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整合性供應鏈績效評估與最佳化分析 

研究生：王風帆                                 指導教授：蘇朝墩 

                                            洪瑞雲 

國立交通大學 

工業工程與管理學系博士班 

摘 要       

本論文以系統整合角度提出多階物流供應鏈績效評估及最佳化模式。一般來說，多

階物流供應鏈可概分為零物料供應、製造、配銷及運輸等供應子系統。以往學者在分析

類似問題大多零散不完整，且傾向個別求解。例如已知市場需求，希望求解最適製造策

略；或是假設配銷系統供應無限來求解最適庫存水準。本論文假設產品需求及製造環境

為隨機分配，各供應子系統產能有限，以矩陣分析方法求出在長期穩定狀態下此供應鏈

網路系統績效，即長期穩定作業成本及服務水準。探討各種可能市場需求及供給不確定

因素型式對系統績效之影響，提出以馬可夫調適卜瓦松過程建構在此情況下各供應子系

統隨機模式，並以矩陣幾何方法求解系統績效。本論文最後運用各種古典及現代尋優理

論，配合所提出系統評估模式找出供應最佳庫存及產能水準，並考慮上游供貨不穩定對

系統績效之影響，配合實例說明以此整合分析及最佳化模式找出不穩定供需環境下最穩

健系統資源規劃。 

關鍵詞：整合性供應鏈、矩陣分析方法、擬生死過程、馬可夫調適卜瓦松過程、巨集啟 
發式解法。 
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Abstract 

An integrated matrix analytic model is proposed to evaluate a multi-echelon supply chain 

(SC) from a systematic viewpoint. Generally speaking, a multi-echelon supply chain consists 

of four basic subsystems: raw material supply, production, distribution and transportation. In 

the past, most of the analyses of complex supply chain models seemed to be fragmented and 

tended to pursue local analysis. For example, some studies assumed market demands were 

known and tried to find the most adequate manufacturing strategies. Others assumed that 

supplies were unlimited and tried to find optimal distribution strategies to fight against 

demand uncertainty. In the first phase of this study, the market demand and supply process 

were assumed stochastic. Each SC contributor was then treated as a single server in a tandem 

queueing network. We developed an integrated matrix analytic model for the steady state 

performance evaluation in terms of total operating cost and customer service level for a 

fabricated SC problem. We also took upstream unavailability into the modeling process. Next, 

we investigated deeply into the impact of supply/demand uncertainties on SC performance. 

We modeled various uncertainty scenarios as Markov modulated Poisson processes (MMPP). 
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Using matrix geometric method we obtained the steady state performance measures and 

proposed solution measures for a test SC problem with make-to-order mode. Finally, based on 

the above-developed SC evaluation model, we investigated various optima seeking 

procedures. Our objective was to solve the optimal buffer and capacity allocation problems 

simultaneously such that the chain wide operation cost was minimized under pre-specified 

service level. Especially, we discussed the impact of unreliable supply on system 

performance. 

Keywords: Integrated stochastic supply chain, Quasi-birth-and-death process, Matrix 

analytical method, Markov modulated Poisson process, Meta-heuristic method. 
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Notation 
 

Lj ：Total lead-time of customer order at stage j 

Di ：The waiting time at stage i 

Tj ：Processing time at stage j, including waiting and service times at stage j 

Kj ：The outstanding customer order at stage j 

Bi ：The backorder level of stage j recorded at stage i 

Sj ：The stock level at stage j 

Q~  ：Infinitesimal generator for the whole queueing system (customer demand queue) 
)(iQ  ：Infinitesimal generator for case i -based server-repair process (server queue) 

λ ：Average aggregate retailer demand arrival rate (= ∑
∀i

iλ ) 

u ：Average processing rate for each server 

ξ ：Average server up rate (= the inverse of mean-time-to-failure) 

γ ：Average server down rate (= the inverse of mean-time-to-repair) 

ρ ：Traffic intensity without supply unavailability consideration 

ρ’ ：Traffic intensity incorporating supply unavailability 

co ：server operation cost per server per unit time 

cr ：server repair cost per server per unit time 

ch ：Inventory holding cost per unit and unit time 

cb ：Backorder cost per unit and unit time 

π ：Stationary probability vector for server-repair queue, )(iQ  

x ：Stationary probability vector for customer queue, Q~  

E[L] ：Average demand queue length (including the one in service if there is any) 

E[O] ：Average number of operative servers 

E[RE] ：Average number of servers under repair 

E[B] ：Average aggregated backorder level at retailer site 

m ：Number of machines 

r ：Number of repairman, r ≤ m 

λr ：Arrival rate for regular job 

λb ：Breakdown cycle rate for breakdown job 

J ：Total number of stages of the SC 

R ：Total number of retailers 
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uj ：Average processing rate for each server at stage j 

ST ：Total buffer of the SC 

(·) ：Lower bound for the decision variable of interest 

(·)* ：Optimal solution for the performance measure of interest 
2
ac  ：Coefficient of variation of arrival process, which is a superposition process of both 

 regular and breakdown jobs 
2
sc  ：Coefficient of variation of aggregated service process 
2
rc  ：Coefficient of variation of arrival of regular job 
2
uc  ：Coefficient of variation of service job 
2
bc  ：Coefficient of variation of arrival of breakdown job 
2
ξc  ：Coefficient of variation of breakdown job 
2
γc  ：Coefficient of variation of repair job 

p ：probability of occurrences of regular job 

q ：probability of occurrences of breakdown job 

L ：Waiting line in the system 

Lq ：Waiting line in the queue 

Ws ：Waiting time in the system 

Wq ：Waiting time in the queue 

δ ：Feedback (Rework) rate due to imperfect quality 

WIP ：Intermediate inventory levels including input and output buffers at each stage,  

 excluding the input buffer at the first supply stage and the ending inventory level for 

 the last stage. WIP = the sum of WIP 

E[I] ：Expected Inventory level for aggregated retailer stage 

E[Bj] ：Expected backorder level for stage/retailer j 

E[Ij] ：Expected Inventory level for stage/retailer j 

E[Ts] ：Expected service time 

TC ：Total cost of operating the system 

SLj ：Service level for retailer j, defined as probability of customer for waiting time  

 greater than t time units (SLj = Pr(T > t), here Pr stands for probability) 

SL ：(Average) system service level, defined as the arithmetic average of SLj or as a  

 single performance measure if retailers are aggregated 

βj ：Pre-specified service level for retailer j 
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β ：Pre-specified service level 

hwip ：Intermediate inventory cost vector 

cj ：Service cost per work-unit and unit time at stage j 
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Chapter 1 Introduction 

1.1 Overview 

Supply chain management (SCM) was popular in the past years and seems continuing 

to be so in the future. The main reason of its popularity may be that it extends the 

traditional operational management in local shop floor to a global context. Basically there 

are two approaches to model a supply chain (SC), deterministic and stochastic. The former 

is adopted when all the operational parameters, such as demand arrival rate, processing rate, 

etc. are certain while the later is used when most of the parameters are uncertain. Material 

requirement planning (MRP) and lately enterprise resource planning (ERP) are perhaps the 

most widely used supply control methods to satisfy market demand under a deterministic 

operational environment. The performance is often judged by the generated supply plan 

that can deliver the right product with right quantity to right place in right time. Under 

stochastic environment, the SC performance can be evaluated through stochastic modeling 

to obtain the steady state system performance. No matter what modeling type the studied 

problem is, the performance of an SC is often measured by its integrated operational cost 

and achieved customer service level. It’s well known that in order to save operational cost, 

two important factors must be addressed: inventory and moving (transportation) costs. 

For analytic modeling of a stochastic SC, there are three well-known problem domains 

for a supply network: infinite buffer, finite-buffer and infinite buffer with planned 

inventories. The former two problems are suitable for make-to-order (MTO) supply mode, 

while the last is suitable for make-to-stock (MTS) supply mode. Open or closed queueing 

network (QN) model is suitable for solving the first kind of problem. Several models are 

developed to solve the second problem. Notice the blocking effect exists in the second 

problem and the solution process seems not so straightforward as the first problem. For the 

third problem, it’s not paid special attention until in the past decade or so (Lee & Zipkin, 
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1992) (we abbreviate it as L & Z hereinafter). However, the MTS supply mode of the third 

type is a well-known industry application, therefore it shows imperative need for this 

research direction. It depends on the business process and other factors such as market, 

capital, physical limitation etc. to choose the suitable supply mode and the accompanied 

stochastic model for practical study. 

In reality, an SC is often shown as a sophisticated supply network with complex 

operation logic. Under this concern, simulation seems to be the most often used method to 

analyze a realistic SC, especially when mathematic model is not available. However it 

becomes time-consuming to build an industry-scaled simulation model. Let’s take a look at 

fig. 1.1, which is an SC network, composed of 4 basic SC functions: inbound logistics, 

manufacturing, outbound logistics and distribution. Inside each echelon, there may be 

several processing stages with serial or parallel configuration and the probability 

distribution for each service may be arbitrary (for ease of exposition, we only show serial 

case in fig. 1.1, see the square enclosed by the dotted lines). To let the complex interaction 

between SC players (contributors) become tractable, an adequate control scheme 

governing order/replenish behavior for each echelon is necessary if we regard inventory as 

the main concern. Unfortunately, we don’t know what the optimal order/replenish policy 

for SC like fig. 1.1 is. Furthermore, the closed-form solution is usually unavailable 

(Boyacy and Gallego, 2001) even for the simplest tandem supply system with assumed 

constant supply lead-time. In this study, we do not try to answer these questions. Instead, 

we “assume” control policies at each supply stage are known in advance. For example, in 

“pull-type” control (which is suitable for the situation that the demand is unknown or 

stochastic), there are base-stock policy, reorder point, order quantity (r, q) policy, reorder 

and target level (s, S) policy, and KANBAN-card controlled policy etc. Among them, 

base-stock policy is widely used in industry (L & Z) owing to its simple control logic. It is 

suitable when economy of sale is not a concern. For example, there is no fixed set-up cost 
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in each ordering cycle. 

To model the SC like fig. 1.1, we begin by learning the system dynamic of a base-stock 

controlled tandem supply system as appeared in (L & Z) and shown below: 

Ij = [Sj − Kj]+, Bj = [Kj − Sj]+, 1 ≤ j ≤ J,                 (1.1) 

K1 = N1, Nj = Kj – Bj-1 for j > 1,                         (1.2) 

where [x] + = max(x, 0). J is the stage number of the tandem system. Sj is base-stock level at 

each stage. Kj is demand on order, and Bj is backorder level at stage j, and Ij is inventory 

level at stage j (here assume we have already break the original echelon boundary into a 

multi-staged tandem form). Nj is the input queue occupancy before each stage j (including 

the one being served if there is any). (1.2) is due to the property of the underlying system 

dynamic: [demand on order] = [input queue occupancy] + [backorder level at the previous 

stage]. We assume ample supply before the first stage, and therefore no backorder from 

external supply: K1 = N1. The difficult part of analyzing the above system is that the 

queueing network will not be a M/M/1 connected system when the planned inventories are 

added after each stage. Based on (1.1) and (1.2), several methods for performance 

evaluation of a base-stock controlled SC have been reported recently for the approximation 

of such SC like recursive method, squared coefficient variation (SCV) of departure process 

(which will be abbreviated as SCV method hereinafter), quasi-birth-and-death (QBD) 

method, and matrix computation method. Recursive method starts at stage 1 with K1 = N1, 

the distribution of N1 is approximated to be that of M/M/1. Specifically 

⎩
⎨
⎧

≥−
=−

==
.1 ),1(
,0        ,1

)(
i
i

iNP
j

i
j

j
j ρρ

ρ
                            (1.3) 

Given Kj, it computes Bj by shift-truncation operation in (1.1). Then, it applies (1.2) to 

obtain Kj+1 = Nj+1 + Bj, which is just the convolution of product-form approximation. 

Motivated by the widely used approximation of the SCV of the departure process from a 
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standard queue (Buzacott and Shanthikumar, 1993), specifically 22222 )1( sad ccc ρρ +−= , 

SCV method uses the following approximation for the SCV of the departure process from 

output buffer of stage j,  

22/222/22 )1( sj
S

jaj
S

jdj ccc jj ++ +−= ρρ ,                         (1.4) 

where 2
ajc  and 2

sjc  are respective SCV of inter-arrival and service times at stage j, 1 ≤ j ≤ 

J – 1. Notice when 2
ajc  = 2

sjc  = 1, (1.4) becomes 12 =djc , which is the Markovian 

departure process of a standard M/M/1 queue. It then approximates the distribution of input 

queue occupancy (Buzacott and Shanthikumar, 1993, p76) 

⎩
⎨
⎧

≥−
=−

== − ,1 ,)ˆ1(ˆ
,0            ,1

)( 1 i
i

iNP
jj

i
j

j
j ρρρ

ρ
                        (1.5) 

where 
)1(2)(

)(
ˆ 22

22

jsiaij

siaij
j cc

cc
ρρ

ρ
ρ

−++
+

=  (Note here Allen-Cunneen approximation for a 

GI/G/1 queue is used to obtain the above formula). This method uses the property: 

2
1,

2
−= jdaj cc  to recursively find performance measures as the previous method. Specifically, 

it lets 2
1ac  be the SCV of the inter-arrival time of external demands. It then computes 2

1dc  

by (1.4) and K1 = N1 (since B0 = 0) by (1.2), whose distribution is known by (1.5). Given 

K1, it computes B1 by (1.1), and then it moves to the next stage and recursively call the 

above procedure until stage J. Notice these two methods only differ in queue occupancy 

calculation between (1.3) and (1.5). Specifically (1.5) related to the SCV of departure 

process (1.4). QBD method tries to directly solve the whole SC system by approximating 

the input buffer to be finite number. Then it uses matrix geometric method (MGM) to solve 

the finite QBD. However, the computation becomes intractable when J is large, say J > 4. 

Instead, herein we use QBD process to decompose each queueing system in an SC and 

therefore get tractable results. In this study, our evaluation model belongs to the last 
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method, matrix computation. It is essentially equal to recursive method. However, it 

focuses on response times instead of queue occupancies. It implements the calculation with 

simple matrix-algebraic manipulations. Herein we combine it with our proposed QBD 

method and give it another name, matrix analytical method. 

The optimization of the SC to obtaining strategic parameter setting for efficient 

material flow can be categorized as the following methods: classical derivative-based 

method, enumerative method, meta-heuristic method among others. These methods will be 

fully explored herein. In this work, we show that through adequate “transformation”, 

similar or more complex SC like fig. 1.1 can be tackled in adequate mathematic models. 

Specifically, in the first phase, we built the evaluation model for an SC by proposing the 

QBD modeling procedures for solving non-exponential, parallel processing, and 

single-server based distribution systems. We also discussed possible extension of the 

evaluation model with (r, q) controlled system dynamic. In the second phase we detailed 

the analysis of parallel processing under supply and demand uncertainties with the help of 

Markov-modulated Poisson process (MMPP) models. Finally, we investigated several 

optimization methods, classical and modern, which may be used in strategic optimization 

of an SC. 

  

Fig. 1.1 A supply chain network. 
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1.2 Motivation 

As is known, the operational environment is usually full of uncertainty factors. In this 

respect, the stochastic modeling of an SC in a systematic approach seems natural and 

necessary. This analytic direction focuses on infinite horizon; therefore it should be 

categorized as the strategic planning phase of an SC. Though there is already a large body 

of literature discussing several aspects in quantitative analysis of stochastic SCM (Tayur et 

al., 1999) such as supply contract, collaboration, operational management etc., several 

issues remain to be addressed. Among them, an integrated SC model is still lacking. The 

purpose of studying the behavior of integrated SC models is to quickly identify the pros 

and cons of an SC design in the long run. Usually the operational goal of an SC is to 

maintain a quick responding SC with minimum operating cost. However, owing to the 

sophisticated nature of an SC, most stochastic multi-echelon SC models only focus on an 

individual phase. Some models focus on the interaction between warehouse and retailer 

operations. Others focus on the study of the production phase. When the focus is on 

distribution system, the supply is usually assumed unlimited, and consequently supply time 

is assumed constant. This assumption neglects the processing variability at the supply 

system. Likewise, when the focus is on production system, there is no information about 

the subsequent material flow from the transportation to the end users. System performance 

changes due to the variation embedded in processing, transportation, and distribution 

phases is therefore ignored. This motivated us to propose a systematic design and analytic 

framework for an integrated SC. 

1.3 Objectives 

As depicted in fig. 1.1, a typical integrated SC model includes several operational 

phases such as production, distribution and transportation. In the past, simulation model 
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seems to be the only viable approach to analyze such complex supply chain topology. 

However, we show it’s possible to develop a computation-efficient analytic model. The 

integrated analytic model is depicted in fig 1.2. Especially we will investigate the 

feasibility of our proposed QBD model to solve non-Markovian arrival and/or service 

processes and non-tandem supply structure (such as a distribution system). Based on the 

integrated system dynamics of such QN, optimization procedure will be able to be 

conducted based on (1.1) and (1.2). Since the studied problem is highly nonlinear inherent, 

meta-heuristic methods will be employed on general problem structures such as fig 1.1. 

Finally we will discuss the impact on the system performance due to the variation(s) of 

unreliable supply and/or demand in processing, transportation, and distribution stages. 

 

Fig. 1.2 An integrated framework for stochastic supply chain analysis. 
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1.4 Scope and limitation 

This work uses daily operational data and probability distributions as input to the 

analytic framework. However, it belongs to strategic level of SCM. The major scope of 

this study is to find adequate steady state performance measures of an SC with tandem or 

any other tractable topology and manageable system dynamic. We assume the behavior of 

the studied SC is predictable such that it can be modeled as stochastic process with various 

probability distributions. Hence we rule out any abrupt behavior of an SC, such as 

unwarned unavailability caused by natural disaster, strike etc. As compared to traditional 

single stage inventory analysis, this work studies multi-echelon inventory control in SC 

domain. It used abstract level of modeling approach, neglecting unnecessary details inside 

each echelon. However, this limitation can be relaxed by other advanced modeling skills 

such as QBD process introduced in chapter 4. This study limits to continuous review 

base-stock inventory control policy. Unless otherwise stated, we assume service 

distributions are exponential at all stages except for distribution stage where a 

Hyper-exponential probability distribution is purposefully modeled. For the modeling of 

inbound logistics, exponential distributions are also assumed for each supplier’s processing. 

We assume there is an infinite input buffer for each stage along the SC, and that each stage 

uses the base stock control policy to manage its finite output buffer. Also, unit transfer is 

assumed and the supply discipline is assumed to be first-come-first-served (FCFS). 

1.5 Organization 

This study is organized as follows. Chapter 2 reviews related work. Chapter 3 proposes 

our performance evaluation model. Chapter 4 discusses the advanced modeling approach 

for uncertainty. Chapter 5 shows the optimization process. In chapter 6 we draw our 

conclusions. 
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Chapter 2 Related works 

2.1 Queueing network with planned inventory 

Basic knowledge of probability models is necessary in solving stochastic problems, for 

which we refer to Cinlar (1975), or Taylor and Karlin (1994), or Kao (1997). From 

literature survey, we observed that all the evaluation models for solving planned inventory 

type problems used system dynamic of (1.1) and (1.2) in chapter 1. Svoronos and Zipkin 

(1991) first proposed the matrix-computation approach to solve multi-echelon 

distribution/inventory problems. The authors assumed unlimited capacity with stochastic 

lead-times. In particular, the lead-times are unaffected by demand. The major result of 

Svoronos and Zipkin (1991) is that the transit-time variances play an important role in 

system performance. Later L & Z used similar approach to discuss the model of a tandem 

queue with planned inventories. The model therein assumed finite capacity. It used the 

model of Svoronos and Zipkin (1991) as an approximation. In order to make the 

approximation reasonable, it set the parameters of the lead-time to correspond with the 

average lead-time in a queueing system. Hence the lead-times depend on the demand. The 

simulation results showed the accuracy of the approximation model. More research, which 

assumes that only the output buffer at the final stage is positive while the others are zeroes 

and most involving multiple final products can be found in the literature as reviewed by L 

& Z therein. 

Based on L & Z, several studies developed approximation models of tandem supply 

systems. Using another recursive method, Zipkin (1995) calculated the same tandem 

congested problem through the convolution of M/M/1 queueing systems. They concluded 

an important concept, namely that a tandem queue with feedback built-in can be treated as 

capacity loss. Herein we relate the concept of capacity loss with adjusted traffic intensity 

as shown in chapter 3. Duri et al. (2000) extended the processing network of L & Z to 
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allow phase type distribution and they used convolution theory of two phase-type 

distributions to get the sojourn time at any complex stage and obtain similar accuracy of 

performance. They then used simple enumerative search to find the optimal buffer 

allocation assuming searching bounds of buffers were known. Actually we find their 

approach is very suitable for modeling complex system dynamic inside each echelon as 

shown in fig. 1.1. For example, the inbound logistics compose of a serial processing 

following by a transportation process. This may be modeled as a convolution of two 

phase-type models. 

Boyacy and Gallego (2001) used constant lead-time assumption at each supply stage 

with Poisson arrival. Using SCV method, Liu et al. (2004) first proposed an efficient 

evaluation model (which we called SCV method herein) with reported percentage error of 

deviation from simulation being 22.712% under worst case for a congested tandem supply 

system with J ≤ 4 (J refers to stage number). Gupta and Selvaraju (2004) investigated the 

possibility of applying QBD process on SC modeling. Though the computation difficulties 

increase in stage number, the decomposition approach of applying QBD on individual 

queueing system is tractable as reported herein. The flexibility of using QBD modeling 

approach to ‘capture’ complexity of inner echelon (stage) processing can be found, for 

example, in Neuts (1994, pp 274-286), where arriving customer order is served by multiple 

parallel machines. The random unavailabilities of machines are attended by multiple 

repairmen. The above review completes our survey of tandem supply systems. Except for 

Boyacy and Gallego (2001), which assume constant supply lead-time, all are modeled as 

queueing networks with planned inventories.  

2.2 Multi-echelon inventory control theories 

As for other multi-echelon inventory control theories, which we feel may contribute to 

our understanding in this area and therefore are listed below. Sherbrooke (1992) used 
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queueing theory to develop one for one (base stock) inventory control model for low 

demand repairable (or recoverable) aircraft parts for US Air Force, called METRIC in 

1968 where METRIC stands for Multi-Echelon Technique for Recoverable Item Control. 

Several later stochastic inventory studies followed that approach. Besides, there are many 

other inventory control policies, which were similar to or based on the above control 

policies. Svoronos and Zipkin (1988) presented a two-moment approximation technique 

with reference to distribution/inventory system. Axsäter (1993a) presented approximate 

and exact evaluation models of batch-ordering policies for two-echelon inventory systems 

when retailers face unit demand. That investigation compared the proposed approach with 

the technique presented in Svoronos and Zipkin (1988). Axsäter (1993b) summarized an 

overview of continuous review policies with reference to multi-echelon inventory models. 

He showed that METRIC underestimates the performance of a system. Axsäter (2000a) 

developed an exact model of base stock policy to evaluate the system performance. The 

above investigations addressed only situations that involved identical retailers. Axsäter 

(2000b) further proposed an exact analysis of inventory policies in a two-echelon 

distribution/inventory system when retailers face customers with different compound 

Poisson demand (non-identical retailers). We found almost all the multi-echelon inventory 

control models reviewed above assumed unlimited upstream supply, and therefore supply 

lead-times are assumed constant. Regarding this, the study of congested system seems to 

be more practical since practically capacity of supply is seldom unlimited. Further, no 

matter it is related to congested analysis or not, almost no literature surveyed above put 

other unexpected settings such as machine unavailability, demand fluctuation etc. into its 

modeling logic. The exception is Liu et al. (2004), where they investigated the impact of 

processing variation on supply system performance. In our study, we stress the issues of 

uncertainties and put them into the modeling logic. Concerning this, we refer to other 

models related to uncertainties. 
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2.3 Models related to uncertainties 

Emre et al. (2002) used simulation and regression to set up rules-of-thumb to decide 

adequate buffer capacity, which guaranteed high production efficiency of a tandem 

production system with unreliable machines. Abboud (2001) used the discrete-time 

Markov model to study the machine breakdown issue of a one-stage production/inventory 

model. Mohebbi (2003), Kalpakam and Sapna (1997), Mahmut and Perry (1995) used 

respective Markov models to formulate supply unavailability as two ‘on’ and ‘off’ states, 

and to study the embedded stochastic process to derive performance measures of interest. 

For robust and practical reasons, stochastic model should also take demand uncertainties 

into concern. As criticized by Thomas and Griffin (1996), market demand may not always 

follow stationary Poisson process. However, the modelers often overlooked these factors. 

As an example, Tee and Rossetti (2002) used Axsäter (2000b) as a test bed and run 

simulation to assert that the system behavior under stationary assumption may not behave 

as expected when the assumption is violated. Under our survey, another assumption 

usually adopted in stochastic modeling is “single server”, which is usually seen in a 

congested system analysis. The assumption does not seem to be practical. As is well 

known, manufacturers often adopt manufacturing cell, which gathers together similar or 

identical machines at one place to alleviate parts waiting time. The over-simplified 

assumption and neglect in the impact of uncertainties in all the stochastic models may 

make them far away from realistic application. MMPP is widely used as 

telecommunication traffic modeling (Trivedi 2002). Ching (2001) investigated the use of 

MMPP on several case studies of supply system with machine breakdown. However, he 

used finite continuous time Markov chain (CTMC) model and adopted “single server” 

assumption. In chapter 4, we address the issues of uncertainty in supply system. 

Specifically, we used MMPP to implement our uncertainty modeling for a supply system 
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concerning parallel (multi-server) processing. 

2.4 An integrated framework for stochastic SC analysis 

As we can see there were abundant and mature works in the literature related to 

independent production/inventory or distribution/inventory models as surveyed above. 

However, very little literature can be found on integrated SC model under stochastic 

setting. To solve problems like fig. 1.1, any of the above literature does not seem to be able 

to work if they work alone. As Houtum et al. (1996) pointed out that an integrated model 

for analyzing a multi-stage, multi-product SC problem, which is theoretically sound and 

numerically tractable would be recognized as a breakthrough in SCM study. Nevertheless, 

we do find endeavor in this direction. Research on such models can be found at Cohen and 

Lee (1988), Pyke and Cohen (1993 & 1994) etc. However they neglected the mutual 

relationship between the different subsystems. They didn’t consider factors of uncertainties 

from upstream stages such as material unavailability, which influences the behavior of the 

downstream stage. Raghavan and Viswanadham (2001) is another example for problem 

with infinite buffer setting. Gurgur (2002) used the decomposition method to separate the 

whole SC into several two-node subsystems to facilitate the analysis and then used the 

iterative approach to integrate all the subsystems to obtain the final system-wide 

performance measures. In her study, transfer is assumed in batches and (r, q) control 

policies were used. Since under her design there is only one single limited buffer between 

any two nodes, blocking effect has to be tackled and thus is incorporated into the solution 

algorithm. 

As for queueing network with planned inventory setting, Dong & Chen (2005) 

proposed an analytic framework for performance modeling and analysis of integrated 

supply chains. They used queueing theory to model capacitated supply networks, which 

composed of supplier, manufacturing, assembly, and distribution modules. The inventory 
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control they used belongs to (r, q) type. The authors employed the classical derivative 

method as the optimization avenue by differentiating performance measure of interest with 

respect to decision parameters. However, their approach focuses on mathematic derivation 

and therefore lacks investigation on possible insights in managerial applications. Also, it’s 

very difficult for industry practitioners to understand the difficult logic of their mathematic 

model. Herein, we propose the solution framework, which is computation efficient with 

simple operation logic based on (1.1) and (1.2) of chapter 1. The method of L & Z 

originated from phase type distribution. Zipkin (1988) first used phase type distribution in 

inventory study and the main results achieved were that the marginal distribution of 

lead-time demand has a discrete phase-type distribution with the same number of phases as 

the lead-time distribution. Under L & Z, the matrix parameters have to be decided first. We 

propose the QBD processes to model the system logic locally and use MGM to obtain 

these matrix parameters for global linkage. For using MGM to solving QBD, we refer to 

Latouche (1999) and Neuts (1994). Actually, QBD process is very flexible in modeling 

complex queueing processes. Neuts (1979 and 1994) used QBD process to model the 

traditional machine-interference problem with external customer demand input. The 

machine interference (repair) problem originates from the fact when a failing machine 

needs repair and all the repairmen are busy attending the other down machines it has to 

wait until one repairman is available. With the additional customer demand as input, QBD 

can handle well. When we delve into the above literature, we recognized that the 

formulation of an evaluation model for an independent system such as a 

production/inventory or a distribution/inventory system needs great efforts to achieve 

satisfactory results, to say nothing of trying to formulate an integrated evaluation model for 

a whole SC under stochastic setting. 

Our own study experience herein also showed that the direct construction of CTMC 

models becomes cumbersome and error-prone and sometimes even intractable (chapter 4) 
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if states become enormous. Recent research points to another high-level modeling 

approach. Generalized Stochastic Petri Net (GSPN) provides a very useful high-level 

interface for the automatic generation of underlying CTMC. However, since it’s beyond 

the scope of this research. We leave it for the time being and recapture it in chapter 6. 

2.5 Optimization of a stochastic SC 

Except for the optimization method mentioned earlier, there are other approaches, 

which may be suitable for solving large-scaled or special purposed SC problems. 

Meta-heuristic methods are such examples. Among them, genetic (evolution) algorithm, 

simulated annealing, Tabu search, were largely applied in areas of engineering and science 

areas as shown in Pham and Karaboga (2000). Michalewicz (1999) introduced 

meta-heuristic methods, and especially genetic algorithm, in detail. Yokoyama (2002) 

compared the computational efficiency of a random search and genetic algorithm in an 

integrated optimization of inventory and the distribution system. In Yokoyama (2002), the 

SC was first mathematically modeled and, then, optimal decision parameters were sought 

using random search and genetic algorithm. The computational efficiency was evaluated 

by comparing the number of computational iterations. Spinellis et al. (2000) used 

simulated annealing to optimize finite-buffered production lines by using a so-called 

“expansion method” as the evaluation method. In their study, they state that buffer 

allocation problem (BAP) is a difficult NP-hard combinatorial optimization problem. It is 

even more difficult that the performance measures are difficult to be expressed as 

closed-form based on the decision variable. Exact approaches are appropriate for solving 

small problem instances or for problems with special structures. For complex problem such 

as an SC, it seems to imply that heuristic approaches are more appropriate for such 

problems. Heuristic approaches can be referred to methods such as classical non-linear 

programming search methods, or meta-heuristic methods. In this study, we think heuristic 
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approaches may also include any naïve method in simplifying the search method in an 

efficient and accurate way. See for example Boyaci & Gallego, (2001) as reviewed later. 

For BAP of finite-buffered systems, several other works have been reported. Ajay & Smith 

(1997) proposed expansion method to model blocked QN and used the Powell’s method, 

which is based on classical conjugate gradient search to solve the BAP for several test 

problems of series, split, and merging types. The results were verified through simulation 

runs. For a finite-buffered production line, Liu and Lin (1994) proposed an approximated 

evaluation method for an unbalanced production line and even for long production lines. A 

dynamic programming method is proposed to find the minimum buffer units to provide 

maximum system throughput. Gurgur (2002) used design of experiment (DOE) to locate 

the optimal buffer setting. 

As for BAP for MTS systems some works adopting base-stock policies can be found. 

Graves & Willems (2003) developed two models tackling problems of safety stock 

placement, which relate to service level requirements and assume normal supply lead-time. 

They employed several industrial cases to illustrate the applicability of the models. Further, 

the authors formulated a nonlinear mixed-integer optimization program to decide issues of 

SC configuration such as option selection and the service time decisions. Boyaci & 

Gallego (2001) used enumerative search to solve the BAP under pre-specified service 

constraint. Also they compared different heuristic methods with enumerative method. 

Two-stage heuristic (TSH) restricts that only two stages hold inventories, the last and some 

other stage. The Majorization heuristic (MH) uses greedy procedure that initially places all 

the stock at stage J and then moves maximum possible stock to stage J – 1 while retaining 

feasibility, and it repeats the procedure for J – 1, J – 2, etc. The mixed heuristic (MXH) 

modifies the sequential push mechanism of MH. Instead of moving maximum possible 

stock from stage j directly to j – 1, it compares the potential cost savings of moving 

maximum stock to all possible upstream stage 1,…, j – 1 and choose the best location j*, 
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and repeats the procedure for stage 1,…, j* – 1. Liu et al. (2004) tried to minimize the 

holding costs of planned inventories of a congested tandem supply system under service 

constraint. They proposed a so-called “relaxation-recursive approach” to implement their 

optimization process and apply this optimizer in managerial studies. In addition, they 

investigated the impact on system performance by factors of output buffer, workload 

sequence, and service-time variation. Axsäter (2000b) proposed truncation measures in 

search process, which is to systematically disregard events with very low probabilities. 

In addition to the above analytically tractable models, which may depend largely on 

pre-specified assumptions to work, many of the literature used simulation as the 

performance evaluation tool accompanied with some optima-searching methods for 

large-scaled SC problems. For example, Alberto I. et al. (2002) used simulation as the 

performance evaluation tool and employed evolution strategy (ES) as the optimization 

method to tackle a goal-programming problem for a European recycling plant project. The 

outputs of simulation runs serve as fitness functions of optimization process. The outputs 

of ES serve as input parameters of simulation process. The optima were found after 

iterative simulation runs. However, the major flaw of simulation is time-consuming. In this 

study, we developed several optima-searching algorithms. Some of them follow the spirit 

of Alberto I. et al. (2002). However, the evaluation functions are derived through 

analytically tractable forms instead of simulation. 
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Chapter 3 An integrated evaluation model 

3.1 Introduction 

Our objective in this chapter is two-fold. The first is to develop a flexible modeling 

approach, which can ‘capture’ realistic activities inside each stage, such as parallel servers, 

machine unavailability, etc. We used QBD process to achieve this goal. The second is to 

extend the applicability of L & Z to include into our model not only a tandem-processing 

network but also other SC subsystems. Unlike L & Z, which assumed single server and 

exponential distribution at each processing stage, our model relaxes these assumptions and 

hence allows for more modeling flexibility. Our model is also a variant of classical tandem 

supply network. Different from previous related works (see literature review below), our 

work links production/inventory subsystem and distribution/inventory subsystem. 

Transportation process is considered as well. All three subsystems have limited capacities 

(actually we use single-server settings in the main part of this study). Through QBD 

transformation, the original complex topology of an integrated stochastic SC becomes 

tandem-like and hence tractable. We also used QBD process to model machine 

unavailability, which makes our model more real than other integrated stochastic SC 

models such as Cohen and Lee (1988). 

In this study we assumed that there is an infinite input buffer at each stage along the SC, 

and that each stage uses the base stock control policy. A policy of this kind demands that 

each stage starts operation at its own target inventory level at its output buffer. Under such 

scheme, the output buffer at each stage is set to be finite, while the input buffer at each 

stage doesn’t have to be set so. However the infinite assumption at the input buffer of each 

stage releases the difficult analysis of possible blocking effect when units at the upstream 

stage cannot find any vacancy at the input buffer of downstream stage. Also, unit transfer 

is assumed and the supply discipline is assumed to be first-come-first-served (FCFS). For 
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practical reason, there is usually a natural quantity unit for both demand and supply (e.g. 

truckload or 1 000 tons/ unit load), and in terms of that unit it makes sense to set order 

quantity to be equal to unity. First we formulated the respective stages as either M/M/1 or 

phase-type queueing model. For the latter type, we then used the QBD model of the 

Markov process to derive respective sojourn times. Finally, the method of L & Z was 

applied and then the system-wide performance measures were computed approximately 

with respect to the base stock levels at all sites. A simulation model was also developed to 

facilitate the verification study of the accuracy of the proposed approach. 

3.2 Matrix analytic approach 

The inventory control scheme of our proposed approach is the base stock policy. In 

practical production/inventory control policies, in contrast to centralized (and push-type) 

control scheme like MRP, there are other local (and pull-type) control policies like (r, q), 

KANBAN and their variants except for base-stock policy. Though we used base-stock 

policy in this study, the extension of the existing model to other control policies is possible 

(this will be investigated in section 3.5). Below we illustrate why we select this policy 

instead of other pull-type control schemes. 

The base-stock policy makes sense when economies of scale in the SC are negligible 

relative to other factors. For example, when each individual unit is very valuable, and 

hence holding and backorder costs dominate any fixed order (set-up) costs. Likewise, for a 

slow-moving product (one with a low demand rate where Poisson distribution is adequate 

to model the arrival process), the economics of the system dynamics clearly rule out batch 

size (Zipkin, 2000). When the above conditions no longer exist, for example, economies of 

scale do matter; other control schemes such as (r, q) policy may be more adequate than 

base-stock policy. In this study, we assumed processing conditions are like those 

mentioned above so as to use base-stock policy accordingly. On the other hand, since 
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KANBAN is more restrictive when possible blocking may occur due to no immediately 

available KANBAN cards at hand when demand arrives, we select base-stock policy as our 

major control scheme to quickly verify the applicability of the proposed model in the first 

place. Also, base-stock policy is not uncommon in practical production/inventory control 

situation. Finally, it’s known base-stock policy can be treated as the building block of (r, q) 

policy and therefore we begin our study from the base-stock policy. 

Next we discuss how the base stock control policy works. This policy is also called 

(S-1, S) policy. Where S represents base stocking level. This policy means that whenever 

demand reaches one unit, the inventory is immediately replenished. Under our proposed 

model, each stage along the SC has its own input queue (Nj) and output buffer (Ij) 

physically or imaginarily, where semi-finished or finished products are kept. Assume 

infinite Nj and finite Ij. Aggregate customer demands at the retailers trigger the delivery 

from the distribution center (DC). This demand information propagates to the production 

facility initiating a production order at each stage. For a specific production, transportation 

or distribution stage j, a material flow comes from the output buffer of the immediate 

upper-stage j-1. If the inventory at the buffer is available, one item is immediately 

deducted from the output buffer of j-1 and sent to the input queue of j. If the inventory at 

the buffer is not available, one item is backordered and recorded at j-1. When there is one 

part/product finished at stage j and there is recorded backorder, then the item will be sent 

immediately to the input queue of the next stage. Otherwise it will just stay at that stage as 

a base stock item. Under base-stock control, the stage adopting MTS policy will maintain 

its own stock level and reduce customer-waiting times downstream as compared to an 

MTO policy. Next, the models developed by Svoronos and Zipkin (1991) and L & Z are 

briefly discussed. In subsection 3.2.2, our proposed approach is presented. 
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3.2.1 The approximation model 

Consider stage j  and its immediate predecessor stage i. Then, Svoronos and Zipkin 

(1991) defined the following: Lj = Di + Tj and assume Tj and Lj had continuous phase-type 

distributions (CPH) as follows: ) ,(~ jjj ACPHT α  and 

) ,(~ *
jjj GCPHL ψ                            (3.1) 

Let I denote an identity matrix and 1  a column vector of ones whose dimension is chosen 

to fit the content of the context. Then, they indicated that Kj has the same distribution as 

the lead-time demand. This property combined with Neuts (1981) theorem 2.2.8 implies 

that Kj has a discrete phase type distribution (DPH): ) ,(~ jjj PDPHK π  where 

jP = 1)( −− *
jGIλλ                            (3.2) 

jπ = jψ jP .                                (3.3) 

Since +−= ][ iii SKB , where }0 ,max{][ xx =+  is a shifted phase-type distribution, it 

follows that ) ,(~ i
S

iii PPDPHB iπ (Neuts 1981, p. 47). According to Svoronos and Zipkin 

(1991), iB  has the same distribution as the waiting-time demand. Again this property 

combined with Neuts (1994) theorem 2.2.8 implies that ) ,(~ *
i

S
iii GPCPHD iψ . From the 

definition of Lj, (3.1) is the convolution of two phase-type distributions: Di and Tj 

According to Neuts (1981) theorem 2.2.2, since ) ,(~ *
jjjij GCPHTDL ψ∗= , where * 

represents convolution operation, then 

jψ = [ ]j
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As L & Z assumed each processing stage to be exponential with one single server, then 
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(3.5) can be expressed as (3.6) (see the following) after some recursive algebraic 

operations starting from stage 1: 

*
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where jkvk ≤ ,  represents the inverse of the sojourn time of customer order at stage k. In 

our approximation approach, we relax the assumptions of exponential and single server. 

The inverse of sojourn time: kv  is obtained through QBD modeling. Under this approach, 

the processing activity at each stage can be modeled as complex as possible theoretically. 

This approach largely enhances the flexibility of the model. 

Since there is no waiting time before the first stage, the distribution of L1 is the same as 

T1, which is already known. Starting at 1ψ =[1], L & Z recursively solved (3.4) by using 

(3.2) and (3.6) and let 1=jα . From the property of DPH, they finally derived 

1jS
jj Pπ=> }Pr{ jj SK , 

and 
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S
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jBE ,                       (3.7) 

where jπ  is obtained from (3.3). Alternatively we find it’s simpler to derive (3.7) as 

follows 
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Here we use the tail probability to derive the second equality. Since jjjj BKIS −+= , 

where jI  represents on hand inventory at stage j , L & Z gave 

][)(

][][][
1

jj

jjjj

BES

BEKESIE

+−−=

+−=
− 1jj PIπ

.                    (3.8) 

Notice that the first moment of DPH was used to derive the last equality of (3.8). For j < J, 

this quantity together with ][ 1+jNE , gives the total intermediate inventory between stages 

j and j + 1. When all the Sj equal to zero, the initial probability vector of the Markov chain 

is )0,,0,1( " , so that the sojourn time in the queue, if it’s a pure tandem one involving no 

feedback or breakdown issues, is the sum of independent J random variables with mean 

jv
1 , where 

jv
1 is the respective sojourn time at stage j. Consequently the approximation 

can be verified to be exact. However, in our test model, which we will discuss shortly, the 

queue involves feedback and breakdown. Under this situation, the respective sojourn time, 

except for the first stage in the tandem queue is still that of a M/M/1 queue. However we 

have to modify the sojourn time at the first stage to improve the accuracy of the 

approximation model as discussed in section 3.4. For now, we will only focus on the 

build-up of our approximation model as described below. 

 

3.2.2 The proposed approach 

Now we discuss how to use the QBD process combined with the approach of L & Z to 

derive the performance measures of more complex SC. First we discuss how to break the 

original queueing problem into many smaller queues along the chain. Then we use the 

matrix computation approach developed by L & Z and plug in all the decomposed 

sub-queues sojourn time information as the matrix parameter to derive the final 

performance measures that are of interest to us.  
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Our sub-queues include two types: the M/M/1 queue and the phase type queue. For the 

M/M/1 queue, the derivation of sojourn time is well known by simply applying the well 

known Little’s formula. For the phase type queue, our model demands that each job 

arriving at stage j may have to go through several physical processing phases before it 

finishes the processing work and releases the occupied resource to the next arriving job 

waiting in the queue. Under this stochastic process, the infinitesimal generator matrix will 

have a tri-diagonal block form. Markov chain with this form is a QBD process. Applying 

the theory of QBD, we can derive the expected sojourn time at this processing stage. As for 

the distribution subsystem, we can also treat it as an M/PH/1 queue and apply the above 

QBD process derivation procedure. Alternatively we can accumulate all the retailers as a 

single stocking site and treat it as an M/M/1 queue, which will later be shown to be equal to 

the M/PH/1 queue under some specific conditions. And we then calculate each individual 

retailer separately and finally we obtain aggregate performance measures for retailer site. 

In the following, we use the steady-state probability derivation procedure as illustrated in 

Feldman (1995, see Appendix A.1) to derive the sojourn times in an unreliable production 

stage and a distribution stage respectively. 

First, we derive the sojourn time for an unreliable processing stage. Assume 0 and 1 

phases represent the breakdown and operating states respectively. And, assume all 

stochastic processes are Markovian with parameters γζµλ  , , , , representing mean arrival, 

processing, and the up and down rates respectively. We can then formulate the phase type 

generator as  
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(Note that the bold character form represents vector or matrix.) Assume the initial 

probability in the phase stage as  1), ,0(=*α apply (A.1.5), and after some matrix 
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algebraic operations, we get 
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which is consistent with Buzacott and Shanthikumar (1993, p122). Applying the 

expectation formula ( ∑
∞

=

⋅=
1n

npnL ) and (A.1.4), we can easily obtain the expected number 

of orders in the system  

12
* R)R(Iα −−−= )1( ρL                           (3.9) 

where the traffic intensity rate is  

11
**Gα −−== λλρ ][TE .                           (3.10) 

The last equality of (3.10) is from the CPH distribution. Then the sojourn time in the 

processing stage can be obtained by applying the Little’s formula 
λ
LWs = . 

Since every distribution can be approximated as closely as desired by phase type 

distribution (Svoronos and Zipkin, 1991), it seems that we can formulate any stage in the 

SC as a QBD process in a very flexible way. For now, we will now apply the same 

approach to a distribution subsystem and show that the end result is the same as treating all 

the retailers as a single stocking unit under some conditions. Basically the random process 

of a distribution system can be modeled as a Hyper-exponential process. Recall a 

Hyper-exponential distribution as shown in fig. 3.1. We can treat the start node as the input 

queue to each retailer route. iα  is the probability of which route the transportation will 

take. 
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Fig. 3.1 A transition diagram of a Hyper-exponential distribution. 

 

In the long run, under normal conditions, iα  can be approximated as 
∑

i
i

i

λ
λ , where 

iλ  represents the mean order rate for retailer i, and the denominator is just the average 

aggregate demand rate. Node 0 can be thought of as the location of the collective single 

stock-place. For ease of derivation, assume that the expected delivery rates for all routes 

are identical, that is µµµµ ==== m"21 . Also assume that there are m  retailers, and 

that all customer demands are identical, that is λλλλ === m"21  and thus 

mm
1

21 === ααα " . Then we have the following phase-type representation: 

 ,),,,( *21 αααα == m"α                           (3.11) 
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Applying (A.1.5), we get  
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Applying (3.10), after some algebraic operations, we get 
µ
λρ =  and using (3.9), we 

derive 

.
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We used the symbolic math toolbox of MATLAB to derive the last equality of (3.13) by 

plugging in any number of m  greater than or equal to 1, otherwise it becomes too 

laborious to derive manually. Actually we found that by using the Pollaczek-Khintchine 

formula, the result is the same as the above. The square of coefficient of variation of the 

service time of the above M/Hm/1 queue is 2

2
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equal to unity by plugging in (3.11) and (3.12) and after some algebraic operations. Notice 

here that we use the first and the second moments of CPH. So 

)(
~)1(

2
1 2

λµµ
λ
−

=+= qsq WCW  where qW~  is the waiting time in queue of an M/M/1 

queue with arrival rate λ and service rate u. 

We have just shown that if all the initial probability and service rate at each phase of an 

M/Hm/1 queue are identical, then its performance is the same as an M/M/1 queue. Though 

the above result can be easily identified on the probability density function of 

Hyper-exponential distribution, our purpose here is to illustrate how QBD can handle such 

distribution structure usually seen in an SC study. Here we use a special case to illustrate 

the derivation process. However the application is not limited to such special distribution 

form as assumed above. For the sake of brevity, we omit the details here. However, we 

show the general case in chapter 5. We have indicated how to derive all the sojourn times 

inside each stage for a realistic SC. Now we can use L & Z to derive the performance 
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measures of a tandem queue. We test the accuracy of our proposed model by employing it 

on a tentative multi-echelon production, transportation and distribution system as described 

below. 

3.3 Implementation 

3.3.1 A test problem 

A multi-echelon production, transportation and distribution model as shown in fig. 3.2 

is employed as a test bed for our method. To keep the study manageable, we restrict our 

attention to a very basic model. The production facility (PF) produces finished goods to 

downstream retailers. The retailers face a stationary Poisson demand process with mean 

inter-arrival time of 1/λ. Machining process is as introduced in section 3.2. Successfully 

finished goods will leave the machine and go to the next stage for final inspection before 

shipping to a remote DC. After inspection, any imperfect product has to go back to the 

processing stage for reworking. Assume that the feedback rate is constant with probability 

δ. For the sake of simplicity we assume that the second (inspection) stage will never fail. 

Products passing inspection will wait at the shipping area, ready for transportation to DC. 

Upon arrival at the DC, the product will immediately be transported to the assigned retailer 

whenever a transporter is available. Again, for the sake of simplicity, we restrict all 

transporting vehicles between any two sites to one. Assume that all the transportation times 

are stochastic. Applying the method as described in section 3.2, we formulate this problem 

as a tandem queue with 5 independent stages. The first stage is the production stage with 

the unreliable machine being formulated as two “on” and “off” phases. The second stage is 

the inspection stage. The transportation from PF to DC and the DC itself are formulated as 

respective M/M/1 queueing systems. Finally, the distribution stage is formulated as a phase 

type, even though it is easier to accumulate all the retailers as one single stocking site, and 
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treat it as an M/M/1 alike, as shown in section 3.2. 

 

Fig. 3.2 A multi-echelon SC with feedback consideration. 

Please note that we omitted the other Nj and Ij except those of PF in fig. 3.2. 

Specifically, N3, the input queue of the transit from PF to DC; I3, the output buffer of the 

transit from PF to DC; N4, the input queue of DC; I4, the output buffer of DC, N5, the input 

queue of the transit from DC to retailer; I5, the output buffer of the transit from PF to DC, 

which is set to the accumulative retailer inventory level in this design. Further, assume 

there is an infinite supply at the first stage. 

I3 is always zero, assuming the MTO policy is adopted by this service. At DC, it’s 

reasonable to adopt the MTS policy to lessen the customer order waiting time. Assume that 

the DC processes its inventory with high efficiency at near zero operation time. This means 

that each arriving good will be put into stock immediately if there is no backorder recorded. 

When there is a backorder, the arriving unit will be shipped to the waiting retailer. N4 is 

always zero as well. If the customer order arrives, and the stock is out, a situation, which 

the MTO-type control is sure to encounter, unfilled orders are backlogged and will be 

satisfied when replenishing goods arrive on a FCFS basis. 

3.3.2 Numerical results 

Here reports our tests of the approximation of the model illustrated above, and 

compares its predictions to estimates derived from computer simulation, as illustrated in 
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Appendix A.2. Basically we follow the same test approach as reported in Zipkin (1995) 

with some modifications. The queueing system at PF is just like an open Jackson network. 

Thus the iλ  are all identical to λ/(1 − δ), where δ is the feedback rate. All ρι are equal to 

ρ = λ/[u(1 − δ)]. To test the taxing condition on the performance of the approximation, we 

fix δ = 0.5. ρ is determined by λ/u. Assume that the mean demand rate for each retailer is 

0.25 and that there are four retailers. The combined demand rate is 1. We fix u to be either 

2.5 or 4, and thus ρ is 0.8 or 0.5 respectively. Assume mean failure and repair rate to be 

0.25 and 2.5 respectively. Assume that the average transportation time is 1/4. We adopt a 

similar simulation stopping criteria as reported in L & Z and Zipkin (1995). Each run 

simulates thirty replications of 10 000 time units. Assume there is a holding cost of 0.5 for 

working-in-process per unit and per unit time, a holding cost of 1 for the end retailer 

inventory per unit and per unit time, a backorder cost of 10 for unfilled retailer orders per 

unit and per unit time. Five key performance measures are measured, TC (the total incurred 

cost of operating the chain, which is equal to 0.5⋅WIP + E[I] + 10⋅E[B], see below), SL 

(average service level measured in no stock-out probability at the retailer site), WIP (the 

total intermediate inventory, which is defined as all the working-in-process, inventory level 

at DC, and all the queues of transit, I1+N2+I2+N3+I4+N5, in this case), E[I] (average 

retailer inventory, which is omitted for space consideration), E[B] (average retailer 

backorder). Note that in calculating WIP, I3 and N4 are always zeroes, as described above. 

Tables 3.1 and 3.2 summarize the results. Note that the parameter setting of table 3.1 is the 

same as in Zipkin (1995). 

Also notice that the ‘SL’ column is not listed in table 3.1 since they are all zeros. The 

column labeled Sj is the initial base stock level at the respective stages. The column labeled 

‘Sim’ represents the simulation estimates; ‘App’ stands for the approximation, and ‘%Err’ 

is the absolute percentage error of the approximation compared to the simulation value, 
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which is defined as |App – Sim| / Sim × 100%. It is evident that the approximation is quite 

accurate for table 3.1 with all retailers adopting base stock policies with S5 = 0. Table 3.2 

shows the results when all retailers adopt base stock policies with S5 ≠ 0. Also, we adjusted 

the stock levels for all the other stages according to base stock levels of table 3.1. From 

table 3.2, we see that when S5 ≠ 0, the accuracy of the matrix approximation method is also 

satisfactory. From table 3.2 several useful observations can be made. For example, in the 

case of S5 ≠ 0 with ρ = 0.5, an increasing stock level at different stages, except at the last 

stage, seems to have the same effect of performance influence. The total cost and WIP 

levels increase and the service levels increase very limitedly while backorder levels 

decrease slightly. On the other hand, an increasing stock level at the last stage, i.e., retailer 

inventory level, does increase the service levels and decreases the backorder level, 

however it does so at the price of higher total cost, which is due to higher retailer inventory 

levels. 

 

Table 3.1 Approximation vs. simulation (S5 = 0) 

TC WIP E[B] 
ρ S1 S2 S3 S4 Sim App %Err Sim App %Err Sim App %Err
0.5 0 0 0 0 30.605 30.177 1.40 1.684 1.668 0.95 2.949 2.93 0.64 

0.5 1 1 0 1 13.237 13.019 1.65 2.825 2.8908 2.33 1.182 1.1574 2.08 

0.5 3 1 0 1 11.388 10.930 4.02 4.359 4.597 5.46 0.921 0.863 6.30 

0.5 1 3 0 1 9.029 9.011 0.20 4.322 4.414 2.13 0.687 0.680 1.02 

0.5 1 1 0 3 8.494 8.425 0.81 4.28 4.358 1.82 0.635 0.625 1.57 

0.5 1 1 0 5 7.345 7.420 1.02 6.08 6.167 1.43 0.43 0.434 0.93 

              

0.8 0 0 0 0 118.03 125.01 5.91 4.625 4.668 0.93 11.825 12.268 3.75 

0.8 1 1 0 1 93.182 97.455 4.59 4.821 4.900 1.64 9.077 9.500 4.66 

0.8 3 1 0 1 84.620 83.820 0.95 5.436 5.507 1.31 8.19 8.107 1.01 

0.8 1 3 0 1 75.606 81.049 7.20 5.126 5.243 2.28 7.304 7.843 7.38 

0.8 1 1 0 3 76.335 80.931 6.02 5.154 5.232 1.51 7.376 7.832 6.18 

0.8 1 1 0 5 65.185 66.975 2.75 5.828 5.807 0.36 6.227 6.407 2.89 
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Table 3.2 Approximation vs. simulation (S5 ≠ 0) 

TC SL WIP E[B] 
ρ S1 S2 S3 S4 S5 

Sim App %Err Sim App %Err Sim App %Err Sim App %Err
0.5 4 4 0 4 4 9.309 9.512 2.18 0.919 0.994 8.16 10.636 11.079 4.17 0.031 0.029 6.45 

0.5 12 4 0 4 4 13.167 13.497 2.51 0.922 0.994 7.81 18.396 19.074 3.69 0.028 0.027 3.57 

0.5 4 12 0 4 4 13.248 13.484 1.78 0.923 0.994 7.69 18.596 19.068 2.54 0.026 0.026 0 

0.5 4 4 0 12 4 13.252 13.482 1.74 0.923 0.994 7.69 18.607 19.067 2.47 0.026 0.026 0 

0.5 4 4 0 4 12 16.969 17.198 1.35 0.999 1 0.10 10.624 11.079 4.28 0 0 N/A 

0.5 4 4 0 4 20 24.964 25.194 0.92 1 1 0 10.624 11.079 4.28 0 0 N/A 

                  

0.8 4 4 0 4 4 29.772 29.923 0.51 0.649 0.702 8.17 8.125 8.331 2.53 2.347 2.335 0.50 

0.8 12 4 0 4 4 23.469 20.958 10.70 0.742 0.836 12.67 13.379 14.532 8.62 1.416 1.075 24.09 

0.8 4 12 0 4 4 19.066 19.118 0.27 0.816 0.882 8.09 13.947 14.115 1.21 0.930 0.889 4.44 

0.8 4 4 0 12 4 22.175 19.119 13.78 0.813 0.882 8.49 13.744 14.114 2.69 1.026 0.889 13.38 

0.8 4 4 0 4 12 23.176 21.999 5.08 0.866 0.885 2.19 8.125 8.331 2.53 0.976 0.888 9.05 

0.8 4 4 0 4 20 25.047 23.902 4.57 0.944 0.956 1.27 8.125 8.331 2.53 0.407 0.333 18.08 

 

To conclude, the approximation does seem to work well for all the retailers adopting 

either MTO or MTS operational strategies with one-for-one replenishment policies. When 

we incorporate all the stochastic features, including imperfect quality, machine breakdown, 

random transportation, and random distribution in the system, the degradation of the 

accuracy is only slight, and is often within the tolerance limits of industrial use. The 

feedback factor can be treated as capacity loss as concluded in Zipkin (1995). 

3.4 Discussion and sensitivity analysis 

For a tandem queue without feedback, every stage behaves just like an independent 

M/M/1 service system. The sojourn time is exact by applying Little’s formula 
λµ −

=
1

sW  

in each stage, which is not influenced by base-stock setting at each stage. The 

matrix-algebraic solution of the performance evaluation is approximately correct as 

reported in L & Z. However, the sojourn time varies in the first stage when there is 

feedback. We compared our findings with the numerical results of Zipkin (1995), which 

are shown in Tables 3.3 and 3.4. Looking at Table 3.3, which is a two-stage system, it’s 

apparent that the sojourn time (ST) at stage 1 increases when the stock level at stage 1 (S1) 



 33 

 

increases for both traffic intensity rates (0.5 and 0.8). Fig. 3.3 shows this tendency for ρ = 

0.5. We can see that ST starts from 0.5, when S1=0, and then increases when S1 increases 

until it finally converges at near 0.7 when S1 is near 20. After modifying the sojourn time 

at stage 1, which is obtained by simulation, and applying it to the matrix approximation 

procedure, we get a closer match between approximation value and simulation value for 

both performance values of WIP and E[B]. Here Sim(1) is the simulation values adopted 

from Zipkin (1995) for comparison. Sim(2) represents the results from our own simulation 

model. It shows great agreement when compared with that of Zipkin (1995). For 

comparison, in Table 3.3 we show the absolute percentage error between App and Sim (1) 

as indicated in the %Err (1) column as defined in section 3.3. The %Err (2) is the absolute 

percentage error between App and Sim (2). The %Err (3) is the absolute error before 

adjusting the sojourn time at stage 1, which is reported by Zipkin (1995). It’s clear that the 

sojourn time at stage 1 does influence the accuracy of the theoretical approximation value. 

The WIP and E[B] of stage 2 as a function of S1 for a two-stage PF with ρ = 0.5 are 

also shown in fig. 3.4 and 3.5. App (adj) means the performance by applying adjusted 

sojourn time to the matrix solution. App (′adj) is the performance by not plugging in 

adjusted sojourn time. We can observe minor differences between the approximation and 

the simulation results regarding the base-stock level at stage 1. Table 3.4 shows the 

comparison of simulation and approximation of a four-stage system. It seems that the 

accuracy does not improve as expected for a system composed of more stages. However, 

the accuracy does not degrade either for longer line. In conclusion we find that the impact 

of the above analysis on the accuracy of the matrix algebraic method is limited. In the 

worst case, the absolute error between Sim and App of WIP is only near 0.5. Therefore, 

there is no adjustment made in the computing code of the implementation section. 

As for our tentative SC model of section 3.3 we also tested the case when there is only 
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feedback and no machine break down issue incorporated. Basically the difference between 

App and Sim is also small, when compared to the numeric results of section 3.3. In 

addition we investigated when there is only the influence of machine breakdown, and it 

behaved as expected when compared to the simulation results. 

Table 3.3 A two-stage system 
WIP E[B] (S2=0) 

ρ S1 ST Sim (1) Sim (2) App %Err (1) %Err (2) %Err (3) Sim (1) Sim (2) App %Err (1) %Err (2) %Err (3)

0.5 0 0.501 N/A 1.005 1 N/A 0.5 N/A N/A 2.01 2 N/A 0.5 N/A

0.5 1 0.548 1.475 1.487 1.477 0.1 0.7 1.7 1.56 1.57 1.573 0.8 0.2 3.8 

0.5 3 0.626 2.97 2.959 2.963 0.2 0.1 5.2 1.237 1.213 1.215 1.8 0.2 9.1 

0.5 5 0.668 4.753 4.748 4.746 0.2 0 5.9 1.095 1.089 1.082 1.2 0.6 5.9 

               

0.8 0 2 N/A 3.997 4 N/A 0.1 N/A N/A 7.998 8 N/A 0 N/A

0.8 1 2.089 4.145 4.233 4.2 1.3 0.8 1.3 7.253 7.421 7.371 1.6 0.7 0.7 

0.8 3 2.176 4.894 4.895 4.988 1.9 1.9 3.2 6.212 6.253 6.34 2.1 1.4 2.6 

0.8 5 2.299 5.983 6.014 6.121 2.3 1.8 6 5.575 5.622 5.719 2.6 1.7 4.7 

 
Table 3.4 A four-stage system 

WIP E[B] (S4=0) 
ρ (S1, S2, S3) S. T. 

Sim (1) Sim (2) App %Err (1) %Err (2) %Err (3) Sim (1) Sim (2) App %Err (1) %Err (2) %Err(3)

0.5 (0,0,0) 0.498 N/A 2.979 3 N/A 0.7 N/A N/A 3.971 4 N/A 0.7 N/A 

0.5 (1,1,1) 0.549 4.213 4.229 4.1446 1.6 2 0.6 2.308 2.333 2.2426 2.8 3.9 5.2 

0.5 (3,1,1) 0.568 5.908 5.92 5.8492 1 1.2 0.8 2.036 2.057 1.9852 2.5 3.5 4.1 

0.5 (1,3,1) 0.575 5.695 5.685 5.6131 1.4 1.3 0.4 1.841 1.832 1.763 4.2 3.8 6.6 

0.5 (1,1,3) 0.591 5.497 5.478 5.328 3.1 2.7 0.9 1.7 1.658 1.51 11.2 8.9 15 

0.5 (1,1,5) 0.621 7.104 7.093 6.9596 2.0 1.9 0.7 1.371 1.327 1.2016 12.4 9.5 15.6 

               

0.8 (0,0,0) 2.028 N/A 12.066 12 N/A 0.6 N/A N/A 16.126 16.056 N/A 0.4 N/A 

0.8 (1,1, 1) 1.998 12.16 12.262 12.3033 1.2 0.3 1.2 13.213 13.256 13.2993 0.7 0.3 0.7 

0.8 (3,1,1) 2.032 13.064 12.901 13.199 1.0 2.3 1.1 12.212 11.957 12.263 0.4 2.6 0.4 

0.8 (1,3,1) 2.041 12.538 12.723 12.725 1.5 0 1.6 11.735 11.809 11.807 0.6 0 1.2 

0.8 (1,1,3) 2.033 12.352 12.513 12.4949 1.12 0.1 1.2 11.501 11.584 11.5609 0.5 0.2 1.1 

0.8 (1,1,5) 2.095 12.939 12.951 12.8978 0.3 0.4 0.1 9.924 10.136 10.0878 1.7 0.5 1.8 

 

As a final remark, from the open Jackson network, the feedback impact on traffic 

intensity rate ρ = λ/[u(1 − δ)] can be explained in two different ways, by either increasing 

the input arriving rate from λ to λ/(1 − δ) or by losing capacity from u to u(1 − δ). From 
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our computing experience with the performance of a tandem queue with feedback, both 

methods achieve the same results. Actually the equivalence can be easily verified through 

simple matrix algebraic operation on (3.2) and shown that both Pj are the same under these 

two approaches. Since Pj are the same the succeeding calculations of performance 

measures obtain the same results. In analyzing the impact of ST of tables 3.3 and 3.4, we 

used the arrival increase method. However, it’s better to use the method of capacity loss 

when there is also a machine breakdown issue, otherwise the outcome will differ largely 

from the simulation results. This can be seen from (3.9) and (3.10), the calculation of ST is 

affected by R and G* and G* is affected by capacity, not arriving rate. 
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Fig. 3.3 Sojourn time of stage 1 as a function of S1 for a two-stage PF with ρ = 0.5. 
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Fig. 3.4 WIP as a function of S1 for a two-stage PF with ρ = 0.5. 
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Fig. 3.5 E[B] as a function of S1 for a two-stage PF with ρ = 0.5. 
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3.5 Extension 

For the derivation of (r, q) policy, it’s natural by using the fact that it is built upon 

base-stock policy. The key performance measures such as the steady-state backorder level 

can therefore be represented as the equal weighted sum of respective performance measures 

at different levels of inventory positions (Axsäter, 2000 or Zipkin, 2000). Specifically, after 

some algebraic operations, we may express the above argument as: 

e)PP(IP)πP(I rq2 −−=

=

−

+

+=
∑

)1(

)]([][
1

q

SBEBE
qr

rS .                   (3.14) 

Note when q = 1, (3.14) becomes (3.7). To illustrate our argument, assume we have a 

two-echelon SC: a production facility (PF) directly serves 4 identical retailers. The PF uses 

base stock policy to control its inventory while the retailers use (r, q) policies to control their 

stocks. The demand process at the PF is not Poisson but it is a superposition of several 

independent renewal processes, which under suitable conditions resembles a Poisson 

process (Svoronos and Zipkin, 1988). Assume the PF produces in units of retailer batches 

and each retailer has its dedicated transporter. Here we follow Svoronos and Zipkin (1988) 

and assume the arrival process at PF as Poisson processes. We then express the aggregated 

arrival rate at the PF as NλR/q, where λR is the arrival rate for each retailer and N is the 

number of the retailers. We also approximate the arrival process at the respective transit 

stage as Poisson process with mean λR/q. Finally we use the same modeling approach for 

DC as shown in subsection 3.3.1 to model retailer activity, assuming that the retailer 

processes its inventory with high efficiency at near zero operation time. Alternatively, we 

can formulate this problem as a 2-stage SC, with respective retailer-stocks representing 

planned inventories at the second stage. Using (3.14) and the fact: WIP = E[I1] + 

E[inventory in transit], we obtain performance measures for different combinations of 
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inventory control parameters at each stage as listed in table 3.5. 

Table 3.5 Approximation vs. simulation for the case where retailers use (r, q) policies. 
WIP E[B] 

ρ1 ρ2 S r q 
Sim App %err Sim App %err 

0.5 0.125 0 0 2 0.53 0.571 7.74 0.659 0.83 25.95 

0.25 0.063 1 0 4 1.001 1.016 1.50 0.091 0.12 31.87 

0.167 0.042 3 0 6 2.978 2.974 0.13 0.041 0.045 9.76 

0.125 0.031 5 0 8 4.988 4.986 0.04 0.031 0.033 6.45 

           

0.8 0.200 0 0 2 0.915 1 9.29 4.287 5.777 34.76 

0.4 0.100 1 0 4 1.003 1.044 4.09 0.309 0.48 55.34 

0.267 0.067 3 0 6 2.939 2.929 0.34 0.109 0.129 18.35 

0.2 0.050 5 0 8 4.967 4.96 0.14 0.081 0.088 8.64 

 

Here S is the base stock level at PF and r and q represent reorder point and fixed order 

quantity at the retailers respectively. Under the arrival assumptions at respective 

echelons, ρ1 and ρ2 are calculated traffic intensities by changing different level of q and 

letting λR fixed at either 0.5 or 0.8. u is fixed at 2 for the server at respective echelons (No 

feedback concern in this case). Also for simplicity we don’t consider breakdown issue. 

From the table we see acceptable accuracy exists when ρ1 is low. We also test other cases 

when ρ1 is high and q is large by varying λR. Unfortunately the approximation is not 

satisfactory for E[B] on most of the test cases. Some tests show Erlang distribution may be 

more appropriate than the proposed Poisson distribution for the arrival process at 

respective echelons. However such conjecture is related to phase type arrival and needs 

further analytic efforts and numerical verifications. 

As stated in section 3.1, we may use QBD process to achieve the goal of more 

modeling flexibility. For example if we want to model multi-server at each subsystem with 

each server suffering random breakdowns, we have an M/PH/m queueing system at each 

subsystem. To model such queueing system by using the QBD approach, we may express 
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the state space as )()()1( mxixnx ""  where n = customer number, x(i) = 0 (down) or 1 

(on), 1 ≤ i ≤ m, and have 2m states for n ≥ m. We conjecture that the QBD modeling 

approach for each subsystem may be treated independently from the linkage of the whole 

SC. To justify our argument, we employed the same 2-stage example (Also no feedback 

concern in this case) as in section 3.4 with some modifications that there are multiple 

parallel machines at the PF and so are there at the second stage. Specifically we assume 2 

servers for each stage. Assume the parameters are the same as in section 3.4. We form a 

QBD process for the decomposed server queue at each stage. Table 3.6 lists the results for 

different combinations of base-stock level at each stage. 

Table 3.6 Approximation vs. simulation for cases with multi-server and breakdowns 
WIP E[B] 

ρ S1 S2 
App Sim %err App Sim %err 

0.5 0 0 1.597 1.620 1.42 3.594 3.224 11.48 

0.5 1 0 1.982 1.883 5.26 2.579 2.491 3.53 

0.5 3 0 3.371 3.256 3.53 1.968 1.853 6.21 

0.5 5 0 5.140 5.078 1.22 1.737 1.676 3.64 

         

0.8 0 0 8.214 7.076 16.08 16.428 13.846 18.65 

0.8 1 0 8.322 7.176 15.97 15.536 13.049 19.06 

0.8 3 0 8.819 7.355 19.90 14.033 10.981 27.79 

0.8 5 0 9.624 8.336 15.45 12.839 10.237 25.42 

 

Clearly the accuracy is degraded when traffic intensity is high, but not significantly 

serious, as compared to all the previous examples. 

In short, it is possible a more general framework to accommodate for versatile control 

policies may be developed by combining the QBD technique and L & Z. Since the basic 

assumption for the approximation model of L & Z is that the queueing system at each 

subsystem is independent. Under this assumption, we use QBD to model individual 

queueing systems. However, the QBD approach often faces the problem of largeness, i. e., 
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too many states may make the solution intractable (For example, for the above mentioned 

M/PH/m queueing system, if we have 20 parallel machines, the states become more than 

one million). The challenge lies in how large and how sophisticated the QBD modeling 

approach can allow as well as how accuracy this combining process can provide. All these 

need further study as well as thorough numerical verifications. 

3.6 Concluding remarks 

We have demonstrated that by using the matrix analytical approach, the evaluation of a 

complex SC where all the participants, including PF, transporters, DC and retailers use 

base-stock control policies, performs as expected through simulation verification. The 

relative errors between App and Sim are all below 10% for retailers adopting MTO 

policies. When all the retailers adopt the MTS policy, numerical studies also show that the 

approximation is accurate for medium traffic intensity and acceptable for high traffic 

intensity. In this chapter the results are somehow similar to those of Zipkin (1995) where 

the base stock level at the end stage is set to zero. The present study shows that the matrix 

analytical approach is very accurate, not just for the application of tandem processing 

queue as reported by L & Z and Zipkin (1995) but also for the application of tandem SC 

where the end stage can be of a distribution system. In the literature on the stochastic 

production-distribution system, most models are developed and analyzed separately. 

Unlike our model, these evaluation models are usually difficult to integrate as one single 

model. 

The most significant contribution of this chapter is that we proposed an originative and 

useful system design and analysis tool for evaluating the performance of an integrated 

stochastic SC. Although a rich body of multi-echelon inventories systems in the literature, 

which use the same base-stock policies as we used herein, our idea is to provide a viable 

scheme for solving integrated stochastic supply network in a flexible and realistic way. We 
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used the simplest inventory control scheme of base-stock as the first step towards more 

involved inventory control technique. Under the matrix analytical approach, decision 

makers can easily formulate stochastic and/or factors of uncertainties, which are often 

encountered in real life, as adequate queueing form and later integrate them together as a 

single tandem queue. The performance measures are then readily available by simple 

matrix-manipulated computation. In this chapter we also found that, the Hyper-exponential 

queue M/Hm/1 can be used adequately to model a distribution subsystem of a supply chain. 

The phase-type structure can then be handled as a usual QBD process. We illustrate how it 

works by proposing a special structure, under which the distribution subsystem behaves 

just like an M/M/1 queue. However numerical studies show it is not limited to such special 

form by adequate modification of L & Z (we omit the numerical details here and recapture 

it in chapter 5). We believe this modeling approach introduced herein is new in supply 

chain study. The other finding is that the sojourn time of an order at the beginning stage of 

a tandem queue may differ from the other stages. This seems to violate the inherent theory 

of an open Jackson network. However, sensitivity study shows that the matrix analytical 

approach still approximates well. In the extension section we test the applicability of the 

proposed approach for another control scheme as well as for multi-server setting. We 

employed two 2-echelon problems. Numerical studies of (r, q) policy are satisfactory for 

low to medium traffic intensities when arrival rates of individual retailers are fixed at either 

0.5 or 0.8. In the multi-server case the approximated results are more satisfactory with 

medium traffic intensities than with heavy traffic intensities. Generally speaking, we see 

the promising future of the proposed model as a quick and accurate SC evaluation tool not 

just for base stock inventory control schemes but also for (r, q) policy employed at the 

retailer site if traffic intensity of the studied queueing system is medium or low. Another 

advantages of the study in this chapter is that the proposed method herein seems more 

tractable when compared with existing multi-echelon stochastic models in the literature, 
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which often used more involved stochastic process to derive performance measures of 

interests. Finally, the closed-form solutions of the current model may be used as later SC 

optimization applications. 
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Chapter 4 Non-stationary arrival and unreliable service 

processes 

4.1 Introduction 

As is well known the real supply system is seldom fault-free. Unfortunately 

operation-without-error is usually assumed in most stochastic models of SCM. The server 

may breakdown sometimes. The operator may not normally work from time to time. The 

over-simplified assumptions in all the stochastic models made them far away from 

practical application. The cause of non-stationary demand may be due to seasonal product, 

short product life cycle time, etc. Another assumption, which is usually used, is single 

server. The assumption of single-server setting often seen in existing literature does not 

seem to be practical. All these supply and/or demand uncertainties and inadequate 

assumptions should be concerned and built into the system dynamic of an SC to make the 

developed model more robust and practical to use. The objective of this chapter is to find 

an efficient analytic modeling approach. This approach should be able to capture as many 

uncertainty factors as possible embedded in a supply system under random environment. A 

Markov-modulated Poison process (MMPP) is a stochastic process whose arrival rate is 

“modulated” by an irreducible CTMC and is widely used as telecommunication traffic 

modeling (Trivedi, 2002). In this chapter we tried to use MMPP to model supply and 

demand uncertainties and used MGM to solve the proposed QBD model. The application 

of the proposed model was illustrated by numerical studies. The results provide managerial 

insights regarding adequate supply resource design under a MTO supply policy. 

In kendall notation our studied problem is of M/M/m/∞/∞/FCFS type with 

failure-prone server. Hereinafter we will refer to this queueing system as M/M*/m. 

According to Jackson’s theorem, QN composed of M/M/1(m)/∞/∞/FCFS nodes has 
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product-form solution. The product-form solution even exits for tandem QN with feedback 

or for arbitrarily linked network with Markovian routing (Trivedi, 2002). For generalized 

Jackson network such as the one we studied herein where the renewal arrival process need 

not be Poisson and i.i.d. service times that need not follow exponential distribution, the 

stationary distribution usually does not have explicit analytic form. For such generalized 

Jackson network, approximation method such as fluid or diffusion is usually sought for. 

However state-dependent service times is more restrictive and therefore is not allowed for 

generalized Jackson network (Chen and Yao, 2001). Since our service times are 

state-dependent we abandon the effort on deriving approximation model. Instead, we try to 

use direct approach, i.e. drawing state transition diagram of the CTMC under study, writing 

down the balance equations, and proceeding to solve them through an algorithmic 

approach. Though the process is cumbersome, this modeling approach can represent 

system dynamics of complex supply systems more faithfully. It generates an exact solution. 

4.2 QBD process decomposition 

A Markov process is called a QBD process when its infinitesimal generator matrix has 

a tri-diagonal block form. In this chapter we used MMPP to model demand and repairman 

uncertainty. MMPP combined with existing machine-repair model can be easily 

formulated as QBD processes to adequately represent versatile uncertainty environment in 

a supply-demand system. Assume the SC model under study is depicted in fig. 4.1. There 

are two echelons: production and distribution. We used decomposition approach to treat 

each supply stage as isolated queueing system. First we apply Jackson’s rule to find traffic 

process. Then we derive analytic model for each stage under possible resource allocation 

combinations subject to available capacity restriction. Optimal resource allocation for the 

whole supply network was then solved as the trade-off among costs of inventory holding, 

customer waiting, machine repair and normal operation. Below is detail problem 
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description. Assume k workstations arranged in tandem to produce one single product type. 

Each workstation is composed of m parallel serving machines with r repairmen to attend 

the occasional machine breakdown. Actually the supply system under study is a classical 

machine-repair problem with modification of considering repairman on and off. Assume 

the machine is subject to random malfunction whether it’s active or not. 

 

Legend: Ni: Input buffer; Ii: Output buffer; Ti: Transporter; DC: Distribution Center; Ri: Retailer 

Fig. 4.1 A multi-server supply network of production and distribution echelons. 

Note that since the work in this chapter is a matrix-oriented study, we neglect the bold 

face identification for a vector or a matrix for most of the cases when it can be easily 

identified from the context. Also, server may be referred to as machine or transporting 

vehicle. 

The objective is to decide the optimal server and repairman deployment in a tandem 

setting such that the total operation cost is minimized under capacity restriction. Below we 

introduce QBD process, which forms the backbone structure of our analytic model. The 

form of the infinitesimal generator of a QBD process representing M/M/m system with 

server breakdown and repair can be expressed as the following (Neuts and Lucanton, 1979; 

Neuts, 1994):  
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where matrix component A(• ) is of dimension (m+1)×(m+1). 0,0A  is the initial empty state 

when there is no customer. 1,iA  incorporates embedded machine-repair queueing system 

when there are i (i ≤ m+1) customers. 0,iA  is a death process whose states composition 

considers all possible number of operative servers and number of customers to be served. 

2,iA  is a birth process whose states composition considering all possible number of 

operative servers. When i ≥ m the evolution of sub-matrix of (4.1) becomes the same. 

Since we assume infinite input queue at each stage, each queueing system can be 

represented as an infinite homogeneous QBD process as shown above. The following 

shows our algorithmic procedure for solving the whole supply system. First we solve the 

embedded MMPP-formed server queue to get the average number of operative and 

under-repaired servers. Then we use MGM to solve the infinite QBD model to obtain the 

average customer queue length. Finally we use a simple search to find the optima for the 

underlying optimization problem. 

Step 0.  Analyze arrival process at each stage by Jackson’s rule. 

Step 1.  Decompose original Queueing system into independent sub-systems. Input 

system parameters such as resource, cost structure and transition rates for each 

subsystem. 

Step 2.  Construct )(iQ  under known resource limitation 

Step 3.  Compute stationary probability vector π for )(iQ  for all possible solutions. 
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Step 4.  Compute ρ’ for each possible solution. If the queue is stable (< 1), the solution is 

feasible. Then compute average number of operative and under-repaired 

machines. Otherwise it is abandoned. Continue this way until all possible 

solutions have been enumerated. 

Step 5.  Construct Q~ . 

Step 6.  Compute matrix R (see later definition). 

Step 7.  Compute stationary probability vector x for Q~ . 

Step 8.  Compute respective performance measure, specifically average queue length. 

Step 9.  Continue the above procedure until all queues have been decomposed and 

analyzed.  

Step 10. Solve the optimization problem for the integrated system 

 
4.3 MMPP modeling of uncertainties 

To understand MMPP we explained with a state transition diagram of a simple 

two-state Markov process as illustrated in fig. 4.2. σi is state transition rate. When system 

is in state 0 the Poisson arrival rate is λ0. When system is in state 1 the arrival rate is λ1. 

This explains what “modulated” arrival process means. In the following we show how to 

derive the sub-matrix of (4.1) considering other uncertainty factors embedded in an SC. 

Specifically, we assume the uncertain factor of supply is mainly from server breakdown 

with additional repairman on-off states. The demand process is assumed non-stationary 

with two modes, low and high, which is often seen in seasonal products. Assume the server 

is unreliable with reliable (stationary) or unreliable (non-stationary) repairman (demand). 

We model all the (repairman/demand) uncertainties as MMPP models as shown in cases 

4.2 to 4.4. First we show the typical machine-repair problem without considering any 

uncertainty factors embedded for benchmark purpose. Also notice that there are two 
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queues, customer queue and server-repair queue embedded in all the analytic models. The 

kronecker algebra is used in our solution procedure to conquer the problem of largeness. 

 

Fig. 4.2 A simple MMPP process. 

Case 4.1 Stationary demand, unreliable server with reliable repairman 

Basically this is the machine-repair problem. From Neuts (1994) (pp. 274-286) and 

also from (4.1), we get the following customer queue: 
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where diag(⋅) represents diagonal matrix with diagonal element specified by its parameters. 

)(λ∆  here represents state dependent arrival rate. Since in this case we model stationary 

demand process and there is m+1 machine states we have m+1 arrival states: λ0, λ1,⋅⋅⋅, λm 

with identical values. )1(Q  is the generator of the CTMC model of the embedded 

server-repair queue. Let states represent number of operative machines. It’s easy to 

construct the following generator matrix: 
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From )1(Q  we can solve it recursively and obtain the following well-known stationary 

solution vector π: 
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It’s known input rate must be less than output rate to maintain a stable queue from the 

basic queueing theory. Thus the following equation must hold for demand queue under 

study: 
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And for m ≥ 2 and customer number larger or equal to machine number the following 

repetitive equation must hold, which constitutes the main structure of a MGM method: 
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The objective is to find matrix R, which satisfies the above equations. Here x represent 

stationary probability vector for solving (4.1). Starting from initial guess of R = 0 we use 

successive substitution to obtain R as follows. 

.))]()(([*)]()([ 1)1(2
1

−
+ ∆+∆−∆+∆−= uQuRR kk λλ  

When m = 1 it becomes a well-known M/M/1 queue with machine breakdown and repair 

problem, which can be dealt with algorithmically as in the above approach. In order to 

obtain xi, i ≤ m − 1 we use the same successive substitution method for R as suggested in 

Neuts (1994). 
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 )( •Adiag  is a matrix composing of diagonal elements of original matrix: •A . The 

successive method will continue until the difference between the previous solution and the 

current one is within some acceptable level. After x is obtained through numerical method 

the queue length, which is defined as average number in the system can be obtained 

through expectation formula. The standard deviation can also be calculated. See Neuts and 

Lucanton (1979) for more details. Appendix B.1 shows related proofs. 

Case 4.2 Stationary demand, unreliable server with unreliable repairman 

Here we modify the well-known machine-repair problem as in case 4.1 with additional 

construction that the repairman can also take on and off states. This consideration is more 

realistic since operator may ill or take breaks from time to time. We model the individual 

two-state Markov process for each repairman as follows. Assume state 0 represents off and 

state 1 on. We have the following infinitesimal generator and rate matrix (here the matrix 

represents available number of repairmen) for this MMPP: 
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where ⊕ represents Kronecker sum. Note σj1 represents the transition rate from 0 to 1 and 

σj2 represents the transition rate from 1 to 0 for repairman j. A ⊕ B of two matrices A and B 

of sizes m × m and n × n is defined as follows: 

BIIABA mn ⊗+⊗=⊕ , 

here we use Ix to represent identity matrix of size x and ⊗ to represent Kronecker product. 

A ⊗ B of two matrices A and B of sizes m × m and n × n is defined as follows: 
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Finally, we obtain all the sub-matrices of (4.1) in this case as follows: 
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Since here we incorporate repairman on-off factor. Q  is the joint process of )1(Q  and G. 

Applying kronecker operation we get GIIQGQQ mr ⊗+⊗=⊕= + )1(2
)1()1()2( . However since 

the availability of repairman will affect the joint operative capacity, we have to make some 
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modification. Further, we consider the repairman who cannot affect the failure rate of 

machine. Thus we only have to make modification on upper diagonal sub-matrix and 

diagonal sub-matrix as follows. Define 
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Notice the matrix element )2(
, jiQ is of the same size as G, in this case 2r. For general case m 

≥ 2 the queue is stable if and only if .1))((' 1
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test of the following cases 3 and 4 are similar as the one done. The findings of xi, i ≤ m − 1 

and R here and those for cases 3 and 4 are the same as in case 4.1. 

Case 4.3 Non-stationary demand, unreliable server with reliable repairman 

The infinitesimal generator of a two-mode non-stationary demand process is as 

follows. 
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where d1 represents transition rate from “low” season to “high” season and vice versa for 

d2 and λi is respective demand for this MMPP. Applying kronecker algebra we obtain the 

server-repair process DIIQDQQ m ⊗+⊗=⊕= +12
)1()1()3( . 

The sub-matrices of (4.1) in this case are as follows: 
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Case 4.4 Non-stationary demand, unreliable server with unreliable repairman 

In this case we combine cases 2 and 3. By using Kronecker algebra we obtain the 

machine queue as DIIQDQQ rm ⊗+⊗=⊕= ⋅+ 2)1(2
)2()2()4( . The sub-matrices of (4.1) in this 

case are as follows: 
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Next we add cost parameters and see the impact of uncertainties on system performance. 

Intuitively we may think if the effect of uncertainty is significant, it seems better to invest 

more resources (server, repairman) to fight against uncertainty. However, except for the fact 

that the investment cost may diminish the benefit obtained from such policy. There is other 

side effect we may want to explore. For simplicity we omit the investigation of 

incorporating investment analysis here. Other related discussion will be explored in section 

4.4. The objective in the current study is to minimize the total cost as follows 

][][][][ BEcREEcOEcLEcTC broh +++= .                     (4.3) 

Since we adopt an MTO production policy, the first term is the work-in-process (WIP) 

inventory holding cost in terms of the cost of average queue length in the system, the 

middle term is the operation cost, the third term is the repair cost, and the final term is the 
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backorder cost. Under MTO, E[L] should be equal to E[B]. E[O] is equal to 1⋅⋅∑
=

m

i
ii

1

π , 

where 1 is a unity vector whose dimension is chosen to fit the context. For example, we 

may have i operative machine with 2 repairmen. There are 4 possible combined repairman 

states. Then the dimension of 1 is 4. And if ζγ = , it can be shown: E[O] = E[RE]. In 

general cases, the ratio of the average available machine to the average machine to be 

repaired is equal to 
ζ
γ  as illustrated in the following statements. Notice this property is 

not explicitly related to the repairmen. This is because the available repairman capacity has 

been modified and incorporated in calculating expected number of under-repaired 

machines. The repairman state has been accounted for in calculating π. The proofs are 

listed in appendix B.2 and B.3. 

PROPOSITION 1: If γ = ξ, then E[O] = E[RE]. 

COROLLARY 1: If γ ≠ ξ, then ][][ REEOE
ζ
γ

= . 

The above statement reveals that if γ is greater than ξ then the average number of 

operative machines is greater than the average number of machines under repair. Decision 

managers can use this fact and adjust γ and/or ξ accordingly to see its impact on TC. 

4.4 Illustrative examples 

In this section we show how to derive the minimum trade-off cost. Assume the 

respective parameters as set as follows: 

.20c ,1c ,60c ,5.0c
1,1, ,5.1 ,5.0 ,01.0 ,25.0  ,5.2 ,05.0  ,5.0

r0bh

212121

====

========== uddjj λλλζγσσ
 

First we start the derivation process of the generator matrix )(iQ . Since our study 

focuses on how to use MMPP to model various uncertainty cases, we skip case 4.1. For 
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case 4.2, assume m = 3, r = 2. We arrange states lexicographically as 

1) 1, (3, , 1), 1, (0, 0), 1, (0, 1), 0, (0, ),0 0, ,0( " , where the first parameter denotes the number of 

available machines, the second parameter denotes the state of the first repairman, and the 

third parameter denotes the state of the second repairman. Then the generator of repairman 

is 
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Applying kronecker algebra and making necessary modification as illustrated in section 4.3, 

we get 
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Here all sub-matrices are of size 4 × 4 and are defined below: 
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Similar approach applies to case 4.3 with simpler derivation. So we omit the detail. Next 

we investigate case 4.4. Assume m = 2, r = 1. )4(Q has the size 122)1(2 =×+× rm . If we 

use )}( ),(),({ tztytx  to represent the states, x(t) is the state of operative machine, y(t) is 

the state of the repairman and z(t) is the oscillating state of market demand. Then the 

embedded generator of machine queue is as follows: 
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Here we show the complete matrix to demonstrate the problem of largeness even for a 

problem of this small size. From the above illustration it is clear that MMPP suffers the 

effect of “curse of dimensionality”, which is often encountered in CTMC modeling. 

However MMPP can model the behavior of individual repairman precisely. Thus it is more 

flexible. Similar approach can be applied to model individual machine. Here we use 

kronecker algebra to generate the above matrix. Without kronecker algebra the 

presentation of Q becomes more and more intractable as can be seen in this example. 

Refer to fig. 4.1 our study of a tandem supply network governed by MTO policy treats 

all sI j '  therein as zeroes. Since no DC is necessary we treat the single transportation 

(distribution) activities as M/M*/m. Under this concept we analyze a 2-echelon integrated 

system of a production echelon followed by a distribution echelon. Assume dual stages for 

production echelon and single stage for distribution echelon. Further assume the service 

rate at the three stages as u1 = u2 = 2, u3 = 1. The other parameter settings are the same as 

outlined in the beginning of this section. Assume our budget limits the available machine 
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investment for each stage to be 5. The scenario of our employed example is a little 

different from a pure tandem queue and will be reiterated as follows for clarity purpose. 

The aggregated retailer faces a stationary (non-stationary) Poisson demand process with 

mean inter-arrival time (1/λ) of 1. The unreliable servicing process is as stated in section 

4.3. After production at two consecutive stages, finished goods will be briefly inspected 

(inspection time is neglected). After inspection, any imperfect product has to go back to the 

first production stage for reworking. Assume that the feedback rate is constant with 

probability δ = 0.5. Products passing inspection will immediately be transported to the 

assigned retailer on a FCFS basis whenever a vehicle is available. Assume there is always 

an infinite supply at the first stage when order comes. Also, for practical consideration we 

can think of the pure Poisson demand process as a unit-load, such as 1000 tons per order. 

Now we can apply the algorithmic approach as stated in section 4.2. 

In step 0, the supply queueing network is just like an open Jackson network. Thus we 

can use Jackson’s rule: ∑+=
j

jjiii λγλλ 0 , where i, j means stage, 0,iλ  is external arrival 

and jiγ  is Markovian routing, to derive underlying traffic process. The traffic intensities 

at production echelon are all identical to ρ = λ/u(1−δ), where the denominator shows 

capacity loss when feedback is incorporated. The traffic intensities at distribution echelon 

remain unchanged, ρ = λ/u. From the traffic intensities calculated at each stage, it shows 

single server setting at each queueing system is not stable. Here multi-server setting is 

adequate. Now we can use the adjusted capacity, u(1−δ) in steps 1-9 to derive performance 

measures of interest. Tables 4.1-4.3 give the numerical results for decomposed 

single-queue under different uncertainty cases. Table 4.1 shows traffic intensity ρ  of all 

possible resource combinations for single stage under different uncertainty cases. 

Accidentally all resource designs are stable. Table 4.2 lists E[O] for each design under 
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different uncertainty cases. We do not list E[RE] since it can be computed directly by using 

corollary 1. Also note since r ≤ m number of machines under repair will usually be no 

greater than total number of machines waiting for repair, Table 4.3 is the demand queue 

length for each design under different uncertainty cases. We can see when the machine 

resource is fixed, increasing operator resource causes E[O] and E[RE] to increase but 

causes E[L] and E[B] to decrease. This illustrates an idea that resource investment alone 

may not reduce the total cost as conjectured in section 4.3. 

 

Table 4.1 Traffic intensity ρ’ under different uncertainty cases 

 Case 4.1 Case 4.2 Case 4.3 Case 4.4 
r\m 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 
1 0.554 0.373 0.283 0.229 0.576 0.389 0.295 0.240 0.554 0.373 0.283 0.229 0.576 0.389 0.295 0.240
2 0.550 0.366 0.275 0.220 0.552 0.368 0.277 0.222 0.550 0.366 0.275 0.220 0.552 0.368 0.277 0.222
3  0.366 0.275 0.220  0.366 0.275 0.220  0.366 0.275 0.220  0.366 0.275 0.220
4   0.275 0.220   0.275 0.220   0.275 0.220   0.275 0.220
5    0.220    0.220    0.220    0.220

 
 

Table 4.2 E[O] for each design under different uncertainty cases 

(m, r) Case 4.1 Case 4.2 Case 4.3 Case 4.4 
(2, 1) 1.803 1.734 1.803 1.734 
(2, 2) 1.818 1.811 1.818 1.811 
(3, 1) 2.679 2.570 2.679 2.570 
(3, 2) 2.726 2.712 2.726 2.712 
(3, 3) 2.727 2.725 2.727 2.725 
(4, 1) 3.533 3.380 3.533 3.380 

(4, 2) 3.632 3.607 3.632 3.607 
(4, 3) 3.636 3.632 3.636 3.632 
(4, 4) 3.636 3.635 3.636 3.635 
(5, 1) 4.360 4.158 4.360 4.158 
(5, 2) 4.535 4.496 4.535 4.496 
(5, 3) 4.545 4.538 4.545 4.538 
(5, 4) 4.545 4.544 4.545 4.544 
(5, 5) 4.545 4.545 4.545 4.545 

 

 

 



 59 

 

Table 4.3 Demand queue length for each design under different uncertainty cases 

(m, r) Case 4.1 Case 4.2 Case 4.3 Case 4.4 
(2, 1) 1.609 1.885 2.791 3.587 
(2, 2) 1.568 1.586 2.672 2.725 
(3, 1) 1.131 1.258 1.268 1.457 
(3, 2) 1.102 1.111 1.225 1.238 
(3, 3) 1.102 1.103 1.224 1.225 
(4, 1) 1.043 1.128 1.083 1.196 
(4, 2) 1.024 1.029 1.055 1.063 
(4, 3) 1.023 1.023 1.054 1.055 
(4, 4) 1.023 1.023 1.054 1.054 
(5, 1) 1.018 1.082 1.034 1.116 
(5, 2) 1.006 1.009 1.016 1.020 
(5, 3) 1.005 1.006 1.014 1.015 
(5, 4) 1.005 1.005 1.014 1.014 
(5, 5) 1.005 1.005 1.014 1.014 

 

In Neuts and Lucanton (1979), the author designed variant customer arrival rates 

according to the number of operative servers. The author observed that π is not affected by 

the arrival rate but was affected by the number of repairman. Actually this can be easily 

comprehended since π is the stationary probability vector for Q and Q is nothing to do 

(independent) with arrival rate. In cases 4.3 and 4.4, we assume there are alternate arrival 

(market demand) rates for all possible states of operative servers and we obtain the same 

results. Therefore cases 4.1 and 4.3 have the same stationary probability vectors and so do 

cases 4.2 and 4.4. This fact also causes cases 4.1 and 4.3 to have the same number of 

operative machines and so do cases 4.2 and 4.4 as identified in table 4.2. This also explains 

why ρ' for cases 4.1 and 4.3 are the same and so are ρ' for cases 4.2 and 4.4 as identified in 

table 4.1 since the effective arrival rate for all cases are all the same. Generally speaking, 

the average queue length of cases 4.2, 4.3 or 4.4 is worse than 4.1 with case 4.4 being the 

worst. This explains the fact that case 4.4 is the most uncertain. 

Next we used (4.3) to search for the optimal resource design, which is the work of step 

10. Since the effective arrival rate is fixed at unity, expected backorder level can be 
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thought of as average response time from Little’s formula: E[B] = E[L] = λE[W] = E[W]. 

And the last cost component of (4.3) can be thought of as the cost of customer waiting time. 

Usually the objective set by production and distribution departments are different. The 

former often cares about operation costs including production, repairing, and inventory 

holding. Except for operation costs such as transportation, repairing, inventory holding, the 

latter also has to pay penalty costs owing to delayed transportation or waiting-related 

complaints from customers. We can therefore write down different optimization models for 

different contributors as well as for the whole supply system as follows. Denote i as stage 

number. 

                          (System)
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      (4.5) 

Note here we count the queue length at the first stage. Local optima for individual 

contributors and global optima for the whole system from searching on (4.5) are shown in 

table 4.4. Notice here we add a reliable supply system (case 4.0), which is a canonical 

M/M/m tandem QN under the same parameter setting for comparison purpose. Since case 

4.0 is a reliable SC, there is no repairman and incurred repair cost. 

Table 4.4 Local and global optimal solutions under different uncertainties 

 Production Distribution System 
 Design E[TCp] Design E[TCd] Design E[TCs]

Case 4.0 (2, _) (2, _) 5.333 (5, _) (5, _) (4, _) 184.983 (4, _) (4, _) (4, _) 194.589
Case 4.1 (2, 1) (2, 1) 12.427 (5, 3) (5, 3) (4, 3) 193.399 (4, 3) (4, 3) (4, 3) 218.398
Case 4.2 (2, 1) (2, 1) 12.289 (5, 4) (5, 4) (4, 3) 193.387 (4, 3) (4, 3) (4, 3) 218.362
Case 4.3 (2, 2) (2, 2) 13.58 (5, 3) (5, 3) (4, 3) 196.355 (4, 3) (4, 3) (4, 3) 224.025
Case 4.4 (2, 2) (2, 2) 13.591 (5, 4) (5, 4) (4, 4) 196.352 (4, 4) (4, 4) (4, 4) 224.016
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In an SC analysis, conflicts usually exist between contributors owing to different 

objective settings as shown in (4.5). Table 4.4 reveals this fact. The optima for each 

contributor are not the same. For example, in case 4.1, the distributor has to pay high 

penalty cost of delayed delivery, therefore, he would prefer the waiting time at the 

upstream supply, the production, to be less. Since more resource, in this case, design (5, 3) 

yields the least waiting, the distributor would like the producer to invest more resource. On 

the contrary, the producer does not directly respond to customers, the less resource 

investment is enough for him to balance the cost. The optima of the whole supply system 

are just the compromise solutions, which yield the most beneficial results for the integrated 

system. Other interesting findings with respect to this specific application problem have 

been observed. First, multiple solutions exist. For example, in case 4.1, distributor will 

probably prefer to choose the design of (4, 3) instead of (4, 4) though both selections will 

yield the same performance measures as can be told from tables 4.2 and 4.3. However, if 

operator-hiring cost is included, (4, 3) will be better than (4, 4) practically. That’s the 

reason why we put the less resource as the optimum. Second, it happens that the optimal 

number of servers selected by respective contributors under all cases is the same, while the 

repairman capacity is not. Lastly, we can tell the degree of impact of an unreliable SC 

when it is compared to a reliable one under different cases. For example, queue lengths and 

optimal costs of cases 4.3 and 4.4 are greater (worse) than cases 4.1 and 4.2 in local and 

global analyses when compared to case 4.0. We can also identify which factor causes the 

impact most. Since the optimal costs for case 4.1 and 4.2 are very close and so are them for 

cases 4.3 and 4.4, it seems the impact of repairman uncertainty is less significant than the 

uncertainty of market fluctuation under the cost structure specified in this example. 

To test if the output performance measures of the studied QBD model actually deliver 

“exact” solutions, we conducted a full-scaled CTMC model for a 2-stage tandem QN. 

Assume the available machines at stage 1 and 2 are either 2 or 3. We then solve the whole 
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CTMC through the support of SPNP, a GSPN tool. Since SPNP can only solve finite state 

Markov chain, such as M/M/m/K, we used an approximate model by assigning a very big 

buffering capacity, i.e. K-m for each input queue. Table 4.5 shows the comparison between 

decomposition method and GSPN (cf. table 4.3). It seems our decomposition method and 

the GSPN-generated outputs are very close. Since the GSPN-generated outputs are just 

approximation of the original infinite queue. The quality of the decomposition methods is 

verified. Notice in table 4.5 there are several unavailable values in case 4.4, which are 

owing to the explosion of state space and we will discuss this later in section 4.5. 

Table 4.5 Approximation results obtained from GSPN for different uncertainty cases 

(m1, r1)a (m2, r2)b Case 4.1 Case 4.2 Case 4.3 Case 4.4 
(2, 1) (3, 1) (1.609c, .135d) 0.2e (1.885, 1.276) 0.7 (2.678, 1.263) 2.2 (3.502, 1.456) 1.2

(2, 1) (3, 2) (1.609, 1.106) 0.2 (1.878, 1.135) 1.3 (2.678, 1.263) 3.6 N/A N/A

(2, 1) (3, 3) (1.609, 1.106) 0.2 (1.878, 1.119) 0.9 (2.678, 1.219) 2.2 N/A N/A

(2, 2) (3, 1) (1.568, 1.133) 0.2 (1.608, 1.262) 0.9 (2.581, 1.261) 2.0 N/A N/A

(2, 2) (3, 2) (1.568, 1.105) 0.1 (1.560, 1.118) 1.1 (2.581, 1.218) 2.0 N/A N/A

(2, 2) (3, 3) (1.568, 1.104) 0.1 (1.560, 1.104) 0.9 (2.581, 1.217) 2.0 N/A N/A

(3, 1) (2, 1) (1.131, 1.615) 0.1 (1.257, 1.921) 1.0 (1.298, 2.750) 1.9 (1.458, 3.661) 1.1

(3, 1) (2, 2) (1.131, 1.574) 0.2 (1.257, 1.649) 2.0 (1.246, 2.633) 1.6 N/A N/A

(3, 2) (2, 1) (1.102, 1.611) 0.2 (1.113, 1.885) 0.1 (1.253, 2.742) 2.0 N/A N/A

(3, 2) (2, 2) (1.102, 1.570) 0.1 (1.114, 1.564) 0.8 (1.247, 2.633) 1.6 N/A N/A

(3, 3) (2, 1) (1.102, 1.611) 0.1 (1.105, 1.860) 0.8 (1.252, 2.742) 2.0 N/A N/A

(3, 3) (2, 2) (1.102, 1.570) 0.1 (1.101, 1.562) 0.8 (1.246, 2.633) 1.6 N/A N/A
Note: a, b: resource design at stage 1, 2. c, d: queue length at stage 1, 2. e: percentage mean absolute deviation 
= { abs (c – exact 1 ) / exact 1 + abs (d – exact 2) / exact 2 } / 2 × 100, exact 1, 2: queue length at stage 1, 2 
obtained from decomposition. N/A: not available. 

 

As for more involved generalized Jackson network with arbitrary Markovian routing, it 

seems we can apply the same procedure as stated above. For a make-to-stock (MTS) 

tandem queue, where some of Ij’s may not be zeroes, the approximation model of L & Z 

for analyzing a tandem QN may be suitable here. The queue length obtained at each 

queueing subsystem should be able to serve as the input to the model of L & Z. However, 
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the accuracy of this approach is verified only under specific conditions as revealed in 

chapter 3. As a final remark, our problem under study is an M/M*/m for cases 4.1 and 4.2 

and MMPP/M*/m for cases 4.3 and 4.4. Alternatively, we can treat service process as 

phase type and the queueing system becomes M/PH/m and MMPP/PH/m for cases 4.1 and 

4.2 and for cases 4.3 and 4.4 respectively. 

4.5 Computation issue 

The major flaw of applying MMPP modeling is that the stationary probability vector 

becomes intractable when states increase. However if it’s known that the repairmen are 

identical, which means if σj1 and σj2 are the same, we can reduce the states by making 

suitable arrangement. In this case the states no longer stand for the state of each individual 

repairman but for available repairmen. The difference between MMPP and the proposed 

states reduction technique is (number of machine +1)×(2number of repairman − (number of 

repairman+1)). The difference becomes large if the number of repairman is high. However, 

MMPP is more flexible, for example, it allows modeling non-identical server/repairmen. 

In the above computation procedure, we use successive substitution method to obtain, 

R and xi, i ≤ m − 1 for steps 6 and 7 respectively. Alternatively one may investigate other 

solution algorithm such as Block Gauss Seidel (BGS) or Gaussian elimination as is usually 

adopted in solving finite CTMC. However, this is beyond our scope of study. In this study 

we set all the convergence criteria to be within 0.000001 for finding R and 0.001 for 

finding xi, i ≤ m − 1. We used R = 0, x0 = 0, xi = 1, 1 ≤ i ≤ m − 1 as starting guess solutions. 

All the numerical experiments are implemented on a Pentium IV 2.0 GHz PC. The average 

CPU time ranges from several seconds to several minutes for a single (m, r) problem to 

converge, depending on the size of the states. Successive substitution as is used in this 

study seems to converge in acceptable time. In computing the values for table 4.5 we also 
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encounter the problem of convergence. For example in case 4, the states generated by 

GSPN for problem set (3, 1), (2, 1) is over one million (1278400) and the transitions 

generated is even more (amounts to 8888374). It causes nearly one hour to find the 

stationary probabilities. The exhaustive CPU operations plus not enough memory make the 

other trials fail. 

4.6 Concluding remarks 

Resource design of supply systems has to reflect the uncertain environment to lower 

the cost. In this chapter we have shown how to solve such problems by using an 

algorithmic approach. We assumed major uncertainties are from supply and/or demand. 

This chapter provides an analytically tractable framework for “designing” such supply 

system. In this chapter we assume the SC adopts MTO policy. Under this assumption QN 

can be employed to investigate system dynamics. Like most of the other analytic models 

for analyzing a QN we used the same decomposition approach. The complex system 

dynamic of the studied QN is analyzed by decomposing it into several isolated queueing 

subsystems. The linkage of subsystems is then straightforward by solving the traffic 

(arrival) process into each subsystem and transforming it into equivalent server capacity. 

The MMPP models can then be developed for different uncertainty scenarios to investigate 

impacts of uncertainties on system behavior for each subsystem. The performance 

measures are then obtained from solving the developed QBD model. Finally, simple search 

on pre-specified objective function resoles the resource design problem. Specifically we 

used this algorithmic approach to solve optimal resource design problem for a realistic 

multi-echelon supply system. The objective is to find the trade-off cost for different 

contributors and compromise solution for the whole SC. For the verification of the quality 

of the decomposition approach we used finite-state-based GSPN model to approximate the 

original infinite state CTMC and obtain satisfactory results.  
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Existing literature of stochastic supply systems usually assumes single-server and 

neglect unreliable supply from upstream. Our model relaxes the usually adopted 

single-server assumption and investigates system behavior under different uncertainty 

cases, which should be more practical than other studies. Though the results are not 

satisfactory for MTS case. It works well under MTO mode as shown in this chapter. We 

also proved that the average number of operative machines is equal (proportional) to the 

average number of machines under repair when mean time to failure and mean time to 

repair are the same (proportional) by using a matrix algebraic approach. This property is 

not explicitly related to repairman. 

We also showed the degree of impact of an unreliable SC when it was compared to a 

reliable one under different cases. We showed how to use the proposed method to identify 

the most significant uncertainty factor, which may cause the most serious impact under 

specific cost structure. The decision-maker of an SC may use this information to improve 

the uncertain input as studied herein in a most efficient way. Finally, this study shows the 

algorithmic approach for solving QBD-decomposed model for more realistic and complex 

stochastic SC problem is feasible. 
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Chapter 5 Optimal buffer and capacity design under service 
constraint 

 

5.1 Introduction 

One of the most urgent issues in SCM is that there is still lacking integrated analytic 

model of an SC under uncertainty consideration. The uncertainty may come from supply 

and/or demand randomness, stochastic delay from upstream supply among others. 

Performance measures of a successful SC are usually described as minimum operating 

costs, maximum selling benefits, acceptable customer waiting time, flexibility etc. How do 

we model the uncertain interaction between/among SC distributors such that the goal(s) of 

SCM can be achieved in the long run? Many critical success factors (CSF) contribute to 

the successful operation of an SC. Well-organized plan(s) such as flawless supply, supply 

quality, adequate stock level and/or service rate are no doubt the CSF to successful 

operation of an SC. (Note in this chapter we treat service rate as capacity). With today’s 

complex topology of an SC and its inherent sophisticated system dynamic, the modeling of 

the SC with uncertainty concern is becoming a challenge. In the past, most researches 

related to stochastic modeling of an SC concentrated on the evaluation models. Accurate 

and efficient evaluation models have been reported to approximate the system dynamic of 

an SC. Among those works, most focus on independent models. The reason why few 

integrated models can be found in the literature may be that exact closed-form solutions 

only exist in the simplest systems. For a more complex SC, closed-form solutions are 

usually unknown and therefore approximation or simulation is the only viable approach. 

However, with the evolutions of analytic models for SCM, integrated analytic models of 

SC have been addressed more often than before. Moreover, the studies related to the 

optimization of an SC are still very few even nowadays. The optimization problems may 

include: how to find adequate stocking and capacity levels such that system performance is 
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maximized and so on. Some researches related to buffer and/or capacity optimizations 

have been reported. However, due to the complex topology of a real SC, most explore the 

tandem form. 

Buffer allocation problem (BAP) is the well-known topic in production system. BAP 

belongs to the combinatorial and discrete integer optimization problem. The problem 

relates to where and how much to stock at each stage such that the averaged total 

system-operating cost is minimized per unit time. This problem deems buffer as the only 

decision variable to optimize the system performance. Usually the operating cost includes 

holding and other penalty cost, which can include backorder or lost cost depending on 

operation policy of the decision maker. On the other hand, capacity design, or capacity 

allocation problem (CAP) seems to be not so popular as BAP. Though, its importance 

cannot be neglected. This problem relates to work load sequence. Since we may express 

capacity as a continuous variable, the analysis of how this factor may impact the 

performance of an SC is even more difficult. In this chapter, we investigate how system 

performance may be influenced by these two control variables independently or 

simultaneously. We demonstrate that through careful deployment of these parameters 

system performance may be greatly enhanced. 

MTS is usually referred to as planned-inventories at the output buffers of intermediate 

stages along the SC to fight against random demand needs. For MTO mode, no output 

buffer is designed and the buffer is just the “rooms” of waiting spaces in front of each 

servicing facility when the server is busy. The “rooms” may be infinite or finite depending 

on costs and/or space limitation. To facilitate our study, in this chapter we give MTO 

another meaning that only the end stage of an SC can hold inventory while all the other 

stages cannot. Since an SC may posses several supply functions, the traditional production 

modes such as MTS, and MTO are used herein for the SCM context. Further, we notice the 

unrealistic assumption of unlimited supply in classical multi-echelon inventory control 
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models for distribution systems. We therefore put our efforts on analyzing the congested 

nature of an SC. 

Our goals in this chapter are two-fold. First, we want to find the most suitable 

optimization methods that can find the optima of an SC. Especially, we investigate the 

state-of-the-art meta-heuristic search methods on the studied problem. Second, we 

investigate if there is other modeling approach that can assist in transforming a more 

general SC into a tandem form to ease the analysis work. Here “general” refers to both 

topology and system dynamic of an SC. Specifically we want to find the optimal stocking 

and/or capacity level(s) at each stage of an SC such that the pre-specified customer service 

level at the ending stage is satisfied. From the perspective of the queueing theory, the 

whole SC can be viewed as an arbitrary configured QN. The analysis of such supply 

network with planned inventories at each stage is difficult due to the intractable interaction 

between/among stages (see chapter 3 for more details). For a tandem and small-scaled 

problem involving only few stages, the classic approaches such as enumerative search or 

derivative-based method is usually enough to solve the problem. For a larger and more 

general SC, alternative optimization measures need to be sought after. In this chapter we 

wish to provide adequate solution models for different topology and difficulty levels of 

system dynamics. Additionally, we want to find if there is any rules-of-thumb for resource 

expansion planning. Herein we treat buffer and capacity as our resource under study. 

Finally, we explored the impacts of upstream unavailability and imperfect quality. To our 

knowledge, the robust concern in SC optimization is still not much in the literature. The 

findings and observations from empirical studies may provide valuable managerial insights 

in strategic planning of an SC. 

The basic assumptions are the same as before. Additionally, we assume there is more 

than one type of product. However, common production process proceeds until later 

distribution stage. Thereinafter, product differentiation may continue. Since this study is 
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stochastic-based, performance values are obtained as expected value in steady state and are 

used for objective values of evaluation functions for optimization processes. 

5.2 Methodology 

Basically we can decompose three basic topology forms relating to a congested SC: 

tandem, assembly, and distribution as shown in fig. 5.1. All belong to dual-buffer design 

with both input and output buffers, which is specifically tailored for processing network 

with planned inventories. We use base-stock inventory control as studied herein. 

 

a A canonical tandem model with base stock control 

 

b An assembly model 

 

c A distribution model 

Fig. 5.1 Three basic congested supply systems 
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Detailed operation of base-stock control can be referred in chapter 3. Note bold and italic 

font type refers to vector or matrix. Italic font type refers to variables and normal font type 

refers to constants. We assume demand arrival rate to be Poisson process and all the other 

rates to be exponential distributed. 

5.2.1 Flow Equivalent System 

For using matrix analytic model, especially QBD decomposition to modeling the above 

tandem and distribution systems as stochastic processes, please refer to chapter 3. For the 

assembly system with multiple parallel suppliers (processors), we formulate each processor 

as an M/M/1 queueing system with identical processing rate. We thus can treat it as a 

fork-join system and transform it into a Flow Equivalent System (FES) with single 

processing unit (Bolch, 1998). Fig. 5.2 exhibits this transformation. 

 

a An assembly system with m suppliers 

 

b An equivalent FES 

Fig. 5.2 Transformation from an assembly system into an M/M/1 FES. 

 

5.2.2 Meta-heuristic methods 

Genetic algorithm (GA) is a parallel processing algorithm. It mimics the natural 

evolution process of species through crossover and mutation operators to get better 
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“fitness” values generation by generation. Variants of GA use different selection 

procedures to propagate its offspring such as Rowlett wheel selection (RWS), ranking, etc. 

there are also variants of GA operators such as arithmetic crossover, directional crossover, 

non-uniform mutation etc. to increase the performance of genetic algorithm in terms of 

convergence and accuracy. To get rid of early convergence or local optima, these variant 

operators have reported successful instances (Michalewicz, 1999). In this chapter we use 

some of these variant operators to enhance the performance of GA. The algorithm begins 

at generating initial population of chromosomes. Each chromosome is the representative of 

decision variable(s) of interest, in the form of real, binary, or gray-code. After the 

evaluation of the population, GA enters into generation cycles of selection and crossover 

(recombination) and mutation. Some selection procedures use elitism and the GA cycles 

ends when pre-specified termination condition is satisfied (usually in terms of convergence 

or maximum run length, whichever comes first). Successful GA applications were mostly 

reported in engineering, science, among others. Few were reported in the SC area. To 

handle constraints, several methods have been proposed such as variable(s) elimination, 

penalty addition, infeasible points repairing, decoder method etc. In this chapter, we select 

decoder method as our constraint handling routine for SL requirement. Decoder method for 

continuous variable optimization has been reported (Koziel and Michalewicz, 1998). 

Simulated Annealing (SA) is a random search procedure. Different from GA, SA selects its 

next search point in the neighborhood of the previous one. SA tries to stabilize its 

searching process through adjusting the so-called “cooling temperature”. This method 

originates from metallurgy crystallization process. For minimization problem such as ours, 

downhill movement is always accepted. However, uphill movement is accepted if 

Metropolis criterion is satisfied. Metropolis criterion is based on the “energy” (value of 

evaluation function) deviation between new and old points and has larger probability in the 

earlier stage of temperature setting. Unlike GA, which has several alternatives to handle 
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constraint(s), SA only searches the feasible directions. To hasten its convergence 

performance, Goffe and Rogers (1994) developed a method based on dynamic step length 

adjustment of movement as follows. 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<
−

+

>
−

+×

=

otherwis, ,

 if ),)(1/(

 if ),)(1(

old
i

i
iold

i

i
iold

i

new
i

VM

LR
L

RLCVM

UR
L

URCVM

VM  

where VM represents dynamic step length, Ri is the ratio of accepted moves for direction 

(variable) i, U and L is the pre-specified parameters for upper and lower ratios respectively, 

both constants. C is a pre-specified parameter, a constant. The spirit of VM is to broaden 

the step length for more promising direction and shrink the step length for less promising 

direction. Empirical studies show this adjustment converge very well for our problems. We 

translate the original C++ code of constrained GA obtained from public domain into 

Matlab version and modify the existing SA code obtained from public domain by adding 

SL requirement. The Matlab platform is chosen for its excellence in handling matrix 

operations. These operations frequently occur in our model. Appendix C lists all the codes. 

5.3 Optimization 

In the following exposition, we assume the performance measures of interests are TC 

and SL. The decision variables are buffer and capacity. TC include intermediate inventory 

and end stage inventory holding costs, backorder costs, and may include operation cost 

when needed. 

5.3.1 Tandem topology 

For tandem topology of an SC, closed-form solutions only exist in special cases. Refer 

to a. of fig. 5.1, Let Sj denote output buffer of stage j, 1 ≤ j ≤ J. First we focus on BAP, the 

following procedures find the optimal buffers, S* for two special cases. 
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Case 5.1 .1 ,0 ,1 JjSSS j ≤<==  

For this case, only the first stage has buffer. Since the ending buffer is zero, no SL 

consideration is needed and hence is an unconstraint optimization problem. Suppose we 

focus our attention on inventory holding and end stage backorder costs only, neglecting 

any other incurred costs during operation. We show how to derive the general form of this 

problem starting from a 2-stage setting. We use L & Z to get performance measures of 

interests and then take partial derivative of them as shown in the following 

derivative-based method: 
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Continue this way, we can find general form for a J-stage system. 
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Therefore, we can write the optimization function as follows: 
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Take partial derivative of TC with respect to S and let it be 0, we get 
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Finally, we get the closed-form solution of the optimal buffer S* for this special case: 
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minimum. Also S* only relates to cost parameters hwip and cb, and ρ1, not to other stages. 

For non-integer solution we have to compare the TC of its nearest integer to get S*. We 

show this by an example as follows. 

If the parameter is cb = 10, hwip = 1, and ρ1 = 0.5. Plugging in (5.2) we immediately get 

,9.2* =S  Since the optimal solution is not integer, from (5.1) we compare TC(2) = 4.75 + 

a and TC(3) = 4.375 + a, where a is a constant. Since TC(3) < TC(2). .3* =S  

Case 5.2 . ,11 ,0 SSJjS Jj =−≤≤=  

For this case, only end stage has buffer and we may also want to handle SL. 

Closed-form solution seems not so easy to derive by using derivative-based method. Here 
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we proposed an easier solution method instead. Since all the upstream stages use MTO, 

there is no expected inventory except for the end stage. Suppose SL is not greater than 

some pre-specified level. From the property of CPH we have 

,}Pr{ β≤=>= 1CtS
JJ eprtTSL  where C stands for lead-time distribution of CPH type. 

We get the constraint optimization problem as below.  
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In the above constraint we assume t = 0. Intuitively, E[B] decreases in S, and E[I] 

increases in S. We can show TC is convex-like, and we should always find S* theoretically. 

It’s also known SL decrease in S (the more stock, the more protection). Recognizing these 

we make the following rule based on convexity property of the studied problem. 

Let }, ,min{' β≤= 1S
JJ prSS   

If ,'* SS >  select *S , 

Else select 'S . 

Again, we illustrate how it works through an example. 

Suppose we have a four-stage tandem SC. Parameter settings are as follows. λ = 1, u1 = 

u2 = 1.25, u3 = u4 =2.5, hwip = [0.5, 0.5, 0.5, 0.5] (note both holding costs at input and 

output buffers of all intermediate stages are all the same), ch = 1, cb= 10. Starting from S = 

0, we calculate E[B], E[I], and incurred TC. The results are graphed in fig. 5.3. From fig. 

5.3, we see that S* = (0, 0, 0, 25), with TC = 23.628, SL = 0.1, Now, suppose β = 0.05, 

applying the decision rule, we can immediately find S’ = (0, 0, 0, 31), with TC = 25.192, 

SL = 0.049. Since S* < S’, we select S’ as the optimum. If β = 0.15, we can immediately 

find S’ = (0, 0, 0, 22), with TC = 24.361, SL = 0.142. Since S* > S’, we select S* as the 

optimum. 
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Fig. 5.3 Using convexity-based method to search a tandem SC. 

For a general case, the intermediate planned inventories do not have to be zeros. 

Traditional methods like derivative or convex-based simple rule will not work. However, 

enumerative method may still apply. To demonstrate how it works and what it cannot, we 

propose a model, which aims at a broader SC context. We explore the alternative measures 

when enumerative method also fails. Fig. 3.2 (without feedback) of chapter 3 acts as such 

test bed. We illustrate how to solve it as follows. 

Case 5.3 .1 ,0 JjS j ≤≤≥  

The scenario of our fabricated SC is similar to chapter 3 with the exception that all the 

processing will never fail and the quality is 100% perfect. The mathematical model of our 

optimization problem is listed below. 



 77 

 

. },0{
,

,
..

][][)(  
1

++

=

∈∪∈

≤

≥

+++= ∑

Realjj

jj

J

j
jjbh

uIntegerS
SL

uu
TS

ucBEcIEcTCMin

β

WIPhu S, wip

 

For BAP we fix u to be some constants, as a result the last term of the TC function is a 

constant. For CAP we fix S to be some constants. The main purpose of adding the capacity 

incurred cost is that by adding penalty to resource expansion we can restrict the search 

space of u in more reasonable range. Besides, not like the buffer incurred cost, which only 

occurs in the beginning of the evaluation horizon, capacity incurred cost is forever. The 

setting seems reasonable. For problems related to BAP, we fix uj = 1.25 for each stage. We 

set up cost structure as follows. This cost structure will be used throughout the remaining 

of this chapter. We let hwip = (0.5, 0.5 + x, 0.5 + 2x, ⋅⋅⋅) and ch = (0.5, 0.5y, 0.5y2, ⋅⋅⋅) where 

x= 0.1 and y = 1.1. The arrangement makes the cost of WIP to be linearly increasing while 

that of inventory to be geometrically increasing. We set cj =1, λ = 1, β = 0.1. For BAP, we 

solve with enumerative method and compare the results with meta-heuristic methods. 

Below are our proposed algorithms for enumerative-based and meta-heuristic based 

methods. 

The enumerative optimization procedure (we call it ENU hereinafter) in Algorithm 5.1 

is borrowed from Boyaci & Gullego (2001). Tough their procedure assumes constant 

supply lead-times we find it should works for our problem as well. Starting from (sT, s, 1), 

Procedure (sT, s, k) recursively calls itself and enumerating all feasible solutions. Note C(sT) 

represents the best cost therein. 

As introduced earlier, meta-heuristic approach such as GA and SA are the modern 

global optimization techniques, which are suitable for highly nonlinear, derivative-free 

problem. If capacity is the decision variable, the enumerative search fails. Here we try to 
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solve the same BAP by pre-testing the power of meta-heuristic methods. Later we show 

how to extend its capability of handling more complex problem like CAP. As Michalewicz 

(1999) reveals, data structure plus genetic algorithm constitute evolution programs. For the 

problem under study, two approaches may be used to represent data structure: float and 

binary coding. Using binary coding is natural for this integer-programming problem. 

Alternatively we use float representation due to the dimension of the decoded hypercube, 

which will be used as constraint handling routine. For GA operator of crossover, we used 

both simple and arithmetic crossover. Simple crossover is well known. The latter 

guarantees any crossover happens within convex limits of decision variables. After the 

crossover, we let the whole population undergo non-uniform mutation. As mutation is 

known as background operator, the purpose for non-uniform mutation is to provide higher 

diversification in the earlier stage of the mutation operation while speed up convergence in 

later generations. We used simple ranking as our selection scheme to decide which 

offspring to put into the mating pool. Elitism is also implemented to keep better 

chromosome to propagate to the next generation. As mentioned earlier, there are some 

constraint-handling routines. Some penalty methods try to find the most suitable penalty 

ratio to hasten their convergence speeds. Usually many runs with many penalty ratios have 

to be tested. Though the penalty method is well known for solving constraint problem, it’s 

problem dependent and the performance is not superior to decoder method (Michalewicz, 

1999). Herein we use decoder technique as our main searching scheme after we try several 

unsuccessful runs on penalty method. After the decoded value is mapped to the real 

problem domain, we round the mapped variables for later function evaluations. Numerical 

study shows the applicability of this approach. Below we briefly organize the decoder 

method first introduced in Koziel and Michalewicz (1998) as shown in procedure 5.1. 
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Algorithm 5.1 

Step 1: Set sk = 0 

Step 2: Do while Sk is feasible 

If k < J – 1 

Call Procedure (sT, s, k+1). 

Else 

Set sJ = sT – sJ-1 - ⋅⋅⋅ - s1, 

Cost = C(s1,…,sJ), 

If Cost < C(sT), Then 

C(sT) = Cost, 

S* = (s1,…,sJ). 

Endif 

Endif 

Set sk = sk + 1 

Enddo 

Procedure 5.1 

Step 1: Find an initial feasible reference point Fr ∈0 , where F stands for feasible set. 

Step 2: Define a one-to-one mapping f between the hypercube n1] ,1[−  and the search  

space ω. Then the mapping ω→− nf 1] ,1[:  can be defined as the following: 
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upper and lower bounds for original design variables. We can see this is a linear 

transformation approach, which starts at (i)) ,1() ,( lixiy −=  and ends at 

(i)) ,1() ,( uixiy = . 
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Step 3: A line segment between r0 and any point s at the boundary of ω is defined as 

.10for    ),() ,( 000 ≤≤−+= trstrsrL  

Step 4: Clearly if F is convex, then L intersects F in exactly one point. If F is concave, then 

L may intersect F more than one point. Generally, we may find feasible segments 

along L by defining a reverse mapping ]1 ,0() ,(: 2121 →−= ii
k
i tt∪δ  as follows: 
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Though Procedure 5.1 is designed for continuous variable, we use it to solve our BAP 

problem. We use it through simple rounding procedure. Algorithm 5.2 below lists our 

procedures for implementing constrained GA (we call it CGA hereinafter). 

Algorithm 5.2 

Step 1: Find initial feasible reference point 

Step 2: Random generation of initial population within bounds of the hypercube 

Do Decoder mapping 

Calculate fitness value by the returned mapped variables 

Step 3: Sort fitness value of initial population 

Step 4: Do while not termination condition 

Call Genetic algorithm {Selection, Crossover, Mutation, Elitism} 

Do Decoder mapping. 

Calculate fitness value by the returned mapped variables 
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Enddo 

Note, the decoder method always return the feasible solution. Alternatively, simulated 

annealing only searches the feasible region. We use SA to solve both BAP and CAP. The 

algorithm for our constrained simulated annealing procedures (we call it CSA hereinafter) 

is shown in Algorithm 5.3. 

Algorithm 5.3 

Step 1: Set n = 0, Initialize Tn, xn, α, VM etc. 

Stet 2 : Do while Tn >= Tmin 

Do while m <= Maxiter of Current temperaturet 

Do while n <= Maxiter of VM adjustment 

Do while each variable is searched 

[xnew, Cnew] = Simulated annealing (xn, sl). 

If (SL <= β and Cnew < Ccurbest) 

Ccurbest = Cnew, 

xn+1 = xnew. 

If Cnew < Cbest 

Cbest = Cnew 

EndIf 

ElseIf (SL <= β and Cnew >= Ccur(x) and p <= exp-(∆f/T)) 

xn+1 = xnew. 

Else 

xn+1 = xn. 

EndIf 

Set n = n + 1. 

Enddo 



 82 

 

Enddo 

Calculate acceptance ratio 

Apply VM adjustment 

Convergence test. 

Enddo 

Tn+1 = αTn. 

Enddo 

Tables 5.1 to 5.7 show the results of applying the above methods. Since we can achieve 

the maximal service quality with minimum total buffers. ST can be found by putting all the 

buffers at the last stage and increase the ST level until SL is satisfied. Table 5.1 to 5.3 relate 

to BAP. Table 5.1 seeks the optima by fixing ST = ST. Note the mapping nature of Decoder 

hinders itself from applying CGA directly for this buffer restriction case. It shows CSA 

performs well except for when J = 7. However, the deviation from the optimal solution is 

very tight. In table 5.2, we release the minimum buffer restriction and compare the results 

by using CSA and CGA. It shows the performance of CSA with no ST restriction is 

superior to that with restriction. Table 5.3 is the comparison of efficiency test for different 

meta-heuristic methods. It shows ENU is suitable for small-scaled problem. The 

computation time increase exponentially and therefore intractable for large-scaled problem 

even though it can find the optimal solution. It seems CSA outperforms CGA both in 

accuracy and efficiency for our BAP. Therefore we focus on the CSA method throughout 

the remaining of this chapter. Table 5.4 reports applying CSA on CAP. We fix S to be the 

S* of table 5.2. It seems the performance is even better when ρ is also optimized. Also note 

the difference between table 5.2 and 5.4. The SL* of CAP is superior to that of BAP. Table 

5.5 reports applying CSA on BAP and CAP simultaneously. The output of BAP is served 

as input to CAP and vice versa iteratively until the solution converges. Table 5.6 reports 
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that we apply CSA directly on the same problem. Notice the performances are the same 

between these two approaches. Theoretically they should be near. However, the direct 

method saves much time than iterative method. Direct method clearly outperforms the 

iterative. In conclusion, it reveals that when we optimize S and ρ simultaneously, the 

performance of TC* is the best though SL* is the worst in most of the cases. Note, Table 

5.7 demonstrates the applicability of CSA on larger SC. Except for tables 5.1, 5.2 and 5.3, 

All the test results of CSA are obtained by choosing the best from 5 random runs with 500 

000 iteration per run. 

The following is our observation for the above tests. Comparing tables 5.4 and 5.6, it 

seems that ST decreases when capacity increases (which is the same as work load decreases) 

to achieve the best performance. We will investigate this issue further in later experiments. 

Liu and Yao (2004) observed that higher workload should sequence first in tandem supply 

system. Spinellis et al. (2000) also noticed the same pattern in finite-buffered supply 

system. Their SA optimization results suggested buffer should be positioned in increasing 

order while workload should be arranged in decreasing order. Basically from tables 5.1 to 

5.4 we get the same results with the previous studies. Notice we add backorder cost and 

use different evaluation model, which are different from Liu and Yao (2004). Ours is of 

dual-buffer design with the first buffer to be infinite, which is different from Spinellis et al. 

(2000). In table 5.6, workload sequence is consistent with table 5.4, however the “pattern” 

for buffer is not so obvious. Table 5.7 shows the optimization results for larger SC using 

SA for J = 10, 20, and 30. Similar “pattern” seems to maintain in load-sequence allocation. 

However, the same inconsistency occurs in buffer allocation. To obtain more “reasonable” 

results, we may have to add more evaluation iterations. In conclusion, for extreme cases 

that only either end of an SC has buffers, classical methods are adequate to find the global 

optimum. For general case, meta-heuristics find the near optimal solutions very well. All 
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the tests are implemented on a Pentium IV 2.0 GHz PC. 

Table 5.1 Optimal buffer allocation using CSA, and ENU (with minimum ST) 

S* TC* SL* 
J ST ENU CSA ENU CSA ENU CSA 
4 29 (0, 0, 6, 23) (0, 0, 6, 23) 26.924 26.924 0.093 0.093 
5 34 (0, 0, 5, 6, 23) (0, 0, 5, 6, 23) 33.896 33.896 0.099 0.099 
6 40 (0, 0, 5, 6, 7, 22) (0, 0, 5, 6, 7, 22) 41.099 41.099 0.093 0.093 
7 45 (0, 0, 4, 6, 6, 8, 21) (0, 0, 5, 6, 6, 6, 22) 49.019 49.022 0.098 0.098 
Note: The results of CSA are obtained by choosing the best from 5 random runs with 10 000 iteration per run. 
The major parameter settings are 85 for initial temperature and 0.8 for cooling rate and remain the same 
herein. 

 

Table 5.2 Optimal buffer allocation using CGA, CSA (no ST restriction) 

CSA CGA TC* SL* 
J 

S* ST S* ST CSA CGA CSA CGA 

4 (0, 1, 7, 23) 31 (0, 3, 5, 23) 31 26.630 
26.634 

(27.824, 1.129) 
0.071 

0.071 

(0.068, 0.008)

5 (0, 1, 6, 8, 22) 37 (2, 1, 8, 6, 20) 37 33.567 
33.72 

(35.548, 2.843) 
0.069 

0.077 

(0.080, 0.008)

6 (0, 1, 6, 6, 7, 22) 42 (3, 1, 8, 2, 9, 21) 44 40.998 
41.390 

(43.250, 1.960) 
0.075 

0.068 

(0.065, 1.013)

7 (0, 0, 5, 6, 6, 8, 21) 46 (3, 4, 6, 3, 6, 10, 17) 49 48.945 
49.665 

(52.540, 4.652) 
0.089 

0.089 

(0.072, 0.017)
Note: The results are obtained by choosing the best from 10 random runs with 500 000 iterations and 100 
generations per run for CSA and CGA respectively. The major parameter setting is 0.8 for the probability of 
crossover and 0.01 for the probability of mutation. For CSA, since the convergence of applying VM works 
well, almost all the outputs are the same except for when J = 7, where the outputs are very close. Therefore 
we only report the statistics for CGA. The first parameter in the parentheses is the mean while the second 
parameter is the standard deviation for respective performance measures for 10 runs. 

 

Table 5.3 Time performance of CSA, CGA and ENU 

Time (CPU sec) 
J 

ENUa CSAb CGAc 

4 0.251 < 30 > 60 

5 0.471 < 30 > 60 

6 120.77 < 60 > 60 

7 2057.18 < 60 > 60 
Note: Number of iterations for CSA: 10 000. Number of generations for CGA: 100. a: (ST = ST), b: (ST = ST) 
and (no ST restriction) c: (no ST restriction) 
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Table 5.4 Optimal workload allocation using CSA 

J S* ρ∗ TC* SL* 

4 (0, 1, 7, 23) (0.82, 0.70, 0.67, 0.64) 23.322 0.015 

5 (0, 1, 6, 8, 22) (0.81, 0.75, 0.71, 0.68, 0.65) 30.009 0.011 

6 (0, 1, 6, 6, 7, 22) (0.86, 0.74, 0.70, 0.67, 0.64, 0.62) 36.312 0.017 

7 (0, 0, 5, 6, 6, 8, 21) (0.87, 0.76, 0.72, 0.68, 0.65, 0.63, 0.61) 42.854 0.019 
Note: Most runs obtain the same results except for N=7, where the results are very close and the best is 
reported. Note the minimum capacity required for all the stages to satisfy SL is 1.23 for N = 4, 5, and 1.24 
for N = 6, and 1.25 for N = 7. However, we release this restriction by letting all the lower bounds to be 1.01, 
such that stability of the queueing system is maintained. 

 
 

Table 5.5 Optimal buffer and workload allocations using iterative method (J=4) 

Iteration S* TC SL ρ∗ TC SL 

0 (0, 1, 7, 23) 26.630 0.071 (0.82, 0.70, 0.67, 0.64) 23.345 0.012 

1 (3, 4, 5, 11) 20.176 0.066 (0.77, 0.65, 0.62, 0.59) 18.994 0.021 

2 (1, 4, 4, 9) 17.623 0.067 (0.71, 0.61, 0.59, 0.55) 16.923 0.027 

3 (0, 3, 3, 8) 16.070 0.079 (0.65, 0.57, 0.55, 0.52) 15.478 0.037 

4 (0, 2, 3, 7) 15.103 0.074 (0.60, 0.54, 0.52, 0.49) 14.883 0.042 

5 (0, 2, 2, 7) 14.662 0.061 (0.58, 0.52, 0.50, 0.49) 14.634 0.048 

6 (0, 1, 2, 7) 14.477 0.070 (0.55, 0.50, 0.49, 0.48) 14.443 0.053 

7 (0, 0, 2, 7) 14.350 0.081 (0.53, 0.48, 0.47, 0.46) 14.314 0.062 

8 (0, 1, 2, 6) 14.303 0.065 (0.53, 0.48, 0.47, 0.45) 14.308 0.068 

9 (0, 0, 2, 6) 14.299 0.096 (0.50, 0.47, 0.46, 0.45) 14.252 0.081 

10 (0, 0, 2, 6) 14.252 0.081 Stop 
 

Table 5.6 Optimal buffer and workload allocations using CSA 

J S* ρ∗ TC* SL* 

4 (0, 0, 2, 6) (0.50, 0.47, 0.46, 0.45) 14.252 0.081 

5 (0, 0, 2, 2, 5) (0.51, 0.47, 0.46, 0.45, 0.43) 17.795 0.093 

6 (0, 0, 1, 2, 1, 6) (0.51, 0.47, 0.46, 0.45, 0.44, 0.43) 21.439 0.096 

7 (0, 1, 1, 0, 1, 3, 5) (0.51, 0.47, 0.46, 0.44, 0.44, 0.43, 0.41) 25.212 0.094 
Note: Smaller cases (N=4, 5) converge very fast, though most runs obtain different results (but close), and 
the best is reported. For N=6, 7, maximum iteration (500 000) are achieved and the best results are reported. 
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Table 5.7 Optimal buffer and workload allocations using CSA for larger SC. 

J S* ρ∗ TC* SL* 

10 (0, 0, 0, 4, 0, 3, 0, 1, 2, 5) (0.54, 0.49, 0.48, 0.48, 0.45, 0.44, 0.42, 0.41, 0.41, 0.39) 37.277 0.100

20 (0, 1, 1, 2, 1, 1, 1, 3, 0, 1, 

0, 3, 0, 1, 2, 0, 1, 0, 2, 4) 

(0.57, 0.43, 0.53, 0.50, 0.44, 0.58, 0.51, 0.38, 0.31, 0.41, 

0.40, 0.37, 0.34, 0.35, 0.40, 0.25, 0.38, 0.28, 0.30, 0.29) 

89.669 0.096

30 (9, 2, 1, 1, 4, 2, 5, 6, 1, 1, 

0, 10, 0, 1, 1, 0, 3, 0, 3, 1, 

1, 0, 1, 2, 0, 1, 0, 1, 1, 2) 

(0.87, 0.57, 0.53, 0.33, 0.36, 0.37, 0.24, 0.26, 0.76, 0.24, 

0.66, 0.33, 0.36, 0.33, 0.48, 0.40, 0.46, 0.22, 0.14, 0.35, 

0.52, 0.47, 0.29, 0.04, 0.04, 0.34, 0.02, 0.04, 0.12, 0.06) 

324.018 0.069

Note: CPU Time statistics: J = 10: < 300, J = 20: < 600, J = 30: < 1500 

 
5.3.2 A more general topology 

For more general SC such as fig. 5.4, several supply topologies are incorporated in a 

single SC. For the ease of exposition, here we model an abstract version of fig. 1.1 in 

chapter 1. However, the same solution method applies to fig. 1.1 as well. We use several 

M/M/1 to represent each inbound logistics (Sj) of the supplier and we assume there is only 

one M/M/1 outbound logistics (T1). The single distribution process (T2) is 

Hyper-exponential distributed. Notice, if we use a dedicated transportation route for each 

retailer, the analysis will be a slightly different. Under such configuration, we can use 

sequential refinement method of Lee and Zipkin (1995) for the analysis for distribution 

system. However, sequential refinement method is similar to L & Z. It differs by treating 

each dedicated transportation route as a M/M/1 queue and calculates it respectively. In the 

past, simulation seems to be the only choice for analyzing such complex structure. 

However, with the assistance of other stochastic modeling procedure, we can still 

transform the original complex structure into a tractable tandem-form as explained in 

subsection 3.2.2 of chapter 3 and subsection 5.2.1 of chapter 5. Now the supplier may be 

from multiple sources. Suppose we have 5 functional stages: supply (S), assembly (A), 

manufacture (M), outbound logistics (T1) and distribution (T2). Note here T2 may include 

the processing needed for product differentiation and transporting tailored for non-identical 

customers’ needs as illustrated in inbound logistics of fig. 1.1 in chapter 1. 
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Fig. 5.4 A more general SC model. 
 

Suppose we want to solve BAP and CAP simultaneously with the restriction that the 

service level for each retailer is not larger than some threshold levels and the arithmetically 

averaged service level is not larger than some pre-specified level. We formulate the 

optimization process as follows. 
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All the parts from different supply sources will be collected whenever one from each 

supplier is available and immediately sent to the inbound warehouse, I1 of the producer. 

We neglect the transferring process of inbound logistics and transit inside producer. 

Suppose we have 2 suppliers and 4 retailers. The supply distributions are all exponential 

with identical rates. Thus the results of subsection 5.2.1 can be applied here. Under this 

setting, the mean response time of the FES is 3/2 times larger than that of the original 

M/M/1 queue (Bolch, 1998). Assume the parameters for retailer demand rates are 

(λ, λ2, λ3, λ4) = (0.1, 0.2, 0.3, 0.4), distribution rates for T2 are u5=(1, 2, 3, 4). Notice here 

we assume non-identical retailers with different serving (distribution) rates. The u is set 

1.01 to preserve the stability in a ququeing system. Remember the original formula of the 
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number of order in the system of a M/PH/1 is 12
* R)R(Iα −−−= )1( ρL  (see (3.9) of 

chapter 3 for details), however we have to modify this performance measure to account for 

different distribution rate uj. Applying Little’s formula, we get the actual queue length for 

each retailer  ,ρ−= LLq  and so the actual sojourn time for each distribution process is 

iuLqWs /1/ += λ . The accuracy of the modified approximation model is verified through 

simulation study. We setup the experimental design in table 5.8 for this verification 

process. For the sake of simplicity, we neglect the cost incurred in capacity when making 

the comparison. Table 5.9 (related to TC and other measures) and 5.10 (related to SL) 

show the results. The deviations of the approximated model (App) and the simulation 

model (Sim) of all performance measures are very tight for most of the test cases. High 

deviations occur at some expected backorder levels and service level where both app and 

sim are extremely low. From the high accuracy of the tables, we are confident that the 

approximation model is also sufficient to act as the evaluation function for the optimization 

process of such more general SC topology. 

From section 5.1, the roles played by buffer and capacity seem to be the same. The 

increase in one variable may decrease the other to maintain low cost while striving to 

preserve SL requirement. Observations derived from tables 5.9 and 5.10 justify our 

conjecture. The following lists the simple rules-of-thumb after observing the results of the 

tables. Note rules 5.1 and 5.2 relate to TC while rules 5.3 and 5.4 relate to SL. 

Rule 5.1 If all resources are low, increase capacity only, not else to decrease cost. This 

measure decreases TC from 31.552 to 7.29 as seen from table 5.9. Any other measure 

results in more TC. This is because no matter what resource(s) is/are increased, E[B5] 

decreases. However, the “side effect” of increasing capacity is the mildest. It decreases 

WIP and increase a little E[I5] while all other measures increase either WIP and/or E[I5] 

significantly. 
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Rule 5.2 If there is/are any resource(s), which is/are already high, it may be not necessary 

to increase any other resource(s) to prevent from increasing cost. When resource(s) is/are 

already high, it may be enough to fight against demand uncertainty and therefore adding 

extra resource(s) result(s) in marginal decrease in E[B5] but increase either WIP and/or E[I5] 

significantly. The overall result is not beneficial. 

Rule 5.3 If all resources are low, increase any resource(s) as much as possible to increase 

service quality. Basically, SL is closely related to E[B5]. When E[B5] decreases service 

quality increases (i. e. SL decreases). Since any resource expansion plan lowers the risk of 

demand uncertainties, more resources increase service quality more. 

Rule 5.4 If there is/are any resource(s), which is/are already high, the benefit of increasing 

any other resource(s) may be marginal. As can be seen from table 5.10, when resource(s) 

are high enough, adding more resource(s) is/are useless to decrease SL (adding 

intermediate buffer causes SL to remain 0.01). 

To conclude, adding more capacity seems to be the most beneficial measure to reduce 

TC if buffer is low and the capacity incurred cost is neglected. However, when SL is also 

concerned, the decision may be different. Decision maker has to make adequate measure to 

trade-off between cost reduction and service requirement. In this example our 

rules-of-thumb cope up with the reasoning of system dynamics. However, it may not be 

true under different assumptions. For example, if different cost structures and other factors 

not concerned herein are adopted it may result in different conclusions. For the ease of 

decision, adequate optimizer such as introduced in this chapter seems to fit in. Suppose the 

required service level for retailers is β = (0.1, 0.2, 0.3, 0.4) and β = 0.15. Note β is the 

averaged service requirements. Table 5.11 is such exercise. Interestingly, the positioning of 

the workload sequence in distribution stage and the positioning of the buffer in other stages 

are consistent with the previous results. 
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Table 5.8 DOE setting for approximation validation of more general topology 

Decision Factors Levels 
Low: (2.25, 1.5, 1.5, 1.5) Capacity (u1, u2, u3, u4) High: (6, 4, 4, 4) 
Low: ((1, 1, 1, 1) Intermediate buffer (S1, S2, S3, S4) High: (4, 4, 4, 4) 
Low: ((1, 1, 1, 1) 

Ending buffer (S5) High: (4, 4, 4, 4) 
Note: (u1, u2, u3, u4) are service rates for supply, assembly, manufacture, and outbound logistics respectively; 
(S1, S2, S3, S4) are base stock levels for I1, I2, I3, and DC respectively. S5 is a vector, representing base stock 
levels for different retailers. 
 

 

Table 5.9 Approximation validation (1). 

TC WIP E[I5] E[B5] Capacity 
Intermediate 

buffer 

Ending 

buffer Sim App %Err Sim App %Err Sim App %Err Sim App %Err 

Low Low Low 31.552  31.602 0.16 7.471 7.679 2.79 1.822 1.725 -5.35  2.443  2.604 6.58  

Low Low High 19.369  19.053 -1.63 7.471 7.679 2.79 11.729 11.493 -2.01  0.350  0.372 6.31  

Low High Low 15.792  15.882 0.57 16.233 16.236 0.02 3.080 3.036 -1.42  0.471  0.473 0.36  

Low High High 23.054  23.056 0.01 16.233 16.236 0.02 14.645 14.598 -0.32  0.035  0.034 -2.86 

High Low Low 7.290  7.165  -1.72 4.552 4.594 0.93 3.318 3.266 -1.57  0.164  0.160 -2.32 

High Low High 17.450  17.413 -0.21 4.552 4.594 0.93 15.156 15.107 -0.32  0.003  0.001 -70.00 

High High Low 13.028  12.813 -1.65 16.448 16.449 0.00 3.392 3.373 -0.56  0.136  0.122 -10.66 

High High High 23.487  23.482 -0.02 16.448 16.449 0.00 15.257 15.252 -0.03  0.002  0.001 -70.00 

Note: %Err = (App – Sim) / Sim ×·100 % 

 
 

Table 5.10 Approximation validation (2). 

(SL1, SL2, SL3, SL4, SL) Capacity 
Intermediate 
buffer 

Ending 
buffer Sim App %Err

Low Low Low (0.384, 0.544, 0.642, 0.706, 0.569) (0.360, 0.524, 0.619, 0.672, 0.543) -4.57 

Low Low High (0.008, 0.047, 0.109, 0.18, 0.086) (0.007, 0.043, 0.100 , 0.169, 0.080) -6.98 

Low High Low (0.167, 0.224, 0.268, 0.304, 0.241) (0.167, 0.212, 0.259, 0.280, 0.230) -4.77 

Low High High (0.001, 0.005, 0.013, 0.023, 0.011) (0.001, 0.005, 0.014, 0.024, 0.011) 0.00  

High Low Low (0.131, 0.168, 0.202, 0.233, 0.184) (0.133, 0.157, 0.183, 0.208, 0.170) -7.61 

High Low High (0, 0.001, 0.001, 0.002, 0.001) (0.000, 0.001, 0.002, 0.004, 0.002) 100.00 

High High Low (0.119, 0.145, 0.17, 0.193, 0.157) (0.120, 0.145, 0.164, 0.177, 0.152) -3.18 

High High High (0, 0, 0.001, 0.001, 0.001) (0.000, 0.000, 0.001, 0.003, 0.001) 0.00  
Note: SL = (SL1 + SL2 + SL3 + SL4) / 4. 
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Table 5.11 Optimal buffer and workload allocations for more general SC. 

J (S1, S2, S3, S4, S5)* (ρ1, ρ 2, ρ 3, ρ 4, ρ5)* TC* SL* 

5 (0, 0, 2, 3, 2, 2, 2, 2) (0.46, 0.48, 0.47, 0.46, 0.84, 0.63, 0.52, 0.45) 26.946 (0.03, 0.08, 0.14, 0.18, 0.11) 

6 (0, 0, 1, 2, 3, 2, 2, 2, 2) (0.46, 0.48, 0.47, 0.46, 0.45, 0.84, 0.63, 0.52, 0.45) 30.875 (0.03, 0.09, 0.14, 0.19, 0.11) 

7 (0, 0, 1, 1, 2, 3, 2, 2, 2, 2) (0.47, 0.48, 0.47, 0.47, 0.46, 0.44, 0.83, 0.62, 0.52, 0.45) 34.946 (0.04, 0.09, 0.14, 0.19, 0.12) 
Note: CSA achieved convergence after 71 200 iterations for J = 5, 81 000 iterations for J = 6 and 90 000 
iterations for J = 7. 

 

5.4 Discussion 

We have discussed the suitable optimization solutions for all the proposed problems of 

tandem and more general SC forms and related topics of resource expansion planning. It’s 

well known that the parameter settings of meta-heuristic methods such as the “cooling 

rate” in SA, probabilities of crossover and mutation etc. may play important role in 

performance enhancement. For the sake of brevity, we neglect this investigation in this 

chapter. Now we turn to the sensitive part of the optimization process as well as other 

issues related to reliability of an SC. To see all the impacts on TC and service quality, we 

set different values of β starting from 0.01 to 0.3, incrementing at 0.01. 

5.4.1 Penalty of BC model 

Assume 5.2=µ , all the other operation parameters, including cost structure are the 

same as in case 5.3 of subsection 5.3.1. If the cost structure is that cb plays dominant factor 

then we conjecture that our method will find the optimal buffer configuration such that the 

backorder level is low enough while satisfying the service constraint. This effect is the 

so-called “penalty of the BC model” (Boyaci and Gallego, 2001). Here BC stands for 

backorder cost. We illustrate this effect by the following tests. Let cb have different levels: 

0.5, 1, 5, and 10. We run the optimization model. The final results of TC* and SL* against 

different β levels are shown in fig. 5.5 and 5.6. Fig. 5.5 shows TC* decreases when β 

increases. In all β settings, TC* becomes high when cb is set large. Because the ST of high 
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cb will be higher than that of low cb to prevent the backorder cost from getting too high. 

That explains why the E[B] of high cb converges earlier than low cb as in fig. 5.6. Since 

high cb incurs high backorder costs, it explains why TC of high cb is higher than that of low 

cb at the same β (fig. 5.5). To conclude, the higher of cb, the less change in S*, and 

therefore the less change in TC and E[B] no matter how β degenerates. On the contrary, 

when cb is low and β increases, E[B] increases. However, this increase is compensated by 

the decrease in E[I], and ultimately results in the decreases of TC. This finding seems to 

cope up with our original conjecture and validate the so-called “penalty of the BC model”. 

 Fig. 5.5 TC as a function of β under different cost structure 
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Fig. 5.6 Backorder level as a function of β under different cost structure 

 

5.4.2 Impact of unavailability 

Random upstream unavailability may affect the performance of an SC. In this analysis 

we try to find under what circumstance the impact will be the most disastrous. The 

decision factors include arrival and service rates of regular jobs as well as irregular jobs 

such as maintenance or breakdown. Here we analyze breakdown case only. The DOE 

setting for unavailability test is in table 5.12. Under regular mode, each stage behaves like 

an isolated M/M/1 queueing system. With breakdown incorporated, Ws is lengthened. 

However, we don’t know exactly what factor(s) contribute(s) to the impact of performance. 

Table 5.13 lists all the possible factors that may be the candidates. Except for the factors in 

table 5.12, the derivations of the other three factors, i. e., ρ,  2
ac , 2

sc  are more involved 

(Wang, 1993). Here we use a different approach as compared with chapter 3. Specifically, 

we treat the stochastic process as a superposition of regular and breakdown jobs. The 
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purpose is to acquire the variation in both arrival and service processes. ρ is derived in 

(3.10) of chapter 3. Below we derive 2
ac  and 2

sc . 

Since breakdown and repair processes are independent random variables, we get 

squared coefficient of variation of breakdown cycle as 
2
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Notice regular service can be treated as M/M/1 queueing system and random 

unavailability can be treated as GI/G/1 queueing system. Table 5.13 lists the comparison of 

the Ws under these two service modes. It reveals the following interesting fact: Ws in 

GI/G/1 is not infected by ρ, 2
ac , or 2

sc  individually. It is influenced by the synthetic effects 

of λ, u, ξ, and γ. For example, when arrival rate is high, service rate is low, breakdown rate 

is high, and repair rate is low (No. 6), the impact is the highest. The performance 

degradation, %dev rise as high as near 6 times of the original performance. On the contrary, 

when arrival rate is low, service rate is high, breakdown rate is low, and repair rate is high 

(No. 11), the impact is the lowest. These effects cope up with our intuitions. Since Ws is 

impacted by λ, u, ξ, and γ, we may want to investigate its influence on system performance. 

Table 5.14 lists the impacts on TC and SL of unavailability by different stages under the 

worst case (No. 6) and S = (16, 16, 16, 4), where 4 is the base stock for each retailer. 

Apparently, the impact increases in stage. Table 5.15 lists the impacts under the best case 
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(No. 11) and S = (4, 4, 4, 1). Interestingly, we find that upstream unavailability may not 

always cause adverse results. In table 5.15, TC of upstream unavailability occurred before 

the second stage is no worse than the original M/M/1 QN. Generally, the breakdown 

increases WIP, decrease E[I] and increase E[B]. The service level gets worse because of 

large E[B]. Looking closely at the components of WIP (WIP, not shown here), we find at 

the broken stage the L increases (except for the first stage, which we don’t count) but its 

E[Ij] decreases and so is/are its downstream stage(s). E[B] may increase if the impact of 

breakdown upstream last to the end stage or remain the same if the impact is neglected. 

 

Table 5.12 DOE setting for unavailability test. 

Decision Factors Levels 
λ Low: 0.05 High: 0.1 
u Low:0.125 High: 0.25 
ξ Low: 0.0125 High: 0.025 
γ Low: 0.125 High: 0.25 
 

 

Table 5.13 Comparison of regular and random unavailability mode. 

Νο. λ u ξ γ ρ 2
ac  2

sc  M/M/1 GI/G/1 %dev 
1 0.1 0.25 0.025 0.25 0.44 0.9742 1 6.667  8.143  22.14  

2 0.1 0.25 0.025 0.125 0.48 0.976 1.2076 6.667  10.462  56.92  

3 0.1 0.25 0.0125 0.25 0.42 0.9852 1 6.667  7.379  10.69  

4 0.1 0.25 0.0125 0.125 0.44 0.9858 1.1509 6.667  8.429  26.43  

5 0.1 0.125 0.025 0.25 0.88 0.9742 1.0916 40.000  76.000  90.00  

6 0.1 0.125 0.025 0.125 0.96 0.976 1 40.000  272.000  580.00 
7 0.1 0.125 0.0125 0.25 0.84 0.9852 1.053 40.000  53.500  33.75  

8 0.1 0.125 0.0125 0.125 0.88 0.9858 1 40.000  78.667  96.67  

9 0.05 0.25 0.025 0.25 0.22 0.9565 1 5.000  5.744  14.87  

10 0.05 0.25 0.025 0.125 0.24 0.9591 1.2479 5.000  6.737  34.74  

11 0.05 0.25 0.0125 0.25 0.21 0.9733 1 5.000  5.367  7.34  

12 0.05 0.25 0.0125 0.125 0.22 0.9742 1.2148 5.000  5.846  16.92  

13 0.05 0.125 0.025 0.25 0.44 0.9565 1.1509 13.333  16.000  20.00  

14 0.05 0.125 0.025 0.125 0.48 0.9591 1 13.333  19.692  47.69  

15 0.05 0.125 0.0125 0.25 0.42 0.9733 1.0951 13.333  14.621  9.66  

16 0.05 0.125 0.0125 0.125 0.44 0.9742 1 13.333  16.286  22.14  

Note: M/M/1: Ws of normal service mode; GI/G/1: Ws of random unavailability mode. % dev = (GI/G/1 – 
M/M/1) / (M/M/1) × 100% 
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Table 5.14 Impact of unavailability by different stages (worst case). 

Stage TC % dev SL WIP E[I] E[B] 

M/M/1 QN 38.957   0.067  48.128  12.147  0.275  

S1 72.399  85.85  0.211  31.477  9.991  4.667  

S2 107.750  176.59  0.288  58.130  8.853  6.983  

T1 143.590  268.59  0.403  63.347  7.131  10.479  

T2 198.108  408.53  0.581  71.328  4.469  15.797  

Note: S = (16, 16, 16, 4). % dev = [(TC of unavailability impact) - 38.957] / 38.957 × 100% 

 
Table 5.15 Impact of unavailability by different stages (best case). 

Stage TC % dev SL WIP E[I] E[B] 

M/M/1 QN 9.912   0.059  12.000  3.764  0.015  

S1 9.903  -0.09  0.059  11.982  3.764  0.015  

S2 9.912  0.00  0.059  12.000  3.764  0.015  

T1 9.912  0.00  0.059  12.001  3.764  0.015  

T2 9.927  0.15  0.063  12.019  3.748  0.017  

Note: S = (4, 4, 4, 1). % dev = [(TC of unavailability impact) - 9.912] / 9.912 × 100% 

 

5.4.3 Impact of poor quality 

Poor quality causes reworking and capacity loss (Chapter 3). Applying Jackson’s rule, 

the influenced servers include the point where poor quality is identified, all the way back to 

the first stage. Assume λ = 0.01, u all equal to 0.055, fig. 5.7 to 5.10 graph the impacts of δ 

on TC and SL by different feedback location for S = (4, 4, 4, 1) and S = (16, 16, 16, 4) 

respectively. δ ranges between 0.1 and 0.8, incrementing at 0.01. Basically we obtain 

similar results as in the analysis of server unavailability. The impact may not always be 

adverse when δ is not so high. This is because server(s) in the feedback range cause(s) 

capacity to loose and therefore L to increase in front of those servers. As in the server 

unavailability analysis, E[Ij]’s of those servers and their downstream stage(s) decrease. The 

synthetic effect is the trade-off of the above two impacts. It depends on the buffer size. 

When buffer is low and δ is very high, capacity may loose dramatically with not enough 

buffer to fight against demand uncertainty. It causes the E[B] to increase very high and so 
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is TC. Fig. 5.7 shows this effect. When buffer is high, TC may not rise so much even when 

δ is very high. The end result is like fig. 5.9. However, SL will be no better than when δ is 

0. Even when δ is small the feedback occurred in T2 may start to degrade significantly as 

shown in fig. 5.8. Also we notice the impact of TC and SL is large when the feedback 

occurs in downstream stages at high δ. 

 
Fig. 5.7 Impact of δ on TC by different feedback location S = (4, 4, 4, 1). 
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Fig. 5.8 Impact of δ on SL by different feedback location S = (4, 4, 4, 1). 

 

 
Fig. 5.9 Impact of δ on TC by different feedback location S = (16, 16, 16, 4). 
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Fig. 5.10 Impact of δ on SL by different feedback location S = (16, 16, 16, 4). 

 

5.5 Concluding remarks 

This chapter tries to solve the buffer and capacity allocation problems of an SC under 

random supply and demand environment. We showed that our analytic model combined 

with the meta-heuristic search, specifically Simulated Annealing is an efficient and 

effective approach for optimization of such supply chain problems. Herein we proposed 

adequate solution measures of classical or modern approach to solve supply chain 

problems with different topologies and problem formats. For more general SC topology, 

we developed a naïve and original method by simply transforming the original topology 

into tandem form through QBD process and another existing stochastic model in the 

literature. Numerical study shows accurate results when compared to simulation runs. The 

observations therein may provide simple rules-of-thumb for decision maker of an SC for 

resource expansion planning. By incorporating feedback and server breakdown factors into 

a supply chain study, the study provides more practical solutions as compared to other 
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related works. The discussion on the impacts of upstream unavailability and imperfect 

quality may provide valuable information for decision maker to get deeper insights into the 

system behavior of an SC under unreliable supply situations. The system designer can thus 

incorporate these uncertainty factors into the optimization process to get more robust 

results. To our knowledge, such investigation on unreliable supply chain is still not much. 

In the numerical study, we find that MTS (with intermediate inventories) is not inferior 

to MTO (with end-stage inventories only) under any service requirement. Special case 

occurs when all holding cost settings are the same, there is no need to move stocks 

upstream to lower the holding costs and therefore MTS is degenerated o MTO with the 

same performance. The test of penalty of backorder cost is consistent with another related 

work with similar problem but different processing settings. Also ”the pattern” of resource 

positioning seems to be consistent with other related works. 
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Chapter 6 Conclusions 

The most important contribution of this study is that we extends the original work of L 

& Z. We fit it into an SC domain by the adequate “transformation” of non-tandem systems. 

The sophisticated processing logic inside each echelon can also be handled by our 

proposed approach, for example server unavailability herein. Though not exhibited herein, 

we believe this approach can also handle any arbitrary service distribution since phase type 

can approximately represent any probability distribution (Svoronos and Zipkin, 1991) and 

⋅/PH/1, where the arrival process can be of Markovian or phase-type, is a well-developed 

domain of QBD process (Neuts, 1994). 

We also show the possibility of extending the original model to handle other 

order/replenish scheme. Specifically that of (r, q) type is successfully tested though the 

accuracy is satisfactory only under specific conditions. Integrating the results of QBD 

modeling for parallel processing with L & Z is also tested with limited success. To make L 

& Z more general, more efforts are needed in the future. 

In conclusion, we have demonstrated that by using the matrix analytic approach, the 

evaluation of a complex SC using base stock as control logic, performs as expected 

through simulation verification. The relative errors between Approximation and Simulation 

are all below 10% for retailers adopting MTO policies in our test problems. When all the 

retailers also adopt the MTS policy, numerical studies show that the approximation is 

accurate for medium traffic intensity and acceptable for high traffic intensity. This shows 

that the matrix analytic approach by combining L & Z and other decomposition technique 

such as QBD for supply chain analysis is feasible, therefore its application is not limited to 

tandem processing queue as reported by L & Z and Zipkin (1995) but also for broader 

context. Herein we show its application on a tandem SC where the end stage is a 

distribution system with identical or non-identical retailers. 
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The non-identical case refers to non-identical demand rates with non-identical 

distribution processing rates. Also we transformed and incorporate a fork-join type 

supplier’s process into our evaluation model to make it more general. In the literature of 

the stochastic production-distribution system, most models are developed and analyzed 

separately. Those models are usually difficult to integrate as one single model. 

Next, the MMPP models are developed for different scenarios related to uncertainty to 

investigate respective system behavior for each individual stage under uncertainty concern. 

After linking together all the stages the system behavior of the whole chain is analyzed by 

queueing network analysis (QNA) under MTO supply mode. However, the QBD 

decomposition for parallel processing under various uncertainties may not be suitable 

under MTS mode. From the study herein, the application only works under specific 

conditions. The application of the analytic approach on resource allocation, specifically 

server and repairman decision is demonstrated through an illustrative example. The results 

show the analysis provides valuable managerial insights. 

Finally, we demonstrated various optimization methods for the optimization of various 

SC topologies under service constraints. We showed the impact on system performance 

due to upstream unavailability or poor quality under different service levels. The 

unreliability concern in SCM is seldom explored in the literature, to our knowledge. 

Simchi-Levi et al. (2003) mentioned that the impact on the performance of an SC due to 

911-terror-attack in 2001 is influential, including delayed delivery, delayed customs, poor 

communications. On the other hand, the impact on an SC due to supply and demand 

uncertainty in the long run is obscure. Herein, we assessed the above argument through 

quantitative analysis. To sum up, we characterize the major contributions of this work: 

1. Extending L & Z to allow not just for tandem supply network but also for more general 

supply form. The impact of upstream unavailability on the performance of an SC in the 

long run is made clear through empirical study. 



 103 

 

2. Proposing feasible modeling approach to investigate the impact of non-stationary 

demand and unreliable service processes on the performance of an SC. 

3. Relaxing the single server assumption usually used in tandem queueing models for SC 

analyses. Though numeric study is satisfactory for low traffic intensity only. 

4. Exploring the possibility of extending the analytic model to allow for other inventory 

control policies. 

5. Investigating cases in applying classical or modern optimization methods for solving 

stochastic SC problems. The obtained results consolidate several previous researches 

with new insights. 

We also prove that the average number of operative machines is equal (proportional) to 

the average number of machines under repair when mean time to failure and mean time to 

repair are the same (proportional) by using a matrix algebraic approach. This property is 

not explicitly related to repairman. During the process of this study we encountered several 

problems, which raised opportunities for further study. Below we itemize these problems 

and propose some possible strategies for research. 

Evaluation model 

The QBD combined with L & Z forms the mainframe of our evaluation model. We 

tested the performance of the proposed evaluation model in a tandem setting. As can be 

seen herein, the approximation model has its limitation, to attain a more general setting, 

alternative evaluation model consisting of new decomposition method and new 

approximation method may be necessary for other topology and system dynamic of an SC 

not addressed herein. For example, problems dealing with generalized QN with arbitrary 

input and service rate and planned inventory setting are still open. 

System dynamic inside each echelon 

In this work we used abstract level of SC modeling. Though chapter 4 discussed 

several details in modeling the behavior of an SC, it’s not enough. To unveil the System 
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dynamic inside each echelon and relate it to system performance, more thorough studies 

should be done. For example, herein we assumed identical processing rates inside 

assembly logic, what if they are non-identical. Also we used simple model to represent 

transportation activity. However, practical logistics is usually more complicated than the 

model formed herein. Optimizing the SC model with more practical logistics concern is an 

interesting area. Also future study may investigate the impact of uncertainties on resource 

design decision as functions of correlated effect of MMPP input. 

Optima seeking 

Due to accuracy reason, we do not put all the parameters investigated herein into a 

nutshell and optimize it. However, such modeling approach may be necessary for practical 

use. Further, the evaluation function of the studied problem is more complicated then other 

engineering optimization problems using the same meta-heuristic search methods. When 

evaluation model is changed or becomes more intractable because of more complex SC 

structure and/or system dynamics, more efficient and effective search algorithm other than 

meta-heuristic as suggested herein may have to be developed. Heuristic approaches such as 

those in Boyaci and Gallego (2001) are examples. Alternatively, in addition to GA and SA, 

other state-of-the-art meta-heuristics techniques such as Ant colony algorithm, scatter 

search, Tabu search among others, may provide different solution flavors. 

Control policy 

As we reviewed in chapter 2, there are many other control policies which are attributed 

to “pull type” production/inventory control as studied herein. In this study we used this (r, 

q) control policy by analogous transformation of the performance formula of Zipkin (2000). 

It works well under some situations. However, further study regarding extension of the 

analytic model to other inventory control schemes, such as (s, S) or KANBAN may have to 

be addressed in the future. On the other hand, periodic review policy as opposed to 

continuous review policy studied herein may also be investigated. 
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Buffer design 

We used dual-buffer design herein to develop our evaluation model. The input buffer is 

assumer infinite. There are more SC designs with only one finite buffer due to space 

limitation or cost concern. The single buffer design has to take blocking effect into its 

modeling logic. It may be interesting to compare the performance between single and dual 

buffer designs under various SC topologies. Also dual buffer with finite waiting line is an 

alternative design, which may be more realistic due to practical reason. 

Value of the information 

In this study, we used centralized information sharing scheme. When demand is 

generated at the end stage, all of the stages along the chain immediately reflect this 

information. It is well known that decentralized information sharing scheme is the cause of 

so-called “bullwhip effect” in an SC. The demand information is exaggerated toward 

upstream stages and the variation of demand is amplified along the chain to upstream 

stages. Further study may investigate the saving of cost due to the centralized information. 

Push-pull boundary 

In Simchi-Levi et al. (2003), “pull” type of inventory control policy is suitable for the 

case when demand is highly uncertain and no economy of scale exists. Under these 

conditions MTO supply mode is adequate. On the contrary, when demand uncertainty is 

low and economy of scale exists, MTS supply mode is more adequate. However, mixed 

type of supply mode is possible when one adequately selects the so-called “Push-pull 

boundary”. Before the boundary, push (MTS) supply is conducted while pull (MTO) 

supply is executed after the boundary. The performance comparison between our model 

and the design of this mixed policy is an interesting research area. 

The role of the warehouse 

Recently, there are several arguments regarding the role of the warehouse in 

distribution stage. Cross-docking policy argues the inventory holding cost can be largely 



 106 

 

saved and so is the supply lead-time. Direct sale policy argues there is no need for the 

existence of the warehouse. The supply of the manufacturer may directly serve the end 

stage retailers to save operation cost. Since it is obviously shown herein, the complex 

interaction of the SC decides the performance of an SC, more thorough studies may have 

to be conducted to justify which policy is most suitable under what conditions. 

As we stated in literature review of chapter 2, high-level modeling approach may be 

another direction for SCM such as Stochastic Petri net (SPN). Most researches on SPN or 

generalized SPN (GSPN) can be found in computer and telecommunication areas. 

Alexander (2001) first showed how to use MGM as the main solving process for QBD 

model. They illustrated how to map from an infinite Stochastic Petri net (iSPN) model to a 

QBD process for MGM analysis. Trivedi (2002) illustrated the technique of transforming 

the reachability graph (RG) obtained from SPN to corresponding CTMC generator matrix 

in detail. Arns et al. (2002) used Proc/B, a notational description tool, which can then be 

translated to queueing network or SPN for performance calculation. They used the notation 

model to compare ordinary distribution and web retailing by constructing synchronized 

(parallel) sub-models of Proc/B as SPN model and solve the underlying CTMC and then 

aggregated them as a single queue. Then the overall QN is solved by product-form solution. 

Under their approach, all the underlying transformation and calculation were automatically 

accomplished. 
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Appendix A QBD process and simulation model 
 

A.1 QBD Process 

Define the phase type distribution of a Markov process as a stochastic process having 

parameters **  and , , αGm  if it can be expressed as a first-passage time random variable, 

that is, }:0min{ ∆=≥= tYtT , for a Markov process with state space },,,1{ ∆= mE " , 
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Where IΛ λ= . Then we can find the steady-state probability vector 

)|||()|,,|,,|( 0222112110 """" 21 ppp pppppp ==  as follows. 

  Combining (A.1.1) with the equations 0=PQ  yields the following system of 

equations, 
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The solution of (A.1.2) involves the characteristic equation 

.* 0=++ *∆
2 αGRΛ)-R(GΛ                  (A.1.3) 
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The matrix-geometric solution of (A.1.3) is 

,,2,1for  "== nn
n cRp                    (A.1.4) 

where c  is a vector of constants. It can be shown (Neuts, 1994, p 84.) that  

1)( −−−= ** GαλΛR 1λ                    (A.1.5) 

And  ,)1(0 ** ααc ρ−== p 1,1
**Gα −−== λ

µ
λρ where  1  is a column vector of ones, 

whose dimension is chosen to fit the context. 

A.2 Simulation Model of 3.4 by using Arena (Kelton et al., 2002) 
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Appendix B Moment derivations and related proofs 

B.1 First and second moment derivations of chapter 4 

Here we show the derivation of )1(u , which is not seen in Neuts and Lucanton (1979). 
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Then we derive the second moment as follows. Let ].[ 2
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B.2 Proof of proposition 1 

Assume the generator of a particular server queue is as follows. All the sub-matrix is 

similar to (4.4) of chapter 4 with m servers. 



 110 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Ξ
Ψ
ΞΨ
ΓΞ

=

+1

3

22

11

m

Q
%

. 

Since 0πQ = , after eliminating the last equivalence equation, we have 
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0)( 3222110 =Ψ+Γ−Ψ−+Γ πππ G ,                   (B.2.2) 

.0)( 1112 =Ψ+Γ−Ψ−+Γ +−−− mmkkmkm G πππ
#

 

Form (B.2.1), we have 

.10210 Γ=Ψ+ πππ G                        (B.2.3) 

Substitute (B.2.3) into (B.2.2) and after eliminating and arrange terms we have 

213210 ΓΨ++ = ππππ GG . 

Continue doing in this way, finally we get 
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Multiply by unity vector of proper dimension on both sides yield 
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Since 01 =⋅G  by property of CTMC, we get 
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Plug in the relationship 
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If ζγ = , from the definitions of E[O] and E[RE], we have the result. 

B.3 Proof of corollary 1 

The proof immediately follows from PROPOSITION 1 by rearranging terms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 112 

 

Appendix C Matlab codes of algorithms 

C.1 CSA 

CSA contains 3 functions: CSABCAP, simannBcap, OptSABCap. 

C.1.1 CSABCAP code 
function CSABCAP 
global N lamda h1 h2 fid 
fid = fopen('CSAout.m','w'); 
% Initialize 
t=cputime; 
sa_t=85; 
sa_rt=0.8; 
sa_nt=5; 
sa_ns=20; 
fun_name='OptSABCap'; 
run=5;       
s_l=0.1; 
for N=4:7 
    for iter=1:run 
        c=cell(1,N);p=c;r=c;pai=c; 
        B=zeros(1,N);W=B;I=B;h1=B;h2=B;lamda=1;delta=0.1; 
        i=1:N;h1=0.5+delta*(i-2);h2=0.5*(1+delta).^(i-1); 
        u=zeros(1,N);v=u; 
        for i=1:N 
            c{i}=zeros(i);p{i}=c{i};r{i}=zeros(1,i);pai{i}=r{i}; 
        end 
        % Decide searching bounds  
        UB1=100*ones(1,N);LB1=zeros(1,N); 
        UB2=100*ones(1,N);LB2=1.01*ones(1,N); 
        % Run CSA 
        [xopt,fopt,SLopt,rhopt,Wopt,Iopt,Bopt]=SimAnnBcap(fun_name, LB1, UB1,… 

LB2, UB2, sa_t, sa_rt, sa_nt, sa_ns, s_l); 
        fprintf(fid,'N %d Run %d xopt, fopt, SLopt, rhopt, Wopt, Iopt, Bopt\n',N,iter); 
        fprintf(fid,'('); 
        for i=1:N 
            if i==N 
               fprintf(fid,'%d)',xopt(i)); 
            else 
               fprintf(fid,'%d, ',xopt(i)); 
            end 
        end 
        for i=N+1:2*N 
            fprintf(fid,'%.2f ',xopt(i)); 
        end 
        fopt_1=fopt-sum(xopt(N+1:2*N)); 
        fprintf(fid,' %.3f  %.3f %.3f ',fopt,fopt_1,SLopt); 
        fprintf(fid,'('); 
        for i=1:N 
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            if i==N 
               fprintf(fid,'%.2f)',rhopt(i)); 
            else 
               fprintf(fid,'%.2f, ',rhopt(i)); 
            end 
        end 
        for i=2:N 
            fprintf(fid,'%f ',Wopt(i)); 
        end 
        for i=1:N 
            fprintf(fid,'%f ',Iopt(i)); 
        end 
        for i=1:N 
            fprintf(fid,'%f ',Bopt(i)); 
        end 
        fprintf(fid,'\n');        
    end 
end 
fclose(fid); 
e=cputime-t; 
fprintf('operation duration: %f',e); 
 
C.1.2 simannBcap code 
function [xopt,fopt,SLopt,rhopt,Wopt,Iopt,Bopt]=simannBcap(func, LB1, UB1, LB2, … 

UB2, sa_t, sa_rt, sa_nt, sa_ns, s_l)  
global N R fid 
sa_neps=4;                            %number of times eps 
sa_eps=1e-6;                          %convergence criteria 
sa_maxeval=500000;                    %maximum number of function evaluations 
sa_nacc=0;                            %number of acceptions 
sa_nevals=0;                          %number of evaluations 
fstar=Inf*ones(sa_neps,1);               %last optimum at each sa_nt 
x(1:N-1+R)=LB1(1:N-1+R)+(UB1(1:N-1+R)-LB1(1:N-1+R)).*rand(1, N-1+R);  

%starting values for buffer 
u(1:N-1+R)=LB2(1:N-1+R)+(UB2(1:N-1+R)-LB2(1:N-1+R)).*rand(1, N-1+R); 

%starting values for capacity 
[f,SL]=feval(func,round(x),u);            %function evaluation with parameters x u 
xopt=[round(x) u]; 
fopt=f; 
SLopt=SL; 
fstar(1)=f; 
 
VM1=(UB1-LB1);                             %maximum step size 
VM2=(UB2-LB2);                             %maximum step size 
 
while 1   
  nup=0;                                   %number of uphill movements 
  nrej=0;                                  %number of rejections 
  nnew=0;                                  %number of new global optimum 
  ndown=0;                                 %number of downhill movements 
  lnobds=0; 
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  nacp=zeros(N-1+R,1); 
   
  for m=1:sa_nt % loop number for each temperature VM(step adjusting) occur for each 

% loop 
    for j=1:sa_ns % loop number for the purpose of adjusting step, each variable try sa_ns 

% times 
      for h=1:N-1+R % for each variable 
        if sa_nevals>=sa_maxeval  
          disp('max function evaluations achieved') 
          return 
        end 
        xp=x;  
        up=u; 
        xp(h)=x(h)+VM1(h)*(2*rand(1,1)-1.0);  
        if (xp(h)<LB1(h)) | (xp(h)>UB1(h)) 
           xp(h)=LB1(h)+(UB1(h)-LB1(h))*rand(1,1);  
        end    
        up(h)=u(h)+VM2(h)*(2*rand(1,1)-1.0);  
        if (up(h)<LB2(h)) | (up(h)>UB2(h)) 
           up(h)=LB2(h)+(UB2(h)-LB2(h))*rand(1,1);  
        end    
        [fp,SL,rho,W,I,B]=feval(func,round(xp), up); 
        sa_nevals=sa_nevals+1; 
        if (fp<=f & SL<=s_l) 
          x=xp; % trial replace best sol x 
          u=up; % trial replace best sol u          
          f=fp; 
          sa_nacc=sa_nacc+1; 
          nacp(h)=nacp(h)+1; 
          ndown=ndown+1; 
          if fp<fopt 
            xopt=[round(xp) up]; 
            fopt=fp; 
            SLopt=SL; 
            Wopt=W; 
            Iopt=I; 
            Bopt=B; 
            rhopt=rho; 
            sa_opteval=sa_nevals; 
            nnew=nnew+1; 
          end 
        else % function value increases 
          p=exp((f-fp)/sa_t);% Metropolis' criteria 
          pp=rand(1,1); 
          if (pp<p & SL <=s_l) 
            x=xp; 
            u=up; 
            f=fp; 
            sa_nacc=sa_nacc+1; 
            nacp(h)=nacp(h)+1; 
            nup=nup+1; 
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          else 
            nrej=nrej+1; 
          end 
        end 
      end 
    end 

      %adjust maximal step size vm sa_ns times have passed, each variable  
% hascalculaterespective nacp(i) if ratio of accept of  the variable (less function  
% value) or prob. of escape is high (function value not so high) then enlarge the  
% search area within the neighborhood of the variable; if ratio of accept is low then  
% shrink search area within the neighborhood of the variable; 

    c=ones(N-1+R,1)*2; 
    for i=1:N-1+R 
      ratio=nacp(i)/sa_ns; 
      % Step length adjustment, Note if 0.4<=ratio<=0.6 no change happens 
      if ratio>0.6 
        VM1(i)=VM1(i) * (1+c(i)*(ratio-0.6)/0.4); 
        VM2(i)=VM2(i) * (1+c(i)*(ratio-0.6)/0.4); 
      elseif ratio <0.4 
        VM1(i)=VM1(i) / (1+c(i)*((0.4-ratio)/0.4)); 
        VM2(i)=VM2(i) / (1+c(i)*((0.4-ratio)/0.4)); 
      end 
      if VM1(i)>(UB1(i)-LB1(i)) 
        VM1(i)=UB1(i)-LB1(i); 
      end 
       if VM2(i)>(UB2(i)-LB2(i)) 
        VM2(i)=UB2(i)-LB2(i); 
      end 
   end 
  for i=1:N-1+R 
     nacp(i) = 0; 
  end 
  end 
% check termination criteria for the current temperature, if the current optimal f (before  
% changing temperature) less than global optimal (fopt) within eps, quit; notice fp (new  
% function value) could become current optimal f because of Metropolis selection process 
% fstar(1)=f; f, f(1)* is current optimum for this temperature 
  quit = (((fstar(1)-fopt) <= sa_eps) & (SL<=s_l)); 

% guarantee current optimum is global optimum 
  % if within 4 times of temperature reduction current optimal f and any of previous   

% temporary optimal difference within eps, quit. means dwindling 
  if any(abs(fstar-f)>sa_eps) 
    quit=0; 
  end 
  if quit  
    disp(['simulated annealing achieved termination after ', num2str(sa_nevals),' evals']); 
    return 
  end 
  sa_t=sa_t*sa_rt;% reduce temperature  
  fstar(2:4)=fstar(1:3); 
  % continue from current optimum 
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  x=xopt(1:N-1+R); 
  u=xopt(N+R:2*(N-1+R)); 
  f=fopt; 
end %while 
 
C.1.3 OptSABCap code 
function [TC,SL,rho,W,I,B]=OptSABCap(x,u) 
% Performance evaluation (Object function) for constrained SA (CSA) 
global N lamda h1 h2  
N=4;delta=0.1;i=1:N;lamda=1;h1=0.5+delta*(i-2);h2=0.5*(1+delta).^(i-1); 
v=u-lamda; 
c{1}=[-v(1)];r{1}=[1];T=0; 
for i=2:N 
    c{i}=[c{i-1} zeros(i-1,1)-sum(c{i-1},2);zeros(1,i-1) -v(i)];W(i)=lamda/v(i); 
end 
for i=1:N 
    p{i}=lamda*inv(lamda*eye(i)-c{i}); 
end 
pai{1}=r{1}*p{1}; 
for i=2:N 
    r{i}=[r{i-1}*p{i-1}^x(i-1) 1-r{i-1}*p{i-1}^x(i-1)*ones(i-1,1)];pai{i}=r{i}*p{i}; 
end 
for i=1:N 
B(i)=pai{i}*p{i}^x(i)*inv(eye(i)-p{i})*ones(i,1);I(i) = x(i) - pai{i}*inv(eye(i) - p{i})* … 

ones(i,1) + B(i); 
end            
SL=r{N}*p{N}^x(N)*expm(c{N}*T)*ones(N,1); 
WIP=sum(I+W)-I(N); 
TC=sum(h1.*W+h2.*I)+10*B(N)+sum(u); 
rho=1./u; 
 
C.2 CGA 
 
CGA contains 13 functions: CGA, initialize_r0, validate_r0, GeneticAlgorithm, 
doHomomorphMap, SimpleCrossover, ArithmeticCrossover, Xmutation, 
fineBoundaryResolution, delta, deltaInverse, sum_tSegments, Optga. 
 
C.2.1 CGA code 
function CGA 
global nG nPi nP nSC nAC nVar bounds ctr Pc Pm fid FINE_RESOLUTION … 
COARSE_RESOLUTION xmapped Xdummy r c p pai W h1 h2   
% GA parameters 
run = 5; 
nG = 100;  % total number of  generation 
nPi= 24;   % population size (Fixed) 
nP =  12;  % Mating pool size   
nSC = 6;   % number of simple crossover - each yields 2 children 
nAC = 6;   % number of Arithmatic crossover - each yields 2 children 
Pc = 0.8;   % probability of crossover 
Pm = 0.01;  % probability of mutation 
MAP_RESOLUTION = 5.0e-5; 
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FINE_RESOLUTION = 8;% feasible space searching   
COARSE_RESOLUTION = 15; %feasible space searching 
fid = fopen('CGAout.m','w'); 
for nVar=4:7 
bounds=repmat([0 30],1,nVar); 
% Initialize 
c=cell(1,nVar);p=c;r=c;pai=c;t=cputime; 
B=zeros(1,nVar);W=B;I=B;h1=B;h2=B;lamda=1;WIP=0;delta=0.1; 
i=1:nVar;h1=0.5+delta*(i-2);h2=0.5*(1+delta).^(i-1); 
u(i)=1.25;v(i)=u(i)-lamda; 
for i=1:nVar 
    c{i}=zeros(i);p{i}=c{i};r{i}=zeros(1,i);pai{i}=r{i}; 
end 
Xdummy=zeros(nPi,nVar);xmapped=Xdummy; 
XA=zeros(nP,nVar);NM=zeros(nPi,nVar); 
% Compute c, p of L & Z '92 
c{1}=[-v(1)]; 
for i=2:nVar 
    c{i}=[c{i-1} zeros(i-1,1)-sum(c{i-1},2);zeros(1,i-1) -v(i)];W(i)=lamda/v(i); 
end 
for i=1:nVar 
    p{i}=lamda*inv(lamda*eye(i)-c{i}); 
end 
r{1}=[1]; 
pai{1}=r{1}*p{1}; 
for iter = 1:run% random runs 
% Initial generated feasible reference point     
[ret,r0]=initialize_r0; 
if (ret==1) 
   fprintf('initial feasible reference point : '); 
   for i=1:nVar 
       fprintf('%f ',r0(i)); 
   end 
   fprintf('generated\n'); 
end 
% initial random population 
x = -1 + rand(nPi,nVar) * 2; 
% HomomorphMapping 
[xmapped]=doHomomorphMap(x,r0); 
[fval] = Optga(xmapped);    
[Yvect,Ip]=sort(fval);   
% Initial populated population 
Xgen=zeros(nPi,nVar);Fgen=zeros(nPi); 
for i = 1:nPi 
   Xgen(i,:)=x(Ip(i),:); 
   Fgen(i)=Yvect(i); 
end 
Xbest=Xgen(1,:); 
Fbest=Fgen(1); 
fprintf(fid,'Run %d --------------------GA initial---------------------\n',iter); 
fprintf(fid,'Fbest: %f\n',Fbest); 
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ctr = 0; % Initialize iteration counter 
while (ctr~=nG) 
  ctr = ctr + 1;    
 [x,f,Xgen,Fgen]=GeneticAlgorithm(@Optga,Xgen,Fgen,r0); 
 fval(ctr) = f; 
 % Preserving the best feasible solution     
  if (fval(ctr) < Fbest) 
      Fbest=fval(ctr); 
      Xbest=round(x); 
  fprintf(fid,'Generation:%d,  Current best value: %f\n',ctr,fval(ctr)); 
  end 
end 
[invalid,nlineq] = validate_r0(Xbest); 
fprintf(fid,'N: %d Run: %d --------------------GA results---------------------\n',nVar,iter); 
fprintf(fid,'Xbest: '); 
for i=1:nVar 
fprintf(fid,'%d ',Xbest(i)); 
end 
fprintf(fid,'\n'); 
fprintf(fid,'Fbest: %f\n',Fbest); 
fprintf(fid,'SL: %f\n',nlineq+0.1); 
end 
end 
fclose(fid); 
e=cputime-t; 
fprintf(1,'operation duration: %f',e); 
 
C.2.2 initialize_r0 code 
function [ret,r0]=initialize_r0 
global nVar bounds 
TRIES=10000; 
for k = 0:99 
     for count = 1:10 * TRIES  
        for i = 1:nVar 
       r0(i) = rand(1,1)*(bounds(2*i)- bounds(2*i-1)) + bounds(2*i-1); 
        end 
        [invalid] = validate_r0(r0);           
        if(~invalid)   
        fprintf('Valid reference point found!!\n'); 
        fprintf('Starting CGA...\n\n'); 
        ret=1; 
        return 
        end 
    end 
end 
fprintf('Cannot find valid reference point.\n'); 
ret=0; 
 
C.2.3 validate_r0 code 
function [invalid,nlineq] = validate_r0(x) 
global r c p pai W nVar h1 h2 
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x=round(x);invalid = 0;   
for i=2:nVar 
    r{i}=[r{i-1}*p{i-1}^x(i-1) 1-r{i-1}*p{i-1}^x(i-1)*ones(i-1,1)];pai{i}=r{i}*p{i}; 
end 
for i=1:nVar 
B(i)=pai{i}*p{i}^x(i)*inv(eye(i) - p{i})*ones(i,1); I(i) = x(i) - pai{i}*inv(eye(i) - … 

p{i})*ones(i,1) + B(i); 
end            
i=1:nVar; 
%SL=r{nVar}*p{nVar}^x(nVar)*expm(c{nVar}*0)*ones(nVar,1); 
nlineq(1)=r{nVar}*p{nVar}^x(nVar)*expm(c{nVar}*0)*ones(nVar,1) - 0.1; 
for i = 1:1 
   if( nlineq(i) > 0.0 )  
    invalid = 1; 
        return 
    end 
end 
 
C.2.4 GeneticAlgorithm code 
function [XCurbest,FCurbest,Xgen,Fgen]=GeneticAlgorithm(objfun,Xgen,Fgen,r0) 
% select top 50% populations to propogate to the next generation,  
% Offspring replace the top 50% populations for each crossover operator, then  
% non-uniform mutation for whole population 
global nG nPi nP nSC nAC nDC nI nVar bounds fid 
% Record best chromosome in the beginning of each generation; 
XBest=Xgen(1,:); 
Best=Fgen(1); 
% Operator --- SimpleCrossover, ArithmeticCrossover. 
[XSChild] = SimpleCrossover(Xgen); 
[XAChild] = ArithmeticCrossover(Xgen); 
i=1:2*nAC; 
Xgen(i,:) = XAChild(i,:); 
Xgen(2*nAC+i,:) = XSChild(i,:); 
[XNMu]= XMutation(Xgen); 
Xgen = XNMu; 
 [n m] = size(Xgen); 
[xmapped]=doHomomorphMap(Xgen,r0); 
[fval] = Optga(xmapped);   
Xdummy=Xgen; 
 [Yvect,Ip]=sort(fval);  
XCurbest=xmapped(Ip(1),:); 
FCurbest=Yvect(1); 
clear Xgen fval% clear memory for next generation 
Xgen=zeros(nP,nVar); 
i = 1:nP; 
% Elitist (if current best not superior to last generation, replace the last chromosome w/ the 
% last best)  
if (FCurbest<Best) 
 Xgen(i,:)=Xdummy(Ip(i),:); 
    Fgen(i)=Yvect(i); 
else 
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    Xgen(i,:)=Xdummy(Ip(i),:); 
    Fgen(i)=Yvect(i); 
    Xgen(nP,:)=XBest; 
    Fgen(nP)=Best; 
End 
 
C.2.5 doHomomorphMap code 
function [xmapped]=doHomomorphMap(x,r0) 
global nVar nPi bounds MAP_RESOLUTION COARSE_RESOLUTION fid 
 [n,m]=size(x); 
infeasible = 0; 
j=1:n; 
ymax(j)=max(abs(x),[],2); 
% find sVect 
y=zeros(nPi,nVar); 
for i=1:nVar 
    y(:,i)=x(:,i)./ymax'; 
end 
i=1:nVar; 
s = repmat(1/2*(bounds(2*i) + bounds(2*I - 1)),nPi,1) + repmat( 1/2*(bounds(2*i) - … 

bounds(2*i-1)),nPi,1).*y; 
s_r0=s-repmat(r0,nPi,1);  
for j=1:nPi 
% Get tVect 
tCount = 1; 
for i = 1:COARSE_RESOLUTION 
    tempVect = r0 + s_r0(j,:)*(i / COARSE_RESOLUTION); 
    [invalid,nlineq] = validate_r0(tempVect); 
    if(invalid ~= infeasible)  
      infeasible = invalid; 
      tCount = tCount + 1; 
    end 
end 
oddCount = mod(tCount,2); 
lastIsInvalid = invalid; 
[invalid,nlineq] = validate_r0(s(j,:)); 
boundaryIsInvalid = invalid; 
% Populate regions  
tVect(1) = 0.0;infeasible = 0;tCount = 2; 
for i = 1:COARSE_RESOLUTION 
    tempVect = r0 + s_r0(j,:)*(i / COARSE_RESOLUTION); 
   [invalid,nlineq] = validate_r0(tempVect); 
    if(invalid ~= infeasible)  
      [tVect(tCount)] = fineBoundaryResolution(s_r0(j,:),i,r0,infeasible);   
      tCount = tCount + 1; 
      infeasible = invalid;  
    end 
end 
if(oddCount & (~lastIsInvalid) & (~boundaryIsInvalid))  
   tVect(tCount) = 1.0; 
elseif(oddCount & (~lastIsInvalid) & boundaryIsInvalid) 
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    tVect(tCount) = fineBoundaryResolution(s_r0(j,:), COARSE_RESOLUTION, r0, …  
infeasible); 

     elseif((~oddCount) & lastIsInvalid & (~boundaryIsInvalid))  
      [tVect(tCount)]=fineBoundaryResolution(s_r0(j,:),COARSE_RESOLUTION,r0, ... 

infeasible); 
         tCount = tCount + 1; 
         tVect(tCount) = 1.0; 
     else  
          tCount = tCount -1; 
end 
% Do mapping!!   
  [deltaInvVal] = deltaInverse(ymax(j), tVect, tCount); 
  xmapped(j,:) = r0 + s_r0(j,:)*deltaInvVal; 
end 
 
C.2.6 SimpleCrossover code 
function [XS] = SimpleCrossover(X) 
% creating children by simple 1-point crossover 
global nVar nSC Pc 
first=0;one=0; 
XS = X; 
for i=1:2*nSC 
    r = rand(1,1); 
    if (r<Pc) 
            first=first+1; 
            if (mod(first,2)==0) 
                if (nVar==2) 
                    point=1; 
                else 
                    point=floor(nVar*rand(1,1)); 
                end 
                for j=1:point 
                    XS(one,j) = X(i,j); 
                    XS(i,j) = X(one,j); 
                end 
            else 
                one=i; 
            end 
    end 
end 
 
C.2.7 ArithmeticCrossover code 
function [XA] = ArithmeticCrossover(X) 
% creating children by whole Arithmetic crossover  
global nVar Pc nAC 
XA=X; 
first=0;one=0; 
[n m] =size(X); 
for j=1:2*nAC 
    r = rand(1,1); 
    if (r<Pc) 
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            first=first+1; 
            if (mod(first,2)==0) 
                r1 = rand(1,1); 
                r2 = 1 - r1; 
                for i=1:nVar 
                    XA(one,i) = r1*X(one,i) + r2*X(j,i); 
                    XA(j,i) = r2*X(one,i) + r1*X(j,i); 
                end 
             else 
                one=j; 
            end 
    end 
end 
 
C.2.8 Xmutation code 
function [NM] = XMutation(X) 
% non-uniform whole mutation    
global ctr nG bounds Pm  
NM=X; 
b=6; 
[n m] =size(X); 
for i = 1:n 
    r1=rand(1,1); 
    if(r1<=Pm) 
      for j = 1:m 
          r2 = round(rand(1,1)); 
          if (r2==0) 
              NM(i,j) = X(i,j) + (1-X(i,j))*(1-rand(1,1)^((1-ctr/nG)^b)); 
          else 
              NM(i,j) = X(i,j) - (X(i,j)-(-1))*(1-rand(1,1)^((1-ctr/nG)^b)); 
          end 
      end 
    end 
end 
 
C.2.9 fineBoundaryResolution code 
function [tVect] = fineBoundaryResolution(s_minus_r0,i,r0,infeasible) 
% This routine implements binary search within each boundary of feasible region 
global MAP_RESOLUTION FINE_RESOLUTION COARSE_RESOLUTION 
upper =  i; 
lower =  i - 1.0; 
for i = 1:FINE_RESOLUTION 
    middle = (upper + lower) / 2.0; 
    %if( ((upper - middle) < MAP_RESOLUTION) | ((middle - lower) < 

%MAP_RESOLUTION) )  
    %break; 
    %end 
    [invalid,nlineq] = validate_r0(r0+s_minus_r0*(middle / COARSE_RESOLUTION)); 
    if(invalid ~= infeasible) 
        upper = middle; 
    else    
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        lower = middle; 
    end 
end 
if (infeasible) 
    tVect = upper / COARSE_RESOLUTION; 
else 
    tVect = lower / COARSE_RESOLUTION; 
end 
 
C.2.10 delta code 
function [delt] = delta(t, tVect, tCount) 
% t is assumed to be 'feasible'   
[d] = sum_tSegments(tVect, tCount / 2); 
if(d == 0.0)  
    delt = 0.0; 
    return 
end 
% find min subscript  
subscript = 1; 
while(1)  
    if( (subscript * 2) >= tCount )  
        break 
    end 
    if( tVect(2*subscript) >= t )  
        break 
    end 
    subscript = subscript + 1; 
end 
delt = ( (t - tVect(2*subscript - 1)) + sum_tSegments(tVect, subscript - 1) ) / d; 
 
C.2.11 deltaInverse code 
function [deltaInvVal] = deltaInverse(a, tVect, tCount) 
 [d] = sum_tSegments(tVect, tCount / 2); 
if(d == 0.0)  
    deltaInvVal = 0.0; 
    return  
end 
% find min subscript 
subscript = 1; 
while(1)  
    if( (subscript * 2) >= tCount ) 
        break         
    end 
    [delt] = delta( tVect(2*subscript), tVect, tCount ); 
    if( delt >= a ) 
        break 
    end 
    subscript = subscript + 1; 
end 
tHi = tVect(2*subscript); 
tLow = tVect(2*subscript - 1); 
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[delta_tHi] = delta(tHi, tVect, tCount); 
[delta_tLow] = delta(tLow, tVect, tCount);   
denom = delta_tHi - delta_tLow;  
if(denom <= 0.0)  
    deltaInvVal = tHi; 
    return  
end 
numer = a - delta_tLow; 
if(numer <= 0.0)  
    deltaInvVal = tLow; 
    return  
end 
if(a >= delta_tHi) 
    deltaInvVal = tLow;  
    return  
end 
dj = tHi - tLow; 
deltaInvVal = tLow + ( dj * (a - delta_tLow) / denom ); 
 
C.2.12 sum_tSegments code 
function [total] = sum_tSegments(tVect, qtySegs) 
total = 0; 
for i = 1:qtySegs 
    total =  total + tVect(2*i) - tVect(2*i - 1); 
end 
 
C.2.13 Optga code 
function [fopt,SL]=Optga(x) 
global r c p pai W N h1 h2 nVar 
% This function use batch processing 
% Performance evaluation (Object function) for constrained GA (CGA) 
x=round(x); 
 [n,m]=size(x); 
for j=1:n 
  for i=2:nVar 
    r{i}=[r{i-1}*p{i-1}^x(j,i-1) 1-r{i-1}*p{i-1}^x(j,i-1)*ones(i-1,1)];pai{i}=r{i}*p{i}; 
  end 
  for i=1:nVar 
    B(i)=pai{i}*p{i}^x(j,i)*inv(eye(i)-p{i})*ones(i,1);I(i)=x(j,i)-pai{i}*inv(eye(i) - … 

p{i})*ones(i,1)+B(i); 
  end            
  fopt(j)=sum(h1.*W+h2.*I)+10*B(nVar); 
  SL=r{nVar}*p{nVar}^x(nVar)*expm(c{nVar}*0)*ones(nVar,1); 
End 
 
C.3 ENU 
 
ENU contains 1 functions: OptEnumLarge. 
 
C.3.1 OptEnumLarge code 
function [xbest, fbest, SLbest, Bbest, Ibest]=OptEnumLarge 



 125 

 

clear all 
global N r c p pai T s_l W h1 h2 b co u fbest xbest SLbest Bbest Ibest 
% Initialize 
t=cputime;N=4;b=1;co=1; 
c=cell(1,N);p=c;r=c;pai=c; 
B=zeros(1,N);W=B;I=B;h1=B;h2=B;lamda=1;WIP=0;delta=0.1;xbar=zeros(1,N-1); 
i=1:N;h1=0.5+delta*(i-2);h2=0.5*(1+delta).^(i-1); 
h1=[0.5 0.5 0.5 0.5];h2=[0.5 0.5 0.5 1]; 
u(i)=2.5;v(i)=u(i)-lamda; 
for i=1:N 
    c{i}=zeros(i);p{i}=c{i};r{i}=zeros(1,i);pai{i}=r{i}; 
end 
% Compute c, p of L & Z '92 
c{1}=[-v(1)]; 
for i=2:N 
    c{i}=[c{i-1} zeros(i-1,1)-sum(c{i-1},2);zeros(1,i-1) -v(i)];W(i)=lamda/v(i); 
end 
for i=1:N 
    p{i}=lamda*inv(lamda*eye(i)-c{i}); 
end 
% Initialize r, pai of L & Z '92 
r{1}=[1]; 
pai{1}=r{1}*p{1}; 
% Initialize xbest, fbest; Assign allowable waiting time and SL 
s_l=0.15; 
%for s_l=0.1:0.1:0.8 
x=zeros(1,N);T=0;SLbest=1.0; 
% Find minimum total stock required (st) to achieve SL 
for s=0:100 
    x(N)=s; 
    for i=2:N 
        r{i}=[r{i-1}*p{i-1}^x(i-1) 1-r{i-1}*p{i-1}^x(i-1)*ones(i-1,1)];pai{i}=r{i}*p{i}; 
    end 
    for i=1:N 
  B(i)=pai{i}*p{i}^x(i)*inv(eye(i)-p{i})*ones(i,1);I(i)=x(i)-pai{i}*inv(eye(i)-p{i})* … 

ones(i,1)+B(i); 
    end            
    SL=r{N}*p{N}^x(N)*expm(c{N}*T)*ones(N,1); 
    if SL<=s_l 
       st=x(N); 
       SLbest=SL; 
       break 
    end 
end 
if SL > s_l 
    fprintf('Can not find ST in 100, Enlarge search space'); 
end 
% Reset design variable 
x=zeros(1,N);xbest=x;fbest=inf; 
% Call optimization procedure 
[xbest, fbest, SLbest, Bbest, Ibest]=opt(st,x,1); 
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%end 
e=cputime-t;           
fprintf('operation duration: %f',e); 
% Enumeration starts here 
function [xbest, fbest, SLbest, Bbest, Ibest]=opt(st,x,k)   
global  r p pai c T N W s_l b co u fbest xbest SLbest Bbest Ibest 
x(k)=0; 
% Find seaching bound for each stage 
for s=1:100 
    x(k)=s; 
    if k==1 
       x(N)=st-x(k); 
    else 
       j=1:k; 
       x(N)=st-sum(x(j)); 
    end 
    for i=2:N 
      r{i}=[r{i-1}*p{i-1}^x(i-1) 1-r{i-1}*p{i-1}^x(i-1)*ones(i-1,1)];pai{i}=r{i}*p{i}; 
    end 
    SL=r{N}*p{N}^x(N)*expm(c{N}*T)*ones(N,1); 
    if SL>s_l 
        xbar(k)=x(k)-1; 
        break 
    end 
end 
x(k)=0; 
while (x(k)<=xbar(k)) 
    if k<N-1 
        opt(st,x,k+1);% Recursive call itself when not reaching stage J-1, J 
    else 
        x(N)=st-sum(x(1:N-1)); 
        [TC,Bak,Iend]=f(x); 
        if TC<fbest 
           SLbest=r{N}*p{N}^x(N)*expm(c{N}*T)*ones(N,1); 
           fbest=TC; 
           xbest=x; 
           Bbest=Bak; 
           Ibest=Iend; 
       end 
   end 
   x(k)=x(k)+1; 
end 
% Performance evaluation 
function [TC,Bak,Iend]=f(x) 
global N r c p pai T s_l W h1 h2 b co u Bbest Ibest 
for i=2:N 
    r{i}=[r{i-1}*p{i-1}^x(i-1) 1-r{i-1}*p{i-1}^x(i-1)*ones(i-1,1)];pai{i}=r{i}*p{i}; 
end 
for i=1:N 
B(i)=pai{i}*p{i}^x(i)*inv(eye(i)-p{i})*ones(i,1);I(i)=x(i)-pai{i}*inv(eye(i)-p{i})*… 

ones(i,1)+B(i); 
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end   
    Bak=B(N);Iend=I; 
    TC=sum(h1.*W+h2.*I)+b*B(N)+sum(co*u); 
 
C.4 Typical results of solving BAP and CAP simultaneously for J = 4 and 5 using CSA 
N 4 Run 1 xopt, fopt, SLopt, rhopt 
0 1 1 6 1.98 2.15 2.20 2.25  14.254  0.082  0.51  0.47  0.45  0.44  
N 4 Run 2 xopt, fopt, SLopt, rhopt, Wopt, Iopt, Bopt 
0 0 2 6 1.98 2.15 2.18 2.24  14.251  0.081  0.50  0.47  0.46  0.45  
N 4 Run 3 xopt, fopt, SLopt, rhopt, Wopt, Iopt, Bopt 
0 0 2 6 1.98 2.15 2.18 2.24  14.251  0.081  0.50  0.47  0.46  0.45  
N 4 Run 4 xopt, fopt, SLopt, rhopt, Wopt, Iopt, Bopt 
0 1 1 6 1.98 2.15 2.20 2.25  14.254  0.082  0.51  0.47  0.45  0.44  
N 4 Run 5 xopt, fopt, SLopt, rhopt, Wopt, Iopt, Bopt 
0 1 1 6 1.98 2.15 2.20 2.25  14.254  0.082  0.51  0.47  0.45  0.44  
N 5 Run 1 xopt, fopt, SLopt, rhopt, Wopt, Iopt, Bopt 
0 1 1 1 6 1.97 2.14 2.20 2.25 2.29  17.800  0.091  0.51  0.47  0.46  0.44  0.44   
N 5 Run 2 xopt, fopt, SLopt, rhopt, Wopt, Iopt, Bopt 
0 0 1 1 7 1.98 2.15 2.18 2.22 2.26  17.806  0.087  0.51  0.47  0.46  0.45  0.44   
N 5 Run 3 xopt, fopt, SLopt, rhopt, Wopt, Iopt, Bopt 
0 0 2 2 5 1.97 2.14 2.18 2.24 2.33  17.795  0.093  0.51  0.47  0.46  0.45  0.43   
N 5 Run 4 xopt, fopt, SLopt, rhopt, Wopt, Iopt, Bopt 
0 0 1 3 5 1.97 2.14 2.18 2.22 2.32  17.797  0.092  0.51  0.47  0.46  0.45  0.43  
N 5 Run 5 xopt, fopt, SLopt, rhopt, Wopt, Iopt, Bopt 
0 0 1 0 8 1.98 2.15 2.18 2.22 2.25  17.815  0.087 0.51  0.47  0.46  0.45  0.44   
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