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中文摘要 

 
我們在此篇論文中，嘗試並實驗一個新的想法：亦即在兩個連續的傳送區塊

間，穿插傳送一串長度不短於通道記憶長度  (channel memory) 或記憶延展 
(channel spread)的隨機位元 (random bits)，則通道原本的長程記憶特性可被削弱

為近似區塊獨立特性 (blockwise independent)。我們同時推想，或許可以使用經

由交錯器 (interleaver) 打亂序列順序的訊息序列 (information bit sequence) 的同

位檢查位元 (parity check bits)， 來作為上述的“隨機位元”，以使接收端可經由

解交錯器 (de-interleaver) 得到額外的同位檢查訊息，來進一步提升系統效能。

而一個最直接符合以上想法的範例架構，就是平行串接旋積碼  (parallel 
concatenated convolutional code)。為了驗證我們的想法，我們採用隨時間改變衰

減的一階高斯-馬可夫通道為實驗平台。 
首先，我們推導出疊代最大事後機率演算法 (iterative MAP algorithm) 在直

接假設接收向量「因為以兩位元為單位，穿插一位元的交錯訊息序列的同位檢查

碼」而具有 2 位元區塊為單位的區塊統計獨立的對應量度公式。接著我們進行此

直接假設下所導出的量度，在原本一階高斯-馬可夫通道的效能模擬。模擬的結

果顯示，在區塊獨立假設下所推導出來的疊代最大事後機率解碼器 (iterative 
MAP decoder) 量度的效能，不僅非常接近有完美通道狀態資訊 (channel state 
information) 的解碼機制效能，且在某些情況下，與單農傳輸極限 (Shannon limits) 
最多只有 0.9 dB 的差距。 



ABSTRACT

In this paper, we experiment on the idea that the channel-with-memory

nature can be nearly weakened to blockwise independence by the insertive

transmission of informationless “random bits” (of length no less than the

channel memory or channel spread) between two consecutive blocks. We

found that these “random bits” can indeed be another parity check bits

generated due to interleaved information bits such that additional coding

information can be provided to improve the system performance. An exam-

plified structure that follows this idea is the parallel concatenated convolu-

tional code (PCCC). We thus derived its respective iterative MAP algorithm

for time-varying channel with first-order Gauss-Markov fading, and tested

whether or not the receiver can treat the received vector as blockwise inde-

pendence with 2-bit blocks periodically separated by single parity-check bit

from the second component recursive systematic convolutional (RSC) code

encoder. Simulation results show that the iterative MAP decoder that is de-

rived based on blockwise independence assumption not only performs close

to the CSI(channel state information)-aided decoding scheme but is at most

0.9 dB away from the Shannon limit.
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Chapter 1

Introduction

1.1 Background

In recent years, the growing demand in wireless communications in-

spires a quick advance in wireless transmission technologies. These technolo-

gies blossom in both high-mobility low-bit-rate and low-mobility high-bit-rate

transmissions. Apparently, the next challenge in wireless communications

will be how to reach high transmission rate under high mobility.

The main technology obstacle for high-bit-rate transmission under high

mobility is the seemingly highly time-varying channel characteristic due to

movement; such a characteristic enforces the dependence between consecutive

symbols, and further effects the difficulty in compensating the intersymbol

interference. In principle, the temporal channel memory can be eliminated by

an intersymbol space longer than the channel memory spread. An example

is the IEEE 802.11a standard, in which 0.8-µs “intersymbol space” is added

1



between two consecutive 3.2-µs OFDM symbols to combat any delay spread

less than 800 nano seconds [5]. In order to take advantage of the circular

convolution technique, the 0.8-µs “intersymbol space” is designed to be the

leading 0.8-µ portion of the 3.2-µs OFDM symbol, which is often named the

cyclic prefix.

In this work, we experiment on a different view in the neutralization of

channel memory, where the “intersymbol space” may be of use to enhance the

system performance. Specifically, we speculate that the received vector can

be broken into nearly time-independent blocks by the insertive transmission

of random bits of length no less than the channel memory. In order to make

the best use of these interblock random bits, they can be designed to be the

parity-check bits of the interleaved information bits, in which interleaving

can provide the required randomness, and parity-check bits can provide ad-

ditional coding information for further improvement of system performance.

We then begin the experiment from the simplest case along this idea, i.e., the

parallel concatenated convolutional code (PCCC) and its respective iterative

MAP decoder over a time-varying channel with first-order Gauss-Markov

fading [3, 4]. Simulation results hint that the iterative MAP decoder that is

derived based on blockwise independence assumption not only performs close

2



to the CSI(channel state information)-aided decoding scheme but is at most

0.9 dB away from the Shannon limit, thereby confirms the feasibility of our

proposal. Details will be introduced in subsequent sections.

1.2 Outline of Thesis

This thesis is organized in the following fashion. In Chapter 2, we in-

troduce the system model concerned in the paper. The metric functions used

for the iterative MAP algorithm based on blockwise independence assump-

tion are derived in Chapter 3. Chapter 4 devotes to the presentation and

discussion of the simulation results. Final conclusion is given in Chapter 5.
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Chapter 2

Gauss-Markov System Model

2.1 System model for Gauss-Markov fading

-
u PCCC

Encoder
-

c BPSK
modulator

-
x Gauss-Markov

Channel
-

r Iterative
MAP Decoder

-
û

Figure 2.1: System model for coded transmission over Gauss-Markov channel.
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Figure 2.2: The PCCC encoder with (37, 21) component RSC encoders.
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Referring to Fig. 2.1, the information bit sequence u = [u1, u2, · · · , uK ]

is comprised of K independent and identically distributed (i.i.d.) bits with

equal probable marginal, where each uj is either 0 or 1. This information

bit sequence is fed into a parallel concatenated convolutional code (PCCC)

encoder that consists of two (37, 21) recursive systematic convolutional (RSC)

code encoders parallelly concatenated through an interleaver to generate the

coded bit sequence

c = [c1, c2, · · · , cN ] = [u1, p1, p̄1, u2, p2, p̄2, · · · , uK , pK , p̄K ] ,

where p = [p1, p2, · · · , pK ] and p̄ = [p̄1, p̄2, · · · , p̄K ] are respectively the parity

bit sequences generated by the first and the second component RSC encoders

(cf. Fig. 2.2). Antipodal modulation, i.e., xj = 2cj − 1, is then applied

to the coded bit sequence before it is sent to the Gauss-Markov modelled

time-varying channel. Finally, the received sequence r = [r1, r2, · · · , rN ] is

delivered to an iterative MAP decoder, and an estimate of the transmitted

information bit sequence û = [û1, û2, · · · , ûK ] is outputted after sufficient

number of iterations.

The channel model considered in this work is a complex-valued time-

varying channel with Gauss-Markov fading; therefore, the received signal at

5



time j is given by:

rj = hjxj + zj, (2.1)

where [z1, z2, · · · , zN ] is an i.i.d. complex-valued Gaussian-distributed noise

sequence with zero marginal mean and marginal variance E[zjz
∗
j ] = σ2, and

the channel coefficient hj is Gauss-Markov distributed, satisfying that hj =

αhj−1+vj for complex-valued scaling constant α, complex-valued initial value

h0 and i.i.d. complex-valued Gaussian-distributed process [v1, v2, · · · , vN ]

with E[vj] = 0 and E[vjv
∗
j ] = σ2

v . The complex-valued constant α is a

first-order Markov factor usually chosen according to |α| = e−ωT , where T

is the system sampling period and ω/π is the Doppler spread [9]. Notably,

although xj in our system is discrete real-valued (in fact, is either +1 or −1),

the resultant rj is in general complex-valued due to its multiplication with

complex hj and addition with complex zj. Such a complex-valued system

setting can mirror the practical effect of possible unsynchronization between

the transmitter and the receiver, in addition to the phase delay due to channel

fading.

Denote by xj
i the portion [xi, · · · , xj] of sequence x. Similar notations

are used for rj
i and hj

i . Since the channel coefficient hj
i follows the Gauss-
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Markov distribution,

f
{
hj

i

}
= f {hi}

j∏

k=i+1

f {hk|hk−1} =
1

πσ̄2
i

e
− |hi−h̄i|2

σ̄2
i

j∏

k=i+1

1

πσ2
v

e
− |hk−αhk−1|2

σ2
v ,

where h̄i = αih0 and σ̄2
i = σ2

v(1− |α|2i)/(1− |α|2) are the mean and variance

of Gaussian variable hi, respectively. According to (2.1),

f
{
rj
i

∣∣hj
i , x

j
i

}
=

j∏

k=i

f {rk|hk, xk} =

j∏

k=i

1

πσ2
e−

|rk−xkhk|2
σ2 .

Therefore, it can be derived [3] that:

f
{
rj
i

∣∣xj
i

}

=

∫

Cj−i+1

f
{
rj
i , h

j
i

∣∣xj
i

}
dhj

i

=

∫

Cj−i+1

f
{
rj
i

∣∣xj
i , h

j
i

}
f

{
hj

i

∣∣ xj
i

}
dhj

i

=

∫

Cj−i+1

f
{
rj
i

∣∣xj
i , h

j
i

}
f

{
hj

i

}
dhj

i (2.2)

=

∫

Cj−i+1

(
1

(πσ2)j−i+1

j∏

k=i

e−
|rk−xkhk|2

σ2

)

(
1

πj−i+1σ
2(j−i)
v σ̄2

i

e
−|hi−h̄i|2

σ̄2
i

j∏

k=i+1

e
−|hk−αhk−1|2

σ2
v

)
dhj

i

=
e
− |h̄i|2

σ̄2
i

πj−i+1σ2(j−i+1)σ
2(j−i)
v σ̄2

i

(
j∏

k=i

e−|rk|2/σ2

Gke
Gk|qk|2

)
, (2.3)

where C , <×< is the entire domain for complex numbers, and (2.2) holds
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because hj
i is independent of xj

i , and

G−1
k ,





1

σ2
+
|α|2
σ2

v

+
1

σ̄2
k

, if k = i;

1

σ2
+
|α|2
σ2

v

+
1

σ2
v

− |α|2Gk−1

σ4
v

, if i < k < j;

1

σ2
+

1

σ2
v

− |α|2Gk−1

σ4
v

, if k = j,

and

qk ,





rkxk

σ2
+

h̄k

σ̄2
k

, if k = i;

rkxk

σ2
+

αGk−1qk−1

σ2
v

, if i < k ≤ j,

By following similar derivation, we can generalize the MAP algorithm for

Gauss-Markov fading channels in the next chapter.
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Chapter 3

Iterative MAP Algorithm for Gauss-Markov Channel

3.1 Assumptions made for the metric derivation

In this chapter, we derive the metric functions, namely, α(·), β(·) and

γ(·), used by the iterative MAP decoder.

The metrics used in the first component decoder consider the effect

of Gauss-Markov channel fading based on the assumption that the received

scalers r3i+2
3i+1 are independent of the previous received scalers r

3(i−1)+2
3(i−1)+1. It

can be shown from simulations that a small bit-error-rate in information bit

sequence u could induce up to half parity-check-bit errors because of the

error-propagation nature of the component RSC encoder. This observation,

together with the effect of interleaver, results in that the parity check bits

[x3, x6, x9, · · · ] due to the interleaved u is almost bit-wisely independent of

the uninterleaved u = [x1, x4, x7, · · · ], as well as the parity check bit se-

quence [x2, x5, x8, · · · ] generated according to the uninterleaved u. There-

9



fore, the first-order channel memory within r3(i−1)+1, r3(i−1)+2, r3i, r3i+1, r3i+2

is somewhat weakened by the insersion of r3i (due to the transmission of in-

dependent x3i). Our assumption of blockwisely independence between r3i+2
3i+1

and r
3(i−1)+2
3(i−1)+1 is thus justified. Simulations confirm that the metrics we ob-

tained based on blockwise independence assumption is only 1-dB away from

the Shannon limit. Therefore, it seems reasonable to claim based on our

experiments that the first-order channel memory can be nearly compensated

by the insertion of one random-bit transmission.

As interleaving operation is applied to the information bit sequence u

before it is fed into the second component RSC encoder, the channel memory

due to Gauss-Markov fading can be treated as being neutralized for the sec-

ond component decoder. For this reason, the second component decoder as-

sumes its input is interfered with time-independent Gaussian fading channel

with {hi}N
i=1 being independent Gaussian distributed with the same marginal

mean and variance as the Gauss-Markov fading.

3.2 Metric functions of the first component MAP decoder

Denote by tis the node at level i with state s over a convolutional

code trellis (cf. Fig. 3.1), and let B(u)
i be the set of trellis edges such that

10



the edge transition from node ti−1
s to node tis̄ is due to information bit

ui = u. For example, there are four nodes at level 4 in Fig. 3.1, which

can be respectively represented by t40, t41, t42 and t43. In addition, B(0)
4 =

{(t30, t40), (t31, t42), (t32, t43), (t33, t41)}.

As in [1] and [10], the a posteriori probability (APP) of ui upon the

reception of d = [d1, d2, · · · , d2K ] = [r1, r2, r4, r5, · · · , r3K−2, r3K−1] can be

represented as:

Pr {ui = u|d} =
∑

(ti−1
s ,tis̄)∈B(u)

i

Pr
{
T i−1 = ti−1

s , T i = tis̄|d
}

=
∑

(ti−1
s ,tis̄)∈B(u)

i

f {T i−1 = ti−1
s , T i = tis̄, d}

f{d} , (3.1)

where T i denotes the event of possible visited node at level i. For convenience,

event [T i = tis] will be abbreviated as T i
s . Since T i−1

s and T i
s̄ considered in

f{T i−1
s , T i

s̄ , d} in (3.1) are required to be in B(u)
i , there must exist a trellis

edge inbetween; therefore, it is reasonable to assume that (T i−1
s , T i

s̄)-pair in

the follow-up derivation can uniquely determine x
3(i−1)+2
3(i−1)+1. We then derive:

f
{
T i−1

s , T i
s̄ ,d

}
= f

{
d2K

2i+1

∣∣T i−1
s , T i

s̄ , d
2i
1

}
f

{
T i−1

s , T i
s̄ , d

2i
1

}

= f
{
d2K

2i+1

∣∣T i
s̄

}
f

{
T i−1

s , d
2(i−1)
1

}
f

{
T i

s̄ , d
2i
2(i−1)+1

∣∣∣T i−1
s , d

2(i−1)
1

}

= f
{
d2K

2i+1

∣∣T i
s̄

}
f

{
T i−1

s , d
2(i−1)
1

}
f

{
T i

s̄ , d
2i
2(i−1)+1

∣∣T i−1
s

}

= β(T i
s̄)α(T i−1

s )γ(T i−1
s , T i

s̄), (3.2)
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where

α(T i−1
s ) , f

{
T i−1

s , d
2(i−1)
1

}
, β(T i

s̄) , f
{
d2K

2i+1

∣∣T i
s̄

}
,

and

γ(T i−1
s , T i

s̄) , f
{
T i

s̄ , d
2i
2(i−1)+1

∣∣T i−1
s

}
.

By noting that the number of states of the adopted RSC code is equal to 16,

functions α(·) and β(·) can be changed into recursive forms through:

α(T i
s) = f

{
T i

s , d
2i
1

}

=
15∑

s̄=0

f
{
T i−1

s̄ , T i
s , d

2i
1

}

=
15∑

s̄=0

f
{

T i−1
s̄ , d

2(i−1)
1

}
f

{
T i

s , d
2i
2(i−1)+1

∣∣∣T i−1
s̄ , d

2(i−1)
1

}

=
15∑

s̄=0

f
{

T i−1
s̄ , d

2(i−1)
1

}
f

{
T i

s , d
2i
2(i−1)+1

∣∣T i−1
s̄

}

=
15∑

s̄=0

α(T i−1
s̄ )γ(T i−1

s̄ , T i
s),
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and

β(T i
s̄) = f

{
d2K

2i+1

∣∣T i
s̄

}

=
15∑

s=0

f
{
T i+1

s , d2K
2i+1

∣∣T i
s̄

}

=
15∑

s=0

f
{

d2K
2(i+1)+1

∣∣ T i
s̄ , T

i+1
s , d

2(i+1)
2i+1

}
f

{
T i+1

s , d
2(i+1)
2i+1

∣∣∣T i
s̄

}

=
15∑

s=0

f
{

d2K
2(i+1)+1

∣∣T i+1
s

}
f

{
T i+1

s

∣∣ T i
s̄

}

=
15∑

s=0

β(T i+1
s )γ(T i

s̄ , T
i+1
s ).

We then notice that:

γ(T i−1
s , T i

s̄) = f
{

T i
s̄ , d

2i
2(i−1)+1

∣∣ T i−1
s

}

= f
{

d2i
2(i−1)+1

∣∣T i−1
s , T i

s̄

}
Pr

{
T i

s̄

∣∣ T i−1
s

}

= f
{

r
3(i−1)+2
3(i−1)+1

∣∣∣ x
3(i−1)+2
3(i−1)+1

}
Pr

{
T i

s̄

∣∣T i−1
s

}
, (3.3)

where x
3(i−1)+2
3(i−1)+1 is the unique codeword portion corresponding to the trellis

edge with end nodes T i−1
s and T i

s̄ . By following similar procedure as in (2.3)

(or in [3]), we obtain:

f
{

r
3(i−1)+2
3(i−1)+1

∣∣∣x3(i−1)+2
3(i−1)+1

}
=

e
− |h̄3(i−1)+1|2

σ̄2
3(i−1)+1

π2σ4σ2
v σ̄

2
3(i−1)+1




3(i−1)+2∏

k=3(i−1)+1

e−|rk|2/σ2

Gke
Gk|qk|2


 ,
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where

G−1
k ,





1

σ2
+
|α|2
σ2

v

+
1

σ̄k

, if k = 3(i− 1) + 1;

1

σ2
+

1

σ2
v

− |α|2Gk−1

σ4
v

, if k = 3(i− 1) + 2,

and

qk ,





rkxk

σ2
+

h̄k

σ̄2
k

, if k = 3(i− 1) + 1;

rkxk

σ2
+

αGk−1qk−1

σ2
v

, if k = 3(i− 1) + 2.

It remains to consider the last term Pr {T i
s̄ |T i−1

s } in function γ(·). Be-

cause we always consider those (T i−1
s , T i

s̄)-pairs that can define trellis edges,

Pr
{

T i
s̄

∣∣T i−1
s

}
=





Pr{ui = 0}, if (T i−1
s , T i

s̄) ∈ B(0)
i ;

Pr{ui = 1}, if (T i−1
s , T i

s̄) ∈ B(1)
i .

Finally, by eliminating product terms that are irrelevant to the choice

of (T i−1
s , T i

s̄) (or equivalently, x
3(i−1)+2
3(i−1)+1), we can reduce function γ(·) to its

equivalent scale without infecting the log-likelihood ratio Λ(i) as:

γ(T i−1
s , T i

s̄) =





Pr {ui = 0}
2∏

k=1

eG3(i−1)+k|q3(i−1)+k|2 , if (T i−1
s , T i

s̄) ∈ B(0)
i ;

Pr {ui = 1}
2∏

k=1

eG3(i−1)+k|q3(i−1)+k|2 , if (T i−1
s , T i

s̄) ∈ B(1)
i ;

0, if (T i−1
s , T i

s̄) 6∈ B(0)
i ∪ B(1)

i ,

(3.4)

where the calculation of {|q3(i−1)+k|2}2
k=1 implicitly requires the knowledge of

x
3(i−1)+2
3(i−1)+1, which can be determined by (T i−1

s , T i
s̄).
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3.3 Metric functions of the second component MAP decoder

By assuming that the channel memory has been neutralized by the

interleaver, function γ(·) for the second component decoder is simplified to:

γ(T i−1
s , T i

s̄) = f
{
r3(`(i)−1)+1

∣∣x3(`(i)−1)+1

}
f {r3i |x3i}Pr

{
T i

s̄

∣∣T i−1
s

}

where `(·) denotes the index of interleaved u (namely, [u`(1), u`(2), · · · , u`(K)]

is the information input of the second component encoder),

f {rk |xk } =
1

π(σ2 + σ̄2
k)

e
− |rk−xkh̄k|2

σ2+σ̄2
k =

e−|h̄k|2/σ̄2
k

πσ2σ̄2
k

e−|rk|2/σ2

Ḡke
Ḡk|q̄k|2 ,

and

Ḡ−1
k , 1

σ2
+

1

σ̄2
k

and q̄k , rkxk

σ2
+

h̄k

σ̄2
k

.

Again, by eliminating product terms that are irrelevant to the choice of

(T i−1
s , T i

s̄), we can reduce function γ(·) for the second component decoder to

its equivalent scale without infecting the log-likelihood ratio Λ(i) as:

γ(T i−1
s , T i

s̄) =





Pr
{
u`(i) = 0

}
eḠ3(`(i)−1)+1|q̄3(`(i)−1)+1|2eḠ3i|q̄3i|2 , if (T i−1

s , T i
s̄) ∈ B(0)

i ;

Pr
{
u`(i) = 1

}
eḠ3(`(i)−1)+1|q̄3(`(i)−1)+1|2eḠ3i|q̄3i|2 , if (T i−1

s , T i
s̄) ∈ B(1)

i ;

0, otherwise.
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3.4 Iterative MAP decoder

Figure 3.2 illustrates the structure of the iterative MAP decoder. De-

rive for the first component MAP decoder that:

Λ
(n)
1 (i) = Λ

(n−1)
2e (i)+

2G3(i−1)+1

σ2σ̄2
3(i−1)+1

(
r3(i−1)+1h̄

∗
3(i−1)+1 + r∗3(i−1)+1h̄3(i−1)+1

)
+Λ

(n)
1e (i),

where Λ
(n−1)
2e (i) = log[Pr{ui = 1}/ Pr{ui = 0}] is the a priori probability

estimate from the previous stage (n− 1), and

Λ
(n)
1e (i) , log

∑
(T i−1

s ,T i
s̄)∈B(1)

i

α(T i−1
s )β(T i

s̄)e
G3(i−1)+2|q3(i−1)+2|2

∑
(T i−1

s ,T i
s̄)∈B(0)

i

α(T i−1
s )β(T i

s̄)e
G3(i−1)+2|q3(i−1)+2|2

is the extrinsic information that is used to improve the a priori probability

estimate for the next decoding stage n. Similarly, we derive for the second

component MAP decoder that:

Λ
(n)
2 (`(i)) = Λ

(n)
1e (`(i)) +

2Ḡ3(`(i)−1)+1

σ2σ̄2
3(`(i)−1)+1

(
r3(`(i)−1)+1h̄

∗
3(`(i)−1)+1 + r∗3(`(i)−1)+1h̄3(`(i)−1)+1

)

+Λ
(n)
2e (`(i)),

where

Λ
(n)
2e (`(i)) , log

∑
(T i−1

s ,T i
s̄)∈B(1)

i

α(T i−1
s )β(T i

s̄)e
Ḡ3i|q̄3i|2

∑
(T i−1

s ,T i
s̄)∈B(0)

i

α(T i−1
s )β(T i

s̄)eḠ3i|q̄3i|2

16



is the extrinsic information for the second component MAP decoder. The

block diagram in Fig. 3.2 then indicates that only the extrinsic information

needs to be exchanged between the two component MAP decoders.

We end this chapter by providing the iterative MAP algorithm below

for completeness.

Step 1: Set Λ
(0)
2e = 0, and set n = 1.

Step 2: Calculate Λ
(n)
1 and Λ

(n)
1e

1. Initialization:

• For i = 1, . . . , K, Pr{ui = 0} = 1/(1 + eΛ
(n−1)
2e (i)) and Pr{ui =

1} = 1− Pr{ui = 0}.

• For i = 1, . . . , K, s = 0, . . . , 15 and s̄ = 0, . . . , 15, compute

γ(T i−1
s , T i

s̄) as:

γ(T i−1
s , T i

s̄) =





Pr {ui = 0}
2∏

k=1

eG3(i−1)+k|q3(i−1)+k|2 , if (T i−1
s , T i

s̄) ∈ B(0)
i ;

Pr {ui = 1}
2∏

k=1

eG3(i−1)+k|q3(i−1)+k|2 , if (T i−1
s , T i

s̄) ∈ B(1)
i ;

0, otherwise.

2. Forward recursion:

• Set α(T 0
0 ) = 1 and for s = 1, . . . , 15, α(T 0

s ) = 0.

17



• For i = 1, . . . , K and s = 0, . . . , 15, perform α(T i
s) =

∑15
s̄=0 α(T i−1

s̄ )γ(T i−1
s̄ , T i

s).

3. Backward recursion:

• Set β(TK+1
s ) = α(TK

s ) for s = 0, . . . , 15.

• For i = K, . . . , 1 and s̄ = 0, . . . , 15, perform β(T i
s̄) =

∑15
s=0 β(T i+1

s )γ(T i
s̄ , T

i+1
s ).

4. Soft output:

• For i = 1, . . . , K, update

Λ
(n)
1 (i) = log

∑
(T i−1

s ,T i
s̄)∈B(1)

i

α(T i−1
s )β(T i

s̄)γ(T i−1
s , T i

s̄)

∑
(T i−1

s ,T i
s̄)∈B(0)

i

α(T i−1
s )β(T i

s̄)γ(T i−1
s , T i

s̄)
,

and

Λ
(n)
1e (i) = Λ

(n)
1 (i)− 2G3(i−1)+1

σ2σ̄2
3(i−1)+1

(
r3(i−1)+1h̄

∗
3(i−1)+1 + r∗3(i−1)+1h̄3(i−1)+1

)−Λ
(n−1)
2e (i).

Step 3: Calculate Λ
(n)
2 and Λ

(n)
2e .

1. Initialization:

• For i = 1, . . . , K, Pr{ui = 0} = 1/(1 + eΛ
(n)
1e (i)) and Pr{ui = 1} =

1− Pr{ui = 0}.
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• For i = 1, . . . , K, s = 0, . . . , 15 and s̄ = 0, . . . , 15, compute

γ(T i−1
s , T i

s̄) as

γ(T i−1
s , T i

s̄) =





Pr
{
u`(i) = 0

}
eḠ3(`(i)−1)+1|q̄3(`(i)−1)+1|2eḠ3i|q̄3i|2 , if (T i−1

s , T i
s̄) ∈ B(0)

i ;

Pr
{
u`(i) = 1

}
eḠ3(`(i)−1)+1|q̄3(`(i)−1)+1|2eḠ3i|q̄3i|2 , if (T i−1

s , T i
s̄) ∈ B(1)

i ;

0, if (T i−1
s , T i

s̄) 6∈ B(0)
i ∪ B(1)

i .

2. Forward recursion:

• Set α(T 0
0 ) = 1 and for s = 1, . . . , 15, α(T 0

s ) = 0.

• For i = 1, . . . , K and s = 0, . . . , 15, perform α(T i
s) =

∑15
s̄=0 α(T i−1

s̄ )γ(T i−1
s̄ , T i

s).

3. Backward recursion:

• Set β(TK+1
s ) = α(TK

s ) for s = 0, . . . , 15.

• For i = K, . . . , 1 and s̄ = 0, . . . , 15, perform β(T i
s̄) =

∑15
s=0 β(T i+1

s )γ(T i
s̄ , T

i+1
s ).

4. Soft output:

• For i = 1, . . . , K, update

Λ
(n)
2 (`(i)) = log

∑
(T i−1

s ,T i
s̄)∈B(1)

i

α(T i−1
s )β(T i

s̄)γ(T i−1
s , T i

s̄)

∑
(T i−1

s ,T i
s̄)∈B(0)

i

α(T i−1
s )β(T i

s̄)γ(T i−1
s , T i

s̄)
,
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and

Λ
(n)
2e (`(i)) = Λ

(n)
2 (`(i))− Λ

(n)
1e (`(i))

− 2Ḡ3(`(i)−1)+1

σ2σ̄2
3(`(i)−1)+1

(
r3(`(i)−1)+1h̄

∗
3(`(i)−1)+1 + r∗3(`(i)−1)+1h̄3(`(i)−1)+1

)
.

Step 4: Repeat Step 2 and Step 3 (by setting n = n + 1) until the number

of desired iterations is reached, and make final hard-decision based on the

last Λ2.
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Figure 3.1: Trellis diagram for a (7, 5) RSC code with memory order 2. The

numbers inside circles indicate the states of the nodes at the specific level.

The information bit and the two code bits along with a trellis edge are marked

above the edge.
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r3K , · · · , r6, r3

r3K−1, · · · , r5, r2

r3K−2, · · · , r4, r1

-

-s MAP
Decoder 1

Λ
(n)
1

-Λ
(n)
1e

Λ
(n−1)
2e

Λ̃
(n)
1e

Λ̃
(n−1)
2e

Interleaver

Interleaver

?

MAP
Decoder 2

Λ̃
(n)
2

-

- -

¾Deinterleaver

?

?

Deinterleaver - -

Figure 3.2: Block diagram of the iterative MAP decoder. A tilde over the

vector represents its interleaved version.
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Chapter 4

Simulation Results for Iterative MAP Decoder

4.1 System setting and channel parameters

In our simulations, the Berrou-Glavieux interleaver with size 256× 256

is employed [2, 7]. Thus, K = 65536 and N = 3 × 65536. Similar to [3], we

take α = 0.995, h0 = (0.5 or 1) and σ2
v = (0.001 or 0.01). Furthermore, the

channel fading is reset every 99 symbols; as a result, h̄i = α[(i−1)mod 99]+1h0

and σ̄2
i = σ2

v
(1−|α|2([(i−1) mod 99]+1))

(1−|α|2)
.1
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Figure 4.1: Performance curve of the proposed iterative MAP decoder. Pa-

rameters of Gauss-Markov channel are α = 0.995, σ2
v = 0.001 and h0 = 1.
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4.2 Simulation Results

Figure 4.1 shows the performance of the proposed iterative MAP de-

coder for channel parameters h0 = 1 and σ2
v = 0.001. It indicates that the

bit-error-rate (BER) decreases as the number of iterations increases from 1

to 20. Since the BER performance for 20 iterations is very close to that for

18 iterations, it is reasonable to anticipate that no further improvement can

be obtained with more iterations. Besides, error floor can be observed in this

figure. The performance curve for 20 iterations has apparently lower slope

when Eb/N0 is beyond 0.8 dB.

Figure 4.2 depicts the difference between the performance of the it-

erative MAP algorithm and a lower bound of the Shannon limit (cf. Ap-

pendix A.1). The figure shows that when σ2
v = 0.001 and h0 = 1, the

resultant performance curve of the iterative MAP algorithm is only 0.9 dB

1In our figures, the computation of Eb/N0 follows the formula below.

Eb/N0 =
SNR
R

=
1
R
×

∑N
k=1 E[|hk|2]

Nσ2
=

1
R
×

∑N
k=1 |h̄k|2 +

∑N
k=1 σ̄2

k

Nσ2

=
1
R
×
|h0|2

∑N
k=1 |α|2[(k−1) mod 99+1] + σ2

v

1−|α|2
∑N

k=1(1− |α|2[(k−1) mod 99+1])

Nσ2

=
1
R

( |h0|2
σ2

· |α|
2(1− |α|198)

99(1− |α|2) +
σ2

v

σ2
· 99− 100|α|2 + |α|200

99(1− |α|2)2
)

where R is the channel code rate, and N is assumed to be a multiple of 99 for convenience.
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Figure 4.2: Performance comparison between the iterative MAP decoder

with 18 iterations and a lower bound (cf. Appendix I) of the Shannon limit.

Parameters of Gauss-Markov channel are α = 0.995, σ2
v = 0.001 and h0 = 1.
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away from the lower bound at BER = 2 × 10−4. Therefore, the iterative

MAP algorithm is at most 0.9 dB away from the true Shannon limit at

BER = 2× 10−4.

Figures 4.3 and 4.4 display how iterations improve the decoding per-

formance when channel parameters are respectively {h0 = 0.5, σ2
v = 0.001}

and {h0 = 1, σ2
v = 0.01}. Notably, a smaller h0 or a larger σ2

v in concept

give a noisier channel. Unlike the previous channel setting, the performances

in the two figures saturate with much less iterations. When h0 = 0.5 and

σ2
v = 0.001, the iterative MAP algorithm with 13 iterations performs close to

that with 20 iterations. When h0 = 1 and σ2
v = 0.01, the sufficient number

of iterations, which saturates the performance, reduces to seven.

From Figs. 4.1, 4.3 and 4.4, the performance of the iterative MAP de-

coder degrades as h0 decreases or σ2
v increases as anticipated. For parameters

h0 = 0.5 and σ2
v = 0.001, the BER reaches 2 × 10−4 when Eb/N0 = 3.2 dB.

For Gauss-Markov channel defined by h0 = 1 and σ2
v = 0.01, the iterative

MAP decoder requires Eb/N0 = 8 dB to obtain the same BER. In fact, we

observe that the performance of the iterative MAP decoder is more sensitive

to the variation of σ2
v than that of h0.

It is worth mentioning that the proposed iterative MAP algorithm only
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Figure 4.3: Performance comparison between the iterative MAP decoding

and a lower bound of the Shannon limit. Parameters of Gauss-Markov chan-

nel are α = 0.995, σ2
v = 0.001 and h0 = 0.5.
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Figure 4.4: Performance comparison between the iterative MAP decoding

and a lower bound of the Shannon limit. Parameters of Gauss-Markov chan-

nel are α = 0.995, σ2
v = 0.01 and h0 = 1.
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Figure 4.5: Performances of punctured PCCC codes with code rates 1/2, 3/7

and 2/5. The CSIs are assumed known for the iterative MAP decoder of these

punctured code. For comparison, the performance of the proposed blind-CSI

iterative MAP algorithm is also depicted. All of them are decoded with 18

iterations. Parameters of Gauss-Markov channel are α = 0.995, σ2
v = 0.001

and h0 = 1.
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requires the knowledge of channel statistics, and does not presume the exis-

tence of the channel estimation circuitry at the receiver. Thus, the system

we considered does not need to transmit, e.g., training sequence for the esti-

mation of channel states. In Fig. 4.5, we simulated three kinds of punctured

PCCC codes with code rates 1/2, 3/7 and 2/5 under channel parameters

h0 = 1 and σ2
v = 0.001. Since these code rates are all higher than 1/3, we

assume that the remaining transmitted bits (i.e., N/3, 2N/9 and N/6 bits

respectively for 1/2, 3/7 and 2/5 punctured codes) can be used as train-

ing bits to establish perfect channel estimation of h = [h1, h2, · · · , hN ]. The

iterative MAP decoder, in such case, reduces to the conventional one de-

rived for AWGN channels. The simulation results show that only rate-2/5

and rate-3/7 punctured systems with perfect channel state information (CSI)

perform better than the proposed blind-CSI iterative MAP algorithm, but

the performance deviations are limited respectively within 0.2 and 0.1 dB at

BER = 10−4. Since it is in general hard to achieve accurate channel esti-

mation for a time-varying channel even with a large number of training bits,

the small performance derivation merits the usage of the proposed blind-CSI

iterative MAP algorithm.
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Chapter 5

Conclusion and Future Work

In this work, we take the PCCC code and its respective iterative MAP

decoder as a test vehicle to experiment on the idea that the temporal chan-

nel memory can be weakened to nearly blockwise time-independence by the

insertive transmission of informationless “random bits” of sufficient length

between two consecutive blocks, for which these “random bits” are actually

another parity check bits generated due to interleaved information bits. The

simulation results show that the metrics derived based on blockwise inde-

pendence with 2-bit blocks periodically separated by single parity-check bit

from the second component RSC encoder perform close to the CSI-aided

decoding scheme, and is at most 0.9 dB away from the Shannon limit at

BER = 2 × 10−4 when h0 = 1 and σ2
v = 0.001. A natural future work is to

extend the channel memory to higher order, and further examine whether

the same idea can be applied to obtain well-acceptable system performance.
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Appendix A

Supplemental Derivations

A.1 A lower bound of the Shannon limit

The capacity of the simulated Gauss-Markov channel is given by: C ,

1
99

maxx99 I (x99; r99) , where x99 ∈ {−1, +1}99 and r99 are respectively the

channel input and output of the Gauss-Markov channel, and I(·; ·) represents

the mutual information function. Then,

C ≤ 1

99
max
x99

99∑

k=1

I(xk; rk) ≤ 1

99

99∑

k=1

max
xk

I(xk; rk) =
1

99

99∑

k=1

max
xk

[h(rk)− h(rk|xk)] ,

where h(·) is the differential entropy function. Observe that

h(rk|xk) =
∑

xk∈{−1,+1}
Pr{xk}

∫

C
f{rk|xk} log

1

f{rk|xk}drk

=
∑
Xk

Pr{xk}
∫

C

1

π(σ2 + σ̄2
k)

e
− |rk−xkh̄k|2

σ2+σ̄2
k

(
log

[
π(σ2 + σ̄2

k)
]
+
|rk − xkh̄k|2

σ2 + σ̄2
k

)
drk

=
∑
Xk

Pr{xk} · log
[
πe

(
σ2 + σ̄2

k

)]
= log

[
πe

(
σ2 + σ̄2

k

)]
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is independent of xk. Hence, maxxk
I(xk; rk) = maxxk

h(rk)−log [πe (σ2 + σ̄2
k)].

Since h(rk) is maximized by Pr{xk = +1} = Pr{xk = −1} = 1/2,

max
xk

h(rk) =

∫

C

1

2π(σ2 + σ̄2
k)

(
e
− |rk−h̄k|2

σ2+σ̄2
k + e

− |rk+h̄k|2
σ2+σ̄2

k

)

[
log

(
2π(σ2 + σ̄2

k)
)

+
|rk|2 + |h̄k|2

σ2 + σ̄2
k

− log

(
e

rkh̄∗k+r∗kh̄k

σ2+σ̄2
k + e

− rkh̄∗k+r∗kh̄k

σ2+σ̄2
k

)]
drk

= log
(
2πe(σ2 + σ̄2

k)
)

+ 2
|h̄k|2

σ2 + σ̄2
k

−
∫

C

1

π(σ2 + σ̄2
k)

e
− |rk−h̄k|2

σ2+σ̄2
k log(2)drk

−
∫

C

1

π(σ2 + σ̄2
k)

e
− |rk−h̄k|2

σ2+σ̄2
k log


e

rkh̄∗k+r∗kh̄k

σ2+σ̄2
k + e

− rkh̄∗k+r∗kh̄k

σ2+σ̄2
k

2


 drk

= log
(
πe(σ2 + σ̄2

k)
)

+
2|h̄k|2

σ2 + σ̄2
k

−
√

σ2 + σ̄2
k

|h̄k|
√

π

∫

<
e
− (σ2+σ̄2

k)

|h̄k|2

�
t− |h̄k|2

σ2+σ̄2
k

�2

log (cosh(2t)) dt,

where the last step follows by letting t =
rkh̄∗k+r∗kh̄k

2(σ2+σ̄2
k)

and s =
rkh̄∗k−r∗kh̄k

2j(σ2+σ̄2
k)

, applying

Jacobian transformation [8, pp. 227-229] to real-valued t and s, and taking

integration with respect to s. As a result,

C ≤ CUP

, 1

99

99∑

k=1

[
|ρk|2 − 1√

2π

∫

<
e−v2/2 log

(
cosh

(|ρk|v + |ρk|2
))

dv

]
,

where v = 2
|ρk|

(
t− |ρk|2

2

)
and ρk ,

√
2 · h̄k/

√
σ2 + σ̄2

k. By joint source-

channel coding theorem [6, pp. 215-218], the Shannon limit can be defined
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by the equation:

log(2)−Hb(BER) =
C

R
,

where the left-hand-side is the rate-distortion function for a binary input

and Hamming additive distortion measure, and Hb(t) = −t · log t− (1− t) ·

log (1− t) is the binary entropy function. Combining all the above deriva-

tions, we obtain: Hb(BER) ≥ log(2)− CUP/R.

A.2 Detail derivation for Eq. (2.3)

f
{
rj
i |xj

i

}
=

∫

Cj−i+1

(
1

(πσ2)j−i+1

j∏

k=i

e−
|rk−xkhk|2

σ2

)(
1

(πσ2
v)

j−i(πσ̄2
i )

e
−|hi−h̄i|2

σ̄2
i

j∏

k=i+1

e
−|hk−αhk−1|2

σ2
v

)
dhj

i

=
1

π2(j−i+1)σ2(j−i+1)σ
2(j−i)
v σ̄2

i

∫

Cj−i

(
j∏

k=i+1

e−
|rk−xkhk|2

σ2

) (
j∏

k=i+2

e
− |hk−αhk−1|2

σ2
v

)

(∫

C
e
− |ri−xihi|2

σ2 − |hi−h̄i|2
σ̄2

i

− |hi+1−αhi|2
σ2

v dhi

)
dhj

i+1. (A.1)
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Since xi is either +1 or −1, the exponent in the inner integral can be re-

written as:

|ri − xihi|2
σ2

+
|hi − h̄i|2

σ̄2
i

+
|hi+1 − αhi|2

σ2
v

=
1

σ2

(|ri|2 − rixih
∗
i − r∗i xihi + |hi|2

)
+

1

σ̄2
i

(|hi|2 − hih̄
∗
i − h∗i h̄i + |h̄i|2

)

+
1

σ2
v

(|hi+1|2 − α∗hi+1h
∗
i − αh∗i+1hi + |α|2|hi|2

)

= |hi|2
(

1

σ2
+

1

σ̄2
i

+
|α|2
σ2

v

)
− hi

(
r∗i xi

σ2
+

h̄∗i
σ̄2

i

+
αh∗i+1

σ2
v

)

−h∗i

(
rixi

σ2
+

h̄i

σ̄2
i

+
α∗hi+1

σ2
v

)
+

( |ri|2
σ2

+
|h̄i|2
σ̄2

i

+
|hi+1|2

σ2
v

)

= |hi|2G−1
i − hig

∗
i G

−1
i − h∗i giG

−1
i +

( |ri|2
σ2

+
|h̄i|2
σ̄2

i

+
|hi+1|2

σ2
v

)

= |hi − gi|2G−1
i − |gi|2G−1

i +

( |ri|2
σ2

+
|h̄i|2
σ̄2

i

+
|hi+1|2

σ2
v

)
,

where

gi , Gi

(
qi +

α∗hi+1

σ2
v

)
, G−1

i , 1

σ2
+
|α|2
σ2

v

+
1

σ̄2
i

, and qi , rixi

σ2
+

h̄i

σ̄2
i

.

Since
∫

C
e−|hi−gi|2G−1

i dhi = πGi,
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the exponent terms remained after the integration of the inner integral are

given by:

−|gi|2G−1
i +

( |ri|2
σ2

+
|h̄i|2
σ̄2

i

+
|hi+1|2

σ2
v

)

= −
∣∣∣∣Gi

(
qi +

α∗hi+1

σ2
v

)∣∣∣∣
2

G−1
i +

( |ri|2
σ2

+
|h̄i|2
σ̄2

i

+
|hi+1|2

σ2
v

)

= −Gi

(
|qi|2 + qi

αh∗i+1

σ2
v

+ q∗i
α∗hi+1

σ2
v

+
|α|2|hi+1|2

σ4
v

)

+

( |ri|2
σ2

+
|h̄i|2
σ̄2

i

+
|hi+1|2

σ2
v

)

=
σ2

v − |α|2Gi

σ4
v

|hi+1|2 − αqiGi

σ2
v

h∗i+1 −
α∗q∗i Gi

σ2
v

hi+1 −Gi|qi|2 +
|ri|2
σ2

+
|h̄i|2
σ̄2

i

=
|hi+1 − h̄i+1|2

σ̄2
i+1

−Gi|qi|2 − |h̄i+1|2
σ̄2

i+1

+
|ri|2
σ2

+
|h̄i|2
σ̄2

i

,

where

1

σ̄2
i+1

, σ2
v − |α|2Gi

σ4
v

=

σ2
v

σ2 + σ2
v

σ̄2
i

σ4
v

[
1
σ2 + |α|2

σ2
v

+ 1
σ̄2

i

] > 0 and h̄i+1 , αqiGiσ̄
2
i+1

σ2
v

.

Consequently,

f
{
rj
i |xj

i

}
=

e|h̄i+1|2/σ̄2
i+1−|h̄i|2/σ̄2

i

π2(j−i)+1σ2(j−i+1)σ
2(j−i)
v σ̄2

i

e−|ri|2/σ2

Gie
Gi|qi|2

∫

Cj−i−1

(
j∏

k=i+2

e−
|rk−xkhk|2

σ2

)(
j∏

k=i+3

e
− |hk−αhk−1|2

σ2
v

)

(∫

C
e
− |ri+1−xi+1hi+1|2

σ2 − |hi+1−h̄i+1|2
σ̄2

i+1

− |hi+2−αhi+1|2
σ2

v dhi+1

)
dhj

i+2.

(A.2)
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Similarly, the exponent in the inner integral in (A.2) can be re-written as:

|ri+1 − xi+1hi+1|2
σ2

+
|hi+1 − h̄i+1|2

σ̄2
i+1

+
|hi+2 − αhi+1|2

σ2
v

= |hi+1 − gi+1|2G−1
i+1 − |gi+1|2G−1

i+1 +

( |ri+1|2
σ2

+
|h̄i+1|2
σ̄2

i+1

+
|hi+2|2

σ2
v

)
,

where

gi+1 , Gi+1

(
qi+1 +

α∗hi+2

σ2
v

)
,

G−1
i+1 , 1

σ2
+
|α|2
σ2

v

+
1

σ̄2
i+1

=
1

σ2
+
|α|2
σ2

v

+
1

σ2
v

− |α|2Gi

σ4
v

and

qi+1 , ri+1xi+1

σ2
+

h̄i+1

σ̄2
i+1

=
ri+1xi+1

σ2
+

αqiGi

σ2
v

.

Hence,

f
{
rj
i |xj

i

}
=

1

π2(j−i)σ2(j−i+1)σ
2(j−i)
v σ̄2

i

(
i+1∏

k=i

e|h̄k+1|2/σ̄2
k+1−|h̄k|2/σ̄2

k · e−|rk|2/σ2 ·Gke
Gk|qk|2

)

∫

Cj−i−2

(
j∏

k=i+3

e−
|rk−xkhk|2

σ2

)(
j∏

k=i+4

e
− |hk−αhk−1|2

σ2
v

)

(∫

C
e
− |ri+2−xi+2hi+2|2

σ2 − |hi+2−h̄i+2|2
σ̄2

i+2

− |hi+3−αhi+2|2
σ2

v dhi+2

)
dhj

i+3.

Continue the above procedure until we obtain:

f
{
rj
i |xj

i

}
=

1

πj−i+1σ2(j−i+1)σ
2(j−i)
v σ̄2

i

(
j−1∏

k=i

e|h̄k+1|2/σ̄2
k+1−|h̄k|2/σ̄2

k · e−|rk|2/σ2 ·Gke
Gk|qk|2

)

∫

C
e
− |rj−xjhj |2

σ2 − |hj−h̄j |2
σ̄2

j dhj. (A.3)
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The exponent in the integral in (A.3) equals:

|rj − xjhj|2
σ2

+
|hj − h̄j|2

σ̄2
j

=
1

σ2

(|rj|2 − rjxjh
∗
j − r∗jxjhj + |hj|2

)
+

1

σ̄2
j

(|hj|2 − hjh̄
∗
j − h∗j h̄j + |h̄j|2

)

= |hj|2
(

1

σ2
+

1

σ̄2
j

)
− hj

(
r∗jxj

σ2
+

h̄∗j
σ̄2

j

)
− h∗j

(
rjxj

σ2
+

h̄j

σ̄2
j

)
+

( |rj|2
σ2

+
|h̄j|2
σ̄2

j

)

= |hj|2G−1
j − hjg

∗
j G

−1
j − h∗jgjG

−1
j +

( |rj|2
σ2

+
|h̄j|2
σ̄2

j

)

= |hj − gj|2G−1
j − |gj|2G−1

j +

( |rj|2
σ2

+
|h̄j|2
σ̄2

j

)
,

where

gj , qjGj, G−1
j , 1

σ2
+

1

σ̄2
j

=
1

σ2
+

1

σ2
v

− |α|2Gj−1

σ4
v

and

qj , rjxj

σ2
+

h̄j

σ̄2
j

=
rjxj

σ2
+

αqj−1Gj−1

σ2
v

.

Since

−|gj|2G−1
j +

( |rj|2
σ2

+
|h̄j|2
σ̄2

j

)
= − |Gjqj|2 G−1

j +

( |rj|2
σ2

+
|h̄j|2
σ̄2

j

)

= −Gj|qj|2 +
|rj|2
σ2

+
|h̄j|2
σ̄2

j

,

the final expression for f
{
rj
i |xj

i

}
is established as:

f
{
rj
i |xj

i

}
=

e−|h̄i|2/σ̄2
i

πj−i+1σ2(j−i+1)σ
2(j−i)
v σ̄2

i

(
j∏

k=i

e−|rk|2/σ2

Gke
Gk|qk|2

)
.
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A.3 Berrou-Glavieux interleaver

The Berrou-Glavieux interleaver [2,7] fetches data into an M ×M ma-

trix in a row-by-row manner, and then reads out according to a nonuniform

rule as `(M × i + j) = M × ī + j̄, where

ī =

(
M

2
+ 1

)
(i + j) mod M, and j̄ = ([P ((i + j) mod 8) · (j + 1)]− 1) mod M,

and P (0) = 17, P (1) = 37, P (2) = 19, P (3) = 29, P (4) = 41, P (5) =

23, P (6) = 13, P (7) = 7.
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