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ABSTRACT

In this dissertation, a novel fuzzy neural network control law and a new Hopfield-based
dynamic neural network identifier is developed for nonlinear dynamic systems. For the first
control design, an adaptive self-structuring asymmetric fuzzy neural-network control
(ASAFNC) system which consistsi'of a self=structuring fuzzy neural-network (SFNN)
controller and a robust controller is proposed.. The SFNN controller uses a SFNN with
structure and parameter learning” phases.-to mimic an ideal controller in a real-time
environment. The robust controller is designed-to compensate for the modeling error between
the SFNN controller and the ideal ‘controller. The proposed ASAFNC system is applied to a
second-order chaotic dynamics system. The simulation results show that the proposed
ASAFNC can achieve favorable tracking performance. For the second scheme, a new
dynamic neural network based on the Hopfield neural network is proposed to perform the
nonlinear system identification. The weighting factors of the proposed neural network are
adjusted by the Lyapunov approach. Stability analysis is performed by the Lyapunov-like
criterion to guarantee the error convergence during identification. Finally, in order to illustrate
the effectiveness of this method, the proposed scheme is applied to identify two nonlinear
systems. The simulation results demonstrate that the proposed dynamic neural network
trained by the Lyapunov approach can obtain good identified performance which is consistent
with the convergent analysis proposed in this dissertation.
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Right-side variance of the asymmetric Gaussian function in the j-th term of the
i-th input linguistic variable x.

Small positive constant for the membership function

Vector of mean of the asymmetric Gaussian function

Vector of left-side variance of the asymmetric Gaussian function



Q

E=})

Vector of right-side variance of the asymmetric Gaussian function

Vector of weighting factor

Vector of the firing strength

Degree measure of firing strength associated with the k-th rule

Maximum degree measure

Number of the existing fuzzy rules at the time t
Threshold for the growing method

Mean of the new membership function

Left-side variance of the new membership function
Right-side variance of the new membership function
Weight of the new membership function

Threshold for the pruning algorithm

Significant index of the.r-th rule

Designed constant-for the pruning:algorithm
Designed constant for the pruning algorithm
Another threshold*for the.pruning algorithm
Optimal SFNN controller

Approximation error

Optimal vector of the firing strength

Optimal vector of weighting factor

Optimal vector of mean of the asymmetric Gaussian function

Optimal vector of left-side variance of the asymmetric Gaussian function

Optimal vector of right-side variance of the asymmetric Gaussian function

Estimated vector of ¢

Estimated vector of w
Estimated vector of m

Estimated vector of o,

Estimated vector of o

Compact set for w



Q. Compact set for m
Q, Compact set for ¢,
Q, Compact set for ¢,
D, Positive constant
D, Positive constant
D,, Positive constant
D, Positive constant
A Upper bound for approximation error
u Modeling error
w Difference between w~ and w
¢ Difference between ¢~ and ¢
m Difference between m~ and m
G, Difference between ¢ tand" 6,
G, Difference betweenl ¢} and &,
h Vector of higher-order term
£ Uncertain term
<, Positive constant
c, Positive constant
c, Positive constant
c, Positive constant
0 Vector of derived parameter
r Vector of derived parameter
., Learning rate for w
M Learning rate for m
My, Learning rate for o,
Mo, Learning rate for o,
) Attenuation constant
Lyapunov function
J, Parameter for the derivative of Lyapunov function

Xi



J Parameter for the derivative of Lyapunov function

I, Parameter for the derivative of Lyapunov function

Js. Parameter for the derivative of Lyapunov function

@ Frequency for a second-order chaotic dynamics system

p Real constants for a second-order chaotic dynamics system
P: Real constants for a second-order chaotic dynamics system
P, Real constants for a second-order chaotic dynamics system
q Real constants for a second-order chaotic dynamics system
<Chapter 3>

() Nonlinear activation function

V; Voltage of the capacitance for the ith neural cell

Z; Recurrent input and neural output for the ith neural cell

W; Synaptic weighting factors

a, Gain parameter of:neuron

C Capacitance for theith ,neural cell

R; Resistance for the ith.neural cell

E Energy function for the analysis of the Hopfield neural network
X System state vector

F(x,u) Unknown nonlinear function

u Admissible control input

T Time

X State vector of the neural network

A Diagonal matrix of system state

B Diagonal matrix of nonlinear state feedback and system input
b; Element of matrix B

W, Matrix of synaptic weight for nonlinear state feedback

W, Matrix of synaptic weight for input

() Vector of the network feedback

q Positive amplification

Xii



*ng- c

*

=

=

=
N

IS ) P
<

=
S

O O ® ¥ ®

=z

(-]

l

N

=)

f=

S
)

© o m < =

R

Vector of the control force
Optimal matrix of W,
Optimal matrix of W,

compact set for W,
compact set for W,

compact set for x

compact set for y
Positive constant

Positive constant
Approximation error

Difference between W; and W,

Difference between W, and W,
Learning rate

Learning rate

Lyapunov function

Parameter of Lyapunov equation
Parameter of Lyapunov equation
Modeling error

Constant

Eigenvalue

Lyapunov function

Parameter for the derivative of Lyapunov function

Parameter for the derivative of Lyapunov function

Mass of the ball
Viscous friction coefficient

Acceleration of gravity

Force generated by the electromagnet

Electric current of the electromagnet system

Vertical gap between the ball and the magnet

Xiii



Vertical velocity of the ball
Current in the coil of the electromagnet or control input

Nominal point inductance

Positive constant

State feedback gain for control law
State feedback gain for control law
Reference position

Model-based bias

Parameter of reference position
Parameter of reference position
Parameter of reference position

Disturbance

Xiv



Chapter 1

Introduction

1.1 Background and Motivation

The development in the control area has been fueled by three major needs: the need to
deal with increasingly complex systems, the need to accomplish increasingly demanding
design requirements, and the need to attain these requirements with less precise advanced
knowledge of the plant and its environment [1]. Hence, many researches are interested in
some intelligent control design or intelligent systems to attain these needs.

In the past two decades, fuzzy systems have replaced conventional technologies in many
scientific applications and engineering.systems, especially in control systems. Fuzzy sets,
introduced by Zadeh in 1965 [2] as'a mathematical'way to represent vagueness in linguistics,
can be considered a generalization of classical set.theory. Fuzzy sets are a generalization of
conventional set theory and contain objects that belong imprecisely to the set. The degree of
belonging is defined by the value of*a membership function, which usually has values
between 0 and 1. One of the biggest differences between crisp and fuzzy sets is that the
former always have unique membership functions, whereas every fuzzy set has an infinite
number of membership functions that may represent it. Fuzzy logic control (FLC) system,
which induces human experience and human decision-making behavior, has been developed
over 20 year. In the design of a FLC system, the sensory variables are converted into the
fuzzy numbers by membership functions and they are matched with the preconditions of
linguistic IF-THEN rules (fuzzy logic rules) and then the response of each rule is obtained
through fuzzy computation. As a result, it will generally lead to fuzzy outputs. Finally, the
fuzzy outputs are inverted into a crisp result to obtain the appropriate control signal. One
major feature of fuzzy logic is its ability to express the amount of ambiguity in human
thinking and subjectivity. In summary, the advantages of fuzzification include greater
generality, higher expressive power, an enhanced ability to model real-world problems, and a
methodology for exploiting the tolerance for imprecision. Hence, this algorithm provides a
way of representing the uncertainties in a complex model. However, system designers must

spend more time to ascertain how many rules are best [3] and fuzzy systems do not have



much learning capability [4].

The concept of neural network (NN) was first proposed by McCulloch and Pitts in 1943
[5]. NNs are a new generation of information processing systems that are deliberately
constructed to make use of some of the organizational principles. They have a large number
of highly interconnected processing elements (nodes) that usually operate in parallel and are
configured in regular architectures. A NN has a massively parallel and distributed structure
that is composed of many simple processing elements i.e., artificial neurons with nonlinear
mapping functions. The neurons in a NN can communicate with each other through the links
i.e., weights between the neurons [6]. The collective behavior of an NN is like a human brain
to demonstrate the ability to learn, recall, and generalize from training patterns or data. NNs
offer the salient characteristics and properties, such as nonlinear input-output mapping,
generalization, adaptation, fault tolerance, and evidential response etc. Therefore, the NN has
been applied to various areas [7-9]. However, because the internal layers of neural networks
are always opaque to the user, the mapping rules in the network are not visible and are
difficult to understand. The convergencesof dearning is usually very slow and not guaranteed
[4].

Recently, the fuzzy neural network (FNN), which incorporates the advantages of fuzzy
inference and neuro-learning, has been‘an interesting topic. Fuzzy logic and NNs are
complementary technologies in the design of intelligent systems. The FNN possesses the
merits of the low-level learning and computational power of NN, and the high-level human
knowledge representation and thinking of fuzzy theory [4, 10]. Due to their learning ability,
FNNs are increasingly receiving attention in solving the control problems [11-14]. Hence, the
FNN will be a focus of our researches. Although the neuro-learning structure can tune
membership functions and fuzzy rules automatically, the structure of the FNN should be
determined in advance by trial-and-error. It is difficult to consider the balance between the
rule number and the desired performance. As a result, if the number of fuzzy rules is chosen
too large, the computation loading is heavy so that it is not suitable for practical applications.
If the number of fuzzy rules is chosen too small, the control performance may be not good
enough to achieve the desired performance.

To solve the problem of determining the structure in FNN approaches, much interest has
been focused on the self-structuring fuzzy neural network (SFNN) approach [15-19]. The
self-structuring approach demonstrates the properties of automatic generating rules for FNN
without needing preliminary knowledge. In general, the mathematical description of the
existing rules can be expressed as a set of clusters. As usually seen in other self-structuring



approaches, the new membership function is generated when a new input signal is too far
from the current clusters, and an existing rule is deleted when the fuzzy rule is insignificant.
SFNNs also have been adopted widely for the control of complex dynamic systems due to
their good generalization capability, structural adaptation, and simple computation [20-25].
Some of them use the gradient descent method to derive the parameter learning algorithms;
however, they can’t guarantee the system stability [22, 23]. Some of them derive the
parameter learning algorithms based on the Lyapunov function to guarantee system stability;
however, the structure learning algorithm is too complex [20, 24, 25]. Some of them proposed
a simple growing-and-pruning algorithm to online self-structure the FNN with symmetric
membership functions; however, the bounds of parameters are not stated [21].

In addition, system identification also plays an important role in control field. It is an
important task for control engineer to acquire system information so as to design a proper
control law based on a good understanding of the plant under consideration and its
environment. It has been clear that a mathematical description of a plant is often a prerequisite
for system analysis and controller design:in.control system theory. System identification,
whether online or offline, is an essential part.of any control system design. The processes of
system identification mainly consists of two- steps:-the first is to choose an appropriate
identification model and the second is to adjust parameters of the selected model according to
some derived adaptive laws so ‘that the output.of the selected model can approach the
response of the real system under the same input [26]. Hence, the nonlinear system
identification process has turned out to be one of central parts in various control researches.

Recent research results show that NN techniques seem to be very effective to identify a
wide class of complex nonlinear systems when the complete model information can not be
available [27-29]. NNs have been an interested focus because they have good learning,
noise-tolerance, and generalization abilities to solve the nonlinear problem. According to the
used types of NNs, they can be qualified as static (feed-forward) or as dynamic (recurrent)
nets. The first one deals with the class of global optimization problems. The universal
approximation property of static NNs makes them be a useful tool for modeling nonlinear
systems. The designers try to adjust weights of such NNs to achieve favorable performance.
The second approach, which converts the partial learning (training) focuses to an adequate
feedback design, permits to avoid many problems related to global extremum search [30].
When outputs are directed back as inputs to the same or the preceding layer node, the network
is a feedback network. Feedback networks that have closed loop are called recurrent networks.

From a system theoretical point of view, multilayer networks represent static nonlinear maps



while recurrent networks are represented by nonlinear dynamic feedback systems [27].
However, an important viewpoint is that static NNs are unable to represent dynamic system
mapping without the aid of tapped delay, which results in long computation time, high
sensitivity to external noise, and a large number of neurons when high dimensional systems
are considered [31, 32]. This drawback severely affects the applicability of static NNs to
system identification, which is the central part in some control techniques for nonlinear
systems. Dynamic neural networks (DNNSs) can deal with this disadvantage since they have
dynamic memory, which makes them more suitable for representing dynamic systems than
static NNs. Hence, if the mathematical model of a considered process is incomplete or
partially known, the DNN approach provides an effective instrument to research a wide
spectrum of problems such as identification, state estimation, trajectories tracking, etc. [33].
Recurrently connected NNs, sometimes called Hopfield neural networks (HNN), which is a
special kind of DNN, have been extensively studied in recent years. The HNN is first
proposed by Hopfield J.J. in 1982 and 1984 [34, 35]. Because of the easy implementation of
the HNN circuit, the characteristic of decreasing in energy by finite number of node-updating
steps, and the dynamical behavior:0f the networks,"the HNN has found many applications in
different areas, such as optimization [36, 37], system identification [38, 39], and image
processing [40, 41]. However, in [38, 39], the system identification via HNN involved a

learning process which has no guarantee'for convergence.

1.2 Major Works

In this dissertation, a SFNN in which the learning phase considers both the structure and
parameter learning phases is proposed. The structure adaptation is described as follows. A
new rule is generated when a new input signal is too far from the current clusters. To avoid
the unrestricted growth of membership functions and fuzzy rules, we use an exponential
function to calculate the significant indexes of each existing fuzzy rule. The exponential
function can gradually increase or decrease the significant index values for each rule. If the
fuzzy rule of SFNN is insignificant, it will be removed to reduce the computation load; and if
the fuzzy rule of SFNN is significant, it will be retained. Thus, the SFNN can self-structure
the fuzzy rules online to achieve an optimal network structure. Moreover, by accommodating
the left-sided and right-sided spreads into a standard Gaussian membership functions, the
asymmetric Gaussian membership functions can upgrade the learning capability and



flexibility of a NN [42].

Therefore, one of purposes of this dissertation is to develop an adaptive self-structuring
asymmetric fuzzy neural-network control (ASAFNC) system, which consists of a SFNN
controller and a robust controller. The SFNN controller utilizes a SFNN to mimic an ideal
controller, and the robust controller is designed to compensate for the modeling error between
the SFNN controller and the ideal controller. The learning phase of SFNN includes the
structure learning phase and the parameter learning phase. The structure learning phase
consists of the growing and pruning algorithms of fuzzy rules to achieve an optimal network
structure, and the parameter learning phase adjusts the interconnection weights of NN to
achieve favorable approximation performance. All the parameters of ASAFNC are tuned
online based on the Lyapunov stability to achieve favorable performance. Finally, the
effectiveness of the proposed ASAFNC scheme is demonstrated by simulations. The
simulation results show that not only favorable tracking performance can be achieved but also
a concise network structure can be obtained by the proposed structure learning method.

In addition, for the system identification, the other purpose of this dissertation is to
develop a new HNN identifier to perform nonlinear'system identification which can guarantee
the convergence subject to several constraints. The weights of the proposed scheme will be
adjusted to minimize the identification ‘error by- Lyapunov’s method in a real-time
environment. The guarantee of cenvergence for the identification process with robustness
analysis will be explored. Finally, the‘propased scheme is applied to identify two nonlinear
systems to illustrate its effectiveness. The simulation results demonstrate that the proposed
Hopfield-based DNN trained by the Lyapunov approach can obtain good identified
performance which is consistent with the convergent analysis discussed in the later chapter.

1.3 Dissertation Overview

The rest of this dissertation is organized as follows. Chapter 2 describes the design
procedure of an adaptive self-structuring asymmetric fuzzy neural-network control for the
static neural network. The training algorithms of parameters, including means and variances
of membership functions and weights of the NN, are developed. The stability analysis and
example illustrations are also provided in this chapter. For the DNN, the Hopfield-based DNN
identifier is developed in Chapter 3. The training algorithm of weighting factors of the DNN
is investigated. The stability analysis and example illustrations are also provided in this



chapter. The software and hardware of the implementation comparison between SFNN and
Hopfield DNN is provided in Chapter 4. Finally, conclusions with future works are included
in Chapter 5.



Chapter 2
Adaptive Self-structuring Asymmetric Fuzzy

Neural-network Control Design

According to the used types of neural networks (NNs), they can be qualified as static
(feed-forward) or as dynamic (recurrent) nets. In this chapter, the development of the static
NN is priority to be discussed. The control design of fuzzy neural network (FNN) is explored
first. The stability of the control system and examples will be also illustrated in this chapter.

2.1 Problem Statement

Consider the nth-order nonlinear'dynamic.system-of the form
x'= f(x)+u (2-1)
where x =[x x---x"V]", which is assumed to_be available for measurement, is the state
vector of the system, f(x) is the system dynamics equation, and u is the control effort.
The control objective is to find a control law so that the state trajectory x can track a
command trajectory x_, and thus a tracking error is defined as
e=Xx,—X. (2-2)

If the system dynamics f (x) in (2-1) is well known, there exists an ideal controller as [43]

U =—f(x)+x™ +k e+ . +ke+ke (2-3)
where k., i=1,2,---,n isnon-zero positive constant. Substituting (2-3) into (2-1) yields
e™ +k, eV +..+k,e+ke=0. (2-4)

If k, are chosen to correspond to the coefficients of a Hurwitz polynomial whose roots lie

strictly in the open left half of the complex plane, then |lime=0 can be inferred for any

t—oo

starting initial conditions. However, because the system dynamics f(x) may be unknown or

perturbed in practice, the ideal control law y” in (2-3) cannot be implemented easily. To



solve the problem of the model-based control approach for real-time implementation, adaptive
fuzzy neural-network control (AFNC) techniques have been developed to control these kinds
of unknown nonlinear dynamic systems [11-14]. These techniques use a structure of FNN to
estimate the plant or controller parameters in a real-time environment. If the FNN is applied
to estimate the model of the plant, it is called an indirect AFNC, and if the FNN is applied to
estimate the controller of the plant, it is called a direct AFNC [44].

adaptive self-structuring
asymmetric fuzzy neural network control

adaptive
law

W,m,0,,6
\ ]

sliding | S _ SFNN Usn  + Uac

surface | controller R 4
+
A

ﬂk'lr MuN

vy

structuring
algorithm

> robust U,
o —— controller
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Fig. 2-1. The block diagram of ASAFNC system.

According to the design concept of the direct AFNC, we propose an adaptive
self-structuring asymmetric fuzzy neural-network control (ASAFNC) system as shown in Fig.

2-1. The ASAFNC system is composed of a SFNN controller and a robust controller as

Uy =Ugy + Uy (2-5)

ac ~— “sfnn

The SFNN controller y  ~ utilizes the SFNN with asymmetric Gaussian membership



functions to mimic the ideal controller in (2-3), and the robust controller y_ is designed to

compensate for the modeling error between the SFNN controller y_ ~ and the ideal
controller y*. For further analysis, first define a sliding surface as
s=e(™ 1k e +---+k2e+k1J.0te dr. (2-6)

Substituting (2-5) into (2-1) and using (2-3) and (2-6), yields

$=U —Ug, —U,. (2-7)

sfan

2.2 Description of SFNN

Fuzzy logic and NNs are complementary technologies in the design of intelligent
systems. FNNs retain the basic properties and functions of NNs with some of their elements
being fuzzified. In this approach, a network’s domain knowledge becomes formalized in
terms of fuzzy sets, later being applied to enhance'the learning of the network and augment its
interpretation capabilities. By incorparating fuzzy principles into a NN, more user flexibility
is attained and the resultant network or system becomes more robust [4]. FNNs are generally
a fuzzy inference system constructed from structure of NN. Learning algorithms are used to
adjust the weightings of the fuzzy inference system.

Figure 2-2 shows the configuration of the proposed SFNN which is composed of the
input, the membership, the rule, and the output layers. Layer 1 accepts the input variables.
Nodes at layer 2 are term nodes which act as membership functions to represent the terms of
the respective linguistic variables. The asymmetric Gaussian membership function constituted
by a center, a left-side variance, and a right-side variance is considered. Nodes of layer 3 are
regarded as fuzzy rules. The links before layer 3 represent the preconditions of rules and the
links after layer 3 represent the consequences. Layer 4 is the output layer, where the node in

this layer is the output of the NN. The interactions for those layers are given as follows.
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Fig. 2-2. The structure of SFNN.

Layer 1 - Input layer: For every node i in this layer, the net input and the net output are
represented as

'net, = 'x, (2-8)
Yy =1, (1neti): net, i=12.--,L (2-9)
where ‘x, represents the ith input to the node of layer 1 and L is the total number of input

variables. They mean that output equals input in this layer. This layer of SFNN just executes
the transmission work.

Layer 2 - Membership layer: In this layer, each node performs a membership function and
acts as a unit of memory. The bell-shaped function is adopted as the membership function.

For the ith input, the corresponding net input and output of the jth node can be expressed as

10



(in_z ] )2

’net, = —~— . (2-10)

(zaij )2

y, = %, (2net, )=exp(’net,) j=12,-M (2-11)

1

2

2

where ’m; is the mean, ’c; is the variance and M is the total number of membership

functions with respect to the respective input node. In this study, the input linguistic variable
is the tracking error vector.

Layer 3 - Rule layer: Each node k in this layer is denoted by [I which multiplies the
incoming signals and outputs the result of the product. For the kth rule node, the operation of
the net input and output of this layer is presented as

*net, =T °w; % (2-12)

Y, = 3fk(3netk): *net,, k=1,2,---,N (2-13)

3

where “x. represents the i, jth input to the kth node of layer 3, 3wij between the

ij

membership and the rule layers are assumed.as unity, and N is the total number of fuzzy
rules.

Layer 4 - Output layer: The single node o in this layer is labeled as X, which computes the
overall output as the summation of all incoming signals. It executes the sun-of-weighting

defuzzification. The description of.the net input-and output is expressed as

“net, =X “w, X, (2-14)
k

Yy, = 4f0(4neto): “net, (2-15)

4

where “w, is the output action strength of the output associated with the kth rule, *x,

represents the kth input to the node of layer 4, and *y, is the output of SFNN.
In order to improve the learning capability and flexibility of a NN, asymmetric Gaussian
membership functions are adopted, instead of ball-shaped functions described in layer 2.

According to the above description, the output of the SFNN with N existing fuzzy rules can

be represented simply as
N
Yo = D Wy (x) (2-16)
k=1

in which w, is the output action strength associated with the k-th rule and ¢, is the

T

response of the firing weight for an input vector x=[x, x,---X,]' and composed of

asymmetric Gaussian membership functions defined as [42]

11



(Xi — M )2 -
exp(—T), if —co<x <m
O )
S bm ) TR e
exp(———), if m; <x, <oo
(Uijr')

where M is the total number of membership functions with respect to the respective input

node; m. i

ij ! o

and oy are the mean, left-side variance, and right-side variance of the
asymmetric Gaussian function in the j-th term of the i-th input linguistic variable x, ,

respectively. However, o

; and o may become zero in the training procedure, the

membership function ¢ will not be defined. To avoid this problem, this dissertation

considers a membership function form as [44]

exp(—w) if —oo<x <m,
ol ra TR Em
i I | j i=120M (2-18)
exp(— (Xi r} +’ ), if m&x <o
oy @

where @ is a small positive constant. Then, the associated firing strength can be defined as

M
¢ = Hévjk : (2-19)
j=1
To note easily, define vectors m, ¢,,and o, collecting all parameters of SFNN as
]n:[m11 ce M My e M, eeeee My -+ My ]T (2-20)
6, =[0), -0 Oy oy R (2-21)
0, =[of, 0l 0f 0y e ofy ol I (2-22)

Thus, the output of the SFNN can be represented in a vector form as
Y, =W o(x,m,s,,0,) (2-23)

T

where w=[w, w, ---w,]" and ¢=[¢ &, - ¢,] For the FNN approaches, the

structure of the FNN should be determined in advance by empiricism. However, it is difficult
to consider the balance between the rule number and the desired performance. Therefore, the
structure adaptation algorithm which contains the growing and pruning of membership
functions and fuzzy rules is proposed in this dissertation. The descriptions are given as
follows.

In the process of the growing of membership functions, the concept which decides

12



whether to add a new node (membership function) in layer 2 and the associated fuzzy rule in
layer 3 will be introduced. The mathematical description of the existing rules can be
expressed as a set of clusters. For constructing the initial fuzzy rules of the SFNN, the fuzzy
clustering method is used to partition a set of data into a number of overlapping clusters based
on the distance in a metric space between the data points and the cluster prototypes. Each
cluster in the product space of the input-output data represents a rule. The firing strength of a

rule for each incoming data x; can be represented as the degree that the incoming data

belong to the cluster [19]. If the value of firing strength is too small, it indicates that the input
value is on the edge of range of the existing membership functions. Under this situation, the
output will cause unsatisfactory performance. Therefore, a new membership function and a
new fuzzy rule should be generated to improve the performance.

The firing strength from (2-19) is used as the degree measure
B =0, K=12,..,N(t) (2-24)
where N(t) is the number of the existing fuzzy rules at the time t. Define the maximum

degree S, as

max

Lroax = max f,. (2-25)

1<k<N (t)
If B, <G, Is satisfied, where G,:e(0,1) is-a pre-given threshold, the incoming data is
far from the edge of range of the existing membership functions. Hence, a new membership

function is generated. The mean and the variance of the new membership function and the

weight are selected as follows

m™ =x;, (2-26)
o =g (2-27)
oI =g (2-28)
W™ =0 (2-29)

where x; is the new incoming data and o, is a pre-specified constant. If the unknown
control system dynamics is too complex, we can choose the larger G, so that many

membership functions can be created.

13
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Fig. 2-3. The rise and decay curves, of the used frequency index.

Next, to avoid the unrestricted'growth of-network-structure and an overload computation,
the pruning algorithm is developed. to_eliminate /wrelevant fuzzy rules. In Ref. [21], a
significance index is determined”for. the importance of the fuzzy rules. The elimination
algorithm is derived from the observation that if the significance index fades when the firing
weight is smaller than a special threshold value and if the significance index fixes when the
firing weight is larger than a special threshold value [21]. In this dissertation, when the r-th
firing strength S, is smaller than the threshold value P, , it indicates that the relationship
becomes weak between the input and the r-th rule. Then, the significant index of r-th fuzzy
rules will be decreased. When the r-th firing strength £, is larger than the threshold value
P, , it indicates that the incoming inputs fall into the range of the r-th fuzzy rule. Thus, the

significant index of r-th fuzzy rules should be raised. The rise and decay curves of the used
frequency index show in Fig. 2-3. The significance index is determined for the r-th rules can

be given as

cr=12--,N@t) (2-30)

e |1 ©xRET), if B, <P,
r 1, ®)-2-expl-7,0-1,®)), if 5 =P,

where |, is the significant index of the r-th rule and its initial value is 1, P, is the pruning

14



threshold value, and z; and 7, are the designed constant. Exponential functions in (2-30)

are used to rise or decrease the values of significant index in [0, 1]. If I, <1, is satisfied,
where |, is another pre-given threshold, the r-th fuzzy rule will be deleted. For real-time
implementation, if the computation load is the issue having highest priority, P, should be

chosen large, so that more fuzzy rules can be pruned. This operation will prevent the fuzzy
rule, which may be less used but still significant, from being deleted in the training process.
Hence, the computation load would be reduced.

In summary, the flow chart of the structure learning algorithm is shown in Fig. 2-4. The
major contributions of the SFNN are: 1) SFNN can be operated directly without spending
much time pre-determining membership functions and fuzzy rules; and 2) the computation

load can be reduced simultaneously.

15
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2.3 Approximation of SFNN

An optimal SFNN controller can be designed to approximate the ideal controller (2-3)
even under the structural change of neural network, such that [44, 45]
U =ug +A=w'@(x,m ,6,,6.)+A=w @ +A (2-31)

sfan

where ¢ =¢(x,m ,6,,6.), A denotes the approximation error, and w", m’, ¢,, and

o, are the optimal vectors. In fact, the optimal vectors that best approximate a given

nonlinear function are difficult to be determined. Thus, an estimated SFNN controller is
introduced as

~

U,, =W @(X,m,6,,6.)=W @ (2-32)

sfnn

where ¢ = ¢(x,m,s,,6,) ad w, m, 6,, and ¢, are the estimated vectors of w, m,

c,,and ¢_, respectively. Moreover, the optimal vectors can be further defined as [44]

(w',m",6/,6;)=  argmin,, [sup u;nn(x)—usfnn(x,rﬁ,&l,&r)} (2-33)
§e, e, die0,, 5,60, |{e0, R
where
0, = wfwl< D, (2-34)
o T <0, 23
o, {6 l6,|<D, | (2-36)
Q, =15,:[6,|<D, } (2-37)

where D, D,, D,,and D, are positive constants specified by designers. There exists

A" which is a finite positive constant such that the inequality |A|< A" can be held. Define a

modeling error, U, as

U=U —Ug, =W @+W @+W @+A (2-38)

where w=w —w and ¢=¢ —¢ . In the following description, the linearization

technique is employed to transform the nonlinear fuzzy function into a partially linear form so

that the expansion ¢ can be expressed as [46]
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og, ] 04 | 041 |
¢, om 0o, 0o,
_ | 4| |92 R 1 N .
¢=|""|=| om | (m -m)+| 56 (6, —0,)+| o, (6, -6,)+h
JN a¢N a&N a&N
_6m_m=ﬁl _aﬂl_c:& —86‘"—6:&
= (pfnffl+(p;'61 +(|);r'&r +h (2-39)

~ ~

where h is a vector of higher-order term, m=m -m, 6, =0, -6,, and 6, =¢, —0,.
Substituting (2-39) into (2-38), (2-38) can be rewritten as
T=Wo+W (ohm+¢! 5 +0¢! & +h)+W+A
=W Q+m' ¢, W+6/0, W+6,0, W+s (2-40)
where m'o, W=w'g.m, 6,0, W=W'¢ 6, 6,90, W=W'¢_ 6, and the uncertain term

&=w'h+w'@+A. The higher-order term h satisfies

b =J= ¢, m ~ %5, - 0! 5,

<[@l+ @il + o5, 15, + o, [[5.
< cp+egimiie, |8, + ¢,/ | (2-41)
where ¢,, ¢;, ¢, and ¢, are positiveconstants satisfying ¢ <c,, |on| <c.. [of,|<¢,,

<c¢,. The existence of ¢,, ¢;, ¢,, and ¢, is assured due to the fact that Gaussian

]
0,

function and its derivative are always bounded by constants. Moreover, w, m, &,,and o,

satisfy
¥ = 8] <[w'] +[¥] <D, +1¥] 2-42)
] = ] < ] « o] < D, + ] @43
[5.l=lo: —8.[ <[oi] +]6:] < D, +]6 (2-44)
6.|=o; -6.|<|o:|+[s.] < D, +]5.]- (2-45)

Next, the uncertain term ¢ is satisfied
|| = HVV (¢nm+¢; 6, +0, 6, +h)+W'h+ AH

=W oLm + Wl 6, + W ol G, +wTh+ 4|
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< ¢, (D, +|W[)(D,, +|jm) +¢c,(D, +|W|)(D, +[s,[) +¢;(D, +|W|)(D, +

+ D, [c, +¢,(D,, +|m]) + ¢,(D, + 61D + ¢;(D, + 6, )1+ A"

)

Gr

=[6,,0,,0,,0,,0;,0,,0;, ®8][11”VAV”’”ﬁl”'”&l”'

6]‘

e e I e T

-0'T (2-46)
where @ =[0,,0,,0,,0,,0,,0,,0,,0,]", O, =(c,+2¢,D, +2¢,D, +2¢,D, )D, +A",
®,=¢,D, +¢,D, +¢,D, . ©,=2¢,D,, ©,=2c,D,, O, =2¢,D,, O,=c,, O, =c,,

Oy =¢; and T =[1[W], ], 6],

o, ||[n[|Ww]. &, W]} [o. W] - Since © is a bounded vector,

if T can be guaranteed to be bounded, the uncertain term . is bounded. The analysis of

boundness of T will be given in the later section.

2.4 ASAFNC Design

By using (2-40), (2-7) can be rewritten as
S=wW'o+m'Q, W6, 0, W6 ¢, W+s—U,. (2-47)
If & exists, consider a specified- L, tracking performance [46, 47]
T2 2 2T 2 1 ~T ~ 1 ~T ~
jo s2(t)dt <s2(0)+6 jo g2 (t)dt +=—w" (0)w(0) +—m" (0)m(0)
. . UM M (2-48)
+-—5] (0)5,(0) +——3 (05, (0)

where n,, 7,, 7, , and 7, are the positive-constant learning rates, and & is a
prescribed attenuation constant. If the system starts with initial conditions s(0)=0,
w(0)=0, m(0)=0, 6,(0)=0,and &,(0)=0, the L, tracking performance in (2-48) can

be rewritten as

sup M <0 (2-49)
cevsiom | £ |

where ||s||2 =j;sz(t)dt and ||g||2 :j;gz(t)dt. If §=c0, this is the case of minimum

error tracking control without disturbance attenuation. To determine the adaptive laws of the
parameters of ASAFNC appropriately and guarantee the closed-loop system stability, the
Lyapunov function candidate is defined as
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e o~ T~~~
yolg Ww mm, 660 00, (2-50)
2 2n, 20, 21, 21,

Differentiating (2-50) with respect to time and using (2-47) yield
~7T~ ~T ~ ~T~ ~T~
Vogg YW mm 60 6.0,
Ny UM s, Mo,

~T ~T ~ ~T= ~T
~TA ~T A ~T A ~T A w'w m'm 6,6, o 0,
=s(w @+m ¢, W+o, (Ps,W+Gr(PUW+5—Um)+ + + +

Mw M 5, 5,

=w' (S(f>+iv~'v) +m' (sp, W +i1?1) +6, (5S¢, W +igl)
Mw M o
(2-51)

~ “ 1 -
+8] (59, W+—5,)+5(e ~Uy)

Oy

Choose the adaptive laws as

W =-W =750 (2-52)
m=—m=—7, 50, W (2-53)
8, = —0y=-1, 59, W (2-54)
&, =6, =1, 50, W (2-55)

2
e s, (2-56)
Thus, equation (2-51) can be rewritten as
- 5% +1
V =5s(e— 57 S)
s §?
=Se———
2 25°
2
= —S——i(i—gﬁ)2 +=g%6°
2 2
< —%52 +%5252 | (2-57)

Assume ¢€L,[0,T], VT €[0,o). Integrating the above equation from t=0 to t=T

yields

1,7, 1,7 o
V(r)—V(O)s—Ejo s*dt+ 5 jo £2dt. (2-58)
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Since V(t) >0, we can arrange (2-58) as follows
1,7, 1 o7 o
Ejo S*dt <V (0)+28 jo £2dt (2-59)

which is equivalent to inequality (2-48) , i.e., L, tracking performance. Assume e¢elL,,

then the sliding surface s will converge to a certain small boundary. It is implied that the

tracking error e will also converge to a certain small boundary [47].

2.5 Boundary Analysis Using Projection Algorithm

Although the stability of ASAFNC can be guaranteed, the parameters w, m, o,, and

6. cannot be guaranteed within a desired bound value by using the adaptive laws

r

(2-52)-(2-55). According to the projection algorithm [44, 48, 49], the adaptive laws can be

modified as follows. The adaptive law of weight is

. _[nsh, W< D, 6r(%]=D, andsi §<0) 50
| Pr(n,s), if (IW|=D,andsw' ¢ > 0)
where the projection operator is given as
AT
w ~ w ~
Pr(nyse) =1,50-7,5— (f w. (2-61)
W]
The adaptive law of mean of asymmetric membership function is
A SQ_W, if [m| < D_ or (jm||=D,_ andsm"¢_w <0
_[msou®. || <D, or (=D, adshlg,i<0) )
Pr(n,se,w), if (||m|| =D, and sm ¢ _w>0)
where the projection operator is given as
AT A
PE (17,504 W) = 17,50, W — 77,8 2V (2-63)
il
The adaptive law of left-side variance of asymmetric membership function is
. [n.se,%,  if[é]<D, or(jé,|=D, andssle, W<0) .
~|Pr(n, 50, W), if(|6,|=D, and sG], W >0)
where the projection operator is given as
~ ~ é\sl-l—(l)olv’i, ~
Pr(ngI S(PG,W) =1,59,W—1,S >—0,. (2-65)

The adaptive law of right-side variance of asymmetric membership function is
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2 |m,se, W, if [6.[<D, or(|s,|=D, andscl¢, w<0)
6. =< o te e g o ' (2-66)
Pr(n, s, w), if (o, |=D, and se ¢, w>0)
where the projection operator is given as
~ ~ &I(PG ‘R’ ~
Pr(nar S(p [ w) = no'r S(pcrr W 770, S ~ r2 Gr ' (2-67)

r

m0)eQ,, §(0)eQ,,and & 0)ecQ,,

Then, let the initial values satisfy w(0) € Q

w!

the conditions w(t)eQ,, m(t)eQ,, 6,(t)eQ,, and o,(t)eQ, can be kept for all

w! m'’

t>0,ie, |[w|, [m|, |o,],and are all bounded.

G,
Thus, the fact that the uncertain term & is bounded can be guaranteed by the modified
adaptive laws (2-60), (2-62), (2-64), and (2-66). The following description states that the

analytic result of stability is the same as (2-59) by re-selecting the adaptive laws (2-60),
(2-62), (2-64), and (2-66). First, define some useful variables as

J, =w' (s¢ +iv‘e) (2-68)
== le o N -

J., =m (S wW+—m) (2-69)
~T ~ 1 -~

3, =T (6w +5,) (2-70)

75,
and

— L1

JGr = 6]‘ (S(pﬁrw +_61‘) " (2-71)

Oy

Then, the derivative of Lyapunov function shown in (2-51) can be rewritten as

V=J,+3,+J, +J, +s(e-u,)- (2-72)
By using (2-60), J, =0 for [|w|<D, or (jw|=D, and sw'¢<0)] can be obtained.

For (|w|=D, and sw'¢>0),

é. (2-73)

*

can be obtained. Because w~ belongs to the constraint set Q_, we have ||v“v|| =D, >w.

’ —||v“v||2 —||v~v||2) < 0. Thus, equation (2-73) can be

W

Using this fact, we obtain w'w =%(‘

rewritten as
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2 ~ |12 ~ 12
sl il L DS $<0. (2-74)

w

_s !
C2 I

Similarly, by using (2-62), J, =0 can be obtained for [|m|<D, or (|m|=D, and

sm'g,w<0)];andfor (jm|=D, and sm'¢,W >0), the inequality

*

2 ~ 112 ~ 112
m’ || | —|m[) _
m e w<0 (2-75)

A 12 m
Ll

can be obtained. By using (2-64), we obtain J_ =0 for [|6 <D, or (|s,|=D, and

(

m

N | »

s6, ¢, Ww<0)];andfor (| |=D, and s6]¢, W >0) , the inequality

TR ~
sl BEED, -
2 6.
can be obtained. By using (2-66), J =0 for [|s,|<D, or (|s,|=D, and
s6,¢, w<0)];andfor (|6 |=D, andis&]p, W >0) ,the inequality
2R ey~ e
i =%(“f ”Z'”z e g, <0 (2-77)

can be obtained. Hence, for any possible condition occurs in (2-60), (2-62), (2-64), and (2-66),

the conditions J_ <0, J_<0, J, <0; and J, <0 can be satisfied. Then, (2-72) can be
reorganized as
V=J,+1,+J, +1, +s(e—uy)
<s(e—u,). (2-78)

By substituting the robust controller (2-56), (2-78) can be rewritten as

- 0% +1
V <s(e— S
( 257 )
2
:—S——i(i—g§)z+18252
2 290 2
< —%SZ +%5252 . (2-79)

Using the same discussion in the section 2.4, the stability of the system with the projection
algorithm can also be guaranteed.
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2.6 Simulation Results

In this section, the proposed ASAFNC is applied to a second-order chaotic dynamics
system to verify its effectiveness. This scheme emphasizes that the parameter and network
structure of the SFNN can be tuned online by the proposed algorithm. Consider a
second-order chaotic dynamics system such as the Duffing’s equation describing a special
nonlinear circuit or a pendulum moving in a viscous medium as follows [46]

X=f(x)+u (2-80)

where f(x) =—px— p,x— p,x° +qcos(awt) is the system dynamics, t is the time variable,

@ s the frequency, u is the control force,and p, P, p,,and 4 are real constants. The
solutions of (2-80) may exhibit periodic depending on the choice of these constants, i.e., it is
almost periodic and chaotic behavior. The open-loop system behavior, i.e., u=0, is
simulated with p=04, p,=-11, p,=10, and w=1.8 for observing the chaotic
unpredictable behavior. The phase plane plots with an initial condition point (0, 0) are shown
in Figs. 2-5(a) and 2-5(b) for q =195 and q =7.00, respectively. The uncontrolled chaotic
system has different trajectories for different-values of g. To illustrate the effectiveness of the
proposed design method, a camparison:-among a -fix-structure AFNC using symmetric
Gaussian membership functions<[50],+a fix=structure AFNC using asymmetric Gaussian
membership functions [51], and the proposed ASAFNC is made.
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Fig. 2-5. Phase plane of uncontrolled chaotic dynamics system.

2.6.1 Comparison with AFNC

The simulation results of fix=structure AFENC using 3 symmetric membership functions
are shown in Fig. 2-6. The tracking'responses-of state -x are shown in Figs. 2-6(a) and 2-6(d);
the tracking responses of state X' are shown.in. Figs. 2-6(b) and 2-6(e); and the associated

control efforts are shown Figs. 2-6(c) and 2-6(f).for q=1.95 and q=7.00, respectively.

The simulation results show that the tracking responses decline when membership functions

are selected insufficiently.
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Fig. 2-6. Simulation results of AFNC using 3 symmetric membership functions.

Next, the simulation results of fix-structure AFNC using 20 symmetric membership
functions are shown in Fig. 2-7. The tracking responses of state x are shown in Figs. 2-7(a)
and 2-7(d); the tracking responses of state x aré-shown in Figs. 2-7(b) and 2-7(e); and the
associated control efforts are shown- Figs.-2-7(c) and 2-7(f) for q=1.95 and q=7.00,
respectively. The simulation results show that the favorable tracking performance can achieve;

however, the computation load iS-heavy. These-results demonstrate the fact that it is difficult
to consider the balance between the rule number and the desired performance.
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Fig. 2-7. Simulation results of AFNC using 20 symmetric membership functions.

To show that the learning capability of neural network can be upgraded as using the
asymmetric Gaussian membership functions, the fix-structure AFNC using asymmetric
Gaussian membership functions is applied to chaotic dynamics system again. The simulation
results of fix-structure AFNC using 3 asymmetric membership functions are shown in Fig.
2-8. The tracking responses of -state. x are shown iIn Figs. 2-8(a) and 2-8(d); the tracking
responses of state % are shown-n Figs. 2-8(h) and 2-8(e); and the associated control efforts
are shown Figs. 2-8(c) and 2-8(f) for .q=1.95 and q=7.00, respectively. The simulation

results show that the favorable tracking performance can be achieved.
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Next, the simulation results of fix-structure AFNC using 20 asymmetric membership
functions are shown in Fig. 2-9. The tracking responses of state x are shown in Figs. 2-9(a)
and 2-9(d); the tracking responses.of state X arershown in Figs. 2-9(b) and 2-9(e); and the
associated control efforts are shown-Figs.:2-9(c) and 2-9(f) for q=1.95 and q=7.00,
respectively. The simulation results show that the favorable tracking performance can achieve;
however, the computation load is-heavy: Comparing with Figs. 2-6 and 2-8, and Figs. 2-7 and
2-9 shows that the adaptive fuzzy neural-network with asymmetric membership functions
performs better than the adaptive fuzzy neural network with symmetric membership functions.
However, the structure of the FNN should still be determined by the empiricism.

state, X

0 5 10 15 20 25
time (sec)

(@)

31



X ‘9)e1s

15

10

time (sec)

(b)

&

= = =

p—t =

1049 _o:co_o

15

oo

e (sec)

25

20

15

10

time (sec)

(d)

X ‘21e1s

25

20

15

10

time (sec)
(e)

32



2':' T T T T

10

control effort
_

-10 _

220 I 1 1 1

time (sec)

()

Fig. 2-9. Simulation results of AFNC using 20 asymmetric membership functions.

2.6.2 Simulation for ASAFNC

To solve the above problem, the proposed”ASAFNC is applied to the chaotic dynamics
system. The parameters of ASAFNC system ‘are selected as k, =2, k,=1, n,=80,

o =1, =1, =02, G, =055 I, =04, P,=01, 7,=001, 7,=005, o,=06,

@ =0.1,and & =0.6. All the gains in‘the proposed-control system are chosen to achieve the
best transient control performance considering the stability and possible operating conditions.

The parameters 7, 7,, 7,,and 7, are the leaning rates of SFNN. If the leaning rates

are chosen too small, the parameter convergence of SFNN will be easily achieved; however,
this will result in slow learning speed. On the other hand, if the leaning rates are chosen too
large, the learning speed will be fast; however, the SFNN system may become more unstable.
The simulation results of ASAFNC for q=1.95 and q=7.00 are shown in Figs. 2-10 and

2-11, respectively. The tracking responses of state x are shown in Figs. 2-10(a) and 2-11(a);
the tracking responses of state X are shown in Figs. 2-10(b) and 2-11(b); the associated
control efforts are shown Figs. 2-10(c) and 2-11(c); the number of fuzzy rules is shown in
Figs. 2-10(d) and 2-11(d); and the final shapes of membership functions are shown in Figs.
2-10(e) and 2-11(e), respectively. These results state that the rule number and good tracking

performance can be considered simultaneously in the simulation procedure.
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Fig. 2-11. Simulation results of ASAFNC for q=7.00.

To demonstrate the control performance of the proposed ASAFNC system with different

reference trajectories, the command x_(t) =sin(1.5t) + 0.5co0s(3.5t) is examined here. The
simulation results for q=1.95 and g =7.00 are shown in Figs. 2-12 and 2-13, respectively.

The tracking responses of state x are shown in Figs. 2-12(a) and 2-13(a); the tracking

responses of state x are shown in Figs. 2-12(b) and 2-13(b); the associated control efforts
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are shown Figs. 2-12(c) and 2-13(c); the number of fuzzy rules is shown in Figs. 2-12(d) and
2-13(d); and the final shapes of membership functions are shown in Figs. 2-12(e) and 2-13(e),
respectively. The simulation results show that the proposed ASAFNC system, which includes
SFNN with the asymmetric Gaussian membership function, can achieve satisfactory tracking
responses in the presence of different reference trajectories. Moreover, a concise SFNN
structure can be obtained by the proposed self-structuring mechanism and the online learning

algorithms.
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Chapter 3
System Identification via Hopfield-based

Dynamic Neural Network

A dynamic neural network (DNN) is a collection of dynamic neurons which are fully
interconnected to a function of their own output. Its stability analysis has been intensively
studied since the late 1980’s. First, local asymptotic stability was proved [52, 53]. It was
shown that there could exist multiple equilibria, which is useful for associative memory or
pattern recognition. In this chapter, Hopfield-based DNN will be explored in system

identification because of its inherent dynamic behavior.

3.1 Preliminary

Artificial neural networks can have three different types, which are based on their
feedback link connection structures, ‘i.e., recurrent (global feedback connections, e.g.,
Hopfield neural networks (HNNs) [34, 35, 54]), locally recurrent (local feedback connections,
e.g., cellular neural networks [55, 56]), and non-recurrent (no feedback connection, e.g.,
perceptrons [57]). Feedback is like a two-edged sword, in that when it is applied improperly,
it can produce harmful effects. In particular, the application of feedback can cause a system
that is originally stable to become unstable. Our primary research in this chapter is in the
stability of recurrent networks. We focus attention on recurrent networks that use global
feedback. Figure 3-1 shows a kind of recurrent neural network, which consists of a set of
neurons form a multiple-loop feedback system. The output of each neuron is fed back to each
of all neurons as the input in the NN.
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Fig. 3-1. Architectural graph of an Hopfield network with N neurons.

3.1.1 Brief of HNN
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Fig. 3-2. Asingle neuron of the Hopfield neural network.

When each neuron in Fig. 3-1 is adopted an Hopfield neuron, this network in Fig. 3-1 is

the so-called Hopfield neural network. The HNN is first proposed by Hopfield J. J. in 1982
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[34]. It is actually a nonlinear closed-loop feedback system which will have dynamic
responses in each of the output signals. Fig. 3-2 shows an electric circuit that implements one
neuron of HNN. The circuit is based on an RC network connecting a nonlinear activation

function () toconfine v; to yield the final output signal z;. In Fig. 3-2, the inputs z; (t)
(j=1---,N) are fed back from the outputs z;(t) (i=1---,N). The inputs z(t) are
represented by potentials; N is the number of inputs; and the synaptic weighting factors w;
are represented by conductance. The summing junction is characterized by a low input
resistance, unity current gain, and high output resistance; that is, it acts as a summing node for
incoming currents. A current source I, represents the externally applied bias in the model.
The function ¢(-) in the figure is a nonlinear sigmoid function. It limits the permissible
amplitude range of the output signal to some finite value and is defined by hyperbolic tangent

function:

1-exp(-a,v;)

1+exp(-a,v;) (3-1)

2, = p(v;) = tanh(aizvi ) =

which has a slope of &, /2 at the,origin as:shown by

Hence, we can say that a, is the ‘gain parameter of neuron i. Figure 3-3 shows a plot of

standard sigmoid nonlinearity ¢(v) .

p(v) 2

1.5} q
5
0.5F A

0

-0.5¢ q

AdF— e - -

Fig. 3-3. The hyperbolic tangent function with a = 4.
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By using the Kirchhoff’s law which states that the total current flowing toward a junction is
equal to the total current flowing away from that junction, the following dynamic node
equation can be obtained:
dv, (t) Vi (t) :
w,z. (t)+1,, 1=1,---,N. 3-2
Lt Z 0 (3-2)

C

Because the input z,(t) is the feedback of the output of the nonlinear sigmoid function ¢(-),

equation (3-2) becomes:

dv, (t) vit) <

C. ZWU(D(V )+1,, i=1--,N. (3-3)

'odt R.

Equation (3-3) completely describes the time evolution of the system. A characteristic feature

of (3-3) is that the signal ¢(v,(t)) applied to neuron i by adjoining neuron j is a slowly
varying function of time t. If each node is given an initial value v;(0), the value v,(t) and
the nonlinear activation function output ,z,(t) = ¢(v;(t)) at time t can be known by solving

the differential equation in (3-3). In addition;the stability analysis of the HNN plays a major
role in the applicability of HNN-to,engineering fields: The stability analysis of the HNN can
be discussed via the energy (or Lyapunov) function of the HNN, which will be introduced in

the next subsection.

3.1.2 Stability Analysis of Network

The energy (Lyapunov) function [29, 58] of the HNN can be defined by

N N

P IAIES I WACUS oIS =

11|—1

Differentiating the energy function E with respect to time and using the inverse relation,

vi=0(z,) = élogﬁ; i‘ J , based on (3-1) yield

v, dz, )
_:—;(ZWUZJ—E ja (3 5)

The quantity inside the parentheses on the right-side of (3-5) equals actually to C, (jjt based
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on (3-2). Thus, equation (3-5) can be simplified as
N
_Z |[ ] (3-6)
i=1
According to (3-1), the relation, v, =¢*(z,), can be obtained. Then, the above (3-6) can be

rearranged as
N -1
___ch[d¢ (Z )]dz (3_7)
— dt dt

By using the chain rule, equation (3-7) can be further derived as:

N do™(z) ]
,21: '(dtj( dz, J (3-8)

Because the inverse output-input relation ¢'(z,) is a monotonically increasing function of

the output z,. It follows therefore that

M >0 (3-9)
dz.

for all z,. Moreover, the following inequality is.also.true that
dz
>0, 3-10
el 310)

for all z,.Hence, according to (3-9) and (3-10); the result can be obtained

N do(z)) ]
; ,(dtj (—dz j<o (3-11)

Equation (3-11) states that if the nonlinear activation function is defined as the hyperbolic
tangent function in (3-1), the set of nonlinear differential equations defined in (3-3), which
represents the dynamic equations of the HNN, is asymptotically stable. Owing to the above
introduction of the dynamic model of the HNN and the stability analysis of the network, many
researchers are interested in the HNN applications. Thus, in this chapter, an HNN will be
adopted as a basic cell of the nonlinear system identifier.
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3.1.3 Problem Statement

Consider a continuous time nonlinear dynamic system of the form
x = F(x,u) (3-12)
where x=[x, x, - x,]T isthe system state vector which is assumed to be available for

measurement, F(x,u) is a nonlinear function, which describes the dynamics of this system,
and satisfies a local Lipschits condition such that (3-12) has a unique solution in the sense of
Caratheodory, and u is the admissible control input. Also, equation (3-12) can represent

either affine or non-affine systems. In addition, we assume that F(x,u) is bounded. If the
admissible control input is given, then for any finite initial condition, the state trajectories are

uniformly bounded for any finite T > 0. Hence, |x(T) < oo|. In practice, however, the system

information can not be acquired effectively, the works about the system analysis and the
controller design can not be proceeded. Thus, the purpose of this chapter is to design an
identifier to perform the nonlinear unknown_system identification by the dynamic neural
network (DNN) based on an HNN‘with the Lyapunov’s training algorithm. A block diagram
of identification architecture of the DNN based.on‘an HNN is shown in Fig. 3-4.

do(x)
[dentifier of dynamic
neural network based| X
on Hopfield neural
network

>

A
>

Unknown nonlinear
system plant

Fig. 3-4. The block diagram of identification architecture of the DNN based on an HNN.
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3.2 Identification of Hopfield-based DNN

In order to identify the nonlinear dynamic system in (3-12), a dynamic neural network
based on the Hopfield neural network is developed. This proposed DNN based on the HNN is
single layer, fully interconnected, recurrent nets, containing connections of sigmoid functions
in its neurons. The proposed scheme in the input and output parts is changed slightly the
structure from the original HNN structure to achieve better identified effect. According to
(3-3), the mathematical formula of the proposed Hopfield-based DNN with zero bias can be

expressed as follows

X = AX+BW,® + BW,U (3-13)
where x=[% - X ] =[v, -~ v,]' is the state vector of the neural network;
A =diag[-1/R,C, --- -1/R.C,] and B=diag[l/C, --- 1/C.,] are diagonal matrices;

W, isan nxn matrix of synaptic weights for nonlinear state feedback; W, is an nxn

matrix of synaptic weights for a singlesinput;,of the forms W, =diag[w,,,,, -+ W],
or W, eR™ in which every prow |is defined as W, =[W,,,, - Wm] for
multi-inputs; ® =[qe(X,) - =qe(X,)]" s the vector of the network feedback and q isa

positive constant; and U:[u1 um]T isthe wvector of the control force. ¢(-) is a

nonlinear mapping and frequently defined via‘a so-called sigmoid function, which may, for
example, be defined by hyperbolic tangent function as well as (3-1). Fig. 3-5 shows the
designed DNN using HNN.
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Fig. 3-5. Architecture of the dynamie neural network based on an Hopfield neural network.

From above discussion, a deduction“that for a given nonlinear system, there exists an
approximate Hopfield-based DNN model can be obtained. Let us first assume that an exact

model of the plant is available (i.e., there is no model error). That is, there exist optimal

matrices of weighting factor, W; and W, , such that the nonlinear dynamic system (3-12)

is completely described by a Hopfield-based DNN of the form

X = Ax+BW,® +BW,U (3-14)
where all parameters or matrices are as defined earlier. Moreover, the optimal matrices can be
further defined as [44, 59]

(W,,W;)=argmin [ sup ‘F(x,u)—(Ai+BW¢,<I)+BWUU)ﬂ (3-15)

W,eQy, W, eQy, | xeQ;, ReQq,ueQ,
where
Q = }qu) :trace(W, W) < wa} (3-16)

Wo

and
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Q, = { W, :trace(W/ W) < D,, }. (3-17)

D, and D, are positive constants specified by designers, and Q , Q;, and Q, are

4

compact sets. However, in fact, the optimal weighting factors are difficult to be determined.
Thus, the adaptive laws for weighting training have to be appropriately designed to guarantee
the identification performance of the Hopfield-based DNN identifier. Define the
approximation error between states of the identified DNN and states of the real system as

e=x—X. (3-18)
Thus, the derivative of e with respect to time can be obtained by (3-13) and (3-14)

é=Ae+BW, ®+BW,U (3-19)
where V~V¢, =W, -W, and W, =W, =W, . The next discussion is to find weight adaptive

laws that guarantee to minimize the identified error and the convergence for the identification
process. Thus, the identification problem can be stated as optimization and stability problems.
The weight adaptive laws will be obtained by proving the stability of the identified system.
Now, the following theorem is given:firstto discuss the system stability and determine the
adaptive laws of weighting factors based-on no existence of the modeling error. The theorem
states the main result concerning-the convergence of the proposed identification scheme.

Theorem 1: A nonlinear dynamic+system is considered in (3-12), and we assume it can be
modeled exactly by (3-14). The identified system is designed as (3-13). If the adaptive laws of
weighting factors are selected as

W, i = 17,99V, )b; P;ie; (3-20)
and
W, ; =n,ub; p;e (3-21)
or
Wy ey = U ;05 Pi€; (3-22)

where 7, and 7, are learning rates and positive constants, the stability of the overall

identification scheme is guaranteed. The adaptive law in (3-21) is for a single input and (3-22)

is for multi-inputs.

Proof: Consider the Lyapunov candidate function as
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V= %eT Pe + Zitrace(ﬁ/; W,)+ zitrace(\i’uT W,) (3-23)

4 u
where P >0 is chosen to satisfy the Lyapunov equation, PA+A'P=-Q. Taking the

derivative of V with respect to time and using (3-19) yields

vl (e"Pe+e'Pé) + itrace(WTW )+ itrace(WJ w,)
2 R/

4 u
_ Ll(Ae+BW @+ BW,U) Pe+ ¢ P(Ae + BW ® + BW, U)]
2 @ u ® u

;L trace(W; \7V¢) 2 trace(vévuT W,)

7, .
= %[eT (ATP + PA)e+® WIB'Pe+ U W/B Pe+e' PBW,® + ' PBW, U]

+ itrace(vév(; V~V¢) + itr<'a¢(:e(\7vuT W,)
n

[ u

Using the Lyapunov equation, i.e., PA+A"P=-Q, obtains
V= —%eTQe +%[(I)TV~V;BTPe +U'WB’ Pe+e" PBW, @ +e’' PBW, U]

+ itrace(\;'vwT W)+ itrace(\‘i’uT W,)

My v
Because ® W/ B'Pe, U'W/B"Pe, e¢'PBW,®, and ¢'PBW,U are all scales, the
following relationship between them can be obtained as
® W/ B"Pe = (®"W/B Pe)’ =¢'PBW, @
and
U'W/B"Pe=(U"W/B"Pe)” =¢"PBW,U.
Hence, the derivative of V with respect to time can arrange as

V= —%eT Qe+® W B'Pe+U'W,B Pe+ itrace(\i'(/f W,)+ itrace(V*VUT W,). (3-24)

77(p u
We select
itrace(\;’if(/f \7Vw) =—@' \i’; B’ Pe (3-25)
m,
and
itrace(\?vuT W,)=-U"W/BPe. (3-26)
y
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Substituting (3-25) and (3-26) into (3-24), (3-24) can arrange as
Y, :—%eTQeSO. (3-27)
Therefore, the stability of the overall identification scheme is guaranteed based on the above

result and Lyapunov stability theorem. The adaptive laws of weighting factors in an element
form can be obtained based on (3-25) and (3-26) as

W, & =1,d9(v;)b; p;€;

and
W, ; =n,uUb; p;e
or
W, ey = 770U ;05 P&,
where the second adaptive law is for a single input and the last is for multi-inputs. [ |

This stability theorem is guaranteed under the optimal identification model with no modeling
error. The next section, we will discuss that if the modeling error does not equal zero, whether

the system stability is still guaranteed or not.

3.3 Robust Analysis

Let us consider the same identification scheme in (3-13). If the modeling error s does

not equal to zero but small, the stability proof in the previous section may not be guaranteed,

i.e., V >0.Assume there exist a constant y <oo so that
'[;szdr<7, 0<t<ow.

The exact identification model (3-14) needs to correct to consist with the fact and represents
as follows:

X = Ax+BW,® +BW, U +s (3-28)
where all parameters or matrices are as defined earlier. The approximation error is still
defined as e = x — X, and the derivative of e with respect to time is corrected as

¢=Ae+BW, ®+BW,U+s. (3-29)
In addition, the projection algorithm [44, 48, 49] is considered to modify Theorem 1 and

Theorem 2 is given as follows.
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Theorem 2: Consider a nonlinear dynamic system represented by (3-12), and we assume it
can be described exactly by (3-28) with the modeling error s. The identified system is
defined as (3-13). Let the weighting factors be adjusted by the following adaptive laws:
17,90(V;)b; Py ,

, if tr(W, W,)<D, or(tr(WTW) D,, and ag(v;)w, ;b;p;e <0)

W, | = ¢ (3-30)

o0 Pr(n,de(v;)b; pe)

if (tr(W,W,)=D, _and qe(v;)w, ;b;p;e >0)

where the symbol “tr” means “trace” and 7, is learning rate and positive constant, and the

projection operator is given as

q§0( )W i || pliei
Pr(77¢q(P(Vj)bii Pi€) = 77¢Q§0(Vj)bii Pii€ — 1, o) o, ij 1
o, ij
W, s
and
| mubype; if tr(W, W,) <D, or (tr(W, W,)=D,, and uw, ;b;p,e, <0) (3-31)
“ | Pr(n,ub; pe;), if (tr(W, W,)=D, and uw, ;b;p; ,>0)

where 7, is learning rate and positive constant, and the projection operator is given as

u ij bu pliei
Pr(7,ub; p;€;)=n,ub; p;€; - —zwu, ij -

Wu, ij‘

Then, the following properties can be held:

1. trace(W,W,)<D, and trace(W, W,)<D,

T2 2 i .
2. ef dt<——VO)+——|P s| dt where A, (Q) is the minimum
IO ” " ﬂ’min (Q)_l ﬂ’mm (Q) 1” " J. ” ”

eigenvalue of Q.

Proof:

1. In order to prove the fact that the condition trace(W; W,) < wa can be held, let

1
V, = Etrace(W; w,). (3-32)

If the first line of (3-30) is true, we have either trace(W; W,)< wa or
V'w,p = 7]¢q(0(V )W(p ubu ;i€ = (3'33)
when trace(W;W(p):DWw. That is, the condition trace(W, W,) < D, can always be

satisfied if the first line of (3-30) is true. If the second line of (3-30) is true, we have
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trace(W, W,) = D, and

/ qdo(v;)w, ;b; p;e; 2

=0, (3-34)

o, ]
‘W¢, i

That is, trace(W, W,) <D, . Therefore, the condition trace(W, W,) < D,,, Vt=0 can

be held. By using the same discussion, the condition trace(W, W,)<D, , Vt>0 can also

w, !

be derived.

2. Consider the same Lyapunov candidate function in (3-23), and taking the derivative of V

with respect to time and using (3-29) yields
v =%[eTATPem)T\?V;BTPHUTWJBTPe+sTPe+eTPAe+eTPB€v¢q>

+e"PBW,U +e' Ps]+ itrace(V~V(Z W,)+ itrace(\-"VuT W,)

1) u
- _%eTQe+%[(I)T\7V(ZBTPe+UTWJBTPe+eTPBV~Vw(I)+eTPB\7VUU

+s'Pe+e' Ps]+ itrace(\’;vg V~V¢) + itrace(VLVuT W,)
v My

Because ®' W;BTPe , U'W'B'Pe, e PBWW(I) - ¢ PBW,U and s"Pe are all scales,
the following relationship between them can'be obtained as

® W] B'Pe=(®"W/B Pe)’ =e' PBW,®

U'W/B"Pe = (U"W/B"Pe)” =¢"PBW,U

s'Pe=(s"Pe)’ =e'Ps.
Hence, the derivative of V with respect to time can arrange as

V= —%eT Qe+ @' \X’;BT Pe+U W B Pe+e'Ps+ itrace(\;’i/; \7V¢,) + itrace(\g?i’uT W,) . (3-35)

77(/; u

Define some useful variables as

J, = itrace(\;i/; W,)+® W!B'Pe (3-36)
? 77(/)
and
J, = itrace(v*vuT W,)+ U "W/BPe.. (3-37)
Loy

Thus, the derivative of Vv with respect to time shown in (3-35) can be rewritten as
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v :—%eTQe+ 3, +3,, +ePs. (3-38)
By using (3-30), J, =0 for [trace(W,W,)<D, or (trace(W,W,)=D, , and
qo(v;)w, ;b;p;e <0)] can be  obtained.  For [trace(wgww):wa and

qu(V )W o, ] || pliei >O]’

zq("(v ) — 40 - bll Pii€ (p ij° (3'39)

w, o

can be obtained. Because W; belongs to the constraint set Q , the inequality

‘Wq,, ij‘ =D, 2w, can be obtained. By using the previous inequality,
~ 1, « 2 2~ 2 . .
W, W, =§(W¢, ij‘ _‘W% ij‘ _‘qu, ij‘ )< 0 can be obtained. Thus, equation (3-39) can be

rewritten as

.2 2 & P
w, ij‘ —‘W@ ij‘ _‘Ww, ij‘ ) b.p.ew, ; <0. (3-40)

o

de(v;) (
] = j
v, Z > el

Similarly, by using (3-31), I for [trace(quwu)<DWu or (trace(quwu)=DWu,

and uw, ; b, p,€ <0)] can be obtained. For-ftr(W; W,)=D, and uw, ;b,p;,€ >0],

UIJ ii Ulj il

ZU “ . U ” bu Pii€ u ij (3'41)
W

u, ij

can be obtained and the following inequality

2 ~ 2
_ZU( ‘ —|w, ‘
Wu I'J2

Wu, ij‘ - Wu, ij u, ij )

b pig;w, ; <0 (3-42)

‘2

W

u, ij
can be derived. Hence, for any possible condition occurs in (3-30) and (3-31), the conditions

J, <0 and J <0 can be satisfied. Then, equation (3-38) can be reorganized as
j 1. T
\Y :—Ee Qe+J, +J, +e Ps
< 1+ T
_—Ee Qe+e Ps

<=2 A Qe +e7Ps
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P

1 1
> o (Q) =Dl =5 e + 2¢"Ps +[Ps[) + s

1 > 1 2
L@ -01d + Lp @49

Integrating both sides of (3-43) from t=0 to t=T (0<T <) and choosing that
j’min(Q)>1 yleld

1 LT 12072
> Cn (@) -1) [ Jel dtS—[\/(t)—V(O)]+E||P|| [NER:E (3-44)

Since V(t) >0, equation (3-44) can be arranged as
V 0) + P 2t 3-45

which is equivalent to the second property. Thus, the approximation error e will converge to a

certain small boundary. [ |

Remark: To simplify the discussion, without losing generality, the adaptive law (3-31)
derived in Theorem 2 is only for a'single input.. The.adaptive law for multi-inputs can also be
derived by using the similar approach'in the proof of Theorem 2.

In the next two sections, the proposed-DNN.based on the HNN will be applied to
identify nonlinear dynamic systems.  Twa examples are employed to illustrate the

effectiveness of the proposed scheme.

3.4 Simulation Results of Magnetic Levitation System

In this section, a model of the magnetic levitation system [53, 60], which is nonlinear,
unstable, and non-affine, is considered first. This system has the basic ingredients of systems
constructed to levitate mass, used in gyroscopes, accelerometers, and fast trains. The equation
of motion of the ball is

—kx + mg + H(x,1) (3-46)
where m is the mass of the ball, x is the vertical (downward) position of the ball, k isa

viscous friction coefficient, g is the acceleration of gravity, H(x,i) is the force generated

by the electromagnet, and i is its electric current. According to Reference [53], H(x,i) can
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be obtained and (3-46) can be represented as the standard canonical form as follows:

X =X,

% =g _£X2 ~ L,au’ : (3-47)

m 2m(a+x,)
where x;, (m) is the vertical gap between the ball and the magnet, x, (m/second) is the
vertical velocity of the ball, u (A) is the current in the coil of the electromagnet,
k =0.001N/m/s, m=0.1kg, L, =0.02H is the nominal point inductance, and a = 0.05m is
positive constant. In order to obtain suitable data for identification, the control force is
selected as
u(t) = =k, (x, (t) = r(t)) =k, x, +u, (t) (3-48)

where k, =-50.9568 and k, =-2.5640 are the state feedback gains, r(t) is a reference

position and u, (t) is a model-based bias given by

0, () = (a+r(v),] iTg . (3-49)

T

This bias is introduced to make the pointsx=r @] an equilibrium point. Moreover, the

reference is chosen to be a sum of five sinusoidals with different frequencies plus an offset

a(l e Zsl Agsin(w;t) + 1, (3-50)

where A; =004 and j=1--5, w =05, w,=1, w;=3, w,=4, w,=4, and
r, =0.13. Fig. 3-6 shows the training data obtained from the closed-loop identification

experiment in advance.
The parameters of the DNN based on the HNN are selected as R=100Q, C =0.01F,

a, =1, g=1,and Q=diag [2 2]. The initial voltages of two Hopfield neurons are both zero
volt. The learning rates of weighting factors are selected as 7, =0.05 and 7, =0.01. The

initial weight values are all set as 0.1. The following simulation results show the identification
ability of the proposed network. The simulation results are shown in Figs. 3-7, 3-8, and 3-9.
The command trajectories x, and X.,, the identified vertical position of the ball X, and
the identified vertical velocity of the ball X, are shown in Figs. 3-7(a) and 3-7(b). Figs. 3-7(c)
and 3-7(d) are the enlarging drawing of y-axis of Figs. 3-7(a) and 3-7(b), respectively. Figs.
3-8(a) and 3-8(b) show the approximated errors. Fig. 3-9 shows the training process of

weighting factors.
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Fig. 3-6. Training data obtained from the magnetic levitation system.
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Fig. 3-9. The training conditions of weighting factors.

3.5 Simulation Results of Non-affine System

The model of this example is referred to as Reference [26, 61] and described as

% = 1.1(L=x=2xu — x?)e %
u =cost

(3-51)

where the initial condition is set.as_x(0) =0-'Fig.-3-10 shows the training data obtained from

the closed-loop identification experimentiin advance.- The parameters of the DNN based on
the HNN are selected as R =100Q,”"C =0.01F, a =1, q=1, and Q =diag[2 2]. The

learning rates of weighting factors are selected as 7, =1.5 and 7, =0.3. The initial weight

values are all set as 0.2. The following simulation results show the identification ability of the
proposed network. The simulation results are shown in Figs. 3-11 and 3-12. The command

trajectory x, and the response of state x is shown in Fig. 3-11(a); Fig. 3-11(b) is the

enlarging drawing of Fig. 3-11(a) from t=0 second to t=2 second; and Fig. 3-11(c)
shows the approximated errors. Fig. 3-12 shows the training process of weighting factors. In
order to examine the robustness of the proposed scheme, a disturbance is added to the system
after 10 seconds and the nonlinear system (3-51) is become as:
X =1.101—x—2xu—x2)e %V 4 &
u = cost

(3-52)

where ¢ is defined as 0.5sin(2t) . The simulation results are shown in Figs. 3-13 and 3-14.
The command trajectory x, and the response of state x is shown in Fig. 3-13(a); Fig.

3-13(b) is the enlarging drawing of Fig. 3-13(a) from t=9.8 second to t=11 second; and

Fig. 3-13(c) shows the approximated errors. Fig. 3-14 shows the training process of weighting
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factors.

According to two simulation results, it is obvious that the proposed scheme can display
good identified performance. Even though the nonlinear dynamic system encounters a
disturbance suddenly, the proposed structure still maintains good identified property. The
modified structure of the dynamic neural network also shows its flexibility. The simulation
results also show a good robust ability of the proposed scheme in the section 3.5.
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Fig. 3-10. Training data obtained from experimenting in advance.
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Fig. 3-14. The training conditions of weighting factors.
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Chapter 4
Performance Comparison between SFNN and
Hopfield-based DNN

After successfully completing the scheme developments and simulations for the static
and dynamic neural networks, we will discuss the following two issues on the

implementations of software and hardware.

4.1 Software Analysis with Implementation

For the fuzzy system or the fuzzy neural-network, membership functions and fuzzy rules
must be pre-determined by the trial-and-error method.-This is a time-consuming work because
we must consider the balance between the rule number and the desired performance. When
the SFNN scheme is proposed, this annoying workmust be solved first. In addition, for the
control theories, the problem of acquiring effectively the unknown system information must
be solved when the DNN identifier is developed. In the processes of two computer
simulations, the program code of the Hopfield-based DNN is simpler than one of the SFNN
because the Hopfield-based DNN is a single-layer structure, but the SFNN has four layers.
Moreover, the SFNN has the structure adaptation algorithm. This algorithm also results in
complex codes. Although membership functions and fuzzy rules for the SFNN are not
determined in advance, there are several parameters of the structure adaptation algorithm
which need to be predetermined by the designers in the beginning of simulation. If many
membership functions and fuzzy rules are grown at a moment, the computation load may
become heavy instantly.

For the implementation of computer simulation of the Hopfield-based DNN, the code is
brief because it just has a single layer. However, the selection of values of capacitance and
resistance is an annoying problem. In Chapter 3, the matrices, A and B, are consisted of
capacitance and resistance. If the values of these two matrices are too large, the sampling time
of simulation must be set very short and the learning rates must be chosen very small to avoid
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the system output diverging immediately. Perhaps, the Hopfield-based DNN is more suitable
to be realized in the real-time environment than to be simulated by the computer. In addition,
the Hopfield-based DNN can be a de-stabilized system by improper initial conditions. As long
as the little problem of selecting the values of parameters is solved, the simulation of the
Hopfield-based DNN can be accomplished easily.

In summary, although the SFNN and the Hopfield-based DNN both have some
drawbacks for the software implementation, they can both show good desired performance

based on the simulation results in the above chapters.

4.2 Hardware Analysis with Implementation

For the hardware implementation, the Hopfield-based DNN is still simpler than the
SFNN if the learning algorithm is neglected. The network structure of SFNN consists of many
membership functions and fuzzy rules, ltis-difficult to implement the complex computation
process including fuzzifying, inferring, ,and .defuzzifying. We must adopt a single-chip
microcontroller 8051, a semiconductor device: FRGA: (field-programmable gate array), or a
DSP (digital signal processing) to implement the structure of the SFNN. We also need a great
number of memories to store the data of means, variances, and weights. Moreover, it is also a
hard work to implement the structure adaptation-algorithm of the SFNN. The problems, which
include the complex computation and a great number of memories, must be considered.
Because the growing or pruning of membership functions and fuzzy rules must be decided in
time, we need the faster CPU to execute these programs. When the procedure of the growing
of membership functions and fuzzy rules is executed, more memories are required. When the
procedure of the pruning of membership functions and fuzzy rules is executed, more
memories, which are assigned in advance, are wasted. Therefore, the implementation of the
SFNN is really a difficult work.

For the Hopfield-based DNN, we just need some capacitance, resistance, and summing
junctions to implement the identifier circuit if the learning algorithm is neglected. It is a
simple network which is implemented possibly. All algorithms of the Hopfield-based DNN
can be executed by the circuit. According to the voltage of capacitance, we can obtain the
solution. However, the selection of capacitance and resistance is an important issue. The
values of capacitance and resistance will affect the dynamic behavior of the Hopfield-based
DNN. When we consider the learning algorithms for both networks, the implementations may
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become difficult works because the computation load and the implemented approaches are a
big problem. However, the implementation of the Hopfield-based DNN is still simpler than
one of the SFNN because there are two adjustable parameters for the Hopfield-based DNN,
but the SFNN has four adjustable parameters. Therefore, the implementation of the

Hopfield-based DNN is a more possible work than one of the SFNN.

4.3 Summary

TABLE 4-1. The comparison result between SFNN and Hopfield-based DNN for the software

and hardware.

SFNN Hopfield-based DNN
Program Code Long Brief
Memory requirement More Medium
Performance Good Good
Implementation by
Hard Easy

software

Implementation by ) o
Hard (by the faster CPU) Easy (by a simple circuit)
hardware

Cost High Low
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Chapter 5

Conclusions with Future Works

For the fuzzy neural network (FNN) control design, the structure of the FNN should be
determined in advance by the empiricism. It is difficult to consider the balance between the
rule number and the desired performance. Therefore, in Chapter 2 of this dissertation, we
develop an adaptive self-structuring asymmetric fuzzy neural-network control (ASAFNC)
system, which consists of a self-structuring fuzzy neural network (SFNN) controller and a
robust controller. In the SFNN controller, SFNN, which adopts asymmetric Gaussian
membership functions in the structure and parameter learning phases, is utilized to mimic an
ideal controller. The structure learning phase of SFNN is used to find how many rules and
membership functions are necessary, and;the parameter learning phase of SFNN is concerned
with the parameter values of membership functions:in the premise part and the crisp value in
the consequence part. The robust controller is.designed to compensate for the modeling error
between the SFNN controller and the ideal controller. An online training methodology is
developed in the Lyapunov sense;.and thus the stability of the closed-loop control system can
be guaranteed. The simulation results of @ chaotic dynamics system show that the ASAFNC
can achieve favorable tracking performance without control system dynamics.

In addition, in many researches of control theories and system analyses, it is very
important to understand the system model. In order to acquire the sufficient system
information, a new dynamic neural network (DNN) based on the Hopefield neural network
(HNN) is proposed to perform the nonlinear system identification in Chapter 3 of this
dissertation. Lyapunov’s method is applied to derive the adaptive laws of weighting factors of
Hopfield-based DNN. The guarantee of convergence for the identification process is
examined by Lyapunov stability theory. The simulation results demonstrate that the proposed
identification scheme can achieve good identified performance which is consistent with the
convergent analysis discussed in Chapter 3 of this dissertation. The modified structure of the
DNN also shows its flexibility.

Although the structure of the SFNN has been developed well, the universal
approximation theorem of the SFNN is not still explored. Thus, one of the future works is to
derive the universal approximation theorem of the SFNN. In order to avoid the possible
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situation about the high degree of overlapping of membership functions, the similarity
measure method and the merged algorithm for membership functions and fuzzy rules also
need to be developed and the weighting factor needs to be determined after merging fuzzy
rules. In addition, due to the simple architecture of the Hopfield-based DNN, we will try to
implement the hardware of the identifier scheme based on the proposed scheme and theorem.
Because the Hopfield-based DNN identifier has been developed successfully in this

dissertation, we will tend towards the control design by the Hopfield-based DNN in the
future.
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