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ABSTRACT With Cd and Zn metal ions removed from the native rabbit-liver metallothionein upon unfolding, Cu-modified metal-
lothioneins (Cu-MTs) were obtained during refolding in solutions containing CuI or CuII ions. X-ray absorption near-edge spec-
troscopic results confirm the respectively assigned oxidation states of the copper ions in CuI-MT and CuII-MT. Global and local
structures of the Cu-MTs were subsequently characterized by anomalous small-angle x-ray scattering (ASAXS) and extended
x-ray absorption fine structure. Energy-dependent ASAXS results indicate that the morphology of CuII-MT resembles that of
the native MT, whereas CuI-MT forms oligomers with a higher copper content. Both dummy-residue simulation and model-shape
fitting of the ASAXS data reveal consistently rodlike morphology for CuII-MT. Clearly identified Cu-S, Cu-O, and Cu-Cu contribu-
tions in the extended x-ray absorption fine structure analysis indicate that both CuI and CuII ions are bonded with O and S
atoms of nearby amino acids in a four-coordination environment, forming metal clusters smaller than metal thiolate clusters in
the native MT. It is demonstrated that a combination of resonant x-ray scattering and x-ray absorption can be particularly useful
in revealing complementary global and local structures of metalloproteins due to the atom specific characteristics of the two
techniques.
INTRODUCTION

Metallothioneins (MTs) are small metalloproteins (~6–7 kDa)

with rich cysteines that can accommodate a wide range of

metal ions, such as CdII, ZnII, CuI, and AgI, either within

a single domain, as in the cases of yeast and fungus MTs, or

within two domains, as with mammalian and crustacean

MTs (1–6). The intriguing metal affinity of MTs is closely

related to their biological functions, such as detoxification

of metals and scavenging of reactive oxygen species, and

their environmental applications, such as metal-pollution

biomarkers (1,6). In general, MTs are classified (1) into three

groups according to the sequence similarity; modification of

MTs can also be achieved via in vivo (7) or in vitro (8) chem-

ical/physical processes, with the native metal ions replaced by

specific ones. In particular, successful replacement of metal

ions via protein unfolding-refolding has further broadened

the range of metal ions that can be encaptured in MTs

(9,10). Among all metal-replaced MTs, Cu- and Mn-modified

MTs are believed to play important roles in a variety of appli-

cations (1–6), especially molecular sensing (9,10).

As elucidated by the related crystal structures (11,12),

there generally exist in MTs characteristic domains with

metal clusters bonded to cysteinyl sulfur atoms. Details of

the metal thiolate clusters of MTs have been studied by

means of various spectroscopic techniques, such as ultravi-
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olet (UV) optical absorption (2–6), NMR (11,13), and/or

x-ray absorption spectroscopy (XAS) (14–19). For the rabbit

liver MT, NMR and x-ray crystallographic results indicated

structural features of two metal-containing domains (desig-

nated a and b) (14). Based on molecular dynamics simula-

tion, Chan et al. (19) suggested that these two domains could

be connected by a flexible chain for a dumb-bell-like shape

in solution. Such extended morphology is reminiscent of

the two-domain structure in Triticum durum metallothionein

(1), but differs drastically from the globular case of Saccha-
romyces cerevisiae metallothionein, which contains only

a single metal cluster (20).

During the past decade, the application of small-angle

x-ray scattering (SAXS) to protein solutions has drawn

considerable attention, due partly to advances in the related

data-analysis algorithm (21,22) that allow structural models

of proteins to be built on the basis of x-ray solution scattering

data. More recently, combinations of SAXS with NMR,

x-ray crystallography, and local structural characterization

techniques such as XAS, optical absorption, or circular

dichroism (CD), have provided further structural details of

proteins in the solution state (17,18,23,24). Here, we report

results from a combination of resonant x-ray absorption

and anomalous small-angle x-ray scattering (ASAXS)

studies of MTs in terms of supplementary global/local struc-

tural features, including the protein envelope, metal coordi-

nation geometry, and metal content. The technique of

ASAXS is highly useful for determining the metal composi-

tion/distribution in complex systems such as core-shell
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quantum dots (25), lipid-metal composites (26), and protein-

metal complexes (27,28). However, application of ASAXS

to MTs is very rarely reported, because the contribution to

SAXS from the metal atoms is limited with respect to the

contribution from the whole protein. To better correlate

with ASAXS, parallel XAS measurements were made under

the same sample conditions. Note, however, that XAS for

protein solutions at ambient temperatures suffers severe

effects from radiation damage and thermal fluctuations,

and is much less often reported (29) compared to the case

of smaller molecular compounds/complexes (30) or proteins

at a low temperature of ~80 K (6,15–18). We have therefore

taken particular caution by using a low-flux beam (with the

penalty of long exposure time, of course).

By integrating the investigations of ASAXS and XAS at the

Cu K-edge, we demonstrate that it is possible to obtain not

only the size, shape, and copper content but also the oxidation

state and the coordination geometries around the metal ions of

the Cu-MTs, which are modified from the rabbit liver MT via

a designated unfolding-refolding process. The obtained

global and local structures of the Cu-modified MT provide

an insight into variables that control the protein conformation

and metal content. The result is crucial to developing an effi-

cient unfolding-refolding procedure for modified MTs of

specific metal content and stable morphology. One of the

potential applications relates to the use of Cu-modified MT

for a possible switch or sensor in a nano-device, based on

the responses of the Cu-modified MT to an applied voltage:

protected by protein from environmental fluctuations, Cu

ions could be reduced or oxidized by accepting or releasing

electrons upon change of electric potential in a device. In

such an application, copper is preferred over other metal

ions due to its high electrical conductivity.

MATERIALS AND METHODS

Materials and sample preparation

The Cd/Zn-metallothionein taken from rabbit livers (molecular mass 6012

Da; metal atoms excluded) was purchased from Sigma Aldrich (St. Louis,

MO). The SDS-PAGE result of the native MT, with the cysteines modified

by monobromobimane (mBrB), exhibited a single band, indicating that

the native MT was of low polydispersity in molecular mass. Following

the procedures detailed in previous reports (9,10), Cd and Zn ions of the

protein were removed (apo-MT) in a solution containing 4.5 M urea, 10 mM

Tris base (tris(hydroxymethyl)aminomethane), 0.1 M b-mercaptoethanol

(b-ME), 0.2% mannitol (hexane-1,2,3,4,5,6-hexol), and 0.1 mM Pefabloc

(4-(2-aminoethyl)benzenesulfonyl fluoride). The unfolded apo-MT was

furthermore refolded in a series of Tris-base buffer solutions with

Cu(NO3)2 or CuCl (Table 1) to obtain folded CuII-MT or CuI-MT. Circular

dichroism (CD) data in the range 190–250 nm suggested that the secondary

structures of both refolded CuI-MT and CuII-MT should be similar to that of

the native MT, i.e., dominated by coils and turns. Ultraviolet (UV) absorp-

tion spectra, normalized to protein concentration, were measured for the

apo-MT, CuI-MT, and CuII-MT solutions with 0.1 mM Tris base, using

a Jasco spectrophotometer (model V-550 series, Tokyo, Japan); the protein

concentration of each sample solution with 0.1 M HCl was calibrated by the

electronic absorption of the peptide backbones of the apo-MT at 220 nm

(3220 ¼ 48,000 M�1 cm�1 or 4.7 mg�1 mL cm�1) (31). UV absorption
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spectra of both CuI-MT and CuII-MT manifested the characteristic ligand-

to-metal charge transfer band of the M-S (cysteinyl sulfur) bond in the range

220–350 nm, especially the characteristic absorption shoulder at ~260 nm of

copper ions (3,6). (Note that there is no aromatic amino acid in the MT that

can contribute to any absorption in this region.) For comparison, there was

no discernible absorption related to metal ions in this region for the apo-MT,

assuring a complete removal of the native metal ions.

ASAXS measurement and data analysis

Native and Cu-modified MTs in Tris-base buffer solutions (2.5–10 mg/mL)

were prepared for ASAXS measurements performed at the beamline 17B3

of the National Synchrotron Radiation Research Center (NSRRC) (32).

Sample solutions were respectively sealed in 2-mm (x-ray path length) cells

and measured at 283 K. To minimize radiation damages, the sample solution

cell with large Kapton windows (5 mm in diameter) was gently rocked

within an area 2� 2 mm2 to avoid prolonged spot (~0.5-mm beam diameter)

exposure. Under x-ray energies near the Cu K-edge (8.979 keV) or off-reso-

nant (10.5 keV), the ASAXS profiles collected at different time intervals (in

the order of 102 s) overlapped well with one another, indicating that the

protein morphology was insensitive to the radiation exposure during the

measurement. As there was no observable Cu fluorescence interfering

with the SAXS intensity at 10.5 keV, this beam energy was adopted as

a reference in the ASAXS data analysis. One-dimensional ASAXS profiles

were circularly averaged from the 2D patterns obtained using a MAR165

CCD detector. The scattering wavevector, Q ¼ 4pl�1sinq, defined by the

scattering angle 2q and wavelength l, was calibrated by the diffraction peaks

of silver behenate; for each x-ray energy adopted, the scattering intensity

I(Q) was recast into absolute intensity units using a polyethylene standard

(25). To differentiate small variations in the ASAXS profiles, effects from

detector noise, background scattering, incoming flux, and sample transmis-

sion were all rigorously corrected (32). The SAXS profiles of the native,

CuI-modified, and CuII-modified MTs were concentration-independent, sug-

gesting that these proteins were stable in morphology within the selected

concentration range.

SAXS intensity distribution for monodisperse proteins in solution was

modeled as I(Q)¼ IoP(Q)S(Q), with normalized form factor P(Q) and struc-

ture factor S(Q) (33–36). For dilute protein solutions with few interparticle

interactions, S(Q) is close to unity (33). Due to the presence of metal atoms

in the MTs, the zero-angle scattering intensity,

IoðEÞ ¼ NoCjf ðEÞ � rsVj
2
; (1)

may depend on the x-ray energy E (25–28). Here, No, C, rs, and V denote,

respectively, the aggregation number, protein concentration, scattering-

length density of the solvent, and volume of the MT. Note that the concen-

tration-normalized intensity, Io/C, is linearly proportional to No (34,35). The

scattering length, f(E), is contributed by scattering length fo summed over all

the (energy-insensitive) nonmetal atoms and scattering length fm(E) ¼ fmo þ
fm
0(E) þ ifm

00(E) of the metal atom (25–28,37,38). The ratio R(E) of two Io

values measured at an off-resonant energy Eref and a near-resonant energy

E can be expressed as

TABLE 1 Tris-base buffer solutions used for MT refolding

Solution

no. Urea b-ME Mannitol Pefabloc

Cu(NO3)2 or CuCl þ 10 mM

ascorbic acid

1 2 M 0.1 mM 0.2% 0.1 mM 0.1mM

2 1 M 0.1 mM 0.2% 0.1 mM 0.1mM

3 0 0.1 mM 0.2% 0.1 mM 0.1mM

4 0 0.1 mM 0.2% 0.1 mM 0.5mM

5 0 0.1 mM 0% 0.1 mM 0.5mM

6 0 0.1 mM 0% 0.1 mM 0

Solutions are numbered 1 through 6. Buffer solution 6 was also used to

prepare the sample solutions for ASAXS and XAS.
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RðEÞ ¼ jfE � rsVj
2
=jfEref

� rsVj
2

¼
�
f 2
r þ M2f 002m

�
E
=
�
f 2
r þ M2f 002m

�
Eref
; (2)

where fr(E) ¼ fo þ M(fmo þ fm
0(E)) – rsV. As the incident beam energy

approaches an absorption edge of the metal atom, R(E) decreases signifi-

cantly, allowing for the evaluation of metal content, M, using Eq. 2.

The SAXS data were first qualitatively examined for rodlike features

under the Kratky-Porod approximation (35). This was then followed by

quantitative fitting to the orientation-averaged form factor

~PðQÞ ¼
Z1

0

���2J1ðvÞ
v

sinðwÞ
w

���
2

dm; (3)

for rods of radius r and length L, where J1 is the first-order Bessel function

(33), v ¼ Qr(1�m2)1/2, and w ¼ (1/2)QLm. As a consistency check, the

radius of gyration, Rg¼ (r2/2 þ L2/12)1/2, of the rods was calculated from

the fitted r and L values and compared with the Rg value extracted from

the model-independent Guinier approximation (33,39). The dummy-residue

simulation package, developed by the Eurpean Molecular Biology Labora-

tory’s Biological Small Angle Scattering Group, was adopted to give

detailed protein envelopes (21,22).

X-ray absorption measurement and data analysis

X-ray absorption measurements for the MT solutions were made at the

wiggler beamline BL-17C1 at the NSRRC. The beam was monochromatized

with a double-crystal monochromator of Si(111) for energy resolution

DE/E z 2 � 10�4. The sample was sealed in a 1-mm cell with Kapton

windows and measured at ~283 K for an alignment of the sample condition

with that of ASAXS. Absorption spectra were taken in fluorescence mode

with a 13-element solid-state detector in the energy range 8780–9880 eV.

The first inflection point at 8979.0 eV of the absorption spectrum of a Cu

foil was used for energy calibration. Previously, a slightly higher value of

8980.3 eV was used by Kau et al. (17). To minimize possible sample radi-

ation damage in x-ray absorption measurements, the strategy was adopted of

using a low flux beam with long exposure time, which greatly lengthened the

overall data collection time up to 48 h for each complete spectrum accumu-

lated over ~20 energy scans. Reproducible x-ray absorption near-edge spec-

troscopic (XANES) spectra for all scans under this data collection strategy

indicated that radiation damage to the protein structure was negligible.

The XAS data were corrected for background and normalized according

to c(k) ¼ (m(k) � m0(k))/Dm0(0) by the AUTOBK program (40), with m(k)

the measured absorption coefficient, m0(k) the background, and Dm0(0) the

edge jump. The wavenumber is defined as k ¼ (2m(E�E0)/Z)1/2, where E

is the photon energy, E0 the threshold energy, Z the Planck constant, and

m the electron mass. Based on local maxima of the first-derivative profiles

of the XANES spectra, dm/dE, E0 was set at 8990.4 eV and 8989.8 eV for

CuI-MT and CuII-MT, respectively. The c(k) in the EXAFS region 2.6 %
k % 12.6 Å�1 was further weighted by k3 and then Fourier-transformed

into the R-space as FT(k3c(k)). The EXAFS data analysis was done accord-

ing to

cðkÞ ¼ S2
0

X
j

NjðkÞFjðkÞ
kR2

j

sin
�
2kRj þ djðkÞ

�
e�

2Rj
l e�2k2s2

j ;

(4)

based on plane wave single scattering (41), where Fj(k) is the backscattering

amplitude from each of the Nj atoms in the shell at distance Rj (relative to the

absorbing atom), exp(�2k2sj
2) the Debye-Waller factor with the mean-

squared displacement sj
2, S0 the amplitude reduction factor, dj(k) the total

phase shift, and l(k) the photoelectron mean free path. With S0 fixed at unity

and the values of Fj(k), dj(k), and l(k) calculated using a curved-wave ab ini-

tio procedure in the FEFF7 code (42), we fitted FT(k3c(k)) in the range
1.7 % R % 4.0 Å with the fitting parameters DE0 (small variation in E0),

Rj, sj
2, and Nj, using a nonlinear least-square fitting algorithm implemented

by FEFFIT program (40). In the fitting algorithm, DE0 was confined as

a common fitting parameter for all scattering paths. Data fitting quality

was evaluated with the goodness-of-fit factor, defined as

Rfit ¼

Pn
i¼ 1

�
½ReðfiÞ�2þ ½ImðfiÞ�2

�
Pn
i¼ 1

f½Reð~cdata iÞ�2þ ½Imð~cdata iÞ�2g
; (5)

where ~c ¼ k3c and n is the number of evaluations of fi, with-

fi ¼ ~cdata i � ~cmodel i (and hence Rfit) minimized in the nonlinear least-square

fitting algorithm (40,41).

RESULTS AND DISCUSSION

Native MT, unfolded apo-MT, and refolded apo-MT

SAXS data measured for the native MT, the unfolded apo-

MT, and the refolded apo-MT, are displayed in Fig. 1. With

the Kratky-Porod approximation, SAXS of the native MT

(10 mg/mL) reveals a rodlike feature; the data are therefore

fitted (dashed curve) using the rodlike model with rod length

L¼ 74 5 2 Å and rod radius r¼ 12.7 5 0.3 Å. The Rg value

(23.4 5 0.4 Å) deduced from L and r is consistent with that

obtained from the Guinier approximation (24 5 2 Å)

(Fig. 1 a, inset). Using the measured absolute intensity, I(0),

and the calculated scattering length density of the protein

(34,35), 14.0 � 10�6 Å�2 (corresponding to an electron

density of 0.50 e�/Å3), the aggregation number of the MT

is estimated from Eq. 1 to be No z 1, i.e., the molecular

mass scaled from Io is ~6.8 kDa (43). Thus, the large Rg value

is believed to be contributed mainly by the extended rodlike

morphology of 62 amino acids (AA) of the MT, rather than

by protein aggregation. Furthermore, the rodlike shape and

Rg value are consistent with the result from dummy-residue

simulation shown in Fig. 1 b, where the simulated protein

envelope is extended and dumbbell-like, with metal clusters

situated at both ends and Rg¼ 24.8 5 0.4 Å. A large Rg value

with small molecular mass is common for rodlike proteins

such as the light harvesting protein (PDB code 1DX7,

48 AA, Rg ¼ 22 Å). In contrast, globular MTs with a similar

molecular mass tend to have lower Rg values. For instance, Rg

¼ 10 Å for Saccharomyces cerevisiae, which has a single

metal cluster domain (PBD code 1AQR, 40 AA).

For the unfolded apo-MT, SAXS data manifest a power-

law scattering feature I(Q) f Q�1 in the higher-Q region

(Fig. 1), which implies a collapse of the tertiary structure

of the metal-depleted protein. For comparison, I(Q) f Q�2

corresponds to random coils of a Gaussian chain conforma-

tion (39). On the other hand, the SAXS profile of the refolded

apo-MT differs significantly from that of the native MT,

particularly in the low-Q region, which indicates that the

apo-MT cannot correctly refold to the same morphology of

the native MT; instead, apo-MT forms oligomers in the

buffer solution with no metal ions. Correspondingly, the
Biophysical Journal 97(2) 609–617
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Guinier approximation using the SAXS data of the apo-MT

reveals polydisperse Rg values ranging from 24 Å for the

monomers to 90 Å for the oligomers (Fig. 1, inset).

Resonant x-ray scattering of Cu-MTs

ASAXS profiles of the CuII-MT measured at two different

x-ray energies are shown in Fig. 2. In contrast to the apo-

MT refolding in the absence of metal ions, the resemblance

between these two ASAXS profiles and that of the native MT

indicates that apo-MT can refold into a shape similar to that

of native MT in the presence of CuII ions. Using the form

factor of rods, we can adequately fit the SAXS data of the

CuII-MT taken at 8.960 keV with L ¼ 83 5 2 Å

and r ¼ 10 5 2 Å (Fig. 2); the corresponding Rg value

a

b

FIGURE 1 (a) SAXS data of the native MT (10 mg/ml) and unfolded apo-

MT (2.5 mg/ml) are fitted with a rodlike shape (upper dashed curve) and

power-law scattering I(Q) f Q�1 (lower dashed line), respectively. Also

shown are the SAXS data of the refolded apo-MT (10 mg/ml). All data

were collected with 10.5-keV x-rays. (Inset) Guinier approximations

(dashed lines) for the SAXS data of the native MT and refolded apo-MT

(solid and long-dashed lines indicate the higher- and lower-bound Rg

values). (b) Protein envelope of the native MT obtained from the dummy-

residue simulation with the SAXS data.
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extracted from the L and r values is 25 5 2 Å, the same

as that obtained from the Guinier approximation. These

structural parameters are also consistent with the Rg value

(26 Å) and the elongated protein envelope obtained using

the dummy-residue simulation (Fig. 2 inset, with 2r).

Furthermore, the ASAXS profile obtained with 8.960 keV

(close to the Cu K-edge absorption) is lower in intensity

than that obtained with 8.5 keV due to the presence of copper

atoms in the CuII-MT. Based on Eq. 2, an averaged copper

content of M ¼ 4 5 2 CuII/protein is derived from the inten-

sity ratio, R(E), of the ASAXS profile at E ¼ 8.5 keV (the

reference energy) to that at 8.960 keV (0.97). The large

uncertainty of the M value is due to the measurement uncer-

tainty, 50.01, of the R(E) value, based on the error propaga-

tion in Eq. 2. The copper content is marginally consistent

with the inductively coupled plasma mass spectroscopy

(ICP-MS) result of 1.8 5 0.2 copper ions per CuII-MT.

Compared to the more compact native MT composed of

the metal thiolate clusters, the slightly extended morphology

of the CuII-MT may be related to the insufficient number of

metal ions (therefore, a different local coordination geom-

etry). Indeed, XAS results detailed below do suggest dissim-

ilar correlation between the copper ions in the CuII-MT and

the metal thiolate clusters of the native MT (3,5,6,19).

Shown in Fig. 3 is the concentration-normalized SAXS

profile of CuI-MT, which differs significantly from that of

the native MT. The substantially larger Io/C value compared

to that of the native MT indicates that CuI-MT forms oligo-

mers and cannot refold back to the native-MT morphology.

Nevertheless, a mean Rg value of 40 5 4 Å can still be

extracted from the Guinier approximation (Fig. 3, inset),
implying a small degree of polydispersity for the oligomers

FIGURE 2 ASAXS data of the CuII-MT measured at 8.5 keV (Eref) and

8.960 keV (fitted with the dashed curve for a rod shape). (Inset) Correspond-

ing protein envelope obtained with the dummy-residue simulation.



Resonant X-Ray Scattering and Absorption 613
(likely dimers or trimers, as estimated from the measured

Io value). Furthermore, the Kratky-Porod approximation

reveals a rodlike shape with an averaged rod radius of ~15 Å

(as estimated from the slope of the fitted line in the inset of

Fig. 3) for the CuI-MT oligomers (39). Using the rod form

factor, we can adequately fit the SAXS data with L ¼ 132 5

5 Å and r ¼ 18.9 5 1 Å (Fig. 3). With a reference intensity

measured at Eref ¼ 10.5 keV, the ASAXS intensity of the

CuI-MT measured at 8.5, 8.965, and 8.970 keV decreases

systematically to 98%, 95%, and 92%, respectively, as the

x-ray energy approaches the Cu K-edge at 8.979 keV. These

ASAXS intensity ratios, R(E), clearly indicate a substantial

amount of copper in the CuI-MT. Using Eq. 2 with

a nonlinear least-square fitting process, we can fit these

R(E) ratios reasonably well with M ¼ 6.1 5 0.9 Cu ions/

CuI-MT (Fig. 4), which is close to the value 7.7 5 0.2 Cu

ions obtained from ICP-MS.

X-Ray absorption of Cu-MTs

The XANES studies on Cu-modified MTs at the Cu K-edge,

shown in Fig. 5. reveal the local structure of the copper ions.

Based on the first derivative, dm/dE, of the spectrum (Fig. 5,

inset) of CuII-MT, the single main peak at 8985.9 eV before

the edge at 8997 eV is assigned to the 1s/4p transition in

CuII complexes, whereas the first derivative of the CuI-MT

spectrum exhibits two characteristic peaks at 8981.8 eV

(44) and 8985.4 eV, implying that CuI in CuI-MT has a cova-

lent bonding character in the Cu-ligand bond (17,44)

stronger than that found in normal CuI complexes. The

XANES results clearly indicate that the average oxidation

FIGURE 3 Concentration-normalized SAXS data (with 10.5 keV) of

native MT (10 mg/ml) and CuI-MT (2.5mg/ml). Data of CuII-MT are fitted

with a rod model (dashed curve). (Inset) The corresponding data fitted with

the Kratky-Porod approximation (dashed line).
states of CuI-MT and CuII-MT are CuI and CuII, respectively.

In a previous investigation by Meloni et al. (3) on the metal

ion exchange of Zn7MT-3 with CuII ions, CuII ions were

found to be reduced to CuI before replacing ZnII ions in

the native MT, probably due to the higher affinity of CuI,

compared to ZnII, for forming metal thiolate clusters in the

FIGURE 4 The R(E) values of CuI-MT measured at 8.5, 8.965, and

8.970 keV, with Eref¼ 10.5 keV, are fitted with 6.1 Cu (dashed curve) using

Eq. 2. (Inset) ASAXS data measured at 10.5 and 8.970 keV. The 8.970 keV

data are fitted with a rodlike model (dashed curve). For clarity, ASAXS data

measured with 8.5- and 8.965-keV x-rays are not shown.

FIGURE 5 XANES data of CuI-MT and CuII-MT. (Inset) The corre-

sponding dm/dE profiles.
Biophysical Journal 97(2) 609–617
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MT; in that reaction, it was proposed that thiolate ligands

were oxidized to disulfides concomitantly with ZnII release.

In contrast, by taking the unfolding-refolding route as an

alternative, in which the native thiolate clusters were

removed from the MT in the unfolding before the introduc-

tion of CuII ions into the solution, the observations presented

here indicate that CuII ions can indeed be incorporated into

the apo-MT during the subsequent refolding without being

reduced to CuI.

Guided by the XANES results and the structural informa-

tion from the Cambridge Crystallographic Data Center

(CCDC) (45) on four- and five-coordinate Cu complexes

(16,17,44), we furthermore fit the EXAFS data of the two

Cu-modified MTs. The best fitted results are displayed in

Fig. 6, a and b, with the fitted k3c(k) spectra shown as insets

and the corresponding parameters summarized in Table 2.

Two possible models based on the fitting results are depicted

in Fig. 7, a and b. In the case of CuI-MT, the fitted parame-

ters imply that CuI is mainly coordinated by four ligands of

Cu-O/N and Cu-S(Cys) bonds, with average distances of

1.96(1) Å and 2.49(3) Å, respectively. The Cu-O/N bonding

is attributed to O/N atoms of nearby amino acids. It is likely,

furthermore, that some of the oxygen atoms belonging to

carbonyl groups (C¼O) of the amino acids may act as linkers

for Cu ions, which gives the observed Cu-Cu distance of

3.35(1) Å and a bond angle :Cu-O-Cu of 117�. Consequent

associated backscattering from the C atoms of the amino

acids, at a distance of 2.79(5) Å, can be derived. Based on

the average distance, 1.23 Å, of the C¼O (46), the corre-

sponding bond angle of :Cu-O-C is estimated to be ~121�.
As indicated in Table 2, a Cu-Cu distance of 3.80(1) Å

(Cu clustering) also exists in CuI-MT. Such long-range inter-

actions may be rationalized by an S(Cys) bridged ligand

between two coppers with Cu-S bonds at a distance of

2.49(3) Å. A similar S(Cys) bridging case was observed

previously in the Zn-based MT (PDB code 4MT2), which

has two similar Zn-S distances of 2.48 Å and 2.37 Å, and

a long Zn-Zn distance of 3.88 Å (11). In Table 2, a

further-away S-backscattering at a distance of 3.05(2) Å

was allocated, which might be contributed by unbonded S

atoms of distant cysteine residues, as suggested by the inter-

molecular Cu-S distance of 2.89 Å found in the CUPHAU

code of the CCDC (45). Based on the fitted parameters and

the coordination chemistry described in detail above,
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a possible model for the local geometry of CuI in CuI-MT

is given in Fig. 7 a. The model is characterized by three

copper pairs interconnected via weak Cu-S(Cys) interactions

in the protein; each Cu pair is composed of two C¼O bridged

Cu ions in a four-coordinate geometry.

On the other hand, the structural parameters detailed in

Table 2 for CuII-MT indicate that each CuII ion is coordi-

nated to two S and two O atoms at the two Cu-S(Cys) and

Cu-O distances of 2.17(1) and 2.61(3) Å, respectively. As

suggested by the codes of BIWBEP, GUGTIL, and

URCOPS in CCDC (45), ligands of either protein-bound

H2O or amino acids (via carboxylate or bridge oxygen)

may end up with the long Cu-O distance observed in CuII-

MT. The C atom of the C-S bond in a cysteine is detected

at a distance of 3.30(5) Å, which resembles the case of the

MT protein of 4MT2, which has an average Zn-C distance

of ~3.34 Å (11). The observed Cu backscattering at a distance

of 3.71(2) Å can be treated as an S(Cys) bridged (i.e.,

Cu-S-Cu) case with a short Cu-S bond distance of 2.17(3)

Å. Such a Cu-Cu distance is slightly shorter than the Zn-

Zn distance (~3.88 Å) in 4MT2 and the Cu-Cu distance of

3.80(1) Å in CuI-MT; comparable M-M distances do exist

in certain systems, for example, BAYBAE in the CCDC

(45). We have incorporated all aspects of the coordinate

geometry of CuII in CuII-MT described above into the model

given in Fig. 7 b, which comprises a more compact tricopper

cluster linked by Cu-S(Cys) bonds (as contrasted with the

metal cluster in CuI-MT, cf. Fig. 7 a).

Based on the x-ray absorption results, both CuI and CuII

ions can be incorporated into MT for the CuI-MT and

CuII-MT via bonding with O and S atoms. The Cu clusters

formed (three loosely interconnected copper pairs in CuI-

MT and one tricopper cluster in CuII-MT (Fig. 7)), however,

are characteristically different from the metal thiolate clus-

ters of the native protein formed with five Cd and two Zn

ions through S(Cys) bonding.

Correlations between local and global structures

With the global and local structures of Cu-MTs clarified, we

may now address the possible mechanism during the unfold-

ing-refolding process of the rabbit-liver apo-MT in the pres-

ence of CuI and CuII. The metal thiolate clusters of CdII and

ZnII (d10 electronic configuration) within the native MT are

believed to have tetrahedral coordination geometry with
FIGURE 6 Fourier-transformed amplitudes, FT(k3c(k))

(open circles), of CuI-MT (a) and CuII-MT (b) are respec-

tively fitted (solid curves) using the parameters summa-

rized in Table 2. (Insets) The respectively fitted k3c(k) data.
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TABLE 2 Parameters used in fitting the k3-weighted EXAFS data of CuI-MT and CuII-MT

CuI-MT CuII-MT

Bond type N R (Å) s2 (Å2) N R (Å) s2 (Å2)

Cu-O 3.5 1.96(1) 0.0045(2) 1.67 2.61(3) 0.008(3)

Cu-S 0.33 2.49(3) 0.007(3) 2 2.17(1) 0.0075(6)

Cu-C 1 2.79(5) 0.009(3) 2 3.30(5) 0.005(6)

Cu-S 1 3.05(2) 0.007(6)

Cu-Cu 1 3.35(1) 0.008(1)

Cu-Cu 1 3.80(1) 0.007(1) 1.33 3.71(2) 0.003(1)

Dk (Å�1) [2.55, 12.55] [2.75, 10.05]

DR (Å) [1.72, 3.99] [1.72, 3.99]

Rfit 0.2% 1.1%

c2 21.69 19.95

cv
2 4.87 4.38

Parameters include the coordination number, N, the distance R relative to Cu, and the relative mean-square displacement, s2. Fitting ranges are indicated by Dk

and DR, respectively. The fitting quality is evaluated by the goodness-of-fit factors Rfit, c2, and cv
2 (h c2/v), where v is the difference between the number of

independent data points and the number of parameters used in the fitting.
metals bonded to four S atoms of Cys. To replace CdII and

ZnII in the native MT with CuI (d10) or CuII (d9), both

changes in charge distribution and chemical bonding

between metal ions and amino acids have to be taken into

account. During the refolding process of the apo-MT in the

presence of CuI, the difference in charge between the metal

ions is expected to perturb the refolding of the MT, despite

the fact that CuI has the same d10 electronic configuration

for forming metal thiolate clusters; the extra charge after

forming the CuI-bound MT may be dissipated to nearby

amino acids via the formation of disulfide bonds, as sug-

gested in a previous study (3). Specifically, each of the native

metal ions (CdII or ZnII) in MT is bound to four S(Cys)

ligands, whereas there is less than one Cys on average in

CuI-MT for each pair of CuI. Nonbonded S(Cys) ligands

of neighboring CuI-MT may thus attract each other via disul-

fide interactions in the refolding process, leading to the

formation of oligomers (as observed by ASAXS). On the

other hand, during refolding with CuII ions, there is no

charge difference from the native CdII and ZnII; thus, CuII-

MT can easily refold to a shape similar to that of the native

MT. Nevertheless, with one less d orbital electron (d9), the

tetrahedral geometry may not be stable due to the Jahn-Teller

distortion, and part of the CuII ions may then be dissociated

into the dialysis solution (i.e., solution 6 in Table 1) during

the last step of the refolding.
In general, the two types of copper clusters extracted from

the XAS results for the two Cu-MTs conform, approxi-

mately, to their respective global morphologies revealed by

SAXS. The extended rodlike morphology of CuI-MT oligo-

mers corresponds to a more open local structure with three

loosely connected copper pairs, whereas the better-refolded

morphology of CuII-MT comprises a more compact tricopper

cluster. With a metal content (six to seven Cu) comparable

to that of the native MT (five Cd and two Zn), however,

CuI-MT could only form oligmers; morphologically similar

to the native MT, CuII-MT incorporated a lower metal

content of four Cu ions. It hence appears that ZnII ions

(with the correct þ2 charge and d10 electronic configuration)

can be more suitable than CuI or CuII ions in such unfolding-

refolding MT modification, provided of course that electrical

conductivity of the modified MT is not a major concern in

subsequent applications.

Meloni et al. (3) recently established an empirical relation

between the UV absorption of a Cu-replaced Zn7-MT (mainly

the absorption at 262 nm) and the Cu content of the protein.

Combining all ASAXS, XAS, ICP-MS, and UV absorption

results for the two Cu-MTs, we may reach a similar con-

clusion, that UV absorption of the protein in the region of

220–350 nm is closely related to the copper content. Never-

theless, complications arise in quantitatively correlation of

Cu-S interactions with UV absorption, as local environments
FIGURE 7 Possible models for the local geometries of

CuI in CuI-MT (a) and CuII in CuII-MT (b).
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and Cu-S interactions in the two Cu-MTs are likely very

different. Specifically, the electronic configuration of CuI in

CuI-MT is d10; hence, CuI has only the sp3 hybrid orbitals

to overlap with the 3p orbitals of S in forming Cu-S bonding;

in contrast, with the d9 configuration, CuII in CuII-MT can use

the unoccupied d orbital to form Cu-S bonds, leading to

valence orbitals that differ from that in CuI-MT. In other

words, the numbers (or their ratio) of Cu-S bonds in the two

different types of Cu-MTs can be evaluated from the UV

absorption spectra (Fig. 8) only when differences in the ligand

valence orbitals of CuI and CuII are carefully accounted for.

CONCLUSIONS

We have demonstrated that resonant x-ray scattering

(ASAXS) and x-ray absorption can be uniquely combined

to provide direct global morphology and local coordination

geometry of the metal ions for metallothioneins in solution.

The size, rodlike morphology, and copper content of the

modified Cu-MTs are revealed by ASAXS, whereas the coor-

dination geometries around copper ions are elucidated by

XAS as being in a four-coordinate mode bonded to O and S

atoms of the amino acids and the small metal clusters. Global

morphology and local metal ligand bonding of both CuI-MT

and CuII-MT are found to deviate from the native MT, but to

a different extent in each case. Overall, the integrated struc-

tural information gives insights into the mechanism of unfold-

ing-refolding for the production of Cu-MTs from native ones.

The same approach can be easily applied to other metallopro-

teins containing different metal ions due to the atom-specific

character of x-ray resonance scattering and x-ray absorption.

We thank the National Nano Device Laboratories for the use of ICP-MS.

Helpful discussions with Dr. H.-L. Chen are acknowledged, as are

comments and proofreading by Dr. A. C. Su.

FIGURE 8 UV absorption spectra (3) of CuI-MT, CuII-MT, and apo-MT

(without metal ions). Arrows mark the characteristic absorption shoulder

(~262 nm) of the binding of copper ions with the S atoms of cysteines.
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