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使用靜態和動態類神經網路做系統鑑別和控制設計 

 

研究生：林炳榮          指導教授：王啟旭  博士 

          李祖添  博士 

國立交通大學電機與控制工程系博士班 

 

摘 要       

 

  針對非線性動態系統，本論文發展一個新的模糊類神經控制器和一個新

的霍普菲爾動態類神經網路鑑別器。第一個設計是提出一個適應性自我建

構的非對稱性模糊類神經網路控制器，此控制器是由一個自我建構的模糊

類神經網路控制器和一個強健控制器組成。自我建構模糊類神經網路控制

器具有架構和參數學習功能的自我建構模糊類神經網路，因此可用以模仿

一個理想控制器。強健控制器是用來補償自我建構模糊類神經網路控制器

和理想控制器之間的模仿誤差。提出的適應性自我建構非對稱性模糊類神

經網路控制器應用到二階的混沌系統，模擬的結果顯示提出的控制器可以

達到不錯的追跡效果。對於第二個設計，提出一個新的基於霍普菲爾的動

態類神經網路，用以執行非線性動態系統的鑑別。應用 Lyapunov 方法調整

神經網路的權重值。藉著似 Lyapunov 的穩定準則，執行穩定性的分析，且

可以保證系統鑑別的誤差收斂性。最後，為了說明此方法的有效性，所提

出的設計機構用以鑑別兩個非線性動態系統。模擬的結果顯示，使用

Lyapunov 方法訓練的動態類神經網路可以得到好的鑑別效果，且符合文中

所推導的收歛作用。 
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ABSTRACT 
 

In this dissertation, a novel fuzzy neural network control law and a new Hopfield-based 

dynamic neural network identifier is developed for nonlinear dynamic systems. For the first 

control design, an adaptive self-structuring asymmetric fuzzy neural-network control 

(ASAFNC) system which consists of a self-structuring fuzzy neural-network (SFNN) 

controller and a robust controller is proposed. The SFNN controller uses a SFNN with 

structure and parameter learning phases to mimic an ideal controller in a real-time 

environment. The robust controller is designed to compensate for the modeling error between 

the SFNN controller and the ideal controller. The proposed ASAFNC system is applied to a 

second-order chaotic dynamics system. The simulation results show that the proposed 

ASAFNC can achieve favorable tracking performance. For the second scheme, a new 

dynamic neural network based on the Hopfield neural network is proposed to perform the 

nonlinear system identification. The weighting factors of the proposed neural network are 

adjusted by the Lyapunov approach. Stability analysis is performed by the Lyapunov-like 

criterion to guarantee the error convergence during identification. Finally, in order to illustrate 

the effectiveness of this method, the proposed scheme is applied to identify two nonlinear 

systems. The simulation results demonstrate that the proposed dynamic neural network 

trained by the Lyapunov approach can obtain good identified performance which is consistent 

with the convergent analysis proposed in this dissertation. 
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Chapter 1 

Introduction 
 

 

1.1 Background and Motivation 

 

The development in the control area has been fueled by three major needs: the need to 

deal with increasingly complex systems, the need to accomplish increasingly demanding 

design requirements, and the need to attain these requirements with less precise advanced 

knowledge of the plant and its environment [1]. Hence, many researches are interested in 

some intelligent control design or intelligent systems to attain these needs. 

In the past two decades, fuzzy systems have replaced conventional technologies in many 

scientific applications and engineering systems, especially in control systems. Fuzzy sets, 

introduced by Zadeh in 1965 [2] as a mathematical way to represent vagueness in linguistics, 

can be considered a generalization of classical set theory. Fuzzy sets are a generalization of 

conventional set theory and contain objects that belong imprecisely to the set. The degree of 

belonging is defined by the value of a membership function, which usually has values 

between 0 and 1. One of the biggest differences between crisp and fuzzy sets is that the 

former always have unique membership functions, whereas every fuzzy set has an infinite 

number of membership functions that may represent it. Fuzzy logic control (FLC) system, 

which induces human experience and human decision-making behavior, has been developed 

over 20 year. In the design of a FLC system, the sensory variables are converted into the 

fuzzy numbers by membership functions and they are matched with the preconditions of 

linguistic IF-THEN rules (fuzzy logic rules) and then the response of each rule is obtained 

through fuzzy computation. As a result, it will generally lead to fuzzy outputs. Finally, the 

fuzzy outputs are inverted into a crisp result to obtain the appropriate control signal. One 

major feature of fuzzy logic is its ability to express the amount of ambiguity in human 

thinking and subjectivity. In summary, the advantages of fuzzification include greater 

generality, higher expressive power, an enhanced ability to model real-world problems, and a 

methodology for exploiting the tolerance for imprecision. Hence, this algorithm provides a 

way of representing the uncertainties in a complex model. However, system designers must 

spend more time to ascertain how many rules are best [3] and fuzzy systems do not have 
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much learning capability [4]. 

The concept of neural network (NN) was first proposed by McCulloch and Pitts in 1943 

[5]. NNs are a new generation of information processing systems that are deliberately 

constructed to make use of some of the organizational principles. They have a large number 

of highly interconnected processing elements (nodes) that usually operate in parallel and are 

configured in regular architectures. A NN has a massively parallel and distributed structure 

that is composed of many simple processing elements i.e., artificial neurons with nonlinear 

mapping functions. The neurons in a NN can communicate with each other through the links 

i.e., weights between the neurons [6]. The collective behavior of an NN is like a human brain 

to demonstrate the ability to learn, recall, and generalize from training patterns or data. NNs 

offer the salient characteristics and properties, such as nonlinear input-output mapping, 

generalization, adaptation, fault tolerance, and evidential response etc. Therefore, the NN has 

been applied to various areas [7-9]. However, because the internal layers of neural networks 

are always opaque to the user, the mapping rules in the network are not visible and are 

difficult to understand. The convergence of learning is usually very slow and not guaranteed 

[4]. 

Recently, the fuzzy neural network (FNN), which incorporates the advantages of fuzzy 

inference and neuro-learning, has been an interesting topic. Fuzzy logic and NNs are 

complementary technologies in the design of intelligent systems. The FNN possesses the 

merits of the low-level learning and computational power of NN, and the high-level human 

knowledge representation and thinking of fuzzy theory [4, 10]. Due to their learning ability, 

FNNs are increasingly receiving attention in solving the control problems [11-14]. Hence, the 

FNN will be a focus of our researches. Although the neuro-learning structure can tune 

membership functions and fuzzy rules automatically, the structure of the FNN should be 

determined in advance by trial-and-error. It is difficult to consider the balance between the 

rule number and the desired performance. As a result, if the number of fuzzy rules is chosen 

too large, the computation loading is heavy so that it is not suitable for practical applications. 

If the number of fuzzy rules is chosen too small, the control performance may be not good 

enough to achieve the desired performance. 

To solve the problem of determining the structure in FNN approaches, much interest has 

been focused on the self-structuring fuzzy neural network (SFNN) approach [15-19]. The 

self-structuring approach demonstrates the properties of automatic generating rules for FNN 

without needing preliminary knowledge. In general, the mathematical description of the 

existing rules can be expressed as a set of clusters. As usually seen in other self-structuring 
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approaches, the new membership function is generated when a new input signal is too far 

from the current clusters, and an existing rule is deleted when the fuzzy rule is insignificant. 

SFNNs also have been adopted widely for the control of complex dynamic systems due to 

their good generalization capability, structural adaptation, and simple computation [20-25]. 

Some of them use the gradient descent method to derive the parameter learning algorithms; 

however, they can’t guarantee the system stability [22, 23]. Some of them derive the 

parameter learning algorithms based on the Lyapunov function to guarantee system stability; 

however, the structure learning algorithm is too complex [20, 24, 25]. Some of them proposed 

a simple growing-and-pruning algorithm to online self-structure the FNN with symmetric 

membership functions; however, the bounds of parameters are not stated [21]. 

In addition, system identification also plays an important role in control field. It is an 

important task for control engineer to acquire system information so as to design a proper 

control law based on a good understanding of the plant under consideration and its 

environment. It has been clear that a mathematical description of a plant is often a prerequisite 

for system analysis and controller design in control system theory. System identification, 

whether online or offline, is an essential part of any control system design. The processes of 

system identification mainly consists of two steps: the first is to choose an appropriate 

identification model and the second is to adjust parameters of the selected model according to 

some derived adaptive laws so that the output of the selected model can approach the 

response of the real system under the same input [26]. Hence, the nonlinear system 

identification process has turned out to be one of central parts in various control researches. 

Recent research results show that NN techniques seem to be very effective to identify a 

wide class of complex nonlinear systems when the complete model information can not be 

available [27-29]. NNs have been an interested focus because they have good learning, 

noise-tolerance, and generalization abilities to solve the nonlinear problem. According to the 

used types of NNs, they can be qualified as static (feed-forward) or as dynamic (recurrent) 

nets. The first one deals with the class of global optimization problems. The universal 

approximation property of static NNs makes them be a useful tool for modeling nonlinear 

systems. The designers try to adjust weights of such NNs to achieve favorable performance. 

The second approach, which converts the partial learning (training) focuses to an adequate 

feedback design, permits to avoid many problems related to global extremum search [30]. 

When outputs are directed back as inputs to the same or the preceding layer node, the network 

is a feedback network. Feedback networks that have closed loop are called recurrent networks. 

From a system theoretical point of view, multilayer networks represent static nonlinear maps 
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while recurrent networks are represented by nonlinear dynamic feedback systems [27]. 

However, an important viewpoint is that static NNs are unable to represent dynamic system 

mapping without the aid of tapped delay, which results in long computation time, high 

sensitivity to external noise, and a large number of neurons when high dimensional systems 

are considered [31, 32]. This drawback severely affects the applicability of static NNs to 

system identification, which is the central part in some control techniques for nonlinear 

systems. Dynamic neural networks (DNNs) can deal with this disadvantage since they have 

dynamic memory, which makes them more suitable for representing dynamic systems than 

static NNs. Hence, if the mathematical model of a considered process is incomplete or 

partially known, the DNN approach provides an effective instrument to research a wide 

spectrum of problems such as identification, state estimation, trajectories tracking, etc. [33]. 

Recurrently connected NNs, sometimes called Hopfield neural networks (HNN), which is a 

special kind of DNN, have been extensively studied in recent years. The HNN is first 

proposed by Hopfield J.J. in 1982 and 1984 [34, 35]. Because of the easy implementation of 

the HNN circuit, the characteristic of decreasing in energy by finite number of node-updating 

steps, and the dynamical behavior of the networks, the HNN has found many applications in 

different areas, such as optimization [36, 37], system identification [38, 39], and image 

processing [40, 41]. However, in [38, 39], the system identification via HNN involved a 

learning process which has no guarantee for convergence. 

 

 

1.2 Major Works 

 

In this dissertation, a SFNN in which the learning phase considers both the structure and 

parameter learning phases is proposed. The structure adaptation is described as follows. A 

new rule is generated when a new input signal is too far from the current clusters. To avoid 

the unrestricted growth of membership functions and fuzzy rules, we use an exponential 

function to calculate the significant indexes of each existing fuzzy rule. The exponential 

function can gradually increase or decrease the significant index values for each rule. If the 

fuzzy rule of SFNN is insignificant, it will be removed to reduce the computation load; and if 

the fuzzy rule of SFNN is significant, it will be retained. Thus, the SFNN can self-structure 

the fuzzy rules online to achieve an optimal network structure. Moreover, by accommodating 

the left-sided and right-sided spreads into a standard Gaussian membership functions, the 

asymmetric Gaussian membership functions can upgrade the learning capability and 
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flexibility of a NN [42]. 

Therefore, one of purposes of this dissertation is to develop an adaptive self-structuring 

asymmetric fuzzy neural-network control (ASAFNC) system, which consists of a SFNN 

controller and a robust controller. The SFNN controller utilizes a SFNN to mimic an ideal 

controller, and the robust controller is designed to compensate for the modeling error between 

the SFNN controller and the ideal controller. The learning phase of SFNN includes the 

structure learning phase and the parameter learning phase. The structure learning phase 

consists of the growing and pruning algorithms of fuzzy rules to achieve an optimal network 

structure, and the parameter learning phase adjusts the interconnection weights of NN to 

achieve favorable approximation performance. All the parameters of ASAFNC are tuned 

online based on the Lyapunov stability to achieve favorable performance. Finally, the 

effectiveness of the proposed ASAFNC scheme is demonstrated by simulations. The 

simulation results show that not only favorable tracking performance can be achieved but also 

a concise network structure can be obtained by the proposed structure learning method. 

In addition, for the system identification, the other purpose of this dissertation is to 

develop a new HNN identifier to perform nonlinear system identification which can guarantee 

the convergence subject to several constraints. The weights of the proposed scheme will be 

adjusted to minimize the identification error by Lyapunov’s method in a real-time 

environment. The guarantee of convergence for the identification process with robustness 

analysis will be explored. Finally, the proposed scheme is applied to identify two nonlinear 

systems to illustrate its effectiveness. The simulation results demonstrate that the proposed 

Hopfield-based DNN trained by the Lyapunov approach can obtain good identified 

performance which is consistent with the convergent analysis discussed in the later chapter. 

 

 

1.3 Dissertation Overview 

 

The rest of this dissertation is organized as follows. Chapter 2 describes the design 

procedure of an adaptive self-structuring asymmetric fuzzy neural-network control for the 

static neural network. The training algorithms of parameters, including means and variances 

of membership functions and weights of the NN, are developed. The stability analysis and 

example illustrations are also provided in this chapter. For the DNN, the Hopfield-based DNN 

identifier is developed in Chapter 3. The training algorithm of weighting factors of the DNN 

is investigated. The stability analysis and example illustrations are also provided in this 
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chapter. The software and hardware of the implementation comparison between SFNN and 

Hopfield DNN is provided in Chapter 4. Finally, conclusions with future works are included 

in Chapter 5. 
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Chapter 2 

Adaptive Self-structuring Asymmetric Fuzzy 

Neural-network Control Design 
 

 

According to the used types of neural networks (NNs), they can be qualified as static 

(feed-forward) or as dynamic (recurrent) nets. In this chapter, the development of the static 

NN is priority to be discussed. The control design of fuzzy neural network (FNN) is explored 

first. The stability of the control system and examples will be also illustrated in this chapter. 

 

 

2.1 Problem Statement 

 

Consider the nth-order nonlinear dynamic system of the form 

ufx n += )()( x                             (2-1) 

where Tnxxx ] [ )1( −= L&x , which is assumed to be available for measurement, is the state 

vector of the system, )(xf  is the system dynamics equation, and u  is the control effort. 

The control objective is to find a control law so that the state trajectory x  can track a 

command trajectory cx , and thus a tracking error is defined as 

xxe c −= .                              (2-2) 

If the system dynamics )(xf  in (2-1) is well known, there exists an ideal controller as [43] 

ekekekxfu n
n

n
c 12

)1()(* ...)( +++++−= − &x                   (2-3) 

where ik , ni ,,2 ,1 L=  is non-zero positive constant. Substituting (2-3) into (2-1) yields 

0... 12
)1()( =++++ − ekekeke n

n
n & .                     (2-4) 

If ik  are chosen to correspond to the coefficients of a Hurwitz polynomial whose roots lie 

strictly in the open left half of the complex plane, then 0lim =
∞→

e
t

 can be inferred for any 

starting initial conditions. However, because the system dynamics )(xf  may be unknown or 

perturbed in practice, the ideal control law *u  in (2-3) cannot be implemented easily. To 
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solve the problem of the model-based control approach for real-time implementation, adaptive 

fuzzy neural-network control (AFNC) techniques have been developed to control these kinds 

of unknown nonlinear dynamic systems [11-14]. These techniques use a structure of FNN to 

estimate the plant or controller parameters in a real-time environment. If the FNN is applied 

to estimate the model of the plant, it is called an indirect AFNC, and if the FNN is applied to 

estimate the controller of the plant, it is called a direct AFNC [44]. 
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Fig. 2-1. The block diagram of ASAFNC system. 

 

According to the design concept of the direct AFNC, we propose an adaptive 

self-structuring asymmetric fuzzy neural-network control (ASAFNC) system as shown in Fig. 

2-1. The ASAFNC system is composed of a SFNN controller and a robust controller as 

rbsfnnac uuu +=                            (2-5) 

The SFNN controller sfnnu  utilizes the SFNN with asymmetric Gaussian membership 
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functions to mimic the ideal controller in (2-3), and the robust controller rbu  is designed to 

compensate for the modeling error between the SFNN controller sfnnu  and the ideal 

controller *u . For further analysis, first define a sliding surface as 

τdekekekes
tn

n
n ∫++++= −−

012
)2()1( L .                (2-6) 

Substituting (2-5) into (2-1) and using (2-3) and (2-6), yields 

rbsfnn uuus −−= *& .                          (2-7) 

 

 

2.2 Description of SFNN 

 

Fuzzy logic and NNs are complementary technologies in the design of intelligent 

systems. FNNs retain the basic properties and functions of NNs with some of their elements 

being fuzzified. In this approach, a network’s domain knowledge becomes formalized in 

terms of fuzzy sets, later being applied to enhance the learning of the network and augment its 

interpretation capabilities. By incorporating fuzzy principles into a NN, more user flexibility 

is attained and the resultant network or system becomes more robust [4]. FNNs are generally 

a fuzzy inference system constructed from structure of NN. Learning algorithms are used to 

adjust the weightings of the fuzzy inference system. 

Figure 2-2 shows the configuration of the proposed SFNN which is composed of the 

input, the membership, the rule, and the output layers. Layer 1 accepts the input variables. 

Nodes at layer 2 are term nodes which act as membership functions to represent the terms of 

the respective linguistic variables. The asymmetric Gaussian membership function constituted 

by a center, a left-side variance, and a right-side variance is considered. Nodes of layer 3 are 

regarded as fuzzy rules. The links before layer 3 represent the preconditions of rules and the 

links after layer 3 represent the consequences. Layer 4 is the output layer, where the node in 

this layer is the output of the NN. The interactions for those layers are given as follows. 
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Fig. 2-2. The structure of SFNN. 

 

Layer 1 - Input layer: For every node i in this layer, the net input and the net output are 

represented as 

ii xnet 11  =                               (2-8) 

( ) iiii netnetfy 1111   == , Li  ,,2 ,1 L=                     (2-9) 

where ix1  represents the ith input to the node of layer 1 and L  is the total number of input 

variables. They mean that output equals input in this layer. This layer of SFNN just executes 

the transmission work. 
Layer 2 - Membership layer: In this layer, each node performs a membership function and 

acts as a unit of memory. The bell-shaped function is adopted as the membership function. 

For the ith input, the corresponding net input and output of the jth node can be expressed as 
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( )
( )22

222
2

ij

iji
ij

mx
net

σ

−
−=                         (2-10) 

( ) ( )ijijijij netnetfy 2222 exp == , Mj  ,,2 ,1 L=               (2-11) 

where ijm2  is the mean, ijσ2  is the variance and M  is the total number of membership 

functions with respect to the respective input node. In this study, the input linguistic variable 

is the tracking error vector. 

Layer 3 - Rule layer: Each node k in this layer is denoted by ∏  which multiplies the 

incoming signals and outputs the result of the product. For the kth rule node, the operation of 

the net input and output of this layer is presented as 

∏= ijijk xwnet 333                          (2-12) 

( ) kkkk netnetfy 3333   == , Nk  ,,2 ,1 L=                  (2-13) 

where ijx3  represents the ji, th input to the kth node of layer 3, ijw3  between the 

membership and the rule layers are assumed as unity, and N  is the total number of fuzzy 

rules. 

Layer 4 - Output layer: The single node o in this layer is labeled as Σ , which computes the 

overall output as the summation of all incoming signals. It executes the sun-of-weighting 

defuzzification. The description of the net input and output is expressed as 

kk
k

o xwnet 444  ∑=                           (2-14) 

( ) oooo netnetfy 4444   ==                         (2-15) 

where kw4  is the output action strength of the output associated with the kth rule, kx4  

represents the kth input to the node of layer 4, and oy4  is the output of SFNN. 

In order to improve the learning capability and flexibility of a NN, asymmetric Gaussian 

membership functions are adopted, instead of ball-shaped functions described in layer 2. 

According to the above description, the output of the SFNN with N  existing fuzzy rules can 

be represented simply as 

∑
=

=
N

k
kko wy

1
)(xφ                            (2-16) 

in which kw  is the output action strength associated with the k-th rule and kφ  is the 

response of the firing weight for an input vector T
Lxxx ][ 21 L=x  and composed of 

asymmetric Gaussian membership functions defined as [42] 



 

12 

( )
( )

( )
( )⎪

⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∞<≤
−

−

≤<∞−
−

−

=

iijr
ij

iji

ijil
ij

iji

ij

xmif
mx

mxif
mx

   ),exp(

   ),exp(

2

2

2

2

σ

σ
ζ , Mj  ,,2 ,1 L=          (2-17) 

where M  is the total number of membership functions with respect to the respective input 

node; ijm , l
ijσ , and r

ijσ  are the mean, left-side variance, and right-side variance of the 

asymmetric Gaussian function in the j-th term of the i-th input linguistic variable ix , 

respectively. However, l
ijσ  and r

ijσ  may become zero in the training procedure, the 

membership function ijζ  will not be defined. To avoid this problem, this dissertation 

considers a membership function form as [44] 

( )
( )
( )
( )⎪

⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∞<≤
+

−
−

≤<∞−
+

−
−

=

iijr
ij

iji

ijil
ij

iji

ij

xmif
mx

mxif
mx

   ),exp(

   ),exp(

ϖσ

ϖσ
ζ

2

2

2

2

, Mj  ,,2 ,1 L=         (2-18) 

where ϖ  is a small positive constant. Then, the associated firing strength can be defined as 

∏
=

=
M

j
jkk

1

ζφ .                            (2-19) 

To note easily, define vectors m , lσ , and rσ  collecting all parameters of SFNN as 

 T
LMMLL mmmmmm ][ 1212111 LLLLL=m  (2-20) 

 Tl
LM

l
M

l
L

ll
L

l ][ 1212111 σσσσσσ LLLLL=lσ  (2-21) 

 Tr
LM

r
M

r
L

rr
L

r ][ 1212111 σσσσσσ LLLLL=rσ . (2-22) 

Thus, the output of the SFNN can be represented in a vector form as 

),,,( rl σσmxφwT
oy =                         (2-23) 

where T
Nwww ]     [ 21 L=w  and T

N ]      [ 21 φφφ L=φ . For the FNN approaches, the 

structure of the FNN should be determined in advance by empiricism. However, it is difficult 

to consider the balance between the rule number and the desired performance. Therefore, the 

structure adaptation algorithm which contains the growing and pruning of membership 

functions and fuzzy rules is proposed in this dissertation. The descriptions are given as 

follows. 

In the process of the growing of membership functions, the concept which decides 
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whether to add a new node (membership function) in layer 2 and the associated fuzzy rule in 

layer 3 will be introduced. The mathematical description of the existing rules can be 

expressed as a set of clusters. For constructing the initial fuzzy rules of the SFNN, the fuzzy 

clustering method is used to partition a set of data into a number of overlapping clusters based 

on the distance in a metric space between the data points and the cluster prototypes. Each 

cluster in the product space of the input-output data represents a rule. The firing strength of a 

rule for each incoming data ix  can be represented as the degree that the incoming data 

belong to the cluster [19]. If the value of firing strength is too small, it indicates that the input 

value is on the edge of range of the existing membership functions. Under this situation, the 

output will cause unsatisfactory performance. Therefore, a new membership function and a 

new fuzzy rule should be generated to improve the performance. 

The firing strength from (2-19) is used as the degree measure 

kk φβ = , )(...,,2,1 tNk =                       (2-24) 

where )(tN  is the number of the existing fuzzy rules at the time t. Define the maximum 

degree maxβ  as 

ktNk
ββ

)(1max max
≤≤

= .                          (2-25) 

If thG≤maxβ  is satisfied, where )1,0(∈thG  is a pre-given threshold, the incoming data is 

far from the edge of range of the existing membership functions. Hence, a new membership 

function is generated. The mean and the variance of the new membership function and the 

weight are selected as follows 

 i
new
i xm = , (2-26) 

 i
newl

i σσ = , , (2-27) 

 i
newr

i σσ = , , (2-28) 

 0=neww  (2-29) 

where ix  is the new incoming data and iσ  is a pre-specified constant. If the unknown 

control system dynamics is too complex, we can choose the larger thG  so that many 

membership functions can be created. 
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Fig. 2-3. The rise and decay curves of the used frequency index. 

 

Next, to avoid the unrestricted growth of network structure and an overload computation, 

the pruning algorithm is developed to eliminate irrelevant fuzzy rules. In Ref. [21], a 

significance index is determined for the importance of the fuzzy rules. The elimination 

algorithm is derived from the observation that if the significance index fades when the firing 

weight is smaller than a special threshold value and if the significance index fixes when the 

firing weight is larger than a special threshold value [21]. In this dissertation, when the r-th 

firing strength rβ  is smaller than the threshold value thP , it indicates that the relationship 

becomes weak between the input and the r-th rule. Then, the significant index of r-th fuzzy 

rules will be decreased. When the r-th firing strength rβ  is larger than the threshold value 

thP , it indicates that the incoming inputs fall into the range of the r-th fuzzy rule. Thus, the 

significant index of r-th fuzzy rules should be raised. The rise and decay curves of the used 

frequency index show in Fig. 2-3. The significance index is determined for the r-th rules can 

be given as 

( )( )[ ]⎪⎩

⎪
⎨
⎧

≥−−−⋅

<−⋅
=+

thrrr

thrr
r PiftItI

PiftI
tI

βτ

βτ

 ,)(1exp2)(

                          ),exp()(
)1(

2

1 , )(,,2,1 tNr L=    (2-30) 

where rI  is the significant index of the r-th rule and its initial value is 1, thP  is the pruning 
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threshold value, and 1τ  and 2τ  are the designed constant. Exponential functions in (2-30) 

are used to rise or decrease the values of significant index in [0, 1]. If thr II ≤  is satisfied, 

where thI  is another pre-given threshold, the r-th fuzzy rule will be deleted. For real-time 

implementation, if the computation load is the issue having highest priority, thP  should be 

chosen large, so that more fuzzy rules can be pruned. This operation will prevent the fuzzy 

rule, which may be less used but still significant, from being deleted in the training process. 

Hence, the computation load would be reduced. 

In summary, the flow chart of the structure learning algorithm is shown in Fig. 2-4. The 

major contributions of the SFNN are: 1) SFNN can be operated directly without spending 

much time pre-determining membership functions and fuzzy rules; and 2) the computation 

load can be reduced simultaneously. 
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Fig. 2-4. The flow chart of the ASAFNC system. 
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2.3 Approximation of SFNN 

 

An optimal SFNN controller can be designed to approximate the ideal controller (2-3) 

even under the structural change of neural network, such that [44, 45] 

∆+=∆+=∆+= ****** ),,,( φwσσmxφw *
r

*
l

TT
sfnnuu             (2-31) 

where ),,,( ** *
r

*
l σσmxφφ = , ∆  denotes the approximation error, and *w , *m , *

lσ , and 

*
rσ  are the optimal vectors. In fact, the optimal vectors that best approximate a given 

nonlinear function are difficult to be determined. Thus, an estimated SFNN controller is 

introduced as 

φwσσmxφw rl ˆˆ)ˆ,ˆ,ˆ,(ˆ TT
sfnnu ==                     (2-32) 

where )ˆ,ˆ,ˆ,(ˆ rl σσmxφφ =  and ŵ , m̂ , lσ̂ , and rσ̂  are the estimated vectors of w , m , 

lσ , and rσ , respectively. Moreover, the optimal vectors can be further defined as [44] 

⎥⎦

⎤
⎢⎣

⎡ −=
×∈∈∈∈∈

)ˆ,ˆ,ˆ,()(  sup min arg),,,( *

ˆ,ˆ,ˆ,ˆ

****
rl

ΩxΩσΩσΩmΩw
rl σσmxxσσmw

xrσrlσlmw

sfnnsfnn
R

uu     (2-33) 

where 

 { }ww wwΩ D≤= ˆ:ˆ  (2-34) 

 { }mm mmΩ D≤= ˆ:ˆ  (2-35) 

 { }
ll σllσ σσΩ D≤= ˆ:ˆ  (2-36) 

 { }
rr σrrσ σσΩ D≤= ˆ:ˆ  (2-37) 

where wD , mD , 
lσ

D , and 
rσ

D  are positive constants specified by designers. There exists 

*∆  which is a finite positive constant such that the inequality *∆≤∆  can be held. Define a 

modeling error, u~ , as 

∆+++=−= φwφwφw ˆ~~ˆ~~~ * TTT
sfnnuuu                  (2-38) 

where www ˆ~ * −=  and φφφ ˆ~ * −= . In the following description, the linearization 

technique is employed to transform the nonlinear fuzzy function into a partially linear form so 

that the expansion φ~  can be expressed as [46] 
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hσφσφmφ rσlσm rl
+++= ~~~ TTT                                           (2-39) 

where h  is a vector of higher-order term, mmm ˆ~ * −= , l
*
ll σσσ ˆ~ −= , and r

*
rr σσσ ˆ~ −= . 

Substituting (2-39) into (2-38), (2-38) can be rewritten as 

∆++++++= φwhσφσφmφwφw rσlσm rl
ˆ~)~~~(ˆ~~~ TTTTTTu                   

ε++++= wφσwφσwφmφw
rl σrσlm ˆ~ˆ~ˆ~ˆ~ TTTT                   (2-40) 

where mφwwφm mm
~ˆˆ~ TTT = , lσσl σφwwφσ

ll

~ˆˆ~ TTT = , rσσr σφwwφσ
rr

~ˆˆ~ TTT = , and the uncertain term 

∆++= φwhw ~~ˆ TTε . The higher-order term h  satisfies 

rσlσm σφσφmφφh
rl

~~~~ TTT −−−=                           

rσlσm σφσφmφφ
rl

~~~~ TTT +++≤                     

rl σcσcmcc ~~~
3210 +++≤                     (2-41) 

where 0c , 1c , 2c , and 3c  are positive constants satisfying φ~ ≤ 0c , T
mφ ≤ 1c , T

lσ
φ ≤ 2c , 

T
rσ

φ ≤ 3c . The existence of 0c , 1c , 2c , and 3c  is assured due to the fact that Gaussian 

function and its derivative are always bounded by constants. Moreover, w~ , m~ , lσ~ , and rσ~  

satisfy 

 wwwwww w ˆˆˆ~ ** +≤+≤−= D  (2-42) 

 mmmmmm m ˆˆˆ~ ** +≤+≤−= D  (2-43) 

 lσl
*
ll

*
ll σσσσσσ

l
ˆˆˆ~ +≤+≤−= D  (2-44) 

 rσr
*
rr

*
rr σσσσσσ

r
ˆˆˆ~ +≤+≤−= D . (2-45) 

Next, the uncertain term ε  is satisfied 

∆+++++= hwhσφσφmφw rσlσm rl

TTTTT ˆ)~~~(~ε                                   

∆++++= hwσφwσφwmφw rσlσm rl

TTTTTTT *~~~~~~                                  
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*
3210

321

)]ˆ()ˆ()ˆ([  

)ˆ)(ˆ()ˆ)(ˆ()ˆ)(ˆ(

∆++++++++

++++++++≤

rσlσmw

rσwlσwmw

σcσcmcc

σwcσwcmwc

rl

rl

DDDD

DDDDDD
      

T]ˆˆ,ˆˆ,ˆˆ,ˆ,ˆ,ˆ,ˆ,1][,,,,,,,[ 87654321 wσwσwmσσmw rlrlΘΘΘΘΘΘΘΘ=        

ΓΘT=                                                          (2-46) 

where T],,,,,,,[ 87654321 ΘΘΘΘΘΘΘΘ=Θ , *
32101 )222( ∆++++=Θ wσσm rl

cccc DDDD , 

rl σσm ccc DDD 3212 ++=Θ , wc D13 2=Θ , wc D24 2=Θ , wc D35 2=Θ , 16 c=Θ , 27 c=Θ , 

38 c=Θ  and T]ˆˆ,ˆˆ,ˆˆ,ˆ,ˆ,ˆ,ˆ,1[ wσwσwmσσmwΓ rlrl= . Since Θ  is a bounded vector, 

if Γ  can be guaranteed to be bounded, the uncertain term ε  is bounded. The analysis of 

boundness of Γ  will be given in the later section. 

 

 

2.4 ASAFNC Design 

 

By using (2-40), (2-7) can be rewritten as 

rb
TTTT us −++++= εwφσwφσwφmφw

rl σrσlm ˆ~ˆ~ˆ~ˆ~& .             (2-47) 

If ε  exists, consider a specified 2L  tracking performance [46, 47] 

)0(~)0(~1)0(~)0(~1                   

)0(~)0(~1)0(~)0(~1)()0()(
 

0 

 

0 

2222

rrll σσσσ

mmww

TT

T

m

T T T

w

rl

dttsdtts

σσ ηη

ηη
εδ

++

+++≤∫ ∫
      (2-48) 

where wη , mη , 
lσ

η , and 
rση  are the positive-constant learning rates, and δ  is a 

prescribed attenuation constant. If the system starts with initial conditions 0)0( =s , 

0)0(~ =w , 0)0(~ =m , 0)0(~ =lσ , and 0)0(~ =rσ , the 2L  tracking performance in (2-48) can 

be rewritten as 

δ
εε

≤
∈

s
TL ],0[2

sup                            (2-49) 

where ∫=
T

dttss
0 

22 )(  and ∫=
T

dtt
0 

22 )(εε . If ∞=δ , this is the case of minimum 

error tracking control without disturbance attenuation. To determine the adaptive laws of the 

parameters of ASAFNC appropriately and guarantee the closed-loop system stability, the 

Lyapunov function candidate is defined as 
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rl

TT

m

T

w

T

sV
σσ ηηηη 2

~~

2

~~

2

~~

2

~~

2
1 2 rrll σσσσmmww

++++= .                (2-50) 

Differentiating (2-50) with respect to time and using (2-47) yield 

rl

TT

m

T

w

T

ssV
σσ ηηηη

rrll σσσσmmww &&&&
&&

~~~~~~~~
++++=                                           

rl

TT

m

T

w

T

rb
TTTT us

σσ ηηηη
ε rrll

σrσlm
σσσσmmwwwφσwφσwφmφw

rl

&&&& ~~~~~~~~
)ˆ~ˆ~ˆ~ˆ~( ++++−++++=        

)()~1ˆ(~  

)~1ˆ(~)~1ˆ(~)~1ˆ(~

rb
T

T

m

T

w

T

uss

sss

r

l

−+++

+++++=

ε
η

ηηη

σ

σ

rσr

lσlm

σwφσ

σwφσmwφmwφw

r

l

&

&&&

                 (2-51) 

Choose the adaptive laws as 

 φww ˆˆ~ swη−=−= &&  (2-52) 

 wφmm m ˆˆ~ smη−=−= &&  (2-53) 

 wφσσ
lσll ˆˆ~ s

lσ
η−=−= &&  (2-54) 

 wφσσ
rσrr ˆˆ~ s

rση−=−= &&  (2-55) 

and the robust controller is designed as 

surb 2

2

2
1

δ
δ +

= .                           (2-56) 

Thus, equation (2-51) can be rewritten as 

)
2

1( 2

2

ssV
δ

δε +
−=&                                      

2

22

22 δ
ε sss −−=                                      

222
2

2
1)(

2
1

2
δεεδ

δ
+−−−=

ss                            

222

2
1

2
1 δε+−≤ s .                              (2-57) 

Assume ],0[2 TL∈ε , ),0[ ∞∈∀T . Integrating the above equation from 0=t  to Tt =  

yields 

∫∫ +−≤−
TT

dtdtsVTV
 

0 

22 

0 

2

2
1

2
1)0()( εδ .                  (2-58) 
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Since 0)( ≥tV , we can arrange (2-58) as follows 

∫∫ +≤
TT

dtVdts
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0 

2

2
1)0(

2
1 εδ                      (2-59) 

which is equivalent to inequality (2-48) , i.e., 2L  tracking performance. Assume 2L∈ε , 

then the sliding surface s will converge to a certain small boundary. It is implied that the 

tracking error e  will also converge to a certain small boundary [47]. 

 

 

2.5 Boundary Analysis Using Projection Algorithm 

 

Although the stability of ASAFNC can be guaranteed, the parameters ŵ , m̂ , lσ̂ , and 

rσ̂  cannot be guaranteed within a desired bound value by using the adaptive laws 

(2-52)-(2-55). According to the projection algorithm [44, 48, 49], the adaptive laws can be 

modified as follows. The adaptive law of weight is 

⎩
⎨
⎧

>=
≤=<

=
                   )0ˆˆ and  ˆ( if,)ˆ(

)0ˆˆ and  ˆ(or  ˆ if      ,ˆ
ˆ 

φwwφPr
φwwwφ

w
w

ww
T

w

T
w

sDs
sDDs

η
η&          (2-60) 

where the projection operator is given as 

w
w
φwφφPr ˆ

ˆ
ˆˆˆ)ˆ( 2

T

www sss ηηη −= .                   (2-61) 

The adaptive law of mean of asymmetric membership function is 

⎩
⎨
⎧

>=
≤=<

=
                  )0ˆˆ andˆ( if,)ˆ(

)0ˆˆandˆ(or  ˆ if      ,ˆ
ˆ

wφm  mwφPr
wφm  mmwφ

m
mmm

mmmm
T

m

T
m

sDs
sDDs

η
η&       (2-62) 

where the projection operator is given as  

m
m

wφmwφwφPr m
mm ˆ

ˆ
ˆˆ

ˆ)ˆ( 2

T

mmm sss ηηη −= .              (2-63) 

The adaptive law of left-side variance of asymmetric membership function is 

⎪⎩

⎪
⎨
⎧

>=
≤=<

=
                   )0ˆˆandˆ( if,)ˆ(

)0ˆˆandˆ(or  ˆ if       ,ˆ
ˆ

wφσ   σwφPr
wφσ  σσwφ

σ
lll

llll

σlσlσ

σlσlσlσ
l T

T

sDs
sDDs

l

l

σ

σ

η
η&       (2-64) 

where the projection operator is given as 

l
l

σl
σσ σ

σ

wφσ
wφwφPr l

ll
ˆ

ˆ

ˆˆ
ˆ)ˆ( 2

T

sss
lll σσσ ηηη −= .              (2-65) 

The adaptive law of right-side variance of asymmetric membership function is 



 

22 

⎪⎩

⎪
⎨
⎧

>=
≤=<

=
                    )0ˆˆ  andˆ( if,)ˆ(

)0ˆˆandˆ(or  ˆ if       , ˆ
ˆ

wφσ σwφPr
wφσ  σσwφ

σ
rrr

rrrr

σrσrσ

σrσrσrσ
r T

T

sDs
sDDs

r

r

σ

σ

η
η&      (2-66) 

where the projection operator is given as 

r
r

σr
σσ σ

σ

wφσ
wφwφPr r

rr
ˆ

ˆ

ˆˆ
ˆ)ˆ( 2

T

sss
rrr σσσ ηηη −= .            (2-67) 

Then, let the initial values satisfy wΩw ∈)0(ˆ , mΩm ∈)0(ˆ , 
lσl Ωσ ∈)0(ˆ , and 

rσr Ωσ ∈)0(ˆ , 

the conditions wΩw ∈)(ˆ t , mΩm ∈)(ˆ t , 
lσl Ωσ ∈)(ˆ t , and 

rσr Ωσ ∈)(ˆ t  can be kept for all 

0≥t , i.e., ŵ , m̂ , lσ̂ , and rσ̂  are all bounded. 

Thus, the fact that the uncertain term ε  is bounded can be guaranteed by the modified 

adaptive laws (2-60), (2-62), (2-64), and (2-66). The following description states that the 

analytic result of stability is the same as (2-59) by re-selecting the adaptive laws (2-60), 

(2-62), (2-64), and (2-66). First, define some useful variables as 

 )~1ˆ(~ wφww
&

w

T sJ
η

+=  (2-68) 

 )~1ˆ(~ mwφm mm
&

m

T sJ
η

+=  (2-69) 

 )~1ˆ(~
lσlσ σwφσ

ll

&

l

sJ T

ση
+=  (2-70) 

and 

 )~1ˆ(~
rσrσ σwφσ

rr

&

r

sJ T

ση
+= . (2-71) 

Then, the derivative of Lyapunov function shown in (2-51) can be rewritten as 

)( rcusJJJJV −++++= ε
rl σσmw

& .                 (2-72) 

By using (2-60), 0=wJ  for ] )0ˆˆ  and   ˆ(or    ˆ [ ≤=< φwww ww
TsDD  can be obtained. 

For )0ˆˆ  and   ˆ( >= φww w
TsD , 

φw
w

ww
w ˆˆ

ˆ
ˆ~
2

T
T

sJ = .                         (2-73) 

can be obtained. Because *w  belongs to the constraint set wΩ , we have *ˆ ww w ≥= D . 

Using this fact, we obtain 0)~ˆ(
2
1ˆ~ 222* ≤−−= wwwwwT . Thus, equation (2-73) can be 

rewritten as  
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0ˆˆ
ˆ

)~ˆ(

2 2

222*

≤
−−

= φw
w

www
w

TsJ .                 (2-74) 

Similarly, by using (2-62), 0=mJ  can be obtained for mm D<ˆ [  or  m mD=ˆ (  and 

] )0ˆˆ ≤wφm m
Ts ; and for )0ˆˆ andˆ( >= wφm  m mm

TsD , the inequality 

0ˆˆ
ˆ

)~ˆ(

2 2

222*

≤
−−

= wφm
m

mmm
mm

TsJ                 (2-75) 

can be obtained. By using (2-64), we obtain 0=
lσ

J  for 
lσlσ D<ˆ [  or 

lσlσ D=ˆ (  and 

] )0ˆˆ ≤wφσ
lσl

Ts ; and for  )0ˆˆ andˆ( >= wφσ  σ
ll σlσl

TsD , the inequality 

0ˆˆ
ˆ

)~ˆ(

2 2

222*

≤
−−

= wφσ
σ

σσσ
ll σl

l

lll
σ

TsJ                 (2-76) 

can be obtained. By using (2-66), 0=
rσ

J  for 
rσrσ D<ˆ [  or 

rσrσ D=ˆ (  and 

] )0ˆˆ ≤wφσ
rσr

Ts ; and for  )0ˆˆ  andˆ( >= wφσ σ
rr σrσr

TsD , the inequality 

0ˆˆ
ˆ

)~ˆ(

2 2

222*

≤
−−

= wφσ
σ

σσσ
rr σr

r

rrr
σ

TsJ                 (2-77) 

can be obtained. Hence, for any possible condition occurs in (2-60), (2-62), (2-64), and (2-66), 

the conditions 0≤wJ , 0≤mJ , 0≤
lσ

J , and 0≤
rσ

J  can be satisfied. Then, (2-72) can be 

reorganized as 

)( rbusJJJJV −++++= ε
rl σσmw

&                         

)( rbus −≤ ε .                                    (2-78) 

By substituting the robust controller (2-56), (2-78) can be rewritten as 

)
2

1( 2

2

ssV
δ

δε +
−≤&                                      

222
2

2
1)(

2
1

2
δεεδ

δ
+−−−=

ss                            

222

2
1

2
1 δε+−≤ s .                               (2-79) 

Using the same discussion in the section 2.4, the stability of the system with the projection 

algorithm can also be guaranteed. 
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2.6 Simulation Results 

 

In this section, the proposed ASAFNC is applied to a second-order chaotic dynamics 

system to verify its effectiveness. This scheme emphasizes that the parameter and network 

structure of the SFNN can be tuned online by the proposed algorithm. Consider a 

second-order chaotic dynamics system such as the Duffing’s equation describing a special 

nonlinear circuit or a pendulum moving in a viscous medium as follows [46] 

ufx += )(x&&                             (2-80) 

where )cos()( 3
21 tqxpxpxpf ω+−−−= &x  is the system dynamics, t is the time variable, 

ω  is the frequency, u  is the control force, and p , 1p , 2p , and q  are real constants. The 

solutions of (2-80) may exhibit periodic depending on the choice of these constants, i.e., it is 

almost periodic and chaotic behavior. The open-loop system behavior, i.e., 0=u , is 

simulated with 4.0=p , 1.11 −=p , 0.12 =p , and 8.1=ω  for observing the chaotic 

unpredictable behavior. The phase plane plots with an initial condition point (0, 0) are shown 

in Figs. 2-5(a) and 2-5(b) for 95.1=q  and 00.7=q , respectively. The uncontrolled chaotic 

system has different trajectories for different values of q. To illustrate the effectiveness of the 

proposed design method, a comparison among a fix-structure AFNC using symmetric 

Gaussian membership functions [50], a fix-structure AFNC using asymmetric Gaussian 

membership functions [51], and the proposed ASAFNC is made. 
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Fig. 2-5. Phase plane of uncontrolled chaotic dynamics system. 

 

 

2.6.1 Comparison with AFNC 

 

The simulation results of fix-structure AFNC using 3 symmetric membership functions 

are shown in Fig. 2-6. The tracking responses of state x  are shown in Figs. 2-6(a) and 2-6(d); 

the tracking responses of state x&  are shown in Figs. 2-6(b) and 2-6(e); and the associated 

control efforts are shown Figs. 2-6(c) and 2-6(f) for 95.1=q  and 00.7=q , respectively. 

The simulation results show that the tracking responses decline when membership functions 

are selected insufficiently. 
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Fig. 2-6. Simulation results of AFNC using 3 symmetric membership functions. 

 

 

Next, the simulation results of fix-structure AFNC using 20 symmetric membership 

functions are shown in Fig. 2-7. The tracking responses of state x  are shown in Figs. 2-7(a) 

and 2-7(d); the tracking responses of state x&  are shown in Figs. 2-7(b) and 2-7(e); and the 

associated control efforts are shown Figs. 2-7(c) and 2-7(f) for 95.1=q  and 00.7=q , 

respectively. The simulation results show that the favorable tracking performance can achieve; 

however, the computation load is heavy. These results demonstrate the fact that it is difficult 

to consider the balance between the rule number and the desired performance. 
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Fig. 2-7. Simulation results of AFNC using 20 symmetric membership functions. 

 

 

To show that the learning capability of neural network can be upgraded as using the 

asymmetric Gaussian membership functions, the fix-structure AFNC using asymmetric 

Gaussian membership functions is applied to chaotic dynamics system again. The simulation 

results of fix-structure AFNC using 3 asymmetric membership functions are shown in Fig. 

2-8. The tracking responses of state x  are shown in Figs. 2-8(a) and 2-8(d); the tracking 

responses of state x&  are shown in Figs. 2-8(b) and 2-8(e); and the associated control efforts 

are shown Figs. 2-8(c) and 2-8(f) for 95.1=q  and 00.7=q , respectively. The simulation 

results show that the favorable tracking performance can be achieved. 
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Fig. 2-8. Simulation results of AFNC using 3 asymmetric membership functions. 

 

 

Next, the simulation results of fix-structure AFNC using 20 asymmetric membership 

functions are shown in Fig. 2-9. The tracking responses of state x  are shown in Figs. 2-9(a) 

and 2-9(d); the tracking responses of state x&  are shown in Figs. 2-9(b) and 2-9(e); and the 

associated control efforts are shown Figs. 2-9(c) and 2-9(f) for 95.1=q  and 00.7=q , 

respectively. The simulation results show that the favorable tracking performance can achieve; 

however, the computation load is heavy. Comparing with Figs. 2-6 and 2-8, and Figs. 2-7 and 

2-9 shows that the adaptive fuzzy neural network with asymmetric membership functions 

performs better than the adaptive fuzzy neural network with symmetric membership functions. 

However, the structure of the FNN should still be determined by the empiricism. 
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Fig. 2-9. Simulation results of AFNC using 20 asymmetric membership functions. 

 

 

2.6.2 Simulation for ASAFNC 

 

To solve the above problem, the proposed ASAFNC is applied to the chaotic dynamics 

system. The parameters of ASAFNC system are selected as 21 =k , 12 =k , 80=wη , 

2.0===
rlm σσ ηηη , 5.0=thG , 1.0=thI , 1.0=thP , 01.01 =τ , 05.02 =τ , 6.0=iσ , 

1.0=ϖ , and 6.0=δ . All the gains in the proposed control system are chosen to achieve the 

best transient control performance considering the stability and possible operating conditions. 

The parameters wη , mη , 
lσ

η , and 
rση  are the leaning rates of SFNN. If the leaning rates 

are chosen too small, the parameter convergence of SFNN will be easily achieved; however, 

this will result in slow learning speed. On the other hand, if the leaning rates are chosen too 

large, the learning speed will be fast; however, the SFNN system may become more unstable. 

The simulation results of ASAFNC for 95.1=q  and 00.7=q  are shown in Figs. 2-10 and 

2-11, respectively. The tracking responses of state x  are shown in Figs. 2-10(a) and 2-11(a); 

the tracking responses of state x&  are shown in Figs. 2-10(b) and 2-11(b); the associated 

control efforts are shown Figs. 2-10(c) and 2-11(c); the number of fuzzy rules is shown in 

Figs. 2-10(d) and 2-11(d); and the final shapes of membership functions are shown in Figs. 

2-10(e) and 2-11(e), respectively. These results state that the rule number and good tracking 

performance can be considered simultaneously in the simulation procedure. 
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Fig. 2-10. Simulation results of ASAFNC for 95.1=q . 
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Fig. 2-11. Simulation results of ASAFNC for 00.7=q . 

 

 

To demonstrate the control performance of the proposed ASAFNC system with different 

reference trajectories, the command )5.3cos(5.0)5.1sin()( tttxc +=  is examined here. The 

simulation results for 95.1=q  and 00.7=q  are shown in Figs. 2-12 and 2-13, respectively. 

The tracking responses of state x  are shown in Figs. 2-12(a) and 2-13(a); the tracking 

responses of state x&  are shown in Figs. 2-12(b) and 2-13(b); the associated control efforts 
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are shown Figs. 2-12(c) and 2-13(c); the number of fuzzy rules is shown in Figs. 2-12(d) and 

2-13(d); and the final shapes of membership functions are shown in Figs. 2-12(e) and 2-13(e), 

respectively. The simulation results show that the proposed ASAFNC system, which includes 

SFNN with the asymmetric Gaussian membership function, can achieve satisfactory tracking 

responses in the presence of different reference trajectories. Moreover, a concise SFNN 

structure can be obtained by the proposed self-structuring mechanism and the online learning 

algorithms. 
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Fig. 2-12. Simulation results of ASAFNC for 95.1=q  with different trajectory. 
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Fig. 2-13. Simulation results of ASAFNC for 00.7=q  with different trajectory. 
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Chapter 3 

System Identification via Hopfield-based 

Dynamic Neural Network 
 

 

A dynamic neural network (DNN) is a collection of dynamic neurons which are fully 

interconnected to a function of their own output. Its stability analysis has been intensively 

studied since the late 1980’s. First, local asymptotic stability was proved [52, 53]. It was 

shown that there could exist multiple equilibria, which is useful for associative memory or 

pattern recognition. In this chapter, Hopfield-based DNN will be explored in system 

identification because of its inherent dynamic behavior. 

 

 

3.1 Preliminary 

 

Artificial neural networks can have three different types, which are based on their 

feedback link connection structures, i.e., recurrent (global feedback connections, e.g., 

Hopfield neural networks (HNNs) [34, 35, 54]), locally recurrent (local feedback connections, 

e.g., cellular neural networks [55, 56]), and non-recurrent (no feedback connection, e.g., 

perceptrons [57]). Feedback is like a two-edged sword, in that when it is applied improperly, 

it can produce harmful effects. In particular, the application of feedback can cause a system 

that is originally stable to become unstable. Our primary research in this chapter is in the 

stability of recurrent networks. We focus attention on recurrent networks that use global 

feedback. Figure 3-1 shows a kind of recurrent neural network, which consists of a set of 

neurons form a multiple-loop feedback system. The output of each neuron is fed back to each 

of all neurons as the input in the NN. 
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Fig. 3-1. Architectural graph of an Hopfield network with N neurons. 

 

 

3.1.1 Brief of HNN 
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Fig. 3-2. A single neuron of the Hopfield neural network. 

 

When each neuron in Fig. 3-1 is adopted an Hopfield neuron, this network in Fig. 3-1 is 

the so-called Hopfield neural network. The HNN is first proposed by Hopfield J. J. in 1982 
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[34]. It is actually a nonlinear closed-loop feedback system which will have dynamic 

responses in each of the output signals. Fig. 3-2 shows an electric circuit that implements one 

neuron of HNN. The circuit is based on an RC network connecting a nonlinear activation 

function )(⋅ϕ  to confine iv  to yield the final output signal iz . In Fig. 3-2, the inputs )(tz j  

( Nj ,,1L= ) are fed back from the outputs )(tzi  ( Ni ,,1L= ). The inputs )(tz j  are 

represented by potentials; N is the number of inputs; and the synaptic weighting factors ijw  

are represented by conductance. The summing junction is characterized by a low input 

resistance, unity current gain, and high output resistance; that is, it acts as a summing node for 

incoming currents. A current source iI  represents the externally applied bias in the model. 

The function )(⋅ϕ  in the figure is a nonlinear sigmoid function. It limits the permissible 

amplitude range of the output signal to some finite value and is defined by hyperbolic tangent 

function: 

)exp(1
)exp(1

)
2

tanh()(
ii

iiii
ii va

vava
vz

−+
−−

=== ϕ                   (3-1) 

which has a slope of 2ia  at the origin as shown by 

0
2

=

=
ivi

ii

dv
da ϕ

.                                 

Hence, we can say that ia  is the gain parameter of neuron i. Figure 3-3 shows a plot of 

standard sigmoid nonlinearity )(vϕ . 
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Fig. 3-3. The hyperbolic tangent function with a = 4. 
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By using the Kirchhoff’s law which states that the total current flowing toward a junction is 

equal to the total current flowing away from that junction, the following dynamic node 

equation can be obtained: 

∑
=

+=+
N

j
ijij

i

ii
i Itzw

R
tv

dt
tdvC

1
)()()( , Ni ,,1L= .               (3-2) 

Because the input )(tz j  is the feedback of the output of the nonlinear sigmoid function )(⋅ϕ , 

equation (3-2) becomes: 

∑
=

+=+
N

j
ijij

i

ii
i Itvw

R
tv

dt
tdv

C
1

))((
)()(

ϕ , Ni ,,1L= .             (3-3) 

Equation (3-3) completely describes the time evolution of the system. A characteristic feature 

of (3-3) is that the signal ))(( tv jϕ  applied to neuron i by adjoining neuron j is a slowly 

varying function of time t. If each node is given an initial value )0(jv , the value )(tv j  and 

the nonlinear activation function output ))(()( tvtz jj ϕ=  at time t can be known by solving 

the differential equation in (3-3). In addition, the stability analysis of the HNN plays a major 

role in the applicability of HNN to engineering fields. The stability analysis of the HNN can 

be discussed via the energy (or Lyapunov) function of the HNN, which will be introduced in 

the next subsection. 

 

 

3.1.2 Stability Analysis of Network 

 

The energy (Lyapunov) function [29, 58] of the HNN can be defined by 
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Differentiating the energy function E  with respect to time and using the inverse relation, 
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The quantity inside the parentheses on the right-side of (3-5) equals actually to 
dt
dvC i

i  based 
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on (3-2). Thus, equation (3-5) can be simplified as 

∑
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⎛−=

N

i

ii
i dt

dz
dt
dvC

dt
dE

1

.                        (3-6) 

According to (3-1), the relation, )(1
ii zv −= ϕ , can be obtained. Then, the above (3-6) can be 

rearranged as 
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By using the chain rule, equation (3-7) can be further derived as: 
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Because the inverse output-input relation )(1
iz−ϕ  is a monotonically increasing function of 

the output iz . It follows therefore that 

0)(1

>
−

i

i

dz
zdϕ ,                            (3-9) 

for all iz . Moreover, the following inequality is also true that 

0
2

≥⎟
⎠
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⎜
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dt
dzi ,                            (3-10) 

for all iz . Hence, according to (3-9) and (3-10), the result can be obtained 
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Equation (3-11) states that if the nonlinear activation function is defined as the hyperbolic 

tangent function in (3-1), the set of nonlinear differential equations defined in (3-3), which 

represents the dynamic equations of the HNN, is asymptotically stable. Owing to the above 

introduction of the dynamic model of the HNN and the stability analysis of the network, many 

researchers are interested in the HNN applications. Thus, in this chapter, an HNN will be 

adopted as a basic cell of the nonlinear system identifier. 
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3.1.3 Problem Statement 

 

Consider a continuous time nonlinear dynamic system of the form 

) ,( uF xx =&                              (3-12) 

where [ ] T
nxxx  21 L=x  is the system state vector which is assumed to be available for 

measurement, ) ,( uF x  is a nonlinear function, which describes the dynamics of this system, 

and satisfies a local Lipschits condition such that (3-12) has a unique solution in the sense of 

Caratheodory, and u  is the admissible control input. Also, equation (3-12) can represent 

either affine or non-affine systems. In addition, we assume that ) ,( uF x  is bounded. If the 

admissible control input is given, then for any finite initial condition, the state trajectories are 

uniformly bounded for any finite 0>T . Hence, ∞<)(Tx . In practice, however, the system 

information can not be acquired effectively, the works about the system analysis and the 

controller design can not be proceeded. Thus, the purpose of this chapter is to design an 

identifier to perform the nonlinear unknown system identification by the dynamic neural 

network (DNN) based on an HNN with the Lyapunov’s training algorithm. A block diagram 

of identification architecture of the DNN based on an HNN is shown in Fig. 3-4. 
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Fig. 3-4. The block diagram of identification architecture of the DNN based on an HNN. 
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3.2 Identification of Hopfield-based DNN 

 

In order to identify the nonlinear dynamic system in (3-12), a dynamic neural network 

based on the Hopfield neural network is developed. This proposed DNN based on the HNN is 

single layer, fully interconnected, recurrent nets, containing connections of sigmoid functions 

in its neurons. The proposed scheme in the input and output parts is changed slightly the 

structure from the original HNN structure to achieve better identified effect. According to 

(3-3), the mathematical formula of the proposed Hopfield-based DNN with zero bias can be 

expressed as follows 

UBWΦBWxAx u++= ϕˆ&̂                       (3-13) 

where T
n

T
n vvxx ][]ˆˆ[ˆ 11 LL ==x  is the state vector of the neural network; 

]1      1[ 11 nnCRCRdiag −−= LA  and ]1      1[ 1 nCCdiag L=B  are diagonal matrices; 

ϕW  is an nn×  matrix of synaptic weights for nonlinear state feedback; uW  is an nn×  

matrix of synaptic weights for a single input, of the forms ][ )1()1(1 ++= nnnu wwdiag LW , 

or mn
u

×ℜ∈W  in which every row is defined as ][ )()1( mniniu, i ww ++= LW  for 

multi-inputs; [ ] T
nxqxq  )ˆ()ˆ( 1 ϕϕ L=Φ  is the vector of the network feedback and q  is a 

positive constant; and [ ] T
muu  1 L=U  is the vector of the control force. )(⋅ϕ  is a 

nonlinear mapping and frequently defined via a so-called sigmoid function, which may, for 

example, be defined by hyperbolic tangent function as well as (3-1). Fig. 3-5 shows the 

designed DNN using HNN. 

 



 

47 

)(⋅ϕ

)(⋅ϕ

C R

11w

nw1

1x

+

+

+

+
+

+
+

+

1 ,1 +nw

mnw + ,1

C R

1nw

nnw
nx

1 , +nnw

mnnw + ,

M

M

M

M

M

M

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mu

u
u

M
2

1

U

M

M

1u

mu

1u

mu
 

 

Fig. 3-5. Architecture of the dynamic neural network based on an Hopfield neural network. 

 

From above discussion, a deduction that for a given nonlinear system, there exists an 

approximate Hopfield-based DNN model can be obtained. Let us first assume that an exact 

model of the plant is available (i.e., there is no model error). That is, there exist optimal 

matrices of weighting factor, *
ϕW  and *

uW , such that the nonlinear dynamic system (3-12) 

is completely described by a Hopfield-based DNN of the form 

UBWΦBWAxx **
u++= ϕ&                        (3-14) 

where all parameters or matrices are as defined earlier. Moreover, the optimal matrices can be 

further defined as [44, 59] 

⎥⎦

⎤
⎢⎣

⎡ ++−=
∈∈∈∈∈

)ˆ() ,( sup min arg) ,(
 ,x̂ ,,

**

ˆ

UBWΦBWxAxWW
ΩΩΩxΩWΩW xxWW

u
u

u uF
uuu

ϕϕ
ϕϕ

    (3-15) 

where 

{ }
ϕϕ ϕϕϕ ww WWWΩ Dtrace T ≤= )(:                    (3-16) 

and 
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{ }
uu

Dtrace u
T
uu ww WWWΩ ≤= )(: .                   (3-17) 

ϕwD  and 
u

Dw  are positive constants specified by designers, and xΩ , xΩ ˆ , and uΩ  are 

compact sets. However, in fact, the optimal weighting factors are difficult to be determined. 

Thus, the adaptive laws for weighting training have to be appropriately designed to guarantee 

the identification performance of the Hopfield-based DNN identifier. Define the 

approximation error between states of the identified DNN and states of the real system as 

xxe ˆ−= .                             (3-18) 

Thus, the derivative of e  with respect to time can be obtained by (3-13) and (3-14) 

UWBΦWBAee u
~~ ++= ϕ&                        (3-19) 

where ϕϕϕ WWW −= *~  and uuu WWW −= *~ . The next discussion is to find weight adaptive 

laws that guarantee to minimize the identified error and the convergence for the identification 

process. Thus, the identification problem can be stated as optimization and stability problems. 

The weight adaptive laws will be obtained by proving the stability of the identified system. 

Now, the following theorem is given first to discuss the system stability and determine the 

adaptive laws of weighting factors based on no existence of the modeling error. The theorem 

states the main result concerning the convergence of the proposed identification scheme. 

 

Theorem 1: A nonlinear dynamic system is considered in (3-12), and we assume it can be 

modeled exactly by (3-14). The identified system is designed as (3-13). If the adaptive laws of 

weighting factors are selected as 

iiiiijij epbvqw )(  , ϕηϕϕ =&                        (3-20) 

and 

iiiiiuiju epubw η=  ,&                           (3-21) 

or 

iiiiijujniu epbuw η=+ )(  ,&                         (3-22) 

where ϕη  and uη  are learning rates and positive constants, the stability of the overall 

identification scheme is guaranteed. The adaptive law in (3-21) is for a single input and (3-22) 

is for multi-inputs. 

 

Proof: Consider the Lyapunov candidate function as 



 

49 

)~~(
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2
1

u
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u

u

TT tracetraceV WWWWPee
ηη ϕϕ

ϕ

++=            (3-23) 

where 0>P  is chosen to satisfy the Lyapunov equation, QPAPA −=+ T . Taking the 

derivative of V  with respect to time and using (3-19) yields 
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Using the Lyapunov equation, i.e., QPAPA −=+ T , obtains 
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V
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Because PeBWΦ TTT
ϕ

~ , PeBWU TT
u

T ~ , ΦWPBe ϕ
~T , and UWPBe u

T ~  are all scales, the 

following relationship between them can be obtained as 

ΦWPBePeBWΦPeBWΦ ϕϕϕ
~)~(~ TTTTTTTT ==                     

and 

UWPBePeBWUPeBWU u
TTTT

u
TTT

u
T ~)~(~ == .                    

Hence, the derivative of V  with respect to time can arrange as 

)~~(1)~~(1~~
2
1

u
T
u

u

TTT
u

TTTTT tracetraceV WWWWPeBWUPeBWΦQee &&&
ηη ϕϕ

ϕ
ϕ ++++−= . (3-24) 

We select 

PeBWΦWW TTTTtrace ϕϕϕ
ϕη

~)~~(1
−=&                    (3-25) 

and 

PeBWUWW TT
u

T
u

T
u

u

trace ~)~~(1
−=&

η
.                  (3-26) 
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Substituting (3-25) and (3-26) into (3-24), (3-24) can arrange as 

0
2
1

≤−= QeeTV& .                         (3-27) 

Therefore, the stability of the overall identification scheme is guaranteed based on the above 

result and Lyapunov stability theorem. The adaptive laws of weighting factors in an element 

form can be obtained based on (3-25) and (3-26) as 

iiiiijij epbvqw )(  , ϕηϕϕ =&                               

and 

iiiiiuiju epubw η=  ,&                                 

or 

iiiiijujniu epbuw η=+ )(  ,&                               

where the second adaptive law is for a single input and the last is for multi-inputs. ▓ 

This stability theorem is guaranteed under the optimal identification model with no modeling 

error. The next section, we will discuss that if the modeling error does not equal zero, whether 

the system stability is still guaranteed or not. 

 

 

3.3 Robust Analysis 

 

Let us consider the same identification scheme in (3-13). If the modeling error s  does 

not equal to zero but small, the stability proof in the previous section may not be guaranteed, 

i.e., 0>V& . Assume there exist a constant ∞<γ  so that 

∫ <
t

ds
 

0 

2 γτ , ∞<≤ t0 .                             

The exact identification model (3-14) needs to correct to consist with the fact and represents 

as follows: 

su +++= UBWΦBWAxx **
ϕ&                      (3-28) 

where all parameters or matrices are as defined earlier. The approximation error is still 

defined as xxe ˆ−= , and the derivative of e  with respect to time is corrected as 

su +++= UWBΦWBAee ~~
ϕ& .                     (3-29) 

In addition, the projection algorithm [44, 48, 49] is considered to modify Theorem 1 and 

Theorem 2 is given as follows. 
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Theorem 2: Consider a nonlinear dynamic system represented by (3-12), and we assume it 

can be described exactly by (3-28) with the modeling error s . The identified system is 

defined as (3-13). Let the weighting factors be adjusted by the following adaptive laws: 
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where the symbol “tr” means “trace” and ϕη  is learning rate and positive constant, and the 

projection operator is given as 
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where uη  is learning rate and positive constant, and the projection operator is given as 

iju

iju

iiiiiiju
uiiiiiuiiiiiu w

w

epbuw
epubepub   ,2

  ,

  ,)( ηηη −=Pr .                  

Then, the following properties can be held: 

1. 
ϕϕϕ wWW Dtrace T ≤)(  and 

uwu
T
u Dtrace ≤)( WW  

2. ∫∫ −
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−
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TT
dtsVdt
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1)0(

1)(
2 P

QQ
e

λλ
 where )(min Qλ  is the minimum 

eigenvalue of Q . 

 

Proof: 

1. In order to prove the fact that the condition 
ϕϕϕ wWW Dtrace T ≤)(  can be held, let  

)(
2
1

w ϕϕϕ
WWTtraceV = .                        (3-32) 

If the first line of (3-30) is true, we have either 
ϕϕϕ wWW Dtrace T <)(  or 

0)(   ,w ≤= iiiiiijj epbwvqV ϕϕ ϕη
ϕ

&                     (3-33) 

when 
ϕϕϕ w

T Dtrace  )( =WW . That is, the condition 
ϕϕϕ wWW Dtrace T ≤)(  can always be 

satisfied if the first line of (3-30) is true. If the second line of (3-30) is true, we have 
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ϕϕϕ w
T Dtrace  )( =WW  and 

0
)(
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  ,
  ,w =−= ij

ij

iiiiiijj
ijiiiiij w

w

epbwvq
wepbvqV ϕ

ϕ

ϕ
ϕϕϕ

ϕ
ηϕη

ϕ
& .        (3-34) 

That is, 
ϕϕϕ wWW Dtrace T ≤)( . Therefore, the condition 

ϕϕϕ wWW Dtrace T ≤)( , 0 ≥∀ t  can 

be held. By using the same discussion, the condition 
uwu

T
u Dtrace ≤)( WW , 0 ≥∀ t  can also 

be derived. 

 

2. Consider the same Lyapunov candidate function in (3-23), and taking the derivative of V  

with respect to time and using (3-29) yields 

)~~(1)~~(1]~  

~~~[
2
1

u
T
u

u
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u

T

TTTTT
u

TTTTTT

tracetraces

sV

WWWWPeUWPBe

ΦWPBePAeePePeBWUPeBWΦPeAe

&&

&

ηη ϕϕ
ϕ

ϕϕ

++++

+++++=
        

)~~(1)~~(1]  

~~~~[
2
1

2
1

u
T
u

u

TTT

u
TTTT

u
TTTTT

tracetracess WWWWPePe

UWPBeΦWPBePeBWUPeBWΦQee

&&

ηη ϕϕ
ϕ

ϕϕ

++++

++++−=
          

Because PeBWΦ TTT
ϕ

~ , PeBWU TT
u

T ~ , ΦWPBe ϕ
~T , UWPBe u

T ~  and PeTs  are all scales, 

the following relationship between them can be obtained as 

ΦWPBePeBWΦPeBWΦ ϕϕϕ
~)~(~ TTTTTTTT ==                     

UWPBePeBWUPeBWU u
TTTT

u
TTT

u
T ~)~(~ ==                      

sss TTTT PePePe == )( .                                     

Hence, the derivative of V  with respect to time can arrange as 

)~~(1)~~(1~~
2
1

u
T
u

u

TTTT
u

TTTTT tracetracesV WWWWPePeBWUPeBWΦQee &&&
ηη ϕϕ

ϕ
ϕ +++++−= . (3-35) 

Define some useful variables as 

PeBWΦWWw
TTTTtraceJ ϕϕϕ

ϕηϕ

~)~~(1
+= &                  (3-36) 

and 

PeBWUWWw
TT

u
T

u
T
u

u

traceJ
u

~)~~(1
+= &

η
.                 (3-37) 

Thus, the derivative of V  with respect to time shown in (3-35) can be rewritten as 
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sJJV TT
u

PeQee ww +++−=
ϕ2

1& .                    (3-38) 

By using (3-30), 0=
ϕwJ  for 

ϕϕϕ wWW Dtrace T <)( [  or 
ϕϕϕ w

T Dtrace  )( ( =WW , and 

] )0)(   , ≤iiiiiijj epbwvq ϕϕ can be obtained. For 
ϕϕϕ w

T Dtrace  )( [ =WW  and 

] 0)(   , >iiiiiijj epbwvq ϕϕ , 

∑=
ji

ijiiiii

ij

ijij
j wepb

w

ww
vqJ

 ,
  ,2

  ,

  ,  ,
~

)( ϕ

ϕ

ϕϕϕ
ϕw .                 (3-39) 

can be obtained. Because *
ϕW  belongs to the constraint set 

ϕwΩ , the inequality 

*
  ,  ,  ijwij wDw

u ϕϕ ≥=  can be obtained. By using the previous inequality, 

0)~(
2
1~ 2

  ,

2

  ,

2*
  ,  ,  , ≤−−= ijijijijij wwwww ϕϕϕϕϕ  can be obtained. Thus, equation (3-39) can be 

rewritten as 

0
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Similarly, by using (3-31), 0=
u

J w  for 
uwu

T
u Dtrace <)([ WW  or 

uwu
T
u Dtrace  )(( =WW , 

and )]0   , ≤iiiiiiju epbuw  can be obtained. For 
uwu

T
u Dtr  )( [ =WW  and ] 0  , >iiiiiiju epbuw , 
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ji

ijuiiiii
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ijuiju wepb
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u
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can be obtained and the following inequality 

0
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2*
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≤
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= ∑
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ijuiiiii

iju

ijuijuiju wepb
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wwwuJ
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can be derived. Hence, for any possible condition occurs in (3-30) and (3-31), the conditions 

0≤
ϕwJ  and 0≤

u
J w  can be satisfied. Then, equation (3-38) can be reorganized as 

sJJV TT
u

PeQee ww +++−=
ϕ2

1&                                     

sTT PeQee +−≤
2
1                                               

sT PeeQ +−≤ 2
min )(

2
1 λ                                          
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2222
min 2

1)2(
2
1)1)((

2
1 sssT PPPeeeQ +++−−−= λ                

22
min 2

1)1)((
2
1 sPeQ +−−≤ λ                              (3-43) 

Integrating both sides of (3-43) from 0=t  to Tt =  ( ∞<< T0 ) and choosing that 

1)(min >Qλ  yield 

∫∫ +−−≤−
TT

dtsVtVdt
 

0 

22 

0 

2
min 2

1)]0()([ )1)((
2
1 PeQλ           (3-44) 

Since 0)( ≥tV , equation (3-44) can be arranged as 

∫∫ −
+

−
≤

TT
dtsVdt
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22

minmin
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2

1)(
1)0(

1)(
2 P

QQ
e

λλ
           (3-45) 

which is equivalent to the second property. Thus, the approximation error e will converge to a 

certain small boundary. ▓ 

 

Remark: To simplify the discussion, without losing generality, the adaptive law (3-31) 

derived in Theorem 2 is only for a single input. The adaptive law for multi-inputs can also be 

derived by using the similar approach in the proof of Theorem 2. 

 

In the next two sections, the proposed DNN based on the HNN will be applied to 

identify nonlinear dynamic systems. Two examples are employed to illustrate the 

effectiveness of the proposed scheme. 

 

 

3.4 Simulation Results of Magnetic Levitation System 

 

In this section, a model of the magnetic levitation system [53, 60], which is nonlinear, 

unstable, and non-affine, is considered first. This system has the basic ingredients of systems 

constructed to levitate mass, used in gyroscopes, accelerometers, and fast trains. The equation 

of motion of the ball is 

) ,( ixHmgxkxm ++−= &&&                        (3-46) 

where m  is the mass of the ball, x  is the vertical (downward) position of the ball, k  is a 

viscous friction coefficient, g  is the acceleration of gravity, ) ,( ixH  is the force generated 

by the electromagnet, and i is its electric current. According to Reference [53], ) ,( ixH  can 
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be obtained and (3-46) can be represented as the standard canonical form as follows: 

2
1

2
0

22

21

)(2 xam
auL

x
m
kgx

xx

+
−−=

=

&

&

                     (3-47) 

where 1x  (m) is the vertical gap between the ball and the magnet, 2x  (m/second) is the 

vertical velocity of the ball, u  (A) is the current in the coil of the electromagnet, 

001.0=k N/m/s, 1.0=m kg, 02.00 =L H is the nominal point inductance, and 05.0=a m is 

positive constant. In order to obtain suitable data for identification, the control force is 

selected as 

)())()(()( 2211 tuxktrtxktu b+−−−=                   (3-48) 

where 9568.501 −=k  and 5640.22 −=k  are the state feedback gains, )(tr  is a reference 

position and )(tub  is a model-based bias given by 

0

2))(()(
aL
mgtratub += .                       (3-49) 

This bias is introduced to make the point [ ] Trx  0=  an equilibrium point. Moreover, the 

reference is chosen to be a sum of five sinusoidals with different frequencies plus an offset 

∑
=

+=
5

1
0)sin()(

j
jj rtwAtr                        (3-50) 

where 04.0=jA  and 5 ,,1L=j , 5.01 =w , 12 =w , 33 =w , 44 =w , 45 =w , and 

13.00 =r . Fig. 3-6 shows the training data obtained from the closed-loop identification 

experiment in advance. 

The parameters of the DNN based on the HNN are selected as Ω=  100R , F 01.0=C , 

1=ia , 1=q , and [ ]2  2diag=Q . The initial voltages of two Hopfield neurons are both zero 

volt. The learning rates of weighting factors are selected as 05.0=ϕη  and 01.0=uη . The 

initial weight values are all set as 0.1. The following simulation results show the identification 

ability of the proposed network. The simulation results are shown in Figs. 3-7, 3-8, and 3-9. 

The command trajectories 1cx  and 2cx , the identified vertical position of the ball 1x̂ , and 

the identified vertical velocity of the ball 2x̂  are shown in Figs. 3-7(a) and 3-7(b). Figs. 3-7(c) 

and 3-7(d) are the enlarging drawing of y-axis of Figs. 3-7(a) and 3-7(b), respectively. Figs. 

3-8(a) and 3-8(b) show the approximated errors. Fig. 3-9 shows the training process of 

weighting factors. 
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Fig. 3-6. Training data obtained from the magnetic levitation system. 
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Fig. 3-7. Behavior of identification system. 
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Fig. 3-8. The error of identification. 
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Fig. 3-9. The training conditions of weighting factors. 

 
 
3.5 Simulation Results of Non-affine System 

 

The model of this example is referred to as Reference [26, 61] and described as 

tu
exxuxx ux

cos
)21(1.1

225.02

=
−−−= −−&                     (3-51) 

where the initial condition is set as 0)0( =x . Fig. 3-10 shows the training data obtained from 

the closed-loop identification experiment in advance. The parameters of the DNN based on 

the HNN are selected as Ω=  100R , F01.0=C , 1=ia , 1=q , and [ ]2  2diag=Q . The 

learning rates of weighting factors are selected as 5.1=ϕη  and 3.0=uη . The initial weight 

values are all set as 0.2. The following simulation results show the identification ability of the 

proposed network. The simulation results are shown in Figs. 3-11 and 3-12. The command 

trajectory cx  and the response of state x  is shown in Fig. 3-11(a); Fig. 3-11(b) is the 

enlarging drawing of Fig. 3-11(a) from 0=t  second to 2=t  second; and Fig. 3-11(c) 

shows the approximated errors. Fig. 3-12 shows the training process of weighting factors. In 

order to examine the robustness of the proposed scheme, a disturbance is added to the system 

after 10 seconds and the nonlinear system (3-51) is become as: 

tu
exxuxx ux

cos
)21(1.1

225.02

=
+−−−= −− ζ&                   (3-52) 

where ζ  is defined as )2sin(5.0 t . The simulation results are shown in Figs. 3-13 and 3-14. 

The command trajectory cx  and the response of state x  is shown in Fig. 3-13(a); Fig. 

3-13(b) is the enlarging drawing of Fig. 3-13(a) from 8.9=t  second to 11=t  second; and 

Fig. 3-13(c) shows the approximated errors. Fig. 3-14 shows the training process of weighting 
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factors. 

According to two simulation results, it is obvious that the proposed scheme can display 

good identified performance. Even though the nonlinear dynamic system encounters a 

disturbance suddenly, the proposed structure still maintains good identified property. The 

modified structure of the dynamic neural network also shows its flexibility. The simulation 

results also show a good robust ability of the proposed scheme in the section 3.5. 
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Fig. 3-10. Training data obtained from experimenting in advance. 
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Fig. 3-11. Information of identification system. (a) is the response of state x ; (b) is the 

enlarging drawing of (a); and (c) shows the approximated errors. 
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Fig. 3-12. The training conditions of weighting factors. 
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Fig. 3-13. Information of identification system. (a) is the response of state x ; (b) is the 

enlarging drawing of (a); and (c) shows the approximated errors. 
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Fig. 3-14. The training conditions of weighting factors. 
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Chapter 4 

Performance Comparison between SFNN and 

Hopfield-based DNN 
 

 

After successfully completing the scheme developments and simulations for the static 

and dynamic neural networks, we will discuss the following two issues on the 

implementations of software and hardware. 

 

 

4.1 Software Analysis with Implementation 

 

For the fuzzy system or the fuzzy neural network, membership functions and fuzzy rules 

must be pre-determined by the trial-and-error method. This is a time-consuming work because 

we must consider the balance between the rule number and the desired performance. When 

the SFNN scheme is proposed, this annoying work must be solved first. In addition, for the 

control theories, the problem of acquiring effectively the unknown system information must 

be solved when the DNN identifier is developed. In the processes of two computer 

simulations, the program code of the Hopfield-based DNN is simpler than one of the SFNN 

because the Hopfield-based DNN is a single-layer structure, but the SFNN has four layers. 

Moreover, the SFNN has the structure adaptation algorithm. This algorithm also results in 

complex codes. Although membership functions and fuzzy rules for the SFNN are not 

determined in advance, there are several parameters of the structure adaptation algorithm 

which need to be predetermined by the designers in the beginning of simulation. If many 

membership functions and fuzzy rules are grown at a moment, the computation load may 

become heavy instantly. 

For the implementation of computer simulation of the Hopfield-based DNN, the code is 

brief because it just has a single layer. However, the selection of values of capacitance and 

resistance is an annoying problem. In Chapter 3, the matrices, A  and B , are consisted of 

capacitance and resistance. If the values of these two matrices are too large, the sampling time 

of simulation must be set very short and the learning rates must be chosen very small to avoid 
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the system output diverging immediately. Perhaps, the Hopfield-based DNN is more suitable 

to be realized in the real-time environment than to be simulated by the computer. In addition, 

the Hopfield-based DNN can be a de-stabilized system by improper initial conditions. As long 

as the little problem of selecting the values of parameters is solved, the simulation of the 

Hopfield-based DNN can be accomplished easily. 

In summary, although the SFNN and the Hopfield-based DNN both have some 

drawbacks for the software implementation, they can both show good desired performance 

based on the simulation results in the above chapters. 

 

 

4.2 Hardware Analysis with Implementation 

 

For the hardware implementation, the Hopfield-based DNN is still simpler than the 

SFNN if the learning algorithm is neglected. The network structure of SFNN consists of many 

membership functions and fuzzy rules. It is difficult to implement the complex computation 

process including fuzzifying, inferring, and defuzzifying. We must adopt a single-chip 

microcontroller 8051, a semiconductor device FPGA (field-programmable gate array), or a 

DSP (digital signal processing) to implement the structure of the SFNN. We also need a great 

number of memories to store the data of means, variances, and weights. Moreover, it is also a 

hard work to implement the structure adaptation algorithm of the SFNN. The problems, which 

include the complex computation and a great number of memories, must be considered. 

Because the growing or pruning of membership functions and fuzzy rules must be decided in 

time, we need the faster CPU to execute these programs. When the procedure of the growing 

of membership functions and fuzzy rules is executed, more memories are required. When the 

procedure of the pruning of membership functions and fuzzy rules is executed, more 

memories, which are assigned in advance, are wasted. Therefore, the implementation of the 

SFNN is really a difficult work. 

For the Hopfield-based DNN, we just need some capacitance, resistance, and summing 

junctions to implement the identifier circuit if the learning algorithm is neglected. It is a 

simple network which is implemented possibly. All algorithms of the Hopfield-based DNN 

can be executed by the circuit. According to the voltage of capacitance, we can obtain the 

solution. However, the selection of capacitance and resistance is an important issue. The 

values of capacitance and resistance will affect the dynamic behavior of the Hopfield-based 

DNN. When we consider the learning algorithms for both networks, the implementations may 
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become difficult works because the computation load and the implemented approaches are a 

big problem. However, the implementation of the Hopfield-based DNN is still simpler than 

one of the SFNN because there are two adjustable parameters for the Hopfield-based DNN, 

but the SFNN has four adjustable parameters. Therefore, the implementation of the 

Hopfield-based DNN is a more possible work than one of the SFNN. 

 

 

4.3 Summary 

 

TABLE 4-1. The comparison result between SFNN and Hopfield-based DNN for the software 

and hardware. 

 SFNN Hopfield-based DNN 

Program Code Long Brief 

Memory requirement More Medium 

Performance Good Good 

Implementation by 

software 
Hard Easy 

   

Implementation by 

hardware 
Hard (by the faster CPU) Easy (by a simple circuit) 

Cost High Low 

 

 



 

69 

Chapter 5 

Conclusions with Future Works 

 

 

For the fuzzy neural network (FNN) control design, the structure of the FNN should be 

determined in advance by the empiricism. It is difficult to consider the balance between the 

rule number and the desired performance. Therefore, in Chapter 2 of this dissertation, we 

develop an adaptive self-structuring asymmetric fuzzy neural-network control (ASAFNC) 

system, which consists of a self-structuring fuzzy neural network (SFNN) controller and a 

robust controller. In the SFNN controller, SFNN, which adopts asymmetric Gaussian 

membership functions in the structure and parameter learning phases, is utilized to mimic an 

ideal controller. The structure learning phase of SFNN is used to find how many rules and 

membership functions are necessary, and the parameter learning phase of SFNN is concerned 

with the parameter values of membership functions in the premise part and the crisp value in 

the consequence part. The robust controller is designed to compensate for the modeling error 

between the SFNN controller and the ideal controller. An online training methodology is 

developed in the Lyapunov sense, and thus the stability of the closed-loop control system can 

be guaranteed. The simulation results of a chaotic dynamics system show that the ASAFNC 

can achieve favorable tracking performance without control system dynamics. 

In addition, in many researches of control theories and system analyses, it is very 

important to understand the system model. In order to acquire the sufficient system 

information, a new dynamic neural network (DNN) based on the Hopefield neural network 

(HNN) is proposed to perform the nonlinear system identification in Chapter 3 of this 

dissertation. Lyapunov’s method is applied to derive the adaptive laws of weighting factors of 

Hopfield-based DNN. The guarantee of convergence for the identification process is 

examined by Lyapunov stability theory. The simulation results demonstrate that the proposed 

identification scheme can achieve good identified performance which is consistent with the 

convergent analysis discussed in Chapter 3 of this dissertation. The modified structure of the 

DNN also shows its flexibility. 

Although the structure of the SFNN has been developed well, the universal 

approximation theorem of the SFNN is not still explored. Thus, one of the future works is to 

derive the universal approximation theorem of the SFNN. In order to avoid the possible 
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situation about the high degree of overlapping of membership functions, the similarity 

measure method and the merged algorithm for membership functions and fuzzy rules also 

need to be developed and the weighting factor needs to be determined after merging fuzzy 

rules. In addition, due to the simple architecture of the Hopfield-based DNN, we will try to 

implement the hardware of the identifier scheme based on the proposed scheme and theorem. 

Because the Hopfield-based DNN identifier has been developed successfully in this 

dissertation, we will tend towards the control design by the Hopfield-based DNN in the 

future. 
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