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ABSTRACT

In this paper, we experiment on the idea that the channel-with-memory
nature can be nearly weakened to blockwise independence by the insertive
transmission of informationless “random bits” (of length no less than the
channel memory or channel spread) between two consecutive blocks. We
found that these “random bits” can indeed be another parity check bits
generated due to interleaved information bits such that additional coding
information can be provided to improve the system performance. An exam-
plified structure that follows.this idea 18 the parallel concatenated convolu-
tional code (PCCC). We thus derived‘its respective iterative MAP algorithm
for time-varying channel with sfirst-order. Ganss-Markov fading, and tested
whether or not the receiver can treat.the received vector as blockwise inde-
pendence with 2-bit blocks periodically separated by single parity-check bit
from the second component recursive systematic convolutional (RSC) code
encoder. Simulation results show that the iterative MAP decoder that is de-
rived based on blockwise independence assumption not only performs close
to the CSI(channel state information)-aided decoding scheme but is at most

0.9 dB away from the Shannon limit.
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Chapter 1

Introduction

1.1 Background

In recent years, the growing demand in wireless communications in-
spires a quick advance in wireless,transmission technologies. These technolo-
gies blossom in both high-mebility lew-bit-rate and low-mobility high-bit-rate
transmissions. Apparently, the next challenge in wireless communications
will be how to reach high tramsmission raté iinder high mobility.

The main technology obstacle for high-bit-rate transmission under high
mobility is the seemingly highly time-varying channel characteristic due to
movement; such a characteristic enforces the dependence between consecutive
symbols, and further effects the difficulty in compensating the intersymbol
interference. In principle, the temporal channel memory can be eliminated by
an intersymbol space longer than the channel memory spread. An example

is the IEEE 802.11a standard, in which 0.8-us “intersymbol space” is added



between two consecutive 3.2-us OFDM symbols to combat any delay spread
less than 800 nano seconds [5]. In order to take advantage of the circular
convolution technique, the 0.8-us “intersymbol space” is designed to be the
leading 0.8-p portion of the 3.2-us OFDM symbol, which is often named the
cyclic prefiz.

In this work, we experiment on a different view in the neutralization of
channel memory, where the “intersymbol space” may be of use to enhance the
system performance. Specifically, we speculate that the received vector can
be broken into nearly time-independent blocks by the insertive transmission
of random bits of length no-less than the.channel memory. In order to make
the best use of these interblock random bits, they can be designed to be the
parity-check bits of the interleaved information bits, in which interleaving
can provide the required randomness, and parity-check bits can provide ad-
ditional coding information for further improvement of system performance.
We then begin the experiment from the simplest case along this idea, i.e., the
parallel concatenated convolutional code (PCCC) and its respective iterative
MAP decoder over a time-varying channel with first-order Gauss-Markov
fading [3,4]. Simulation results hint that the iterative MAP decoder that is

derived based on blockwise independence assumption not only performs close



to the CSI(channel state information)-aided decoding scheme but is at most
0.9 dB away from the Shannon limit, thereby confirms the feasibility of our

proposal. Details will be introduced in subsequent sections.

1.2  Outline of Thesis

This thesis is organized in the following fashion. In Chapter 2, we in-
troduce the system model concerned in the paper. The metric functions used
for the iterative MAP algorithm based on blockwise independence assump-
tion are derived in Chapter 3.,:Chaptér4 devotes to the presentation and

discussion of the simulation results= Finaliconclusion is given in Chapter 5.



Chapter 2

Gauss-Markov System Model

2.1 System model for Gauss-Markov fading

PCCC BPSK T |Gauss-Markov [terative
Encoder modulator Channel MAP Decoder
Figure 2.1: System model for coded fransmission over Gauss-Markov channel.
- U
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Figure 2.2: The PCCC encoder with (37,21) component RSC encoders.
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Referring to Fig. 2.1, the information bit sequence w = [uy, ug, - -+ , U]
is comprised of K independent and identically distributed (i.i.d.) bits with
equal probable marginal, where each w; is either 0 or 1. This information
bit sequence is fed into a parallel concatenated convolutional code (PCCC)
encoder that consists of two (37, 21) recursive systematic convolutional (RSC)
code encoders parallelly concatenated through an interleaver to generate the

coded bit sequence

C = [017627"' >CN] = [Ulypbf’bUZapQ,an“' ,UK,pK,pK},

where p = [p1, pe, - -+, px| and P =glprps, -+ +, P are respectively the parity
bit sequences generated by the first and the second component RSC encoders
(cf. Fig. 2.2). Antipodal ‘modulation;“i.e.; x;, = 2¢; — 1, is then applied
to the coded bit sequence before'it" is sent to the Gauss-Markov modelled
time-varying channel. Finally, the received sequence r = [ri,r9,--- ,7rx]| is
delivered to an iterative MAP decoder, and an estimate of the transmitted
information bit sequence w = [uy, U, - , U] is outputted after sufficient
number of iterations.

The channel model considered in this work is a complex-valued time-

varying channel with Gauss-Markov fading; therefore, the received signal at



time j is given by:

Tj = hj.l’j‘FZj, (21)

where [z1, 29, -+, 2zn] is an i.i.d. complex-valued Gaussian-distributed noise
sequence with zero marginal mean and marginal variance E[z]z;‘] = 02, and
the channel coefficient h; is Gauss-Markov distributed, satisfying that h; =
ahj_1+v; for complex-valued scaling constant o, complex-valued initial value
ho and i.i.d. complex-valued Gaussian-distributed process [vq, vy, -+, vN]

with Elv;] = 0 and Efv;v;] = 0. The complex-valued constant « is a

v
first-order Markov factor usuallytehogen according to |a| = e™*T where T
is the system sampling period and:w/7 is. the Doppler spread [9]. Notably,
although z; in our systemis disarete real-valued (in fact, is either +1 or —1),
the resultant r; is in general complex-valied due to its multiplication with
complex h; and addition with complex z;. Such a complex-valued system
setting can mirror the practical effect of possible unsynchronization between
the transmitter and the receiver, in addition to the phase delay due to channel
fading.

Denote by xi the portion [x;, - -, x;] of sequence @. Similar notations

are used for 7/ and hJ. Since the channel coefficient h? follows the Gauss-



Markov distribution,

j ; L = Y R IR TS T
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where h; = a’hg and 62 = 02(1 — |a|*)/(1 — |a|?) are the mean and variance

of Gaussian variable h;, respectively. According to (2.1),

f{r ’h“ Z} Hf{rk|hk,xk} H _re— zkhk\ '
Therefore, it can be derived [3] that:
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where C = R x R is the entire domain for complex numbers, and (2.2) holds



because h! is independent of z, and
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By following similar derivation, we can generalize the MAP algorithm for

Gauss-Markov fading channelsfin the next chapter.



Chapter 3

Iterative MAP Algorithm for Gauss-Markov Channel

3.1 Assumptions made for the metric derivation

In this chapter, we derive the metric functions, namely, «a(+), 3(-) and
v(+), used by the iterative MAP_decoder,

The metrics used in‘the first component decoder consider the effect
of Gauss-Markov channel-fading based on the-assumption that the received

3i+2

, . . 3(i—1)+2
scalers 131 are independent of the previous received scalers r VRS (1

3(i—1)+1"

can be shown from simulations that a small bit-error-rate in information bit
sequence u could induce up to half parity-check-bit errors because of the
error-propagation nature of the component RSC encoder. This observation,

together with the effect of interleaver, results in that the parity check bits

(3, X6, Tg, - - - | due to the interleaved w is almost bit-wisely independent of
the uninterleaved w = [x1,x4,27,---], as well as the parity check bit se-
quence [xq,Ts, s, -] generated according to the uninterleaved w. There-



fore, the first-order channel memory within ra;_1)41,73(i—1)+2, 73, T3i+1, T3i42
is somewhat weakened by the insersion of r3; (due to the transmission of in-

dependent x3;). Our assumption of blockwisely independence between rgjﬁ

and Tg((Z:Bﬁ is thus justified. Simulations confirm that the metrics we ob-
tained based on blockwise independence assumption is only 1-dB away from
the Shannon limit. Therefore, it seems reasonable to claim based on our
experiments that the first-order channel memory can be nearly compensated
by the insertion of one random-bit transmission.

As interleaving operation is applied to the information bit sequence u
before it is fed into the second component, RS€ encoder, the channel memory
due to Gauss-Markov fading can betreated as being neutralized for the sec-
ond component decoder. For this reason, the second component decoder as-
sumes its input is interfered with time-independent Gaussian fading channel

with {h;}¥, being independent Gaussian distributed with the same marginal

mean and variance as the Gauss-Markov fading.

3.2 Metric functions of the first component MAP decoder

Denote by t! the node at level i with state s over a convolutional

code trellis (cf. Fig. 3.1), and let Bg") be the set of trellis edges such that

10



the edge transition from node t.! to node t. is due to information bit
u; = u. For example, there are four nodes at level 4 in Fig. 3.1, which
can be respectively represented by t3, t1, ¢3 and t;. In addition, Bflo) =
{5, t0), (11, 12), (83, 5), (3, £1) }.

As in [1] and [10], the a posteriori probability (APP) of u; upon the
reception of d = [dy,da, -+ ,dak| = [r1,72, 74,75, , T35 _2,T35_1] can be

represented as:

Pr{u; = uld} = Z Pr{T" ' =¢"' 1" =t|d}
e

_ g = i = 1, d)

~3 2 fHd} ’

(3.1)
(¢ teent?

where T denotes the event of possible visited ngde at level 4. For convenience,
event [T% = t!] will be abbreviated as Tt.:Since T:~! and T¢ considered in
F{Ti=1, T, d} in (3.1) are required to be in B™, there must exist a trellis
edge inbetween; therefore, it is reasonable to assume that (7:7!, T%)-pair in

3(i—1)+2

the follow-up derivation can uniquely determine Tyl 1)11- We then derive:

f{TsZ 17 59 } = f{dQH-l‘Tsi 17T517d21}f{Tsi 17Tslad22}

= {d2z+1 ‘TEZ } f {Tsi_la d%(i_l)} f {TZ d2(z 1)+1

2(i—1) }

— AT T O (T T

= B(Tg)a(Tsi_l)7<Tsi_laT§)7 (32>

11



where
o) & f{Ti V), s 2 (a1
and
WL T = fAT dyay [T}
By noting that the number of states of the adopted RSC code is equal to 16,

functions «a(+) and §(+) can be changed into recursive forms through:
oTy) = [AT,dV'}

15

— Z AT T Ay )
5=0
15 ‘

= Zf {Tgl_lad%(l*l)} f{T;,d%—l)H
5=0
15 ;

= Y BT T, (T
5=0
15

= > ol (T T,

5=0

i )

12



and

BT = f{di|T5)

15
= > T a3k, |1}
s=0

15
= Y By T TGS |y { T D
s=0

Tt}
= > B | T {7 T
s=0
15
= Y BTTL T,
s=0
We then notice that:

V(Tsz_laTs‘?) = f {T§i7dgéi—1)+1| Tsi_l}
= {dgéi—1)+1| Tsiila Tg} Pr {Tgl} Tsiil}

_ 3(i—1)+2
= f{TB(i—1)+1

moa e T T, (33)

3(i—1)+2

where Tali—1)+1 is the unique codeword portion corresponding to the trellis

edge with end nodes T'~! and T¢. By following similar procedure as in (2.3)

(or in [3]), we obtain:

hg(i—1)41l?
R R 3(i—1)+2

2 /g2 2
| | e~ Imkl* /e erck|Qk|
+1\ k=3(i—1)+1

-2
3(i—1)+1

3—-1)42 | 3(-+2 | _ €
f {7"3(1'—1)+1 ‘x3(i—1)+1} B m2otoRos;

13



where

1 2
G_1é< o 0y Ok
' R S/ T N R I
[ 02 o2 ot ’
and
( h
Ll B if =33 — 1)+ 1;
G = ’ Ok
Gr_1qu—
D Bl g — 3 — 1)+ 2.
[ o o2

It remains to consider the last term Pr{7%| T/~ '} in function 7(-). Be-

cause we always consider those (7771, T¢)-pairs that can define trellis edges,

L Pr{y; = 0}, if (T4, T) € B
Pr{T:| T 7'} =
Prfmp=At, i (771, T0) € BY.
Finally, by eliminating product terms that are irrelevant to the choice

of (Ti=1,T%) (or equivalently, 3”28:31?)’ we can reduce function () to its

equivalent scale without infecting the log-likelihood ratio A(7) as:

( 2
Pr{u; = 0} H eG3("*1>+k|Q3<i*1)+k|2, if (71,7 e BZ(O);
k=1
. . 2
T T = § Prfu; = 13 [ e®ovlocnal i (-1, 71) € BY;
k=1
| 0 if (1:°,73) ¢ B” U B,

(3.4)
where the calculation of {|gs(_1)+x|*}7_; implicitly requires the knowledge of

1’28:31?’ which can be determined by (T¢7% T%).

14



3.3 Metric functions of the second component MAP decoder

By assuming that the channel memory has been neutralized by the

interleaver, function «y(+) for the second component decoder is simplified to:

v(Tj‘l, ng) =f {r3(€(i)71)+1 }$3(£(i)71)+1 } fArsiles: } Pr {Tg |Tsi_1 }

where £(-) denotes the index of interleaved w (namely, [ueq), we2), - - -, Ue(k)]

is the information input of the second component encoder),

_Irg—eghgl® —|h&|?/57 _
f{relzn) = 1 e oo — € e_|rk|2/U2erGk“7k|2
2 | ~2 22 ;
(0% + 573) oRTops
and
- 1 1 LT h
—-1 A = AalELE k
G'et=+5 and ¢ =—— + —.
k 2 2 2 2
a o o o

Again, by eliminating product terms that are irrelevant to the choice of
(Ti=1, T, we can reduce function «(-) for the second component decoder to

its equivalent scale without infecting the log-likelihood ratio A(7) as:

§
e ) Tl 0l 2 Gailda;|? . i ; 0
Pr {u,;) = 0} eCse-nrltsem vl Gailal™ i (it T ¢ Bi( ),

WTTHT) =S Pr{ug = 1} eFreo-nnliwo-nal Galdsl® i (7i=1 i) € BY,

0, otherwise.

\

15



3.4 Tterative MAP decoder

Figure 3.2 illustrates the structure of the iterative MAP decoder. De-

rive for the first component MAP decoder that:

2G33i-1)+1 o « - n) .
" 92 ) (7“3(171)+1h3(z'—1)+1 + 7“3(i—1)+1h3(i*1)+1)+A§e) (4),
3(i—1)+1

A @) = AZV () +

%o
where Ag:l)(i) = log[Pr{u; = 1}/ Pr{u; = 0}] is the a priori probability
estimate from the previous stage (n — 1), and

1 G 2
g « Z : (3 Z : e 3(i—1)+2|493(i— 2

(15t 1i)eBM)

AR (i) £ log :
a(Tsi—l)ﬁ(Tg)eG3(i—1)+2 ’%(7;—1)-5-2‘
(TS ATEBY ‘

is the extrinsic information that is used to improve the a priori probability
estimate for the next decoding*stage n.~Similarly, we derive for the second

component MAP decoder that:

n) o n) s 2G3(0(i)-1)+1 - . <
1)—1)+

where 4 R
X (T )BT )el
(i1 8)eBt)
> (T )T T
(ri ' hes”

ASP(0(i)) £ log

16



is the extrinsic information for the second component MAP decoder. The
block diagram in Fig. 3.2 then indicates that only the extrinsic information
needs to be exchanged between the two component MAP decoders.

We end this chapter by providing the iterative MAP algorithm below
for completeness.
Step 1: Set Agi) =0, and set n = 1.

Step 2: Calculate A™ and A"
1. Initialization:
e Fori = 1,..., Ky Pr{uy, =0} = 1/(1 + eAg;_l)(i)) and Pr{u; =
1} =1 — Pr{uz=10}.

e For¢v =1,... K; s=20"7"/15and 5 = 0,...,15, compute

VT TY) as:

4

2
Pr {uZ = ()} H 6G3(i—1)+k\Q3(i_1)+k|27 if (T;‘—17 TSE) c BZ(O);
k=1
. . 2
V(Tsl_l, T3) =19 pr {u; =1} H €G3(i71)+k‘QB(i—1)+k|2’ if (Tsi_l, ng) c B@(l);
k=1
0, otherwise.

\

2. Forward recursion:

e Set a(TY) =1 and for s=1,...,15, a(T?) = 0.

17



e Fori=1,...,Kands=0,...,15 perform a(T%) = 3.2  a(Ti (T, TY).
3. Backward recursion:

o Set B(TEH) = (TF) for s =0,...,15.

e Fori=K,...,land5=0,...,15, perform B(T%) = 3212 B(TH) (T, THY).
4. Soft output:

e Fori=1,..., K, update
> a(TTHBTON (T TY)

(Ti~ 1 1B

2, AT)BT (T TR)
(e

A () = log

and

n . n . 2G3(Z*1)+1 7 % * 7 n—1 .
A (i) = A )(2)——02&2 (36— 1)1 50 1y41 + T3(¢_1)+1h3(i—1)+1)—/\§e '(4).
3(i—1)+1

Step 3: Calculate A and AJ”.

1. Instialization:

e Fori=1,...,K, Pr{u; =0} =1/(1 + eA(lz)(i)) and Pr{u;, =1} =

1 — Pr{u; = 0}.

18



e fori=1,... K, s=20,...,15 and 5 = 0,...,15, compute

V(T TY) as

;
| 2

e A g ] 2 i Fas . i— 1 0
Pr {W(i) — ()} eFsem-vrlisem-nml®Caildsl® i (i1 T ¢ BZ( );

T TH =X pr {W(z') - 1} €G3(4(i)71)+1|q73(2(i)71)+1‘2663”@31"2’ if (T, T e BZ(U;

0, if (771,78 ¢ B® uBY.

\

2. Forward recursion:

e Set a(T{) =1and for s =1,...,15, a(T?) = 0.

e Fori=1,...,Kands =0,...,15 perform a(T%) = 3.2 a(Ti (T, TY).

5=
3. Backward recursion:

o Set B(TEH) =a(TE) forrs=0, .., 15.

e Fori=K,...,1and 5'=0).." 15, perform B(T%) = 10 B(TH) (T, TiHY).
4. Soft output:

e Fori=1,..., K, update
(T B(TO)NTT3)
(T 1ieB™

> a(TEHB(Ty (T, 1)
(Ti' 18)eB”

AP(£(i)) = log

19



and

AD(0()) = AT (e()) — AL (£(i))

2Gs(u()-1) 11 . . ;
T 022 : (T3(f(i)—1)+1hs(e(i)—1)+1 + 7"3(13(1')—1)+1h3(€(i)—1)+1) :
0°03(0(i)~1)+1

Step 4: Repeat Step 2 and Step 3 (by setting n = n + 1) until the number
of desired iterations is reached, and make final hard-decision based on the

last As.

20
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Figure 3.1: Trellis diagram for a (7,5) RSC code with memory order 2. The
numbers inside circles indicate the states of the nodes at the specific level.
The information bit and the two code bits along with a trellis edge are marked

above the edge.
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Figure 3.2: Block diagram of the iterative MAP decoder. A tilde over the

vector represents its interleaved version.
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Chapter 4

Simulation Results for Iterative M AP Decoder

4.1 System setting and channel parameters

In our simulations, the Berrou-Glavieux interleaver with size 256 x 256
is employed [2,7]. Thus, K = 65536 and N = 3 x 65536. Similar to [3], we
take a = 0.995, hg = (0.5 .0r 1) and a2 = (0.001 or 0.01). Furthermore, the

channel fading is reset every 99 symbols; as aresult, h; = al(—1)med9l+1p

2 (17‘042([(1'—1) 1110d99]+1)) .
! (1=[af?) ;

and 62 =0
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Figure 4.1: Performance curve of the proposed iterative MAP decoder. Pa-

rameters of Gauss-Markov channel are o = 0.995, 02 = 0.001 and ho = 1.
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4.2 Simulation Results

Figure 4.1 shows the performance of the proposed iterative MAP de-
coder for channel parameters hg = 1 and 2 = 0.001. It indicates that the
bit-error-rate (BER) decreases as the number of iterations increases from 1
to 20. Since the BER performance for 20 iterations is very close to that for
18 iterations, it is reasonable to anticipate that no further improvement can
be obtained with more iterations. Besides, error floor can be observed in this
figure. The performance curve for 20 iterations has apparently lower slope
when FEj, /Ny is beyond 0.8 dBs

Figure 4.2 depicts the difference between the performance of the it-
erative MAP algorithm and alower bound 6f the Shannon limit (cf. Ap-
pendix A.1). The figure shows:that when o> = 0.001 and hy = 1, the

resultant performance curve of the iterative MAP algorithm is only 0.9 dB

n our figures, the computation of E,/Ny follows the formula below.

aND N N 1 N
SNR _ l x Zk:l E[|hk|2] _ l % Zk:l |hk|2 + Zk:l ‘713

Ey/Ny =

f h No? R No?
v e 03 N c—1) mo
_ L Ihol2 N |a[2((k=1) mod99-+1] + 15 T (1 - |21k 1) mod 99-+1])
o No?2
1 (ol e = [af') 62 99— 100jaf? + |a[>®
T m\o I faP) Tt 991 fa)?

where R is the channel code rate, and N is assumed to be a multiple of 99 for convenience.
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—%— iter=18
—— lower bound

Figure 4.2: Performance comparison between the iterative MAP decoder
with 18 iterations and a lower bound (cf. Appendix I) of the Shannon limit.

Parameters of Gauss-Markov channel are o = 0.995, 02 = 0.001 and hg = 1.
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away from the lower bound at BER = 2 x 10~*. Therefore, the iterative
MAP algorithm is at most 0.9 dB away from the true Shannon limit at
BER =2 x 107

Figures 4.3 and 4.4 display how iterations improve the decoding per-
formance when channel parameters are respectively {ho = 0.5, 02 = 0.001}
and {ho = 1, 02 = 0.01}. Notably, a smaller hy or a larger o2 in concept
give a noisier channel. Unlike the previous channel setting, the performances
in the two figures saturate with much less iterations. When hy = 0.5 and
02 = 0.001, the iterative MAP algorithm with 13 iterations performs close to
that with 20 iterations. Wiien hg:=[1"and ¢2 = 0.01, the sufficient number
of iterations, which saturates the performance, reduces to seven.

From Figs. 4.1, 4.3 and 4.4, the performance of the iterative MAP de-
coder degrades as hg decreases or o2 increases as anticipated. For parameters
ho = 0.5 and o2 = 0.001, the BER reaches 2 x 10~* when E,/N, = 3.2 dB.
For Gauss-Markov channel defined by hy = 1 and o2 = 0.01, the iterative
MAP decoder requires E,/Ny = 8 dB to obtain the same BER. In fact, we
observe that the performance of the iterative MAP decoder is more sensitive
to the variation of o2 than that of hq.

It is worth mentioning that the proposed iterative MAP algorithm only
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Figure 4.3: Performance comparison between the iterative MAP decoding
and a lower bound of the Shannon limit. Parameters of Gauss-Markov chan-

nel are o = 0.995, 02 = 0.001 and hy = 0.5.
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Figure 4.4: Performance comparison between the iterative MAP decoding
and a lower bound of the Shannon limit. Parameters of Gauss-Markov chan-

nel are o = 0.995, 02 = 0.01 and hy = 1.
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Figure 4.5: Performances (;f“'pul‘l-cn;c.ure.diif-’CC.C codes with code rates 1/2, 3/7
and 2/5. The CSls are assumed k‘lllOWIl‘.f‘Ol" the iterative MAP decoder of these
punctured code. For comparison, the performance of the proposed blind-CSI
iterative MAP algorithm is also depicted. All of them are decoded with 18
iterations. Parameters of Gauss-Markov channel are o = 0.995, 02 = 0.001

and hg = 1.
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requires the knowledge of channel statistics, and does not presume the exis-
tence of the channel estimation circuitry at the receiver. Thus, the system
we considered does not need to transmit, e.g., training sequence for the esti-
mation of channel states. In Fig. 4.5, we simulated three kinds of punctured
PCCC codes with code rates 1/2, 3/7 and 2/5 under channel parameters
ho = 1 and ¢ = 0.001. Since these code rates are all higher than 1/3, we
assume that the remaining transmitted bits (i.e., N/3, 2N/9 and N/6 bits
respectively for 1/2, 3/7 and 2/5 punctured codes) can be used as train-
ing bits to establish perfect channel estimation of h = [hy, ha, -+ , hy]. The
iterative MAP decoder, inssuch-case, reduces to the conventional one de-
rived for AWGN channels. The simulation results show that only rate-2/5
and rate-3/7 punctured systems with perfect channel state information (CSI)
perform better than the proposed blind-CSI iterative MAP algorithm, but
the performance deviations are limited respectively within 0.2 and 0.1 dB at
BER = 10~*. Since it is in general hard to achieve accurate channel esti-
mation for a time-varying channel even with a large number of training bits,
the small performance derivation merits the usage of the proposed blind-CSI

iterative MAP algorithm.
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Chapter 5

Conclusion and Future Work

In this work, we take the PCCC code and its respective iterative MAP
decoder as a test vehicle to experiment on the idea that the temporal chan-
nel memory can be weakened to nearly blockwise time-independence by the
insertive transmission of inforimationless’‘random bits” of sufficient length
between two consecutive blocks, for whichisthese “random bits” are actually
another parity check bits generated due to interleaved information bits. The
simulation results show that the.metries derived based on blockwise inde-
pendence with 2-bit blocks periodically separated by single parity-check bit
from the second component RSC encoder perform close to the CSl-aided
decoding scheme, and is at most 0.9 dB away from the Shannon limit at
BER = 2 x 107* when hy = 1 and 02 = 0.001. A natural future work is to
extend the channel memory to higher order, and further examine whether

the same idea can be applied to obtain well-acceptable system performance.
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Appendix A
Supplemental Derivations

A.1 A lower bound of the Shannon limit

The capacity of the simulated Gauss-Markov channel is given by: C' £

a5 maxyoo [ (9% 7r%%) ) where 2% € {—1,+1}" and r* are respectively the

channel input and output of the Gauss-Markov channel, and I(-; -) represents

the mutual information funetion. Fhen;

99
1
< 9—max Hxg;ry) € — ;n}gx[ Tp;Ty) 99 ZH;%X (re) — h(rglay)],

9 29

where h(-) is the differential entropy function. Observe that

h(rglzg) = Z Pr{xk}/f{rk\:ck}log

{Eke{—l,-i-l}

Hr \l’k}

=gl

= ZPr{x }/;e 277 | log [7(c*+ 7)) + M dry,
- ") w0 + 52) g o2+ 57

S Pr{a - log [re (o2 + o2)] = log [re (02 + 7]
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is independent of zj,. Hence, max,, I(zy;ry) = max,, h(ry)—log[re (6? + 57)].

Since h(ry) is maximized by Pr{zy = +1} = Pr{z, = —1} =1/2,

1 _ \T'kfﬁkz\z _ ‘7'k+ﬁk2|2
22 2, -
max h(rk) = — 5 | € otop L e o
@y ¢ 2m(0? + o3)

2 B 2 7'kﬁ2+r2ﬁk 7rkfzz+r27zk
[log (2%(02 + 5,3)) + —lrk| + |_ 4 — log (e el 4e T >] dry,

o2 + 53

_ 2 | =2 | |? 1 *7'?21,’“2'2
= log (2me(0? + 7)) + 2 - —~e i log(2)dry

o2+a  Jom(o?+a})
) rkhg+r;éﬁk 77‘]@;7,%4»7“;%71]@
o (o + 5,3) 2 ¥
2|7 |?
= lo 24 52 e
g (7T6(0' + Uk)) il =2t 52

=i 2
\/02 o =Cirialy ML
VO % / Ing1® e“¥et  log (cosh(2t)) dt,
el ;
where the last step follows by letting t= M and s = M applying
2(a2457) 2j(02+57)
Jacobian transformation [8, pp. 227-229] to real-valued ¢ and s, and taking

integration with respect to s. As a result,

C < Cup

e~V log (cosh (|pk|v + [pxl?)) dv| |
R

[I>
e
Ne)
p—
RS
e
s

where v = = <t — %) and pp 2 V2 hy/y\/0? + 2. By joint source-

ok

channel coding theorem [6, pp. 215-218], the Shannon limit can be defined

34



by the equation:

C
log(2) — Hy(BER) = &
where the left-hand-side is the rate-distortion function for a binary input
and Hamming additive distortion measure, and Hy(t) = —t-logt — (1 —¢) -

log (1 — t) is the binary entropy function. Combining all the above deriva-

tions, we obtain: H,(BER) > log(2) — Cyp/R.

A.2  Detail derivation for Eq. (2.3)

72

J R
H |Tk gl | 1 —WT}L’
- s ——-¢€ i
7r02 (%a2)’ X (mo3)i=i(na7)
J e
I[[e7 2 dh?

k=i+1

1 / ﬁ _\'rkfzéhk\g ﬁ _
= [ o e
m20—i+1) g2(i—i+1) 200 5 52 Joi-i \ 2; s

k=i+1 =i+2

,‘Ti_xé?hi\Q7‘hi_§i\27|hi+1;"‘hi‘ )
/ e & dh, | dhl,,
C

Frlel} =

C] i+1
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Since x; is either +1 or —1, the exponent in the inner integral can be re-

written as:

|Ti_xihi|2 |h2 —
+ -

BiP |hi+1 - OéhiP
2 2 +

2
g; 0y

o

1 _ _ _

Q| =

(|his1|” — o higa by — ahf hy + |l hil?)

11 2 *r; hf ah}
— |hi|2(—2+—2+%)—hi(w +—;+—“)

2 2
o o; lop

L (rivi | hg o athig Iril®(hil® R
—h,;(02+—2+ > )+(02+ Tt
G

i n |7l n |hz‘+1|2)

2 =2 2
g g; Uv

= |hil? il_hig;Gil_h:giGil+<

[ri|? y 17k n |hisa]?
A X o o )’

b — PG — (g0 (

where

=i

i

a a*hipq 12l af? 1 a Ti%i
gi_Gi<qi+ o2 ), G —;‘f’?‘i‘,—y and %= "5
v v

2y

Since

h—a 1221
/6 |hi—gil"G; dhl = 7TGZ',
C

36



the exponent terms remained after the integration of the inner integral are

given by:

— oG + (’Ti|2 i |l i |hi+1|2)

0'2 5’3 0'12]
o*h; 2 s 2 B 2 h. 2
Oy g o; o
_ 2, Al o hipr o lhi
= —G; (qul + ¢ = +q; = + p
il | [ [P
+ + =+
( o? G} o2
oy ~ lal’G; e e ril?  [haf?
- UTz|h”1|2 N #hrﬂ - J—Zzhiﬂ — Gilail” + # + (;2
v v I :
Nl = hia? A2 e U E A
- =2 G’L|qZ| abiey 5 + 7
Oiy1 Oir1 a o;
where :
0'2 0'2
L 22 lofG e 0 and hiq 2 aqiGi07 4
o2, ) T L ok L a > an i1 = —
i+1 v O, |:p Wormes &—2} y
Consequently,

|hiv1|?/62, —|hi|? /5%

e i+l g 2/ 2 2
12 /o Gilai

e I 1‘ / Gie z| 1‘

Al
f {7’1 ’xz } 7T2(j,i)+1O_Q(j,prl)o.g(j*i)aﬂ

%

. . 9
J _|Tk_zkhk‘2 J _M
[ [[e
ci—i—1

5 .
7 it1 7o dhi+1 dhg+2.

2 P2 2
ripai—miqgahig1l? Thigp1—hipal® |hipo—ahiqg]
2 )
/ ‘
C

(A.2)
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Similarly, the exponent in the inner integral in (A.2) can be re-written as:

‘7"2'+1 - xi+1hi+1‘2 + ’hi+1 - Bi+1’2

2
|hi+2 - Oéhz'+1‘
2 =2 2
g Tit1 9%
2 72 2
_ 2,~—1 2,~v—1 7it] it ||
= |hit1 — 91l Gy — |9in "G + ( > T T 2 ?
a Tiv1 Ty
where
*
7 G o hi+2
i1 = Gip1 | Gip1 + ——— |
O-U
2 2 2
1 a1 o 1 o 1 |o*G;
i+l = o 2 T2 T o U T o T o T
o o2 O, O o2 lop oy
and
a Tinigahigd i ripivin | oG
Qi+1 - 2 + ) - A 2 + 2
Z Fit1 g Ty
Hence,
1 T/ 14 )
f {rj‘xj} — Helhk+1|2/5i+1_|hk|2/5i . 6_|Tk|2/‘72 . erGk‘q’cF
e 2(j—1) g2 —i+ 1) iz 52
T gJ O g \i=;

. . 5
J _\rkfzkhk|2 J 7|hk_o‘hk71|
IIe IITe 7
ci—i—2

k=i+3 k=i+4

2 : 2 2
rigo—miqgohipal®  |hiqo—hiyol®  |hiyg—ahiiol
2
o
/ ‘
C

52

i+2 v th_g dhg+3‘

Continue the above procedure until we obtain:

j—1

L 1 7 2/22 |7 12/=2 _ 2/ 2 2

f {Tﬂl’g} — — | | elhe1l?/a5 = Ihel* /a5 | o=lril?/o _erGk\le
Ti=it g 2(i=i1) g 2070 52 i

B \rj—mjhj\Z_ |hj—h;|?
/ e 7 5 dh;. (A.3)
C
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The exponent in the integral in (A.3) equals:

rj — by !h — hy|?
—2

2

g J

1 * * 71 % * 7 7
= - (|7“j| —rjxihi —rizih; + |h; 1) + (|h 2 — hihi — hih; + |hj|2)

g
_ |h.|2 i_|_i — h; %_’__; — h* ﬂ+ﬁ_7 + M+M
T g2 612- T\ o2 *32. I\ o2 5? o? 3

- . |2 B2
= PGt = gl G = hig G+ (' {J + |32| )
J

|
SN

il sl
= |h = gPG —lg,I’G7 +((j + )
J

where
M 1 1 a6y
_pad j
and ‘
g 2 T B 0qi-1Gim1
J o2 ’JQ a2 o2
Since
2 72 2172
o1, [(Iml° IRIPY |7”a! Ay
—|9j’ Gj —i—(?-i—(?—? = ’GJ ]‘ G + 52 +5_]2-
|5 \h |2

= —Gj\qy'|2+—a + =3
.7

the final expression for f {rf 2] } is established as:
J

~[hil?/5?

: : e lhi i _ 2/ 2 2

f{ri’xf} = — — 57 | | e Iril?/o erGk|fIk| .
7Tj—l+10-2(]—z+1)o-v o2

% k=i
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A.3 Berrou-Glavieux interleaver

The Berrou-Glavieux interleaver [2,7] fetches data into an M x M ma-
trix in a row-by-row manner, and then reads out according to a nonuniform

rule as /(M x i+ j) = M X i+ j, where

1= (%—l—l) (i +7) mod M, and j = ([P ((i + ) mod 8) - (j +1)] — 1) mod M,

and P(0) = 17,P(1) = 37,P(2) = 19,P(3) = 29,P(4) = 41,P(5) =

23, P(6) = 13, P(7) = T.
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