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An Analytical Framework for Supply Chain Performance Evaluation and
Optimization

Student : Fong-Fan Wang Advisors ¢ Dr. Chao-Ton Su

Dr. Ruey-Yun Horng

Department of Industrial Engineering and Management
National Chiao Tung University

Abstract

An integrated matrix analytic medel is proposed to evaluate a multi-echelon supply chain
(SC) from a systematic viewpoindt. Generally speaking, a multi-echelon supply chain consists
of four basic subsystems: raw material supply, production, distribution and transportation. In
the past, most of the analyses of complex supply chain models seemed to be fragmented and
tended to pursue local analysis. For example, some studies assumed market demands were
known and tried to find the most adequate manufacturing strategies. Others assumed that
supplies were unlimited and tried to find optimal distribution strategies to fight against
demand uncertainty. In the first phase of this study, the market demand and supply process
were assumed stochastic. Each SC contributor was then treated as a single server in a tandem
queueing network. We developed an integrated matrix analytic model for the steady state
performance evaluation in terms of total operating cost and customer service level for a
fabricated SC problem. We also took upstream unavailability into the modeling process. Next,
we investigated deeply into the impact of supply/demand uncertainties on SC performance.

We modeled various uncertainty scenarios as Markov modulated Poisson processes (MMPP).
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Using matrix geometric method we obtained the steady state performance measures and
proposed solution measures for a test SC problem with make-to-order mode. Finally, based on
the above-developed SC evaluation model, we investigated various optima seeking
procedures. Our objective was to solve the optimal buffer and capacity allocation problems
simultaneously such that the chain wide operation cost was minimized under pre-specified
service level. Especially, we discussed the impact of unreliable supply on system

performance.

Keywords: Integrated stochastic supply chain, Quasi-birth-and-death process, Matrix

analytical method, Markov modulated Poisson process, Meta-heuristic method.
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Notation

L;  : Total lead-time of customer order at stage j

D;  : The waiting time at stage i

T;  : Processing time at stage j, including waiting and service times at stage j

K;  : The outstanding customer order at stage j

B;  : The backorder level of stage j recorded at stage i

S;  * The stock level at stage j

Q . Infinitesimal generator for the whole queueing system (customer demand queue)
0" Infinitesimal generator for case i-based server-repair process (server queue)

A 1 Average aggregate retailer demand arrival rate (= z A)
Vi

u . Average processing rate for each server
&t Average server up rate (= the inverse of mean-time-to-failure)
y - Average server down rate (= the inverse of mean-time-to-repair)
p - Traffic intensity without supply unavailability consideration
p” - Traffic intensity incorporating supply unavailability
Co - server operation cost per server per unit time
Cr Server repair cost per serverper unit time
cn - Inventory holding cost per unitandunit time
¢, - Backorder cost per unit and unit time
7 Stationary probability vector for server-repair queue, Q"
x Stationary probability vector for customer queue, O

E[L] : Average demand queue length (including the one in service if there is any)
E[O] @ Average number of operative servers
E[RE] : Average number of servers under repair

E[B] : Average aggregated backorder level at retailer site

m . Number of machines

r : Number of repairman, » <m

Ar - Arrival rate for regular job

A - Breakdown cycle rate for breakdown job

J : Total number of stages of the SC

R : Total number of retailers

X



u; - Average processing rate for each server at stage j
St ! Total buffer of the SC
() : Lower bound for the decision variable of interest
(-)* : Optimal solution for the performance measure of interest
¢? ¢ Coefficient of variation of arrival process, which is a superposition process of both
regular and breakdown jobs

- Coefficient of variation of aggregated service process

c;

¢’ * Coefficient of variation of arrival of regular job

c;  * Coefficient of variation of service job

¢t Coefficient of variation of arrival of breakdown job

cé - Coefficient of variation of breakdown job

Cf . Coefficient of variation of repair job

p  : probability of occurrences of regular job

q - probability of occurrences of breakdown job

L Waiting line in the system

L, : Waiting line in the quetie

W, Waiting time in the syStem

W, - Waiting time in the queue

8 . Feedback (Rework) rate due to imperfect quality
WIP : Intermediate inventory levels including input and output buffers at each stage,

excluding the input buffer at the first supply stage and the ending inventory level for
the last stage. WIP = the sum of WIP
E[I] : Expected Inventory level for aggregated retailer stage
E[B;] : Expected backorder level for stage/retailer j
E[L] : Expected Inventory level for stage/retailer j
E[T;] : Expected service time
IC  : Total cost of operating the system
SL; : Service level for retailer j, defined as probability of customer for waiting time
greater than 7 time units (SL; = Pr(T > £), here Pr stands for probability)
SL  : (Average) system service level, defined as the arithmetic average of SL; or as a
single performance measure if retailers are aggregated

Bi  * Pre-specified service level for retailer j



B : Pre-specified service level
hyip - Intermediate inventory cost vector

¢; - Service cost per work-unit and unit time at stage j
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Chapter 1 Introduction

1.1 Overview

Supply chain management (SCM) was popular in the past years and seems continuing
to be so in the future. The main reason of its popularity may be that it extends the
traditional operational management in local shop floor to a global context. Basically there
are two approaches to model a supply chain (SC), deterministic and stochastic. The former
1s adopted when all the operational parameters, such as demand arrival rate, processing rate,
etc. are certain while the later is used when most of the parameters are uncertain. Material
requirement planning (MRP) and lately enterprise resource planning (ERP) are perhaps the
most widely used supply control methods to satisfy market demand under a deterministic
operational environment. The performance is often judged by the generated supply plan
that can deliver the right produet with right!quantity to right place in right time. Under
stochastic environment, the SC performance can be evaluated through stochastic modeling
to obtain the steady state system performance. No*matter what modeling type the studied
problem is, the performance of an SC is often measured by its integrated operational cost
and achieved customer service level. It’s well known that in order to save operational cost,
two important factors must be addressed: inventory and moving (transportation) costs.

For analytic modeling of a stochastic SC, there are three well-known problem domains
for a supply network: infinite buffer, finite-buffer and infinite buffer with planned
inventories. The former two problems are suitable for make-to-order (MTO) supply mode,
while the last is suitable for make-to-stock (MTS) supply mode. Open or closed queueing
network (QN) model is suitable for solving the first kind of problem. Several models are
developed to solve the second problem. Notice the blocking effect exists in the second
problem and the solution process seems not so straightforward as the first problem. For the

third problem, it’s not paid special attention until in the past decade or so (Lee & Zipkin,
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1992) (we abbreviate it as L & Z hereinafter). However, the MTS supply mode of the third
type is a well-known industry application, therefore it shows imperative need for this
research direction. It depends on the business process and other factors such as market,
capital, physical limitation etc. to choose the suitable supply mode and the accompanied
stochastic model for practical study.

In reality, an SC is often shown as a sophisticated supply network with complex
operation logic. Under this concern, simulation seems to be the most often used method to
analyze a realistic SC, especially when mathematic model is not available. However it
becomes time-consuming to build an industry-scaled simulation model. Let’s take a look at
fig. 1.1, which is an SC network, composed of 4 basic SC functions: inbound logistics,
manufacturing, outbound logistics and distribution. Inside each echelon, there may be
several processing stages with serial or parallel configuration and the probability
distribution for each service may be.arbitrary (for ease of exposition, we only show serial
case in fig. 1.1, see the square enclosed by-the.dotted lines). To let the complex interaction
between SC players (contributors) ‘become tractable, an adequate control scheme
governing order/replenish behavior for each echelon is necessary if we regard inventory as
the main concern. Unfortunately, we don’t know what the optimal order/replenish policy
for SC like fig. 1.1 is. Furthermore, the closed-form solution is usually unavailable
(Boyacy and Gallego, 2001) even for the simplest tandem supply system with assumed
constant supply lead-time. In this study, we do not try to answer these questions. Instead,
we “assume” control policies at each supply stage are known in advance. For example, in
“pull-type” control (which is suitable for the situation that the demand is unknown or
stochastic), there are base-stock policy, reorder point, order quantity (r, q) policy, reorder
and target level (s, S) policy, and KANBAN-card controlled policy etc. Among them,
base-stock policy is widely used in industry (L & Z) owing to its simple control logic. It is

suitable when economy of sale is not a concern. For example, there is no fixed set-up cost
2



in each ordering cycle.

To model the SC like fig. 1.1, we begin by learning the system dynamic of a base-stock

controlled tandem supply system as appeared in (L & Z) and shown below:
L=108-KI, B =[K-SI1<j<], (1.1)
Ky =Ni, N;=K;—Bj. forj>1, (1.2)
where [x] * = max(x, 0). J is the stage number of the tandem system. S;is base-stock level at
each stage. K; is demand on order, and B;is backorder level at stage j, and /; is inventory
level at stage j (here assume we have already break the original echelon boundary into a
multi-staged tandem form). N is the input queue occupancy before each stage j (including
the one being served if there is any). (1.2) is due to the property of the underlying system
dynamic: [demand on order]| = [input queue occupancy] + [backorder level at the previous
stage]. We assume ample supply before the first stage, and therefore no backorder from
external supply: K; = N,. The -difficult part-of analyzing the above system is that the
queueing network will not be a M/M/1.connected system when the planned inventories are
added after each stage. Based on*(l:l).and (1.2), several methods for performance
evaluation of a base-stock controlled SC have been reported recently for the approximation
of such SC like recursive method, squared coefficient variation (SCV) of departure process
(which will be abbreviated as SCV method hereinafter), quasi-birth-and-death (QBD)
method, and matrix computation method. Recursive method starts at stage 1 with K; = N,

the distribution of &V, is approximated to be that of M/M/1. Specifically

1-p,, i=0,

. 1.3
pi(l=p;) izl (1)

P(N, :i):{

Given K;, it computes B; by shift-truncation operation in (1.1). Then, it applies (1.2) to
obtain Kj+; = Nj+1 + Bj, which is just the convolution of product-form approximation.

Motivated by the widely used approximation of the SCV of the departure process from a



standard queue (Buzacott and Shanthikumar, 1993), specifically c; = (1—p*)c. + p’c?,

SCV method uses the following approximation for the SCV of the departure process from

output buffer of stage j,

2 2+S8./2 2 248./2 2
¢y =(=p; 7 )ey +p; ey, (1.4)

where c(f]. and cf] are respective SCV of inter-arrival and service times at stage j, 1 <j <

J — 1. Notice when ¢, = ¢, = 1, (1.4) becomes ¢ =1, which is the Markovian

departure process of a standard M/M/I queue. It then approximates the distribution of input

queue occupancy (Buzacott and Shanthikumar, 1993, p76)

l_pja i:O,

RPN . (1.5)
Py (A=p)piz],

P(N,=i)= {

2 2
pj(cai + csi)

— (Note..here “Allen-Cunneen approximation for a
pj(cai +csi)+2(1 _pj)

where o, =

GI/G/I queue is used to obtain the above formula). This method uses the property:

cj/. =c, 1 to recursively find performance measures as the previous method. Specifically,

it lets ¢, be the SCV of the inter-arrival time of external demands. It then computes c;,

by (1.4) and K, = N, (since By = 0) by (1.2), whose distribution is known by (1.5). Given
K, it computes B; by (1.1), and then it moves to the next stage and recursively call the
above procedure until stage J. Notice these two methods only differ in queue occupancy
calculation between (1.3) and (1.5). Specifically (1.5) related to the SCV of departure
process (1.4). QBD method tries to directly solve the whole SC system by approximating
the input buffer to be finite number. Then it uses matrix geometric method (MGM) to solve
the finite QBD. However, the computation becomes intractable when J is large, say J > 4.
Instead, herein we use QBD process to decompose each queueing system in an SC and

therefore get tractable results. In this study, our evaluation model belongs to the last



method, matrix computation. It is essentially equal to recursive method. However, it
focuses on response times instead of queue occupancies. It implements the calculation with
simple matrix-algebraic manipulations. Herein we combine it with our proposed QBD
method and give it another name, matrix analytical method.

The optimization of the SC to obtaining strategic parameter setting for efficient
material flow can be categorized as the following methods: classical derivative-based
method, enumerative method, meta-heuristic method among others. These methods will be
fully explored herein. In this work, we show that through adequate “transformation”,
similar or more complex SC like fig. 1.1 can be tackled in adequate mathematic models.
Specifically, in the first phase, we built the evaluation model for an SC by proposing the
QBD modeling procedures for solving non-exponential, parallel processing, and
single-server based distribution systems. We also discussed possible extension of the
evaluation model with (r, q) controlled system dynamic. In the second phase we detailed
the analysis of parallel processing under supply-and demand uncertainties with the help of
Markov-modulated Poisson process (MMPP)-models. Finally, we investigated several
optimization methods, classical and modern, which may be used in strategic optimization

of an SC.

Retailers

Outbound Logistics

— OO — _...b_..o. ..... "'O_"' :I]:O %—E Customers

Distribution Center

Inbound Logistics Manufacturing

]ﬂ: Input buITerv: Planned Inventory

Fig. 1.1 A supply chain network.



1.2 Motivation

As is known, the operational environment is usually full of uncertainty factors. In this
respect, the stochastic modeling of an SC in a systematic approach seems natural and
necessary. This analytic direction focuses on infinite horizon; therefore it should be
categorized as the strategic planning phase of an SC. Though there is already a large body
of literature discussing several aspects in quantitative analysis of stochastic SCM (Tayur et
al., 1999) such as supply contract, collaboration, operational management etc., several
issues remain to be addressed. Among them, an integrated SC model is still lacking. The
purpose of studying the behavior of integrated SC models is to quickly identify the pros
and cons of an SC design in the long run. Usually the operational goal of an SC is to
maintain a quick responding SC with minimum operating cost. However, owing to the
sophisticated nature of an SC, mgst stochasticsmulti-echelon SC models only focus on an
individual phase. Some models:focus on the interaction between warehouse and retailer
operations. Others focus on the':study.of ‘the-production phase. When the focus is on
distribution system, the supply is usually ‘assumed unlimited, and consequently supply time
is assumed constant. This assumption neglects the processing variability at the supply
system. Likewise, when the focus is on production system, there is no information about
the subsequent material flow from the transportation to the end users. System performance
changes due to the variation embedded in processing, transportation, and distribution
phases is therefore ignored. This motivated us to propose a systematic design and analytic

framework for an integrated SC.

1.3 Objectives

As depicted in fig. 1.1, a typical integrated SC model includes several operational

phases such as production, distribution and transportation. In the past, simulation model



seems to be the only viable approach to analyze such complex supply chain topology.
However, we show it’s possible to develop a computation-efficient analytic model. The
integrated analytic model is depicted in fig 1.2. Especially we will investigate the
feasibility of our proposed QBD model to solve non-Markovian arrival and/or service
processes and non-tandem supply structure (such as a distribution system). Based on the
integrated system dynamics of such QN, optimization procedure will be able to be
conducted based on (1.1) and (1.2). Since the studied problem is highly nonlinear inherent,
meta-heuristic methods will be employed on general problem structures such as fig 1.1.
Finally we will discuss the impact on the system performance due to the variation(s) of

unreliable supply and/or demand in processing, transportation, and distribution stages.

Stochastic SC

Network
Y \d
Capacitated QN Capacitated QN
w/o planned Inventory w/ planned Inventory
(Jackson, 1957 & 1963; (Lee &Zipkin, 1992)

Perros, 1994)

Evaluation Optimization
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(Lee & Zipkin, 1992) (Chap. 5)

Meta-heuristic
Optimization
Methods

QBD Process
Decomposition

(Chap. 3 & 4) (Chap. 5)

Fig. 1.2 An integrated framework for stochastic supply chain analysis.



1.4 Scope and limitation

This work uses daily operational data and probability distributions as input to the
analytic framework. However, it belongs to strategic level of SCM. The major scope of
this study is to find adequate steady state performance measures of an SC with tandem or
any other tractable topology and manageable system dynamic. We assume the behavior of
the studied SC is predictable such that it can be modeled as stochastic process with various
probability distributions. Hence we rule out any abrupt behavior of an SC, such as
unwarned unavailability caused by natural disaster, strike etc. As compared to traditional
single stage inventory analysis, this work studies multi-echelon inventory control in SC
domain. It used abstract level of modeling approach, neglecting unnecessary details inside
each echelon. However, this limitation can be relaxed by other advanced modeling skills
such as QBD process introduced:in _chapter 4. This study limits to continuous review
base-stock inventory control ‘policy. Unless othetwise stated, we assume service
distributions are exponential at -all .stages'-except for distribution stage where a
Hyper-exponential probability distribution /s purposefully modeled. For the modeling of
inbound logistics, exponential distributions are also assumed for each supplier’s processing.
We assume there is an infinite input buffer for each stage along the SC, and that each stage
uses the base stock control policy to manage its finite output buffer. Also, unit transfer is

assumed and the supply discipline is assumed to be first-come-first-served (FCFS).

1.5 Organization

This study is organized as follows. Chapter 2 reviews related work. Chapter 3 proposes
our performance evaluation model. Chapter 4 discusses the advanced modeling approach
for uncertainty. Chapter 5 shows the optimization process. In chapter 6 we draw our

conclusions.



Chapter 2 Related works

2.1 Queueing network with planned inventory

Basic knowledge of probability models is necessary in solving stochastic problems, for
which we refer to Cinlar (1975), or Taylor and Karlin (1994), or Kao (1997). From
literature survey, we observed that all the evaluation models for solving planned inventory
type problems used system dynamic of (1.1) and (1.2) in chapter 1. Svoronos and Zipkin
(1991) first proposed the matrix-computation approach to solve multi-echelon
distribution/inventory problems. The authors assumed unlimited capacity with stochastic
lead-times. In particular, the lead-times are unaffected by demand. The major result of
Svoronos and Zipkin (1991) is that the transit-time variances play an important role in
system performance. Later L & Z used similar-approach to discuss the model of a tandem
queue with planned inventories:The model itherein assumed finite capacity. It used the
model of Svoronos and Zipkin: (1991)“as an approximation. In order to make the
approximation reasonable, it set the parameters of the lead-time to correspond with the
average lead-time in a queueing system. Hence the lead-times depend on the demand. The
simulation results showed the accuracy of the approximation model. More research, which
assumes that only the output buffer at the final stage is positive while the others are zeroes
and most involving multiple final products can be found in the literature as reviewed by L
& Z therein.

Based on L & Z, several studies developed approximation models of tandem supply
systems. Using another recursive method, Zipkin (1995) calculated the same tandem
congested problem through the convolution of M/M/I queueing systems. They concluded
an important concept, namely that a tandem queue with feedback built-in can be treated as
capacity loss. Herein we relate the concept of capacity loss with adjusted traffic intensity

as shown in chapter 3. Duri et al. (2000) extended the processing network of L & Z to
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allow phase type distribution and they used convolution theory of two phase-type
distributions to get the sojourn time at any complex stage and obtain similar accuracy of
performance. They then used simple enumerative search to find the optimal buffer
allocation assuming searching bounds of buffers were known. Actually we find their
approach is very suitable for modeling complex system dynamic inside each echelon as
shown in fig. 1.1. For example, the inbound logistics compose of a serial processing
following by a transportation process. This may be modeled as a convolution of two
phase-type models.

Boyacy and Gallego (2001) used constant lead-time assumption at each supply stage
with Poisson arrival. Using SCV method, Liu et al. (2004) first proposed an efficient
evaluation model (which we called SCV method herein) with reported percentage error of
deviation from simulation being 22.:712% under worst case for a congested tandem supply
system with J < 4 (J refers to stage.number). Gupta and Selvaraju (2004) investigated the
possibility of applying QBD process on ' SE;medeling. Though the computation difficulties
increase in stage number, the decomposition approach of applying QBD on individual
queueing system is tractable as reported herein. The flexibility of using QBD modeling
approach to ‘capture’ complexity of inner echelon (stage) processing can be found, for
example, in Neuts (1994, pp 274-286), where arriving customer order is served by multiple
parallel machines. The random unavailabilities of machines are attended by multiple
repairmen. The above review completes our survey of tandem supply systems. Except for
Boyacy and Gallego (2001), which assume constant supply lead-time, all are modeled as

queueing networks with planned inventories.
2.2 Multi-echelon inventory control theories

As for other multi-echelon inventory control theories, which we feel may contribute to

our understanding in this area and therefore are listed below. Sherbrooke (1992) used
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queueing theory to develop one for one (base stock) inventory control model for low
demand repairable (or recoverable) aircraft parts for US Air Force, called METRIC in
1968 where METRIC stands for Multi-Echelon Technique for Recoverable Item Control.
Several later stochastic inventory studies followed that approach. Besides, there are many
other inventory control policies, which were similar to or based on the above control
policies. Svoronos and Zipkin (1988) presented a two-moment approximation technique
with reference to distribution/inventory system. Axséter (1993a) presented approximate
and exact evaluation models of batch-ordering policies for two-echelon inventory systems
when retailers face unit demand. That investigation compared the proposed approach with
the technique presented in Svoronos and Zipkin (1988). Axséter (1993b) summarized an
overview of continuous review policies with reference to multi-echelon inventory models.
He showed that METRIC underestimates the performance of a system. Axséter (2000a)
developed an exact model of base stock policy to.evaluate the system performance. The
above investigations addressed only isituations-that involved identical retailers. Axséiter
(2000b) further proposed an exact amalysis='of inventory policies in a two-echelon
distribution/inventory system when retailers face customers with different compound
Poisson demand (non-identical retailers). We found almost all the multi-echelon inventory
control models reviewed above assumed unlimited upstream supply, and therefore supply
lead-times are assumed constant. Regarding this, the study of congested system seems to
be more practical since practically capacity of supply is seldom unlimited. Further, no
matter it is related to congested analysis or not, almost no literature surveyed above put
other unexpected settings such as machine unavailability, demand fluctuation etc. into its
modeling logic. The exception is Liu et al. (2004), where they investigated the impact of
processing variation on supply system performance. In our study, we stress the issues of
uncertainties and put them into the modeling logic. Concerning this, we refer to other

models related to uncertainties.
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2.3  Models related to uncertainties

Emre et al. (2002) used simulation and regression to set up rules-of-thumb to decide
adequate buffer capacity, which guaranteed high production efficiency of a tandem
production system with unreliable machines. Abboud (2001) used the discrete-time
Markov model to study the machine breakdown issue of a one-stage production/inventory
model. Mohebbi (2003), Kalpakam and Sapna (1997), Mahmut and Perry (1995) used
respective Markov models to formulate supply unavailability as two ‘on’ and ‘off” states,
and to study the embedded stochastic process to derive performance measures of interest.
For robust and practical reasons, stochastic model should also take demand uncertainties
into concern. As criticized by Thomas and Griffin (1996), market demand may not always
follow stationary Poisson process. However, the modelers often overlooked these factors.
As an example, Tee and Rossetti (2002);used Axsiter (2000b) as a test bed and run
simulation to assert that the system'behaviorunder stationary assumption may not behave
as expected when the assumption. is wviolated." Under our survey, another assumption
usually adopted in stochastic modeling is ‘“*single server”, which is usually seen in a
congested system analysis. The assumption does not seem to be practical. As is well
known, manufacturers often adopt manufacturing cell, which gathers together similar or
identical machines at one place to alleviate parts waiting time. The over-simplified
assumption and neglect in the impact of uncertainties in all the stochastic models may
make them far away from realistic application. MMPP is widely used as
telecommunication traffic modeling (Trivedi 2002). Ching (2001) investigated the use of
MMPP on several case studies of supply system with machine breakdown. However, he
used finite continuous time Markov chain (CTMC) model and adopted “single server”
assumption. In chapter 4, we address the issues of uncertainty in supply system.

Specifically, we used MMPP to implement our uncertainty modeling for a supply system
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concerning parallel (multi-server) processing.

2.4 An integrated framework for stochastic SC analysis

As we can see there were abundant and mature works in the literature related to
independent production/inventory or distribution/inventory models as surveyed above.
However, very little literature can be found on integrated SC model under stochastic
setting. To solve problems like fig. 1.1, any of the above literature does not seem to be able
to work if they work alone. As Houtum et al. (1996) pointed out that an integrated model
for analyzing a multi-stage, multi-product SC problem, which is theoretically sound and
numerically tractable would be recognized as a breakthrough in SCM study. Nevertheless,
we do find endeavor in this direction. Research on such models can be found at Cohen and
Lee (1988), Pyke and Cohen (1993 & 1994) etc. However they neglected the mutual
relationship between the different, subsystems: They didn’t consider factors of uncertainties
from upstream stages such as material unavailability, Which influences the behavior of the
downstream stage. Raghavan and Viswanadham (2001) is another example for problem
with infinite buffer setting. Gurgur (2002) used the decomposition method to separate the
whole SC into several two-node subsystems to facilitate the analysis and then used the
iterative approach to integrate all the subsystems to obtain the final system-wide
performance measures. In her study, transfer is assumed in batches and (r, q) control
policies were used. Since under her design there is only one single limited buffer between
any two nodes, blocking effect has to be tackled and thus is incorporated into the solution
algorithm.

As for queueing network with planned inventory setting, Dong & Chen (2005)
proposed an analytic framework for performance modeling and analysis of integrated
supply chains. They used queueing theory to model capacitated supply networks, which

composed of supplier, manufacturing, assembly, and distribution modules. The inventory
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control they used belongs to (r, q) type. The authors employed the classical derivative
method as the optimization avenue by differentiating performance measure of interest with
respect to decision parameters. However, their approach focuses on mathematic derivation
and therefore lacks investigation on possible insights in managerial applications. Also, it’s
very difficult for industry practitioners to understand the difficult logic of their mathematic
model. Herein, we propose the solution framework, which is computation efficient with
simple operation logic based on (1.1) and (1.2) of chapter 1. The method of L & Z
originated from phase type distribution. Zipkin (1988) first used phase type distribution in
inventory study and the main results achieved were that the marginal distribution of
lead-time demand has a discrete phase-type distribution with the same number of phases as
the lead-time distribution. Under L & Z, the matrix parameters have to be decided first. We
propose the QBD processes to model the systemlogic locally and use MGM to obtain
these matrix parameters for global linkage. For usings MGM to solving QBD, we refer to
Latouche (1999) and Neuts (1994). Actually, QBD process is very flexible in modeling
complex queueing processes. Neuts (1979 and 1994) used QBD process to model the
traditional machine-interference problem with external customer demand input. The
machine interference (repair) problem originates from the fact when a failing machine
needs repair and all the repairmen are busy attending the other down machines it has to
wait until one repairman is available. With the additional customer demand as input, QBD
can handle well. When we delve into the above literature, we recognized that the
formulation of an evaluation model for an independent system such as a
production/inventory or a distribution/inventory system needs great efforts to achieve
satisfactory results, to say nothing of trying to formulate an integrated evaluation model for
a whole SC under stochastic setting.

Our own study experience herein also showed that the direct construction of CTMC

models becomes cumbersome and error-prone and sometimes even intractable (chapter 4)
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if states become enormous. Recent research points to another high-level modeling
approach. Generalized Stochastic Petri Net (GSPN) provides a very useful high-level
interface for the automatic generation of underlying CTMC. However, since it’s beyond

the scope of this research. We leave it for the time being and recapture it in chapter 6.

2.5 Optimization of a stochastic SC

Except for the optimization method mentioned earlier, there are other approaches,
which may be suitable for solving large-scaled or special purposed SC problems.
Meta-heuristic methods are such examples. Among them, genetic (evolution) algorithm,
simulated annealing, Tabu search, were largely applied in areas of engineering and science
areas as shown in Pham and Karaboga (2000). Michalewicz (1999) introduced
meta-heuristic methods, and especially genetic algorithm, in detail. Yokoyama (2002)
compared the computational efficiency ofiarandom search and genetic algorithm in an
integrated optimization of inventory and the distribution system. In Yokoyama (2002), the
SC was first mathematically modeled-and,-then, optimal decision parameters were sought
using random search and genetic algorithm. The computational efficiency was evaluated
by comparing the number of computational iterations. Spinellis et al. (2000) used
simulated annealing to optimize finite-buffered production lines by using a so-called
“expansion method” as the evaluation method. In their study, they state that buffer
allocation problem (BAP) is a difficult NP-hard combinatorial optimization problem. It is
even more difficult that the performance measures are difficult to be expressed as
closed-form based on the decision variable. Exact approaches are appropriate for solving
small problem instances or for problems with special structures. For complex problem such
as an SC, it seems to imply that heuristic approaches are more appropriate for such
problems. Heuristic approaches can be referred to methods such as classical non-linear

programming search methods, or meta-heuristic methods. In this study, we think heuristic
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approaches may also include any naive method in simplifying the search method in an
efficient and accurate way. See for example Boyaci & Gallego, (2001) as reviewed later.
For BAP of finite-buffered systems, several other works have been reported. Ajay & Smith
(1997) proposed expansion method to model blocked QN and used the Powell’s method,
which is based on classical conjugate gradient search to solve the BAP for several test
problems of series, split, and merging types. The results were verified through simulation
runs. For a finite-buffered production line, Liu and Lin (1994) proposed an approximated
evaluation method for an unbalanced production line and even for long production lines. A
dynamic programming method is proposed to find the minimum buffer units to provide
maximum system throughput. Gurgur (2002) used design of experiment (DOE) to locate
the optimal buffer setting.

As for BAP for MTS systems some works adepting base-stock policies can be found.
Graves & Willems (2003) developed two models -tackling problems of safety stock
placement, which relate to service level requirements and assume normal supply lead-time.
They employed several industrial cases to.illustrate the applicability of the models. Further,
the authors formulated a nonlinear mixed-integer optimization program to decide issues of
SC configuration such as option selection and the service time decisions. Boyaci &
Gallego (2001) used enumerative search to solve the BAP under pre-specified service
constraint. Also they compared different heuristic methods with enumerative method.
Two-stage heuristic (TSH) restricts that only two stages hold inventories, the last and some
other stage. The Majorization heuristic (MH) uses greedy procedure that initially places all
the stock at stage J and then moves maximum possible stock to stage J — 1 while retaining
feasibility, and it repeats the procedure for J — 1, J — 2, etc. The mixed heuristic (MXH)
modifies the sequential push mechanism of MH. Instead of moving maximum possible
stock from stage j directly to j — 1, it compares the potential cost savings of moving

maximum stock to all possible upstream stage 1,..., j — 1 and choose the best location j*,
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and repeats the procedure for stage 1,..., j* — 1. Liu et al. (2004) tried to minimize the
holding costs of planned inventories of a congested tandem supply system under service
constraint. They proposed a so-called “relaxation-recursive approach” to implement their
optimization process and apply this optimizer in managerial studies. In addition, they
investigated the impact on system performance by factors of output buffer, workload
sequence, and service-time variation. Axséter (2000b) proposed truncation measures in
search process, which is to systematically disregard events with very low probabilities.

In addition to the above analytically tractable models, which may depend largely on
pre-specified assumptions to work, many of the literature used simulation as the
performance evaluation tool accompanied with some optima-searching methods for
large-scaled SC problems. For example, Alberto 1. et al. (2002) used simulation as the
performance evaluation tool and employed evelution strategy (ES) as the optimization
method to tackle a goal-programming problem-for a European recycling plant project. The
outputs of simulation runs serve-as fitness-functions of optimization process. The outputs
of ES serve as input parameters of simulation ‘process. The optima were found after
iterative simulation runs. However, the major flaw of simulation is time-consuming. In this
study, we developed several optima-searching algorithms. Some of them follow the spirit
of Alberto 1. et al. (2002). However, the evaluation functions are derived through

analytically tractable forms instead of simulation.
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Chapter 3 An integrated evaluation model

3.1 Introduction

Our objective in this chapter is two-fold. The first is to develop a flexible modeling
approach, which can ‘capture’ realistic activities inside each stage, such as parallel servers,
machine unavailability, etc. We used QBD process to achieve this goal. The second is to
extend the applicability of L & Z to include into our model not only a tandem-processing
network but also other SC subsystems. Unlike L & Z, which assumed single server and
exponential distribution at each processing stage, our model relaxes these assumptions and
hence allows for more modeling flexibility. Our model is also a variant of classical tandem
supply network. Different from previous related works (see literature review below), our
work links production/inventory _sSubsystem ‘:and distribution/inventory subsystem.
Transportation process is considered as well:!All three subsystems have limited capacities
(actually we use single-server settings.in"the-main-part of this study). Through QBD
transformation, the original complex topology.-0f an integrated stochastic SC becomes
tandem-like and hence tractable. We also used QBD process to model machine
unavailability, which makes our model more real than other integrated stochastic SC
models such as Cohen and Lee (1988).

In this study we assumed that there is an infinite input buffer at each stage along the SC,
and that each stage uses the base stock control policy. A policy of this kind demands that
each stage starts operation at its own target inventory level at its output buffer. Under such
scheme, the output buffer at each stage is set to be finite, while the input buffer at each
stage doesn’t have to be set so. However the infinite assumption at the input buffer of each
stage releases the difficult analysis of possible blocking effect when units at the upstream
stage cannot find any vacancy at the input buffer of downstream stage. Also, unit transfer

is assumed and the supply discipline is assumed to be first-come-first-served (FCFS). For
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practical reason, there is usually a natural quantity unit for both demand and supply (e.g.
truckload or 1 000 tons/ unit load), and in terms of that unit it makes sense to set order
quantity to be equal to unity. First we formulated the respective stages as either M/M/I or
phase-type queueing model. For the latter type, we then used the QBD model of the
Markov process to derive respective sojourn times. Finally, the method of L & Z was
applied and then the system-wide performance measures were computed approximately
with respect to the base stock levels at all sites. A simulation model was also developed to

facilitate the verification study of the accuracy of the proposed approach.

3.2 Matrix analytic approach

The inventory control scheme of our proposed approach is the base stock policy. In
practical production/inventory control’policies;in contrast to centralized (and push-type)
control scheme like MRP, thereare other-local (and pull-type) control policies like (r, q),
KANBAN and their variants except for base-stock-policy. Though we used base-stock
policy in this study, the extension of the existing model to other control policies is possible
(this will be investigated in section 3.5). Below we illustrate why we select this policy
instead of other pull-type control schemes.

The base-stock policy makes sense when economies of scale in the SC are negligible
relative to other factors. For example, when each individual unit is very valuable, and
hence holding and backorder costs dominate any fixed order (set-up) costs. Likewise, for a
slow-moving product (one with a low demand rate where Poisson distribution is adequate
to model the arrival process), the economics of the system dynamics clearly rule out batch
size (Zipkin, 2000). When the above conditions no longer exist, for example, economies of
scale do matter; other control schemes such as (r, q) policy may be more adequate than
base-stock policy. In this study, we assumed processing conditions are like those

mentioned above so as to use base-stock policy accordingly. On the other hand, since
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KANBAN 1is more restrictive when possible blocking may occur due to no immediately
available KANBAN cards at hand when demand arrives, we select base-stock policy as our
major control scheme to quickly verify the applicability of the proposed model in the first
place. Also, base-stock policy is not uncommon in practical production/inventory control
situation. Finally, it’s known base-stock policy can be treated as the building block of (r, q)
policy and therefore we begin our study from the base-stock policy.

Next we discuss how the base stock control policy works. This policy is also called
(S-1, S) policy. Where S represents base stocking level. This policy means that whenever
demand reaches one unit, the inventory is immediately replenished. Under our proposed
model, each stage along the SC has its own input queue (N;) and output buffer (7))
physically or imaginarily, where semi-finished or finished products are kept. Assume
infinite N; and finite /;. Aggregate customer demands at the retailers trigger the delivery
from the distribution center (DC). This demand information propagates to the production
facility initiating a production order at.each.stage. For a specific production, transportation
or distribution stage j, a material flow comes from the output buffer of the immediate
upper-stage j-1. If the inventory at the buffer is available, one item is immediately
deducted from the output buffer of j-1 and sent to the input queue of j. If the inventory at
the buffer is not available, one item is backordered and recorded at j-1. When there is one
part/product finished at stage j and there is recorded backorder, then the item will be sent
immediately to the input queue of the next stage. Otherwise it will just stay at that stage as
a base stock item. Under base-stock control, the stage adopting MTS policy will maintain
its own stock level and reduce customer-waiting times downstream as compared to an
MTO policy. Next, the models developed by Svoronos and Zipkin (1991) and L & Z are

briefly discussed. In subsection 3.2.2, our proposed approach is presented.
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3.2.1 The approximation model
Consider stage ;j and its immediate predecessor stage i. Then, Svoronos and Zipkin
(1991) defined the following: L; = D; + T; and assume 7} and L; had continuous phase-type
distributions (CPH) as follows: 7, ~CPH(a,,4;) and
L, ~CPH(y;,G) 3.1
Let 7 denote an identity matrix and 1 a column vector of ones whose dimension is chosen
to fit the content of the context. Then, they indicated that K; has the same distribution as

the lead-time demand. This property combined with Neuts (1981) theorem 2.2.8 implies
that K; has a discrete phase type distribution (DPH): K, ~ DPH(7;, P;) where
P=2(Al~ G;f)’1 (3.2)
=y (3.3)
Since B, =[K, — S,]", where [x] =max{x,0} is a- shifted phase-type distribution, it
follows that B, ~ DPH(z,P", P)) (Neuts 1981;p. 47). According to Svoronos and Zipkin
(1991), B, has the same distribution as the waiting-time demand. Again this property
combined with Neuts (1994) theorem 2.2.8 implies that D, ~ CPH(w, P>, G, ). From the
definition of L; (3.1) is the convolution of two phase-type distributions: D; and 7;

According to Neuts (1981) theorem 2.2.2, since L, =D, *T, ~ CPH(t//j,G;), where *

represents convolution operation, then

v, =P’ (1-y.Pa, ], (3.4)
. |G -G la,

G = 7. (3.5)
! 0 A./

As L & Z assumed each processing stage to be exponential with one single server, then
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(3.5) can be expressed as (3.6) (see the following) after some recursive algebraic

operations starting from stage 1:

- - _
v, v, O
G = . , (3.6)
0 V. v
L v

where v,,k < j represents the inverse of the sojourn time of customer order at stage k. In
our approximation approach, we relax the assumptions of exponential and single server.
The inverse of sojourn time: v, is obtained through QBD modeling. Under this approach,
the processing activity at each stage can be modeled as complex as possible theoretically.
This approach largely enhances the flexibility of the model.

Since there is no waiting time before the first stage, the distribution of L; is the same as
T}, which is already known. Starting at w,=[1], L & Z recursively solved (3.4) by using

(3.2) and (3.6) and let «, = 1. From the property 0f:DPH, they finally derived
Pr{K,>S }=n,P)1,
and
E[B,]=n,P)'(I-P,)"'1, (3.7)
where z; is obtained from (3.3). Alternatively we find it’s simpler to derive (3.7) as

follows
E[B,]= Y (K,-S)Pr{K }
K;>S;

= 2Prik; >y}

»;2S;

= ZEijy’l

Y28,

=m,P(I-P)"'1
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Here we use the tail probability to derive the second equality. Since S, =/, +K, - B,
where 7, represents on hand inventory at stage j, L & Z gave

E[1,]=S, - E[K,]+E[B,]

B 1y . (3.8)
=S, —n;,(I1-P;)) 1+ E[B|]
Notice that the first moment of DPH was used to derive the last equality of (3.8). For j <J,

this quantity together with E[N ], gives the total intermediate inventory between stages

jandj + 1. When all the S; equal to zero, the initial probability vector of the Markov chain

is (1,0,---,0), so that the sojourn time in the queue, if it’s a pure tandem one involving no

feedback or breakdown issues, is the sum of independent J random variables with mean

1 l. . . . . N
—, where —is the respective sojourn time at stage j. Consequently the approximation

Vv, V;

can be verified to be exact. Howeyver, in our test. model, which we will discuss shortly, the
queue involves feedback and breakdown. Under this situation, the respective sojourn time,
except for the first stage in the tandem queue-is still-that of a M/M/I queue. However we
have to modify the sojourn time at ‘the" first stage to improve the accuracy of the
approximation model as discussed in section 3.4. For now, we will only focus on the

build-up of our approximation model as described below.

3.2.2 The proposed approach

Now we discuss how to use the QBD process combined with the approach of L & Z to
derive the performance measures of more complex SC. First we discuss how to break the
original queueing problem into many smaller queues along the chain. Then we use the
matrix computation approach developed by L & Z and plug in all the decomposed
sub-queues sojourn time information as the matrix parameter to derive the final

performance measures that are of interest to us.
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Our sub-queues include two types: the M/M/I queue and the phase type queue. For the
M/M/1 queue, the derivation of sojourn time is well known by simply applying the well
known Little’s formula. For the phase type queue, our model demands that each job
arriving at stage j may have to go through several physical processing phases before it
finishes the processing work and releases the occupied resource to the next arriving job
waiting in the queue. Under this stochastic process, the infinitesimal generator matrix will
have a tri-diagonal block form. Markov chain with this form is a QBD process. Applying
the theory of QBD, we can derive the expected sojourn time at this processing stage. As for
the distribution subsystem, we can also treat it as an M/PH/I queue and apply the above
QBD process derivation procedure. Alternatively we can accumulate all the retailers as a
single stocking site and treat it as an M/M/I queue, which will later be shown to be equal to
the M/PH/I queue under some specific conditions:.And we then calculate each individual
retailer separately and finally we obtain aggregate performance measures for retailer site.
In the following, we use the steady-state probability derivation procedure as illustrated in
Feldman (1995, see Appendix A.1) to derive theé sojourn times in an unreliable production
stage and a distribution stage respectively.

First, we derive the sojourn time for an unreliable processing stage. Assume 0 and 1
phases represent the breakdown and operating states respectively. And, assume all

stochastic processes are Markovian with parameters A, u, ¢, y , representing mean arrival,

processing, and the up and down rates respectively. We can then formulate the phase type

generator as

77 % 6,
G=| & —(u+d)|n {0 0]
0 0 |o

(Note that the bold character form represents vector or matrix.) Assume the initial

probability in the phase stage as a. =(0,1), apply (A.1.5), and after some matrix
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algebraic operations, we get

A

4

A+y 7
A ¢ A
A+y w  u

(1+<)
R H

which is consistent with Buzacott and Shanthikumar (1993, pl122). Applying the

expectation formula (L = Zn -p" ) and (A.1.4), we can easily obtain the expected number

el
of orders in the system
L=(1-p)a.R(I-R)7’1 (3.9)
where the traffic intensity rate is
p=AE[T]=-a.G.'1. (3.10)

The last equality of (3.10) is from: the CPH distribution. Then the sojourn time in the
. . : o X L
processing stage can be obtained by applying the Little’s formula W, = h

Since every distribution can be approximated-as closely as desired by phase type
distribution (Svoronos and Zipkin, 1991), it seems that we can formulate any stage in the
SC as a QBD process in a very flexible way. For now, we will now apply the same
approach to a distribution subsystem and show that the end result is the same as treating all
the retailers as a single stocking unit under some conditions. Basically the random process
of a distribution system can be modeled as a Hyper-exponential process. Recall a
Hyper-exponential distribution as shown in fig. 3.1. We can treat the start node as the input

queue to each retailer route. ¢; is the probability of which route the transportation will

take.
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Fig. 3.1 A transition diagram of a Hyper-exponential distribution.

o . A
In the long run, under normal conditions, ¢, can be approximated as Zlﬁ , where

i
A, represents the mean order rate for retailer i, and the denominator is just the average

aggregate demand rate. Node 0 canbe thought of as the location of the collective single
stock-place. For ease of derivation, assume that the expected delivery rates for all routes

are identical, that is g, = u, =--%= u, = . Also assume that there are m retailers, and

that all customer demands are “identical,” ‘that is A4, =4, =---14,=4 and thus

a,=0,="a,= % Then we have the following phase-type representation:
a=(a,a,,,a,)=a, (3.11)
s M
: G. |G,
G = = (3.12)
—H | H 010
0 |0

Applying (A.1.5), we get

(A +mu)A 2
mu(A+u)  mu(A+ p)
R= -
A (A+mu)A
| mu(A+ p) mu(A+ ) |
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Applying (3.10), after some algebraic operations, we get p:i and using (3.9), we
y7,

derive

L=(0-p)a.RI-R)’1

=(1 —i)[l,---,l]R(I—R)‘Zl (3.13)
U m m

We used the symbolic math toolbox of MATLAB to derive the last equality of (3.13) by
plugging in any number of m greater than or equal to 1, otherwise it becomes too
laborious to derive manually. Actually we found that by using the Pollaczek-Khintchine

formula, the result is the same as the above. The square of coefficient of variation of the

VarlT] _2a.G.’1l-(-a.G.'1)?
E’[T] (-a.G.'1)°

service time of the above M/H,,/I queue1s Cf £ , which is

equal to unity by plugging in (3.1) and (3.12) and after some algebraic operations. Notice

here that we wuse the first . and -'the /second moments of CPH. So

w, =l(1+C?)VI~/ :L where W.'is the waiting time in queue of an M/M/I
2 S q ﬂ,) q

ppt =
queue with arrival rate A and service rate u.

We have just shown that if all the initial probability and service rate at each phase of an
M/H,/1 queue are identical, then its performance is the same as an M/M/I queue. Though
the above result can be easily identified on the probability density function of
Hyper-exponential distribution, our purpose here is to illustrate how QBD can handle such
distribution structure usually seen in an SC study. Here we use a special case to illustrate
the derivation process. However the application is not limited to such special distribution
form as assumed above. For the sake of brevity, we omit the details here. However, we
show the general case in chapter 5. We have indicated how to derive all the sojourn times

inside each stage for a realistic SC. Now we can use L & Z to derive the performance
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measures of a tandem queue. We test the accuracy of our proposed model by employing it
on a tentative multi-echelon production, transportation and distribution system as described

below.

3.3 Implementation

3.3.1 Atest problem

A multi-echelon production, transportation and distribution model as shown in fig. 3.2
is employed as a test bed for our method. To keep the study manageable, we restrict our
attention to a very basic model. The production facility (PF) produces finished goods to
downstream retailers. The retailers face a stationary Poisson demand process with mean
inter-arrival time of 1/A. Machining process is as introduced in section 3.2. Successfully
finished goods will leave the machine and go to the next stage for final inspection before
shipping to a remote DC. After<inspection, any imperfect product has to go back to the
processing stage for reworking. Assume that-the feedback rate is constant with probability
0. For the sake of simplicity we assume-that the second (inspection) stage will never fail.
Products passing inspection will wait at the shipping area, ready for transportation to DC.
Upon arrival at the DC, the product will immediately be transported to the assigned retailer
whenever a transporter is available. Again, for the sake of simplicity, we restrict all
transporting vehicles between any two sites to one. Assume that all the transportation times
are stochastic. Applying the method as described in section 3.2, we formulate this problem
as a tandem queue with 5 independent stages. The first stage is the production stage with
the unreliable machine being formulated as two “on” and “off” phases. The second stage is
the inspection stage. The transportation from PF to DC and the DC itself are formulated as
respective M/M/1 queueing systems. Finally, the distribution stage is formulated as a phase

type, even though it is easier to accumulate all the retailers as one single stocking site, and
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treat it as an M/M/1 alike, as shown in section 3.2.

Producer Distributor

_____________________

Fig. 3.2 A multi-echelon SC with feedback consideration.

Please note that we omitted the other N, and I; except those of PF in fig. 3.2.
Specifically, N;, the input queue of the transit from PF to DC; I3, the output buffer of the
transit from PF to DC; Ny, the input queue of DC; I,, the output buffer of DC, N5, the input
queue of the transit from DC to retailer; 15, the'output buffer of the transit from PF to DC,
which is set to the accumulative retailer inventory level in this design. Further, assume
there is an infinite supply at the first stage:

I; is always zero, assuming the MTO poliey.is adopted by this service. At DC, it’s
reasonable to adopt the MTS policy to lessen the customer order waiting time. Assume that

the DC processes its inventory with high efficiency at near zero operation time. This means

that each arriving good will be put into stock immediately if there is no backorder recorded.

When there is a backorder, the arriving unit will be shipped to the waiting retailer. Ny is
always zero as well. If the customer order arrives, and the stock is out, a situation, which
the MTO-type control is sure to encounter, unfilled orders are backlogged and will be

satisfied when replenishing goods arrive on a FCFS basis.

3.3.2 Numerical results

Here reports our tests of the approximation of the model illustrated above, and

compares its predictions to estimates derived from computer simulation, as illustrated in
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Appendix A.2. Basically we follow the same test approach as reported in Zipkin (1995)

with some modifications. The queueing system at PF is just like an open Jackson network.

Thus the A are all identical to A/(1 — J), where Jis the feedback rate. All p, are equal to

p = AUu(l — 0)]. To test the taxing condition on the performance of the approximation, we
fix 6= 0.5. pis determined by A/u. Assume that the mean demand rate for each retailer is
0.25 and that there are four retailers. The combined demand rate is 1. We fix u to be either
2.5 or 4, and thus p is 0.8 or 0.5 respectively. Assume mean failure and repair rate to be
0.25 and 2.5 respectively. Assume that the average transportation time is 1/4. We adopt a
similar simulation stopping criteria as reported in L & Z and Zipkin (1995). Each run
simulates thirty replications of 10 000 time units. Assume there is a holding cost of 0.5 for
working-in-process per unit and per unit time, a holding cost of 1 for the end retailer
inventory per unit and per unit timie, a backordér cost of 10 for unfilled retailer orders per
unit and per unit time. Five key performance measures-are measured, TC (the total incurred
cost of operating the chain, which is“equalto-0.5-WIP + E[/] + 10-E[B], see below), SL
(average service level measured in no stock-out probability at the retailer site), WIP (the
total intermediate inventory, which is defined as all the working-in-process, inventory level
at DC, and all the queues of transit, [1+N2+I2+N3+I14+N5, in this case), E[/] (average
retailer inventory, which is omitted for space consideration), E[B] (average retailer
backorder). Note that in calculating WIP, 13 and N4 are always zeroes, as described above.
Tables 3.1 and 3.2 summarize the results. Note that the parameter setting of table 3.1 is the
same as in Zipkin (1995).

Also notice that the ‘SL’ column is not listed in table 3.1 since they are all zeros. The
column labeled S; is the initial base stock level at the respective stages. The column labeled
‘Sim’ represents the simulation estimates; ‘App’ stands for the approximation, and ‘%Err’

is the absolute percentage error of the approximation compared to the simulation value,
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which is defined as [App — Sim| / Sim x 100%. It is evident that the approximation is quite
accurate for table 3.1 with all retailers adopting base stock policies with S5 = 0. Table 3.2
shows the results when all retailers adopt base stock policies with S5 # 0. Also, we adjusted
the stock levels for all the other stages according to base stock levels of table 3.1. From
table 3.2, we see that when S5 # 0, the accuracy of the matrix approximation method is also
satisfactory. From table 3.2 several useful observations can be made. For example, in the
case of S5 # 0 with p = 0.5, an increasing stock level at different stages, except at the last
stage, seems to have the same effect of performance influence. The total cost and WIP
levels increase and the service levels increase very limitedly while backorder levels
decrease slightly. On the other hand, an increasing stock level at the last stage, i.e., retailer
inventory level, does increase the service levels and decreases the backorder level,
however it does so at the price of higher tetal.cost, Which is due to higher retailer inventory

levels.

Table 3.1 Approximation vs. simulation (S5 = 0)

TC WIP E[B]
P Si Sz S3 S4 “Sim App %Err Sim App %Err Sim App  %Err
0.5 0 0 0 0 30605 30.177 140 1684 1668 095 2949 293 0.64
0.5 1 1 0 1 13237 13019 165 2825 28908 233 1182 11574  2.08
0.5 3 1 0 1 11388 10930 402 4350 4597 546 0921  0.863 6.30
0.5 1 3 0 1 9020 9011 020 4322 4414 213 0687  0.680 1.02
0.5 1 1 0 3 8494 8425 08l 428 4358 182 0635  0.625 157
0.5 1 1 0 5 7345 7420 102 608 6167 143 043 0434 0.93
0.8 0 0 0 0 11803 12501 591 4625 4668 093 11825 12268  3.75
0.8 1 1 0 1 93.182 97455 459 4821 4900 164 9077  9.500 4.66
0.8 3 1 0 1 84620 83.820 095 5436 5507 131 819 8107 1.01
0.8 1 3 0 1 75606 81049 720 5126 5243 228 7304  7.843 7.38
0.8 1 1 0 3 76335 80931 602 5154 5232 151 7376  7.832 6.18
0.8 1 1 0 5 65.185 66975 275 5828 5807 036 6227 6407 2.89
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Table 3.2 Approximation vs. simulation (Ss # 0)

TC SL WIP E[B]
PSS S S Ss

Sim App %Err Sim App %Err Sim App %Err Sim App %Err

0.5 4 0 4 9309 9512 218 0919 0994 8.16 10.636 11.079 417 0031 0029 645
0.5 12 0 4 13.167 13497 2.51 0922 0994 7.81 18396 19.074 3.69 0028 0027 3.57
0.5 4 12 0 4 13248 13484 178 0923 0994 7.69 18596 19.068 2.54 0.026 0.026 0
0.5 4 0 12 4 13252 13482 1.74 0923 0994 7.69 18607 19.067 2.47 0.026 0.026 0
0.5 4 0 4 1216969 17.198 135 0999 1 0.10 10.624 11.079 4.28 0 0 N/A
0.5 4 0 4 20 24964 25.194 0.92 1 1 0 10624 11.079 4.28 0 0 N/A
0.8 4 0 4 29772 29923 051 0649 0702 817 8125 8331 253 2347 2335  0.50
0.8 12 0 4 23469 20958 1070 0742 0.836 12.67 13379 14.532 8.62 1416 1.075  24.09
0.8 4 12 0 4 19066 19.118 027 0816 0882 8.09 13947 14115 121 0930 0.889  4.44
0.8 4 0 12 4 22175 19.119 13.78 0.813 0.882 849 13744 14.114 2.69 1.026 0.889 13.38
0.8 4 0 4 12 23176 21999 508 0866 0.885 2.9 8125 8331 253 0976 0.888  9.05
0.8 4 0 4 20 25.047 23902 457 0944 0956 127 8125 8331 253 0407 0333 18.08

To conclude, the approximation does seem to work well for all the retailers adopting
either MTO or MTS operational strategies with one-for-one replenishment policies. When
we incorporate all the stochastic featuresyincluding imperfect quality, machine breakdown,
random transportation, and random distribution in the system, the degradation of the
accuracy is only slight, and is often” within the telerance limits of industrial use. The

feedback factor can be treated as capacity loss as concluded in Zipkin (1995).

3.4 Discussion and sensitivity analysis

For a tandem queue without feedback, every stage behaves just like an independent

M/M/1 service system. The sojourn time is exact by applying Little’s formula W, = b

u—A
in each stage, which is not influenced by base-stock setting at each stage. The
matrix-algebraic solution of the performance evaluation is approximately correct as
reported in L & Z. However, the sojourn time varies in the first stage when there is
feedback. We compared our findings with the numerical results of Zipkin (1995), which
are shown in Tables 3.3 and 3.4. Looking at Table 3.3, which is a two-stage system, it’s

apparent that the sojourn time (ST) at stage 1 increases when the stock level at stage 1 (S1)

32



increases for both traffic intensity rates (0.5 and 0.8). Fig. 3.3 shows this tendency for p =
0.5. We can see that ST starts from 0.5, when S1=0, and then increases when S1 increases
until it finally converges at near 0.7 when S1 is near 20. After modifying the sojourn time
at stage 1, which is obtained by simulation, and applying it to the matrix approximation
procedure, we get a closer match between approximation value and simulation value for
both performance values of WIP and E[B]. Here Sim(1) is the simulation values adopted
from Zipkin (1995) for comparison. Sim(2) represents the results from our own simulation
model. It shows great agreement when compared with that of Zipkin (1995). For
comparison, in Table 3.3 we show the absolute percentage error between App and Sim (1)
as indicated in the %Err (1) column as defined in section 3.3. The %Err (2) is the absolute
percentage error between App and Sim (2). The %Err (3) is the absolute error before
adjusting the sojourn time at stage 13 which is repotted by Zipkin (1995). It’s clear that the
sojourn time at stage 1 does influence the accuracy of the theoretical approximation value.

The WIP and E[B] of stage 2 as & funetion-of SI for a two-stage PF with p = 0.5 are
also shown in fig. 3.4 and 3.5. App (adj)-means the performance by applying adjusted
sojourn time to the matrix solution. App (‘adj) is the performance by not plugging in
adjusted sojourn time. We can observe minor differences between the approximation and
the simulation results regarding the base-stock level at stage 1. Table 3.4 shows the
comparison of simulation and approximation of a four-stage system. It seems that the
accuracy does not improve as expected for a system composed of more stages. However,
the accuracy does not degrade either for longer line. In conclusion we find that the impact
of the above analysis on the accuracy of the matrix algebraic method is limited. In the
worst case, the absolute error between Sim and App of WIP is only near 0.5. Therefore,
there is no adjustment made in the computing code of the implementation section.

As for our tentative SC model of section 3.3 we also tested the case when there is only
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feedback and no machine break down issue incorporated. Basically the difference between

App and Sim is also small, when compared to the numeric results of section 3.3. In

addition we investigated when there is only the influence of machine breakdown, and it

behaved as expected when compared to the simulation results.

Table 3.3 A two-stage system

WIP E[B] (S2=0)
p S1 ST Sim(1) Sim(2) App %Err (1) %Err(2) %Err(3) Sim(l) Sim(2) App  %Err (1) %Err(2) %Err (3)
0.5 0 0.501 N/A 1.005 1 N/A 0.5 N/A N/A 2.01 2 N/A 0.5 N/A
0.5 1 0.548 1.475 1.487  1.477 0.1 0.7 1.7 1.56 1.57 1.573 0.8 0.2 3.8
0.5 3 0.626 2.97 2.959 2.963 0.2 0.1 5.2 1.237 1213 1.215 1.8 0.2 9.1
0.5 5 0.668 4753 4748  4.746 0.2 0 5.9 1.095 1.089 1.082 1.2 0.6 5.9
0.8 0 2 N/A 3.997 4 N/A 0.1 N/A N/A 7998 8 N/A 0 N/A
0.8 1 2.089 4.145  4.233 4.2 1.3 0.8 1.3 7.253 7421 7371 1.6 0.7 0.7
0.8 3 2.176 4.894 4895 4.988 1.9 1.9 32 6.212  6.253 6.34 2.1 1.4 2.6
0.8 5 2.299 5983 6.014 6.121 2.3 1.8 6 5.575 5.622 5719 2.6 1.7 4.7
Table 3.4 A four-stage system
WIP E[B] (S4=0)
p  (S1,82,83) S.T.
Sim(l) Sim(2) App  %Err(1) %Err (2)- %Err(3) Sim(1) Sim(2) App  %Ermr (1) %Err (2) %Er(3)

0.5 (0,000 0498 NA 2.979 3 NA 0.7 N/A NA 3971 4 N/A 0.7 N/A
05 (1,L,I) 0549 4213 4229 41446 “ 16 2 0.6 2308 2333 22426 238 3.9 52
05 (3,1,1) 0568 5908 592 5.8492 1 12 0.8 2036 2057 1982 25 3.5 4.1
05 (1,3,1) 0575 5.695 5685 56131 1.4 1.3 0.4 1.841 1832 1.763 42 3.8 6.6
05 (1,1,3) 0591 5497 5478 5328 3.1 2.7 0.9 17 1658 151 11.2 8.9 15
05 (1,1,5) 0621  7.104 7093 69596 2.0 1.9 0.7 1371 1327 12016 124 9.5 15.6
08 (0,000 2028 NA 12066 12 N/A 0.6 N/A N/A 16126 16056  N/A 0.4 N/A
0.8 (I,I,1) 1998 1216 12262 123033 12 0.3 12 13213 13256 132993 0.7 0.3 0.7
08 (3,1,1) 2032 13064 12901 13199 1.0 23 1.1 12212 11957 12263 04 2.6 0.4
08  (1,3,1) 2041 12538 12723 12725 15 0 1.6 11735 11.809 11807 0.6 0 1.2
08  (1,1,3) 2033 12352 12513 124949 1.12 0.1 12 11501 11584 115609 0.5 0.2 1.1
08  (1,1,5 2095 12939 12951 128978 0.3 04 0.1 9.924  10.136 10.0878 1.7 0.5 1.8

As a final remark, from the open Jackson network, the feedback impact on traffic

intensity rate p = A/[u(1 — )] can be explained in two different ways, by either increasing

the input arriving rate from A to A/(1 — 0) or by losing capacity from u to u(1 — ). From
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our computing experience with the performance of a tandem queue with feedback, both
methods achieve the same results. Actually the equivalence can be easily verified through
simple matrix algebraic operation on (3.2) and shown that both P; are the same under these
two approaches. Since P; are the same the succeeding calculations of performance
measures obtain the same results. In analyzing the impact of ST of tables 3.3 and 3.4, we
used the arrival increase method. However, it’s better to use the method of capacity loss
when there is also a machine breakdown issue, otherwise the outcome will differ largely
from the simulation results. This can be seen from (3.9) and (3.10), the calculation of ST is

affected by R and G-and G'+is affected by capacity, not arriving rate.

0.75 !
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Fig. 3.3 Sojourn time of stage 1 as a function of S1 for a two-stage PF with p=0.5.
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Fig. 3.5 E[B] as a function of S1 for a two-stage PF with p = 0.5.
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3.5 Extension

For the derivation of (r, q) policy, it’s natural by using the fact that it is built upon
base-stock policy. The key performance measures such as the steady-state backorder level
can therefore be represented as the equal weighted sum of respective performance measures
at different levels of inventory positions (Axsiter, 2000 or Zipkin, 2000). Specifically, after

some algebraic operations, we may express the above argument as:

7"+q

E[B]= ) E[B(S)]
STI : (3.14)
= (E)nP(I —P) (I -P?)P’e

Note when q = 1, (3.14) becomes (3.7). To illustrate our argument, assume we have a
two-echelon SC: a production facility (PF) directly serves 4 identical retailers. The PF uses
base stock policy to control its invéntory whilethe rétailers use (r, q) policies to control their
stocks. The demand process at-the'PF is not Poisson but it is a superposition of several
independent renewal processes, “which“under suitable conditions resembles a Poisson
process (Svoronos and Zipkin, 1988). Assume the PF produces in units of retailer batches
and each retailer has its dedicated transporter. Here we follow Svoronos and Zipkin (1988)
and assume the arrival process at PF as Poisson processes. We then express the aggregated
arrival rate at the PF as NAgr/q, where A is the arrival rate for each retailer and N is the
number of the retailers. We also approximate the arrival process at the respective transit
stage as Poisson process with mean Ag/q. Finally we use the same modeling approach for
DC as shown in subsection 3.3.1 to model retailer activity, assuming that the retailer
processes its inventory with high efficiency at near zero operation time. Alternatively, we
can formulate this problem as a 2-stage SC, with respective retailer-stocks representing
planned inventories at the second stage. Using (3.14) and the fact: WIP = E[/[;] +

E[inventory in transit], we obtain performance measures for different combinations of
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inventory control parameters at each stage as listed in table 3.5.

Table 3.5 Approximation vs. simulation for the case where retailers use (r, q) policies.

WIP E[B]

Pi P2 S r q - -
Sim App Yerr Sim App Y%err
05 0125 0 0 2 0.53 0.571 7.74 0.659 0.83 25.95
0.25 0.063 1 0 4 1.001 1.016 1.50 0.091 0.12 31.87
0.167 0.042 3 0 6 2.978 2.974 0.13 0.041 0.045 9.76
0.125 0.031 5 0 8 4.988 4.986 0.04 0.031 0.033 6.45
0.8 0200 0 0 2 0.915 1 9.29 4.287 5.777 34.76
04 0.100 1 0 4 1.003 1.044 4.09 0.309 0.48 55.34
0.267 0.067 3 0 6 2.939 2.929 0.34 0.109 0.129 18.35
02 0.050 5 0 8 4.967 4.96 0.14 0.081 0.088 8.64

Here S is the base stock level at PF and r and q represent reorder point and fixed order
quantity at the retailers respectively. Under ‘the arrival assumptions at respective
echelons, p; and p; are calculated traffic intensities by changing different level of q and
letting Az fixed at either 0.5 or 0:8. u is fixed-at-2 for the server at respective echelons (No
feedback concern in this case). Also for-simplicity we don’t consider breakdown issue.
From the table we see acceptable accuracy exists when p; is low. We also test other cases
when p; is high and q is large by varying Az. Unfortunately the approximation is not
satisfactory for E[B] on most of the test cases. Some tests show Erlang distribution may be
more appropriate than the proposed Poisson distribution for the arrival process at
respective echelons. However such conjecture is related to phase type arrival and needs
further analytic efforts and numerical verifications.

As stated in section 3.1, we may use QBD process to achieve the goal of more
modeling flexibility. For example if we want to model multi-server at each subsystem with
each server suffering random breakdowns, we have an M/PH/m queueing system at each

subsystem. To model such queueing system by using the QBD approach, we may express
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the state space as nx(l)---x(i)---x(m) where n = customer number, x(7) = 0 (down) or 1

(on), 1 < i < m, and have 2™ states for n > m. We conjecture that the QBD modeling
approach for each subsystem may be treated independently from the linkage of the whole
SC. To justify our argument, we employed the same 2-stage example (Also no feedback
concern in this case) as in section 3.4 with some modifications that there are multiple
parallel machines at the PF and so are there at the second stage. Specifically we assume 2
servers for each stage. Assume the parameters are the same as in section 3.4. We form a
QBD process for the decomposed server queue at each stage. Table 3.6 lists the results for

different combinations of base-stock level at each stage.

Table 3.6 Approximation vs. simulation for cases with multi-server and breakdowns

WIP E[B]

P S1 S2

App Sim Yoerr App Sim Yerr
0.5 0 0 1.597 1.620 142 3.594 3.224 11.48
0.5 1 0 1.982 1.883 5:26 2.579 2.491 3.53
0.5 3 0 3.371 3256 3.53 1.968 1.853 6.21
0.5 5 0 5.140 5078 1.22 1.737 1.676 3.64
0.8 0 0 8.214 7.076 16.08 16.428 13.846 18.65
0.8 1 0 8.322 7.176 15.97 15.536 13.049 19.06
0.8 3 0 8.819 7.355 19.90 14.033 10.981 27.79
0.8 5 0 9.624 8.336 15.45 12.839 10.237 25.42

Clearly the accuracy is degraded when traffic intensity is high, but not significantly
serious, as compared to all the previous examples.

In short, it is possible a more general framework to accommodate for versatile control
policies may be developed by combining the QBD technique and L & Z. Since the basic
assumption for the approximation model of L & Z is that the queueing system at each
subsystem is independent. Under this assumption, we use QBD to model individual

queueing systems. However, the QBD approach often faces the problem of largeness, 1. e.,

39



too many states may make the solution intractable (For example, for the above mentioned
M/PH/m queueing system, if we have 20 parallel machines, the states become more than
one million). The challenge lies in how large and how sophisticated the QBD modeling
approach can allow as well as how accuracy this combining process can provide. All these

need further study as well as thorough numerical verifications.

3.6 Concluding remarks

We have demonstrated that by using the matrix analytical approach, the evaluation of a
complex SC where all the participants, including PF, transporters, DC and retailers use
base-stock control policies, performs as expected through simulation verification. The
relative errors between App and Sim are all below 10% for retailers adopting MTO
policies. When all the retailers adopt.the M TS policy, numerical studies also show that the
approximation is accurate for medium traffic. intensity and acceptable for high traffic
intensity. In this chapter the results are somehow similar to those of Zipkin (1995) where
the base stock level at the end stage is.set to zero. The present study shows that the matrix
analytical approach is very accurate, not just for the application of tandem processing
queue as reported by L & Z and Zipkin (1995) but also for the application of tandem SC
where the end stage can be of a distribution system. In the literature on the stochastic
production-distribution system, most models are developed and analyzed separately.
Unlike our model, these evaluation models are usually difficult to integrate as one single
model.

The most significant contribution of this chapter is that we proposed an originative and
useful system design and analysis tool for evaluating the performance of an integrated
stochastic SC. Although a rich body of multi-echelon inventories systems in the literature,
which use the same base-stock policies as we used herein, our idea is to provide a viable

scheme for solving integrated stochastic supply network in a flexible and realistic way. We
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used the simplest inventory control scheme of base-stock as the first step towards more
involved inventory control technique. Under the matrix analytical approach, decision
makers can easily formulate stochastic and/or factors of uncertainties, which are often
encountered in real life, as adequate queueing form and later integrate them together as a
single tandem queue. The performance measures are then readily available by simple
matrix-manipulated computation. In this chapter we also found that, the Hyper-exponential
queue M/H,/I can be used adequately to model a distribution subsystem of a supply chain.
The phase-type structure can then be handled as a usual QBD process. We illustrate how it
works by proposing a special structure, under which the distribution subsystem behaves
just like an M/M/1 queue. However numerical studies show it is not limited to such special
form by adequate modification of L & Z (we omit the numerical details here and recapture
it in chapter 5). We believe this modeling approach introduced herein is new in supply
chain study. The other finding is-that the sojourn time-of an order at the beginning stage of
a tandem queue may differ from the otheér-stages. This seems to violate the inherent theory
of an open Jackson network. Howevet; sensitivity study shows that the matrix analytical
approach still approximates well. In the extension section we test the applicability of the
proposed approach for another control scheme as well as for multi-server setting. We
employed two 2-echelon problems. Numerical studies of (r, q) policy are satisfactory for
low to medium traffic intensities when arrival rates of individual retailers are fixed at either
0.5 or 0.8. In the multi-server case the approximated results are more satisfactory with
medium traffic intensities than with heavy traffic intensities. Generally speaking, we see
the promising future of the proposed model as a quick and accurate SC evaluation tool not
just for base stock inventory control schemes but also for (r, q) policy employed at the
retailer site if traffic intensity of the studied queueing system is medium or low. Another
advantages of the study in this chapter is that the proposed method herein seems more

tractable when compared with existing multi-echelon stochastic models in the literature,
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which often used more involved stochastic process to derive performance measures of
interests. Finally, the closed-form solutions of the current model may be used as later SC

optimization applications.
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Chapter 4 Non-stationary arrival and unreliable service

Processes

4.1 Introduction

As is well known the real supply system is seldom fault-free. Unfortunately
operation-without-error is usually assumed in most stochastic models of SCM. The server
may breakdown sometimes. The operator may not normally work from time to time. The
over-simplified assumptions in all the stochastic models made them far away from
practical application. The cause of non-stationary demand may be due to seasonal product,
short product life cycle time, etc. Another assumption, which is usually used, is single
server. The assumption of single-server setting often seen in existing literature does not
seem to be practical. All these®supplymjand/or demand uncertainties and inadequate
assumptions should be concerned and built into the system dynamic of an SC to make the
developed model more robust and practical to'use. Fhe objective of this chapter is to find
an efficient analytic modeling approach. ‘This‘approach should be able to capture as many
uncertainty factors as possible embedded in a supply system under random environment. A
Markov-modulated Poison process (MMPP) is a stochastic process whose arrival rate is
“modulated” by an irreducible CTMC and is widely used as telecommunication traffic
modeling (Trivedi, 2002). In this chapter we tried to use MMPP to model supply and
demand uncertainties and used MGM to solve the proposed QBD model. The application
of the proposed model was illustrated by numerical studies. The results provide managerial
insights regarding adequate supply resource design under a MTO supply policy.

In kendall notation our studied problem is of M/M/m/c/co/FCFS type with
failure-prone server. Hereinafter we will refer to this queueing system as M/M*/m.

According to Jackson’s theorem, QN composed of M/M/I(m)/oc0/cod/FCFS nodes has
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product-form solution. The product-form solution even exits for tandem QN with feedback
or for arbitrarily linked network with Markovian routing (Trivedi, 2002). For generalized
Jackson network such as the one we studied herein where the renewal arrival process need
not be Poisson and i.i.d. service times that need not follow exponential distribution, the
stationary distribution usually does not have explicit analytic form. For such generalized
Jackson network, approximation method such as fluid or diffusion is usually sought for.
However state-dependent service times is more restrictive and therefore is not allowed for
generalized Jackson network (Chen and Yao, 2001). Since our service times are
state-dependent we abandon the effort on deriving approximation model. Instead, we try to
use direct approach, i.e. drawing state transition diagram of the CTMC under study, writing
down the balance equations, and proceeding to solve them through an algorithmic
approach. Though the process is cumbersome, this modeling approach can represent

system dynamics of complex supply systems more faithfully. It generates an exact solution.

4.2  QBD process decomposition

A Markov process is called a QBD process when its infinitesimal generator matrix has
a tri-diagonal block form. In this chapter we used MMPP to model demand and repairman
uncertainty. MMPP combined with existing machine-repair model can be easily
formulated as QBD processes to adequately represent versatile uncertainty environment in
a supply-demand system. Assume the SC model under study is depicted in fig. 4.1. There
are two echelons: production and distribution. We used decomposition approach to treat
each supply stage as isolated queueing system. First we apply Jackson’s rule to find traffic
process. Then we derive analytic model for each stage under possible resource allocation
combinations subject to available capacity restriction. Optimal resource allocation for the
whole supply network was then solved as the trade-off among costs of inventory holding,

customer waiting, machine repair and normal operation. Below is detail problem
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description. Assume k workstations arranged in tandem to produce one single product type.
Each workstation is composed of m parallel serving machines with » repairmen to attend
the occasional machine breakdown. Actually the supply system under study is a classical
machine-repair problem with modification of considering repairman on and off. Assume

the machine is subject to random malfunction whether it’s active or not.

Production

Distribution

Legend: N;: Input buffer; /;: Output buffer; 7;: Transpotter; DC: Distribution Center; R;: Retailer
Fig. 4.1 A multi-server supply network-of production and distribution echelons.

Note that since the work in this chapter is-a matrix-oriented study, we neglect the bold
face identification for a vector or a matrix for most of the cases when it can be easily
identified from the context. Also, server may be referred to as machine or transporting
vehicle.

The objective is to decide the optimal server and repairman deployment in a tandem
setting such that the total operation cost is minimized under capacity restriction. Below we
introduce QBD process, which forms the backbone structure of our analytic model. The
form of the infinitesimal generator of a QBD process representing M/M/m system with
server breakdown and repair can be expressed as the following (Neuts and Lucanton, 1979;

Neuts, 1994):

45



AIO An Alz
Q: AN—I,O Amfl,l Ao ? (4'1)
Az Al Ao
Az Al

where matrix component 4. is of dimension (m+1)x(m+1). 4, is the initial empty state
when there is no customer. 4, incorporates embedded machine-repair queueing system
when there are i (i < m+1) customers. A4, is a death process whose states composition

considers all possible number of operative servers and number of customers to be served.

4, 1s a birth process whose states composition considering all possible number of

1

operative servers. When i > m the evolution of sub-matrix of (4.1) becomes the same.

Since we assume infinite input queue at each'stage, each queueing system can be
represented as an infinite homogeneous QBD. process as shown above. The following
shows our algorithmic procedure for solving the whole supply system. First we solve the
embedded MMPP-formed server queue to get the average number of operative and
under-repaired servers. Then we use MGM to solve the infinite QBD model to obtain the
average customer queue length. Finally we use a simple search to find the optima for the
underlying optimization problem.

Step 0. Analyze arrival process at each stage by Jackson’s rule.
Step 1. Decompose original Queueing system into independent sub-systems. Input
system parameters such as resource, cost structure and transition rates for each

subsystem.

Step 2. Construct O under known resource limitation

Step 3.  Compute stationary probability vector zfor Q" for all possible solutions.
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Step 4. Compute p’ for each possible solution. If the queue is stable (< 1), the solution is
feasible. Then compute average number of operative and under-repaired
machines. Otherwise it is abandoned. Continue this way until all possible
solutions have been enumerated.

Step 5. Construct Q.

Step 6. Compute matrix R (see later definition).

Step 7. Compute stationary probability vector x for Q.

Step 8. Compute respective performance measure, specifically average queue length.
Step 9. Continue the above procedure until all queues have been decomposed and
analyzed.

Step 10. Solve the optimization problem for the integrated system

4.3 MMPP modeling of uncertainties

To understand MMPP we “explained’ - with a'state transition diagram of a simple
two-state Markov process as illustrated in fig: 4.2. o; is state transition rate. When system
is in state 0 the Poisson arrival rate is 9. When system is in state 1 the arrival rate is A4;.
This explains what “modulated” arrival process means. In the following we show how to
derive the sub-matrix of (4.1) considering other uncertainty factors embedded in an SC.
Specifically, we assume the uncertain factor of supply is mainly from server breakdown
with additional repairman on-off states. The demand process is assumed non-stationary
with two modes, low and high, which is often seen in seasonal products. Assume the server
is unreliable with reliable (stationary) or unreliable (non-stationary) repairman (demand).
We model all the (repairman/demand) uncertainties as MMPP models as shown in cases
4.2 to 4.4. First we show the typical machine-repair problem without considering any

uncertainty factors embedded for benchmark purpose. Also notice that there are two
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queues, customer queue and server-repair queue embedded in all the analytic models. The

kronecker algebra is used in our solution procedure to conquer the problem of largeness.

Ol

02

Ao M

Fig. 4.2 A simple MMPP process.

Case 4.1 Stationary demand, unreliable server with reliable repairman
Basically this is the machine-repair problem. From Neuts (1994) (pp. 274-286) and

also from (4.1), we get the following customer queue:

Ay = o —diag(Aysdyy o5 A) = 0" - A(R),
Ay = A, =23 Am—1,2 = Ay = A1),
A, =diaglumm(i, j),0< j<mj,for1<i<m-1,
A, =00 =AA) A0 <m -1,
4, =0 — (AB+4,);
A, =diag(0,u, 2u,---,mu) = A(u),

2

where diag(-) represents diagonal matrix with diagonal element specified by its parameters.

A(A) here represents state dependent arrival rate. Since in this case we model stationary
demand process and there is m+1 machine states we have m+1 arrival states: Ay, 41,--, An
with identical values. Q" is the generator of the CTMC model of the embedded

server-repair queue. Let states represent number of operative machines. It’s easy to

construct the following generator matrix:

m . .
Qj,j—l =Jjg,1<j<m,
(1)

O, =ymin(r,m—j),0< j<m—1,

a

) . . . ‘
Q,,=—Jj¢—ymin(r,m—j),0< j<m.
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From 0" we can solve it recursively and obtain the following well-known stationary

solution vector 7

{Zl Ly ¥ P T a5

0 . ]m—r+2.]‘ é,
( 2yiz, 0< j<m—r+1,
e
V4 —l(z)'ifﬁil(l—z)ﬂ m-r+2<j<m
’ .]' g =1 r o S

It’s known input rate must be less than output rate to maintain a stable queue from the
basic queueing theory. Thus the following equation must hold for demand queue under

study:
p=Q m i)Wy, jm,)" <L
Jj=0 J=1

And for m > 2 and customer number larger or.equal to machine number the following

repetitive equation must hold, which constitutes the main structure of a MGM method:

A(A) + R[OY = (A(A) +A())] + R*A(u) = 0,
xi — xm_IRi—m-%—l’

i =2m.
The objective is to find matrix R, which satisfies the above equations. Here x represent
stationary probability vector for solving (4.1). Starting from initial guess of R = 0 we use
successive substitution to obtain R as follows.
R, =AM+ REA@* QY —(A(A) + Aw)] ™.

When m = 1 it becomes a well-known M/M/I queue with machine breakdown and repair
problem, which can be dealt with algorithmically as in the above approach. In order to
obtain x;, i < m — 1 we use the same successive substitution method for R as suggested in

Neuts (1994).
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X, =[x,(A4y +Ap) +x,4, ]Ao_l 5
x; =[x, A) + X, (A, +A) +x;,, 41,010, 1< SN =2,
Xy ={xy ,AA)+ Xy [Ay +Ay, + RA(”)]}AN—I_I >

where Ajand A,,1<i< N —1 represent —diag(A4,,) and —diag(4,,) respectively, and

diag(A,) 1is a matrix composing of diagonal elements of original matrix: A4,. The

successive method will continue until the difference between the previous solution and the
current one is within some acceptable level. After x is obtained through numerical method
the queue length, which is defined as average number in the system can be obtained
through expectation formula. The standard deviation can also be calculated. See Neuts and

Lucanton (1979) for more details. Appendix B.1 shows related proofs.

Case 4.2 Stationary demand, unreliablerserver with unreliable repairman

Here we modify the well-known machine-tepair problem as in case 4.1 with additional
construction that the repairman ¢an also take on and off states. This consideration is more
realistic since operator may ill or'take breaks from time to time. We model the individual
two-state Markov process for each repairman as follows. Assume state 0 represents off and
state 1 on. We have the following infinitesimal generator and rate matrix (here the matrix

represents available number of repairmen) for this MMPP:

—0; Oj . . )
G, = ,where 1 < j <r, with arrival rate
c, -0,

00
A=
o

(Note here the arrival rates are constants, which is a special case of MMPP. However when
we combine available repairman capacity into server-repair queue, we derive the “true”
repair rate). And we get

G=G,®G,® -G, and

(4.2)
A=A ®A,® @A,

50



where @ represents Kronecker sum. Note oj; represents the transition rate from 0 to 1 and
0> represents the transition rate from 1 to 0 for repairman j. 4 @ B of two matrices 4 and B
of sizes m x m and n x n is defined as follows:

ADB=A4A®1,+1,08B,

here we use I, to represent identity matrix of size x and ® to represent Kronecker product.

A ® B of two matrices 4 and B of sizes m x m and n x n is defined as follows:

a,B a,B - a,B
az,lB a,,B - a2,mB

m,ZB T am,mB

a,,B a

Therefore (4.2) can be rewritten as

G=G, ®G,® &G,
=(G,® L, +1,RG,)® =DG;
=G,®L®®  +L,®C L@ +1,0],® -G,

and,

A=A OA, @A,
“A®RL®L® -+ ®A®L® -+, ®,®-®A,.

Finally, we obtain all the sub-matrices of (4.1) in this case as follows:

Ay = Q(Z) - /U(mmxzr 5

Ay =Ap =4, =4 =4 . =A4),

Ay = diag{umin(i, J),0< < m}® [, 1<i<m-1,
4, =0% — 4, - M), 1<i<m-1,

4,=0% - AA) - 4,
4, = diag(0,u, 2u,---,mu) ® I, = A(u).

Since here we incorporate repairman on-off factor. ¢ is the joint process of Q" and G.
Applying kronecker operation we get 0¥ =0V ®G=0"®1, +1,,,®G. However since

the availability of repairman will affect the joint operative capacity, we have to make some

51



modification. Further, we consider the repairman who cannot affect the failure rate of
machine. Thus we only have to make modification on upper diagonal sub-matrix and
diagonal sub-matrix as follows. Define

Jq=min((m—j)l,,A),0<j<m-1.
Then

OV =W, 0<j<m—1,

Jj+l

(~2') = j§X12r _J/min((m_j)lz"’Jj+l)+G’0Sjgm"]mﬂ =0.

BT
Notice the matrix element Q) is of the same size as G, in this case 2". For general case m
m_ 2" m_ 2"
> 2 the queue is stable if and only if p'=(D> > 7, 2)@).> jr,)" <1. The stability
=0 k=1 j=1 k=1

test of the following cases 3 and 4 are similar as the one done. The findings of x;, i <m — 1

and R here and those for cases 3 and 4 areithe-same as in case 4.1.

Case 4.3 Non-stationary demand, unreliable server'with reliable repairman
The infinitesimal generator of a'two-mode non-stationary demand process is as

follows.

D

-d, d, . i
, with arrival rate
d 2 d 2

A A0
oA,
where d) represents transition rate from “low” season to “high” season and vice versa for
d> and 4; is respective demand for this MMPP. Applying kronecker algebra we obtain the

server-repair process 0¥ =0V ®@D=0"®I1,+1,, ®D.

m+1

The sub-matrices of (4.1) in this case are as follows:
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AOO = Q(S) - A(ﬂ“):

Ay =4y ==4y=1,, 0N =A),
A4, =diag{umin(i,j),0£jSm}@]z,l <i<m,
4, =0 = A(2) - 4, 1<i<m—1,

4,=0" - A(A) - 4,,
A, =diag(0,u,2u,---,mu) ® I, = A(u).

Case 4.4 Non-stationary demand, unreliable server with unreliable repairman
In this case we combine cases 2 and 3. By using Kronecker algebra we obtain the

machine queue as 0¥ =0®®D=0%®1,+1, . ®D. The sub-matrices of (4.1) in this

+1

case are as follows:

Ay = Q(4) - A(4),

Ay =4, =-=4,=1,,81,®A=A(1),

4, =diag{umin(i,j),0£ & Sm}@]z, ®1,,1<i<m,
A, =0 — A= 4y 1<i<m-1,

4,=0" - A(A) v,
4, = diag(0,us2u,- - imu) L, & I = A(u).

Next we add cost parameters and see the impact of uncertainties on system performance.
Intuitively we may think if the effect of uncertainty is significant, it seems better to invest
more resources (server, repairman) to fight against uncertainty. However, except for the fact
that the investment cost may diminish the benefit obtained from such policy. There is other
side effect we may want to explore. For simplicity we omit the investigation of
incorporating investment analysis here. Other related discussion will be explored in section
4.4. The objective in the current study is to minimize the total cost as follows

IC =c,E[L]+c, E[O]+c, E[RE]+c,E[B]. (4.3)

Since we adopt an MTO production policy, the first term is the work-in-process (WIP)

inventory holding cost in terms of the cost of average queue length in the system, the

middle term is the operation cost, the third term is the repair cost, and the final term is the
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backorder cost. Under MTO, E[L] should be equal to E[B]. E[O] is equal to Zi -1,

i1
where 1 is a unity vector whose dimension is chosen to fit the context. For example, we
may have i operative machine with 2 repairmen. There are 4 possible combined repairman
states. Then the dimension of 7 is 4. And if y ={, it can be shown: E[O] = E[RE]. In

general cases, the ratio of the average available machine to the average machine to be

repaired is equal to 7 as illustrated in the following statements. Notice this property is

not explicitly related to the repairmen. This is because the available repairman capacity has
been modified and incorporated in calculating expected number of under-repaired
machines. The repairman state has been accounted for in calculating 7. The proofs are
listed in appendix B.2 and B.3.

PROPOSITION 1: If y= ¢, then-E[O] = E[RE].

COROLLARY 1: If y# & then E[O]= %E[RE].

The above statement reveals that if"y s "greater than & then the average number of
operative machines is greater than the average number of machines under repair. Decision

managers can use this fact and adjust yand/or & accordingly to see its impact on TC.

4.4 TIllustrative examples

In this section we show how to derive the minimum trade-off cost. Assume the
respective parameters as set as follows:

0,=05,0;,=005y=25¢=025,d =d,=001,4,=05,1, =154 =1,u=1,
¢, =0.5,¢c, =60,c, =1,c, =20.

First we start the derivation process of the generator matrix Q. Since our study

focuses on how to use MMPP to model various uncertainty cases, we skip case 4.1. For
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case 4.2, assume m = 3, r = 2. We arrange states lexicographically as

(0,0,0),(0,0,1),(0,1,0),(0,1,1),---,(3,1,1), where the first parameter denotes the number of

available machines, the second parameter denotes the state of the first repairman, and the
third parameter denotes the state of the second repairman. Then the generator of repairman
is

G=G ®I,+1,®G,

-0y Oy -0y Oy
_ Oy Oy + Oy —Op
Oy Oy -0y Oy
L Oy Oy Oy —0Op
011 -0y Oy Oy
O 01, = 0p Oy
= ,and
Oy Oy -0y Oy
L Oy O O, —0p
0
1
A=
1
i 2
0 0 0
J ! J ! J 1
1= 1 1Y 2 T 1 »Y 3 T 1
2 2 1

Applying kronecker algebra and making necessary modification as illustrated in section 4.3,

we get

!

& I
t

(4.4)

€
Jo IS
J

[1]

Here all sub-matrices are of size 4 x 4 and are defined below:

L=0W,¥ =(-D,5=6-T,,8,=G-¥,,E, =G-¥, - T,
1<i<3,2<j<4 k=2,3.
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Similar approach applies to case 4.3 with simpler derivation. So we omit the detail. Next
we investigate case 4.4. Assume m =2, r=1. 0" has thesize 2x(m+1)x2" =12. If we
use {x(?), v(¢),z(¢)} to represent the states, x(¢) is the state of operative machine, y(¢) is

the state of the repairman and z(¢) is the oscillating state of market demand. Then the

embedded generator of machine queue is as follows:

@00) (011 +d) i % ) Gl
aon| @ CR) 9
10 ) (o +dj+7) dy y
1) ) d  ~(mtd+) 7
oo ¢ ~Gra+) 4 9
0= (0 ¢ b otk +0) o
) ¢ o —(0y +d +{+7) d y
| |
LLh Y o dy —(0y +dy +(+7) y
(200 ° —(G+d+2%) 4 o
Q?’(l)) % b o) °
o % > oD
L % [} dy —(0y+dy +20) |

Here we show the complete matrix'to demonstrate the problem of largeness even for a
problem of this small size. From the above illustration it is clear that MMPP suffers the
effect of “curse of dimensionality” s which is_often encountered in CTMC modeling.
However MMPP can model the behavior of individual repairman precisely. Thus it is more
flexible. Similar approach can be applied to model individual machine. Here we use
kronecker algebra to generate the above matrix. Without kronecker algebra the
presentation of O becomes more and more intractable as can be seen in this example.

Refer to fig. 4.1 our study of a tandem supply network governed by MTO policy treats

all I;'s therein as zeroes. Since no DC is necessary we treat the single transportation

(distribution) activities as M/M*/m. Under this concept we analyze a 2-echelon integrated
system of a production echelon followed by a distribution echelon. Assume dual stages for
production echelon and single stage for distribution echelon. Further assume the service
rate at the three stages as u; = up = 2, us = 1. The other parameter settings are the same as

outlined in the beginning of this section. Assume our budget limits the available machine
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investment for each stage to be 5. The scenario of our employed example is a little
different from a pure tandem queue and will be reiterated as follows for clarity purpose.
The aggregated retailer faces a stationary (non-stationary) Poisson demand process with
mean inter-arrival time (1/4) of 1. The unreliable servicing process is as stated in section
4.3. After production at two consecutive stages, finished goods will be briefly inspected
(inspection time is neglected). After inspection, any imperfect product has to go back to the
first production stage for reworking. Assume that the feedback rate is constant with
probability 6 = 0.5. Products passing inspection will immediately be transported to the
assigned retailer on a FCFS basis whenever a vehicle is available. Assume there is always
an infinite supply at the first stage when order comes. Also, for practical consideration we
can think of the pure Poisson demand process as a unit-load, such as 1000 tons per order.
Now we can apply the algorithmic,approach as stated in section 4.2.

In step 0, the supply queueing network is-just like. an open Jackson network. Thus we

can use Jackson’s rule: 4, = 4+ y,;4 5 Where i,j means stage, 4, is external arrival
7

and y, is Markovian routing, to derive underlying traffic process. The traffic intensities

at production echelon are all identical to p =A/u(1-0), where the denominator shows
capacity loss when feedback is incorporated. The traffic intensities at distribution echelon
remain unchanged, p = A/u. From the traffic intensities calculated at each stage, it shows
single server setting at each queueing system is not stable. Here multi-server setting is
adequate. Now we can use the adjusted capacity, u(1—-0) in steps 1-9 to derive performance
measures of interest. Tables 4.1-4.3 give the numerical results for decomposed

single-queue under different uncertainty cases. Table 4.1 shows traffic intensity p of all

possible resource combinations for single stage under different uncertainty cases.

Accidentally all resource designs are stable. Table 4.2 lists E[O] for each design under
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different uncertainty cases. We do not list E[RE] since it can be computed directly by using
corollary 1. Also note since » < m number of machines under repair will usually be no
greater than total number of machines waiting for repair, Table 4.3 is the demand queue
length for each design under different uncertainty cases. We can see when the machine
resource is fixed, increasing operator resource causes E[O] and E[RE] to increase but
causes E[L] and E[B] to decrease. This illustrates an idea that resource investment alone

may not reduce the total cost as conjectured in section 4.3.

Table 4.1 Traffic intensity p’ under different uncertainty cases

Case 4.1 Case 4.2 Case 4.3 Case 4.4
nmo 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
1 0.554 0.373 0.283 0.229 0.576 0.389 0.295 0.240 0.554 0.373 0.283 0.229 0.576 0.389 0.295 0.240
2 0.550 0.366 0.275 0.220 0.552 0.368 0.27710:222.0.550 0.366 0.275 0.220 0.552 0.368 0.277 0.222

3 0.366 0.275 0.220 0.366:0.275 0.220 0.366 0.275 0.220 0.366 0.275 0.220
4 0.275 0.220 0.275/-0.220 0.275 0.220 0.275 0.220
5 0.220 0.220 0.220 0.220

Table 4.2 E[O] for each design under different uncertainty cases

(m, r) Case 4.1 Case 4.2 Case 4.3 Case 4.4
2, 1) 1.803 1.734 1.803 1.734
2,2) 1.818 1.811 1.818 1.811
3,1 2.679 2.570 2.679 2.570
(3,2) 2.726 2.712 2.726 2.712
(3,3) 2.727 2.725 2.727 2.725
4,1 3.533 3.380 3.533 3.380
4,2) 3.632 3.607 3.632 3.607
4,3) 3.636 3.632 3.636 3.632
4,4) 3.636 3.635 3.636 3.635
5, 1) 4.360 4.158 4.360 4.158
(5,2) 4.535 4.496 4.535 4.496
(5,3) 4.545 4.538 4.545 4.538
(5,4) 4.545 4.544 4.545 4.544
(5,5) 4.545 4.545 4.545 4.545
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Table 4.3 Demand queue length for each design under different uncertainty cases

(m, r) Case 4.1 Case 4.2 Case 4.3 Case 4.4
(2, 1) 1.609 1.885 2.791 3.587
(2,2) 1.568 1.586 2.672 2.725
(3,1) 1.131 1.258 1.268 1.457
(3,2) 1.102 1.111 1.225 1.238
(3,3) 1.102 1.103 1.224 1.225
4,1 1.043 1.128 1.083 1.196
4,2) 1.024 1.029 1.055 1.063
4,3) 1.023 1.023 1.054 1.055
(4,4) 1.023 1.023 1.054 1.054
(5,1) 1.018 1.082 1.034 1.116
(5,2) 1.006 1.009 1.016 1.020
(5, 3) 1.005 1.006 1.014 1.015
(5,4) 1.005 1.005 1.014 1.014
(5,5) 1.005 1.005 1.014 1.014

In Neuts and Lucanton (1979), the author designed variant customer arrival rates
according to the number of operative servers. The'author observed that 7 is not affected by
the arrival rate but was affected-by the number of repairman. Actually this can be easily
comprehended since 7 is the stationary prebability vector for Q and Q is nothing to do
(independent) with arrival rate. In cases4.3.and 4.4, we assume there are alternate arrival
(market demand) rates for all possible states of operative servers and we obtain the same
results. Therefore cases 4.1 and 4.3 have the same stationary probability vectors and so do
cases 4.2 and 4.4. This fact also causes cases 4.1 and 4.3 to have the same number of
operative machines and so do cases 4.2 and 4.4 as identified in table 4.2. This also explains
why p’ for cases 4.1 and 4.3 are the same and so are p' for cases 4.2 and 4.4 as identified in
table 4.1 since the effective arrival rate for all cases are all the same. Generally speaking,
the average queue length of cases 4.2, 4.3 or 4.4 is worse than 4.1 with case 4.4 being the
worst. This explains the fact that case 4.4 is the most uncertain.

Next we used (4.3) to search for the optimal resource design, which is the work of step

10. Since the effective arrival rate is fixed at unity, expected backorder level can be
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thought of as average response time from Little’s formula: E[B] = E[L] = AE[W] = E[W].
And the last cost component of (4.3) can be thought of as the cost of customer waiting time.
Usually the objective set by production and distribution departments are different. The
former often cares about operation costs including production, repairing, and inventory
holding. Except for operation costs such as transportation, repairing, inventory holding, the
latter also has to pay penalty costs owing to delayed transportation or waiting-related
complaints from customers. We can therefore write down different optimization models for
different contributors as well as for the whole supply system as follows. Denote i as stage
number.

2
(Production) Min TCp = > {chE[L] + cOE[O‘] + crE[RE']}
l, — 1 1 1 1

(Distribution) Min TC

3
= EILHE B[O+ 6 E[RE 1+¢, 3 E[L], (4.5)

i=1

(System) Min TCS = TCp # TCd

Note here we count the queue length at the first stage. Local optima for individual
contributors and global optima for the whole system from searching on (4.5) are shown in
table 4.4. Notice here we add a reliable supply system (case 4.0), which is a canonical
M/M/m tandem QN under the same parameter setting for comparison purpose. Since case

4.0 is a reliable SC, there is no repairman and incurred repair cost.

Table 4.4 Local and global optimal solutions under different uncertainties

Production Distribution System
Design  E[TC,] Design E[TCq] Design E[TC,]
Case 4.0 2, ) (2,) 5333 (5, )5 )4, )184.983 (4, ) (4, ) (4, ) 194.589
Case 4.1 2,1) (2,1) 12.427 (5,3)(5,3) (4,3) 193.399 (4,3) (4,3) (4,3) 218.398
Case 4.2 2,1) (2,1) 12.289 (5,4) (5,4) (4,3) 193.387 (4,3) (4,3) (4,3) 218362
Case 4.3 (2,2) (2,2) 13.58 (5,3)(5,3) (4,3)196.355 (4,3) (4,3) (4,3) 224.025
Case 4.4 (2,2) (2,2) 13.591 (5,4) (5, 4) (4,4) 196.352 (4,4) (4,4) (4,4) 224.016
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In an SC analysis, conflicts usually exist between contributors owing to different
objective settings as shown in (4.5). Table 4.4 reveals this fact. The optima for each
contributor are not the same. For example, in case 4.1, the distributor has to pay high
penalty cost of delayed delivery, therefore, he would prefer the waiting time at the
upstream supply, the production, to be less. Since more resource, in this case, design (5, 3)
yields the least waiting, the distributor would like the producer to invest more resource. On
the contrary, the producer does not directly respond to customers, the less resource
investment is enough for him to balance the cost. The optima of the whole supply system
are just the compromise solutions, which yield the most beneficial results for the integrated
system. Other interesting findings with respect to this specific application problem have
been observed. First, multiple solutions exist. For example, in case 4.1, distributor will
probably prefer to choose the design of (4, 3) instead of (4, 4) though both selections will
yield the same performance measures as can be told from tables 4.2 and 4.3. However, if
operator-hiring cost is included; (4, 3) will-be better than (4, 4) practically. That’s the
reason why we put the less resource as the optimum. Second, it happens that the optimal
number of servers selected by respective contributors under all cases is the same, while the
repairman capacity is not. Lastly, we can tell the degree of impact of an unreliable SC
when it is compared to a reliable one under different cases. For example, queue lengths and
optimal costs of cases 4.3 and 4.4 are greater (worse) than cases 4.1 and 4.2 in local and
global analyses when compared to case 4.0. We can also identify which factor causes the
impact most. Since the optimal costs for case 4.1 and 4.2 are very close and so are them for
cases 4.3 and 4.4, it seems the impact of repairman uncertainty is less significant than the
uncertainty of market fluctuation under the cost structure specified in this example.

To test if the output performance measures of the studied QBD model actually deliver
“exact” solutions, we conducted a full-scaled CTMC model for a 2-stage tandem QN.

Assume the available machines at stage 1 and 2 are either 2 or 3. We then solve the whole
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CTMC through the support of SPNP, a GSPN tool. Since SPNP can only solve finite state
Markov chain, such as M/M/m/K, we used an approximate model by assigning a very big
buffering capacity, i.e. K-m for each input queue. Table 4.5 shows the comparison between
decomposition method and GSPN (cf. table 4.3). It seems our decomposition method and
the GSPN-generated outputs are very close. Since the GSPN-generated outputs are just
approximation of the original infinite queue. The quality of the decomposition methods is
verified. Notice in table 4.5 there are several unavailable values in case 4.4, which are

owing to the explosion of state space and we will discuss this later in section 4.5.

Table 4.5 Approximation results obtained from GSPN for different uncertainty cases

(ml,r1)* (m2,12)°  Case 4.1 Case 4.2 Case 4.3 Case 4.4

(2,1)  (3,1) (1.609,.135% 0.2° (1.885,1.276) 0.7 (2.678,1.263) 2.2 (3.502,1.456) 1.2
(2,1)  (3,2) (1.609,1.106) 0.2.+(1I878,112135) 1.3 (2.678,1.263) 3.6 N/A N/A
2,1)  (3,3) (1609, 1.106) 02 (1.878x:419)40.9 (2.678,1.219) 2.2 N/A N/A
(2,2)  (3,1) (1.568,1.133)2 0.2 (1.608,'1.262) 0.9 (2.581,1.261) 2.0 N/A N/A
(2,2)  (3,2) (1.568,1.105) 0.1 (1.560,1.118) 1.4 (2.581,1.218) 2.0 N/A N/A
(2,2)  (3,3) (1.568,1.104)- 0.1 - (15560,1(104) 0.9 (2.581,1.217) 2.0 N/A N/A
(3,1) (2, 1) (1.131,1.615) 01 :(1.257, 1.921) 1.0 (1.298,2.750) 1.9 (1.458,3.661) 1.1
(3,1)  (2,2) (1.131,1574) 02 (1.257,1.649) 2.0 (1.246,2.633) 1.6 N/A N/A
(3,2)  (2,1) (1.102,1.611) 02 (1.113,1.885) 0.1 (1.253,2.742) 2.0 N/A N/A
(3,2)  (2,2) (1.102,1570) 0.1 (1.114,1.564) 0.8 (1.247,2.633) 1.6 N/A N/A
(3,3)  (2,1) (1.102,1.611) 0.1 (1.105,1.860) 0.8 (1.252,2.742) 2.0 N/A N/A
(3,3)  (2,2) (1.102,1570) 0.1 (1.101,1.562) 0.8 (1.246,2.633) 1.6 N/A N/A

Note: a, b: resource design at stage 1, 2. ¢, d: queue length at stage 1, 2. e: percentage mean absolute deviation
= {abs (c—exact 1 )/exact 1+ abs (d —exact2) /exact 2 } /2 x 100, exact 1, 2: queue length at stage 1, 2
obtained from decomposition. N/A: not available.

As for more involved generalized Jackson network with arbitrary Markovian routing, it
seems we can apply the same procedure as stated above. For a make-to-stock (MTS)
tandem queue, where some of /;’s may not be zeroes, the approximation model of L & Z
for analyzing a tandem QN may be suitable here. The queue length obtained at each

queueing subsystem should be able to serve as the input to the model of L & Z. However,
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the accuracy of this approach is verified only under specific conditions as revealed in
chapter 3. As a final remark, our problem under study is an M/M*/m for cases 4.1 and 4.2
and MMPP/M*/m for cases 4.3 and 4.4. Alternatively, we can treat service process as
phase type and the queueing system becomes M/PH/m and MMPP/PH/m for cases 4.1 and

4.2 and for cases 4.3 and 4.4 respectively.

4.5 Computation issue

The major flaw of applying MMPP modeling is that the stationary probability vector
becomes intractable when states increase. However if it’s known that the repairmen are
identical, which means if oj; and oj, are the same, we can reduce the states by making
suitable arrangement. In this case the states no longer stand for the state of each individual
repairman but for available repairmen. The difference between MMPP and the proposed
states reduction technique is (number of machine -1)x(2™™°" °f ©Paman _ (ymber of
repairman+1)). The difference bécomes large 1f the number of repairman is high. However,
MMPP is more flexible, for example, it.allows modeling non-identical server/repairmen.

In the above computation procedure, we use successive substitution method to obtain,
R and x;, i < m — 1 for steps 6 and 7 respectively. Alternatively one may investigate other
solution algorithm such as Block Gauss Seidel (BGS) or Gaussian elimination as is usually
adopted in solving finite CTMC. However, this is beyond our scope of study. In this study
we set all the convergence criteria to be within 0.000001 for finding R and 0.001 for
finding x;, i <m—1. Weused R=0,x0=0,x;=1, 1 <i<m — 1 as starting guess solutions.
All the numerical experiments are implemented on a Pentium IV 2.0 GHz PC. The average
CPU time ranges from several seconds to several minutes for a single (m, ) problem to
converge, depending on the size of the states. Successive substitution as is used in this

study seems to converge in acceptable time. In computing the values for table 4.5 we also
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encounter the problem of convergence. For example in case 4, the states generated by
GSPN for problem set (3, 1), (2, 1) is over one million (1278400) and the transitions
generated is even more (amounts to 8888374). It causes nearly one hour to find the
stationary probabilities. The exhaustive CPU operations plus not enough memory make the

other trials fail.

4.6 Concluding remarks

Resource design of supply systems has to reflect the uncertain environment to lower
the cost. In this chapter we have shown how to solve such problems by using an
algorithmic approach. We assumed major uncertainties are from supply and/or demand.
This chapter provides an analytically tractable framework for “designing” such supply
system. In this chapter we assume the SCadopts MTO policy. Under this assumption QN
can be employed to investigate system dynamics: Like most of the other analytic models
for analyzing a QN we used the same<decomposition approach. The complex system
dynamic of the studied QN is analyzed by decomposing it into several isolated queueing
subsystems. The linkage of subsystems is then straightforward by solving the traffic
(arrival) process into each subsystem and transforming it into equivalent server capacity.
The MMPP models can then be developed for different uncertainty scenarios to investigate
impacts of uncertainties on system behavior for each subsystem. The performance
measures are then obtained from solving the developed QBD model. Finally, simple search
on pre-specified objective function resoles the resource design problem. Specifically we
used this algorithmic approach to solve optimal resource design problem for a realistic
multi-echelon supply system. The objective is to find the trade-off cost for different
contributors and compromise solution for the whole SC. For the verification of the quality
of the decomposition approach we used finite-state-based GSPN model to approximate the

original infinite state CTMC and obtain satisfactory results.
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Existing literature of stochastic supply systems usually assumes single-server and
neglect unreliable supply from upstream. Our model relaxes the usually adopted
single-server assumption and investigates system behavior under different uncertainty
cases, which should be more practical than other studies. Though the results are not
satisfactory for MTS case. It works well under MTO mode as shown in this chapter. We
also proved that the average number of operative machines is equal (proportional) to the
average number of machines under repair when mean time to failure and mean time to
repair are the same (proportional) by using a matrix algebraic approach. This property is
not explicitly related to repairman.

We also showed the degree of impact of an unreliable SC when it was compared to a
reliable one under different cases. We showed how to use the proposed method to identify
the most significant uncertainty factor, which may cause the most serious impact under
specific cost structure. The decision-maker of .an SC may use this information to improve
the uncertain input as studied herein in-a-most-cfficient way. Finally, this study shows the
algorithmic approach for solving QBD=decomposed model for more realistic and complex

stochastic SC problem is feasible.
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Chapter 5 Optimal buffer and capacity design under service
constraint

5.1 Introduction

One of the most urgent issues in SCM is that there is still lacking integrated analytic
model of an SC under uncertainty consideration. The uncertainty may come from supply
and/or demand randomness, stochastic delay from upstream supply among others.
Performance measures of a successful SC are usually described as minimum operating
costs, maximum selling benefits, acceptable customer waiting time, flexibility etc. How do
we model the uncertain interaction between/among SC distributors such that the goal(s) of
SCM can be achieved in the long run? Many critical success factors (CSF) contribute to
the successful operation of an SC. Well=organized plan(s) such as flawless supply, supply
quality, adequate stock level and/or service rate dre no doubt the CSF to successful
operation of an SC. (Note in this chapter.we treat service rate as capacity). With today’s
complex topology of an SC and its inherent sophisticated system dynamic, the modeling of
the SC with uncertainty concern is becoming a challenge. In the past, most researches
related to stochastic modeling of an SC concentrated on the evaluation models. Accurate
and efficient evaluation models have been reported to approximate the system dynamic of
an SC. Among those works, most focus on independent models. The reason why few
integrated models can be found in the literature may be that exact closed-form solutions
only exist in the simplest systems. For a more complex SC, closed-form solutions are
usually unknown and therefore approximation or simulation is the only viable approach.
However, with the evolutions of analytic models for SCM, integrated analytic models of
SC have been addressed more often than before. Moreover, the studies related to the
optimization of an SC are still very few even nowadays. The optimization problems may

include: how to find adequate stocking and capacity levels such that system performance is
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maximized and so on. Some researches related to buffer and/or capacity optimizations
have been reported. However, due to the complex topology of a real SC, most explore the
tandem form.

Buffer allocation problem (BAP) is the well-known topic in production system. BAP
belongs to the combinatorial and discrete integer optimization problem. The problem
relates to where and how much to stock at each stage such that the averaged total
system-operating cost is minimized per unit time. This problem deems buffer as the only
decision variable to optimize the system performance. Usually the operating cost includes
holding and other penalty cost, which can include backorder or lost cost depending on
operation policy of the decision maker. On the other hand, capacity design, or capacity
allocation problem (CAP) seems to be not so popular as BAP. Though, its importance
cannot be neglected. This problem relates to work. load sequence. Since we may express
capacity as a continuous variable, the analysis. of how this factor may impact the
performance of an SC is even more difficult..In this chapter, we investigate how system
performance may be influenced “bys these «two control variables independently or
simultaneously. We demonstrate that through careful deployment of these parameters
system performance may be greatly enhanced.

MTS is usually referred to as planned-inventories at the output buffers of intermediate
stages along the SC to fight against random demand needs. For MTO mode, no output
buffer is designed and the buffer is just the “rooms” of waiting spaces in front of each
servicing facility when the server is busy. The “rooms” may be infinite or finite depending
on costs and/or space limitation. To facilitate our study, in this chapter we give MTO
another meaning that only the end stage of an SC can hold inventory while all the other
stages cannot. Since an SC may posses several supply functions, the traditional production
modes such as MTS, and MTO are used herein for the SCM context. Further, we notice the

unrealistic assumption of unlimited supply in classical multi-echelon inventory control
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models for distribution systems. We therefore put our efforts on analyzing the congested
nature of an SC.

Our goals in this chapter are two-fold. First, we want to find the most suitable
optimization methods that can find the optima of an SC. Especially, we investigate the
state-of-the-art meta-heuristic search methods on the studied problem. Second, we
investigate if there is other modeling approach that can assist in transforming a more
general SC into a tandem form to ease the analysis work. Here “general” refers to both
topology and system dynamic of an SC. Specifically we want to find the optimal stocking
and/or capacity level(s) at each stage of an SC such that the pre-specified customer service
level at the ending stage is satisfied. From the perspective of the queueing theory, the
whole SC can be viewed as an arbitrary configured QN. The analysis of such supply
network with planned inventories atieach stage is difficult due to the intractable interaction
between/among stages (see chapter.3 for more details). For a tandem and small-scaled
problem involving only few stages, the'classic-approaches such as enumerative search or
derivative-based method is usually enough to-Solve the problem. For a larger and more
general SC, alternative optimization measures need to be sought after. In this chapter we
wish to provide adequate solution models for different topology and difficulty levels of
system dynamics. Additionally, we want to find if there is any rules-of-thumb for resource
expansion planning. Herein we treat buffer and capacity as our resource under study.
Finally, we explored the impacts of upstream unavailability and imperfect quality. To our
knowledge, the robust concern in SC optimization is still not much in the literature. The
findings and observations from empirical studies may provide valuable managerial insights
in strategic planning of an SC.

The basic assumptions are the same as before. Additionally, we assume there is more
than one type of product. However, common production process proceeds until later

distribution stage. Thereinafter, product differentiation may continue. Since this study is
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stochastic-based, performance values are obtained as expected value in steady state and are

used for objective values of evaluation functions for optimization processes.

5.2  Methodology

Basically we can decompose three basic topology forms relating to a congested SC:
tandem, assembly, and distribution as shown in fig. 5.1. All belong to dual-buffer design
with both input and output buffers, which is specifically tailored for processing network

with planned inventories. We use base-stock inventory control as studied herein.
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Fig. 5.1 Three basic congested supply systems
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Detailed operation of base-stock control can be referred in chapter 3. Note bold and italic
font type refers to vector or matrix. Italic font type refers to variables and normal font type
refers to constants. We assume demand arrival rate to be Poisson process and all the other

rates to be exponential distributed.

5.2.1 Flow Equivalent System

For using matrix analytic model, especially QBD decomposition to modeling the above
tandem and distribution systems as stochastic processes, please refer to chapter 3. For the
assembly system with multiple parallel suppliers (processors), we formulate each processor
as an M/M/I queueing system with identical processing rate. We thus can treat it as a
fork-join system and transform it into a Flow Equivalent System (FES) with single
processing unit (Bolch, 1998). Fig. 5.2 exhibits this transformation.
(=) —

20 —_]
() —

a An assembly system with m suppliers

}L;»jﬁ/—u

b An equivalent FES

Fig. 5.2 Transformation from an assembly system into an M/M/I FES.

5.2.2 Meta-heuristic methods

Genetic algorithm (GA) is a parallel processing algorithm. It mimics the natural

evolution process of species through crossover and mutation operators to get better
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“fitness” values generation by generation. Variants of GA wuse different selection
procedures to propagate its offspring such as Rowlett wheel selection (RWS), ranking, etc.
there are also variants of GA operators such as arithmetic crossover, directional crossover,
non-uniform mutation etc. to increase the performance of genetic algorithm in terms of
convergence and accuracy. To get rid of early convergence or local optima, these variant
operators have reported successful instances (Michalewicz, 1999). In this chapter we use
some of these variant operators to enhance the performance of GA. The algorithm begins
at generating initial population of chromosomes. Each chromosome is the representative of
decision variable(s) of interest, in the form of real, binary, or gray-code. After the
evaluation of the population, GA enters into generation cycles of selection and crossover
(recombination) and mutation. Some selection procedures use elitism and the GA cycles
ends when pre-specified termination condition is satisfied (usually in terms of convergence
or maximum run length, whichever comes first). Suceessful GA applications were mostly
reported in engineering, science, amoeng-others. Few were reported in the SC area. To
handle constraints, several methods+have been’proposed such as variable(s) elimination,
penalty addition, infeasible points repairing, decoder method etc. In this chapter, we select
decoder method as our constraint handling routine for SL requirement. Decoder method for
continuous variable optimization has been reported (Koziel and Michalewicz, 1998).
Simulated Annealing (SA) is a random search procedure. Different from GA, SA selects its
next search point in the neighborhood of the previous one. SA tries to stabilize its
searching process through adjusting the so-called “cooling temperature”. This method
originates from metallurgy crystallization process. For minimization problem such as ours,
downhill movement is always accepted. However, uphill movement is accepted if
Metropolis criterion is satisfied. Metropolis criterion is based on the “energy” (value of
evaluation function) deviation between new and old points and has larger probability in the

earlier stage of temperature setting. Unlike GA, which has several alternatives to handle
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constraint(s), SA only searches the feasible directions. To hasten its convergence
performance, Goffe and Rogers (1994) developed a method based on dynamic step length

adjustment of movement as follows.
m¢%m+g%59-

C(L_Ri)
L

),if R, >U

VM =3 VM [(1+ ),if R, <L

VM otherwis,

where VM represents dynamic step length, R; is the ratio of accepted moves for direction
(variable) i, U and L is the pre-specified parameters for upper and lower ratios respectively,
both constants. C is a pre-specified parameter, a constant. The spirit of VM is to broaden
the step length for more promising direction and shrink the step length for less promising
direction. Empirical studies show this‘adjustment eonverge very well for our problems. We
translate the original C++ code- of constrained GA- obtained from public domain into
Matlab version and modify the existing SA code obtained from public domain by adding
SL requirement. The Matlab platform is chosen*for its excellence in handling matrix

operations. These operations frequently occur in our model. Appendix C lists all the codes.

5.3 Optimization

In the following exposition, we assume the performance measures of interests are 7C
and SL. The decision variables are buffer and capacity. 7C include intermediate inventory
and end stage inventory holding costs, backorder costs, and may include operation cost
when needed.

5.3.1 Tandem topology

For tandem topology of an SC, closed-form solutions only exist in special cases. Refer
to a. of fig. 5.1, Let S; denote output buffer of stage j, 1 <j < J. First we focus on BAP, the

following procedures find the optimal buffers, S* for two special cases.
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Case 5.1 §,=85,5,=0,1<;<J.

For this case, only the first stage has buffer. Since the ending buffer is zero, no SL
consideration is needed and hence is an unconstraint optimization problem. Suppose we
focus our attention on inventory holding and end stage backorder costs only, neglecting
any other incurred costs during operation. We show how to derive the general form of this
problem starting from a 2-stage setting. We use L & Z to get performance measures of
interests and then take partial derivative of them as shown in the following

derivative-based method:

4 A
r=Le =[-v]=[-(u, - )], p, = AU, 'C1)1 :u_:pn”l =hp =P
1

We get the average backorder level at stage 1

S+1

i PP
E[B)=mp{ (1~ B) 1 =P B[l = (I P) ' 1+ E[B] =S~ Py P

~ P 1-p, 1—,01.
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W ] [~ -2) -2
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Continue this way, we can find general form for a J-stage system.
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P 1/0,
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Therefore, we can write the optimization function as follows:

Min TC(S) =¢,E[B,1+h, E[I,]

wip

J 5.1
Z o _1/_0_1 o Pz (5.1)

_c(
’ =1 j P 1=p

Take partial derivative of 7C with respect to S and let it be 0, we get

orc _o,
oS
+ S+1
boinp) g Bl R

1-p, 1-p,

1) ‘
Note Ga” " _Ix) a’" Ina. Reorganize terms, we get
ox ox
plS-H — _hmp(l )

(b+h,,)In(p,)

Finally, we get the closed-form solution of the optimal buffer S* for this special case:

h, (1= p))
(b, )0, )

*

S =in(

)/n(p,)—1. (5.2)

O*TC _ bp ' [In(p)T byyei i in(p)]*
a 1_,01 l_pl

Note since >0, p; <1, S* is indeed a

minimum. Also S§* only relates to cost parameters 4,,;, and cy,, and pi, not to other stages.
For non-integer solution we have to compare the 7C of its nearest integer to get S*. We

show this by an example as follows.

If the parameter is ¢y, = 10, A, = 1, and p; = 0.5. Plugging in (5.2) we immediately get
S" =2.9, Since the optimal solution is not integer, from (5.1) we compare TC(2) = 4.75 +

a and TC(3) = 4.375 + a, where a is a constant. Since 7C(3) < TC(2). S* =3.

Case52 §,=0,1<;<J-1§,=8.

For this case, only end stage has buffer and we may also want to handle SL.

Closed-form solution seems not so easy to derive by using derivative-based method. Here
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we proposed an easier solution method instead. Since all the upstream stages use MTO,
there is no expected inventory except for the end stage. Suppose SL is not greater than
some  pre-specified level. From the property of CPH we  have

SL=Pr{T >t} =r,p,e“1< 3, where C stands for lead-time distribution of CPH type.

We get the constraint optimization problem as below.

Min TC(S)=c,z,p5(I, —p,) ' 1+ h,(S—m,I,—p,) " 1+x, i, —p)'D).
S.T.
rp, 1< p.

In the above constraint we assume ¢ = 0. Intuitively, E[B] decreases in S, and E[/]
increases in S. We can show 7C is convex-like, and we should always find S* theoretically.
It’s also known SL decrease in S (the more stock, the more protection). Recognizing these

we make the following rule based on.convexity property of the studied problem.

Let S'=min{S, I’prl < B,

If $">8', select S,

Else select §'.

Again, we illustrate how it works through an example.

Suppose we have a four-stage tandem SC. Parameter settings are as follows. A =1, u; =
up = 1.25, uz = uy =2.5, hyip = [0.5, 0.5, 0.5, 0.5] (note both holding costs at input and
output buffers of all intermediate stages are all the same), ¢, = 1, cp= 10. Starting from § =
0, we calculate E[B], E[/], and incurred 7C. The results are graphed in fig. 5.3. From fig.
5.3, we see that §* = (0, 0, 0, 25), with 7C = 23.628, SL = 0.1, Now, suppose 3 = 0.05,
applying the decision rule, we can immediately find S° = (0, 0, 0, 31), with 7C = 25.192,
SL = 0.049. Since S* < S’, we select S’ as the optimum. If B = 0.15, we can immediately
find S” = (0, 0, 0, 22), with 7C = 24.361, SL = 0.142. Since $* > §°, we select S* as the

optimum.
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Fig. 5.3 Using convexity-based method to search a tandem SC.

For a general case, the intermediate planned inventories do not have to be zeros.
Traditional methods like derivative or convex-based simple rule will not work. However,
enumerative method may still apply. To.demonstrate how it works and what it cannot, we
propose a model, which aims at a broader SC context. We explore the alternative measures
when enumerative method also fails. Fig. 3.2 (without feedback) of chapter 3 acts as such

test bed. We illustrate how to solve it as follows.

Case53 §,20,1</<J.

The scenario of our fabricated SC is similar to chapter 3 with the exception that all the
processing will never fail and the quality is 100% perfect. The mathematical model of our

optimization problem is listed below.
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J
Min TC(S,u) = h,,WIP +c,E[I]+ c,E[B]+ Y cu,
Jj=1
S.T.
u; 2 U,
SLLpB,
S, € Integer” U {0},u; € Real".

For BAP we fix u to be some constants, as a result the last term of the 7C function is a
constant. For CAP we fix § to be some constants. The main purpose of adding the capacity
incurred cost is that by adding penalty to resource expansion we can restrict the search
space of u in more reasonable range. Besides, not like the buffer incurred cost, which only
occurs in the beginning of the evaluation horizon, capacity incurred cost is forever. The
setting seems reasonable. For problems related to BAP, we fix u; = 1.25 for each stage. We
set up cost structure as follows. This cost'stricture will be used throughout the remaining
of this chapter. We let hyip = (0.5;0.5 X, 0.5 + 2x, =) and ¢, = (0.5, 0.5y, O.Syz, ---) where
x=0.1 and y = 1.1. The arrangement makes the cost of WIP to be linearly increasing while
that of inventory to be geometrically increasing. We'set ¢; =1, A =1, B = 0.1. For BAP, we
solve with enumerative method and compare the results with meta-heuristic methods.
Below are our proposed algorithms for enumerative-based and meta-heuristic based
methods.

The enumerative optimization procedure (we call it ENU hereinafter) in Algorithm 5.1
is borrowed from Boyaci & Gullego (2001). Tough their procedure assumes constant
supply lead-times we find it should works for our problem as well. Starting from (s7, s, 1),
Procedure (s7; s, k) recursively calls itself and enumerating all feasible solutions. Note C(s7)
represents the best cost therein.

As introduced earlier, meta-heuristic approach such as GA and SA are the modern
global optimization techniques, which are suitable for highly nonlinear, derivative-free

problem. If capacity is the decision variable, the enumerative search fails. Here we try to
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solve the same BAP by pre-testing the power of meta-heuristic methods. Later we show
how to extend its capability of handling more complex problem like CAP. As Michalewicz
(1999) reveals, data structure plus genetic algorithm constitute evolution programs. For the
problem under study, two approaches may be used to represent data structure: float and
binary coding. Using binary coding is natural for this integer-programming problem.
Alternatively we use float representation due to the dimension of the decoded hypercube,
which will be used as constraint handling routine. For GA operator of crossover, we used
both simple and arithmetic crossover. Simple crossover is well known. The latter
guarantees any crossover happens within convex limits of decision variables. After the
crossover, we let the whole population undergo non-uniform mutation. As mutation is
known as background operator, the purpose for non-uniform mutation is to provide higher
diversification in the earlier stage of the mutation eperation while speed up convergence in
later generations. We used simple. ranking as our-selection scheme to decide which
offspring to put into the mating pool.-Elitism is also implemented to keep better
chromosome to propagate to the nextrgeneration. As mentioned earlier, there are some
constraint-handling routines. Some penalty methods try to find the most suitable penalty
ratio to hasten their convergence speeds. Usually many runs with many penalty ratios have
to be tested. Though the penalty method is well known for solving constraint problem, it’s
problem dependent and the performance is not superior to decoder method (Michalewicz,
1999). Herein we use decoder technique as our main searching scheme after we try several
unsuccessful runs on penalty method. After the decoded value is mapped to the real
problem domain, we round the mapped variables for later function evaluations. Numerical
study shows the applicability of this approach. Below we briefly organize the decoder

method first introduced in Koziel and Michalewicz (1998) as shown in procedure 5.1.
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Algorithm 5.1
Step 1: Set s, =0
Step 2: Do while S is feasible
Ifk<J-1
Call Procedure (sz, s, k+1).
Else
Setsy=sr—Sy1 - -Si,
Cost = C(sy,...,S)),
If Cost < C(st), Then
C(st) = Cost,
S* = (s1,...,8)).
Endif
Endif
Set sy =s+ 1

Enddo

Procedure 5.1

Step 1: Find an initial feasible reference point 7, € F, where F stands for feasible set.
Step 2: Define a one-to-one mapping f between the hypercube [-1,1]" and the search

space @. Then the mapping f :[-1,1]" - @ can be defined as the following:

u(@) = 1) @) +16) o

5 i=1---,n u(i)and (i) are

f(y) =x,wherexl. =

upper and lower bounds for original design variables. We can see this is a linear

transformation approach, which starts at ( Vi xl.) =(-1,/(1)) and ends at

(23;) = (Lu(@).
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Step 3: A line segment between 7y and any point s at the boundary of @ is defined as
L(ry,s)=ry+t(s—ry), for 0<¢<1.

Step 4: Clearly if F is convex, then L intersects F in exactly one point. If F'is concave, then
L may intersect /" more than one point. Generally, we may find feasible segments

along L by defining a reverse mapping & :U%_ (t,, ,,%,;) = (0,1] as follows:
8(t)=(t—ty, +Y. d,)/d, where

k . .
d,=t,—t,,, d= zj:1 d, and f,  <t<t, The feasible region for each

design vector is through binary search.

Step 5: Finally, given any a €[0,1], we can immediately find its accurate feasible

0_5(1‘2]’—1)
: 5(t2j)_5(t2j—1)

positionat L: y(a)=t,, , +d . Usually we let @ = ymax.

Though Procedure 5.1 is designed for continuous variable, we use it to solve our BAP
problem. We use it through simple rounding procedure. Algorithm 5.2 below lists our

procedures for implementing constrained GA (we call it CGA hereinafter).

Algorithm 5.2
Step 1: Find initial feasible reference point
Step 2: Random generation of initial population within bounds of the hypercube
Do Decoder mapping
Calculate fitness value by the returned mapped variables
Step 3: Sort fitness value of initial population
Step 4: Do while not termination condition
Call Genetic algorithm {Selection, Crossover, Mutation, Elitism}
Do Decoder mapping.

Calculate fitness value by the returned mapped variables
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Enddo
Note, the decoder method always return the feasible solution. Alternatively, simulated
annealing only searches the feasible region. We use SA to solve both BAP and CAP. The
algorithm for our constrained simulated annealing procedures (we call it CSA hereinafter)

is shown in Algorithm 5.3.

Algorithm 5.3
Step 1: Set n = 0, Initialize T, x,, &, VM etc.
Stet 2 : Do while T}, >= Tpin
Do while m <= Maxiter of Current temperaturet
Do while n <= Maxiter of VM adjustment
Do while each variable is searched
[Xnew> Chew] =.Simulated annealing (x,, s/).

If (SL <= ﬂ and Ciew < Ccurbest)

Ceurbest = Cnew=

Xn+1 = Xnew-

If Cnew < Cbest
Cbest = Cnew
EndIf

Elself (SL <= Band Cpew >= Ceur(x) and p <= exp ®")

Xn+1 = Xnew-

Else
Xn+1 = Xn.
EndIf
Setn=n+1.
Enddo
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Enddo

Calculate acceptance ratio

Apply VM adjustment

Convergence test.

Enddo
Tor1 = aTy.
Enddo
Tables 5.1 to 5.7 show the results of applying the above methods. Since we can achieve

the maximal service quality with minimum total buffers. St can be found by putting all the
buffers at the last stage and increase the Stlevel until SL is satisfied. Table 5.1 to 5.3 relate
to BAP. Table 5.1 seeks the optima by fixing St = St. Note the mapping nature of Decoder
hinders itself from applying CGA .directly for this. buffer restriction case. It shows CSA
performs well except for when J-=,7. However, the deviation from the optimal solution is
very tight. In table 5.2, we release the:mintmum-buffer restriction and compare the results
by using CSA and CGA. It shows' the performance of CSA with no St restriction is
superior to that with restriction. Table 5.3 is the comparison of efficiency test for different
meta-heuristic methods. It shows ENU is suitable for small-scaled problem. The
computation time increase exponentially and therefore intractable for large-scaled problem
even though it can find the optimal solution. It seems CSA outperforms CGA both in
accuracy and efficiency for our BAP. Therefore we focus on the CSA method throughout
the remaining of this chapter. Table 5.4 reports applying CSA on CAP. We fix § to be the
S§* of table 5.2. It seems the performance is even better when p is also optimized. Also note
the difference between table 5.2 and 5.4. The SL* of CAP is superior to that of BAP. Table
5.5 reports applying CSA on BAP and CAP simultaneously. The output of BAP is served

as input to CAP and vice versa iteratively until the solution converges. Table 5.6 reports
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that we apply CSA directly on the same problem. Notice the performances are the same
between these two approaches. Theoretically they should be near. However, the direct
method saves much time than iterative method. Direct method clearly outperforms the
iterative. In conclusion, it reveals that when we optimize § and p simultaneously, the
performance of 7C* is the best though SL* is the worst in most of the cases. Note, Table
5.7 demonstrates the applicability of CSA on larger SC. Except for tables 5.1, 5.2 and 5.3,
All the test results of CSA are obtained by choosing the best from 5 random runs with 500
000 iteration per run.

The following is our observation for the above tests. Comparing tables 5.4 and 5.6, it
seems that St decreases when capacity increases (which is the same as work load decreases)
to achieve the best performance. We will investigate this issue further in later experiments.
Liu and Yao (2004) observed that higher workload:should sequence first in tandem supply
system. Spinellis et al. (2000) -also. noticed .the same pattern in finite-buffered supply
system. Their SA optimization results:suggested-buffer should be positioned in increasing
order while workload should be arranged.in-decreasing order. Basically from tables 5.1 to
5.4 we get the same results with the previous studies. Notice we add backorder cost and
use different evaluation model, which are different from Liu and Yao (2004). Ours is of
dual-buffer design with the first buffer to be infinite, which is different from Spinellis et al.
(2000). In table 5.6, workload sequence is consistent with table 5.4, however the “pattern”
for buffer is not so obvious. Table 5.7 shows the optimization results for larger SC using
SA for J = 10, 20, and 30. Similar “pattern” seems to maintain in load-sequence allocation.
However, the same inconsistency occurs in buffer allocation. To obtain more “reasonable”
results, we may have to add more evaluation iterations. In conclusion, for extreme cases
that only either end of an SC has buffers, classical methods are adequate to find the global

optimum. For general case, meta-heuristics find the near optimal solutions very well. All
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the tests are implemented on a Pentium IV 2.0 GHz PC.

Table 5.1 Optimal buffer allocation using CSA, and ENU (with minimum Sr)

S* TC* SL*
' S ENU CSA ENU CSA ENU CSA
4 29 (0,0,6,23) (0,0, 6,23) 26.924 26924 0.093  0.093
5 34 (0,0,5,6,23) (0,0,5,6,23) 33.896  33.896 0.099  0.099
6 40 (0,0,5,6,7,22) (0,0,5,6,7,22) 41.099 41.099 0.093  0.093
7 45 (0,0,4,6,6,8,21) (0,0,5,6,6,6,22) 49.019 49.022 0.098  0.098

Note: The results of CSA are obtained by choosing the best from 5 random runs with 10 000 iteration per run.
The major parameter settings are 85 for initial temperature and 0.8 for cooling rate and remain the same

herein.
Table 5.2 Optimal buffer allocation using CGA, CSA (no St restriction)
CSA CGA TC* SL*
J
S* St s* St CSA CGA CSA CGA
26.634 0.071
4 (0,1,7,23) 31 (0,3,5,23) 31 26.630 0.071
(27.824, 1.129) (0.068, 0.008)
33.72 0.077
5 0,1,6,8,22) 37 (2,1,8,6,20) 37°233.567 0.069
(35.548, 2.843) (0.080, 0.008)
41.390 0.068
6 0,1,6,6,7,22) 42 (3,1,8;2,9,21) 44 40.998 0.075
(43.250, 1.960) (0.065, 1.013)
49.665 0.089
7 0,0,5,6,6,8,21) 46 (3,4,6,3,6,10,17) 49 48.945 089

(52.540, 4.652)

(0.072, 0.017)

Note: The results are obtained by choosing the best from 10 random runs with 500 000 iterations and 100
generations per run for CSA and CGA respectively. The major parameter setting is 0.8 for the probability of
crossover and 0.01 for the probability of mutation. For CSA, since the convergence of applying VM works
well, almost all the outputs are the same except for when J = 7, where the outputs are very close. Therefore
we only report the statistics for CGA. The first parameter in the parentheses is the mean while the second
parameter is the standard deviation for respective performance measures for 10 runs.

Table 5.3 Time performance of CSA, CGA and ENU

Time (CPU sec)

! ENU* CSA® CGA®
4 0.251 <30 > 60
5 0.471 <30 > 60
6 120.77 <60 > 60
7 2057.18 <60 > 60

Note: Number of iterations for CSA: 10 000. Number of generations for CGA: 100. a: (St = Sy), b: (St =Sy)
and (no St restriction) c: (no Strestriction)
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Table 5.4 Optimal workload allocation using CSA

] s p* TC* SL*

4 (0,1,7,23) (0.82, 0.70, 0.67, 0.64) 23322 0.015
5 (0,1,6,8,22) (0.81, 0.75,0.71, 0.68, 0.65) 30.009  0.011
6 (0,1,6,6,7,22) (0.86, 0.74, 0.70, 0.67, 0.64, 0.62) 36312 0.017
7 (0,0,56,6,8,21) (0.87, 0.76, 0.72, 0.68, 0.65, 0.63, 0.61) 42.854  0.019

Note: Most runs obtain the same results except for N=7, where the results are very close and the best is
reported. Note the minimum capacity required for all the stages to satisfy SL is 1.23 for N =4, 5, and 1.24
for N =6, and 1.25 for N = 7. However, we release this restriction by letting all the lower bounds to be 1.01,
such that stability of the queueing system is maintained.

Table 5.5 Optimal buffer and workload allocations using iterative method (J=4)

Iteration S* TC SL p* TC SL

0 0,1,7,23) 26.630  0.071 (0.82,0.70, 0.67, 0.64) 23.345 0.012
1 (3,4,5,11) 20.176  0.066 (0.77, 0.65, 0.62, 0.59) 18.994 0.021
2 (1,4,4,9) 17.623  0.067 (0.71, 0.61, 0.59, 0.55) 16.923 0.027
3 0,3,3,8) 16.070  0.079 (0.65,0.57, 0.55, 0.52) 15.478 0.037
4 0,2,3,7) 15.103  0.074 (0-60, 0:54, 0.52, 0.49) 14.883 0.042
5 0,2,2,7) 14.662  0.061 (0:58;70.52,0.50, 0.49) 14.634 0.048
6 0,1,2,7) 14.477  0:070 (0.55;0.50, 0.49, 0.48) 14.443 0.053
7 0,0,2,7) 14350  0:081 (0353, 0.48, 0.47, 0.46) 14.314 0.062
8 0,1,2,6) 14303  0.065 (0:53,:0.48, 0:47, 0.45) 14.308 0.068
9 0,0,2,6) 14299  0.096 (0.50;0:47, 0.46, 0.45) 14.252 0.081
10 0,0,2,6) 14252 0.081 Stop

Table 5.6 Optimal buffer and workload allocations using CSA

] s+ p* TC* SL*

4 (0,0,2,6) (0.50, 0.47, 0.46, 0.45) 14252 0.081
5 (0,0,2,2,5) (0.51,0.47, 0.46, 0.45, 0.43) 17795 0.093
6 (0,0,1,2,1,6) (0.51,0.47, 0.46, 0.45, 0.4, 0.43) 21439 0.096
7 (0,1,1,0,1,3,5) (0.51,0.47, 0.46, 0.4, 0.4, 0.43, 0.41) 25212 0.094

Note: Smaller cases (N=4, 5) converge very fast, though most runs obtain different results (but close), and
the best is reported. For N=6, 7, maximum iteration (500 000) are achieved and the best results are reported.

85



Table 5.7 Optimal buffer and workload allocations using CSA for larger SC.

s+ p* TC*  SL*

10 (0,0,0,4,0,3,0,1,2,5) (0.54,0.49,0.48, 0.48, 0.45, 0.44, 0.42, 0.41, 0.41, 0.39)  37.277 0.100

20 (0,1,1,2,1,1,1,3,0,1, (0.57,0.43,0.53,0.50, 0.44, 0.58, 0.51, 0.38, 0.31, 0.41, 89.669 0.096
0,3,0,1,2,0,1,0,2,4) 0.40, 0.37, 0.34, 0.35, 0.40, 0.25, 0.38, 0.28, 0.30, 0.29)

30 (9,2,1,1,4,2,5,6,1,1, (0.87,0.57,0.53,0.33,0.36, 0.37, 0.24, 0.26, 0.76, 0.24,  324.018 0.069
0,10,0,1,1,0,3,0,3,1, 0.66,0.33, 0.36, 0.33, 0.48, 0.40, 0.46, 0.22, 0.14, 0.35,
,0,1,2,0,1,0,1,1,2) 0.52,0.47,0.29, 0.04, 0.04, 0.34, 0.02, 0.04, 0.12, 0.06)

Note: CPU Time statistics: J = 10: <300, J =20: <600, J =30: < 1500

5.3.2 A more general topology

For more general SC such as fig. 5.4, several supply topologies are incorporated in a
single SC. For the ease of exposition, here we model an abstract version of fig. 1.1 in
chapter 1. However, the same solution method applies to fig. 1.1 as well. We use several
M/M/1 to represent each inbound logistics!(Sj)-of the supplier and we assume there is only
one M/M/I outbound logistics  (T1).- The. single distribution process (T2) is
Hyper-exponential distributed. Notice, if we use a dedicated transportation route for each
retailer, the analysis will be a slightly different. ‘Under such configuration, we can use
sequential refinement method of Lee and Zipkin (1995) for the analysis for distribution
system. However, sequential refinement method is similar to L & Z. It differs by treating
each dedicated transportation route as a M/M/I queue and calculates it respectively. In the
past, simulation seems to be the only choice for analyzing such complex structure.
However, with the assistance of other stochastic modeling procedure, we can still
transform the original complex structure into a tractable tandem-form as explained in
subsection 3.2.2 of chapter 3 and subsection 5.2.1 of chapter 5. Now the supplier may be
from multiple sources. Suppose we have 5 functional stages: supply (S), assembly (A),
manufacture (M), outbound logistics (T1) and distribution (T2). Note here T2 may include
the processing needed for product differentiation and transporting tailored for non-identical

customers’ needs as illustrated in inbound logistics of fig. 1.1 in chapter 1.
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Fig. 5.4 A more general SC model.

Suppose we want to solve BAP and CAP simultaneously with the restriction that the
service level for each retailer is not larger than some threshold levels and the arithmetically
averaged service level is not larger than some pre-specified level. We formulate the

optimization process as follows.

Min TC(S, u) = hgWAP + > CBLL 1+ Y o, E[B,1+ Y e,
ST 5 " "

u; 21,

SL, <B,,

SL<B,

S; € Integer™ U {0},u, € Real".

All the parts from different supply sources will be collected whenever one from each
supplier is available and immediately sent to the inbound warehouse, /; of the producer.
We neglect the transferring process of inbound logistics and transit inside producer.
Suppose we have 2 suppliers and 4 retailers. The supply distributions are all exponential
with identical rates. Thus the results of subsection 5.2.1 can be applied here. Under this
setting, the mean response time of the FES is 3/2 times larger than that of the original
M/M/1 queue (Bolch, 1998). Assume the parameters for retailer demand rates are
(M 22, A3, 29) = (0.1, 0.2, 0.3, 0.4), distribution rates for T2 are u5=(1, 2, 3, 4). Notice here
we assume non-identical retailers with different serving (distribution) rates. The u is set

1.01 to preserve the stability in a ququeing system. Remember the original formula of the
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number of order in the system of a M/PH/I is L=(1-p)a.R(I —R)*1 (see (3.9) of

chapter 3 for details), however we have to modify this performance measure to account for
different distribution rate u;. Applying Little’s formula, we get the actual queue length for

each retailer Lg=L-p, and so the actual sojourn time for each distribution process is
Ws=Lq/A+1/u,. The accuracy of the modified approximation model is verified through

simulation study. We setup the experimental design in table 5.8 for this verification
process. For the sake of simplicity, we neglect the cost incurred in capacity when making
the comparison. Table 5.9 (related to 7C and other measures) and 5.10 (related to SL)
show the results. The deviations of the approximated model (App) and the simulation
model (Sim) of all performance measures are very tight for most of the test cases. High
deviations occur at some expected backorder, levels and service level where both app and
sim are extremely low. From the“high accuracy of.the tables, we are confident that the
approximation model is also sufficient to actas the evaluation function for the optimization
process of such more general SC topology.

From section 5.1, the roles played by buffer and capacity seem to be the same. The
increase in one variable may decrease the other to maintain low cost while striving to
preserve SL requirement. Observations derived from tables 5.9 and 5.10 justify our
conjecture. The following lists the simple rules-of-thumb after observing the results of the
tables. Note rules 5.1 and 5.2 relate to 7C while rules 5.3 and 5.4 relate to SL.

Rule 5.1 If all resources are low, increase capacity only, not else to decrease cost. This

measure decreases 7C from 31.552 to 7.29 as seen from table 5.9. Any other measure
results in more 7C. This is because no matter what resource(s) is/are increased, E[B;]
decreases. However, the “side effect” of increasing capacity is the mildest. It decreases
WIP and increase a little E[/;] while all other measures increase either WIP and/or E[/]

significantly.
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Rule 5.2 If there is/are any resource(s), which is/are already high. it may be not necessary

to increase any other resource(s) to prevent from increasing cost. When resource(s) is/are

already high, it may be enough to fight against demand uncertainty and therefore adding
extra resource(s) result(s) in marginal decrease in E[B] but increase either WIP and/or E[/]
significantly. The overall result is not beneficial.

Rule 5.3 If all resources are low, increase any resource(s) as much as possible to increase

service quality. Basically, SL is closely related to E[B;]. When E[B;] decreases service
quality increases (1. e. SL decreases). Since any resource expansion plan lowers the risk of
demand uncertainties, more resources increase service quality more.

Rule 5.4 If there is/are any resource(s), which is/are already high, the benefit of increasing

any other resource(s) may be marginal. As can be seen from table 5.10, when resource(s)

are high enough, adding more .resource(s) ‘isfare useless to decrease SL (adding
intermediate buffer causes SL to remain 0.01).

To conclude, adding more capacity-seems-t0-be the most beneficial measure to reduce
TC if buffer is low and the capacity ineurred e¢ost'is neglected. However, when SL is also
concerned, the decision may be different. Decision maker has to make adequate measure to
trade-off between cost reduction and service requirement. In this example our
rules-of-thumb cope up with the reasoning of system dynamics. However, it may not be
true under different assumptions. For example, if different cost structures and other factors
not concerned herein are adopted it may result in different conclusions. For the ease of
decision, adequate optimizer such as introduced in this chapter seems to fit in. Suppose the
required service level for retailers is B = (0.1, 0.2, 0.3, 0.4) and B =0.15. Note B is the
averaged service requirements. Table 5.11 is such exercise. Interestingly, the positioning of
the workload sequence in distribution stage and the positioning of the buffer in other stages

are consistent with the previous results.
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Table 5.8 DOE setting for approximation validation of more general topology

Decision Factors Levels

Low: (2.25,1.5, 1.5, 1.5)
High: (6, 4, 4, 4)
Low: ((1,1, 1, 1)
High: (4,4, 4, 4)
Low: ((1,1, 1, 1)
High: (4, 4, 4, 4)

Capacity (uy, uy, us, uyg)

Intermediate buffer (S;, S2, Sz Sy)

Ending buffer (Ss)

Note: (uy, u, us, ug) are service rates for supply, assembly, manufacture, and outbound logistics respectively;
(S1, Sa, S5, Sy) are base stock levels for 1, I, I;, and DC respectively. Ss is a vector, representing base stock
levels for different retailers.

Table 5.9 Approximation validation (1).

_ Intermediate Ending Cc WIP E[L] E[Bs]

Capacity

buffer buffer  gjm App %Er Sim  App  %Er Sim  App  %Ermrr Sim App  %Err
Low Low Low  31.552 31.602 0.16 7.471 7.679 279 1.822 1.725 -5.35 2443  2.604 6.58
Low Low High 19369 19.053 -1.63 7.471 7.679 279 11.729 11.493 -2.01 0.350 0372 6.31
Low High Low 15792 15.882 0.57 . 16.233 16.236_0.02 3.080 3.036 -1.42 0.471 0473 0.36
Low High High  23.054 23.056 0.01 " 16.233_16.236:0.02 14.645 14.598 -0.32 0.035  0.034 -2.86
High Low Low 7290 7.165 .-1.72|- 4552 -4.594 093, 3.318 3266 -1.57 0.164  0.160 -2.32
High Low High 17.450 17.413°-021 4.552 .4.594 093" 15.156 15.107 -0.32 0.003  0.001 -70.00
High High Low  13.028 12.813°-1.65 . 16448 16.449 0.00" 3.392 3.373 -0.56 0.136  0.122  -10.66
High High High  23.487 23.482 #0.02 *"16.448-16.449 .0.00 15.257 15252 -0.03 0.002  0.001 -70.00

Note: %Err = (App — Sim) / Sim x-100 %

Table 5.10 Approximation validation (2).

Capacity Intermediate Ending (SLy, SL», SL, SL4, SL)

buffer buffer Sim App %Err
Low Low Low (0.384,0.544, 0.642, 0.706, 0.569)  (0.360, 0.524, 0.619, 0.672, 0.543)  -4.57
Low Low High (0.008,0.047,0.109, 0.18,0.086)  (0.007, 0.043, 0.100 , 0.169, 0.080)  -6.98
Low High Low (0.167,0.224,0.268, 0.304, 0.241)  (0.167,0.212, 0.259, 0.280, 0.230)  -4.77
Low High High (0.001, 0.005, 0.013, 0.023,0.011)  (0.001, 0.005, 0.014, 0.024, 0.011)  0.00
High Low Low (0.131, 0.168, 0.202, 0.233,0.184)  (0.133,0.157, 0.183,0.208,0.170) ~ -7.61
High Low High (0, 0.001, 0.001, 0.002, 0.001) (0.000, 0.001, 0.002, 0.004, 0.002)  100.00
High High Low (0.119,0.145,0.17,0.193,0.157)  (0.120, 0.145, 0.164, 0.177,0.152) ~ -3.18
High High High (0,0,0.001, 0.001, 0.001) (0.000, 0.000, 0.001, 0.003, 0.001)  0.00

Note: SL =(SL, + SL, + SLy + SLy) / 4.
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Table 5.11 Optimal buffer and workload allocations for more general SC.

J (Sb Sz, S3> S47S5)* (pl, P2, P3, p4,p5)* TC* SL*
5 (0,0,2,3,22272) (0.46, 0.48, 0.47, 0.46, 0.84, 0.63, 0.52, 0.45) 26.946 (0.03,0.08,0.14,0.18,0.11)
6 (0,0,1,2,3,2,2,2,2)  (0.46,0.48,0.47,0.46, 0.45, 0.84, 0.63, 0.52, 0.45) 30.875 (0.03,0.09,0.14,0.19,0.11)

7 (0,0,1,1,2,3,2,2,2,2) (0.47,0.48,0.47,0.47, 0.46, 0.44, 0.83, 0.62, 0.52, 0.45) 34.946 (0.04, 0.09, 0.14,0.19, 0.12)

Note: CSA achieved convergence after 71 200 iterations for J = 5, 81 000 iterations for J = 6 and 90 000
iterations for J = 7.

5.4 Discussion

We have discussed the suitable optimization solutions for all the proposed problems of
tandem and more general SC forms and related topics of resource expansion planning. It’s
well known that the parameter settings of meta-heuristic methods such as the “cooling
rate” in SA, probabilities of crossover and mutation etc. may play important role in
performance enhancement. For the sake'of brevity, we neglect this investigation in this
chapter. Now we turn to the sensitive part-of the optimization process as well as other
issues related to reliability of an-SC. To se¢ all the impacts on TC and service quality, we

set different values of B starting from 0.01 to 0.3, ifcrementing at 0.01.

5.4.1 Penalty of BC model

Assume u=2.5, all the other operation parameters, including cost structure are the
same as in case 5.3 of subsection 5.3.1. If the cost structure is that c, plays dominant factor
then we conjecture that our method will find the optimal buffer configuration such that the
backorder level is low enough while satisfying the service constraint. This effect is the
so-called “penalty of the BC model” (Boyaci and Gallego, 2001). Here BC stands for
backorder cost. We illustrate this effect by the following tests. Let ¢, have different levels:

0.5, 1, 5, and 10. We run the optimization model. The final results of TC* and SL* against
different 3 levels are shown in fig. 5.5 and 5.6. Fig. 5.5 shows TC* decreases when 3

increases. In all B settings, TC* becomes high when ¢, is set large. Because the St of high
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cp will be higher than that of low ¢, to prevent the backorder cost from getting too high.
That explains why the E[B] of high c, converges earlier than low ¢, as in fig. 5.6. Since
high cy, incurs high backorder costs, it explains why 7C of high cy, is higher than that of low
cp at the same B (fig. 5.5). To conclude, the higher of cy,, the less change in S*, and
therefore the less change in 7C and E[B] no matter how [ degenerates. On the contrary,
when ¢, is low and [ increases, E[B] increases. However, this increase is compensated by
the decrease in E[/], and ultimately results in the decreases of 7C. This finding seems to

cope up with our original conjecture and validate the so-called “penalty of the BC model”.

40 .

Total Cost

10 ' ‘

|
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Fig. 5.5 TC as a function of B under different cost structure
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Fig. 5.6 Backorder level as a funetion-of B under different cost structure

5.4.2 Impact of unavailability

Random upstream unavailability may affect the performance of an SC. In this analysis
we try to find under what circumstance the impact will be the most disastrous. The
decision factors include arrival and service rates of regular jobs as well as irregular jobs
such as maintenance or breakdown. Here we analyze breakdown case only. The DOE
setting for unavailability test is in table 5.12. Under regular mode, each stage behaves like
an isolated M/M/I queueing system. With breakdown incorporated, Ws is lengthened.
However, we don’t know exactly what factor(s) contribute(s) to the impact of performance.
Table 5.13 lists all the possible factors that may be the candidates. Except for the factors in

table 5.12, the derivations of the other three factors, i. e., p, ¢, ¢? are more involved

a >’ N

(Wang, 1993). Here we use a different approach as compared with chapter 3. Specifically,

we treat the stochastic process as a superposition of regular and breakdown jobs. The
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purpose is to acquire the variation in both arrival and service processes. p is derived in
(3.10) of chapter 3. Below we derive ¢. and c’.

Since breakdown and repair processes are independent random variables, we get

, 1 , 1
Cf '?‘f‘c}, Ty
squared coefficient of variation of breakdown cycle as c; = 1 Y Since all
(G+)
s 7

services are exponential, both ¢; and ¢, equal 1. From the definition, we get Ap= 1/(1/§
+ 1), p =M/ (M +A), g =1 — p. So we may write ¢. = p-1+¢-c,. Since we may

express E[T{]= p-l/u + qldly, ¢ can be derived similarly:

1 2 1 2 2
P'u7(1+cu)+61'7(1+6’7)—E [7.]

c, = BT ] . Also cé and cf equal 1.

Notice regular service can- be treated -as M/M/] queueing system and random
unavailability can be treated as GI/G/I queneing system. Table 5.13 lists the comparison of

the Ws under these two service modes. It-reveals the following interesting fact: Ws in

GI/G/I is not infected by p,c., or ¢, individually. It is influenced by the synthetic effects

of A, u, &, and y. For example, when arrival rate is high, service rate is low, breakdown rate
is high, and repair rate is low (No. 6), the impact is the highest. The performance
degradation, %dev rise as high as near 6 times of the original performance. On the contrary,
when arrival rate is low, service rate is high, breakdown rate is low, and repair rate is high
(No. 11), the impact is the lowest. These effects cope up with our intuitions. Since Ws is
impacted by A, u, &, and y, we may want to investigate its influence on system performance.
Table 5.14 lists the impacts on 7C and SL of unavailability by different stages under the
worst case (No. 6) and § = (16, 16, 16, 4), where 4 is the base stock for each retailer.

Apparently, the impact increases in stage. Table 5.15 lists the impacts under the best case
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(No. 11) and § = (4, 4, 4, 1). Interestingly, we find that upstream unavailability may not
always cause adverse results. In table 5.15, 7C of upstream unavailability occurred before
the second stage is no worse than the original M/M/I QN. Generally, the breakdown
increases WIP, decrease E[/] and increase E[B]. The service level gets worse because of
large E[B]. Looking closely at the components of WIP (WIP, not shown here), we find at
the broken stage the L increases (except for the first stage, which we don’t count) but its
E[I] decreases and so is/are its downstream stage(s). E[B] may increase if the impact of

breakdown upstream last to the end stage or remain the same if the impact is neglected.

Table 5.12 DOE setting for unavailability test.

Decision Factors Levels

A Low: 0.05 High: 0.1

u Lowz0.125 High: 0.25
& Low: 0.0125 High: 0.025
Y Low: 0.125 High: 0.25

Table 5.13 Comparison of regular-and random unavailability mode.

No. A u 3 y D ¢ c? M/M/1  GI/G/l ~ %dev
1 0.1 025 0025 025 044 09742 1 6.667  8.143 22.14
2 0.1 025 0025 0125 048 0976 12076 6.667 10462  56.92
3 0.1 025 00125 025 042 09852 1 6.667  7.379 10.69
4 0.1 025 00125 0.125 044 09858 1.1509 6.667  8.429 26.43
5 0.1 0.125 0025 025 088 09742 1.0916 40.000 76.000  90.00
6 0.1 0.125 0025 0125 096 0976 1 40.000 272.000  580.00
7 0.1 0.125 00125 025 084 09852 1.053  40.000 53500  33.75
8 0.1 0.125 00125 0.125 088 09858 1 40.000 78.667  96.67
9 005 025 0025 025 022 09565 1 5000  5.744 14.87
10 005 025 0025 0125 024 09591 12479 5000 6.737 34.74
11 005 025 00125 025 021 09733 1 5000  5.367 7.34
12 005 025 00125 0.125 022 09742 12148 5000 5846 16.92
13 005 0125 0025 025 044 09565 1.1509 13333 16.000  20.00
14 005 0125 0025 0125 048 09591 1 13333 19.692  47.69
15 005 0125 00125 025 042 09733 1.0951 13333 14.621  9.66
16 005 0125 00125 0.125 044 09742 1 13333 16286  22.14

Note: M/M/1: Ws of normal service mode; GI/G/1: Ws of random unavailability mode. % dev = (GI/G/1 —
M/M/T | (M/M/1) x 100%
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Table 5.14 Impact of unavailability by different stages (worst case).

Stage C % dev SL WIP E[l] E[B]
M/M/1 QN 38.957 0.067 48.128 12.147 0.275
S1 72.399 85.85 0.211 31.477 9.991 4.667
S2 107.750 176.59 0.288 58.130 8.853 6.983
T1 143.590 268.59 0.403 63.347 7.131 10.479
T2 198.108 408.53 0.581 71.328 4.469 15.797

Note: S = (16, 16, 16, 4). % dev = [(TC of unavailability impact) - 38.957] / 38.957 x 100%

Table 5.15 Impact of unavailability by different stages (best case).

Stage TC % dev SL WIP E[]] E[B]

M/M/1 QN 9.912 0.059 12.000 3.764 0.015
Sl 9.903 -0.09 0.059 11.982 3.764 0.015
S2 9.912 0.00 0.059 12.000 3.764 0.015
T1 9.912 0.00 0.059 12.001 3.764 0.015
T2 9.927 0.15 0.063 12.019 3.748 0.017

Note: S = (4,4, 4, 1). % dev = [(TC of unavailability;impact) - 9.912]/9.912 x 100%

5.4.3 Impact of poor quality

Poor quality causes reworking and capacity loss (Chapter 3). Applying Jackson’s rule,
the influenced servers include the point where poor quality is identified, all the way back to
the first stage. Assume A = 0.01, u all equal to 0.055, fig. 5.7 to 5.10 graph the impacts of 6
on 7C and SL by different feedback location for S = (4, 4, 4, 1) and S = (16, 16, 16, 4)
respectively. o ranges between 0.1 and 0.8, incrementing at 0.01. Basically we obtain
similar results as in the analysis of server unavailability. The impact may not always be
adverse when d is not so high. This is because server(s) in the feedback range cause(s)
capacity to loose and therefore L to increase in front of those servers. As in the server
unavailability analysis, E[[;]’s of those servers and their downstream stage(s) decrease. The
synthetic effect is the trade-off of the above two impacts. It depends on the buffer size.
When buffer is low and 0 is very high, capacity may loose dramatically with not enough

buffer to fight against demand uncertainty. It causes the E[B] to increase very high and so
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i1s TC. Fig. 5.7 shows this effect. When buffer is high, 7C may not rise so much even when
0 is very high. The end result is like fig. 5.9. However, SL will be no better than when 9 is

0. Even when 0 is small the feedback occurred in T2 may start to degrade significantly as

shown in fig. 5.8. Also we notice the impact of 7C and SL is large when the feedback

occurs in downstream stages at high o.
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Fig. 5.7 Impact of 6 on TC by different feedback location S = (4, 4, 4, 1).
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5.5 Concluding remarks

This chapter tries to solve thebuffer and capacity allocation problems of an SC under
random supply and demand environment. We showed that our analytic model combined
with the meta-heuristic search, specifically Simulated Annealing is an efficient and
effective approach for optimization of such supply chain problems. Herein we proposed
adequate solution measures of classical or modern approach to solve supply chain
problems with different topologies and problem formats. For more general SC topology,
we developed a naive and original method by simply transforming the original topology
into tandem form through QBD process and another existing stochastic model in the
literature. Numerical study shows accurate results when compared to simulation runs. The
observations therein may provide simple rules-of-thumb for decision maker of an SC for
resource expansion planning. By incorporating feedback and server breakdown factors into

a supply chain study, the study provides more practical solutions as compared to other
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related works. The discussion on the impacts of upstream unavailability and imperfect
quality may provide valuable information for decision maker to get deeper insights into the
system behavior of an SC under unreliable supply situations. The system designer can thus
incorporate these uncertainty factors into the optimization process to get more robust
results. To our knowledge, such investigation on unreliable supply chain is still not much.
In the numerical study, we find that MTS (with intermediate inventories) is not inferior
to MTO (with end-stage inventories only) under any service requirement. Special case
occurs when all holding cost settings are the same, there is no need to move stocks
upstream to lower the holding costs and therefore MTS is degenerated o MTO with the
same performance. The test of penalty of backorder cost is consistent with another related
work with similar problem but different processing settings. Also ”the pattern” of resource

positioning seems to be consistent with other related works.
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Chapter 6 Conclusions

The most important contribution of this study is that we extends the original work of L
& Z. We fit it into an SC domain by the adequate “transformation” of non-tandem systems.
The sophisticated processing logic inside each echelon can also be handled by our
proposed approach, for example server unavailability herein. Though not exhibited herein,
we believe this approach can also handle any arbitrary service distribution since phase type
can approximately represent any probability distribution (Svoronos and Zipkin, 1991) and
/PH/I, where the arrival process can be of Markovian or phase-type, is a well-developed
domain of QBD process (Neuts, 1994).

We also show the possibility of extending the original model to handle other
order/replenish scheme. Specifically thatiof (r, q) type is successfully tested though the
accuracy is satisfactory only under speecific conditions. Integrating the results of QBD
modeling for parallel processing-with L & Z is also tested with limited success. To make L
& Z more general, more efforts are needed in the future.

In conclusion, we have demonstrated that by using the matrix analytic approach, the
evaluation of a complex SC using base stock as control logic, performs as expected
through simulation verification. The relative errors between Approximation and Simulation
are all below 10% for retailers adopting MTO policies in our test problems. When all the
retailers also adopt the MTS policy, numerical studies show that the approximation is
accurate for medium traffic intensity and acceptable for high traffic intensity. This shows
that the matrix analytic approach by combining L & Z and other decomposition technique
such as QBD for supply chain analysis is feasible, therefore its application is not limited to
tandem processing queue as reported by L & Z and Zipkin (1995) but also for broader
context. Herein we show its application on a tandem SC where the end stage is a

distribution system with identical or non-identical retailers.
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The non-identical case refers to non-identical demand rates with non-identical
distribution processing rates. Also we transformed and incorporate a fork-join type
supplier’s process into our evaluation model to make it more general. In the literature of
the stochastic production-distribution system, most models are developed and analyzed
separately. Those models are usually difficult to integrate as one single model.

Next, the MMPP models are developed for different scenarios related to uncertainty to
investigate respective system behavior for each individual stage under uncertainty concern.
After linking together all the stages the system behavior of the whole chain is analyzed by
queueing network analysis (QNA) under MTO supply mode. However, the QBD
decomposition for parallel processing under various uncertainties may not be suitable
under MTS mode. From the study herein, the application only works under specific
conditions. The application of the analytic approach on resource allocation, specifically
server and repairman decision is-demonstrated.through an illustrative example. The results
show the analysis provides valuable managerial-insights.

Finally, we demonstrated various optimization methods for the optimization of various
SC topologies under service constraints. We showed the impact on system performance
due to upstream unavailability or poor quality under different service levels. The
unreliability concern in SCM is seldom explored in the literature, to our knowledge.
Simchi-Levi et al. (2003) mentioned that the impact on the performance of an SC due to
911-terror-attack in 2001 is influential, including delayed delivery, delayed customs, poor
communications. On the other hand, the impact on an SC due to supply and demand
uncertainty in the long run is obscure. Herein, we assessed the above argument through
quantitative analysis. To sum up, we characterize the major contributions of this work:

1. Extending L & Z to allow not just for tandem supply network but also for more general
supply form. The impact of upstream unavailability on the performance of an SC in the

long run is made clear through empirical study.
102



2. Proposing feasible modeling approach to investigate the impact of non-stationary
demand and unreliable service processes on the performance of an SC.

3. Relaxing the single server assumption usually used in tandem queueing models for SC
analyses. Though numeric study is satisfactory for low traffic intensity only.

4. Exploring the possibility of extending the analytic model to allow for other inventory
control policies.

5. Investigating cases in applying classical or modern optimization methods for solving
stochastic SC problems. The obtained results consolidate several previous researches
with new insights.

We also prove that the average number of operative machines is equal (proportional) to
the average number of machines under repair when mean time to failure and mean time to
repair are the same (proportional) by using a matrix algebraic approach. This property is
not explicitly related to repairman. During the process-of this study we encountered several
problems, which raised opportunitiesifor further. study. Below we itemize these problems
and propose some possible strategies for research.

Evaluation model
The QBD combined with L & Z forms the mainframe of our evaluation model. We

tested the performance of the proposed evaluation model in a tandem setting. As can be
seen herein, the approximation model has its limitation, to attain a more general setting,
alternative evaluation model consisting of new decomposition method and new
approximation method may be necessary for other topology and system dynamic of an SC
not addressed herein. For example, problems dealing with generalized QN with arbitrary
input and service rate and planned inventory setting are still open.

System dynamic inside each echelon
In this work we used abstract level of SC modeling. Though chapter 4 discussed

several details in modeling the behavior of an SC, it’s not enough. To unveil the System
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dynamic inside each echelon and relate it to system performance, more thorough studies
should be done. For example, herein we assumed identical processing rates inside
assembly logic, what if they are non-identical. Also we used simple model to represent
transportation activity. However, practical logistics is usually more complicated than the
model formed herein. Optimizing the SC model with more practical logistics concern is an
interesting area. Also future study may investigate the impact of uncertainties on resource
design decision as functions of correlated effect of MMPP input.
Optima seeking

Due to accuracy reason, we do not put all the parameters investigated herein into a
nutshell and optimize it. However, such modeling approach may be necessary for practical
use. Further, the evaluation function of the studied problem is more complicated then other
engineering optimization problems using the same, meta-heuristic search methods. When
evaluation model is changed or-becomes more intractable because of more complex SC
structure and/or system dynamics, more efficient and effective search algorithm other than
meta-heuristic as suggested herein may have to-be‘developed. Heuristic approaches such as
those in Boyaci and Gallego (2001) are examples. Alternatively, in addition to GA and SA,
other state-of-the-art meta-heuristics techniques such as Ant colony algorithm, scatter
search, Tabu search among others, may provide different solution flavors.
Control policy

As we reviewed in chapter 2, there are many other control policies which are attributed
to “pull type” production/inventory control as studied herein. In this study we used this (T,
q) control policy by analogous transformation of the performance formula of Zipkin (2000).
It works well under some situations. However, further study regarding extension of the
analytic model to other inventory control schemes, such as (s, S) or KANBAN may have to
be addressed in the future. On the other hand, periodic review policy as opposed to

continuous review policy studied herein may also be investigated.
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Buffer design

We used dual-buffer design herein to develop our evaluation model. The input buffer is
assumer infinite. There are more SC designs with only one finite buffer due to space
limitation or cost concern. The single buffer design has to take blocking effect into its
modeling logic. It may be interesting to compare the performance between single and dual
buffer designs under various SC topologies. Also dual buffer with finite waiting line is an
alternative design, which may be more realistic due to practical reason.
Value of the information

In this study, we used centralized information sharing scheme. When demand is
generated at the end stage, all of the stages along the chain immediately reflect this
information. It is well known that decentralized information sharing scheme is the cause of
so-called “bullwhip effect” in an,SC. The demand information is exaggerated toward
upstream stages and the variation of demand- is ‘amplified along the chain to upstream
stages. Further study may investigate the'saving-of cost due to the centralized information.
Push-pull boundary

In Simchi-Levi et al. (2003), “pull” type of inventory control policy is suitable for the
case when demand is highly uncertain and no economy of scale exists. Under these
conditions MTO supply mode is adequate. On the contrary, when demand uncertainty is
low and economy of scale exists, MTS supply mode is more adequate. However, mixed
type of supply mode is possible when one adequately selects the so-called “Push-pull
boundary”. Before the boundary, push (MTS) supply is conducted while pull (MTO)
supply is executed after the boundary. The performance comparison between our model
and the design of this mixed policy is an interesting research area.
The role of the warehouse

Recently, there are several arguments regarding the role of the warehouse in

distribution stage. Cross-docking policy argues the inventory holding cost can be largely
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saved and so is the supply lead-time. Direct sale policy argues there is no need for the
existence of the warehouse. The supply of the manufacturer may directly serve the end
stage retailers to save operation cost. Since it is obviously shown herein, the complex
interaction of the SC decides the performance of an SC, more thorough studies may have
to be conducted to justify which policy is most suitable under what conditions.

As we stated in literature review of chapter 2, high-level modeling approach may be
another direction for SCM such as Stochastic Petri net (SPN). Most researches on SPN or
generalized SPN (GSPN) can be found in computer and telecommunication areas.
Alexander (2001) first showed how to use MGM as the main solving process for QBD
model. They illustrated how to map from an infinite Stochastic Petri net (iISPN) model to a
QBD process for MGM analysis. Trivedi (2002) illustrated the technique of transforming
the reachability graph (RG) obtained from SPNtorcorresponding CTMC generator matrix
in detail. Arns et al. (2002) used Proc/B, a notational description tool, which can then be
translated to queueing network or SPN for performanee calculation. They used the notation
model to compare ordinary distribution.and web retailing by constructing synchronized
(parallel) sub-models of Proc/B as SPN model and solve the underlying CTMC and then
aggregated them as a single queue. Then the overall QN is solved by product-form solution.
Under their approach, all the underlying transformation and calculation were automatically

accomplished.
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Appendix A QBD process and simulation model

A.1 QBD Process
Define the phase type distribution of a Markov process as a stochastic process having

parameters m, G,,and . if it can be expressed as a first-passage time random variable,
that 1s, 7=min{r >0:Y, = A}, for a Markov process with state space E ={l,---,m,A},

generator
I G. |G, ,
0|0
and the initial probability vector a =(a.|0). The generator of an M /PH /1 queue can

then be represented in the following matrix form:

-2 Ja.
G, G-a 4
Goa. G—4 4
0= (A.1.1)
Gioa. G-A4: A

Goa- G—A

Where A=A . Then we can find the steady-state probability vector

P=(Do | Pi1>Pyus | PosPos 1) = (Do | P I Py |-7) as follows.

Combining (A.1.1) with the equations PQ =0 yields the following system of

equations,
—Apy + p,G,=0
Aa.p, + p(G.—A)+ p,G,a. =0
pA+ p,(G.—A)+ p,Ga. =0 . (A.12)

p,A+p;(G.—A)+ p,G,a. =0

The solution of (A.1.2) involves the characteristic equation

A+R(G. - A)+ R’G ,a. =0. (A.1.3)
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The matrix-geometric solution of (A.1.3) is
p,=cR" forn=1.2,---, (A.1.4)
where ¢ is a vector of constants. It can be shown (Neuts, 1994, p 84.) that
R=A(A-a.-G,)™" (A.1.5)

And c¢=p,a.=(1-p)a., where p = 4 =—Ja.G.”"1, 1 is a column vector of ones,
U

whose dimension is chosen to fit the context.

A.2 Simulation Model of 3.4 by using Arena (Kelton et al., 2002)
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Appendix B Moment derivations and related proofs

B.1 First and second moment derivations of chapter 4

Here we show the derivation of «", which is not seen in Neuts and Lucanton (1979).

m—2
Let u =>"ix, +E[L].
i=l1

E[L]=x,_ (m=1)+x, mR+x, (m+1)R*+--
E[L]R = x, _(m—DR+x, mR>+-
E[LII-R)=x, (m-1)+x, R+ xm71R2 e (B.1.1)
E[L]=x, ,(m-1)(I-R)" +x, ,RU-R)"
=X, (I =R)?[(m=DI —(m—-2)R] 4

m=2
Then we derive the second moment as follows. Let u® = Zi ’x, + E[L’]. Then
i=1
E[l]=x, (m=1) +x, _m Rtx, (m+1)°R*+--,
E[L’]R = X m =17 R+x, m’R* +-,
E[L)I-R)=x, m-1%+x, ,R2m—=1)+x, R°Cm+1)+--,

Let
E[L’'1=x, R2m—-1)+x, R*Qm+1)+--,
E[L*']R = x, RPQm—-1)+x, R’Qm+1)+--,
E[l’'II-R)=x, ,RCm-1)+x, R*QR*)(I-R)",
E[L*'IR = x, R°Cm-D)+x, \R*Qm+1)+---,
So,

Ell]=x, (m-1’(U-R) " +x, ,RCm-1){-R)> +x, ,2R*)(I-R)"
=x, (I-R)*[(m—1)>(I —R)* +(2m —1)R(I — R) + 2R*].

B.2 Proof of proposition 1

Assume the generator of a particular server queue is as follows. All the sub-matrix is

similar to (4.4) of chapter 4 with m servers.
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()
Il
I
< [

w

—

=
m+l1

Since zQ = 0, after eliminating the last equivalence equation, we have

7, (G-T)+r¥,=0 (B.2.1)
z,+7,(G-Y,-T,)+x,¥, =0, (B.2.2)
Tpolyy+7, (G- -T})+7x, ¥, =0
Form (B.2.1), we have
(B.2.3)

7,G+ V¥, =xI,.
Substitute (B.2.3) into (B.2.2) and after,eliminating and arrange terms we have

7,6 + G +m, Y, =71, .

Continue doing in this way, finally we get

7,G+ ¥y +n,G+x,GH, 'Y+ +
7,G+n,G+m G+, G+x, ¥ .
=z +xl,+-+7, I,

Multiply by unity vector of proper dimension on both sides yield

m
(.zlﬁl_‘PH1)-1+7TOG+7ZOG+7IIG+---
1 =
m—1

+7,,G)1=( ) zr . )L
i=0
Since G-1=0 by property of CTMC, we get

m m—1
OIANOEEIOIEANNE S
i=0

i=1

Plug in the relationship
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Y, =(i-1)~{1,and
Fi 27/*]1"

If y =¢, from the definitions of E[O] and E[RE], we have the result.

B.3 Proof of corollary 1

The proof immediately follows from PROPOSITION 1 by rearranging terms.
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Appendix C Matlab codes of algorithms

C.1 CSA
CSA contains 3 functions: CSABCAP, simannBcap, OptSABCap.

C.1.1 CSABCAP code

function CSABCAP

global N lamda h1 h2 fid

fid = fopen('CSAout.m','w');

% Initialize

t=cputime;

sa_ t=85;

sa_rt=0.8;

sa_nt=3;

sa_ns=20;

fun_name='OptSABCap';

run=>5;

s 1=0.1;

for N=4:7

for iter=1:run
c=cell(1,N);p=c;r=c;pai=c;
B=zeros(1,N);W=B;I=B;h1=B;h2=B;lamda=1;delta=0.1;
i=1:N;h1=0.5+delta*(i-2);h2=0.5*(1+delta).>(i-1);
u=zeros(1,N);v=u;
for i=1:N
c{i}=zeros(i);p{i}=c{i};r{i}=zeros(l,i);pai{i}=r{i};

end
% Decide searching bounds
UB1=100*ones(1,N);LB1=zeros(1,N);
UB2=100*ones(1,N);LB2=1.01*ones(1,N);
% Run CSA

[xopt,fopt,SLopt,rhopt, Wopt,lopt,Bopt]|=SimAnnBcap(fun_name, LB1, UBI,...

LB2,UB2,sa t,sa rt,sa nt,sa ns,s l);

fprintf(fid,'N %d Run %d xopt, fopt, SLopt, rhopt, Wopt, lopt, Bopt\n',N,iter);

fprintf(fid,'(");
for i=1:N
ifi==
fprintf(fid,'%d)',xopt(1));
else
fprintf(fid,'%d, ',xopt(i));
end
end
for i=N+1:2*N
fprintf(fid,'%.2f ', xopt(1));
end
fopt 1=fopt-sum(xopt(N+1:2*N));
fprintf(fid,' %.3f %.3f %.3f ", fopt,fopt_1,SLopt);
fprintf(fid,'(");
for i=1:N
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ifi==
fprintf(fid,'%.2f)',rhopt(1));
else
fprintf(fid,'%.2f, ',rhopt(1));
end
end
for i=2:N
fprintf(fid,'%f ',Wopt(1));
end
for i=1:N
fprintf(fid,'%f ', Iopt(i));
end
for i=1:N
fprintf(fid,'%f ',Bopt(1));
end
fprintf(fid,"n");
end
end
fclose(fid);
e=cputime-t;
fprintf('operation duration: %f,e);

C.1.2 simannBcap code

function [xopt,fopt,SLopt,rhopt, Wopt,lopt,Bopt]=simannBcap(func, LB1, UB1, LB2, ...

UB2, sa t, sa rt, sa -nt,sa ns, s 1)

global N R fid

sa_neps=4; Y%hnumber of times eps

sa_eps=le-6; %convergence criteria

sa_maxeval=500000; Y%maximum number of function evaluations
sa_nacc=0; %number of acceptions

sa_nevals=0; %number of evaluations
fstar=Inf*ones(sa_neps,1); %Iast optimum at each sa_nt

x(1:N-1+R)=LB1(1:N-1+R)+(UB1(1:N-1+R)-LB1(1:N-1+R)).*rand(1, N-1+R);
%starting values for buffer

u(1:N-1+R)=LB2(1:N-1+R)+(UB2(1:N-1+R)-LB2(1:N-1+R)).*rand(1, N-1+R);
%starting values for capacity

[f,SL]=feval(func,round(x),u); %function evaluation with parameters x u
xopt=[round(x) u];
fopt=t;
SLopt=SL;
fstar(1)=f;
VMI1=(UBI-LBI); %maximum step size
VM2=(UB2-LB2); %maximum step size
while 1
nup=0; %number of uphill movements
nrej=0; %number of rejections
nnew=0; %number of new global optimum
ndown=0; %number of downhill movements

Inobds=0;
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nacp=zeros(N-1+R,1);

for m=1:sa_nt % loop number for each temperature VM(step adjusting) occur for each
% loop
for j=1:sa_ns % loop number for the purpose of adjusting step, each variable try sa ns
% times
for h=1:N-1+R % for each variable
if sa_nevals>=sa maxeval
disp(‘'max function evaluations achieved')
return
end
Xp=X;
up=u;
xp(h)=x(h)*+VM1(h)*(2*rand(1,1)-1.0);
if (xp(h)<LB1(h)) | (xp(h)>UB1(h))
xp(h)=LB1(h)+(UB1(h)-LB1(h))*rand(1,1);
end
up(h)=u(h)+VM2(h)*(2*rand(1,1)-1.0);
if (up(h)<LB2(h)) | (up(h)>UB2(h))
up(h)=LB2(h)+(UB2(h)-LB2(h))*rand(1,1);
end
[fp,SL,rho,W.I,B]=feval(func,reund(xp), up);
sa_nevals=sa nevals+1;
if (fp<=f & SL<=s 1)
x=xp; % trial replace best sol x
u=up; % trial replace best sol u
=tp;
sa_nacc=sa_nacc+l;
nacp(h)=nacp(h)+1;
ndown=ndown-+1;
if fp<fopt
xopt=[round(xp) up];
fopt=tp;
SLopt=SL;
Wopt=W;
Topt=I;
Bopt=B;
rhopt=rho;
sa_opteval=sa nevals;
nnew=nnew+1;
end
else % function value increases
p=exp((f-fp)/sa_t);% Metropolis' criteria
pp=rand(1,1);
if (pp<p & SL <=s_1)
X=Xp;
u=up;
t=tp;
sa_nacc=sa_nacctl;
nacp(h)=nacp(h)+1;
nup=nup+1;
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else
nrej=nrej+1;
end
end
end
end
%adjust maximal step size v sa_ns times have passed, each variable
% hascalculaterespective nacp(i) if ratio of accept of the variable (less function
% value) or prob. of escape is high (function value not so high) then enlarge the
% search area within the neighborhood of the variable; if ratio of accept is low then
% shrink search area within the neighborhood of the variable;
c=ones(N-1+R,1)*2;
for i=1:N-1+R
ratio=nacp(i)/sa_ns;
% Step length adjustment, Note if 0.4<=ratio<=0.6 no change happens
if ratio>0.6
VMI1(1)=VMI1(i) * (1+c(i)*(ratio-0.6)/0.4);
VM2(1)=VM2(i) * (1+c(i)*(ratio-0.6)/0.4);
elseif ratio <0.4
VM1(31)=VMI1(i) / (1+c(i)*((0.4-ratio)/0.4));
VM2(1))=VM2(i) / (1+c(i)*((0.4-ratio)/0.4));
end
if VM1(i1)>(UB1(1)-LB1(1))
VM1(1)=UB1(i)-LB1(i);
end
if VM2(i)>(UB2(i)-LB2(i))
VM2(1)=UB2(i)-LB2(1);

end
end
for i=1:N-1+R
nacp(i) = 0;
end
end

% check termination criteria for the current temperature, if the current optimal f (before
% changing temperature) less than global optimal (fopt) within eps, quit; notice fp (new
% function value) could become current optimal f because of Metropolis selection process
% fstar(1)=f; £, f(1)* is current optimum for this temperature
quit = (((fstar(1)-fopt) <=sa_eps) & (SL<=s_1));
% guarantee current optimum is global optimum
% if within 4 times of temperature reduction current optimal f and any of previous
% temporary optimal difference within eps, quit. means dwindling
if any(abs(fstar-f)>sa_eps)
quit=0;
end
if quit
disp(['simulated annealing achieved termination after ', num2str(sa_nevals),' evals']);
return
end
sa_t=sa t*sa rt;% reduce temperature
fstar(2:4)=fstar(1:3);
% continue from current optimum
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x=xopt(1:N-1+R);
u=xopt(N+R:2*(N-1+R));
f=fopt;

end %while

C.1.3 OptSABCap code
function [TC,SL,rho,W,I,B]=OptSABCap(x,u)
% Performance evaluation (Object function) for constrained SA (CSA)
global N lamda h1 h2
N=4;delta=0.1;i=1:N;lamda=1;h1=0.5+delta*(i-2);h2=0.5*(1+delta).”(i-1);
v=u-lamda;
{1 y=[-v(DLr{1}=[1];T=0;
for i=2:N
c{i}=[c{i-1} zeros(i-1,1)-sum(c{i-1},2);zeros(1,i-1) -v(i)]; W(i)=lamda/v(i);
end
for i=1:N
p{i}=lamda*inv(lamda*eye(i)-c{i});
end
pai{l}=r{l}*p{l};
for i=2:N
r{i}=[r{i-1}*p{i-1}"x(i-1) 1-r{i-1}*p{i-1}"x(i-1)*ones(i-1,1)];pai{i}=r{i} *p{i};
end
for i=1:N
B(i)=pai{i}*p{i}"x(1)*inv(eye(i):p{1})*ones(i,1);[(1)= x(i) - pai{i}*inv(eye(i) - p{i})* ...
ones(i,1) + B(i);
end
SL=r{N}*p{N}"x(N)*expm(c{N}*T)*onesN,1);
WIP=sum(I+W)-I(N);
TC=sum(h1.*W+h2 *1)+10*B(N)+sum(u);
rho=1./u;

C.2 CGA

CGA contains 13 functions: CGA, initialize r0, validate r0, GeneticAlgorithm,
doHomomorphMap, SimpleCrossover, ArithmeticCrossover, Xmutation,
fineBoundaryResolution, delta, deltalnverse, sum_tSegments, Optga.

C.2.1 CGA code

function CGA

global nG nPi nP nSC nAC nVar bounds ctr Pc Pm fid FINE RESOLUTION ...
COARSE RESOLUTION xmapped Xdummy r ¢ p pai W h1 h2

% GA parameters

run = 5;

nG =100; % total number of generation

nPi=24; % population size (Fixed)

nP= 12; % Mating pool size

nSC=6; % number of simple crossover - each yields 2 children
nAC=6; % number of Arithmatic crossover - each yields 2 children
Pc=0.8; % probability of crossover

Pm=0.01; % probability of mutation

MAP RESOLUTION = 5.0e-5;
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FINE RESOLUTION = 8;% feasible space searching
COARSE RESOLUTION = 15; %feasible space searching
fid = fopen('CGAout.m','w");
for nVar=4:7
bounds=repmat([0 30],1,nVar);
% Initialize
c=cell(1,nVar);p=c;r=c;pai=c;t=cputime;
B=zeros(1,nVar); W=B;I=B;h1=B;h2=B;lamda=1; WIP=0;delta=0.1;
i=1:nVar;h1=0.5+delta*(i-2);h2=0.5*(1+delta).”(i-1);
u(i)=1.25;v(i)=u(1)-lamda;
for i=1:nVar
c{i}=zeros(i);p{i}=c{i};r{i}=zeros(1,i);pai{i}=r{i};
end
Xdummy=zeros(nPi,nVar);xmapped=Xdummy;
XA=zeros(nP,nVar);NM=zeros(nPi,nVar);
% Compute ¢, pof L & Z'92
c{1}=[-v(D)];
for i=2:nVar
c{i}=[c{i-1} zeros(i-1,1)-sum(c{i-1},2);zeros(1,i-1) -v(1)]; W(i)=lamda/v(1);
end
for i=1:nVar
p{i}=lamda*inv(lamda*eye(i)-c{i});
end
r{l}=[1];
pai{l}=r{1}*p{1};
for iter = 1:run% random runs
% Initial generated feasible reference point
[ret,rO]=initialize r0;
if (ret==1)
fprintf(‘'initial feasible reference point : ");
for i=1:nVar
fprintf("%f ',r0(1));
end
fprintf('generated\n’);
end
% initial random population
x = -1 + rand(nPi,nVar) * 2;
% HomomorphMapping
[xmapped]=doHomomorphMap(x,10);
[fval] = Optga(xmapped);
[Yvect,Ip]=sort(fval);
% Initial populated population
Xgen=zeros(nPi,nVar);Fgen=zeros(nPi);
fori=1:nPi
Xgen(i,:)=x(Ip(1),:);
Fgen(i)=Yvect(i);
end
Xbest=Xgen(1,:);
Fbest=Fgen(1);
fprintf(fid,'Run %d GA initial \n',iter);
fprintf(fid,' Fbest: %f\n',Fbest);
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ctr = 0; % Initialize iteration counter
while (ctr~=nQ)
ctr=ctr+ 1;
[x,f,Xgen,Fgen]=GeneticAlgorithm(@Optga,Xgen,Fgen,r0);
fval(ctr) = f;
% Preserving the best feasible solution
if (fval(ctr) < Fbest)
Fbest=fval(ctr);
Xbest=round(x);
fprintf(fid,'Generation:%d, Current best value: %f\n',ctr,fval(ctr));
end

end
[invalid,nlineq] = validate rO(Xbest);
fprintf(fid,'N: %d Run: %d GA results \n',nVar,iter);

fprintf(fid,'Xbest: ');

for i=1:nVar

fprintf(fid,'%d ', Xbest(1));

end

fprintf(fid,"\n");

fprintf(fid,' Fbest: %f\n',Fbest);
fprintf(fid,'SL: %f\n',nlineq+0.1);
end

end

fclose(fid);

e=cputime-t;

fprintf(1,'operation duration: %f,e);

C.2.2 initialize r0 code
function [ret,rO]=initialize r0
global nVar bounds
TRIES=10000;
for k=0:99
for count = 1:10 * TRIES
fori=1:nVar
r0(i) = rand(1,1)*(bounds(2*1)- bounds(2*i-1)) + bounds(2*i-1);
end
[invalid] = validate rO(r0);
if(~invalid)
fprintf('"Valid reference point found!!\n');
fprintf('Starting CGA...\n\n");
ret=1;
return
end
end
end
fprintf('Cannot find valid reference point.\n');
ret=0;

C.2.3 wvalidate r0 code
function [invalid,nlineq] = validate rO(x)
global r ¢ p pai W nVar hl h2
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x=round(x);invalid = 0;
for i=2:nVar
r{i}=[r{i-1}*p{i-1}"x(i-1) 1-r{i-1}*p{i-1}"x(i-1)*ones(i-1,1)];pai{i}=r{i} *p{i};
end
for i=1:nVar
B(i)=pai{i}*p{i}"x(1)*inv(eye(i) - p{i})*ones(i,1); I(i) = x(i) - pai{i}*inv(eye(i) - ...
p{i})*ones(i,1) + B(i);
end
i=1:nVar;
%SL=r{nVar}*p{nVar}"x(nVar)*expm(c{nVar}*0)*ones(nVar,1);
nlineq(l)=r{nVar}*p{nVar}"x(nVar)*expm(c{nVar}*0)*ones(nVar,1) - 0.1;
fori=1:1

if( nlineq(i) > 0.0)
invalid = 1;
return

end

end

C.2.4 GeneticAlgorithm code
function [ XCurbest,FCurbest,Xgen,Fgen]=GeneticAlgorithm(objfun,Xgen,Fgen,r0)
% select top 50% populations to propogate to the next generation,
% Offspring replace the top 50% populations for each crossover operator, then
% non-uniform mutation for whole population
global nG nPi nP nSC nAC nDC nl nVar;bounds.fid
% Record best chromosome in the beginning of each generation;
XBest=Xgen(1,:);
Best=Fgen(1);
% Operator --- SimpleCrossover, ArithmeticCrossover.
[XSChild] = SimpleCrossover(Xgen);
[XAChild] = ArithmeticCrossover(Xgen);
1=1:2*nAC;
Xgen(i,:) = XAChild(i,:);
Xgen(2*nACHi,:) = XSChild(i,:);
[XNMu]= XMutation(Xgen);
Xgen = XNMu;

[n m] = size(Xgen);
[xmapped]=doHomomorphMap(Xgen,r0);
[fval] = Optga(xmapped);
Xdummy=Xgen;

[Yvect,Ip]=sort(fval);
XCurbest=xmapped(Ip(1),:);
FCurbest=Yvect(1);
clear Xgen fval% clear memory for next generation
Xgen=zeros(nP,nVar);
1= 1:nP;
% Elitist (if current best not superior to last generation, replace the last chromosome w/ the
% last best)
if (FCurbest<Best)

Xgen(i,:)=Xdummy(Ip(i),:);
Fgen(i)=Yvect(i);

else
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Xgen(i,:)=Xdummy(Ip(i),:);
Fgen(i)=Yvect(i);
Xgen(nP,:)=XBest;
Fgen(nP)=Best;

End

C.2.5 doHomomorphMap code
function [xmapped]=doHomomorphMap(x,r0)
global nVar nPi bounds MAP_RESOLUTION COARSE RESOLUTION fid
[n,m]=size(x);
infeasible = 0;
j=ln;
ymax(j)=max(abs(x),[],2);
% find sVect
y=zeros(nPi,nVar);
for i=1:nVar
y(:,1)=x(:,1)./ymax’;
end
i=1:nVar;
s = repmat(1/2*(bounds(2*i) + bounds(2*I - 1)),nPi,1) + repmat( 1/2*(bounds(2*i) - ...
bounds(2*i-1)),nP1,1).*y;
s_r0=s-repmat(r0,nPi,1);
for j=1:nPi
% Get tVect
tCount = 1;
fori=1:COARSE RESOLUTION
tempVect =10 + s_r0(j,:)*(i/ COARSE-RESOLUTION);
[invalid,nlineq] = validate rO(tempVect);
if(invalid ~= infeasible)
infeasible = invalid;
tCount = tCount + 1;
end
end
oddCount = mod(tCount,2);
lastIsInvalid = invalid;
[invalid,nlineq] = validate rO(s(j,:));
boundarylsInvalid = invalid,
% Populate regions
tVect(1) = 0.0;infeasible = 0;tCount = 2;
fori=1:COARSE RESOLUTION
tempVect =10 + s r0(j,:)*(i/ COARSE RESOLUTION);
[invalid,nlineq] = validate rO(tempVect);
if(invalid ~= infeasible)
[tVect(tCount)] = fineBoundaryResolution(s_r0(j,:),1,r0,infeasible);
tCount = tCount + 1;
infeasible = invalid;
end
end
if(oddCount & (~lastlsInvalid) & (~boundarylsInvalid))
tVect(tCount) = 1.0;
elseif(oddCount & (~lastlsInvalid) & boundarylIsInvalid)
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tVect(tCount) = fineBoundaryResolution(s_r0(j,:), COARSE RESOLUTION, 10, ...
infeasible);
elseif((~oddCount) & lastIsInvalid & (~boundarylsinvalid))
[tVect(tCount)|=fineBoundaryResolution(s_r0(j,:), COARSE RESOLUTION,10, ...
infeasible);
tCount = tCount + 1;
tVect(tCount) = 1.0;
else
tCount = tCount -1;
end
% Do mapping!!
[deltalnvVal] = deltalnverse(ymax(j), tVect, tCount);
xmapped(j,:) =10 +s_r0(j,:)*deltalnvVal;
end

C.2.6 SimpleCrossover code
function [XS] = SimpleCrossover(X)
% creating children by simple 1-point crossover
global nVar nSC Pc
first=0;0ne=0;
XS =X;
for i=1:2*nSC
r=rand(1,1);
if (r<Pc)
first=first+1;
if (mod(first,2)==0)
if (nVar==2)
point=1;
else
point=floor(nVar*rand(1,1));
end
for j=1:point
XS(one,j) = X(i);
XS(i,j) = X(one,));
end
else
one=i;
end
end
end

C.2.7 ArithmeticCrossover code
function [ XA] = ArithmeticCrossover(X)
% creating children by whole Arithmetic crossover
global nVar Pc nAC
XA=X;
first=0;0ne=0;
[n m] =size(X);
for j=1:2*nAC
r=rand(1,1);
if (r<Pc)
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first=first+1;
if (mod(first,2)==0)
rl =rand(1,1);
rR=1-rl;
for i=1:nVar
XA(one,i) =rl*X(one,i) + r12*X(j,1);
XA(j,1) =1r2*X(one,i) + r1*X(j,1);
end
else
one=j;
end
end
end

C.2.8 Xmutation code
function [NM] = XMutation(X)
% non-uniform whole mutation
global ctr nG bounds Pm
NM=X;
b=6;
[n m] =size(X);
fori=1:n
rl=rand(1,1);
if(r1<=Pm)
forj=l:m
r2 = round(rand(1,1));
if (r2==0)
NM(i,j) = X(i,)) F (1-X(1,)))*(T-rand(1,1)*((1-ctr/nG)"b));
else
NM(i,)) = X(i,)) - (X(,))-(-1))*(1-rand(1,1)((1-ctr/nG)"b));
end
end
end
end

C.2.9 fineBoundaryResolution code
function [tVect] = fineBoundaryResolution(s_minus_r0,1,r0,infeasible)
% This routine implements binary search within each boundary of feasible region
global MAP_RESOLUTION FINE RESOLUTION COARSE RESOLUTION
upper = i;
lower= 1-1.0;
fori= I:FINE RESOLUTION
middle = (upper + lower) / 2.0;
%if( ((upper - middle) < MAP_RESOLUTION) | ((middle - lower) <
%MAP_RESOLUTION) )
%break;
%end
[invalid,nlineq] = validate rO(r0+s_minus r0*(middle / COARSE RESOLUTION));
if(invalid ~= infeasible)
upper = middle;
else
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lower = middle;

end
end
if (infeasible)

tVect =upper / COARSE RESOLUTION;
else

tVect = lower / COARSE _RESOLUTION;
end

C.2.10 delta code
function [delt] = delta(t, tVect, tCount)
% t is assumed to be 'feasible’
[d] = sum_tSegments(tVect, tCount / 2);
if(d ==0.0)

delt = 0.0;

return
end
% find min subscript
subscript = 1;
while(1)

if( (subscript * 2) >= tCount )

break
end
if( tVect(2*subscript) >=1)
break

end

subscript = subscript + 1;
end
delt = ( (t - tVect(2*subscript - 1)) + sum.tSegments(tVect, subscript- 1) ) / d;

C.2.11 deltalnverse code
function [deltalnvVal] = deltalnverse(a, tVect, tCount)
[d] = sum_tSegments(tVect, tCount / 2);
if(d ==0.0)
deltalnvVal = 0.0;
return
end
% find min subscript
subscript = 1;
while(1)
if( (subscript * 2) >= tCount )
break
end
[delt] = delta( tVect(2*subscript), tVect, tCount );
if(delt>=a)
break
end
subscript = subscript + 1;
end
tHi = tVect(2*subscript);
tLow = tVect(2*subscript - 1);
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[delta tHi] = delta(tHi, tVect, tCount);
[delta_tLow] = delta(tLow, tVect, tCount);
denom = delta_tHi - delta tLow;
if(denom <= 0.0)
deltalnvVal = tHi;
return
end
numer = a - delta_tLow;
if(numer <= 0.0)
deltalnvVal = tLow;
return
end
if(a >= delta_tHi)
deltalnvVal = tLow;
return
end
dj = tHi - tLow;
deltalnvVal = tLow + ( dj * (a - delta_tLow) / denom );

C.2.12 sum_tSegments code
function [total] = sum_tSegments(tVect, qtySegs)
total = 0;
for i = 1:qtySegs

total = total + tVect(2*1) - tVect(2¥1 - 1);
end

C.2.13 Optga code
function [fopt,SL]=Optga(x)
global r ¢ p pai W N hl h2 nVar
% This function use batch processing
% Performance evaluation (Object function) for constrained GA (CGA)
x=round(x);
[n,m]=size(X);
for j=1:n
for i=2:nVar
r{i}=[r{i-1}*p{i-1}"x(,i-1) 1-r{i-1}*p{i-1}"x(j,i-1)*ones(i-1,1)];pai{i}=r{i} *p{i};
end
for i=1:nVar
B(i)=pai{i}*p{i}"x(j,)*inv(eye(i)-p{i} )*ones(i, 1 );1(1)=x(j,i)-pai{i} *inv(eye(i) - ...
p{i})*ones(i,1)+B(i);
end
fopt(j)=sum(h1.*W-+h2.*1)+10*B(nVar),
SL=r{nVar}*p{nVar}”x(nVar)*expm(c{nVar}*0)*ones(nVar,1);
End

C.3 ENU
ENU contains 1 functions: OptEnumLarge.

C.3.1 OptEnumLarge code
function [xbest, tbest, SLbest, Bbest, Ibest]=OptEnumLarge
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clear all
global Nrcppai Ts 1 Whl h2b co u fbest xbest SLbest Bbest Ibest
% Initialize
t=cputime;N=4;b=1;co=1;
c=cell(1,N);p=c;r=c;pai=c;
B=zeros(1,N);W=B;I=B;h1=B;h2=B;lamda=1; WIP=0;delta=0.1;xbar=zeros(1,N-1);
i=1:N;h1=0.5+delta*(i-2);h2=0.5*(1+delta).”(i-1);
h1=[0.5 0.5 0.5 0.5];h2=[0.5 0.5 0.5 1];
u(i)=2.5;v(i)=u(i)-lamda;
for i=1:N
c{i}=zeros(i);p{i}=c{i};r{i}=zeros(1,i);pai{i}=r{i};
end
% Compute ¢, pof L & Z'92
c{1=[-v(D);
for i=2:N
c{i}=[c{i-1} zeros(i-1,1)-sum(c{i-1},2);zeros(1,i-1) -v(i)]; W(i)=lamda/v(i);
end
for i=1:N
p{i}=lamda*inv(lamda*eye(i)-c{1});
end
% Initialize r, pai of L & Z'92
r{l}=[1];
pai{l}=r{1}*p{1};
% Initialize xbest, fbest; Assign allowable waiting time and SL
s 1=0.15;
%fors 1=0.1:0.1:0.8
x=zeros(1,N);T=0;SLbest=1.0;
% Find minimum total stock required (st) to achieve SL
for s=0:100
x(N)=s;
for i=2:N
r{i}=[r{i-1}*p{i-1}"x(i-1) 1-r{i-1}*p{i-1}"x(i-1)*ones(i-1,1)];pai{i}=r{i} *p{i};
end
for i=1:N
B(i)=pai{i}*p{i}"x(1)*inv(eye(i)-p{i})*ones(i,1);I(1)=x(i)-pai{i} *inv(eye(i)-p{i} )* ...
ones(i,1)+B(i);
end
SL=r{N}*p{N}"x(N)*expm(c{N}*T)*ones(N,1);
if SL<=s 1
st=x(N);
SLbest=SL;
break
end
end
if SL>s 1
fprintf('Can not find ST in 100, Enlarge search space');
end
% Reset design variable
x=zeros(1,N);xbest=x;fbest=inf;
% Call optimization procedure
[xbest, fbest, SLbest, Bbest, Ibest]=opt(st,x,1);
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%end
e=cputime-t;
fprintf('operation duration: %f,e);
% Enumeration starts here
function [xbest, fbest, SLbest, Bbest, Ibest]=opt(st,x,k)
global rppaic TN Ws 1bcou fbest xbest SLbest Bbest Ibest
x(k)=0;
% Find seaching bound for each stage
for s=1:100
x(k)=s;
if k==1
x(N)=st-x(k);
else
=1k
x(N)=st-sum(x(j));
end
for i=2:N
r{i}=[r{i-1}*p{i-1}"x(i-1) 1-r{i-1}*p{i-1}"x(i-1)*ones(i-1,1)];pai{i}=r{i} *p{i};
end
SL=r{N}*p{N}"x(N)*expm(c{N}*T)*ones(N,1);
if SL>s 1
xbar(k)=x(k)-1;
break
end
end
x(k)=0;
while (x(k)<=xbar(k))
if k<N-1
opt(st,x,k+1);% Recursive callitself when not reaching stage J-1, J
else
x(N)=st-sum(x(1:N-1));
[TC,Bak,lend]=f(x);
if TC<fbest
SLbest=r{N}*p{N}"x(N)*expm(c{N}*T)*ones(N,1);
fbest=TC,;
xbest=x;
Bbest=Bak;
Ibest=Iend;
end
end
x(k)=x(k)+1;
end
% Performance evaluation
function [TC,Bak,Iend]=f(x)
global Nrcppai Ts 1 Whl h2 b cou Bbest Ibest
for i=2:N
r{i}=[r{i-1}*p{i-1}"x(i-1) 1-r{i-1}*p{i-1}"x(i-1)*ones(i-1,1)];pai{i}=r{i} *p{i};
end
for i=1:N
B(i)=pai{i}*p{i}"x(i)*inv(eye(i)-p{i})*ones(i,1);I(i)=x(i)-pai{i} *inv(eye(i)-p{i})*...
ones(i,1)+B(1);
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end
Bak=B(N);lend=I;
TC=sum(h1.*W+h2.*I)+b*B(N)+sum(co*u);

C.4 Typical results of solving BAP and CAP simultaneously for J =4 and 5 using CSA
N 4 Run 1 xopt, fopt, SLopt, rhopt

01161.982.152.202.25 14.254 0.082 0.51 047 045 0.44

N 4 Run 2 xopt, fopt, SLopt, rhopt, Wopt, lopt, Bopt

00261.982.152.182.24 14.251 0.081 0.50 047 046 045

N 4 Run 3 xopt, fopt, SLopt, rhopt, Wopt, lopt, Bopt

00261.982.152.182.24 14.251 0.081 0.50 047 046 045

N 4 Run 4 xopt, fopt, SLopt, rhopt, Wopt, lopt, Bopt

01161.982.152.202.25 14.254 0.082 0.51 047 045 0.44

N 4 Run 5 xopt, fopt, SLopt, rhopt, Wopt, lopt, Bopt

01161.982.152.202.25 14.254 0.082 0.51 047 045 0.44

N 5 Run 1 xopt, fopt, SLopt, rhopt, Wopt, lopt, Bopt
011161972.142.202.252.29 17.800 0.091 0.51 047 046 044 0.44
N 5 Run 2 xopt, fopt, SLopt, rhopt, Wopt, lopt, Bopt
001171982.152.182.222.26 17.806 0.087 0.51 047 046 045 0.44
N 5 Run 3 xopt, fopt, SLopt, rhopt, Wopt, lopt, Bopt
002251972.142.182.242.33 17.795 0.093 0.51 047 046 045 043
N 5 Run 4 xopt, fopt, SLopt, rhopt, Wopt; lopt, Bopt
001351972.142.182.222.32 47797 0.092. 0.51 047 046 045 043
N 5 Run 5 xopt, fopt, SLopt, rhopt, Wiept; Topt; Bopt
001081.982.152.182.222.25 17.815 0.087.0.51 0.47 0.46 045 0.44
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