×7.4(V) μm, that is dx = dy =7.4 μm, the number of pixels 

is 644×493, and h=1.3 meters. In the analyses, with different camera parameters, Table 2-1 

shows the mapping relation between the N-coordinate and the Z-coordinate based on (2.26). 

N=0 is mapped to the smallest Z-coordinate in the field of view. The table shows that the 

smaller Z-coordinate can be included in the field of view when the focal length is smaller or 

the tilt angle is larger. When α=0°, the mapping of N>246 is Z= ∞ . Here ∞  means that the 

Z-coordinate approaches infinity. Therefore, with a larger α, a smaller Z-coordinate is still in 

the field of view. The range of the N-coordinate onto which the Z-coordinate is mapped will 

be relatively larger. For example, the mapping range is N=[0, 246] when α=0°, and N=[0, 492] 

when α=8°. So a larger α leads to a compact mapping, thus the estimation errors can be 

accordingly reduced. However, if α is too large, the mapping range of Z shrinks and distant 

objects are out of the field of view. When α=8° and λ=16 mm, the Z-coordinate will be [5.03, 

49.35] meters in the camera’s field of view. Hence, it should make the focal length smaller or 

α<8°, the range of estimation can be larger than 49.35 m. 
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Fig. 2-3.  Relation between M-N image coordinates and u-v image coordinates. 

 

2.3.2 Error Estimation 

Factors influencing the accuracy of range estimation will be discussed and their impact will 

be estimated in this section. 

 

2.3.2.1 Quantization errors 

Image digitization may causes quantization errors, errors in range estimation are 

particularly caused by spatial quantization, and are within ± ½ pixels [79][80]. The results of 

range estimation are dominated by the projective v-coordinate of P1. Therefore, the largest 

quantization error in mapping to the Z-coordinate can be estimated with the condition that the 

errors of v are within ± ½ pixels. Based on (2.26), when Y=0, the range of Z should be 

between the largest range ZL and the smallest range ZS as shown in (2.27)( 2.28) and eq the 

percentage of the largest quantization error is displayed in (2.29). 
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Table 2-3  Error analysis of range estimation caused by change of tilt angles 
Error ratio Parameters 
Z=10 Z=20 Z=30 Z=40 Z=50 Z=60 

α=0° α1=1° 12.04% 21.25% 28.75% 34.93% 40.17% 44.5% 
α=0°  α1=2°  21.53% 35.10% 44.71% 51.85% 57.36% 61.73% 
α=2° α1=3° 12.04% 21.25% 28.75% 34.93% 40.17% 44.5% 
α=2°  α1=4°  21.53% 35.10% 44.71% 51.85% 57.36% 61.73% 

 

Table 2-2 displays the largest quantization error in the range Z=[10, 60] m with specific α 

and λ. As can be seen from Table 2-1, the relation between quantization errors and the 

N-coordinate can be derived from the relation between Z and N-coordinate. In Table 2-2, the 

largest quantization error grows with an increasing Z. The larger the focal length of the 

camera is, the smaller the quantization errors become. The tilt angle of the camera will not 

influence the largest quantization error according to the analysis results shown in Table 2-2. 

 

( )( )1 / 2 0.5
tan   -  tan

2
n y

L

N N d
Z h −

⎛ ⎞⎛ ⎞− − ×⎛ ⎞⎜ ⎟= ⋅ − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
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λ
                    (2.27) 
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2
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N N d
Z h −

⎛ ⎞⎛ ⎞− + ×⎛ ⎞⎜ ⎟= ⋅ − ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

π
α

λ
                   (2.28) 

max(| |,| |)L S
q

Z Z Z Ze − −
= 

Z
                          (2.29) 

 

2.3.2.2 Influence of changes in translation 

The analyses of translation can be divided into the directions of X, Y and Z. The origin of 

the world coordinates is on the ground below the camera, so the Z-coordinate is the range 

between the preceding vehicle and the camera. Therefore, the subsection will analyze how the 

changes of X and Y translation influence the range estimation on the Z-coordinate.  

X-translation: in (2.1), the projective position of P1 onto the v-coordinate determines the 

Z-coordinate. Figure 2-2(b) shows that the changes of X-translation rarely affect the mapping 
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position of P1 onto the v-coordinate. So X-translation seldom influences the accuracy of range 

estimation. 

  Y-translation: if the ground is flat, the Y-translation of every point on the ground is zero. 

When the ground is uneven or when the height of the camera is changed because of vibrations, 

then the initially determined camera height h may be influenced. Let h denote the initially 

determined height, and h2 denote the actual height. According to (2.26), the Z-coordinate 

mapping result can be obtained by (2.30). If the original height h is adopted, then the error 

coming from changes of height will be Zdh in (2.31) and the error ratio is erh in (2.32). 

Accordingly, errors caused by the Y-translation can be suppressed by increasing the camera 

height or making the changes of height smaller. 
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                  (2.30) 
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h hZe
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2.3.2.3 Influence of changes in camera tilt angles 

If vibrations cause the tilt angle of the camera to change from α to α1, the result of 

mapping is computed by (2.33). Therefore, if the original α is applied, the error ratio of range 

estimation caused by changes of tilt angles is erα in (2.34). 
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To estimate errors caused by tilt angle changes of the camera during the range estimation, 

let h be 1.3 meters, and focal length λ be 8 mini-meters. The analysis of errors is shown in 

Table 2-3. As depicted in Table 2-3, when both α=0° and α=2° have a variation of 1°, the 

obtained errors are the same. So the initially set tilt angle does not influence the errors of 

results. However, errors increase when changes of tilt angle grow larger. The error ratio is 

about 40% at Z=50 meters with a change of 1° on the tilt angle, revealing that changes of 

angles significantly affect the results of range estimation. With the same camera parameters 

but the focal length being changed to 16mm, the result will remain unchanged, which 

demonstrates that the focal length is not related to errors arising from changes of tilt angles. 

This is because when the focal length varies, the estimated ranges Z and Zα1 will still remain 

the same, representing that the error ratio will still keep constant. 

  

2.3.2.4 Influence of changes in camera pan angles 

 
Table 2-4  Variation ratio between P1 and P3 on the Z-coordinate 

Variation ratio θ Zd (m) 
Z=30m Z=40m 

1° 0.024 0.08% 0.006% 
5° 0.122 0.41% 0.31% 
10° 0.243 0.81% 0.61% 

 
Figure 2-2(c) shows the condition that the Z-axis parallels the preceding direction of 

vehicles, denoted by S
ur

. However, the condition may not be always valid. For example, in 

Fig. 2-4, the pan angle between S
ur

 and the Z-axis is θ, the variation between P1 and P3 on the 

Z-coordinate is Zdp as expressed in (2.35) and the variation ratio is modeled by (2.36). When 

the distance between P1 and P3 is 1.4m, the related value of Zdp and the variation ratio are 

shown in Table 2-4. In Table 2-4, the influence turns smaller with a smaller pan angle or a 

larger range. Even when θ=10°and the range is 30m, the variation ratio is still less than 1%, 

which shows that pan angles have little influence on the range estimation. 
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1 cosdpZ W θ= ×                               (2.35) 

dp
dp

Z
e

Z
=                                  (2.36) 

 

2.3.2.5 Influence of changes in camera swing angles 

The swing angle, i.e. the u-v image plane rotation angle, denotes the angle between the 

u-axis in the image coordinates and the X-axis in the world coordinates. As shown in Fig. 2-5, 

let P1 project onto i1 and let i1 be (u, v) on the u –v plane and (u’, v’) on the u’ –v’ plane. (u, v) 

and (u’, v’) are the coordinates when ψ ≠ 0 and ψ=0, respectively. The transformation of the 

two coordinates can be computed by (2.37). 

,

,

u u
vv

ψ ψ
ψ ψ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

cos    -sin 

sin   cos 
                        (2.37) 

If ψ ≠ 0, from (1), we can obtain the results of range estimation by using (2.38). 

Table 2-5 shows that the variation between the two coordinates grows with the increasing ψ, 

u and v. Even if ψ is very small, it still has a great influence when the coordinates are far away 

from the image center. 

1 sin cos( ) tan   -  tan
2

u vZ v h −⎛ − ψ× + ψ × ⎞⎛ ⎞ ⎛ ⎞= ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

π
α

λ
                    (2.38) 

 

 

Table 2-5  Variations between (u, v) and (u’, v’) 
(u’, v’) (u, v) 
ψ=1° ψ=2° 

(100, 200) (98.24, 101.73) (96.45, 103.43) 
(200, 200) (196.48, 203.46) (192.90, 206.86) 
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Fig. 2-4 The relation between the Z-axis and the direction of movement of vehicles, denoted 

by S
ur

. 

 

Fig. 2-5. Relation between the Coordinates (u, v) and (u’, v’) 
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2.4 Dynamic Calibration Method 

Error estimation shows that the variation of camera swing and tilt angles significantly 

affects the range estimation results. Therefore, an approach is proposed to reduce estimation 

errors by automatically calibrating camera angles.  

The proposed approach can obtain the swing angle ψ by finding a line that is parallel to the 

X-axis. In Fig. 2-4, when the direction of the camera is the same as the moving direction of 

the preceding vehicle, the camera’s pan angle to the vehicle can be reasonably supposed to be 

zero. Let contact points between the ground and the two rear wheels of the preceding vehicle 

be P1 and P3 as shown in Fig. 2-2 (a). The world coordinates of the two points have the same 

Z-coordinate, so 1 3PP  is parallel to X-axis. In Fig. 2-6, let P1 and P3 respectively project onto 

i1 (u, v) and i3(u3, v3). The slope of 1 3i i  is the same as u’-axis. Then, the angle between 1 3i i  

and u-axis is the swing angle ψ. Therefore, ψ can be derived from i1(u, v) and i3(u3, v3) as 

computed by (2.39). 

1 3

3

tan v v
u u

ψ − ⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

                         (2.39) 

The analyses in Table 2-4 show that when the swing angle ψ=0, even if the camera pan 

angle θ ≠ 0, the Z-coordinates of P1 and P3 are still very close and the mapped v-coordinates of 

the two points are almost the same. So the influence of the pan angle can be neglected and the 

angle between 1 3i i  and the u-axis can be regarded as the swing angle ψ as shown in Fig. 2-6. 

When the distance between a point on the ground to the camera approaches infinity, its 

projective point onto the image is named by a vanishing point. When two parallel lines on the 

ground project to the image coordinates, they tend to converge in a vanishing point. In Fig. 

2-6, let the convergent point of the extended driving markings L1 and L2 be pv (uv, vv). Then, pv 

is a vanishing point. Suppose that the associated world coordinate of pv be Pvw(X, 0, Zv) whose 

range to the camera approaches infinity. Based on (2.38), we can compute α by (2.40). 
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Equation (2.41) is derived according to vZ → ∞ . Eq. (2.42) is formed by substituting (2.41) 

into (2.40).Therefore, we can obtain α by substituting a vanishing point (uv, vv) into (2.42). 

1 1sin costan tanv v vu v Z− −− ψ× + ψ×⎡ ⎤ ⎛ ⎞− ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

π
α= -

2 λ h
                  (2.40) 

1lim tan
v

v

Z

Z−

→∞

⎛ ⎞ =⎜ ⎟
⎝ ⎠

π
 

h 2
                          (2.41) 

1 sin costan v vu v− − ψ× + ψ×⎛ ⎞
⎜ ⎟
⎝ ⎠

α=-
λ

                     (2.42) 

 

Fig. 2-6.  Projection of a vehicle and lane markings in the image coordinates. 

 

2.5 Application and Experimental Results 

The proposed approach can be applied to range and position estimation for vision-based 

on-road vehicle detection systems.  
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2.5.1 Performance evaluation on range estimation 

We conduct experiments to compare the differences between the estimated and measured 

results concerning the range and size of the experimental objects. The height of experimental 

target is 1 meter; the parameters of the camera, Hitachi KP-F3, were set to be α=0°, h=1.3m 

and λ=10mm. An image was taken at every meter at the range of 11─60 meters.  

In Fig. 2-7, the horizontal axis denotes the range between the experimental target and the 

camera, while the vertical axis represents the contact points between the experimental target 

and the ground, P1, which projects onto the N-coordinate. ‘Manual’ curve shows the result of 

manual measurement and ‘Estimated’ is the result of range estimation using (2.26). The two 

curves approximately match each other, and these results demonstrate that the proposed range 

estimation approach yields similar results to those of the actual measurements. 

 

Fig. 2-7. A comparison between the manual range measurement and the estimated range. 

 

In Fig. 2-8, the horizontal axis denotes the contact point,P1 ,which projects onto the 

N-coordinate, while the vertical axis indicates the projective height of the experimental target. 

The figure reveals that the results of manual measurement closely match those of the 
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estimated ones by our proposed method. Figure 2-9 also reveals that the manually measured 

results and those estimated by our proposed method are quite close. The experimental target is 

estimated as 0.98 m by our approach to height estimation, which shows a slight error of 0.02 

m when compared with the actual height 1 meter. Those results demonstrate that the proposed 

approach is efficient in the estimation of vehicle heights and can be used to determine the 

vehicle sizes.  

 

Fig. 2-8. A comparison between the manual height measurement and the estimated height. 

 

Figure 2-9 indicates that the dynamic calibration of angles can improve the accuracy of 

estimations when the camera angles change. In the experiments, h=1.32m; λ= 20mm; α = 5°, 

θ= 0°; ψ= 4.8°. To capture images of a calibrated target, measurements were taken every 5 

meters within a distance of 15─50m. The proposed approach was then applied to estimate the 

camera’s swing angle based on those images. The estimated average of ψ was 4.71°, and the 

standard deviation was 0.256°. Compared with the setting of ψ= 4.8°, the estimation error was 

about 0.09°. The estimated results and errors of Schoepflin and Dailey’s [14] approach in the 

same case are compared with ours as shown in Table 2-6, where Schoepflin and Dailey 
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suppose ψ=0°. However, the hypothesis of ψ=0° differs from the actual situation and thus 

leads to larger errors in tilt angle estimation. In Fig. 2-9, curve ‘A’ shows the difference 

between manual range measurement and estimated range results using α=4.70° obtained by 

Schoepflin and Dailey’s approach. The comparison in the ‘B’ curve uses our approach whose 

computed α=4.93°. The comparison between curve ‘A’ and ‘B’ shows that errors of range 

estimation are significantly suppressed using our approach.  

 

 

Fig. 2-9. A comparison of estimation results between Schoepflin’s approach and ours. 

 
 
 

Table 2-6  Experimental results of camera angle estimation 

Approach estimated ψ, 
error 

Estimate α, 
error 

Schoepflin and Dailey [14]  0°, 4.8°  4.70°, 0.30° 
Our approach 4.71°, 0.09° 4.93°, 0.07° 
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Fig. 2-10.  Estimation of a cuboid’s projective height. 

 

2.5.2 Simulation Results of Height Estimation 

Figure 2-10 depicts the analytical results of the height estimation. We set the camera height 

h= 1.3m and the height 1 2PP  of the target object to be 1m; as shown in Fig. 2-2(a). Then, as 

shown in Fig. 2-10, the horizontal axis represents the projective N-coordinate of P1 and the 

vertical axis is the projective height of 1 2PP . Lines (A) and (B) show that if α=0°, the changes 

in focal length seem not to influence the relationship between the projective N-coordinate of 

P1 and the projective height of 1 2PP . Conversely, Lines (C) and (D) display that if α ≠ 0°, 

differences in focal length can change their relationship. In Fig. 2-10, the projective height of 

1 2PP  varies with the projective position of P1 in the N-coordinate, and their relationship can 

be approximated by the linear equation, as in (4.5). In Fig. 2-10, the slopes of lines (A) and (B) 

are the same, -0.769, while in line (C), it is -0.767, and line (D) -0.768. From the proposed 

approach of fast height estimation in (2.22), the slope H1/h, can be estimated to be -0.769, 
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which shows that our fast computation model can provide quite accurate estimation results. 

The computation using (2.3) requires 2 tan operations, 2 tan-1 operations, 3 division, 2 

multiplications, and 5 deductions, however, our approach needs only 1 multiplication and 1 

addition, which obviously promotes executive efficiency.  

 

2.5.3 Dynamic calibration of the swing angle 

The camera mounted on the experimental vehicle is slightly adjusted to an incline of ψ=4° 

based on the manual estimation. In the experiments, with the experimental vehicle driving on 

the road, 500 frames were taken to detect the nearest vehicle in the front driving lane and the 

contact points between its two rear wheels and the ground. The mean and variance of ψ were 

estimated to be 3.859° and 0.99°, respectively. 

 

 

Fig. 2-11.  Dynamic calibration of the swing angle. 

 

In this study, we analyze errors caused by image digitalization, algorithmic limitations, lens 

distortion, the vibration of the experimental vehicle, and the uneven surfaces of the roads. The 

mean and variance obtained by a tracking process with a Kalman filter were 3.861° and 0.58° 
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respectively. In Fig. 2-11, the curve “Original” is the value of the swing angle derived by the 

original algorithm without the tracking process. The curve “Kalman” displays the results of 

utilizing a Kalman filter to improve the robustness of the estimation results. The experiments 

confirm that the proposed dynamic calibration approach can efficiently and accurately 

estimate the camera parameters. 

 

2.5.4 Comparative Performance Evaluation 

The proposed approach was compared with the well-known methods shown in Table 2-7 

[13][15]. Wang and Tsai [13] utilized a hexagon as the calibration target. However, the 

hexagon is not available under the moving camera, and needs to be pre-determined in the field 

of view. Conversely, calibration targets applied in other approaches are objects appearing in 

general traffic scenes, so require no additional effort on manual setting of the calibration 

target. The camera angle calibration in the range estimation depends only on the tilt α and the 

swing angle ψ, so only the access to these two angles were compared. Liang et al. [15] 

assumed that the vanishing point would be in the center of the image, and accordingly 

estimated an approximate tilt α. Liang et al’s hypothesis is valid only in the conditions that 

the location of the camera is in the middle of the driving lane and the lane markings are 

straight lines. However, even when vehicles are driving on an ideal straight lane, it is still not 

easy to keep them stably in the center of lanes. Figure 2-12(a) and (b) are two cases of 

comparisons between Liang et al’s and our approach to estimate the tilt angle. Liang et al. [15] 

proposed extending the lane markings to search for the vanishing line Vp (uv, vv) and 

estimating α by Vp. In Fig. 2-12, the convergent point of the u-axis and v-axis is O, the center 

of the image. L1 and L2 respectively represent the extensions of the right and left lane 

markings, and their convergent point is a vanishing point, Vp1. Liang et al’s approach 

estimated tilt angle by Vp1. P1 and P3 are the right and left contact points between the 
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preceding vehicle and the ground. The two points are applied to (2.39) to acquire the swing 

angle by our methods. The estimated α and estimated errors of camera angles are shown in 

Table 2-8, where case 1 and case 2 present the situation of Fig. 2-12(a) and Fig. 2-12(b) 

respectively. The camera setting in Fig. 2-12(a) is ψ=6° and α=3.5°, and in Fig. 2-12(b) is 

ψ=0°, α=2.5°. As shown in Table 2-8, the estimated results of tilt angle by Liang et al’s 

approach may have larger errors in these cases. That is because the camera is not at the center 

of the lane, the swing angle is not correctly estimated, and the lane markings are not straight. 

Comparatively, in our method, the swing angle can be correctly obtained by (2.39) and then 

the tilt angle can also be appropriately estimated by (2.42). Therefore, in these cases, our 

approach can obtain more accurate results without the limitations due to some pre-determined 

conditions. Among the three approaches in Table 2-7, only Liang et al’s and our approach use 

calibration targets on the road to achieve dynamic calibration, when the moving camera 

causes continuously variations of tilt angle α.  

 

Table 2-7  Comparison of Approaches 

 
 
 

Table 2-8  A comparison in estimation results of camera angle and errors 
Case 1,  

Ψ=6°; α=3.5°. 
Case 2, 
 ψ=0°, α=2.5° Approach 

α error α error 
Liang et al. [15]  0.52°  2.98° 2.81° 0.31° 
Our approach 3.51° 0.01° 2.29° 0.21° 

Approach Calibration Target Calibration angle Occasion 
Wang and Tsai [13]  Hexagon ψ, α Fixed camera 
Liang et al. [15]  Lane marking Approximation of α Moving camera 
Our approach Lane marking, 

Vehicle 
ψ, α Moving camera 
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(a) 

 

(b) 

Fig. 2-12. The swing angle calculated by Liang et al’s and our approaches. (a) Straight lane 

markings. (b) The curve of lane markings. 



 37

Chapter 3  

Lane Detection 

3.1 Introduction 

In the driving assistance systems, traffic information can be acquired by sensors to make 

driving safe and easy [81][82].  For example, vision-based driving assistance systems can 

determine positions of lanes and obstacles preceding a host vehicle, and the detected 

information can serve as guidance for driving safety of vehicles [83]-[85]. In the system, the 

detection of lane is based on image processing techniques to search for the road edges or the 

lane markings [37][59] and then the lane information is applied to the detection of obstacles in 

determining obstacle positions [7][33][70]. However, occlusions of obstacles on lane 

markings may affect results of lane detection [86]. Therefore, lane detection requires not only 

fast executive speed to achieve real time detection, but also a solution to occlusions. 

This dissertation applied geometry transformation and a method of rapid computation of 

lane width to predict the projective positions and widths of lanes and markings. Then, an 

approach named LME FSM is designed to find lane markings efficiently. A statistical search 

algorithm is also proposed to correctly and adaptively determine thresholds under various 

illumination conditions. Furthermore, a dynamic calibration algorithm is presented to update 

the information of a camera’s parameters and lane widths. Besides, a fuzzy logic scheme is 

adopted to judge the correctness of the detected lane markings and the results are applied to 

the selection of knots when reconstructing road geometry by B-spline. Finally, the ROI 

determination strategy is proposed to constrain the search region to make the detection more 
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robust and fast. Therefore, even though obstacles occlude parts of the lane markings, road 

boundaries still can be reconstructed correctly. Besides, the relative positions between lane 

markings and cameras can be more precisely estimated with the camera tilt obtained through 

dynamic calibration.  

The rest of this chapter is organized as follows: Section 3.2 presents image analyses using a 

camera model and the approach of dynamic calibration; Section 3.3 describes the proposed 

approaches to lane detection, including analyses of lane features, a novel lane marking 

extraction method adopting a finite state machine, a strategy for determining ROI, post 

processing by fuzzy reasoning, the determination of road boundaries by B-spline curve fitting 

and overall process of lane detection. Then, the experimental results of the lane detection and 

analyses are shown in section 3.4.  

              

3.2 Camera model with dynamic calibration 

The position of any point in the 3-D world coordinates (X, Y, Z) projected onto a 2-D image 

plane (u, v) can be obtained through perspective transformation [15]. According to an 

assumption of a flat ground, mapping a point of the ground plane onto an image plane is a 

one-to-one transformation. This transformation of the two coordinates can be employed to 

estimate the distance between the camera and any point on the ground. 

 

3.2.1 Camera Model 

In our previous work [37], a simple camera model was presented to estimate lane projection. 

In this study, this camera model is extended. Based on this new model, some techniques have 

been developed. Figure 3-1 shows the projective geometry of a camera model, where Ow 

denotes the origin of the world coordinates (X, Y, Z), and O represents the origin of the image 

coordinates (u, v, w). Let λ be the focal length of the camera, p the lens center, h the height 
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between p and Ow, so (0, h, 0) would be the lens center in the world coordinate.  

In Fig. 3-1(a), the parameter α is the tilt angle, representing the angle between the Z-axis 

and the optical axis, pE . In Fig. 3-1(a), a point in P1(X, 0, Z) in the world coordinates is 

mapped onto v1(u, v) in the image coordinates. The relation between Z and v is shown as (3.1), 

and the vertical distance between P1 and the camera is wO Z , where 

  1tan   -  tan
2

vZ h −⎛ ⎞⎛ ⎞ ⎛ ⎞= ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

π
α

λ
                     (3.1) 

Figure 3-1(b) is a top view of the actual lane. As illustrated, A1 (X1, 0, Z) is a point on the 

left lane marking and B1(X2, 0, Z) a point on the right one. With the known Z-coordinate 

obtained from (3.1), the X-coordinate determines where in the u-coordinate A1 and B1 are 

projected onto. In Fig. 3-1 (b), the lane width is 1 1A B and the width of its projection in the 

image is 1 1a b . Based on similar triangles, the relation between 1 1a b  and 1 1A B  is shown as 

(3.2). 

1 1 1 1a b A B
Z

= ×
λ                            (3.2) 

 

 

(a)   
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   (b)                                             

Fig. 3-1.  The projective geometry of a camera model. (a) The mapping of the Y and Z 

coordinates on the v-coordinate; (b) The mapping of the X and Z coordinates on the 

u-coordinate. 

 

 

Fig. 3-2. Relation between wL (v) and the v-coordinate. 
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According to (3.1) and (3.2), the projective lane width can be appropriately predicted and 

can be applied to the following lane detection process. Similarly, the projective width of lane 

markings can also be correctly estimated.  

 

3.2.2 Rapid Estimation of the Projective Width 

With the known lane width on the world coordinate, the corresponding projective width of 

the lane can be computed by (3.1) and (3.2). However, the computation of trigonometric 

functions is time-consuming. In the study, an approach for rapid estimation of projective lane 

width is proposed, in which WWL represents the width of a lane in the world coordinates, and 

its associated width of lane projection in the v-coordinate is wL(v). The relation between wL (v) 

and the v-coordinate can be expressed by a linear equation as shown in (3.3). The approach 

can suppress the computation cost of trigonometric functions. The proof is presented in 

appendix A. 

   ( ) ( )WL
L

Ww v v c
h

≅ × +                             (3.3) 

where c is a translation. 

 

In Fig. 3-2, take the internal parameters of the Hitachi KP-F3 camera for example. The 

relation between wL (v) and the v-coordinate is computed by (3.2) and (3.3).The physical pixel 

size is 7.4μm(H) x 7.4μm (V); and focal length λ=15mm. The height h is 1.32m, and the lane 

width is set to be 3.3m. The horizontal axis represents the v-coordinate of the lane projection, 

while the vertical stands for the projective width. Line (WA) shows the estimation result of 

projective lane width when α= 3°, and Line(WB) demonstrates the result when α= 10°. As 

shown in the Fig. 3-2, with a fixed parameter of the camera, the relation between wL(v) and 
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the v-coordinate is linear. To estimate c in (3.3), let the projective lane width be w1, when it is 

projected onto v1. w1 is obtained from the computation of (3.1) and (3.2). Substitute v1 and w1 

for v and wL(v) in (3.3) respectively, and  c  derives from (3.4). Therefore, the relation 

between wL and the v-coordinate can be depicted in (3.5). Take two points on the line from the 

slope in Fig. 3-2, and the slope is computed as 2.51. Compared with the slope WWL / h =2.5 in 

(3.3), these two results are very similar. Therefore, the calculation of (3.2) and (3.3) can be 

replaced with the approach of rapid computation of the width to reduce computation cost. 

1 1( )WLWc w v
h

= − ×                              (3.4) 

  1 1( ) ( )WL WL
L

W Ww v w v
h h

= × + − ×                        (3.5) 

Likewise, the projective width of the lane markings, wm, can be shown by (3.6). 

1( ) ( )wm
m

Ww v v c
h

= × +                            (3.6) 

where Wwm denotes the actual width of lane markings. 

c1: a translation.           

 

3.2.3 Dynamic Calibration 

In computing lane width with coordinate transformation, if the tilt angle of the camera is 

not accurate, huge errors may arise [34]. However, even though the preset tilt angle of the 

camera is known, there are still some errors because of the road bumps and vibration of 

moving vehicles. In this paper, an accurate tilt angle and actual lane width can be obtained by 

using the extracted lane markings in each frame. 

1) Calibration of the tilt angle of camera:  In the study, lane markings are supposed to be 

two parallel lines, and thus their intersection Zi would be at infinity. In the image, the 

intersection of the extension of the two lane markings is the vanishing point VP(uvp, vvp), 
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which mappings onto Zi. According to (3.1), the relation of α, Zi and vvp is shown as (3.7). 

Substitute (3.8) into (3.7), and α is shown as (3.9). Therefore, α can be obtained through VP. 

Furthermore, let the four points of the Z-coordinate =ZN1, and Z N2 on the left and right lane 

markings, i.e. QL1, Q L2, Q R1, QR2 respectively mapping onto PL1, PL2, PR1, and PR2 in the 

image plane. As shown in Fig. 3-3, suppose that the lane width is fixed, 1 1 2 2L R L RQ Q Q Q= , 

and the area enclosed by the closed area formed by the four points will be a parallelogram in 

the world coordinate. Extend 1 2L LP P  and 1 2R RP P , and the intersection of them is also a 

vanishing point, VP. Then, vvp derives from (3.10). In the study, VP is determined this way to 

avoid the wrong calculation caused by the blur or occlusion in the farther part of the lane 

marking. 

  1 1tan tanvp iv Z− −⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

π
α= -

2 λ h
                     (3.7) 

   1lim tan
i

i

Z

Z−

→∞

⎛ ⎞ =⎜ ⎟
⎝ ⎠

π
 

h 2
                          (3.8) 

1tan vpv− ⎛ ⎞
⎜ ⎟
⎝ ⎠

α= -
λ

                            (3.9) 

2

1
vp

fv
f

= ,                             (3.10) 

where 1 2 1 2
1

1 2 1 2

R R L L

R R L L

v v v vf
u u u u

− −
= −

− −
, 

1 2 1 2 1 2 1 2 1 2 1 2
2

1 2 1 2 1 2 1 2

L L L L R R L L R R R R

L L R R L L R R

u v v u v v v v u v v uf
u u u u u u u u

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞− − − −
= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− − − −⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

,          

   

the coordinates of PL1, PL2, PR1, and PR2 are respectively (uL1, vL1), (uL2, vL2), (uR1, vR1), 

and (uR2, vR2).  
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Fig. 3-3. The estimated vanishing point. 

 

2) Lane width refinement:  According to the coordinates of PL1 and PR1, the associated 

projective lane width is |uR1- uL1|, when projected onto the row at vL1. Substitute |uR1- uL1|, and 

vL1 into (3.1) and (3.2), and then the lane width in the world coordinates, 1 1A B , can be 

estimated. It shows that the lane width can be obtained depending on the detected lane 

markings.  Likewise, the actual width of lane markings can be acquired by applying the 

width of detected lane markings.  Thus, those widths can be accurately gained even when 

they vary with changes of the environment.  
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(a) 

 

(b) 

 

(c) 
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(d) 

Fig. 3-4. Lane Marking Model on a road with lane markings. (a)Actual lane marking image; 

(b)The gray level distribution of (a); (c) The gray level distribution of lane markings in the 

image coordinates; (d) The variance of gray level in a row of lane marking. 

 

3.3 Lane Detection 

Both sides of road markings are supposed to be parallel on the ground plane and their 

widths are assumed to stay stable or have very slight changes. An approach of extracting lane 

markings based on a lane model is presented in this section.  

 

3.3.1 Model of Lane Markings 

Lane markings usually appear as white, yellow, or red curves and lines. Their intensity in 

the image is usually higher than that of the ground because they reflect more brightness than 

road colors. Fig. 3-4 is the analysis of a lane marking model. Fig. 3-4(a) shows a segment of 
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one lane marking. The M-coordinate and the N-coordinate respectively denote the horizontal 

and vertical coordinates. Fig. 3-4(b) is the gray level distribution of the pixels in Fig. 3-4(a). 

In these figures, it can be observed that the gray level of the lane marking is much higher than 

that of the ground. Fig. 3-4(c) shows both the gray level ranges of lane markings and ground 

in the image coordinates. As can be seen, GmH and GmL respectively denote the lane marking’s 

largest and smallest gray levels, while GgH and GgL respectively represent the largest and 

smallest of the ground’s gray levels. Fig. 3-4(d) shows the gradient model of the gray level in 

each row of the lane marking, where Dg1 is the range of ground’s gray level. Dg2 is the range 

of lane markings’ gray level. Dg12 is the difference between GmL and GgH. A statistical search 

algorithm is proposed to adaptively determine Dg1, Dg2, and Dg12. They are adaptively 

adjusted under various illumination conditions. Dg1, Dg2, and Dg12 can be determined by 

(3.11), and the detail explanation is given in Appendix B. The zone between M1 and M2 is the 

left border of the lane named BS with an upward trend of the gray level, while the zone 

between M3 and M4 is the right border called BT whose gray levels decline. These features of 

lane markings are called Bright Feature Transition (BFT). The distance between BS and BT 

represents the length of BFT, and is named by BL. A lane marking can be reconstructed by 

searching BFT row by row and connecting BFTs in each row.  

 

Dg1=GgH-GgL  ;  Dg2=GmH-GmL  ;  Dg12=GmL- GgH             (3.11) 

 

3.3.2 Lane Marking Extraction 

In the image, the BFT approximates to the width of the lane markings and is possibly part 

of the lane markings. In this subsection, a LME FSM is proposed to extract BFT similar to the 

lane marking width in the images. First, set a BFT detector in each row of the image, which 

contains two detection points, PA and PB. The distance between these two points is dm, shown 
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in (3.12). When this BFT detector moves from the left to the right, the difference of the gray 

levels between PA and PB, named Gd(PA, PB), will be updated with respect to the detector’s 

move to the right. When the BFT detector moves one pixel rightward, Gd(PA, PB) is 

accordingly updated and served as a new input signal of the LME FSM. If bright features are 

found within the current range of the BFT detector where PA and PB are moving, the input of 

Gd(PA, PB) would accordingly transfer the state of LME FSM from state 0 to state 5. Therefore, 

bright features in every row can be detected according to the transitions of the processing state. 

If its BL approximates to the computed width of the lane marking wm obtained from (3.6), then 

the likelihood of its being an actual lane marking is high.  

    ( ) 1 ( )
2m md N w N= ×                             (3.12) 

where wm(N) denotes the projective width of the lane marking in the N-coordinate. dm(N) 

represents the distance between PA and PB in the N-th row. The distance is set to be half of the 

estimated width of the lane marking wm in the same row. When BFT detector is applied to 

detect lane markings, the associated change of Gd(PA, PB) passing the lane markings can be 

shown as Fig. 3-5.  

 

 

Fig. 3-5. The lane marking’s relative positions to PA and PB in different states. 
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Fig. 3-6. State diagram of LME FSM. 

 

In Fig. 3-5, when lane markings appear in the image, the range of Gd(PA, PB) will change 

by five states, associated with BFT detector shifting rightward across a lane marking. In State 

1, the interval where the detector is located is a lowland zone. In State 2, the part where the 

detector lies in is an uphill zone. In State 3, the section with the detector is a plateau zone. In 

State 4, the detector is in a downhill zone. In State 5, the detector comes back to the lowland 

zone. Table 3-1 shows the range of predictive Gd in those states. If Gd(PA, PB)=Gd1, Gd(PA, PB) 

can match the Gd condition |Gd| < Dg1. Likewise, the Gd condition of Gd2, Gd3, and Gd4 can be 

obtained from Table 3-1 in the same way. Figure 3-6 is the State Diagram. The transitional 

operations of the five states are described as follows. 

In State 0, LME FSM is in the initial state, and no bright feature has been detected yet in 

this state. When Gd(PA, PB) satisfies the condition Gd1, BFT is possibly within the search 

region and FSM moves into State 1. 

In State 1, the BFT detector lies in the lowland zone. If Gd(PA, PB) still meets Gd1, then the 
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next state will still be State 1; if Gd(PA, PB) satisfies Gd2, FSM will move into State 2. 

Otherwise FSM goes back to State 0. 

In State 2, the BFT detector is located in the uphill zone. If Gd(PA, PB) meets Gd2, the next 

state will still be State 2; if Gd(PA, PB) meets Gd3, FSM will move into State 3. Otherwise FSM 

goes back to State 0. As soon as FSM enters State 2, PA may shift to the region between M1 

and M2 as in Fig. 3-4(d), the left border between the lane marking and the gray ground. In this 

condition, the gray level of PA would be larger than that of PB. 

In State 3, the BFT detector is in the plateau zone. if Gd(PA, PB) meets Gd3, the next state is 

still State 3; if Gd(PA, PB) meets Gd4, FSM will move into State 4. Otherwise, FSM goes back 

to State 0. When FSM enters State 3, the BFT detector may have already shifted to the range 

between M2 and M3 as in Fig. 3-4(d). Now the gray level of PA is similar to that of PB. 

In State 4, the BFT detector is situated in the downhill zone. if Gd(PA, PB) meets Gd4, next 

state is State 4; if Gd(PA, PB) meets Gd1, FSM moves into State 5. Otherwise FSM goes back to 

State 0. When FSM moves into State 4, PA may have shifted to the zone between M3 and M4 

as in Fig. 3-4(d), the right border between the lane marking and the road ground. Then the 

gray level of PA is smaller than that of PB. 

In State 5, the BFT detector returns to the lowland zone. If FSM enters State 5, that means 

BFT has been detected and FSM will go back to State 0 to find the next BFT. 

LME FSM is efficient in detecting BFT and computing BL. It is also suitable for hardware 

implementation. 

Table 3-1  Denotations of the five Gd conditions 
 
 
 
 
 
 
 
 
 

State Denotations in different Gd Conditions Gd Conditions 
State 1 Gd1 |Gd |<Dg1 
State 2 Gd2 Gd >Dg12 
State 3 Gd3 |Gd |<Dg2 
State 4 Gd4 -Gd >Dg12 
State 5 Gd1 |Gd |<Dg1 
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3.3.3 ROI Determination Strategy 

In this subsection, two properties of changes about positions of lane boundaries are 

introduced. 1). Longitudinal consistency property: From the nearby position to the farther 

position, lane markings appear to be lines or curves which are either continuous or dashed. 

Therefore, by observing the positions of the closer lane markings, the possible positions of the 

farther parts can be accordingly predicted. 2). Lateral consistency property: Vehicles often 

move in the middle of the lane, so lateral changes of a lane marking’s position are usually 

slight in the sequential road-scene images. Thus, the possible position of the lane marking in 

the next frame can be predicted according to that of the current one. The predictive area of the 

lane marking is the Region of Interest (ROI), also the search area of BFT. If the ROI is too 

large, the computation cost would increase and the ROI may be stained by noise. On the other 

hand, if the ROI is too small, the actual position of the lane marking may not be appropriately 

covered. Therefore, the ROI should be the smallest area which can still include the area of the 

lane markings. Strategies for determining the ROI and three determination approaches to the 

ROI are presented in the subsection. Choosing the best strategy for the associated case is an 

effective way to reduce errors and computation costs. 

 

Fig. 3-7.  The flow chart of the selection of ROI determination strategies. 
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{ }( , ) ( , ) | [ , ];p L R pRoi M N I M N M M M N N= ∈ =                  (3.13) 

The ROI is illustrated as (3.13), where I(M, N) represents the image coordinates; The 

M-coordinate and the N-coordinate respectively denote the horizontal and vertical coordinates. 

Here the left bottom coordinate is defined as the origin shown in Fig. 3-8. The ROI in the 

Np–th row is denoted by Roi(Mp, Np); where M ∈  [ML, MR], and ML is the left border within 

the range, and MR the right border. Our proposed lane detection method consists of two modes: 

1) Single mode: only the information of the current processed frame is considered. 2) 

Sequential mode: using the temporal information of the previous frames to shrink the search 

area of the current frame so as to accelerate the detection and reduce errors. The selection of 

the suitable ROI determining strategies for different models are given as follows. 

 In every row, the sequence of ROI is determined following the bottom-up direction on  

the N-coordinate and starting  from N=0 row to the preset terminal row Ne. 

 In single mode, the fixed area approach, as depicted in the following subsection (3.1), is 

first applied to determine the front parts of two lane markings and then the coordinates of 

the detected lane markings are considered the start coordinates of the left and right lane 

markings. Afterwards, the ROI of the farther parts of lane markings is determined by the 

expansion approach to follow the bottom-up direction on N-coordinate to the terminal, 

Ne, as described in subsection (3.2). 

 In sequential mode, the ROI is determined by the tracking approach as described in 

subsection (3.3). If the information of the previous frames does not include Ne, then the 

expansion approach will be conducted to continue the detection to reach Ne. 

The flow chart of selecting ROI determination strategies is given in Fig. 3-7. 

The following subsections will present three kinds of ROI decision approaches. 

1) Fixed Area Approach: This approach is to detect the position of the nearby part of the 

lane marking. As shown in Fig. 3-8, the determination of the coordinates N1 and N2 was based 
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on their mappings onto the two Z-coordinates, respectively 8 meters and 25 meters on the 

ground plane because lane markings in this range are usually very clear. After determining N1 

and N2, let the two hexagonal areas be the ROI, and these sections are divided by the v axis. 

The BFT detected on the left side are the possible positions of the left lane markings and the 

ones on the right side are the possible right lane markings. The search area of this approach is 

larger and it is used when no temporal information of lane markings is available. 

 

Fig. 3-8.  ROI of fixed area. 

2) Expansion Approach: This approach includes two phases. Phase 1 is a bi-directional 

expansion scheme. In this scheme, the latest detected position of the BFT is considered as a 

center, and then the ROI is determined by expanding row by row along the direction of the 

N-coordinate, as shown in (3.14) and (3.15). Fig. 3-9(a) illustrates the ROI set in this way, 

where the ROI is the area within the two blue dotted lines along the two sides of the lane 

markings. In this way, the ROI is set by linear equations as in (3.14) and (3.15). The approach 

is simple and rapid, but the ROI may expand when the distance between the current row and 

the last row is extended. Phase 2 is a tendency expansion scheme. This approach is performed 

by computing the slope of the lane marking to predict its trend and expanding along the 

direction of the N-coordinate to determine the ROI. The computation method of the slope is 
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shown in Fig. 3-9(b), where mb denotes the slope of the lane marking. If a BFT is detected 

continuously in some rows, but can not be detected in the following several consecutive rows, 

then let MBS(NL) be the BS on the latest BFT, and MBS1 be the BS on the BFT in the previous 

rows of MBS(NL). Then the slope of the lane markings can be computed using these two points. 

With the slope, the ROI can be determined by (3.16) and (3.17). The ROI calculated in this 

way is smaller, where the lane marking is included; however, the computational cost of the 

slope may increase. 

( ) ( )( ) 1( ) tanL BS NL s p L sM M D N N= − − − × β                     (3.14) 

where 

MBS(NL): the M-coordinate of BS in the NL row. 

NL: the row where BFT is latest detected. 

Ds: the fixed shift range. 

βs1: the fixed angle of expansion. 

     ( ) ( )( ) 1( ) tanR BT NL s p L sM M D N N= + + − × β                       (3.15) 

where  

MBT(NL): the M-coordinate of BT in the NL row. 

( )( )( ) /L BS NL s p L LM M D N N m= − + −                       (3.16) 

where  

MBS(NL) = (mBS, NL) 

mBS denotes the M-coordinate of BS. 

MBS1=(m1, n1) represents another MBS. 

1 1

1

tan L

BS

N n
m m

− ⎛ ⎞−
β = ⎜ ⎟−⎝ ⎠

 

mL = tan(β+βs2)  

βs2: the fixed angle of expansion. 
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( )( ) p L
R BT NL s

R

N N
M M D

m
−

= + +                      (3.17) 

where 

( )2tanR sm = β − β  

 

(a) 

 

(b) 

Fig. 3-9. (a)Bi-directional expansion scheme; (b) Tendency expansion scheme. 
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3) Tracking approach: Based on the lane marking features found in previous frames, the 

ROI can be found by (3.18) and (3.19). The ROI area found in this way is the smallest one, so 

it is the best choice for the sequential prediction mode of lane detection. 

( 1)L BS t sM M D−= −                              (3.18) 

where 

MBS(t-1): the M-coordinate of BS in the Np row in the previous frame.  

t: the current frame. t-1:the last frame. 

( 1)R BT t sM M D−= +                              (3.19) 

where 

MBT(t-1): the M-coordinate of BT in the Np row in the previous frame. 

Figure 3-10 shows the acquisition of BFT in a fixed area. The detection distance is set to be 

about 25m. In the figure, black lines appear only when the distance between BFT on both 

sides approximates to wL. Figure 3-11 is the selection of the ROI and its range. In (a), (b) and 

(c), the two-side expansion phase and tendency expansion phase are applied in turn, while the 

tracking approach is adopted in (d). In Fig. 3-11, the black lines on the two sides of the lane 

markings respectively represent ML and MR of those rows. On the lane markings of both sides, 

there are totally four big black points denote P L1, P L2, P R1, and PR2 for calibrating α.  

 

 

Fig. 3-10. The acquirement of BFT in a fixed area. 
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(a) 

 

 

(b) 
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(c) 

 

(d) 

Fig. 3-11. The selection of ROI and its range. (a)(b)(c) The application of the expansion 

approach; (d) The adoption of the tracking approach. 
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3.3.4 Post processing by Fuzzy Reasoning 

Some objects or noises whose features are similar to those of lane markings may exist in 

the image, so they may also be extracted simultaneously. In this study, a post-processing 

scheme based on fuzzy logic is adopted to determine whether the potential objects are actual 

lane markings in the extracted image. The following rules are applied to the identification of 

lane markings.  

1) When the length of BFT, BL(N), detected in the N-th row of the image approximates closer 

to the computed width of the lane markings, wm(N),, the BFT has a higher possibility of being 

part of the lane markings. A triangular fuzzy number is used as a membership grade, μ1, to 

represent the degrees of their similarity as in (3.20). The larger the membership grade is, the 

higher possibility it is for the detected BFT to be part of the actual lane markings. Otherwise, 

a smaller membership grade reveals that the detected BFT may just be noise. 

2) Given a row on the image plane, a pair of BFTs is detected within ROI of both the left and 

right lane markings, and then the two BFTs may possibly be parts of the lane markings. The 

possibility rises with the distance between the two BFT, DB, getting more close to the 

computed width of the projected lane marking, wL. The notation μ2(N) represents the degrees 

of similarity between DB and wL in (3.21). 

 

( ) ( )( ) ( )
( ) ( )

( ) ( )( ) ( )
( ) ( ) ( )

1

/ 1,

( ) / 1,

2
0,

L m m

L m

L m m

m L m

B N w N w N

if B N w N

N B N w N w N

if w N B N w N
others

⎧ − +
⎪

                                 0 ≤ ≤⎪
⎪

μ = − − +⎨
⎪

                                 ≤ ≤ ×⎪
⎪
⎩

                 (3.20) 

where BL(N) means the length of BFT first detected by FSM in the N-th row and wm(N) 

denotes the width of the lane marking projected on the N-th row by (3.6). The notation μ1(N) 

represents the degrees of similarity between wm(N)and BL(N). 
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  ( )

( ) ( )( ) ( )
( ) ( ) ( )
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                          0.5× ≤ ≤⎪
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μ = − × − +  ⎨
⎪

                          ≤ ≤1.5×⎪
⎪
⎩

                 (3.21) 

where DB(N) represents the distance between two BFTs on the N–th row and wL(N) means the 

projective lane width on the N–th row by (3.3); and μ2(N) denotes the similarity between DB(N) 

and wL(N). 

3) Suppose that all lane markings are longitudinally consistent, thus, the BFT detected within 

the ROI on the left or right lane markings should be parts of them. Let the range of the 

projective lane markings be the rows of [0, Ne] on the N-coordinate, then each BFT detected 

within the area can obtain a membership grade μ1. Let a fuzzy set FM denote the set of μ1 on 

the same lane marking as in (3.22). All membership grades in FM should be similar since they 

belong to the BFT on the same lane marking. Therefore, if μ1 of one BFT matches the 

condition in (3.23), then the BFT is regarded as a part of the lane marking; otherwise, it is 

noise. 

( )( ){ }1, | [0, ]M eF N N N N= μ ∈                         (3.22) 

where Ne represent the preset terminal row. 

1| ( ) |mN 2
1μ − μ  ≤ σ                               (3.23) 

where μm is the mean of μ1(N) in Fuzzy set FM. 

       σ1
2 is the variance of μ1(N) in Fuzzy set FM. 

4) Let lane projections be within the range [0, Ne] in the N-coordinate. If BFT is detected 

within the left and right areas of the ROI, then μ2(N) can be obtain by (3.21). Let Fuzzy set FL 

denote the set of μ2 on the same lane as in (3.24). Suppose that changes of lane width are 

slight, then each μ2(N) computed based on the BFT should be similar. The existence of lane 
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markings on both sides in the N row is determined by (3.25) and μ2(N).  Accordingly, 

whether lane markings exist on both sides can be determined. Besides, search the BFTs on the 

same lane marking which meet rule 3, and next compute the associated Z-coordinates of those 

BFTs’ v-coordinates by (3.1). If the Z-coordinates between two neighboring BFTs exceed 10 

meters, it means that the area between them is occluded. Then one side of the lane marking 

should be compensated by the other side.  

( )( ){ }2, | [0, ]L eF N N N N= μ ∈                        (3.24) 

( )2 2mN 2
2| μ − μ | ≤ σ                           (3.25) 

 where μ2m is the mean of μ2(N) in the fuzzy set FL. 

       σ2
2 is the variance of μ2(N) in the fuzzy set FL. 

 

The application of the rules is described as follows: first, compute μ1(N) and μ2(N) by rule 1 

and 2. Then, choose the BFT which satisfies most conditions of lane markings by rule 3. Next, 

rule 4 is applied to judge whether there is any occlusion on the left and right lane markings. 

Finally, determine the positions of knots based on rules 3 and 4 to reconstruct the lane as 

shown in the following section. 

 

3.3.5 Reconstruction Process of Occluded lanes 

Some lane markings are dashed lines and some may be occluded by obstacles; thus, the 

detected lane markings cannot completely reveal the driving lane in the whole area. To 

overcome these issues, the B-spline technique is used to interpolate the positions of lane 

markings to obtain the complete lane boundaries. The Cubic B-spline is a smooth curve with 

continuous second order derivatives [57][87]-[90], fitting curves of various lane markings by 

using several control points. 
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(1) Decision of control points 

Let Ci be the ith control point in the control point set Cs, as expressed in (3.26), and then the 

cubic B-spline is B(s), as shown in (3.27); which contains connected curve segments gi(s).  

{ }| 1, 2,...s iC C i n= =                             (3.26) 

where the coordinates of Ci are (Mi, Ni). Mi and Ni respectively represent the M-coordinate 

and N-coordinate in the image. i ranges from 1 to n, which means the number of control 

points is n. 

( ) ( ), 0 1i
i

B s g s s=  ≤ ≤∑                             (3.27) 

where 
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                   ⎢ ⎥

⎣ ⎦

 

where i=2, 3, …., n-2. 

s is a normalized curve length.  

Lane markings may appear in straight lines, curves, and even S-shape turns. Therefore, it is 

difficult to completely model lane markings with various forms with linear or quadratic 

equation models. In this study, a B-spline of connected curve segments gi(s) is applied to 

fitting the curved lane markings. A variety of lane markings with general characteristics can 

be modeled by this approach. To enable B-spline to go through the first and last control points, 

the two control points are repeated three times. Five control points are determined to be C1, C1, 

C1, C2, C3, C4, C5, C5, C5 as shown in Fig. 3-12. The connected points of the curves are named 

knot points. The positions of the control points can be determined according to those of the 
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knot points. Substituting s=0 into (3.27) and the results in (3.28) can be obtained. Then, based 

on (3.28), three knot points k2, k3, and k4 on the lane marking are selected between C1 and C5 

to obtain three control points C2, C3, and C4 as shown in (3.29). 

( )1 1
3 1
2 4i i i iC k C C− += − × +                           (3.28) 

where 

i=2, 3,…, n-2. 

1

2 2

3 3

4 4

5

15 45 3 3
56 28 7 28
1 3 12

14 7 7
1 3
56 7

C
C k
C k
C k

C

1⎡ ⎤ ⎡ ⎤−          −           −⎢ ⎥ ⎢ ⎥56⎡ ⎤ ⎢ ⎥ ⎢ ⎥ 3 1⎢ ⎥ ⎢ ⎥ ⎢ ⎥=        −         −         ⎢ ⎥ ⎢ ⎥7 14 ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥3 45 15⎢ ⎥−          −           −   ⎢ ⎥⎣ ⎦⎢ ⎥28 28 56⎣ ⎦

                      (3.29) 

 

 

Fig. 3-12. The B-spline model for lane marking detection. 
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(2) Decision of knot points 

In this study, a lane marking is formed by connecting five knot points using B-spline. The 

position of 2nd knot point, k2, is selected by the mapping position in the image of the lane 

marking near Z-coordinate =10m; in the 3rd knot, k3, the associated Z-coordinate is about 25m. 

The lines passing through k3 and k2 intersect at the bottom row of the image coordinate, and 

the associated intersection is denoted by k1. Knot 5 is at the end of the lane marking, and knot 

4 is chosen from a suitable place between knots 3 and 5 which is the most probable position 

of a BFT on a lane marking by Fuzzy rule. Knot 1 and 5 are determined by this way as well, 

and they are the control points C1 and C5. 

 

 

Fig. 3-13. Procedures of the lane marking detection. 

 

3.3.6 Overall Process of Lane Detection 

In single mode, the Fixed Area ROI approach is first applied to the LME FSM process to 

extract lane markings. After lane markings are found, the lane width and the tilt angle of the 

camera are updated by the dynamic calibration process, and then the Expansion ROI approach 

is applied again to extracting lane markings. This process can provide more accurate detection 

results. Because the calibration of the camera tilt angle and lane widths requires information 

of two lane markings, therefore, in the single mode, the information of the two lane markings 
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in the fixed ROI is needed. If only the information of the left or right lane marking is available, 

it is possible that one side of the lane marking is occluded.  

The information of this occluded lane marking can be compensated by the information of 

the previously detected lane width and the other side of the lane marking. The procedures are 

shown in Fig. 3-13.  

Step 1: Selection of Modes. Apply the sequential mode when the previous information is 

logical and adequate; otherwise, use the single mode.  

Step 2: ROI Determination Strategy.  

Step 3: Detection of BFT by LME FSM.  

Step 4: Fuzzy Reasoning. Determine the points used to calibrate the tilt angle of the camera 

and the knots adopted to reconstruct road boundaries.  

Step 5: Dynamic Calibration and Promotion of Robustness. Apply dynamic calibration to 

obtain the actual tilt angle of camera and lane width. Then, apply the Kalman filters to 

stabilize the calibration results.  

Step 6: Reconstruction of Road Boundaries. Reconstruct road boundaries using B-spline, and 

then go back to step 1. 

 

3.4 Experimental Results 

In this section, comparative experiments on lane detection are conducted. This study 

utilizes a Hitachi KP-F3 camera mounted in an experimental intelligent car with a physical 

pixel size of 7.4μm (H)×7.4 μm (V), and the image resolution is 644×493.  The height of 

the camera is set at 1.32m, the focal length f=15mm, and tilt angle α about 4 degree. Our 

experimental system is a PC with CPU Pentium  2.8GHz. Suppose the width of the lane Ⅳ

marking is 0.1meters and the initial lane width is 3.3m. The farthest distance of detection is 

60 meters, and the associated computed projective width of the lane marking is about 5 pixels. 
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The experimental conditions and results are shown as Table 3-2. The average computation 

time that the proposed method required is less than 13ms per frame. Under general conditions, 

the average detection ratio can reach above 98% and exceed 95% when there are occlusions. 

 
Table 3-2  The computation timings under different conditions by the proposed system 

 
 

3.4.1 Lane Detection Results 

1) Dynamic calibration of camera tilt angle 

Figure 3-14 demonstrates the result of the dynamic calibration of camera’s tilt angle. In the 

figure, ”Original” means the calculated tilt angle in each frame. ”Kalman” denotes the 

processed tilt angle by a Kalman filter. The Kalman filter can provide the robust estimation of 

the current tilt angles through recursive functions [91][92]. This process provides the more 

stable and robust calibration results of the tilt angle for the lane detection system. Figure 3-14 

shows that the change of ”Kalman” gets smaller.  

 

Fig. 3-14. The result of the dynamic calibration of camera’s tilt angle. 

Conditions The number of 
frames 

Average computation time Detection ratio

Straight road 3500 4.5 ms 99.1% 
Curve road 2200 7.3 ms 98.7% 
Daytime occluded 1250 12.2 ms 96.4% 
Shadow 1100 9.5 ms 96.5% 
Strong sunlight 500 9.3 ms 97.2% 
Night 2100 7.2ms 98.3% 
Night occluded 1200 12.9 ms 95.1% 
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Fig. 3-15. The estimated lane width in every frame. 

 

 

(a) 

 

(b) 
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(c) 

 

 

(d) 

Fig. 3-16.  The gray level of lane markings under different illumination. (a) General light; (b) 

Strong sunshine; (c)Dusk ; (d) Night. 
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Table 3-3  Results of lane width estimation in the four situations 
Curve (A) (B) (C) (D) 

Mean (m) 3.422 3.421 3.423 3.424 
Standard deviation (m) 0.1221 0.0874 0.1217 0.0885 
Average error (m) 0.022 0.021 0.023 0.024 

 
2) Lane width refinement 

In lane detection, the initial settings are based on general width of lanes, i. e. 3m-5m, and 

the actual lane widths will later be adaptively refined based on the detected positions of the 

left and right lane markings in the image. Besides, to promote the robustness of lane width 

refinement, a Kalman filter is also adopted to stabilize and refine the process of lane width 

estimation. 

Figure 3-15 shows the estimated lane widths with different preset widths and with/without 

Kalman filters in the sequential frames, where curve ‘(A) original 3m’and ‘(C) original 5m’ 

respectively represent the estimated lane widths with initial lane widths in 3m and 5m. The 

initial lane width of curve (A) and (C) were respectively set to be 3m and 5m. The curve ‘(B) 

Kalman 3m’and ‘(D) Kalman 5m’ respectively denote the estimated lane widths of curve (A) 

and (C) refined by the Kalman filter. By observing those results, the estimated lane widths 

with different preset lane widths will finally be refined to be closer to the actual ones. The 

application of the Kalman filter ensures stable and robust estimate results of the lane widths in 

the world coordinates. Table 3-3 displays the mean, standard deviation and average errors of 

the estimated lane widths in curve (A), (B), (C), and (D), and the actual lane width is about 

3.4m. As can be seen, the estimated results in sequential frames are all quite close to the 

actual lane width and all of the average errors are under 0.024m. Furthermore, when the 

initially set lane width changes within the range from 3-5m, the obtained estimation results 

are still similar and close to the actual lane widths. The results show that our approach of lane 

width refining is robust and accurate. 
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3) Results of adaptation to illumination conditions  

Dg1, Dg2, and Dg12 are determined by a statistical search algorithm based on the following 

two principles. (a) All gray level of lane markings is higher than those of the ground. (b) The 

variations of the gray levels of the ground and lane markings are within a reasonably fixed 

range. To demonstrate that our approaches are robust and adaptive to changes of illumination, 

variations of the gray levels of lane markings and grounds under four different illuminations 

are analyzed. The results are shown as Fig. 3-16, where lanes and lane markings display 

different gray level and contrast under different illumination. As can be seen from this fact, 

the principles (a) and (b) are appropriately followed under different illumination conditions, 

and the proposed statistical search algorithm can correctly and adaptively determine Dg1, Dg2, 

and Dg12 under various illumination conditions. Table 3-4 displays Dg1, Dg2, and Dg12 obtained 

from the four sample road scenes under different illumination conditions in Fig. 3-16, where 

Dg1, Dg2, and Dg12 are adaptively adjusted with various illuminations. As shown in Figs. 

3-17~3-21, the adaptively determined thresholds can provide satisfactory lane detection 

results under different illumination conditions. 

 
Table 3-4  The obtained parameters under different illumination conditions 

Illumination conditions Dg1 Dg2 Dg12 
(a)General light 35 60 55 
(b)Strong sunshine 30 10 85 
(c)Dusk 25 20 50 
(d)Night 70 110 75 

 
Figure 3-17 shows the conditions of curves and a slope. In these figures, the roads with 

sharp curves and slopes still can be described by B-spline with four segments. Figure 3-18 is 

the situations with occlusion of obstacles. (a) The near front vehicle occluded lane markings 

of both sides. (b) The vehicle occluded the right lane marking. (c) The vehicle moved back to 

the road center. (d) The vehicle occluded the left lane marking. (e) The vehicles approached 

lane markings. (f) Another vehicle occluded the right lane marking. The figures prove the 
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problem of occlusion can be solved by the proposed approaches. The information of the side 

which is not occluded can be used to substitute the occluded one. When both sides of the lane 

markings are occluded, then only the parts that are not occluded can be shown.  

 

(a) 

 

(b) 
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(c) 

 

 

(d) 

Fig. 3-17. (a) Curves; (b) A slope; (c)(d) A cloverleaf interchange. 
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(a) 

 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

 

(f) 

Fig. 3-18. (a)(b)(c)(d)(e)(f) Situations of occlusion with different obstacles. 
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Figure 3-19 displays the detection results at night in situations including roads with or 

without road lamps and textures on the road surface, roads with curves and occlusion.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 3-19. Results of the nighttime road scene. (a)(b) With road lamps; (c)(d) Without road 

lamps. 
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Figure 3-17~3-19 present that FSM can extract BFT in various situations regardless of the 

influences of patterns on the road surface and illumination, and B-spline with four sections is 

able to display a variety of road conditions.  

 

(a) 

 

(b) 
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(c) 

 

 

(d) 

Fig. 3-20. The detection results under strong sunlight. (a)(b) No occlusion of vehicles; (c)(d) 

with the occlusion of a vehicle. 
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Figure 3-20 is the detection result under strong sunlight. The proposed approach can 

correctly detect the lane markings without being influenced by the strong sunlight.  

 

(a) 

 

 (b) 

Fig. 3-21. The detection result of a motorcycle inside and outside the lane. (a) Inside; (b) 

Outside. 
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Figure 3-21(a) and (b) respectively show a clear discrimination of a motorcycle inside and 

outside the lane. Obstacles inside the lane will affect driving safety. However, most 

contemporary lane detection approaches may not be able to discriminate whether an obstacle 

is inside or outside the lane when obstacles appear near the lane so they cannot correctly 

detect lane markings. In contrast, the proposed approach can resolve the problem of obstacle 

occlusion to reconstruct correct lane markings.  

 

3.4.2 Comparative Performance Evaluation 

In this subsection, comparative experiments on Jung and Kelber’s method [46] and the 

proposed approach is conducted to evaluate their performances on lane detection under 

different conditions. The following is a comparison of acquiring BFT by FSM and other 

approaches: 

Figures 3-22~3-26 are respectively the comparative results of Jung and Kelber’s [46] and 

our proposed approach under different situations, where (a) is Jung and Kelber’s approach 

and (b) is our proposed approach. Figure 3-22 is the condition that the lane markings are 

occluded with shadows, signs of braking and other vehicles. Jung and Kelber adopted Sobel 

edge features of lane boundaries, which left large gradient points in the thresholded edge 

image, as shown in Fig. 3-22(a), the surrounding vehicle may cause false detection in the edge 

feature extraction process and result in detective errors. As shown in Fig. 3-22(b), the 

proposed approach successfully extracts features of lane markings with the BFT detector. The 

end part of the reconstructed lane boundary is the position of the last BFT, and the missing 

part at the end of the left-side lane marking is reconstructed with the information of the lane 

width and of the right-side lane marking.   
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(a) 

 

 

 (b) 

Fig. 3-22. Results of the road scene that the lane markings are occluded with shadows, signs 

of braking. (a) Results of Jung and Kelber’s [46]; (b) Results of the proposed approach. 
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(a) 

 

 (b) 

Fig. 3-23. Results of road scenes with a curve lane and occlusion. (a)Results of Jung and 

Kelber’s [46]; (b) Results of the proposed approach. 
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Figure 3-23 shows the results of the road scene consisted of curve lane and occlusion. 

Figure 3-23(a) shows that the lane markings obtained by Jung and Kelber’s method have 

errors occurring on curves of roads when edge features of vehicles are mis-detected as the 

lane markings. Figure 3-23(b) demonstrates that our BFT approach can compensate the 

influences of appearing vehicles.  

 

(a) 

 

(b) 

Fig. 3-24. Results of the road scene under strong sunlight. (a)Results of Jung and Kelber [46]; 

(b) Results of the proposed approach. 
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Figure 3-24 displays the detection results under strong sunlight. In Fig. 3-24 (a), edge 

features of vehicles associated with significant gradient features under strong sunlight cause 

possibly wrong determination of lane features. As shown in Fig. 3-24(b), with the BFT 

method, the proposed approach will not capture positions without lane markings to avoid 

wrong judgments in the far end of the lane. Therefore, lane boundaries can be reconstructed 

successfully. 

Figure 3-25 displays the detection results at night. In Fig. 3-25(a), larger gradient arouses 

detection errors because of the opposite vehicle light and the light reflection of the preceding 

vehicle. The proposed approach can detect lane markings efficiently and correctly as shown in 

Fig. 3-25(b), because it takes projective sizes and sequences of lane markings into 

consideration in capturing BFT. 

Figure 3-26 shows the detection results of the road scene with an S-shape lane. In Fig. 

3-26(a), the S-shaped lane cannot be completely reconstructed when Jung and Kelber applied 

a linear-parabolic model to reconstruct lane boundaries. Figure 3-26(b) demonstrates that the 

proposed approach can successfully reconstruct the S-shaped lane boundary.  

As can be seen from the above comparative results, the proposed approach can obtain 

satisfactory detection results under different situations, such as different illumination 

conditions, curve roads, and occlusions. This is because lane markings are extracted by the 

proposed BFT detector, and extraction errors can be effectively reduced by the proposed 

dynamic calibration method, ROI determination strategy and fuzzy rule-based scheme, and 

road boundaries are effectively reconstructed by the B-spline technique. Besides, when both 

sides of lane markings do not exist, or are occluded at the farther parts of the road, the range 

of the reconstructed lane is determined by the actual visible position of the lane, so the 

information obtained from previous frames will not be misused to reconstruct false lanes and 

driving safety can be improved. 
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(a) 

 

(b) 

Fig. 3-25. Results of the nighttime road scene. (a). Results of Jung and Kelber’s [46]; (b) 

Results of the proposed approach. 
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(a) 

 

 

   (b) 
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(c) 

 

  (d) 

Fig. 3-26. Results of the road scene with an S-shaped lane. (a)(b) Results of Jung and Kelber’s 

[46]; (c)(d) Results of the proposed approach. 
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3.4.3 Comparative Analysis 

In this subsection, a comparative analysis on Jung and Kelber [46], Jeong and Nedevschi 

[43], Cheng et al. [56], and the proposed method is provided as shown in Table 3-5. Cheng et 

al. adopted a color camera, while others used monochrome cameras. The color camera is able 

to obtain information on colors in the images, but it costs more and takes more time to process 

more information. 

As to the extraction methods, Jung and Kelber [46] used a Sobel mask to conduct edge 

extraction, in which processing one pixel required 10 additions, 4 multiplications, and a 

Hough Transform to carry out line detection, so this method suffers high computation cost. 

Jeong and Nedevschi [43] applied a Gabor filter, which required complicated computational 

cost for exponential and trigonometric functions. Cheng et al. [56] adopted three 

multivariable Gaussian distributions to show three classes of lane-mark colors and computed 

the probability distribution of pixels belonging to the lane-mark, which also involved more 

complicated computations to analyze three color classes. The proposed LME FSM needs only 

simple linear equation in every row to determine widths of lanes and lane markings, and it 

only requires one subtraction to calculate the difference in gray level of each pixel. Therefore, 

the computation cost is the smallest and is applicable to an embedded system. The proposed 

ROI could effectively choose a suitable strategy to narrow down the detection area and greatly 

reduce the time for detection. Furthermore, only the proposed approaches obtains both the 

camera tilt angle and the lane width with the information of images, and solved the problem 

of moving camera vibrations and occlusion on the lane marking without the information of 

colors. Besides, the proposed approach adopts the statistical search algorithm to determine the 

gray level range of ground and lane markings, so it enables BFT detector to effectively extract 

lane markings in various conditions of illumination. 
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Table 3-5  Comparison of different algorithms 

Method 
Camera 

type 
Extraction 

method 
Dynamic 

calibration
Occlusion 
handling 

Compu 
-tational  

cost 

Illumination 
condition 
adapting 

Jung and 
Kelber 

[46] 

Mono 
-chrome 

Sobel mask 
and Hough 
Transform 

N/A Poor High Fair 

Jeong and 
Nedevschi 

[43] 

Mono 
-chrome 

Gabor filter N/A Poor High Fair 

Cheng et 
al. [56] 

Color Multivariable 
Gaussian 

distributions 

Tilt Fair Medium Fair 

Our 
proposed 
method 

Mono 
-chrome 

LME FSM 
+ ROI 

strategy 

Tilt,  
width of 

lane 

Good Low Good 
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Chapter 4  

Vehicle Detection 

4.1 Introduction 

A vision-based vehicle and lane detection system can detect vehicles and lanes with a 

camera mounted on a vehicle, compute the range between the camera and the vehicles in 

lanes, provide the results of lane and vehicle detection for driving assistance systems to avoid 

collisions [62][93][94]. This kind of the intelligent vehicle system identifies lanes, obstacles, 

vehicles, texts and patterns on the surface of the road and shadows from 2D images by means 

of image processing techniques. So far, the researches in this area are still open questions 

[95]-[98]. 

This chapter is organized as follows: Section 4.2 presents features of rectangle-like 

obstacles. Section 4.3 provides the approach, CSS, used to detect rectangle-like obstacles. The 

experimental results are shown in Section 4.4.  

 

4.2 Vehicle Model 

If the size of a rectangle-like object inside the driving lane resembles that of a vehicle, it is 

regarded as a vehicle. The closest preceding vehicle in the lane of the autonomous vehicle, 

whose influence on the movement of the autonomous vehicle is the greatest, is the main 

target of the vehicle detection. The proposed approach aims to detect the target vehicle based 

on its feature of rectangle-like contour and the estimation of its projective size.    
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4.2.1 Vehicle Features 

Vehicles in the image look like rectangles. Rectangular obstacles contain all of the 

following features 1, 2 and 3. 

 Feature 1: The contact plane between the road surface and a rectangular obstacle 

projects a horizontal line on the image, as wi shown in Fig. 4-1(a).  

 Feature 2: The left and right sides of rectangular obstacles project vertical lines on 

the image, as hi shown in Fig. 4-1(a). Conversely, objects such as lane markings or 

shadows on the road do not project vertical lines in the image as shown in Fig. 

4-1(b). 

Based on features 1 and 2, the projection of a rectangular obstacle contains both horizontal 

and vertical lines. 

 Feature 3: The projective size of an object in the image varies with its distance to 

the camera. In Fig. 4-1(c), p is the lens center and Z1 projects on v1. Based on the 

properties of similar triangles, the relation between Z1 and v1 is shown as (4.1), 

where Z1 represents the vertical range between the obstacle and the camera. 

Besides, the projective height of the obstacle Hw is hi and their relation is shown 

in (4.2). Similarly, in Fig. 4-1(a), the projective width of the obstacle Ww is wi in 

(4.3). Based on (4.1)-(4.3), the projective height and width are predictable. 

1
1

hZ
v

= λ                                   (4.1) 

1

w
i

Hh
Z

= λ                                   (4.2) 

1

w
i

Ww
Z

= λ                                   (4.3) 
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(a) 

 

 

(b) 

 

 

(c) 

Fig. 4-1. (a) The projection of an obstacle in the image. (b) The projection of a pattern in the 

image. (c) The relation between Hw and hi. 
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4.2.2 Adaptive Edge Detection 

The proposed vehicle detection approach adopts the feature that the contours of vehicles 

are mostly made of horizontal and vertical lines. So edges of an object in the image are 

detected first with Sobel masks.  

The result of edge detection is closely related to thresholds. If the threshold is too low, 

noise will be generated, which reduces the accuracy and performance of the detection. In 

contrast, if the threshold is too high, important information may be gone, which also affects 

the detection results. Furthermore, when the brightness changes from regular to strong 

illumination, the preset threshold must be adjusted accordingly to prevent errors. The 

experimental results have discovered the most suitable thresholds under various levels of 

illumination. Moreover, sampling the images by (4.4) accelerates the acquisition of 

illumination. With the information, the threshold can be adjusted automatically in different 

surroundings, meaning the approach of edge detection is adaptable. 

 ( , )
u v

s
R R

i f u v= ∑ ∑                           (4.4) 

where f(u, v) is the gray level at point (u, v) in the image.  

is represents the total gray value of the sampled points, showing the illumination of the 

surroundings.  

Ru and Rv are the sampled points. Ru is taken from every p pixels in the u axis and Rv 

from every q pixels in the v axis.  

 

4.3 Vehicle Detection Based on Contour Size Similarity 

Contour Size Similarity (CSS) is an algorithm with the function of detecting objects similar 

to rectangles, such as vehicles. Since vehicle sizes are within certain range, estimation of their 

projective sizes can be fulfilled by geometry projection. If the contour of a detected object 
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resembles the projective contour of a vehicle, the object is probably a vehicle.  

 

4.3.1 Vehicle Detection Procedures 

The main target of the detection is the closest preceding vehicle in the lane of the 

autonomous vehicle and the cutting–in vehicle. To reduce the detection time, vehicles and 

obstacles outside the lane of the autonomous vehicle are skipped, because they have little 

influence on its movement. Therefore, the ROI of vehicle detection is determined to be 

inside the current lane of the autonomous vehicle. A technique of temporal consistency is 

generally adopted to make the detection of the target vehicle more robust. For example, the 

surrounding area of the target vehicle in the previous frame is considered the preset region of 

vehicle detection (PROVD) in the following frame. However, when another vehicle cuts in 

the lane of the autonomous vehicle to be the new target vehicle, the technique will not be 

suitable because the position of the new target is not always within PROVD. Therefore, in 

our approach, the search region of vehicles is set to be the lane of autonomous vehicle and 

the detection is conducted from the near to the far searching for the closest preceding vehicle. 

When another car cuts in the lane of the autonomous vehicle, this car will be detected first 

because it becomes the closest vehicle instead. The flowchart of the vehicle detection is 

shown in Fig. 4-2. As can be seen, the lane detection is followed by the edge detection 

conducted on the lane regions. The detection of horizontal lines starts upward row by row in 

the current frame. In each row, the detection is performed rightward to look for neighboring 

pixels with the same gray level in the thresholded image and count the number of pixels in 

each horizontal line, which represents the length of the horizontal lines. Once the length of 

horizontal line approximates a vehicle width, the detection of vertical line starts upward 

from the current row and the number of pixels in each vertical line is counted. Rectangle-like 

obstacles project approximately horizontal and vertical edges on the image. If these 
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horizontal and vertical edges form a joint contour, the object may be a vehicle. Then, its size 

is compared with the estimated sizes of vehicles. If they match, the object is recognized as a 

vehicle. 

 

 

Fig. 4-2.  Vehicle detection flowchart. 
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4.3.2 Fuzzy Match 

The detected heights and widths of an object are compared with the estimated ones of a 

vehicle projection. In Fig. 4-3, Aw is a rectangular obstacle, whose projection on the image is 

Ai. In Fig. 4-3(a), the width of Ai is Ah, and the height is Av. The size of Ai changes with the 

range between the camera and Aw. In Fig. 4-3(b), Bw is a vehicle, whose projection is Bi in the 

image. The width of Bi is Bh, with Bv being the height. If an image includes an object whose 

dimensions match both Bi and the projective position, then the object is considered a vehicle. 

 

(a)                            (b) 

Fig. 4-3.  (a) Size of the obstacle projected on the image. (b) Size of the vehicle projected on 

the image. 

  Bh and Bv can be estimated by (4.2) and (4.3). Once Ai is found, Ah is compared with Bh 

and Av with Bv respectively. If the width and height of Ai are similar to those of Bi, Ai may be 

the vehicle Bi. Some fuzzy sets shown in (4.5)-(4.8) are proposed to express their degree of 

similarity. In (4.5), Fh represents the degree of similarity between the horizontal width of Ai 

and Bi, and Fv denotes that between the vertical length of Ai and Bi as shown in (4.6). 

Equations (4.7)-(4.8) are their membership functions. In Fig. 4-4(a), Ah denotes the width of 

the detected object while uFh(Ah) represents the degree of similarity between Ah and the 

vehicle width, Bh. With the growth of Ah, uFh(Ah)  presents three changing phases of being 
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rising, declining and flat. 1) The rising phase: Bhs represents the widths of small cars. When 

Ah= Bhs , uFh(Ah) is defined as h1. If Ah is larger than Bhs, uFh(Ah) rises accordingly.  2) The 

declining phase: Bh denotes the width of a medium vehicle. When Ah= Bh , uFh(Ah) is 1, the 

largest value of uFh(Ah). If Ah is larger than Bh, uFh(Ah) declines. 3) The flat phase: the width of 

a large-sized vehicle is named Bhc. On condition that Ah= Bhc , uFh(Ah) is defined as h2. If Ah> 

Bhc , uFh(Ah) stays unchanged as h2. The reason to keep uFh(Ah) stable in this phase is that the 

width of the detected object appearing larger than that of a large-sized vehicle may be because 

of the overlap of objects. Therefore, the detected object may still be part of the vehicle, and 

uFh(Ah) will not drop under the situation. Likewise, Av denotes the height of the detected 

object while uFv(Av) represents the degree of similarity between Av and a vehicle height, Bv. 

Fig. 4-4(b) reveals a similar relation between Av and uFv(Av). 

    

{ , ( ) | }h h h hF A A A N= ∈Fhμ                           (4.5) 

where Fh is a fuzzy set, representing the degree of similarity between the horizontal width of 

Ai and Bi. μFh (Ah) is the membership function of Fh. 

{ , ( ) | }v v v vF A A A N= ∈Fvμ                           (4.6) 

where Fv represents the degree of similarity between the vertical length of Ai and Bi. μFv (Av) 

is the membership function of Fv. 
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Fvμ                  (4.8) 

where Bvs is the minimum vehicle height. 

     Bv represents the height of a medium-sized vehicle. 

     Bvc denotes the height of a large-sized vehicle; v1 and v2 are constants. 

 

(a) 

 

  (b) 

Fig. 4-4.  (a) The membership function of Fh  (b) The membership function of Fv. 
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The detection of the target vehicle starts with the search of horizontal lines from left to 

right side of the image. When a horizontal line exceeding Bhs is found, the search of vertical 

lines starts upwardly from the current row. When the width and height of the detected object 

is obtained, the fuzzy rules in section 3.3.3 will be applied to identify whether the object is a 

vehicle.  

4.3.3 Vehicle Recognition Based on Fuzzy Rules 

The following fuzzy rules can verify the likelihood of Ai being Bi. 

 Fuzzy Rule1: If Ah exceeds Bhs, then Ai may be Bi, and the degree of horizontal 

similarity is μFh (Ah).  

 Fuzzy Rule2: If Av is larger than Bvs, then Ai may be Bi, and μFv (Av) is their 

degree of vertical similarity. 

As shown in (4.9), μFhv (Ah, Av) means the degree of similarity between Ai and Bi. The way 

to compose two fuzzy sets is to use an algebraic product. 

( , ) ( ) ( )h v h vA A A A×Fhv Fh Fvμ =μ μ                        (4.9) 

 

4.3.4 Vehicle Recognition based on a Defuzzifier 

The detected object is recognized as a car when both its width and height are larger than the 

minimum level of a vehicle. Equation (4.10) presents the requirements for objects to be 

recognized as vehicles.  

1 1( , )h vA A h v≥ ×FHvμ                              (4.10) 

4.4 Experimental Results 

This study utilizes a Hitachi KP-F3 camera equipped in an experimental smart car, Taiwan 

its-1, with a screen resolution of 644×493, whose every physical pixel size is 7.4(H)×7.4(V) 

μm. The camera is mounted at the height of 1.32m. The equipment adopted in the system 
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includes a PC with CPU Pentium 2.8G and 512MB DRAM. The average processing time of 

lane detection is less than 9 ms, and edge and vehicle detection takes about 23 ms. 

Experiments of vehicle detection are conducted in conditions with diverse illumination, roads 

with patterns, and vehicles cutting in the lane of the autonomous vehicle. The results of 

vehicle detection are shown as follows. 

 

4.4.1 Vehicle Detection Results 

The proposed approach of vehicle detection is applied to situations with regular 

illumination or strong sunshine, and roads with text as shown in Figs 4-5, 4-6 and 4-7. Figure 

4-5 reveals a successful detection of the closest preceding vehicle on the lane of the 

autonomous vehicle. Even though the bottom part of the vehicle contour is not a straight 

horizontal line, its shadow below still forms a horizontal line in the image. So the vehicle and 

its shadow still compose a quasi-rectangular contour in the image.  

 

Fig. 4-5. Vehicle detection with regular illumination. 
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Figure 4-6 is a road with some patterns, such as lane markings, text markings and crossing 

line. Patterns on the road do not affect our vehicle detection, because they can not form any 

vertical edges in the images. 

 

Fig. 4-6.  Vehicle detection with patterns on the road. 

 

 

Fig. 4-7. Vehicle detection under sunny conditions. 
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Fig. 4-8.  The results of vehicle detection with vehicles cutting in the lane of the autonomous 

vehicle.  

 

Figure 4-7 displays the experimental results under sunny conditions. Although the 

reflection of light generated noise, the proposed algorithm still recognized the target vehicle 
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efficiently in this adverse condition.  

Figure 4-8 exhibits detection results of consecutive images. At the bottom of every image 

is a number showing the distance between the camera and the preceding vehicle computed 

by (4.1). In frame 518, the range to the closest preceding car was 41.5 meters. In frame 581, 

the car in the right lane cut in, so the detected distance changed to 14.7 meters. Likewise, the 

detected range to the preceding vehicle was 32 meters in frame 1182, and became 25.2 

meters in frame 1233 when a car cut in.  

Figure 4-9 shows results of lane and vehicle detections in the freeway. The distance 

between the vehicle and the camera is estimated to be 35.5 m.  

 

 
Fig. 4-9  Results of lane and vehicle detection. 

 

4.4.2 Comparative Analysis 

The experimental results were compared with other systems in terms of lane and vehicle 

detection in Table 4-1 [29][66]. As it can be observed, GOLD [29] adopted a stereo camera, 
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and the cost is higher than the other two. In computation cost, GOLD could effectively detect 

lane markings by IPM and black-white-black transitions on the flat roads. Although IPM may 

require plenty of time for computation, the application of a pre-computed table helps rapidly 

create top-view images. However, with various road conditions, the vibration of the camera 

may cause extra mapping distortion and errors. Besides, vehicle detection of GOLD requires a 

comparison of disparity between two cameras so more time is needed. Sun. et al [66] applied 

the Gabor filter and SVM (support vector machines) to detect vehicles. These approaches are 

time-consuming because the algorithms involve high computation complexity. The proposed 

approach in this study conducts lane detection first and then defines the current lane region as 

ROI for vehicle detection to achieve real time lane and vehicle detection and reduce errors. 

Besides, in our vehicle detection, a Kalman filter is designed to process the estimated range 

between the preceding vehicle and the camera, and to enhance the robustness of range 

estimation. 

 
Table 4-1  Comparison of approaches in lane and vehicle detection 

Lane detection Vehicle detection Approach Camera 
Type 

Compu 
-tational 
Cost Straight 

Roadway
Curvature 
Roadway 

ROI 
Selection 

Vehicle 
Detection 
& Cut-in 
Manage 
-ment 

Techniques 
of 
Temporal 
Consistency 

GOLD 
[29] 

Stereo Medium Good N/A N/A Good N/A 

Sun. et 
al.[66] 

Single High N/A N/A N/A Good N/A 

The 
proposed 
approach 

Single Low Good Good Within 
the Lane 

Good Kalman 
filter 
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Chapter 5  

Conclusion and Future Works 

5.1 Range Estimation and Dynamic Calibration  

In this study, we have presented several approaches for the estimation of the range between 

the preceding vehicle and the camera, range errors, the actual height of vehicles and the 

projective height of the detected vehicles in various positions. The results of error estimation 

can be adopted as a reference to determine the preset camera parameters, suppress estimation 

errors and facilitate rapid and accurate estimation of vehicle sizes. 

According to the error analyses, the variations of camera tilt and swing angles lead to 

significant errors in range estimation results. A dynamic calibration approach has been 

proposed to effectively reduce errors of range estimation. A Kalman filter is also integrated in 

order to more stably estimate swing angles so that the estimation results can be sufficiently 

robust and estimation errors can be further reduced. Experimental results demonstrate that our 

approaches can provide accurate and robust estimations of range and size of target vehicles. 

The proposed approaches can serve as reference for designers of vision-based driving 

assistance systems to improve the efficiency of vehicle detection and range estimation. 

 

5.2 Lane detection 

To apply lane detection for the guidance of autonomous vehicles and driving assistance 

system, a variety of road conditions should be considered, such as changes of illumination, a 

great diversity of road curvature, difference in the configurations of lane markings like 
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continuous, dashed or occluded road markings. A lane detection system should have high 

efficiency, robustness, and reliability to make driving at high speed safe. 

This study has proposed a rapid computation of lane width to predict the projective 

positions and widths of lane markings and an approach LME FSM is designed to extract lane 

markings efficiently. A statistical search algorithm is also proposed to correctly and 

adaptively determine thresholds under various kinds of illumination conditions. Moreover, a 

dynamic calibration algorithm is applied to update the information of a camera’s parameters 

and lane width. Additionally, a method of fuzzy reasoning is adopted to determine whether 

the lane marking is continuous, dashed and occluded. Finally, the strategy of the ROI is 

proposed to narrow the search region and make the detection more robust. Experimental 

results shows that even when obstacles occlude parts of the lane markings or lane markings 

have complicated curvature, road boundaries still can be reconstructed correctly by B-spline 

with four segments. In conclusion, even with the information of lanes, there are still many 

threats from surrounding vehicles and obstacles when driving. Thus, the function of obstacle 

detection should be combined with lane detection systems to make the guidance of 

autonomous vehicles and driving assistance systems better in the future. 

 

5.3 Vehicle detection 

A real-time obstacle detection system to detect obstacles and vehicles whose shapes are 

similar to rectangles is presented. When detecting, we start with edge detection, and then 

identify obstacles and recognize whether they are vehicles according to their contour sizes in 

the vertical and horizontal edges. Many obstacles can be found in the detection and their 

distance to the camera can be acquired. With the information of lane detection, the closest 

preceding car in the lane of the autonomous vehicle can successfully be detected in real time. 

This work can be applied in vehicle detector for the driving assistance system. 
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5.4 Future Works 

Some directions for future study are recommended below: 

(1) In the future, simultaneous detections of several lanes and vehicles will be conducted 

and the obtained information will be applied to the throttle and brake systems of 

vehicles to support the automatic driving of intelligent autonomous vehicles. 

(2) The changeable illumination and weather condition of outdoor surroundings and the 

high speed of vehicle movements increase the difficulty of lane and vehicle detection. 

More robust and rapid approaches should be proposed to make the driving assistance 

systems real-time and adaptive. 

(3) Besides vehicles, pedestrians, motorcycles and other obstacles also can affect driving 

safety. Therefore, techniques for detecting those objects should be developed to 

increase the feasibility of the driving assistance system and improve driving safety. 
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APPENDIX A 

 Relation of Projected Width and v-coordinate 

If the lane width is WWL and the projective lane width on the v-coordinate is wL (v), then 

(A-1) can be obtained from (1) and (2). (A-2) means the first derivative for v to wL (v). Let ξ = 

(π/2- α), and τ = tan-1(v/λ). Then (A-4) and (A-5) can be derived from (A-2) and (A-3). Since 

the camera was placed in a vehicle to detect the lane, when α is large, the farther part of the 

lane would not appear in the image. Therefore, α is usually between 0-6 degrees. In the study, 

let the tilt angle α<10°, and then the value of ξ will be larger than 80°, and they are 

substituted in (A-6)(A-7). Next, they are applied to (A-5) to obtain (A-8) and (A-9). (A-9) 

shows the first derivative of wL (v) is a constant. The relation between wL (v) and v can be 

expressed by a linear equation as (A-10). 

                

     ( )
1tan   -  tan

2

wL
L

Ww v
vh −

×
=

⎛ ⎞⎛ ⎞ ⎛ ⎞⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
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π
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                    (A-1) 

( ) 1cot   -  tan /
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             ( ) ( ) ( )
( ) ( )

1 tan tan
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tan tan
+ ξ × τ

ξ − τ =
ξ − τ

                         (A-3) 

      ( ) 2/L WLdw v W d d
dv h dv dv

× ω κ⎛ ⎞= × κ× − ω× κ⎜ ⎟
⎝ ⎠

λ                     (A-4) 

where ( ) ( )1 tan tanω = + ξ × τ ; ( ) ( )tan tanκ = ξ × τ . 
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( )tan v
ξ >>

λ
                               (A-6) 

where ξ > 80°. 

( ) ( ) ( )tan 1tan tanvξ ⎛ ⎞ξ × >> × ξ +⎜ ⎟
⎝ ⎠2λ λ λ

                        (A-7) 
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APPENDIX B 

 Adaptation to Illumination Conditions 

The proposed statistical search algorithm determines GgH, GgL, GmH, and GmL in the region 

of interest (ROI) for detecting lane markings. The procedures for determining the thresholds 

in each row are given as follows:  

Step 1) Setting search windows: Set a window in each N-th row to search for GgH, GgL, GmH, 

and GmL. The width of the search window on the N-th row, Ww(N), is shown as (B-1). Here the 

left border of the search window is also the left border of the search region of the lane 

marking on the N-th row. 

( ) ( ) ( )( )5 , 5

,
m R m

w
R

w N if S w N
W N

S otherwise

⎧ ×   ≥ ×⎪= ⎨
 ⎪⎩

                   (B-1) 

where wm(N) is the estimated width of the lane marking on the N-th row. SR denotes the search 

region. 

 

 

Fig. B-1. The gray level distribution with a row of lane marking in the search window. 
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Step 2) Finding zone of lane marking and ground in the window: Since the gray levels of lane 

markings are obviously higher than those of the ground’s, the distribution of gray levels in a 

search window can be divided into three main zones if a row of lane markings appears close 

to the center of the search window. The three main zones in sequence are a lowland, a plateau, 

and again a lowland of gray level groups. These three zones can be determined according to 

the representative bright and dark levels of the lane markings and the ground, which are 

respectively the average gray levels of lane markings and the ground. Let G denote the gray 

levels in M-coordinate in the search window, as shown in (B-2). Compute the pixel number of 

the lane marking and the ground in the window, respectively Am and Ag, by (B-3). Let a set, L, 

be the ordered gray levels of the pixels in G, which are arranged from large to small as in 

(B-4), where L1, LAw respectively represent the highest and lowest gray level in G. Lm is the 

average gray levels of lane markings, i. e. the average of the brightest Am pixels with the 

highest gray level among the set L. Lg is the average gray levels of the ground, also the 

average of the darkest Ag pixels with the lowest gray level among L as shown in (B-5). After 

finding the representative bright and dark levels of the lane markings and the ground, three 

zones of interest can be found based on the following definitions. In the search window, the 

left and right borders of the lane marking, MmL and MmR, is respectively defined as the leftest 

and rightest pixel whose gray levels are larger than Lm. The left border of ground, MgL, is 

defined as the pixel whose gray level is lower than Lg and being closest to MmL. The right 

border of the ground, MgR, is defined as the pixel with gray level lower than Lg and closest to 

MmR. Figure B-1 shows the gray level of each pixel in G when a row of the lane marking 

exists in the search window. As can be seen, the plateau zone, [MmL, MmR] of the lane marking 

in G can be found by Lm, and the lowland zone, union [MwL, MgL] and [MgR, MwR] of the 

ground by Lg. 

[ ]{ }| ,M wL wRG G M M M= ∈                            (B-2) 
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where GM denotes the gray level in M-coordinate. MwL and MwR respectively represent the left 

and right boundaries of the search window. 

( )
( )

; ; ;m
m mw w mw g w m

w

w N
A r A r A A A

W N
= ×   =   = −                   (B-3) 

where Aw is the number of pixels in the search window; rmw denote the ratio of wm(N) to 

Ww(N).  
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Step 3) Determining GmH, GmL, GgH, and GgL: Determine the highest and lowest gray levels in 

the plateau zone, GmH and GmL, using  (B-6), and the highest and lowest in the lowland zone, 

GgH, and GgL by (B-7).  
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Step 4) Verifying GmH, GmL, GgH, and GgL: Check whether the determined GgH, GgL, GmH, and 

GmL are correct by verifying that GgH is smaller than GmL. If so, substitute GgH, GgL, GmH, GmL 

in (11) to obtain the corresponding Dg1, Dg2, Dg12 on this row and go to step 6. Otherwise, go 

to step 5. 

Step 5) Checking whether SR is completely searched:  If so, let Dg1, Dg2, Dg12 in this row be 
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the same as those in the previous row and go to step 6. Otherwise, shift the window rightward 

for the distance of wm(N) and return to step 2. 

Step 6) Terminate the determination process of the N-th row, and export the results of GmH, 

GmL, GgH, and GgL. 
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