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Abstract

In this thesis, we focus on the capacity: for the time-varying Gauss-Markov
fading channels. We first remark on four different’definitions of channel capacities
according to whether the transmitter and the receiver have or have not the channel
state information (CSI). We ‘then':provider-detailed derivations for the channel
transition probability of the Gauss-Markov channels. As the true capacity formula for
blind-CSl in both transmitter and receiver is hard to obtain, we derive its independent
upper bound instead, and establish a close-form expression of the independent bound
for any memory order $M$. Discussions are finally given by numerical evaluation of

the independent bounds.
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Chapter 1

Introduction

1.1 Problem formulation

Achieving high data-rate transmission at a highly mobile environment is a research challenge
in wireless communications. On the onedhiand; the signal transmitted in air often propagates
at a multipath environment so that inter*symbol interferences (ISIs) are introduced to the
received signals. On the other hand, fast mobility in“time makes these ISIs generally time-

varying in nature, which greatly enforee the difficulty of channel estimation at the receiver.

Perhaps, the simplest stochastic modelfor a time-varying channel is the Gauss-Markov
[4, 5]. It defines the time-varying ISIs through a discrete-time finite impulse response (FIR)
miniature. The question that this thesis aims at is that what the capacity of a time-varying
channel, like Gauss-Markov, is. The understanding of this quantity helps the researchers to

be fully understood of the gap between the existing technology and the underlying limit.

There have been several publications investigating the capacity of fading channels in the
literatures. The capacity of the flat Rayleigh fading channel has been studied in [7, 10] under
the assumption that the state of channel fading is perfectly known to both the transmitter
and the receiver. While neither the transmitter nor the receiver knows the channel state

information (CSI), investigation of the capacity of memoryless Rayleigh fading channels can



be found in [1]. However, seldom publications have been emerged in the capacity study of

Gauss-Markov channels.

In [9], the authors addressed in the Introduction Section that perfect and imperfect CSI
could have some effect on the capacity quantity. As a consequence, there can be four defi-
nitions of channel capacity according to the transmiter/receiver with/without CSI: namely,
the capacity when both the transmitter and the receiver knows perfect CSI, the capacity
when only the transmitter has perfect CSI, the capacity when only the receiver is perfectly
CSl-aware, and the capacity when CSI is unknown to both the transmitter and the receiver.
In this thesis, we will remark on these four definitions of capacity, and then turn to the

derivations of bounds for the last one.

1.2 Objective of the research

After defining four definitions ofchannel eapacity, we wish to evaluate them based on the
Gauss-Markov fading channel model.  Unfortunately, the problem of finding the channel
input statistics that maximizes the ¢hannel input-ontput mutual information is beyond our
management at this stage. Thus, we turnto the determination of good upper bounds for
capacities. With the availability of capaicty upper bounds, performance lower bounds to bit
error rates (BERs) can be obtained by means of the rate-distortion theorem and the joint
source-channel coding theorem [6]. One can then evaluates the performance lower bound
numerically in comparison with the simulations of his developed coding scheme. Details will

be addressed in subsequent chapters.
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1.3 Organization of thesis

This thesis is organized as follows. In Chapter 2, four kinds of definitions of fading channel
capacities are introduced, and their operational meanings in practical communication sys-
tems are addressed. Chapter 3 introduces the system model. In Chapter 4, upper bounds
of the blind-CSI capacity are derived for different channel memory orders, followed by the
numerical presentation of their respective performance lower bounds. Chapter 5 concludes

this thesis.
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Chapter 2

The Definition of Channel Capacity

2.1 Capacity definition for memoryless additive chan-
nel

Let X1, Xs,--- and Y1,Y5, -+ denote the input and output sequences of the channel. In
addition, denote the noise by Ny, Vs, -.5Thén, a.memoryless additive channel could be
defined by:

Yeu Nifra—= 452, - - -, (2.1)

where {X;}3°, and {N;}3°, are independent; random variables, and are also independent
to each other. If {N;}°, is assumed to be Gaussian distributed with white power spec-
tral density (PSD), then a memoryless additive white Gaussian noise (AWGN) channel is
established.

12



For discrete input X and discrete output Y, the mutual information can be written as:

. N ) - 1o Pxy (z,y)
I(X;Y) = ;;}PX,Y( y) -1 g<px($).py(y))
B Pyx (y|z)
T 2 2 PRl log(zxfexpxwpyx(y\x’))
PN( )
= Px(x PN -lo ’ 2.2
L |\ Shwneal

r’'eX
Based on this definition, the capacity-cost function for memoryless additive channel with
identically distributed {X;, N;}2°, subject to input average power constraint E[X?] < S is

given by:

c(s) = max I(X;Y)

P
= g E Px(x ) - log N( ) . (2.3)
{Px : E[X2]<S} W 1L E Px(x z')

r'eX

2.2 Capacity for time-invariant flat fading additive chan-
nel

The channel model for time-invariant flat fading additive channel is defined as:

Yi=H -X;+N;, i=12,--- (2.4)

13



where H is a time-invariant random variable, independent of {X;}2, and {V;}$2,. Then,
the capacity-cost function for time-invariant flat fading channel given [H = h] is equal to:

Cn(S) = max I(X;Y]h)

{Px : E[X?2]<S}

Px yiu(z,ylh)
= max P x,ylh) - lo :
{PX:E[XQ]SS}ZZ v (@ ylh) & Py (@lh) Py (ylh)

TeX yey
PX\H($|h)PY|X,H(y|$a h)

= max ZZPX|H(x‘h)PY|X:H(y‘x7 h) -log

{(Px  BIXZI<S} 7 yey Pxn(z|h) Z PX,Y\H(x/’y’h)
z'eX

= max Px(x)Pn(y — hx) - lo 2.5

(Px : E[X2]<S}Z;(yezy o) iy = ° S Px(a)Pu(y — ha')’ 7

z’'eXxX

where Px|p is replaced by Px since X is independent of H.

Usually, the average signal-to-noise ratio (SNR) for this channel is given by:

E{BIHX?|H)
E[NH

E[X?]

SNR = BN

= [F[H?]

Therefore, researchers will sometimes fix E{H?] = 1, and varies F[N?] to examine the system

performance of their coding scheme over such a channel.

For continuous channel output alphabet, same derivations can give that:

— pN(y Hw)
Oh(S) B {Px :%?§2]§S};PX($> /ypN(y log Z PX HIL‘ )dy (26)

z'eXx
Note that throughout the thesis, we will use the convention that uppercase Px(:) and low-
ercase px(-) denote the probability mass function (pmf) and probability density function

(pdf) of random variable X, respectively.

14



2.3 Definition of average capacity C(S) for time-invariant
flat fading additive channel

Some researchers focus on the average capacity for fading channel, which is defined as [7]:

c(S) 2 /H pi (h) - Ch(S)dh. (2.7)

The operational meaning of C'(.S) is that it is the underlying limit for a system in which both
the transmitter and the receiver have perfect information about the channel state H. Hence,
no matter what H is, the transmitter will always employ the best code that can achieve
Ch(S), and the receiver will use the best decoder corresponding the perfectly estimated

H =h.

It can be easily seen that Eq. (2.7) can be rewritten as:

C(S) = /H pig (i) LPX i o (XY || dh. (2.8)

For clarity, let us give an exemplified computation for C(.5).

[Example| Suppose that N is Gaussian distributed with zero mean and variance o2. Let

the channel input alphabet X and output alphabet ) be the real line. Then

1 h*- S
Ch(S) = . ;%??2]§5}I(X’Y|h) =5 log (1 + = ) . (2.9)

By assuming that H is Rayleigh distributed with E[H?| = 0%, we obtain that:

— h h? 1 h?.S

ROy H 2
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2.4 Definition of capacity C(S) for time-invariant flat
fading additive channel

In the previous section, C'(S) is the channel capacity given that the transmitter and the
receiver have perfect knowledge of channel state H. In situation where both the transmitter

and the receiver are unknown of the channel state, the capacity-cost function should be given

by:

C(S)

>

max I(X;Y)
{Px : E[X?]<S5}

. :Hé?)}(CQ]gS}[ (Y) = h (Y]X)]

y (2,9) )
= max T -lo d
{Px : E[X2]<S}Z/pXY y s ( ( ) by (?/ v

pY|X
= max i h “lo dydh
{Px:E[X21<S}/ Z/pXY'H &l g( py (y ) Y

zeX

_ max " 2 - 1o f pu(R)pyxm (ylz, h)
- [ ) S Beto) fpentoland g ) duan

(Px : E[X?]<S} = Jopr(R)pyia (ylh)

(2.11)

2.5 Remarks on four definitions of channel capacities
for time-invariant flat fading additive channel

The previous sections have introduced two definitions of channel capacities, namely C(S)
and m, for time-invariant flat fading additive channel. In fact, we can define four kinds
of capacities according to different assumptions on the knowledge that the transmitter and
the receiver have. Note that C'(S) corresponds to that both the transmitter and the receiver

are unaware of the channel state, while C(S) is the capacity under the assumption of perfect

16



CSI knowledge to both the transmitter and the receiver. Their formulas are listed below.

c(s) = (P ¢ BX?I<S) /HpH #) 2 Px (2) /pr|X’H (iR -log <p;1|vx(§;)) Ao

TeEX
(2.12)
- h)
Sy 2 / h)  max P /‘ 2,h) 1o CMXHQW )ddh
(S) HPH( Py B <S}Z x ( pY|X,H(y| ) - log PY\H(?JVZ) Y
(2.13)

Now, if only the receiver knows the channel state, the transmitter cannot vary its encoding
rule according the channel state. Hence, there can be only one maximization input statistics

in the channel capacity formula, and the capacity formula is refined to:

h
cr(s) £ max / M2 Pz / pyix.a (vl h) -log (p”’H(y'”’ ))dydh.

BE[X2]<S} pya (ylh)

(2.14)

On the other hand, if only the transmitterpissaware of the CSI, the capacity formula will

become:

c(s) & /pH(h max ZPX /pyx,H(ylx,h)-log <pY]|9X(y|x))dydh
H

{Px : BIX?|<$}4 y ()

(2.15)

In general, C(S) < CM(S) < C(S) and C(S) < CH(S) < C(9).

In concept, if a perfect estimate of H is available to the receiver, then the receiver can
surely take advantage of the knowledge of pxym and pyz at the decoding process. If,
however, the receiver knows nothing about H, it can only use the average counterparts of

px,y|a and py|y in its decoding process, which are exactly:

m@szWHwMW%aMpm@wILmemﬂwW%-@@

This explains why (2.13) and (2.14) use py|x,z and py|g in the logarithm term, but (2.12)

and (2.15) use py|x and py instead.

17



Table 2.1: The operational characteristics of four definitions of capacities.

Capacity-cost function | TX Knows CSI? | RX Knows CSI?
C(S) No No
CM(S) Yes No
c(9) No Yes
C(S) Yes Yes

In addition, if the transmitter has full knowledge of CSI, the encoding rule can vary
according to H; hence, the maximization operation shall be inside the integral with respect
pm. In case the transmitter has no control of CSI, the transmitter can only fix the encoding
rule regardless of the CSI, and hence, the maximization operation shall be placed outside

the integral with respect to py.

These four definitions of capacities are summarized in Tab. 2.1.

2.6 Capacities for discrete input transmitted over time-
invariant flat fading additive channel

In our research, we assume antipodal‘fransmission with input alphabet {—s,+s}, where s
can be any real number. Therefore, the power constraint on the input can be simplified to

E[X?] = s*> < S in the four definitions of capacities, and (2.12)-(2.15) can be re-formulated

as that:
py|x(y|$
o(S) = ma / h P / x,h)-lo < )d dh
( ) PXGP;?%S) HPH( );\/ X( ) Py|x.H yl g Dy (y) Y
cI(g) & / h) ma P x/ z,h) 1o (pY'X(W )d dh
(S) HPH( PXGP;%S)IGZX x (7) pr|X,H Y| 8\ () Yy
h
CR(S) 2  ma / NS P / z,h) 1o <pY'XH(y|x )d dh
(S) plnax HPH( )x;( x () [ pyix.m (Y g ovit (1) y
o Py|x,H ?J|I h )
c(s) = h P h -1 dydh,
) /Hp Px%%§5>x;{ x (e )/pY'XH (e Og( v i) )

18



where Py(S) £ {Px : X € {—s,+s} for some real s with s> < S}.

19



Chapter 3

System Model

3.1 Data model

In our system, we assume that binary phase shift keying (BPSK) signaling is transmitted as
channel input. The probability of channelinput.is defined as Px(s) = p and Px(—s) = 1—p,

where p € [0, 1].

3.2 Channel model

A frequency-selective fast fading channel can be modelled by:

P
T P2
Yo =2l 4+ 20 = [T T 0 Tpon] +ze, K=1,2,---.n (3.1)
P, n
where x;, = [a:k Tp1 -+* T MH]T is the channel input vector consisting of the current

input and the previous (M — 1) inputs, M is the time spread or temporal channel memory,
h;, = [hk,l hio -+ hg, M]T is a complex column vector containing the channel impulse
response coefficients at time k, and z; is the complex memoryless Gaussian noise at time k

with variance E[z2}] = o2.

Let y = [y1,--- ,yn]T, T = [To_ps, - ,xn]T and z = [z1,--- ,zn]T denote the received

20



vector at the channel output, transmitted data at the channel input and complex additive

noises, respectively. Then, (3.1) can be re-formulated as:

y=Hx+ z,
where _ .
hy hipx 0 .- 0 0 0 0
0  hom hap -~ 0 0 0 0
H = : : : c : : : :
0 0 0 0 hop—inve -+ hp_11 O
0 0 0 0o - 0 hon m1 o haa
Taking M = 3 as an example, we have:
i1
Y = xRy + 2 = [xk Tp—1 $k—2} hea| + 2k, k=1,---,n,
hi 3
which can be reduced to the matrix form: as:
[y, ] [his hia hia O 0 0 0 07 [24] EN
Yo 0 haz haa ha2i 0 0 0 0 To 2
Ys 0 0 h373 h372 } : : : T <3
: : : : : hn2yz=hya9 h,11 0
| Yn | | 0 0 0 0 0 hn's hn,z hn,l_ | Tn | | Zn |

According to (3.2), the pdf of the received vector y given & and H is equal to:

3.3 The statistics of channel state

(3.5)

(3.6)

As aforementioned, if the channel fading is known to the receiver, channel capacity can be

evaluated according to either (2.13) or (2.14), depending on whether the transmitter has the

information of channel fading or not. In this thesis, we focus more on the channel capacity

at the situation that both the transmitter and the receiver are unaware of (and hence do not

21



need to estimate) the channel state. In such case, we need to compute f (y|x). In principle,

f (ylz) = /H f (ylw, H) f (H) dH. (3.7)

Hence, it remains to define f(H), in addition to (3.6), to establish f(y|x).

A frequently used fading statistics is the Gauss-Markov. It defines the statistics of the

fading through a recursive first-order Markovian equation as:
hk = Ozhk_l + vy, (38)

where v, is complex, white, Gaussian distributed with mean d and covariance matrix C,
and « is a complex-valued scaling constant. The complex-valued constant « is a first-order
Markov factor usually chosen according to |a| = e, where T is the system sampling period
and w/m is the Doppler spread [4]. Note,that the initial channel coefficient hy is assumed to
be perfectly estimated such that hy'is treated as a known constant. Based on the definition
in (3.8), f(hg|hg_1) is complex Gaussian distributéd with mean (ahy_1 + d) and covariance

matrix C. We can therefore express fi(H)-as:
JH) = f(ha) ][ f(Ralhiy)
k=2

1 n
_ WHexp {— (hy — ahy_y — d) C~ (hy, — ahy_y — d)} . (3.9)
k=1

22



3.4 The channel transition probability of Gauss-Markov
fading channel

Substituting (3.6) and (3.9) into (3.7), we obtain the closed form of probability distribution

of f(y|x) in Gauss-Markov fading as:

- 1 o ox ‘yk — .’Bkhk

exp(—(hk—ahk —d) e k—ahk_l—d))]dﬂ

- G| [losen (25

n—1
X [H exp [(qk — a*C’_ld)H Gy, (qk — a*C_ld) — dHC_ld}]

k=1
X exp [qf Gq, — (ahgt.d)’ C 1 (ahy + d)] , (3.10)
where
4 w*wT -1
( ;21 + (1% |a|2)C'1) , if k=1
:n*:fsz -
G, = ( ’f2 + (1 + [of)€e:t |a{2C1Gk_101> Cifl<k<n (3.11)
i -1
(w”f" Noa |a|QC’1Gn_101) , it k=n
\ Uz
and
y1“2’1+c ld + aC~'hy, if k=1
O'
a = ykwk (3.12)

+C'd+aC'Gy_1q, , — |0’C7'Gy_1C71d, ifl1<k<n

Z

The detail to derive the above result is described in Appendix A.
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Chapter 4

Upper Bounds of the Blind-CSI
Capacity for Gauss-Markov Fading
Channel

4.1 Independent bound

In this section, we focus on the independent bound of the channel capacity defined similarly
in (2.11), i.e. the capacity without knowing the chaniel fading both at the transmitter and

at the receiver. Here, we presume that the channel.is reset every n symbols. Therefore,

1
cis) & = max I (xz;y), 4.1
( ) N APy : Ltr(ElzHx])<S} ( y) ( )
where, as defined in the previous chapter, @ = [2o_ps,--- , @, , and “tr(-)” denotes the
traverse of a matrix. Since xo_p, -+, are usually assumed deterministic zero (hence,

they consume no power), and are nothing to do with the information transmission, we will
abuse notation x in this chapter as & = [x1, 2o, -+, 2,|T without ambiguity. Thus, we can

equivalently replace & by X" to result in:

c(s) = ! max I(X™Y™), (4.2)

N {Pxn : 1tr(Ax)<S}

24



where Ay is the expectation matrix of
XX
By elementary information theory operation [3],

(Y™ X") =

— BYIX™) — h(X"),

pxnyn (2, y")

p nyn xn,yn 10 |: : :|d.%‘ndyn
L[ e s pre (5) pxe (27)

= / / anYn 7y)1g

|:pY”|X" (y |I ):|d{L‘nd’yn
py= (y™)

(4.3)

where h(-) represents the differential entropy operation. For notational convenience, we will

respectively abbreviate pxn y» (2", y™) and pyn(y

previous chapter.

") by f(x,y) and f(x) as we did in the

Although in the previous chapter, the'dloséd form expression for f (y|x) is established,

it is still hard to evaluate the capacity in (4:2).

An upper bound based on the simple

information-theoretical independent bound; however; can be easily obtained. The indepen-

dent bound for mutual information is given by:

I(X"YY) <IT(Xy;Y)+--+1(Xn;Ya). (4.4)
We then derive:
pnax I(X™Y™
{Px:5 1y BIX7]<S}
< ax (X Y0) + -4+ T (X0 Y3
{Px:5 1y BIX7]<S}
= I'(XuY)+--+1(X;Y, 4.5
i U )+ TG )
< max I(X;Y)+-+ max I(X,;Y,), (4.6)

{(Px:(¥ i) E[X2]<S}

{(Px:(¥ ) E[X2]<S}

where (4.5) holds since in our system setting, every E[X?] is equal to s* due to x; € {—s, +s}

for every i. Note that Y . | F[X?] = tr (Ax).
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Let Cx(S) denote the maximum of mutual information [(Xj;Yy) under input power

constraints F[X?] < S for every k. Then,

C(8) < - [Co(S) ++++ Ca(S)], (.7
4.2 Derivation of f(yi|x;) and f(yx)

In order to evaluate the independent bound of channel capacity, f(yx|®r) and f(yx) have to

be obtained first. The approach to obtain them can be described as follows.

First of all, we derive:
f(yplx, by, - hy) £ / fyle, by, - hy) dys - dyp—1dyrrr - - - dyy,
c c

n 2

1 |Ym — L P |
— || _ dyy - - dyp_1dypry - - - du,
(71_0_2)71/0 / eXp( 0_2 3/1 yk 1 yk+1 y

_ Ly (_ka—fcfhk\2>
e =

= f(yelzishu)y, (4.8)

where C denote the set of all complexnumbers. Then, we notice that:

f (ylm) = /CM CMf(ykIa:,hl,... h) f (Bplhy) -+ f (holh) f (he) dhy - - dh,
— /CM L F (elme, hi) f (Bnlhnr) -« f (Ba|hy) f (hy) dhy - - - dh,
= / I (yrlzr, ) {/ f(hk|hk1)~./ f(holhy) f (Ry)dhy - - - dhy_1 | dhy
cM oM -
_ /c (ol ) £ () b o

It remains to find f(hy) for k=1, ---  n.

By the system model,

f(hy) = —— exp (— (hi — aho — d)" C" (hy — ahg — d)> . (4.10)

1
7C]|
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Thus, h; is complex Gaussian distributed with mean d; £ ahg + d and covariance matrix

D, £ C. Next,

Py = [ falh) f (o) b

1 —
- m oM P <_ (hy — ahy — d)H C™' (hy — ahy — d))

exp (= (hy — )" DY (s — dy)) d. (4.11)
The negative exponent inside the integral in (4.11) is:

(hy — ahy —d)" C7' (hy — ahy —d) + (hy — dy)" D7 (hy — dy)

= ((hy—d) —ah)" C7' ((hy — d) — ahy) + (hy — dy)" DT (hy — dy)

= |a)?hChy —a(hy — d)" Chy — o'REC™ (hy —d) + (hy — d)" C' (hy — d)
+h" D hy — dD{'hy — R Datdisd! D7 d,

= hf(ja)?)C' + D7Yhy + dEDT i + (he'— &) C' (hy — d)
- [a (hy —d)" C +d D;l} hy —ha"C Y (hy — d) + D 'd,]

= [pQ hy — pf' Q7 Ry - REQ | FdY D+ (R — d)T CT (hy — d)

= (b= 1) (b — ) — pl' QAT DY 4 (e — ) O (hy — ), (412)

where p; £ Q; [a?C™" (hy —d) + Dy'dy] and Q7' £ [a[*)C™" + D7, In (4.12), only the
first term is relevance to the integrater h,. Hence, taking the first term into (4.11), and

integrating with respect to h; yields:

[ o [ = ) 190 (= )] s = . (4.13)
C

Let B, 2 1+ |af> + |af* + - - + |a|?*. By observing that C™' = fyD;* and Q;' = 3,D;*
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and p, = % [y (ha — d) + dy], the remaining terms in (4.12) put:

&' D + (hy — ) C7 (hy — d) - p' Q'

= d'D7d, + By (hy — d)" D7 (hy — d)

ﬁll (0" 80 (hs — d) + di] " Dy [a" By (he — d) + d]
= dHD 1d1 + Bo (ha — d)H D7 (hy — d)
6, I
1
aﬁfo d' Dyt (hy — d) - ﬁ—df D;'d,
— =" D (b~ d) - 2 (b~ )" D;d - aﬁﬁo WD e d)
+Md{{D;1dl
B

= (hy—d—ad)" D;' (hy—d—ad)),

where Dy £ (31/3y)D;. Summarizing the above, derivation, we obtain:

1

hy) = ———
() =

exP [— (hs=ad, — d) D;" (hy — ad, — d)] , (4.14)

and hence, hy is complex Gaussian' distributed with mean dy £ ad; + d and covariance

matrix Ds.

We now turn to the derivation of f(hs). Observe that

f(hs) = » [ (hslhs) f (ho) dhy

1
— m - exp ( (hg — CkhQ d)H (on ! (hg - Oéhg - d))

exp [— (hy — do)" D" (hy — do)| dho, (4.15)

which has the same form as in (4.11). So, the negative exponent inside the integral in (4.15)

is likewisely equal to:
(hs — ahy —d)" C7* (hs — ahy — d) + (hy — dy)" D3 (hy — d)
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= (hy — )" (R — pp) — 15’ Q' + A Dy 'y + (hy — d) C7 (hy — ), (4.16)

where p, £ Qy [0 C™" (hs — d) + D3'dy] and Q3! £ |[o?C~" + D;'. By observing that
C'=p3D;"and Q' = 3,D;" and p, = é [ 3) (hs — d) + dy] , the last three terms in

(4.16), as the first term is removed due to the integration with respect to hs, put:
dyD;'dy + (hs — d)" C " (hs — d) — ps' Q; 'y = (hs — d — ady)” D3 (hs — d — ady) ,

where D3 = (82/1)D5. Hence, hs is complex Gaussian distributed with mean ds = ad,+d

and covariance matrix Ds.

By repeating the above procedure, we conclude that h; is complex Gaussian distributed
with mean dy = adj_; + d and covariance matrix Dy = (Bx_1/Fr—2)Dy_1 with the initial

values dy = hg, Dy = C and B = 1+ |a]®> + -+ + |af?* with 3., £ 1. As a result,

1_1a|2k
1=]af?

C.

d, = o*hy + =%d and D, = B;,_,C.=
11—«

After obtaining the probability distribution of the fading coefficient h, the probability
distribution of f (yx|x) can be ealculated by integrating the product of f (yx|x, hy) and
f (hy) as follows:

f (ylx) = /CM [ (ylz, h) f (hy) dhy,

11 — zThy|”
_ exp (—M> exp [~ (b — )" Dy (. — dy)] dh. (4.17)

no? |t Dyl Jom o?
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The negative exponent in (4.17) is equal to:

(yk - wfhk)H (yk - wfhk-)

H —
g + (hi, — dy,)” D}
|yk| ?Jk T H kyk HTLT, Hpy-1
T2 o2 P = b = 5=+ R = 5 P+ Ry Dy hy —
—d{' D, 'hy, + dj' D, 'dy,

T

— pff <"”’€"”’“ +D; )hk—th (mkyk +D; 1dk) _ <
O' O'

z z

- ’Z/k’Z
+di' Dy dy + 02

z

— WI'E;'h, — h7E;'e, — e E;'hy, + d'D;'d; + &

= (hk—ek) E (hk—ek)—ekE ek—i—dHD 1dk+

(Rt~

z

2
| |

|yk|

Z

dy)

h{ D, 'd,

H
Tilk | - 1dk> hy
O'

where E; ' £ <w’;—§£ + D,;l) and e, £ E, (m’“yk + D 1dk> Therefore,

o |7TEk|
f(yk|wk> - 7T0-3|7‘—Dk|

It remains to simplify the exponent. of the-above expression.

Referring to [11],

(A+ad”) =A"-

for any k-by-k matrix A, and k x 1 vectors a and b. Hence,

and

exp{ekHEklek dHD ld, —

1 A lab’A!
1+b7A 'a

Dzl D

Z

Also, for any k-by-k" matrix A and k’-by-k matrix B [8],

I, + AB| = |I,, + BA|,

30
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o2 [

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)



where I represents the k-by-k identity matrix. This gives that:

T
iz, D
_ Lk
|7TEk| = 7TDk I_2—TD*
T
x: D
- * k k
T *
N | T Dimy
- k 2 TD, z*
o; +x; Dyx;,

= [7Dyl (U—2> (4.24)

2 T *
oz +x, Dy

By letting 02 £ o2 + z! D,z for notational convenience, the negative exponent in (4.19)
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can be reduced to:

—€, E e. + dHD 1dk + —

= —(B;'e)" Ey (Ef'ey) +di Dy,

x H Dyxixl'D T
- _<(’;y’“+D1dk> (Dk— ok k)(;yk+D1dk)+dkHDk

z

|yk|

z
2
||

z

|yk|2
2

z

2

Ox z

(03)2

xl'D.x* 1 T
+dix; (’“—’“’“ - —) YK + (

T * T * H
T D,x 1 . (. Dix 1

e +—2)yk+y,§f (dkHCL‘k (%——2

(02) o2 00% o

Fdy) " (afdy)

2

o2

= Y

0-30- z Ox
H
= ((w%Dkw,’;)Q w%Dkw,’; 0% — x} Dkwk) gttt [ LDz \/ok
(03)2 (o o2\/o% o2
(x Tdk) azkdk a:kaa:k o wl dy)
o2\/c% o

= l(i@i’f—%

2’

Vok Fdy)” (
)“ VERNC
H

a:;kaa:’,; _ \/0'3( n (.’B{dk)
o3 7‘%( o2 Yo T =
) ‘

)

0-2 /o
1

2
Ox
1

gz
d
02 )yk—l- (wk k)

2
O-Z

2
Ox

2 2

Ox T
F) Yk + mkdk

z

2

T
2
UZ

‘yk - w;gpdk‘Q
+ Ty DkiL'k

2
Ox

o} +$kaCEk> yi + (zldy)

Finally, the above derivations summarize to:

f (yklz)

oz
(4.25)
2
_ "B |yx — (i di)
mo2|m Dy P o2+ zl Dyx;,
2
oD | ot | ln (el
no?|rDy| |02 + ] Dyx; P o2+ xl Dy}
2
1 |y — (1 dy)
2 T * Pl —3 T * s (426)
7 (02 + x;, Dyx3) o2+ x| Dyx;
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where Dy, 2 (1 — |a]*)/(1 — |a]*)C and di £ o*hy + (1 — o¥)d/(1 — «). Accordingly, the

probability distribution of f(yy) is

fa)= > Px(a) ! exp [ 0= (@) (4.27)
g XA T (02 + 2T Dy o2+ xl Dyx; | '

4.3 Independent bound for M =1

Recall that:
C(S) <~ [G(S) ++ + Cu(S)]. (4.28)

where Cy(S) = maxyp, . (v i)pix2j<sy {(X; ¥2). Now we will derive Cy(S) for the case of
M =1.

For M =1,

f (yelm) = f (yelze) = : e <_M>

M (0’2 = |xk'2Dk O'g + ’Q?k’ZDk

2 i 2
C . exp (-‘d” [/ die — ) (4.29)

m{a2 +4xk12 D) 02 + |zk|2 Dy

Since I(X;Yy) = 1 (Xk;f/k) for invertible' transformation Yy £ Yy /di, we can transform
f(yk|z) to obtain f(gk|z) as:

1 |k — x|
ex — . 4.30
w@+wwmvmwﬁ< CEEAFADIRYIPAE (430

f (k)

In our system, the transmitted symbol z, is assumed antipodally modulated. In other words,
x € {—s,+s} for some real s. In such case, the imaginary part of g is irrelevant to the
channel input; hence, we can further reduce the complex channel to the real channel without

affecting the mutual information as:

1 ex _ (@k,r - $k)2
/(02 + s2Dy,) /| dy|? p ( (02 + Ssz)/]dk\z) ; (4.31)

f (gk,r |$k> =

33



where g, is the real part of g;. For this real-valued symmetric additive Gaussian channel,
its capacity-cost function is achieved by uniform input with s> = S; hence, by denoting

o% £ (02 + s*Dy,)/(2]dk|?),

= h(Y,) /f k,r|1) log { :|dgk,r
z;( f Grle)
~ 1
= h(Ye,) — 3 log [2meoy] . (4.32)
Now, for uniform channel input,

WY = - / £ () 108( () s

y r —|— s egk,rs/o'?v _|_ e_gk,rs/o']Q\] _
= /f ykr [ log(Qﬂ-O—N) + L 10g< 9 dyk:,r

20’N

Tk r=9)?/(20%) o0 (cosh(Gkrs/0%)) iy

1
=5 log(2meos) +

\/271'0,\,

L (2meoy) + 2 /,/—1 22109 [ cosh | -+t 82 dt
= —log(2meo — cosh [ —

1 1 S S
= —log(2mea?) + % — / sz *? 0g [ cosh — +ty) = | | dt, (4.33)

which immediately gives that:

2|dy |25 Iy 2|25 2|dy |25
e ) i [ Y e L RS ) P PRIV
Cul8) = 3 sp, /gfe ol e\ 2 sp, T o2+ 5Dy (4.34)

By Ceséaro-mean theorem [3], when taking n to infinity, we have:

€(S) < lim %ick(S) — lim Gy (S) = Cu(S), (4.35)

n—oo

2ld |28 Ty 2ld|2S 2d|2S
I I ) n (25 2SS )Y Gy
CoelS) = 55D /gm/g6 gl g, T 2+ sh. (4.36)
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and dy, = d/(1 — a) and D, = C/(1 — |a]?), provided that |a| < 1.

We will demonstrate in the next three figures how channel model parameters affect the

independent bound of channel capacity.

In Fig.4.1, Ck(S) is plotted for different initial channel coefficients hy. Obviously, hg

affects Ci(S) only at small k. As k grows, dj will be dominated by a and dy, and C(S)

will converge to the same limit C(S).

C(S)at C=d=1,0a=07, anda’ =10

h0=O.1
+h0:2

0.6
—_——— h0= 10

0.5

) Sk
e o o

0.4

0.3

0.2

0.1

Figure 4.1: Illustration of Ci(S) for different initial fading coefficients hy = 0.1,2 and 10.
Other parameters for Gauss-Markov channels are S =1, C =1,d =1, a = 0.7 and ¢ = 10.

In Fig. 4.2, Ci(S) is plotted for different initial Gauss-Markov fading mean d. In principle,
the value of d determines the strength of line-of-sight (LOS) propagated signal. Figure 4.2

indicates that a stronger LOS signal can result in better capacity bound C(S).

In Fig.4.3, Cx(S) is plotted for different initial fading covariance matrix C. The figure

indicates that a larger fading variance C makes a lower capacity bound.
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C(S)at C=10,h=1,a=0.7 and of =100.

—&—d=0.5
d=1

0}
D
D

)
D
D

Figure 4.2: Illustration of Cx(S) for differeént initial Gauss-Markov fading mean d = 0.5, 1,3
and 5. Other parameters for Gauss-Markoy_channels are S =1, C = 10, hg = 1, a = 0.7
and o2 = 100. w ;

An interesting observation that cansbe-made on'C.,(S) is that it is equal to zero once
d = 0. This means that the channel capacity '(S) = 0 if there exists no LOS signals in the

communications via Gauss-Markov channels.

The Gauss-Markov channel model can be reduced to the additive white Gaussian noise

(AWGN) channel model by letting & =0, d =1 and C = 0. As a result,

S | S
AWGN AWGN [ oy _ o—t2/2
COYER(S) = O, (S) = 02/2 / \/% log (cosh <a§/2 +t 03/2>> dt. (4.37)

Notably, this is no longer an upper bound, but the exact channel capacity formula for binary-

input AWGN channels [3].
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Ck(S) at h=d=1,a=0.7 and cri =10.

c=1
—*—C =10 |
—— C =100

0.6

0.5

0.4

0.3

*

0.2

0.1

Figure 4.3: Ilustration of Cy(S) for différéntiinitial fading covariance matrix C = 1,10 and
100. Other parameters for Gauss-Markov_channels.are S =1, ho =1, d =1, « = 0.7 and
o2 =10. | ‘

4.4 Independent bound for\ — 2

At M =2,

Cr(S) = max I(Xk; Vi)
{Px : (¥ )E[X?]<S}

- max I( Xk Vi) (4.38)
{le@il : B[X]2<S and E[X}?_|]<S}

It is in general hard to find Cy(.S) for the case of M > 1. Hence, we made the assumption

on the channel statistics below.

Assumption 4.1 di; = pidy and dro = p2di for some real numbers p; and ps, where
d, = [dm dkg]. Also, C is diagonal; hence, there exists Dy 1 and Dy o such that
| Dkx 0| 2k o2y |G 0
D= | [ =ataya-tan (G L
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Recall that

2
1 e — (z{dy)
N _ k
florlze) = ™ (02 + xf Dyx}) =P ( o? + x| Dyx;,

= (yk‘wkaajkfl)

_ 1 exp | — [y — Tpdy1 — T 1dg 2
s (0'2 -+ |Ik|2Dk,1 + |$k—1|2Dk,2) O'g + |5L’k|2Dk’1 + |Ik_1|2Dk,2

_ 1 exp (_ Y/ di — (praox + pzxk—1)|2 ) (4.39)
) ( ' '

™ (0’2 + 82Dk71 + 82Dk72 O'g + SQDk’l + SQDk,g)/|dk|2
Then, by letting ¢, = yx/dy, we obtain:

~ 1
f(yk|xk7xk—1) = Fexp <_

g2

~ 2
|yk (plxk‘ + le‘k‘_l)l ) , (440)

where 02 £ (02 + 52Dy, 1 + $2Dy2)/|dy|?. By following the same reasoning as in the previous
section,

(X3 Ya) = I Ya) =01 (Xy; Yir),

where Y}, = }7,” + jffkﬂ-. Then, we derive:

(X Yir)= > Y /ka,xk (T, Ti— 1) I (G| 2h, 1)

Tp_1€EX T €X

Z PXk:kal(xk7 *Tk*1>f(gk,r|xka fkfl)
T 1€EX

log Ay
Z PXka—l(xbjk—l) Z Z PXIka—l('I;C?$;€—1)f(gk,r|’x;€7$;c—l)

Tp_1€EX x_EX x| EX

hence, by taking the derivative of I(Xjy; ffk,T) + A <Zxk71€X szex Px, x,_,(zp,xp-1) — l)
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with respect to Px, x,_,(x},z}_;), we obtain:

9 [I(Xk; Vir) + A (ka,lex > erex Pxxiy (T, To1) — 1)}

aPXk,Xk,1 (x/]g,7 xg—l)

/ f(gkﬂ“’m/k/? xlklfl) log Z PXk,Xk—l(xlkl7 jkfl)f(gk,rlxlklv jkfl) dzjk,r +1
R

Tp_1€X

—/f@k,r!ﬂ?'éﬁ'éq)log > Pxox (@ dea) | di — 1
R

Tp_1€EX

/f yk‘T’xk?xk 1)10g Z Z PX;C,X/Vq(:U;c’x;c—l)f(gk,r‘l';wx;c—l) —1+A

x_EX x| EX

= I('rkvxk 17Y;€T> L+ A,
where

I(z], x)_ 1,Ykr /f Yo, | Ths Thoafl)

Z PXIka—l (x;c/7 Ek—l)f(gk,ru%v 2771@—1)

Fp CX ‘
x log ko1 : Ay,

Z PXk,Xk—l ($Z7 iﬂk—l) Z Z PXk7Xk—1 (:L‘;C, 902_1)f@k,r|$2a x;c—l)

Tp_1€X $;€71€X m;CGX

By similar reasoning in [3],

Y = Ck(S), if PXk,Xk_l(xlmxk—l) >0
I(I‘k7xk717 Yk:,r) { < Ck(S), if PXk,inl(xk,Z'kfl) —0. (441)

For notational convenience, let Ij(a,b) denote I(x) = as,xp_1 = bs;ffkm), where a,b =
+1. Also, brief Px, x,_,(Tk, Tk—1) and f(Gkr|Tk, 2k—1) bY pap and f(Gkr|a,b), respectively.
Then,

Z Papf (Grla, b)

b==+1

Z Do ( Z Z pa’,b’f@k,r|a/7 bl))

h=+1 a’'=+1b=%£1

- hk(aa b) - hk<a7 b|(l>,

dgk,r

Ii(a,b) = /%f@k,rla,b)log
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where

hi(a,b) £ /fyma b) 1og<2 Z Parar f @irld b)) dijr
'=+1b'=
i+ 821 + 873
— /f Uk.rla,b) [ log(mo?) + g
25<p1+92)yk,r72s P1P2 25(P1*P2)§km+252l31p2
—log { p11€ o? + p1,-1€ o2
*25(01*p2)§km+252p192 *25(P1+P2)§k,¢*252/91l32 5
+p-1.1€ o2 +p-1,-1€ o2 Ay
1 s2p? + s%p2 + s2(ap; + bps)?
— —10g(7T€0’2)—|— P1 pa + ( P1 p2)
2 o2
B 25(P1+P2)'gk77«*252pll32 2S(p1fpz)§k’r+252p1pz
= [ Frlab) log (prae™THETTE gy
14
*25(91*92)§k,r+252/’192 *25(P1+P2)’§]€77«*252P1l32 B
+p-1.1€ o2 +p-1,-1€ o2 Ay,
and
Z pa,I_Jf(gk,Tla'7 B)
E==cil ~
hi(a,bla) = / f(Urrla,b) log dym
R
I
b==41

1 3 _l’ 52 2 i 82 9
R

2s(apy +p2>:t7k,w2szﬂ1 p2a 2s(apy fﬂ2>@k,r+2szp1 poa

—log (pa,le 2 +Pa,—1€ a2 )] Ay, +10g (Pa1 + Pa—1)

s’pi + sp3 + s*(ap1 + bpa)?
2

1
= log (pa1 + Pa,—1) + 5 1Og(7T602) + -

B QS(GP1+02)?§1€,T—2320192@ 23('191—?2).@1“@-0-232?102@ B
— | f(Gkr|a, b)log ( paie o2 +Pa,—1€ o2 Ay -
e
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Accordingly,

Ii(a,b) = log(pa,1 + Pa,—1)

B 28(ap1+p2)ﬂk,r*252mp2a 23(a/)1*92)37k,r+25291P2“ 5
+ [ f(Gr.r|a,b)log ( pae o7 +Pa,—1€ o Uk
R
B 28(p1+p2)@7k¢f2s2p1p2 23(p1fp2)§k,r+232p1ﬂ2
— [ f(Uksla,b) [log | p1ie o2 + p1,-1€ a2
R
728(91702)ﬂkm+2s2p1p2 725(p1+p2)§k¢725201pz 5
+p-1,1€ o2 +p-1,-1€ o2 Yke,r

= log (pa,l + pa,—l)

V250 (apy +pg)ut2s2(p3+bp3+abpy p3)

+/ Le_“2/210g (p 1€ o2
R V2T @

V2so(apy —p)ut2s>(p3—bp3+abpy pa) ) d
U

+pa,fle a2

1 —u2/2 V250 (p1 +p2)ut2s>[aps +bp3+(atb—1)pq po]
— e log ( p11€ o2
R V2T

V255 (p1 —p2)ut+2s2[ap? —bpdA(aEbE1) py po) —V2s0(p1 —pg)u—2s2[ap

+p1,-1€ a2 +p-11€ o2

V250 (p1+p2)us2s> lap? Ebp3 (atbdl) p1 5] > :|
u?

2 —bp3—(a—b+1)p1p3)

+p-_1,-1€ %2

where u £ ‘/75(

Ukr — s(ap1 + bpa))e As a-result;

I:(1,1) = log(pi,1 + p1-1)

1 —u2/2 ‘/§SU<P1+P2)u+252(ﬂ%+/3§+ﬂ102)
+ e log ( p11€ o2
R

V2r

V2s0(p1 —p2)u+2s2(p3—p3+p102) )
Uu

+p1,-1€ o2

V250 (p1+p2)ut2s? (o +p3+p102]

» V21 ’

V250 (p1 —p2)ut2s2[p? —p3+p1pal —V2s0(p1 —p)u—252[p3 —p3 —p1 po]
+p1,-1€ o2 +p-11€ o2
—V2s0(p1+p2)u—2s2[p3+p3+3p1 pal
+p_i_1€ o2 du
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I;(1,-1) = log(pi1+p1,-1)

V250 (p1+p2)ut2s?(p?—p3—p1p2)

+/ L6_“2/2 log <p1 1€ o2
® V2 ’

V2sa(p1 —p2)ut2s2(p3+p3—p1p2)
+p1,-1€ o2 u

1 —u2/2 V250 (p1+p2)ut2s2[p3 —p3—pyp2]
— [ —e log ( p11€ o2

R V2T

V2sa(p1 —p2)ut2sZ[p3+p3—p1p2] —V2s0(p1 —p2)u—2s2[p3+p3—3p1 2]

+p1,—1€ o2 +p_11€ a2
—V3s0(p1 +p2)u—252[p3—p3+p1 2]

+p-1,-1€ o2 u

Ik(_Ll) = log(pa,l +pa,—1)

V250 (p1 —p2)v+252 (p3+p3—p1p2)

‘l‘/ L 6_1)2/2 log (p 1,1€ o2
R V2T o

V250 (p1+p2)v+2s2(p3 —p3—p1p2)
+p-_1,-1€ o2 v
1 —2/9 S V250 (p1 +p2)v—252[03 —p3+p1 2]
— | —e logefipiie ‘ o2
R V2T
— V255 (piEpa)v—252[p3 +h3—3p1 p2l V250 (p1 —p2)v+2s2[p3+p3—p1p2)
+p1,-1€ a2 +Dp-1.€ a2
V25a(p1 +p3) vE2E 2P TPRE p1 pol
+p_1,-1€ K dv

I,(=1,-1) = log(p-11 +p-1,-1)

V250 (p1 —p2)v+2s2(p3—p3+p1p2)

+/ Le*qﬂ/2 log <p1 e o2
R V2T ’

V250 (p1+p2)v+2s2(p3+p3+p1p2) )
v

+p-1,-1€ o2

o

—2/2 —ﬁsv(pl+p2)v—252[p%+p§+3p1pzl
log ( p1,1€ 2

_/%jz_we

—V2s0(p1—pa)v—252[03 —p3 —p1p2] V250 (p1 —p2)v+2s2[p3—p3+p1p2]
+p1,-1€ o2 +p_11€ o2
V250 (p1+p2)v+2s2[p3+p3+p1 P2l
+p-1,-1€ o2 v

where for I(—1,—1) and I(—1,1), we take v = —u.
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Numerically evaluation of the above four terms shows that for positive p; and ps, the
largest Cy(S) occurs at p1; =p_1-1 = 1/2 and p; 1 = p_1; = 0, in which case

= [(1,1) = [y(—1,—1)
Cu(S) 4 > I(1, 1)
> I(—1,1).

An interpretation of the result is that since all of the four possible inputs, i.e., (+s,+s),
(+s,—5), (—s,+s) and (—s, —s), for (zx, xx_1) share the same power, and since f(yx|Tg, Tr—1)
for different (xy,xr_1) has common variance but is with aligned means (cf. Fig. 4.4), it is
advantageous to use the two inputs that are farthest to each other. When p; > 0 and p, > 0,
these two inputs should be (xy, zx_1) = (s,s) and (xg, xx_1) = (—s,—s). For general p; and
p2, the two inputs become (s - sgn(p;),s - sgn(ps)) and (—s - sgn(p;), —s - sgn(p2)), where

sgn(-) represents the sign function.

In summary, for dy; = p1dy and’dr> = pady, we can transform the original complex
channel to its equivalent real channel as f(@ [, Zi1) is Gaussian distributed with mean
S M pik_ip1 and variance (1/2)0” = (o2 4 S0 Dii)/(2d|?). The input statistics
that places equal probability mass.on(@k, Tr=1) =(5 - sgn(p1), s - sgn(p2)) and (g, xp—1) =

(—s-sgn(py), —s - sgn(ps)) then maxintizes T(X}, Yy, ). Hence,

Ck:(S) = I(Xkra ﬁc,r)

- Z Z / Pkaxkfl(xk7xk—l)f(gk,r‘xk,xk_l)
R

Tp_1EX T €EX

Z PXk:Xk—l (ZEk, 'Tk—1>f(g/€,7’|xka -Tk—l)

Tp_1€X

log

> Pxx (@r, Ere1) > Proxe (@ @b ) f (Gra ) 7y

Tp_1€EX Ty EX T) €X
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The Probability Distribution of f(y %%, 1)
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Finally, by replacing

2 o+ i Zf\{ Cii
T = L-lof® =l (4.44)

2 2
7 (s L)

where C'is diagonal with diagonal elements {C;;}2, and d = [dy dp --- d M]T, we yield

Cw(S) for the case of M = 2.

4.5 Independent bound for general M

Following similar argument to the previous section, we can generalize Cy(S) for general M

below.

Theorem 4.1 Let M be the true memory order of the channel. Assume that there exists a
complex number dj, such that di; = p;dy for.some real number p; for every 1 <1 < M, where
d;, = [dk,l dgo -+ dk,M}- Also C' is diagonal. “Then, the component independent bound

Cr(S) is given by:

Cy(S) = 25—5 - /% \/%e_tzﬂ [Iog (cosh (%t + i—f))] dt, (4.45)

o + 52?11 Dy
i
(0 Il

Furthermore, the ultimate independent bound Co(S) has the same form as (4.45) with

where

6 =

(4.46)

52 = o 2imt ot (4.47)

(ke 2 1)

Figure 4.5 shows the independent bounds for Gauss-Markov channels of different memory
orders. By intuition, for fixed C;; and d;, the higher the channel memory order, the more
involved in received vector y at the receiver end. Thus, it is reasonable to expect a lower

capacity for larger M. However, the independent bound shows that C,(S) grows as M
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increases. This indicates that in the case we considered, the independent bound could be

looser for higher M.

@/ N o
08 -
M=5
---M=4 i
nnnnnnnn M=3
‘‘‘‘‘ M=2
TM=1 ]
-40 -30 -204% 7 -10 0 10 20 30
S(dB)

Figure 4.5: Illustration of C(S). Other parameters for Gauss-Markov channels are Ci1 =
0272 = 0373 = 04’4 = 0575 = 10, dl“: dg : d3 :d4 = d5 = 1, a = 0.7 and 0'3 =1.

Figure 4.6 shows the independent bounds for Gauss-Markov channels for another set of
parameters. Since C;; is getting larger as 7 increases, the influence to the current output yy
by the distant input zj_p41 grows (from the “power” standpoint). In such case, the channel
output should be much more involved than the case considered in Fig. 4.5, if M increases.
Following the intuition, the independent bounds decrease as M increases for SNR beyond
—10 dB. Nevertheless, when SNR is below —10 dB, the independent bounds become messy

in channel memory order M, which indicates that they could be loose in this SNR range.
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0.6 M=1

S(dB)

Figure 4.6: Illustration of C(5). Othetpardmeters for Gauss-Markov channels are C; =
100'7, 02’2 = 101'5, 03,3 = 102, 0474 % 102'5, 05’5 == 103, d1 = dg = d3 = d4 = d5 = 1, a=0.7

and 02 = 1.

4.6 The lower bound of bit-error probability

In general, the bit error rate (P,) (for information bits) is used as the typical performance
measure in practical communication system. Referring to [3], we can obtain a lower bound of

this typical performance measure by means of the rate-distortion function and the capacity

bound just derived.

First, we need to derive the average E,/Ny for the Gauss-Markov fading channel. The
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average SNR is equal to:

. n E Th 2
SNR = lim Zz:ln “mk 2k| ]
n—oo 3 Bzl
_ iy iz Yoty Bllwsipahal]
n—oo no?
— lim s Z?:l sz\il E[|h;“|2]
n—00 no?
i 2 Yo (di di + tr(Dy))

n—oo no?

= 2 im lZ(d,?dﬁtr(pk))

02 n—oo m 4
Z i=1

_ 5 (d2d, + tr(Dy))

o?
S 1 1
= = (—dfd+ ———+t . 4.4
7 ([ap "+ = pt©) (443
Hence,
~E, SNR &15 NG 1
220 _ 2 PSP IR igHg L — 4 (C 4.49
PTN, T R 4 RN Za? +1—|a|2r( )] (4.49)

where R is the channel code rate.

Referring to [3], the rate distortion for binaryinput and Hamming additive distortion

measure is

~ J log(2) —Hy(D), for0< D <0.5
R(D)= { 0, for D > 0.5 (4.50)

According to the joint source-channel coding theorem, good codes exists when

c(S
R(p) < <) (4.51)
R
Therefore, we obtain a lower bound for P, as:
1
Hy, (P,) >log(2) — ECOO(S). (4.52)

The lower bounds of bit error rate P, corresponding to those in Figs. 4.5 and 4.6 are sum-

marized in Figs.4.7 and 4.8.
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The Lower Bound of Bit Error probability Pb

Figure 4.7:

M=1
M - - - =2
10-1»,{’.’.’.14,,1.,4,.......~,~. .................................... s M =34
o, - BRss Ny S im i  M=4 ]
’ > M=5
107
107°
10~
-5
10 s L * i 8 ;
-5 0 ) 5 10

[Mustration of lower bounds for P,. The code rate adopted is R = 1/3. Other

Eb/No(dB)

parameters used in this figure are the same as those in Fig. 4.5.
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Figure 4.8: Illustration of lower bounds for P,. The code rate adopted is R = 1/3. Other
parameters used in this figure are the same as those in Fig. 4.6.
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Chapter 5

Conclusions

In this thesis, we have remarked on four different definitions of channel capacities according
to the transmiter/receiver with/without channel state information. We then turn to the
derivation of the independent bounds for the channel capacity without CSI in both trans-
mitter and receiver. We then found,that if theretis zero mean fading existing, the capacity

of the blind-CSI system will be réduced to-zero.



Appendix A

The derivation of probability
distribution f(y|x)

Recall that:

f(y|£13,H) =

n T 2
[Lex (——’y’“ :jh'“} ) (A1)

(mad) s

and

FH) = f(hy) ][] f(halhis)

1 n
= _’ﬂ'C‘nH exXp {— (hk = O[hk—l - d)H C_l (hk — Oth—l — d)} . <A2)
k=1
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Hence,

flylz) = / f (ylw, H) f (H) dH

- / / Tno2n HeXp< |yk_wkhk‘ )
cM cM

k=1

H exp {— (hy — ahy_1 — d) C~" (hy, — ahy_y — d)} dh, - - dh,,

7TnM|C|n
k=1

[=ane]”

= (M) O-inc‘n /CM /CMH€ -

H o~ (h—ahi_1—d)"C~" (hy—ahy_1 —d)

|yl z3 h1|
- _ _nNHeo-1 _ _ _ _ _ nNHe-1 _ _
/ . T o (m—aho=d)"C (h—aho—d) ~(ha—ahi~d) TC (ha—ahi—d) g
CM

dhy - - - dh,,.
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The exponent in the inner integral can be re-written as:

1
ol T hy|)? + (hy — ahy — d)" C7' (hy — ahy — d)

+ (hy — ahy —d)" C7 (hy — ahy — d)

1
= (i —hi'z])(y1 — xThi) + (k' — (aho +d)")C 7" (h1 — (aho + d))

o?
+((hy — ) — a*R)C7Y((hy — d) — ahy)

1
- 52 [ly1” — yiw] by — y1h{' @y + i@ 2] hy]

z

+ [h{'C ' hy — (ahy + d)C'hy — h'C 7 (ahy + d) + (ahy + d)"C ' (ahy + d)]

+[(hy —d)"C ' (hy —d) — a(hy — d)"C'hy — a*h{'C " (hy — d) + |a|*h{'C " hy]

2 2
z z

H mlwlT —1 2, ~—1 miIT H -1 H—1
= h; > +C  +|a)*C | hy — 5 + (ahy +d)"C™ " + a(hy —d)"C™ | by

—hf (y;fl +C Hahy+d) +a*C 7 (hy — d))

2
Y - _
+ <|012| + (ahy + d)? C(ahy + d)yta(hy =d)?C ' (hy — d))

= h{'G{'hi — h{'Gi'g, — g G{'Iy

- (\y1|2 + (aho + )" C™ahot @3 —d)"C ™ (hy - d))

o2
= (hi—g)"Gy'(h1 —g1) — 91 GTlg;
s (‘?{‘_| (ko + )70 (oo + )+ (b~ 0O (b= )
where
912G (g +a"C (hy—d)), Gi'2 “’ff +(L+ [a)C Y,
and
g, 2 y;fi +C'd+aC 'hy.

Since

/ ef(hlfgl)HGfl(hlfgl)dh1 = ‘WGlla
cM
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the exponent terms remained after the integration of the inner integral are given by:

2
Y

—91G 91+ (‘ 1’
o2

_ ((I1 + Oz*C_1<h2 _ d))H G, (ql + a*C_l(hz - d))

+ (ahg + d) ' C ' (ahy + d) + (hy — )’ C 7 (hy — d))

z

+ ('%'2 + (ahg + d)"C ™ (ahy + d) + (hy — d)'C ™ (hy — d>)

z

= —q{'Giq, — a*q]'G,C7'(hy — d) — a(h, — d)"C'Gq,

—la)*(hy — d)’C*G,C 7 (hy — d)

2
- ('%' + (ahg +d)"C ' (ahg + d) + (hy — d)"C ' (hy — d)>
= (hy—d)" (C7' = [a’)C7'G,C7") (hy — d) — a*q'G1C " (hy — d) — a(h, — d)"C ™' G1q,
2
—-qi'Giq, + bl
O’

(Oého + d)HC_l(Oéh() + d)

z

= (h2 — Oéﬁl — d)Hz_l(hg — Oéﬁl — d) — Q{{qul

2
PR oh 1h1+|y1| + (ahy 2 dY*C " ah + d),
where
stec! - laferiGi e and by £ 3,C7'Gag,.

Consequently,

o?R £ hy —(aho+d)H C 1 (aho+d n —oThy|?

(wle) = elal*hi 21" ha—(aho+d) (aho )6_y1|2/U§|G1|6q{IG1qI/ / He_|yk Ug k
WM(nfl)JrnJQn’C’n oM CM g

n

He (hp—ahy_1—d) ! C~ (hy,—ahy_,—d)

k=4

x h
/ e ’yz 5 2‘ e (hg—aﬁl—d)HEfl(hg—aﬁl—d)ef(hgfahgfd)HC'_l(hgfahzfd)th
cM

dhs - dh,. (A.3)
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Similarly, the exponent in the inner integral in (A.3) can be re-written as:
L @ThoP & (he — ah — @) = (o — afy — d)
o2 Y2 2 N2 2 1 1 2 1

+ (hs — ahy — d)" €7 (hs — ahy — d)

1 7 —

= 53— hy'@d)(y2 — 23 ho) + (hy — (ahy +d) )21 (hy — (ahy + d))
+((hs —d)¥ —a*hIC7((hs — d) — ahy)
1

- 52 [[y2]* — y525 By — yoh @y + hf@wghQ]

z

+ [hE1 Ry — (ahy + @) 27 hy — RS (ahy + d) + (ahy + @) 27 (ahy + d)]

+ [(hs —d)"C ' (hy — d) — a(hs — d)"C"hy — a*h) C 7' (h; — d) + |a|*hy'C ' h]

* T
. <“’Z_ 2437+ |ofC >h2 — (y“;? + (ahy + d)7E! + a(hsg —d)H01> b

z z

_hl (yff? + 37 (ahy + d) + a*C 7 (hy — d))

z

n (‘y2|2 + (ahy + d)"S (aly + d) + (hs=d)"C ™ (hs - d))

z

+ (%'2 (ahy + d)Hzl—l(aﬁl +d)riths —@d)"C ™ (hs — d))

z

= (hy—g,)"G3 (hs — g,) — 93G5l g,

+ <|y;|2 + (ahy + d)"S (ahy + d) + (hs — d)"C 7' (hs — d)) ’

z

where
g, 2 Gy (g +*C ' (hs — d)),
Gl 2 T g pet w';—:"{ +(1+aP)C = |aPCTGC 7,
and

q, = % + 37 (ahy +d) = % +C 'd+aC 'Giq, — |o’C'G,Cd.

Since

/ ef(h2*92)HG£1(h2792)dh2 = ‘WG2|>
cM
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the exponent terms remained after the integration of the inner integral are given by:

’ 2

y
—g> GQ g, + (‘ :
o2

z

+ (ahy + )2 (ahy + d) + (hs — d)'C ™ (hy — d))
_ (q2 + Oz*C_l(hg _ d))H G, (q2 + a*C_l(h?, - d))
N ('?;/;'2 (ahy + d)TS (ahy + d) + (hs — d)C~ (hy — d>)

= —q)Gaq, — a*q) G,C 7 (hy — d) — a(h; — d)"C ' Gagq,

—la)*(hs — d)?C*G,C 7 (hs — d)

2
+ ('f' + (ahy + d)"S (ahy +d) + (hs —d)"C 7' (h; — d))
= (h3—d)" (C7' = |a’C7'G5C ") (hy — d) — gy G2C ' (hs — d) — a(h; — d)"C'Gaq,
2
—q3' G2q, + iz
O'

+ (ahy + d)" S (ahy + d)

= (h3 — OéFLQ — d)Hz_l(hg — O[ﬁQ — d) — ngQqQ

| 2

_Ja?Ri sy 1h2+|y2

Z

+ (ah 2dY* ST @h, + d),

where

S E2CT - |affCRIGSC . and hy £ 2,C ' Gag,.

Consequently,

2 lal?hl 57 hy—(ahy_1+d)H S (ahy—1+d) _2
flylx) = ooy e — e He—\yu|2/0§|gu|eq5Guqu

7TM(n—2)+n0-2n|C|n

u=1

_Jme—efni|” %hk|
| | | | —(hy—ahy_1—d)" C~ (hy—ahy,_1—d)
oM cM

k=5

xa h
/ e—we—(hg—ahg—d)HEEI(hg—cxhg—d)e—(h4—ah3—d)HC1(h4—ah3—d)dh3
cM

dhy - - dh,,, (A.4)
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where ;! = C™' — [o]?)C™'G,C™! and h, = £,C " 'G,q, for 1 < v < 2, hy = hy and

39 = C. Continue the above procedure until we obtain:

Hn 1 |a|2h S hy—(ahy_1+d) P! (ahy_14d) -1

— H
flylz) = v C TM+ng2n|Cn H el G
z u=1
,M - H_1 -
/ e o2 67(hn*0&hn—l*d) En_l(hnfahn_lfd)dhn ' (A5)
CM
The exponent in the integral in (A.5) equals:
1 - _
S5l =@kl + (R — ok — d)" S (hy — ahyo — d)
1 - _
= 0 = k@) (g — 2pha) + (B = (ahyy + d))E 1 (R — (b + d))
1
= 52 [|QN|2 - y;mghn - ynhfmn + hgmnwzhn} + [hnHZ;ilhn

—(ahy—1 + )" by, — RIS (b, 4+ d) + (b, + d)7E! (ahy, oy + d)]

* T
— Rl (“"’f 3 ) h, — (yna’" o + d)Hznil) h.,

2
z a;

~h;, (yﬂwn + 3.0 (b, d)> 5 (hi:

2
0% z

2 — —

D ok, 1+ AT (b d))
2

— hIG'h, - h'G'g, — G E (ly”’

z

+ (ah,  +d)"S !t (ah,  + d))

| 2

= (b~ 0,076, (0~ 9,) - 0G0 (1

z

+ (ahp_y +d)"Zt (ah,y + d)) ,

where
T * T
iz T, T,
A -1 & n*n -1 _ — 2,v—1 —1
G.q, G, &£=t4x ! =040 - |ofCTGLCT
O-Z O-Z
and

g, 2 "0 5 (ahy o+ d) = P00 L4 CTld+ aC Gy g, — [aCTIG C .

O-Z Z

Since
_ |yn|2 r Hsv—1 7
97G g, + = + (ah,_1 +d)"3, " (ah,_ 1 +d)

z

\an2

= —q, Gn(]n + (O‘ﬁn—l + d)HE;il(aﬁn—l +d),

Z
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the final expression for f(y|x) is established as:

1 - rHe—1¢ T -1 T
f(y|;13) = —H6|a|2h’kzk hk*(ahk71+d)sz71(ahk71+d)e*lyk|2/¢7§|Gk|GQkHGka

ﬂ-no-gn|c|nk:1

1 = 2/
ey ([Tme )
Z k=1

n—1
(H 6o¢|2thEk1hk—(ahk+d)H2k1(o¢hk+d)6ququ) equnqn—(aho—i—d)HC*l(ah0+d)
k=1

1 & e
oy ([Tmede )

k=1
n—1
(H eququka*Efzgldade,;lﬁkde;1d> eq,IL{Gnqnf(ahoer)HC*l(aho+d)
k=1
1 n
= = eqi’Gnqn—(ahoer)HC*l(aho+d) H|7TG |e—\yk|2/03
2\n C n k
(ro2)"|mC]
z k=1
n—1
(H eququk—a*quch1d_adHc—1quk+|a|2dHc1chld—dHcld)

k=1

1 b n
_ (Tag)nhqneqi’Gnqn—(ahoer)HC H(ahotd) (H |7Gk’€—yk|2/‘7§)
z k=1

n—1
(H e(qka*C_ld)HG’k(qk.a*C‘ld)dHC_1d>
)

k=1
where
( [z -
( — —|—(1—|—|oz|2)Cl) : if k=1
JZ
_ e 2\ v—1 2v—1 -1 o .
G, = — + (1 +[a)C7 — |a]*’CT G C ,ifl<k<n
O-Z
w*wT -1
( e G |a|2C’1Gn_1C’1> , if k=n
\ Uz
and
N L C'd+ aC  h, if = 1
O-Z

Zhk i Cc'd+aC ' Griqy; — |0PCT'GyCTd, if 1 <k <n.

2
0
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