

 國 立 交 通 大 學

電信工程學系

碩 士 論 文

針對迴旋編碼的維特比解碼機中

倖存路徑記錄器之改良

“Improved Survivor Memory Unit (SMU)
Designs of Viterbi Decoder for

Convolutional Coding”

研究生：林冠亨 Lin, Guan-Henry

指導教授：李程輝 博士 Dr. Lee, Tsern-Huei

中 華 民 國 九十四 年 六 月

Improved Survivor Memory Unit (SMU) Design of

Viterbi Decoder for Convolutional Coding

By

Lin, Guan-Henry

Thesis submitted to the Faculty
of the National Chiao-Tung University

in fulfillment of requirements for the degree of

Master of Science
In

Communication Engineering

Dr. Lee, Tsern-Huei

June, 2005
Hsinchu, Taiwan

Keywords: Viterbi decoder, Survivor Memory Unit (SMU), REA
Traceback, Memory Management

Copyright 2005© Lin Guan-Henry

 ii

針對迴旋編碼的維特比解碼機中倖存路徑器之改良

學生: 林冠亨 指導教授: 李程輝博士

國立交通大學電信研究所

摘要

在本論文中，我提出三種新的倖存路徑記錄器之設計來分別改良三種傳統倖

存記錄器實現方法的缺失。對路徑回溯法(Traceback Management)而言，它原本

就具備低功率消耗及較小的電路面積，但最為詬病的是其過程需要長時間的延遲

(Decoding latency)。針對路徑回溯法，我提出跳階路徑回溯法(Stage-Hopping

TBM).改良後的解碼效率隨著強制長度(Constraint Legnth)的增加可以逼近暫

存器交換法(Register Exchange)的解碼效率。除此之外，改良後的跳階回溯法

所用來記錄路徑的記憶體量只需原來路徑回溯法的 45%。因此跳接路徑回溯法可

同時改善維特比解碼機的解碼效率以及硬體的複雜度。

對於暫存器交換法而言，儘管它有最短的解碼延遲，它的功率消耗以及電路

面積卻是三種傳統方法中需要最大的，原因在於暫存交換法所需要極大量的暫存

器與多工器(Multiplexer)將倖存路徑儲存於正確的位置中。因此，我提出了簡

易暫存器交換法(Facilitated REA)，主要目的就是要減少實現暫存器交換法所

需的硬體，而改良後的方法可以發現，原本多個多工器可以被單一個取代而不影

響解碼的效果。

對於混合法(Hybrid Method)而言，其原本被提出的目的就是要藉由結合路

徑回溯法與暫存器交換法的優點來中和兩者的缺點，因此可以明顯的發現，前述

提出的改良方法皆可同時應用在混合法中，以求進一步的改善實現混合法所需的

硬體複雜度。

在所提出的三個新方法中，用來查詢出路徑對應輸入信號為何的解碼單位

(Decision Unit)都是不被需要的，因此些許的硬體和解碼延遲都可以再被減

少。總結而言，藉由 C語言的模擬可以發現，新提出的倖存路徑記錄器設計並不

會因為改良硬體需求與解碼效率就犧牲解碼能力。藉由圖形表示法(Graphic

representation)，三種改良方法的解碼效率和硬體需求都可以被詳細檢視與比

較，藉此可看出每種新提出的改良設計所能獲得的好處。

 iii

Improved Survivor Memory Unit (SMU) Design of

Viterbi Decoder for Convolutional Coding

Lin, Guan-Henry
Dr. Lee, Tsern-Huei

Department of Communication Engineering

(Abstract)

In the thesis, three new approaches are proposed to improve the drawbacks of three
corresponding methods that are used conventionally in the realization of survivor
memory unit (SMU) in Viterbi Algorithm (VA) as convolution decoders.
 For trace-back management (TBM) method, it has owned the virtues as low power
consumption and small circuit area, but suffers long decoding latency. Corresponding
to TBM, Stage-Hopping TBM (SH-TBM) is developed. The decoding efficiency can
be raised approaching to the performance of register exchange algorithm (REA) as
constraint length increases. On the other hand, length of the required memory could
be reduced down to about 45% of the length originally required in TBM at most.
 REA obtains shortest decoding latency, however, with large power consumption
and circuit area caused by the required numbers of registers and multiplexers. To
ameliorate the disadvantage, Facilitated REA (FREA) is proposed with a concept that
multiple of multiplexers can be replaced by a single one without affecting the
decoding performance.
 As for Hybrid method, it is originally designed to balance the trade-off between
decoding efficiency and the required quantity of hardware by combining TBM and
REA. Therefore, Improved Hybrid method (IHY) naturally inherits the technique used
in FREA and SH-TBM. As expected, fewer multiplexers, in some cases only one
column of multiplexers, will be needed and traceback operation could be realized
faster.
 Of all three newly proposed methods, decoding unit (DU) is eliminated. Hence, a
slight more increase in speed and decrease in hardware could be acquired.

In summary, the experimental result simulated by C program shows that proposed
methods do not deteriorate the decoding performance anyhow. By graphical methods,
analyses and comparisons are made to demonstrate the improvements in hardware
reduction and the acceleration in decoding efficiency.

 iv

Acknowledgements
 First, I have to express my gratitude to Prof. Lee who has offered me a free space to
complete my research independently and tolerated my decisions in everything. Also, I
am grateful to be given the chance by Prof. Lee to present my idea in Shang-Hai last
October. These experiences will definitely serve as stepping stones to my future
researches and advanced studies. I can never get into the communications field so
deep, especially in coding theory and its applications, without mentioning of Prof.
Chang, Wen-Whei and Dr. Hsu, Heng-Iang. I can not thank these three guides enough.
 In addition, I am so pleased to be in the family of NTL laboratory. With companion
of members in the lab, I enjoy every minute of laughter and bitterness. I will take the
lessons I learn from each of them along the way in my life. Last but not least, I have
to and more than willing to dedicate my strongest gratitude to my family, my Father,
Mother and my little sister. With their support, I can conquer everything in the world.
In case, thanks to those who has ever helped me but I accidentally missed. I will
expiate by listing you in the acknowledgement of my future papers.

 v

Contents

1 Introduction………………………………………………………………………….1
 1.1 Organization of the thesis…………………………………………………….2
2 Viterbi Algorithm and SMU implementation technique...3
 2.1 Overview and introduction…………………………………………………...3
 2.2 Convolutional codes………………………………………………………….3
 2.3 Viterbi decoder……………………………………………………………….6
 2.4 Survivor memory unit (SMU)………………………………………………..9
 2.4.1 Traceback management (TBM)…………………………………….9
 2.4.2 Register exchange algorithm (REA)……………………………...12
 2.4.3 The Hybrid method……………………………………………….13
 2.5 Summary of the chapter…………………………………………………….15
3 Three improved SMU designs……………………………………………………...16
 3.1 Overview……………………………………………………………………16
 3.2 The observation……………………………………………………………..16
 3.3 Stage-Hopping TBM (SH-TBM)…………………………………………...18
 3.4 Facilitated REA (FREA)……………………………………………………21
 3.5 Improved hybrid method (IHY)…………………………………………….23
 3.6 Summary of the Chapter……………………………………………………25
4 Experimental results and analyses………………………………………………….26
 4.1 Decoding performance……………………………………………………...26
 4.2 Decoding efficiency and hardware reduction……………………………….27
 4.2.1 TBM vs. Stage-Hopping TBM……………………………………27
 4.2.2 REA vs. Facilitated REA………………………………………….31
 4.2.3 Hybrid method vs. improved hybrid method……………………..33
 4.3 Power dissipation and summary of the chapter……………………………..35

5 Conclusion………………………………………………………………………….36
 5.1 Conclusion…………………………………………………………………..36
 5.2 Future work…………………………………………………………………37
Bibliography……………………………………………………………………….…38
Appendix A. VLSI program documentation…………………………………………39

 vi

List of Tables.

Table I: Performance of Viterbi decoder with different memory management
techniques of SMU…………………………………………………………………26
Table II: Analysis of TBM…………………………………………………………28
Table III: Analysis of SH-TBM……………………………………………………30
Table VI: Analysis between REA and FREA………………………………………32
Table V: Analysis between Hybrid method and Improved Hybrid method………..34

 vii

List of Figures.

Figure 2.1: Block diagram of rate 1/2-Convolutioanl encoder………………………4
Figure 2.2: Block diagram of rate 2/3-Convolutional encoder………………………4
Figure 2.3: Example of recursive convolutional (RSC) encoder…………………….5
Figure 2.4: Trellis diagram for rate 1/2-convolutional code…………………………6
Figure 2.5: Illustration of ACS recursion for M=2…………………………………..8
Figure 2.6: The generation of common tail………………………………………….9
Figure 2.7: The entire Viterbi Decoder block diagram………………………………9
Figure 2.8: Example of TBA………………………………………………………...10
Figure 2.9: Different TB memory contents (a) previous states (b) decision values…11
Figure 2.10: Hardware Architecture of REA………………………………………...13
Figure 2.11: Example of Hybrid method…………………………………………….14
Figure 3.1: Phenomena of the same output for a certain state……………………….17
Figure 3.2: Three-step Trellis for a (2,1,3) code……………………………………..18
Figure 3.3: The procedure of Stage-Hopping TBM…………………………………20
Figure 3.4: Elementary component structure of the FREA method…………………22
Figure 3.5: Equivalent function of SH-TBM and

the elementary component of FREA……………………………………22
Figure 3.6: The hardware structure of FREA………………………………………..24
Figure 3.7: Example of the mixed traceback and decision operations………………25
Figure 4.1: Graphic representation of a conventional TBM…………………………27
Figure 4.2: Required memory size of decision value method and SH-TBM………..28
Figure 4.3: TBM decoder design and SH-TBM decoder design…………………….29
Figure 4.4: Graphic representation of SH-TBM……………………………………..29
Figure 4.5: Decoding Efficiency of TBM and SH-TBM…………………………….30
Figure 4.6: Memory reduction ratios………………………………………………...31
Figure 4.7: Graphic representations of REA and FREA…………………………….31
Figure 4.8: Different register allocations of REA and FREA……………………….32
Figure 4.9: Simulation results of elementary component of FREA…………………33
Figure 4.10: Graphic representation of Hybrid method…….……………………….33
Figure 4.11: Graphic representation of IHY…………………………………………34

Chapter 1 1/40

 1

Chapter 1

Introduction
Convolutional coding [1] is widely employed in digital communication systems

and signal processing to achieve low-error-rate data transmission. For example, IS-95,
a wireless digital cellular standard for CDMA (code division multiple access),
employs convolution coding, so does DVB-T system and many systems else. It offers
an alternative to block codes for protected transmission over a noisy channel.

The Viterbi Algorithm (VA) [2], proposed in 1967 by Viterbi, is a representative
decoding procedure for convolutional codes. When erroneous data are received, the
closest codeword is selected using the maximum likelihood decoding (MLD). In the
hardware implementation, it is composed of three components: Add-Compare-Select
(ACS) unit, Survivor Memory Unit (SMU) and Decision Unit (DU). Although VA has
been applied for decades, researchers still attempt to improve it in two aspects.

Efficiency is one of the issues. Many researchers had targeted on the ACS
procedure when it comes to increase in decoding speed [3]. Most of them modified
the ACS process by adding more parallel hardware to decode signal sequences at the
same time. With this idea, more calculations could be done within a certain period of
time. Thus, a task with the same burden of complexity could be realized sooner. By
introducing parallel ACS modules decoding efficiency can be raised, however, more
hardware/area is required. Therefore, one conclusion has been commonly drawn out
of these researches is that the area/rate trade-off is linear [4].

The other issue is focused on hardware reduction in the Survivor Memory Unit.
There are three common implementation methods of SMU: traceback management
(TBM), register exchange algorithm (REA) and Hybrid method [5,6,7,8]. For the
proper function of VA, conventionally, memory length in TBM or the number of
registers and multiplexers in REA has to be equal to the length of entire sequence.
Fortunately, through theoretical demonstration and simulations by many researchers
[9], they find that a value of 4 or 5 times the code constraint length is sufficient for
negligible degradation from optimal performance of the decoder. With sufficient
length of sequence, common tails will appear so that the memory size in TBM and
the number of registers and multiplexers in REA could be reduced to a practical
extent.

Even with the existing progress made in these two issues, the first question
mounting in my mind is that attempts to increase decoding efficiency by modifying
ACS unit will bring about the need of extra hardware. Then, why not turn to modify
procedure of other components in VA? On the other hand, is the further reduction of

Chapter 1 2/40

 2

hardware used in SMU possible?
Bearing these two questions in mind, we find the key lies in the SMU. It is

based on the observation that the latency in TBM still leaves some room for
improvement and further hardware reduction in TBM and especially in REA is
eagerly demanded. Thus, we determine to search for new approaches to realize SMU
with faster decoding speed and less hardware requirements. Thus, the theme of the
research is set on the improved survivor memory unit design of Viterbi decoders.

We start by observing trellis diagrams of some commonly used convolutional
coders in the digital communication systems. Eventually, an innate characteristic is
found to be applied on the three conventional methods and evolve into three newly
proposed SMU designs so as to reach the expected improvements.

1.1 Organization of the thesis

The organization of this thesis can be described as follows: The background on

the operation of convolutional encoders and Viterbi decoders will be provided in the
Chapter 2 and emphasize on descriptions of three conventional SMU
implementation methods – TBM, REA and the Hybrid method. In the Chapter 3, the
main concept extracted from our observations will be introduced and also how it is
then incorporated into the three conventional methods separately for improvements.
Experimental results in decoding performance and graphical analyses of hardware
requirements will be discussed later in the Chapter 4 along with detailed
comparisons. At last, Chapter 5 will conclude the thesis and indicate the future
works.

Chapter 2 3/40

 3

Chapter 2

Viterbi Decoding Algorithm and SMU

Implementation Techniques

2.1 Overview and Introduction

 In this chapter, necessary background on the research will be provided. First,
convolutional codes are discussed and then we will explain the Viterbi decoding
algorithm and its decoder design. In the design, survivor memory unit (SMU) is
focused and three conventional methods used in the SMU will be introduced.

2.2 Convolutional codes

 Due to the imperfectness of channels, errors would often occur during transmission.
Therefore, some measurements must be taken to combat the disturbance and to raise
the reliability of communication systems. One practical option to deal with the
problem is called error-control coding or channel coding. The channel encoder in the
transmitter accepts message bits and adds redundancy according to a prescribed rule,
thereby producing encoded data at a higher data rate. The channel decoder, on the
other hand, exploits the redundancy to decide which message bits were actually
transmitted and find out the proper estimation. In fact, there are many different
error-correcting codes developed for us to use. In this work, we will focus on
convolutional codes.
 Convolutional coding has been used in communication systems including deep
space communications and wireless communications. It offers an alternative to block
code for transmission over a noisy channel. Convolutional coding can be applied to a
continuous input stream (which cannot be done with block codes), as well as blocks of
data. In fact, a convolutional encoder can be viewed as a finite state machine. It
generates a coded output data stream from an input data stream. The encoder structure
is usually composed of shift registers and a network of XOR gates (Modulo-2 adders)
as shown in Figure 2.1.
 In convolutional coding with rate k/n, the encoder accepts k-bit input symbol and
generates n-bit output symbol by an operation which may be viewed as the
discrete-time convolution of the input sequence with the impulse response of the
encoder. The duration of the impulse response equals the registers of the encoder.

Chapter 2 4/40

 4

Figure 2.1 Block diagram of rate 1/2-Convolutional encoder

Take a 1/2 code for example in Figure 2.1. As we can see, two shift registers and
modulo-2 adders compose the entire encoder scheme. In the example, the encoder
accepts one-bit input symbol and then interact with contents stored in the shift
registers to produce two-bit output symbol. A convolutional encoder is also generally
characterized in (n, k, v) format, where

n is number of bits of output symbol of the encoder ;
k is number of bits of input symbol of the encoder ;
v is number of memory elements of the longest shift register of the encoder.

Therefore, the encoder shown in the figure above could be describe as a (2,1,2)
encoder with constraint length K = v+1 = 3 .

Figure 2.2 Block diagram of rate 2/3-Convolutional encoder

 A more complex encoder structure is provided in Figure 2.2. Describe in (n,k,v)
format is (3,2,4). However, this description could not fully reflect the connections in
the encoder. Hence, generator polynomial is developed to characterize each paths and

Chapter 2 5/40

 5

connections in the encoder. To be specific, the generator polynomial of the ith path is
defined by

vi
v

iiii DgDgDggDg)(2)(
2

)(
1

)(
0

)()(++++= L

where D denotes the unit-delay variable. In normal cases, the coefficients equal 0 or 1
representative of the connections.

However, the short constraint length recursive systematic convolutional (RSC) [10]
codes used in turbo codes are not the case. The coefficients of generator polynomial
of RSC will be fractional numbers instead of 0 or 1. Figure 2.3 is the example of
recursive systematic polynomial whose generator matrix is described as below.

⎥
⎦

⎤
⎢
⎣

⎡
++

+++
= 3

32

1
1,1)(

DD
DDDDg

Figure 2.3 Example of recursive systematic convolutional (RSC) encoder

 The reason for making the convolutional codes recursive (i.e., feeding one or more
of the tap outputs back to the input) is to make the internal state of the shift register
depend on past outputs. This affects the behavior of the error patterns whose
characteristics and corresponding decoder structure is beyond the discussion of the
thesis. In order to distinguish the normal case of convolutional codes to RSC, some
names the normal structures as Feedforward Convolutional Codes. In this thesis, we
exclude RSC and only discuss feedforward convolutional codes. From here on,
without specification, we refer to convolutional codes as feedforward convolutional
codes.

Chapter 2 6/40

 6

2.2 Viterbi Decoder

 The decoding process could be viewed as the reverse of the encoding process.
Often, a trellis diagram will be introduced to help decode since it brings out how the
input symbol operates with the contents of shift registers to produce the output symbol.
In Figure 2.4, the trellis diagram of a rate 1/2-convolutional code as in Figure 2.1 is
displayed. The four states on the trellis represent the possible contents of the registers.
For general case in digital system, the number of states equals N=2v. With the trellis
diagram, what a decoder has to do is to find the closest match between received signal
sequence and the estimated sequence. The most instinctive way to realize the task is
brutal search, which is to list all the possible signal sequence combinations and then
compare them with the received sequence. At last, take the maximum likely (ML) one
as the estimation of the transmitted signal sequence.

Figure 2.4 Trellis diagram for rate 1/2-convolutional code

 However, brutal search is never an efficient method. Thus, Viterbi Algorithm was
proposed to eliminate the unnecessary comparisons made in the decoding process. Let
m denote a message vector and c denote the corresponding code vector applied by the
encoder to the input of a discrete memoryless channel. Let r denote the received
vector, which may differ from the transmitted code vector due to channel noise. Given
the received vector r, the decoder is required to make an estimate of the message
vector. Since there is only one-to-one correspondence between the message vector m
and the code vector c, the decoder may equivalently produce an estimate of the code
vector. Thus, the decoding rule is to choose the estimate of code vector, given the
received vector r, minimizes the probability of decoding error. The maximum
likelihood decoder or decision rule is described as follow:

Choose the estimate ĉ for which the
log-likelihood function)|(log crp is maximum.

Chapter 2 7/40

 7

 For the binary symmetric channel, the maximum-likelihood decoder reduces to a
minimum distance decoder. In such a decoder, the received vector r is compared with
each possible transmitted code vector c, and the particular one closest to r is chosen as
the correct transmitted code vector. As for the channel with memory, special cares
have to be taken in the calculation of likelihood function such as soft decoders [11].
However, no matter which design is chosen, Viterbi algorithm will be applied.
 The VA recursively finds the most likely path by using a fundamental principle of
optimality first introduced by Bellman [12] which we cite here for reference:
The Principle of Optimality: An optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision.

In the present context of Viterbi decoding, we make use of this principle as follows.
If we start accumulating branch metrics along the paths through the trellis, the
following observation holds: Whenever two paths merge in one state, only the most
likely path (the best path or the survivor path) needs to be retained, since for all
possible extensions to these paths, the path which is currently better will always stay
better: For any given extension to the paths, both paths are extended by the same
branch metrics. This process is described by the add-compare-select (ACS) recursion.
The path with the best path metric leading to every state is determined recursively for
every step in the trellis. A better elucidation can be made in mathematical expressions.
 k and i serve only as index here. The metrics of survivor paths for state ixk = at

trellis step k are called state metrics ki ,γ . In order to determine the state metric ki ,γ , we

calculate the path metrics for the path leading to state ixk = by adding the state
metrics of the predecessor states and the corresponding branch metrics. The
predecessor state ixk =−1 for one branch m of the M possible branches where

{ }1,...1,0 −∈ Mm leading to state ixk = is chosen by the value resulting from
evaluation of the state transition function () ()imZxZ k ,: 1 =− .

),(
1),,(

),(im
kkimZ

im
k λγγ += − , { }1,...1,0 −∈ Mm

where),(im
kγ stands for the path metric for a path leading to state kis , (state ixk = at

trellis step k) and { }1,...1,0 −∈ Mm denotes the path label of one of the M paths

leading to state kis , . The state metric is then determined by selecting the best path

{ })0,1(),1(),0(
, ,...,, −= M

k
i

k
i

kki Max γγγγ

A sample ACS recursion for one state and M =2 is shown in Figure 2.5.

Chapter 2 8/40

 8

1),,0(−kiZγ

1),,1(−kiZγ

),0(
1),,0(

),0(i
kkiZ

i
k λγγ += −

),1(
1),,1(

),1(i
kkiZ

i
k λγγ += −

{ }),1(),0(
, , i

k
i

kki Max γγγ =

Figure 2.5 Illustration of ACS recursion for M=2

 Despite the recursive computation, there are still N=2v best paths pursued by the
VA. The maximum likelihood path corresponding to the estimated sequence can be
finally determined only after reaching the last state in the trellis. In order to finally
retrieve this path and the corresponding sequence of information symbols, either the
sequences of information symbols or the sequences of ACS decisions corresponding
to each of the N survivor paths for all states i and all trellis steps k have to be stored in
the survivor memory unit (SMU) while calculating the ACS recursion. The detailed
description of SMU will be provided later in Section 2.4.
 So far, we considered only the case that the trellis diagram is terminated, i.e. the
start and end states are known. If the trellis is terminated, a final decision on the
overall best path is possible only at the very end of the trellis. The decoding latency
for the VA is then proportional to the length of the trellis. Additionally, the size of the
memory element in SMU grows linearly with the length of the trellis. Finally, in
applications like broadcasting, a continuous sequence of information bits has to be
decoded rather than a terminated sequence, i.e. no known start and end state exists.
That is to say that the required length of memory length in SMU has to be at least
equal to the length of entire signal sequence. This is wasteful and unpractical in the
hardware implementation.
 Fortunately, through theoretical demonstration and simulations by many researchers,
they find that a value of 4 or 5 times the code constraint length K is sufficient for
negligible degradation from optimal performance of the decoder. Since with sufficient
length of sequence, common tails as in Figure 2.6 will appear. Even though we do not
make our decision at the final point, the path chosen will still converge to the optimal
path in the front end of the path. Thus, the decoded sequence could be output sooner
than traditional VA and the length of memory element will reduce to only 4 or 5 times
the constraint length.

Chapter 2 9/40

 9

Figure 2.6 The generation of common tail

Figure 2.7 The entire Viterbi Decoder block diagram

 Summarizing, the basic units of a Viterbi Decoder are shown in Figure 2.7. The
branch metrics are calculated from the received symbols in the Branch Metric
Generator (BMG). These branch metrics are fed into the add-compare-select unit
(ACS), which performs the ACS recursion for all states. The decisions generated in
the ACS unit are stored and retrieved in the Survivor Memory Unit (SMU) in order to
finally decode the source bits at decision unit (DU) along the final survivor path.

2.4 Survivor Memory Unit (SMU)

 As we mentioned in the Chapter 1, there are many modified ACS methods invented
for the improvements of decoding speed. The price they paid is the need of extra
hardware. However, with an expectation of improvement in both decoding efficiency
and hardware complexity, we turn our target to survivor memory unit. Thus, in this
section, three conventional methods of SMU realization will be provided as basis for
the later research. These three methods are traceback management (TBM), register
exchange algorithm (REA) and the Hybrid method.

 2.4.1 Traceback Management (TBM)

 In the traceback management, the decision value vectors di [7, 13] and branch label
vectors ui (Or previous states), the outputs of ACS, of the S most recent trellis stages
are stored. As was explained earlier, in principle all paths that are associated with the

Chapter 2 10/40

 10

trellis states at a certain time step k have to be reconstructed until they all have
merged to find the final survivor path and thus decode the information. However, in
practice only one path is reconstructed and the associated information at trellis step
k-D output. D must be chosen such that all paths have merged with sufficiently high
probability. If D is chosen too small, substantial performance degradations result. As
mentioned, the survivor depth D equal to 4 to 5 time constraint length is appropriate
for the appearance of common tail. Thus, S has be chosen larger than D.
 The decoding is then performed by starting at a certain time step k and the tracing
back D steps for the assurance of appearance of the merging path. The traceback is
then continued from this state and the previous state labels are read out and then to
decode out the original data.
 The above explanation could be illustrated much better in the Figure 2.8. Here, S is
chosen as D+H. H is claimed as the decoding depth. From step k-(D+H-1), S steps of
ACS are realized and the decision value vectors {dk-(D+H-1),….,dk}and branch label
vectors{uk-(D+H-1),….,uk} are stored, where dk and uk separately consist of N values

denoting as },...,{ ,1,0 kNk dd − and },...,{]1[]0[−N
kk uu . At step k, the decoder traces back D

steps reaching the merging path. Then, consecutive H branch labels are read out
according to the corresponding decision values to be decoded.

[0]
1)-M(D-Ku +

[0]
D-Ku [0]

Ku

Figure 2.8 Example of TBA

 Formally, TBA could be stated in a form similar as C language as follows:

Memory:
(D +H) *N decision bits {dk-(D+H-1),….,dk} stand for upper or lower path
Algorithm:
// every H trellis steps a trace back is started
if (k-D can be divided by H) then {

Chapter 2 11/40

 11

// Initialization
traceState := startState ;
// Acquisition
for t=k downto k-D+1 {
traceState := Z(dtraceState,t ,traceState) ;
}
// Decoding
for t=k-D downto k-D-M+1 {
decode bit vector := u(dtraceState,t ,traceState) ;
traceState := Z(dtraceState,t,traceState) ;}
}

Figure 2.9 Different TB memory contents (a) previous states (b) decision values

Chapter 2 12/40

 12

An example of TBM storing previous states or decision values according to a
certain trellis flow is provided above in Figure 2.9, which will serve as a common
example for the later comparisons. As seen in the figure, we define the decision value
0 representing the upper path and 1 for the lower path.
 Before leaving TBM for REA, we have to point out that TBM could be realized
with small power consumption and circuit area since there are few logic elements
needed. However, it suffers long latency since the decoder has to read in the signal
sequence of sufficient length and then feed it into ACS unit. Afterwards, traceback has
to be realized for the final decoded output. Therefore, the biggest drawback of TBM is
its large latency as well as low decoding efficiency.

2.4.2 Register Exchange Algorithm (REA)

 The major reason for the development of REA is to improve the drawback of large
latency of TBM. Its goal is that the decoded output could be ready right after the ACS
of a sufficient length of signals is done. In the register exchange algorithm, survivor
paths are stored in N shift registers, each of length S ≧ D. The connection of the
multiplexers and registers is derived from the trellis diagram which is constructed by
repeating one row containing all states of the code several times to represent
consecutive time-steps. By updating the entire contents of every shift register during
every decoding cycle (one decoding cycle corresponds to processing one trellis stage),
each shift register i always holds the survivor sequence for state i. The decoded data
can be obtained from the output of the shift registers.
 In order to illustrate REA, new parameters should be introduced. We denotes

branch labels associated with the path belonging to state i at trellis step k as][i
ku) , with

the hat to distinguish from TBM. The branch label associated with the mth branch

merging into state i as),(imu . Thus, we can formally state the algorithm as follows:

Memory:

(D +1) *N branch labels (][i
ku) ,…,][i

Dku −
))

Algorithm:
// Update of the stored symbol sequences according to
// the current decision bits di,k (decision bit of state i at step k)
for t=k-D to k-1 { for State=0 to N-1 {

][State
ku) =)],([

1
, StatedZ

t
kstateu +

) ;}

Chapter 2 13/40

 13

}
// setting the first information symbol of the path
for State=0 to N-1 {

][State
ku) =)],[(, Stated kStateu ;

}

 The corresponding hardware implementation of REA is provided as below.

[0]
Kû

[1]
Kû

[2]
Kû

[3]
Kû

[0]
1-Kû

[1]
1-Kû

[2]
1-Kû

[3]
1-Kû

[0]
D-Kû

[1]
D-Kû

[2]
D-Kû

[3]
D-Kû

[0]
1D-Kû +

[1]
1D-Kû +

[2]
1D-Kû +

[3]
1D-Kû +

Figure 2.10 Hardware Architecture of REA

 REA successfully reduces the decoding latency. However, when the constraint
length increases, REA becomes critical in terms of area and power dissipation. The
register exchange algorithm needs the same number of multiplexers and registers as
the number of states (N) multiplied by the survivor path length (S) and they are
activated every cycle to update data in memory. Thus, REA is mostly applied if
latency or total memory size is critical.

2.4.3 The Hybrid method

 REA is a direct implementation whose critical path consists of one multiplexers and
one latch, thus allowing high data throughput. However, area and power consumption
rapidly become a critical concern as constraint length grows. TBM, based on RAM,
achieve low power and small circuit area but leads to high latency and low throughput.
These drawbacks motivated the former researchers to find the balance point. The
hybrid method [13,14] was thus developed.

Chapter 2 14/40

 14

 The underlying idea of the Hybrid method is as follows. A continuous exchange
registers carried out the whole surviving path leads to unacceptable area and power
dissipation. It is nevertheless possible to perform a partial REA that generates
segments of survivor paths. After results of partial REA are produced, theses segments
of survivor paths are stored in a memory space till sequence of survivor path length S
is processed. The fast TBM can then be executed since only a few steps of traceback
are required. By doing so, the reduced REA becomes acceptable in area and power
consumption and high latency in TBM could be improved.
 An example is given below in Figure 2.11. The survivor path length (S) is
determined as 8, however, partial REA of length 4 is applied. Therefore, the results
generated at t=4 and t=8 should be saved as well as the pointer of the previous states.
Until t=8, the fast TBM could be realized with only one-step traceback. Detailed
computation of the required hardware and latency will be given in Chapter 3.

Figure 2.11 Example of Hybrid method

Chapter 2 15/40

 15

2.5 Summary of the Chapter

 In this chapter, convolutional encoders and Viterbi decoders are introduced. We put
more emphasis on the architecture of Viterbi decoders, especially survivor memory
unit (SMU). Three conventional methods used to implement SMU are illustrated.
TBM has the drawbacks of low throughput and high latency. REA requires larger area
and power for multiplexers and exchange registers. These flaws in the two methods
motivate us to research for the improved techniques. Even though the Hybrid method
had attempted to balance the area/efficiency trade-off, we believe that the hardware
could be further reduced. Thus, three improved methods corresponding to the three
conventional implementation techniques will be the highlight of the next chapter.

Chapter 3 16/40

 16

Chapter 3

Three Improved SMU Designs

3.1 Overview

 As mentioned in Chapter 2, the existing methods in implementing SMU such as
TBM and REA fall victims to different flaws. Thus, in the Chapter 3, we aim to
derive the new designs that could improve low decoding efficiency of TBM and
reduce some memory space as well. On the other hand, for REA and the Hybrid
method, the amelioration will be mainly made in the reduction of hardware
requirements. These improved SMU designs are all originated from a concept that
was aroused by an interesting observation.

3.2 The observation

 A feedforward convolutional coder is the encoder structure with no feedback
loops. As in Figure 2.1, no feedback lines are drawn back to any of the registers. By
examining all the possible inputs and register states, the corresponding trellis
diagram of the coder could be generated as in Figure 2.4. With trellis diagram, the
VA decoder could follow the prescribed paths to finish Add-Compare-Select (ACS)
and then choose one ML path as the final estimation.

When a path is chosen at last, trace-back has to be done to read out the estimated
input sequence. It is a process of mapping from present states to previous states on
the trellis diagram and then decides what input symbol the segment represents. In
most cases, only one step of trellis diagram will be provided and used in the
trace-back process, since pattern of every step in trellis is actually the same.
However, when observation is made on a two-step trellis for a (2,1,2) code as in
Figure 3.1, one interesting phenomena is found.

For convenience of better explanation, we take the rightmost step as the present
step and the steps followed to the left are the past steps. When decoding, we used to
and have to know states of both the present and the previous steps to decode out
only one input symbol. However, by observing the two-step trellis diagram, we find
that even though the previous states are unknown. The decoded output is certain for
every present state. That is, assuming the present state is a, there are two possible
paths from the previous states a and c. Yet, these two paths represent the same input
0. Not merely so, if we trace further back to one more step, four possible paths will

Chapter 3 17/40

 17

lead to the previous state a and c. Therefore, it makes totally four paths form the
leftmost step to the rightmost state a. These four paths stand for the uncertainty and
the necessity of trace-back. However, if we look closer, these four paths generate the
same two-bit output 00. This explains to us that with mere the knowledge of the
present state, we could decode two output symbols in block. The corresponding
two-bits output for each of the present states are listed in Figure 3.1.

Figure 3.1 Phenomena of the same output for a certain state

 Being afraid of spotting this phenomena by chance, we exam another trellis
diagram of a rate-1/2 code with v=3. It means that the encoder structure consist of
three registers. The trellis diagram is shown in Figure 3.2. From the leftmost step to
rightmost step, there are 23 = 8 possible paths converging into the state a of the
current step. However, by tracing back the eight different paths, they all lead to the
same three-bit output 000. The same experiment could be made on the state b to
obtain the three-bit output 010 or randomly selected state e corresponding to
three-bit output 100. Namely, by merely knowing the present state, we could decode
three symbols out in block, and states in the middle could be neglected.
 This occurs to us that in the SMU stage, signals can be processed in block. By
doing so, we could now decode out more than one symbol a time. An explanation of
this phenomenon resulted from the observations might be needed, before we go on
the discussion. It is quite easy to unveil the puzzle. We take use of state information
to decode signals in block. Therefore, the key should be laid behind the meaning of
states. It is obvious to know that states in trellis shows the content stored in registers.
This is what we certainly noticed. However, it is easy to ignore what are stored in
the registers. They are actually the decoded present and previous input signals.

Chapter 3 18/40

 18

Figure 3.2 Three-step Trellis for a (2,1,3) code

 Conclusively, from the observations, we find that a state compose of multiple
input symbols. Therefore, it is easy to expect that hardware could be reduced since
the states in some steps are needless to be saved. Also, the decoding efficiency
should be raised since multiple decoded symbols could be acquired by reading a
current state. Three improved SMU designs are evolved from the concept and will
be discussed in the following sections.
 Before going into the next section, one point we have to make clear first is the use
of the term “stage” and “step”. In the Chapter 2, while explaining trellis diagram
with dimension of time, we refer to step with a specified time parameter such as step
t = 4. Without the specification of time, we often use stage in the trellis diagram such
as the next stage. However, in the thesis, these two words are used alternatively
without discernment.

3.3 Stage-Hopping TBM (SH-TBM)

 Conventionally in TBM, survivor states have to be recorded every stage and the
traceback operation has to be done one stage after another, since it is the relationship
between the current and previous states help decipher one input symbol. However, if
smaller memory size is desired, obviously state information of some stages will have

Chapter 3 19/40

 19

to be neglected. Thus, we expect that there does exist some redundant stages and
even without them traceback could still be complete. Fortunately, for decoding of
general convolution encoders with no feedback loops, we find that the redundant
stages do appear for further usage.
 We have known the fact that, from the previous section, multiple input symbols
could be read out by merely knowing one survivor state of a single stage. Since a
state could tell us what the current and previous input symbols are, the stages in the
middle are not necessarily stored. For general coder schemes, a parameter named BS
(block size) has to be well defined to indicate how many stages traceback could hop
over at once.
 It is obvious to see that for the encoder schemes with only a string of registers as

in Figure 2.1, a state contains the same number of input symbols as the number of
registers. However, for the encoders with more than one string of registers as in
Figure 2.2, the string with least number of registers will dominate the definition. It is
due to the fact that the input symbols will be drop out for the unequal length of
registers in different strings. Therefore, a sound definition of the BS should be:

where NRn stands for the number of registers in the nth string and NS represents the
number of overall register strings.

BS indicates two important facts: one is the number of input symbols that could
be read out by one state, and the other is the number of stages that traceback could
hop over once. Hence, the task left to be solved now is how to eliminate the
redundant stages in between and reserve only the needed survivor states that are
every BS stages away to carry on traceback.

Figure 3.3(a) shows the conventional memory management technique for the

(2,1,2) code. We can see that every survivor state in different paths is well stored in
the memory. Even though the input could still be decoded out correctly as 0011 by
knowing the current state a and state d that is two-stage away, we could not directly
neglect previous state c, since trace-back may not be carried on without the link to
state d. Therefore, we shall not just get rid of contents in memory but should take
the strategy of updating memory as in Figure 3.3(b). The update procedure provided
here is just a guideline for implementation. Actually, as long as the right survivor
states every BS away are stored, the profit of memory reduction could still be gained
for TBM. The overall procedure could be divided into six steps:

} 1 },,{ { NSnNRMinMaxBS n ≤=

Chapter 3 20/40

 20

Step 1: Check BS is even or odd.
Step 2: If it is even, then start by storing survivor states in the extra
temporary row of memory. Else, if it is odd, start by storing survivor states
in the original memory space.
Step 3: At the beginning of every block, the survivor states will be stored
into the assigned row of memory after ACS process.
Step 4: For the rest signals from the same block, the newly selected survivor
will not be stored. Instead, it will be used as an indicator to copy the data,
which it is pointed to, to the other row of memory iteratively.
Step 5: Repeat step 1~4 until the entire sequence is processed.
Step 6: Traceback and decode output block-by-block

Figure 3.3 The procedure of Stage-Hopping TBM

In this way, as we can see in Figure 3.3(c), half of memory size could be saved at
last. As for general convolution coders, only one-BSth of the conventional memory
size is required. Since for a block of survivor states, only one survivor state is saved
at last.

In conclusion, Stage-Hopping TBM takes use of the fact that multiple input
symbols could be read out by merely knowing one survivor state so as to eliminate
the necessity of storing those redundant stages in between with updating states skills.

Chapter 3 21/40

 21

By doing so, memory used to save survivor paths could be reduced. In addition,
decoding efficiency could be greatly improved as an important value of the method
due to the fact that fewer stages remained to realize traceback operation. A detailed
computation of the decoding efficiency and the required memory size will be given
later in Chapter 4 to make the overall comparisons.

3.4 Facilitated REA (FREA)

 REA uses a direct hardware implementation of the trellis structure. Survivor states
are stored in N shift register and each shift register i always holds the survivor state
for state i. The traceback operation of TBM is replaced by updating the entire
contents of every shift register during every decoding cycle to obtain high
throughput and low latency. However, as constraint length grows, the area and
power dissipation increase quickly. As a result, it will be less preferable to be
applied with a large number of states in the trellis or with long constraint length.
 The concept of the improvement is the same as Stage-Hopping TBM. Basically,
the FREA could be considered as using exchange register technique to implement
the six- step procedure mentioned in the Stage-Hopping TBM.
 However, direct conversion may be problematic. First, contents stored in memory
of SH-TBM are previous state information which is different from the decision
values in REA method. Luckily, the problem can be easily solved that the state
information stored is actually the decoded data, which is even more desirable to
acquire. Second, the REA continuously recorded the previous state information. On
the other hand, only those survivor states every BS away are needed to be solved.
Therefore, the design should be adjusted to execute the correct procedure.
 Before constructing the overall FREA, the elementary structure is our first target
to realize. Since only survivor states every BS away are necessary to be stored. The
recursive manner should be applied on the elementary structure as shown in Figure
3.4. As we marked on the figure, there are three differences from the conventional
REA design. (1) The feedback line is drawn to replace the original data stored in the
register so that only survivor states every BS cycles will be recorded and those states
in the middle stages will be surpassed. (2) The set_inital signal is active every BS
cycle as a signal to restore the content of registers. This will be explained more in
the entire FREA design. (3) Decision values are only fed into MUX and do not write
in the registers. An easy example is given in Figure 3.5 where a two-step trellis is
formed. The necessary survivor states (0,3,2,0) are stored at last by SH-TBM. The
equivalent functions of elementary component of FREA is provided in the lower part
of the Figure 3.5 which generates the same results at t =2.

Chapter 3 22/40

 22

Figure 3.4 Elementary component structure of the FREA method

Figure 3.5 Equivalent function of SH-TBM and the elementary component of REA

Chapter 3 23/40

 23

 From the above, we should somehow sense that the number of multiplexers used
in the FREA is less than that required in REA since the multiple steps of trellis are
processed by a single column of multiplexers.
 To construct the entire FREA, the elementary components have to be well
connected, where some tricks are applied to make the FREA function properly. The
overall hardware structure of FREA is shown in Figure 3.6 in the next page. The
tricks lie in the use of set_initial signal to control the contents of registers. (1)At
leftmost stage, when the set_initial is active, the register will be set into default
value as (0,1,2,3) for the selection of survivor states of the latest stage. (2) As for the
rest of registers, the contents of the registers will be past to the next stage after BS
cycles, set_initial is active, so that contents of register i will always save the survivor
state that is BS-step away for the state i on the same survival path.
 Originally, in REA, the number of multiplexers required is equal to N (the number
of states) *S (the length of survivor path). With FREA, BS states can be iteratively
allocated by only one column of multiplexers, so only N*S/BS multiplexers are
needed. In addition, decision unit is no longer required since state information
already represents the decoded input symbols. Moreover, the wire connections can
have fewer crossings. These improvements will not only reduce the required
hardware but facilitate the implementation of SMU. Details of the required number
of multiplexers and decoding efficiency will be provided in the Chapter 4 later.

3.5 Improved Hybrid Method (IHY)

 With the previous introduction of the Hybrid method and Stage-Hopping TBM,
one might find that the improved decoding efficiency of SH-TBM is the same as the
decoding efficiency of the Hybrid method when the partial REA of length BS is
applied. However, the better decoding efficiency of the Hybrid method is obtained at
the cost of lot more hardware than SH-TBM. To implement the Hybrid method,
memory used to store survivor states is required. Besides, multiplexers and registers
are also necessary for the partial REA. Therefore, there are still some rooms left for
improvements of the Hybrid method. We name it Improved Hybrid (IHY) method.
 The first improvement is directly inherited from the FREA. That is, when the
partial REA is implemented, we could modify it into the FREA structure so that the
number of multiplexers could be reduced. The structure is the same as in Figure 3.5
and 3.6. A little difference between Hybrid method and IHY is that the length of
partial REA should be always chosen as the constant multiple of BS so that FREA
could be easily constructed. If the length of signals is not so, some measurements as
zero-stuffing or eliminating the unwanted output signals should be taken.

Chapter 3 24/40

 24

Figure 3.6 The hardware structure of FREA

Chapter 3 25/40

 25

The second improvement is lying on the traceback and decision procedure. In the
conventional Hybrid method [14,15], traceback has to be assisted with previous state
information which may be saved in a lookup table and make the decision of the
input symbol in the decision unit. In the IHY, a state plays two roles. One is the
previous state information and the other is the decoded data. Thus, the traceback and
decision could be operated easily with some multiplexers. An example is given as in
the Figure 3.7. BS of the coder is 2 and the partial REA length is 4. Thus, the 4-bit
output of partial REA will be sequentially stored in the memory. When tracing back,
the last 2 bits of the 4-bit output could serve as the indicator of the previous state so
that the traceback and decision operated could be mixed up and implemented easily.

Figure 3.7 Example of the mixed traceback and decision operations

3.6 Summary of the Chapter

 In this Chapter, three improved methods of implementing SMU are proposed.
Stage-Hopping TBM (SH-TBM) is proposed to improve the drawbacks of low
decoding efficiency without the cost of any extra hardware; instead, it could further
reduce the required memory space. Facilitated REA (FREA) and Improved Hybrid
method (IHY) are brought up to decrease the required number of multiplexers so
that the drawback of large circuit area could be ameliorated. Of all three improved
methods, decision unit (DU) is no longer needed since states stored in the memory
are equivalent to the storage of decoded data.

Chapter 4 26/40

 26

Chapter 4

Experimental Results and Analysis

4.1 Decoding performance

 In the previous chapter, we have demonstrated how the improved methods are
developed to reduce the hardware complexity and increase the decoding efficiency.
However, one may question if the decoding performance is sacrificed. Therefore, the
first thing we want to verify is the decoding performance. At first, we simulate the
rate-1/2 code with v=6, which is the inner channel coder of DVB-T system, by C++
program. The input generated is random binary signals, the channel is AWGN and the
receiver is soft Viterbi decoder. The experimental results are shown in Table I.

In Table I, case 1 uses conventional TBM with memory length that is equal to 5
times constraint length which guarantee the generation of common tail. Case 2 uses
10 times constraint length which has longer decoding depth and case 3 applies
SH-TBM whose memory length equals to 10 times constraint length dividing by
BS=6. Though case 3 intrinsically executes SH-TBM, it can also represent the
decoding performance of FREA and IHY since they are based on the same concept
with different hardware designs. We can see in table that longer survivor path seems
to produce a little better decoding performance from the comparison between case 1
and case 2. From case 2 and case 3, we successfully prove that three newly proposed
survivor memory management methods of SMU do not degrade the decoding
performance. On the contrary, some additional advantages could be acquired.

Table I. Performance of Viterbi Decoder with different
memory management techniques of SMU

SNR / BER Case 1 Case 2 Case 3
0dB 0.168584 0.155538 0.152853334
0.5dB 0.095194 0.088226 0.088806667
1dB 0.04808 0.0402442 0.04044
1.5dB 0.01883 0.0158866 0.01509
2dB 0.006908 0.0049522 0.005268
2.5dB 0.0018922 0.0014524 0.001472333
3dB 0.0004536 0.0003482 0.000361067
3.5dB 0.0000932 0.00008054 8.30666E-05
4dB 0.000018504 0.000015188 1.61136E-05

Chapter 4 27/40

 27

4.2 Decoding efficiency and Hardware Reduction

 In this section, graphical method is introduced to illustrate the decoding efficiency
and the required memory size of three conventional methods and three corresponding
improved methods for comparisons. The reason of using graphical method is to
carefully estimate the decoding efficiency and memory size in real hardware
implementations instead of the mathematic calculations, used in software simulations,
given as in previous chapters.

4.2.1 TBM vs. Stage-Hopping TBM

(1) TBM

Time (Clock-Cycles)D 2D 3D 4D

D

2D

3D

4D

Latency

Write-Decisions
Acquisition-Trace
Data-Trace

M2

M4

M1

M5

M3

M1

Figure 4.1 Graphic representation of a conventional TBM

 The decoding cycle refers to the generation time for a decision vector computed by
ACS unit and is also equal to the duration of one traceback. Length of the survivor
path (S) is chosen as D (sufficient length of signals to create common tail) + H
(decoding depth). H here is selected as 0.5D. From t=0 to 1.5D, decision vectors are
generated by ACS units. Till then, a survivor path is chosen and follows on a depth
D+H traceback, in order to get H decoded data. In the figure, TB memory represents
the memory used to save states on the survivor paths or the decision vectors of every
stage. From the figure, we could make an overall analysis as follows:

Chapter 4 28/40

 28

Table II. Analysis of TBM
 In the example In general case
TB memory (R/W) (1.5D+D)*N=2.5*D*N (D+H+D)*N= 2*D*N
TB memory 1.5D*2*N=3*D*N (D+H)*2*N=2*(D+H)*N
Latency 3*D 2*(D+H)
Decoding Efficiency 0.5D/3D =1/6 H/(H+D+H)=H/(D+2*H)
where R/W means that memory could finish read and write in one cycle and the unit
of TB memory is symbols.

(2) Stage-Hopping TBM

(I) Software Implementation
Though the states only BS steps away are necessary to be stored, the memory size

do not reduce as expected compared with decision value method. Since it only uses
one-bit decision value to record the upper or lower path, we find that the TB memory
size is actually the same as shown in Figure 4.2, which are the results of the example
given in Figure 2.9 by decision value method and SH-TBM. However, decision value
method still requires state memory table and decision data lookup table to read out the
previous state and decode. Hence, there is still certain amount of memory reduction
gained by eliminating the need of state memory and decoded data lookup table in
SH-TBM. The new decoder design could be drawn as in Figure 4.3.

Figure 4.2 Required memory size of decision value method and SH-TBM

 One might be disappointed by the results. Luckily, it is a totally different story
when it is implemented on real hardware. Since there is no reason to separate ACS
and traceback operation, the ACS should still be under process while tracing back in

Chapter 4 29/40

 29

SMU. Hence, the memory needed to store the results of ACS will be related to the
duration of traceback. That is to say that the longer time the traceback requires, the
larger memory the SMU needs. More details will be illustrated by graphic
representation and lot more discussion in memory reduction will be provided later.

Figure 4.3 TBM decoder design and SH-TBM decoder design

(II) Hardware Implementation

 H is chosen the same as 0.5D and BS here is assumed to be 2. At first, D+0.5D data
are read in and create the corresponding decision vectors after ACS units. The major
differences come in the phase of traceback and decoding. In the traceback, the speed
is increased since fewer stages are left to be traced and a state can now output two
decoded symbols at a clock so that H decoded data could be acquire faster. In the
Figure 4.4, we could see that the slope of the acquisition and data-trace lines is –BS.

Figure 4.4 Graphic representation of SH-TBM

Chapter 4 30/40

 30

Table III. Analysis of SH-TBM
 In the example In general case
TB memory (R/W) (1.5D+D/BS)*N=2*D*N (D+H+D/BS)*N
TB memory [1.5D+(1.5D/BS)]*N=2.25*D*N [(D+H)+(D+H)/BS]*N
Latency 2.25*D (D+H)+(D+H)/BS
Decoding Efficiency 0.5D/2.25D =1/4.5 H/[H+(D+H)/BS]

(3) Comparisons
 H itself is a trade-off factor when it comes to TBM. The longer the decoding path is,
the larger the latency or decoding efficiency is. However, if the H is chosen to be
small, the memory intensity will be low and control signals will be more sophisticated.
This issue will be overlooked in the research. In the later discussion, we will fix H as
a constant parameter.

(a) Decoding Efficiency and Latency
We can see that the decoding latency of Stage-Hopping TBM is D+H+(D+H)/BS.

D is often chosen as 4 to 5 times constraint length. BS for the (n,1,v) code is the same
as v = K-1. This indicates the fact that the traceback operation can now be realized in
only a few clock cycles (D+H)/BS. It will be more obvious to see in the decoding
efficiency. The improved decoding efficiency is H/[H+(D+H)/BS]. As the BS grows,
the decoding efficiency could be improved much better approaching to the
performance of REA. The improvement of decoding efficiency is also shown below in
the Figure 4.5, with D = 5v and H = v. We have to emphasize that the decoding
efficiency improvement is gained without extra hardware, and even more the memory
size is further reduced, which will be explained next.

Figure 4.5 Decoding Efficiency of TBM and SH-TBM

Chapter 4 31/40

 31

(b) Memory reduction in hardware implementation

 Memory reduction ratio is computed as)11(
2

)11()11(

BS
D
H

BS
DHD

BS
D

−∝
+

−
=

++

−
 . That

is as constraint length increases the memory space used to save survivor sequence will
be much smaller in SH-TBM than in conventional TBM. As for (n,1,v) code, BS is
equal to v and assume D=5v, H=v. We can see the memory reduction curve as in
Figure 4.6. About 5/11≒45% of original TB memory can be saved at most. Besides,
decision unit (DU) is no longer needed. Thus, hardware could be further reduced.

Figure 4.6 Memory reduction ratios

4.2.2 REA vs. Facilitated REA

Figure 4.7 Graphic representations of REA and FREA

Chapter 4 32/40

 32

Figure 4.8 Different register allocations of REA and FREA

Table IV. Analysis between REA and FREA
 REA FREA
overall size of registers N*D N*D
number of MUXs N*D N*D/BS
Latency D D
Decoding Efficiency 1 1
where the unit of size of registers is symbols

 Figure 4.7 represents both REA and FREA, since the only difference in them is the
hardware implementation. There are two modifications demanded for explanations:

(a) The overall size of registers

 In conventional REA, the unit of one register is one-bit decision value. On the other
hand, the unit of one register is BS bits, since content of registers has to be over-
written. However, one register in FREA will be repeatedly utilized BS times before it
transmits its content to the next register so that the overall size of registers is actually
the same, which is illustrated as in Figure 4.8 with BS =3.

(b) The number of Multiplexers

 The major advantage of FREA is the reduction of multiplexers. Compared with
REA, multiplexers used in FREA are still two-to-one multiplexers. The complexity of
multiplexer remains the same. However, since only the state information that is BS
steps away is required, a multiplexer can be used repeatedly until state of the correct
previous step is acquired. Thus, we can say that only one-BSth of multiplexers in REA
are needed to realize the same task. More analyses are listed in Table IV.

 So far, we have only displayed the comparisons of hardware requirements between
REA and FREA. Without implementation of the FREA, one might render the method
doubtful. Therefore, we do implement the elementary component as described in
Figure 3.4 and send in the decision vectors as in Figure 3.5 to observe the result.

Chapter 4 33/40

 33

 The entire VLSI program for the elementary component of FREA and its test file
are listed in the appendix A. The simulation result is now shown as follows:

Figure 4.9 Simulation results of elementary component of FREA

 We can see that as the decision vector [0,0,0,1] generated from ACS outputs, the
contents of registers become [0,2,0,3]. At the next clock cycle, new decision vector is
formed as [0,1,1,0] and lead to the record of [0,3,2,0] in the registers. The result
matches with the description in the Figure 3.5. Thus, we could now validate the
correctness of the function of the elementary component.

4.2.3 Hybrid method vs. Improved Hybrid method (IHY)

Figure 4.10 Graphic representation of Hybrid method

Chapter 4 34/40

 34

Figure 4.11 Graphic representation of IHY

 Inherited from SH-TBM and FREA, we can daringly expect the same degree of
reduction in the number of multiplexers and memory. In addition, IHY can decode out
input symbols a little faster since it could read out multiple symbols a time.

Graphic representations as Figure 4.10 and 4.11 could display these improvements
more clearly. The Hybrid method has improved the speed of acquisition trace by using
partial REA of length 2. However, the data trace still has to be done one symbol after
another. A slight increase of decoding efficiency can be gained at data-trace since two
symbols can be read out once in IHY when its BS equal to two. Due to the faster
traceback time, some of the TB memory could be saved. Besides, most important of
all, the number of multiplexers could be reduced by BS. For the case when the length
of partial REA equals to BS, only a column of multiplexers are needed. This makes
the implementation easier and the required hardware area smaller.

Table V. Analysis between Hybrid method and Improved Hybrid method
 Hybrid method Improved Hybrid method
TB memory (R/W) (D+H+D/Dp)*N (D+H+D/Dp)*N
TB memory [D+H+D/Dp+H]*N [D+H+(D+H)/Dp]*N
Number of MUXs N*Dp N*Dp /BS
Latency D+H+D/Dp+H D+H+(D+H)/Dp
Decoding Efficiency H/(H+D/Dp+H) H/(H+(D+H)/Dp)

Chapter 4 35/40

 35

4.3 Power dissipation and Summary of the Chapter

 Though we do not measure the real power dissipation of the improved methods, we
could still approximately estimate their relativity. First, TBM and SH-TBM consumes
the lowest power. IHY could save a little power since fewer multiplexers are turned
on than Hybrid method. REA requires the largest power since multiplexers and
registers have to remain active in every cycle. The reduction of multiplexers in FREA
should make it dissipate less power. An overall estimation is as followed:

◎ Power: T=SH<IH<H<FR<R
◎ Hardware: SH≦T<IH≦H<FR≦R
◎ Throughput: T≦SH<IH≦H<R=FR

(T:TBM, SH: SH-TBM, H: Hybrid, IH: IHY, R:REA,FR:FREA)

Chapter 5 36/40

 36

Chapter 5

Conclusion

5.1 Conclusion

 Motivated by the desire of improving the existing implementation methods of
SMU in Viterbi Decoder, we start by observing trellis diagram of some commonly
used convolutional coders. From the trellis diagrams, we found an important concept
that state information contains multiple input symbols for feedforward convolutional
encoders without feedback loop. That is excluding RSC.

With the concept, we begin by defining a parameter called BS. It indicates two
important facts: one is the number of input symbols that could be read out by one
state, and the other is the number of stages that traceback could hop over once. By
applying the concept on TBM, Stage-Hopping TBM is then developed. It stores only
states that are BS steps away in memory so that the memory size should be reduced.
The improved memory size eliminates the need of previous state table and decoded
data table compared with decision value method when investigating it by software
implementation. On the other hand, by graphic representations, we can see that up to
45% of the original TB memory can be saved for (n,1,v) code in hardware design.
Most important of all, the decoding efficiency considered as the major drawback of
TBM is improved approaching performance of REA as constraint length increases.
 Corresponding to REA, Facilitated REA (FREA) is proposed based on the same
state information concept to reduce the hardware complexity of REA. REA suffers
large circuit area and large power consumption since the huge amount of
multiplexers and registers in REA structure are active in every clock cycle. By
repeatedly utilizing a column of multiplexers, we reserve only the previous state
information that is BS steps away. Therefore, only one-BSth of the original
multiplexers is needed. The FREA hardware design is a bit different than the
conventional REA. The size of registers, the connection and the extra control signal
are modified so that the new design not only makes it function properly and but also
reduces the hardware requirements.
 Combined REA with TBM, the Hybrid method was then generated. Thus,
Improved Hybrid (IHY) method will naturally inherit the improvements of Stage-
Hopping TBM and Facilitated REA. The number of multiplexers could be reduced
and a small amount of memory could be saved. Most important of all, the traceback
in IHY could be realized faster and its hardware implementation becomes very

Chapter 5 37/40

 37

simple that only a few of multiplexers will cut out for the task. Besides, among the
three new methods, no decision unit (DU) is needed because states stored already
consist of the decoded input symbols.
 These improvements are gained almost without any cost. Just that the extent of
the improvement depends on the structure of the convolutional encoders. Thus, for
some systems, there may be no advantage that can be acquired by applying these
methods. Even so, without any cost, we should be satisfied with the advantages that
these methods could bring to us as long as the encoder allows. Besides, decoders of
the punctured convolutional code could also take use of these improved methods.
There is actually little limitation in utilizing these new designs.
 To sum up, we propose three new SMU design for Viterbi decoders.
Stage-Hopping method can obtain higher throughput without extra hardware.
Furthermore, memory size could be reduced by 45% at most in hardware
implementation. On the other hand, FREA improves REA in the reduced number of
required multiplexers. At last, IHY inherits both advantages of SH-TBM and FREA
so that it can not only improve the Hybrid method in both the reduced number of
multiplexers but also acquire the ability to realize faster traceback operation.

5.2 Future work

 Power dissipations of three new designs mentioned in Chapter 4 are only under
logical estimation. The actual measurement of power dissipation may be of help for
the designer to choose the customized SMU structures.
 Other than being applied on the designs of SMU, the concept of state information
contains multiple input symbols can be also of use in the joint source-channel
decoder designs [16]. The channel decoder could be referred as the course selector
for the candidates of source decoder. By doing so, the complexity of entire decoding
system should be decreased. This application might worth some more future works.

Bibliography 38/40

 38

Bibliography

[1.] Martin Bossert, “Channel Coding for Telecoomunication,” WILEY,1999
[2.] G. D. Forney, Jr., "The Viterbi algorithm," Proc.IEEE, vol. 61, pp.268-278, March
1973.
[3.] Gerhard Fettweis, Heinrich Meyr, “Parallel Viterbi Algorithm Implementation:
Breaking the ACS-Bottleneck,” IEEE Trans, Vol37, Aug, 1989
[4.] Hemant K. Tjapar, John M. Cioffi, “A block Processing Method for Designing
High-Speed Viterbi Detectors,” ICC’89, IEEE, 1989
[5.] O. Collins, F. Pollara, “ Memory management in traceback Viterbi decoders”, DA
Progress Report 42-99, Jet Propulsion Lab.,Pasadena, CA(Nov. 1989)
[6.] Emmanuel BOUTILLON, Nicolas DEMASSIEUX, “High speed low power
architecture for memory management in a Viterbi decoder”, IEEE Trans , 1996
[7.] R. Cypher and C. B. Shung, “Generalized traceback techniques for survivor
memory management in Viterbi Algorithm,” in Globecom, IEEE, 1990
[8.] G. Fettweis, “Algebraic survivor memory management for the Viterbi decoders,”
conf. proc. of IEEE, ICC92, Chicago, June 1992
[9.] Jerrold A. Heller, Irwin Mark Jacobs, “Viterbi Decoding for satellite and Space
Communication,” IEEE Trans, Vol. 19, Oct 1971
[10.] Simon Haykin,” Communication System,” 4th Edition, WILEY, 2001
[11.] Guan-Henry Lin, Heng-Iang Hsu, and W. W. Chang, “Sequence MAP Decoding
in Vector Quantization for Channels with memory,” 2002 National Symposium on
Tele- communications, Nantou, Taiwan, R.O.C., Dec. 2002
[12.] R. E. Bellman and S. E. Dreyfus , Applied Dynamic Programming. Princeton,
NJ: Princeton University Press, 1962
[13.] E. Bottillon, N. Demassieux, “A generalized precompiling scheme for surviving
path memory management in Viterbi decoder”, ISCAS'93, IEEE, vol. 3, pp. 1579-82,
[14.] E. Bottillon, N. Demassieux, “High speed low power architecture for memory
management in a Viterbi Decoder”, ISCAS'96, IEEE, pp. 284-7
[15.] Yun-Nan Chang, “Design of soft-output Viterbi decoders with hybrid traceback
processing”, Circuits and Systems, ISCAS '03.,IEEE, 2003
[16.] Guan-Henry Lin, Tsern-Huei Lee,” A Novel Memory-Saving Technique of
Viterbi Decoder for Feedforward Convolutional Coding,” 2005 World Wireless
Congress, San Francisco, USA, MAY 2005

Appendix A. 39/40

 39

Appendix A. VLSI program documentation
(1) The VLSI program of the elementary component of FREA and IHY
--
module vit(clk,rst,ACS_0,ACS_1,ACS_2,ACS_3,out);
input clk,rst,ACS_0,ACS_1,ACS_2,ACS_3;
output [1:0] out;
reg [1:0] reg_0,reg_1,reg_2,reg_3;

always@(posedge clk or posedge rst)
begin
 if (rst)
 begin
 reg_0<=0;
 reg_1<=1;
 reg_2<=2;
 reg_3<=3;
 end
end

always@(posedge clk)
begin
 case(ACS_0)
 1'b0:reg_0<=reg_0;
 1'b1:reg_0<=reg_1;
 endcase
 case(ACS_1)
 1'b0:reg_1<=reg_2;
 1'b1:reg_1<=reg_3;
 endcase
 case(ACS_2)
 1'b0:reg_2<=reg_0;
 1'b1:reg_2<=reg_1;
 endcase
 case(ACS_3)
 1'b0:reg_3<=reg_2;
 1'b1:reg_3<=reg_3;
 endcase

Appendix A. 40/40

 40

end

endmodule
--
(2) Test file

timescale 1ns/10ps
`include "vit.v"
module test;
parameter cycle=1;
reg clk,rst;
reg ACS_0,ACS_1,ACS_2,ACS_3;
wire [1:0] out;
vit vit(.clk(clk),.rst(rst),.ACS_0(ACS_0),.ACS_1(ACS_1),.ACS_2(ACS_2),.
ACS_3(ACS_3),.out(out));
always #(cycle/2.0) clk=~clk;
initial begin
$dumpfile("testing.cvd");
$dumpvars;
clk=0;rst=0;
#(cycle*3/4.0) rst=1;
#(cycle*9/4.0) rst=0;
#(cycle*5/2.0) ACS_0=0;
 ACS_1=0;
 ACS_2=0;
 ACS_3=1;
#(cycle) ACS_0=0;
 ACS_1=1;
 ACS_2=1;
 ACS_3=0;
#(cycle) ACS_0=0;
 ACS_1=0;
 ACS_2=0;
 ACS_3=0;

#(cycle*9) $finish;
end
endmodule

