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針對迴旋編碼的維特比解碼機中倖存路徑器之改良 

學生: 林冠亨          指導教授: 李程輝博士 

國立交通大學電信研究所 

 

摘要 

 

在本論文中，我提出三種新的倖存路徑記錄器之設計來分別改良三種傳統倖

存記錄器實現方法的缺失。對路徑回溯法(Traceback Management)而言，它原本

就具備低功率消耗及較小的電路面積，但最為詬病的是其過程需要長時間的延遲

(Decoding latency)。針對路徑回溯法，我提出跳階路徑回溯法(Stage-Hopping 

TBM).改良後的解碼效率隨著強制長度(Constraint Legnth)的增加可以逼近暫

存器交換法(Register Exchange)的解碼效率。除此之外，改良後的跳階回溯法

所用來記錄路徑的記憶體量只需原來路徑回溯法的 45%。因此跳接路徑回溯法可

同時改善維特比解碼機的解碼效率以及硬體的複雜度。 

對於暫存器交換法而言，儘管它有最短的解碼延遲，它的功率消耗以及電路

面積卻是三種傳統方法中需要最大的，原因在於暫存交換法所需要極大量的暫存

器與多工器(Multiplexer)將倖存路徑儲存於正確的位置中。因此，我提出了簡

易暫存器交換法(Facilitated REA)，主要目的就是要減少實現暫存器交換法所

需的硬體，而改良後的方法可以發現，原本多個多工器可以被單一個取代而不影

響解碼的效果。 

對於混合法(Hybrid Method)而言，其原本被提出的目的就是要藉由結合路

徑回溯法與暫存器交換法的優點來中和兩者的缺點，因此可以明顯的發現，前述

提出的改良方法皆可同時應用在混合法中，以求進一步的改善實現混合法所需的

硬體複雜度。 

在所提出的三個新方法中，用來查詢出路徑對應輸入信號為何的解碼單位

(Decision Unit)都是不被需要的，因此些許的硬體和解碼延遲都可以再被減

少。總結而言，藉由 C語言的模擬可以發現，新提出的倖存路徑記錄器設計並不

會因為改良硬體需求與解碼效率就犧牲解碼能力。藉由圖形表示法(Graphic 

representation)，三種改良方法的解碼效率和硬體需求都可以被詳細檢視與比

較，藉此可看出每種新提出的改良設計所能獲得的好處。 
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Improved Survivor Memory Unit (SMU) Design of 

Viterbi Decoder for Convolutional Coding 
 
 

Lin, Guan-Henry 
Dr. Lee, Tsern-Huei 

Department of Communication Engineering 
 

(Abstract) 
 

In the thesis, three new approaches are proposed to improve the drawbacks of three 
corresponding methods that are used conventionally in the realization of survivor 
memory unit (SMU) in Viterbi Algorithm (VA) as convolution decoders. 
  For trace-back management (TBM) method, it has owned the virtues as low power 
consumption and small circuit area, but suffers long decoding latency. Corresponding 
to TBM, Stage-Hopping TBM (SH-TBM) is developed. The decoding efficiency can 
be raised approaching to the performance of register exchange algorithm (REA) as 
constraint length increases. On the other hand, length of the required memory could 
be reduced down to about 45% of the length originally required in TBM at most. 
  REA obtains shortest decoding latency, however, with large power consumption 
and circuit area caused by the required numbers of registers and multiplexers. To 
ameliorate the disadvantage, Facilitated REA (FREA) is proposed with a concept that 
multiple of multiplexers can be replaced by a single one without affecting the 
decoding performance. 
  As for Hybrid method, it is originally designed to balance the trade-off between 
decoding efficiency and the required quantity of hardware by combining TBM and 
REA. Therefore, Improved Hybrid method (IHY) naturally inherits the technique used 
in FREA and SH-TBM. As expected, fewer multiplexers, in some cases only one 
column of multiplexers, will be needed and traceback operation could be realized 
faster.  
  Of all three newly proposed methods, decoding unit (DU) is eliminated. Hence, a 
slight more increase in speed and decrease in hardware could be acquired.  

In summary, the experimental result simulated by C program shows that proposed 
methods do not deteriorate the decoding performance anyhow. By graphical methods, 
analyses and comparisons are made to demonstrate the improvements in hardware 
reduction and the acceleration in decoding efficiency. 
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Chapter 1  

Introduction 
Convolutional coding [1] is widely employed in digital communication systems 

and signal processing to achieve low-error-rate data transmission. For example, IS-95, 
a wireless digital cellular standard for CDMA (code division multiple access), 
employs convolution coding, so does DVB-T system and many systems else. It offers 
an alternative to block codes for protected transmission over a noisy channel. 

The Viterbi Algorithm (VA) [2], proposed in 1967 by Viterbi, is a representative 
decoding procedure for convolutional codes. When erroneous data are received, the 
closest codeword is selected using the maximum likelihood decoding (MLD). In the 
hardware implementation, it is composed of three components: Add-Compare-Select 
(ACS) unit, Survivor Memory Unit (SMU) and Decision Unit (DU). Although VA has 
been applied for decades, researchers still attempt to improve it in two aspects.  

Efficiency is one of the issues. Many researchers had targeted on the ACS 
procedure when it comes to increase in decoding speed [3]. Most of them modified 
the ACS process by adding more parallel hardware to decode signal sequences at the 
same time. With this idea, more calculations could be done within a certain period of 
time. Thus, a task with the same burden of complexity could be realized sooner. By 
introducing parallel ACS modules decoding efficiency can be raised, however, more 
hardware/area is required. Therefore, one conclusion has been commonly drawn out 
of these researches is that the area/rate trade-off is linear [4].  

The other issue is focused on hardware reduction in the Survivor Memory Unit. 
There are three common implementation methods of SMU: traceback management 
(TBM), register exchange algorithm (REA) and Hybrid method [5,6,7,8]. For the 
proper function of VA, conventionally, memory length in TBM or the number of 
registers and multiplexers in REA has to be equal to the length of entire sequence. 
Fortunately, through theoretical demonstration and simulations by many researchers 
[9], they find that a value of 4 or 5 times the code constraint length is sufficient for 
negligible degradation from optimal performance of the decoder. With sufficient 
length of sequence, common tails will appear so that the memory size in TBM and 
the number of registers and multiplexers in REA could be reduced to a practical 
extent. 

Even with the existing progress made in these two issues, the first question 
mounting in my mind is that attempts to increase decoding efficiency by modifying 
ACS unit will bring about the need of extra hardware. Then, why not turn to modify 
procedure of other components in VA? On the other hand, is the further reduction of 
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hardware used in SMU possible?  
Bearing these two questions in mind, we find the key lies in the SMU. It is 

based on the observation that the latency in TBM still leaves some room for 
improvement and further hardware reduction in TBM and especially in REA is 
eagerly demanded. Thus, we determine to search for new approaches to realize SMU 
with faster decoding speed and less hardware requirements. Thus, the theme of the 
research is set on the improved survivor memory unit design of Viterbi decoders. 

We start by observing trellis diagrams of some commonly used convolutional 
coders in the digital communication systems. Eventually, an innate characteristic is 
found to be applied on the three conventional methods and evolve into three newly 
proposed SMU designs so as to reach the expected improvements. 

 
1.1 Organization of the thesis 

 
The organization of this thesis can be described as follows: The background on 

the operation of convolutional encoders and Viterbi decoders will be provided in the 
Chapter 2 and emphasize on descriptions of three conventional SMU 
implementation methods – TBM, REA and the Hybrid method. In the Chapter 3, the 
main concept extracted from our observations will be introduced and also how it is 
then incorporated into the three conventional methods separately for improvements. 
Experimental results in decoding performance and graphical analyses of hardware 
requirements will be discussed later in the Chapter 4 along with detailed 
comparisons. At last, Chapter 5 will conclude the thesis and indicate the future 
works. 
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Chapter 2 

Viterbi Decoding Algorithm and SMU 

Implementation Techniques 
 
2.1 Overview and Introduction 
 
  In this chapter, necessary background on the research will be provided. First, 
convolutional codes are discussed and then we will explain the Viterbi decoding 
algorithm and its decoder design. In the design, survivor memory unit (SMU) is 
focused and three conventional methods used in the SMU will be introduced. 
 
2.2 Convolutional codes 
 
  Due to the imperfectness of channels, errors would often occur during transmission. 
Therefore, some measurements must be taken to combat the disturbance and to raise 
the reliability of communication systems. One practical option to deal with the 
problem is called error-control coding or channel coding. The channel encoder in the 
transmitter accepts message bits and adds redundancy according to a prescribed rule, 
thereby producing encoded data at a higher data rate. The channel decoder, on the 
other hand, exploits the redundancy to decide which message bits were actually 
transmitted and find out the proper estimation. In fact, there are many different 
error-correcting codes developed for us to use. In this work, we will focus on 
convolutional codes. 
  Convolutional coding has been used in communication systems including deep 
space communications and wireless communications. It offers an alternative to block 
code for transmission over a noisy channel. Convolutional coding can be applied to a 
continuous input stream (which cannot be done with block codes), as well as blocks of 
data. In fact, a convolutional encoder can be viewed as a finite state machine. It 
generates a coded output data stream from an input data stream. The encoder structure 
is usually composed of shift registers and a network of XOR gates (Modulo-2 adders) 
as shown in Figure 2.1. 
  In convolutional coding with rate k/n, the encoder accepts k-bit input symbol and 
generates n-bit output symbol by an operation which may be viewed as the 
discrete-time convolution of the input sequence with the impulse response of the 
encoder. The duration of the impulse response equals the registers of the encoder.   
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Figure 2.1 Block diagram of rate 1/2-Convolutional encoder 
 

Take a 1/2 code for example in Figure 2.1. As we can see, two shift registers and 
modulo-2 adders compose the entire encoder scheme. In the example, the encoder 
accepts one-bit input symbol and then interact with contents stored in the shift 
registers to produce two-bit output symbol. A convolutional encoder is also generally 
characterized in (n, k, v) format, where 

n is number of bits of output symbol of the encoder ; 
k is number of bits of input symbol of the encoder ; 
v is number of memory elements of the longest shift register of the encoder. 

Therefore, the encoder shown in the figure above could be describe as a (2,1,2) 
encoder with constraint length K = v+1 = 3 .  
 

 
Figure 2.2 Block diagram of rate 2/3-Convolutional encoder 

 
  A more complex encoder structure is provided in Figure 2.2. Describe in (n,k,v) 
format is (3,2,4). However, this description could not fully reflect the connections in 
the encoder. Hence, generator polynomial is developed to characterize each paths and 
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connections in the encoder. To be specific, the generator polynomial of the ith path is 
defined by 

vi
v

iiii DgDgDggDg )(2)(
2

)(
1

)(
0

)( )( ++++= L  

where D denotes the unit-delay variable. In normal cases, the coefficients equal 0 or 1 
representative of the connections.  

However, the short constraint length recursive systematic convolutional (RSC) [10] 
codes used in turbo codes are not the case. The coefficients of generator polynomial 
of RSC will be fractional numbers instead of 0 or 1. Figure 2.3 is the example of 
recursive systematic polynomial whose generator matrix is described as below. 

⎥
⎦

⎤
⎢
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⎡
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32

1
1,1)(
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DDDDg  

 

 
Figure 2.3 Example of recursive systematic convolutional (RSC) encoder 

 
  The reason for making the convolutional codes recursive (i.e., feeding one or more 
of the tap outputs back to the input) is to make the internal state of the shift register 
depend on past outputs. This affects the behavior of the error patterns whose 
characteristics and corresponding decoder structure is beyond the discussion of the 
thesis. In order to distinguish the normal case of convolutional codes to RSC, some 
names the normal structures as Feedforward Convolutional Codes. In this thesis, we 
exclude RSC and only discuss feedforward convolutional codes. From here on, 
without specification, we refer to convolutional codes as feedforward convolutional 
codes. 
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2.2 Viterbi Decoder 
 
  The decoding process could be viewed as the reverse of the encoding process. 
Often, a trellis diagram will be introduced to help decode since it brings out how the 
input symbol operates with the contents of shift registers to produce the output symbol. 
In Figure 2.4, the trellis diagram of a rate 1/2-convolutional code as in Figure 2.1 is 
displayed. The four states on the trellis represent the possible contents of the registers. 
For general case in digital system, the number of states equals N=2v. With the trellis 
diagram, what a decoder has to do is to find the closest match between received signal 
sequence and the estimated sequence. The most instinctive way to realize the task is 
brutal search, which is to list all the possible signal sequence combinations and then 
compare them with the received sequence. At last, take the maximum likely (ML) one 
as the estimation of the transmitted signal sequence. 

 
 
 
 
 
 
 
 
 

Figure 2.4 Trellis diagram for rate 1/2-convolutional code 
 
  However, brutal search is never an efficient method. Thus, Viterbi Algorithm was 
proposed to eliminate the unnecessary comparisons made in the decoding process. Let 
m denote a message vector and c denote the corresponding code vector applied by the 
encoder to the input of a discrete memoryless channel. Let r denote the received 
vector, which may differ from the transmitted code vector due to channel noise. Given 
the received vector r, the decoder is required to make an estimate of the message 
vector. Since there is only one-to-one correspondence between the message vector m 
and the code vector c, the decoder may equivalently produce an estimate of the code 
vector. Thus, the decoding rule is to choose the estimate of code vector, given the 
received vector r, minimizes the probability of decoding error. The maximum 
likelihood decoder or decision rule is described as follow: 
 

Choose the estimate ĉ  for which the 
log-likelihood function )|(log crp  is maximum. 
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  For the binary symmetric channel, the maximum-likelihood decoder reduces to a 
minimum distance decoder. In such a decoder, the received vector r is compared with 
each possible transmitted code vector c, and the particular one closest to r is chosen as 
the correct transmitted code vector. As for the channel with memory, special cares 
have to be taken in the calculation of likelihood function such as soft decoders [11]. 
However, no matter which design is chosen, Viterbi algorithm will be applied. 
  The VA recursively finds the most likely path by using a fundamental principle of 
optimality first introduced by Bellman [12] which we cite here for reference: 
The Principle of Optimality: An optimal policy has the property that whatever the 
initial state and initial decision are, the remaining decisions must constitute an 
optimal policy with regard to the state resulting from the first decision. 

In the present context of Viterbi decoding, we make use of this principle as follows. 
If we start accumulating branch metrics along the paths through the trellis, the 
following observation holds: Whenever two paths merge in one state, only the most 
likely path (the best path or the survivor path) needs to be retained, since for all 
possible extensions to these paths, the path which is currently better will always stay 
better: For any given extension to the paths, both paths are extended by the same 
branch metrics. This process is described by the add-compare-select (ACS) recursion. 
The path with the best path metric leading to every state is determined recursively for 
every step in the trellis. A better elucidation can be made in mathematical expressions. 
  k and i serve only as index here. The metrics of survivor paths for state ixk = at 

trellis step k are called state metrics ki ,γ . In order to determine the state metric ki ,γ , we 

calculate the path metrics for the path leading to state ixk =  by adding the state 
metrics of the predecessor states and the corresponding branch metrics. The 
predecessor state ixk =−1  for one branch m of the M possible branches where 

{ }1,...1,0 −∈ Mm  leading to state ixk =  is chosen by the value resulting from 
evaluation of the state transition function ( ) ( )imZxZ k ,: 1 =− . 

),(
1),,(

),( im
kkimZ

im
k λγγ += −  , { }1,...1,0 −∈ Mm  

where ),( im
kγ  stands for the path metric for a path leading to state kis , (state ixk = at 

trellis step k) and { }1,...1,0 −∈ Mm  denotes the path label of one of the M paths 

leading to state kis , . The state metric is then determined by selecting the best path 

{ })0,1(),1(),0(
, ,...,, −= M

k
i

k
i

kki Max γγγγ  

A sample ACS recursion for one state and M =2 is shown in Figure 2.5. 
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1),,0( −kiZγ

1),,1( −kiZγ

),0(
1),,0(

),0( i
kkiZ

i
k λγγ += −

),1(
1),,1(

),1( i
kkiZ

i
k λγγ += −

{ }),1(),0(
, , i

k
i

kki Max γγγ =

 

Figure 2.5 Illustration of ACS recursion for M=2 
 
  Despite the recursive computation, there are still N=2v best paths pursued by the 
VA. The maximum likelihood path corresponding to the estimated sequence can be 
finally determined only after reaching the last state in the trellis. In order to finally 
retrieve this path and the corresponding sequence of information symbols, either the 
sequences of information symbols or the sequences of ACS decisions corresponding 
to each of the N survivor paths for all states i and all trellis steps k have to be stored in 
the survivor memory unit (SMU) while calculating the ACS recursion. The detailed 
description of SMU will be provided later in Section 2.4. 
  So far, we considered only the case that the trellis diagram is terminated, i.e. the 
start and end states are known. If the trellis is terminated, a final decision on the 
overall best path is possible only at the very end of the trellis. The decoding latency 
for the VA is then proportional to the length of the trellis. Additionally, the size of the 
memory element in SMU grows linearly with the length of the trellis. Finally, in 
applications like broadcasting, a continuous sequence of information bits has to be 
decoded rather than a terminated sequence, i.e. no known start and end state exists. 
That is to say that the required length of memory length in SMU has to be at least 
equal to the length of entire signal sequence. This is wasteful and unpractical in the 
hardware implementation.  
  Fortunately, through theoretical demonstration and simulations by many researchers, 
they find that a value of 4 or 5 times the code constraint length K is sufficient for 
negligible degradation from optimal performance of the decoder. Since with sufficient 
length of sequence, common tails as in Figure 2.6 will appear. Even though we do not 
make our decision at the final point, the path chosen will still converge to the optimal 
path in the front end of the path. Thus, the decoded sequence could be output sooner 
than traditional VA and the length of memory element will reduce to only 4 or 5 times 
the constraint length. 
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Figure 2.6 The generation of common tail 
 

 

Figure 2.7 The entire Viterbi Decoder block diagram 
 
  Summarizing, the basic units of a Viterbi Decoder are shown in Figure 2.7. The 
branch metrics are calculated from the received symbols in the Branch Metric 
Generator (BMG). These branch metrics are fed into the add-compare-select unit 
(ACS), which performs the ACS recursion for all states. The decisions generated in 
the ACS unit are stored and retrieved in the Survivor Memory Unit (SMU) in order to 
finally decode the source bits at decision unit (DU) along the final survivor path. 
 
2.4 Survivor Memory Unit (SMU) 
 
  As we mentioned in the Chapter 1, there are many modified ACS methods invented 
for the improvements of decoding speed. The price they paid is the need of extra 
hardware. However, with an expectation of improvement in both decoding efficiency 
and hardware complexity, we turn our target to survivor memory unit. Thus, in this 
section, three conventional methods of SMU realization will be provided as basis for 
the later research. These three methods are traceback management (TBM), register 
exchange algorithm (REA) and the Hybrid method. 
 
 2.4.1 Traceback Management (TBM) 
 
  In the traceback management, the decision value vectors di [7, 13] and branch label 
vectors ui (Or previous states), the outputs of ACS, of the S most recent trellis stages 
are stored. As was explained earlier, in principle all paths that are associated with the 
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trellis states at a certain time step k have to be reconstructed until they all have 
merged to find the final survivor path and thus decode the information. However, in 
practice only one path is reconstructed and the associated information at trellis step 
k-D output. D must be chosen such that all paths have merged with sufficiently high 
probability. If D is chosen too small, substantial performance degradations result. As 
mentioned, the survivor depth D equal to 4 to 5 time constraint length is appropriate 
for the appearance of common tail. Thus, S has be chosen larger than D. 
  The decoding is then performed by starting at a certain time step k and the tracing 
back D steps for the assurance of appearance of the merging path. The traceback is 
then continued from this state and the previous state labels are read out and then to 
decode out the original data. 
  The above explanation could be illustrated much better in the Figure 2.8. Here, S is 
chosen as D+H. H is claimed as the decoding depth. From step k-(D+H-1), S steps of 
ACS are realized and the decision value vectors {dk-(D+H-1),….,dk}and branch label 
vectors{uk-(D+H-1),….,uk} are stored, where dk and uk separately consist of N values 

denoting as },...,{ ,1,0 kNk dd −  and },...,{ ]1[]0[ −N
kk uu . At step k, the decoder traces back D 

steps reaching the merging path. Then, consecutive H branch labels are read out 
according to the corresponding decision values to be decoded. 

[0]
1)-M(D-Ku +

[0]
D-Ku [0]

Ku

 

Figure 2.8 Example of TBA 
 

  Formally, TBA could be stated in a form similar as C language as follows: 
 

Memory: 
(D +H) *N decision bits  {dk-(D+H-1),….,dk} stand for upper or lower path 
Algorithm: 
// every H trellis steps a trace back is started 
if (k-D can be divided by H) then { 
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// Initialization 
traceState := startState ; 
// Acquisition 
for t=k downto k-D+1 { 
traceState := Z(dtraceState,t ,traceState) ; 
} 
// Decoding 
for t=k-D downto k-D-M+1 { 
decode bit vector := u(dtraceState,t ,traceState) ; 
traceState := Z(dtraceState,t,traceState) ;} 
} 

  
Figure 2.9 Different TB memory contents (a) previous states (b) decision values 
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An example of TBM storing previous states or decision values according to a 
certain trellis flow is provided above in Figure 2.9, which will serve as a common 
example for the later comparisons. As seen in the figure, we define the decision value 
0 representing the upper path and 1 for the lower path. 
  Before leaving TBM for REA, we have to point out that TBM could be realized 
with small power consumption and circuit area since there are few logic elements 
needed. However, it suffers long latency since the decoder has to read in the signal 
sequence of sufficient length and then feed it into ACS unit. Afterwards, traceback has 
to be realized for the final decoded output. Therefore, the biggest drawback of TBM is 
its large latency as well as low decoding efficiency. 
 
2.4.2 Register Exchange Algorithm (REA) 

   
  The major reason for the development of REA is to improve the drawback of large 
latency of TBM. Its goal is that the decoded output could be ready right after the ACS 
of a sufficient length of signals is done. In the register exchange algorithm, survivor 
paths are stored in N shift registers, each of length S ≧ D. The connection of the 
multiplexers and registers is derived from the trellis diagram which is constructed by 
repeating one row containing all states of the code several times to represent 
consecutive time-steps. By updating the entire contents of every shift register during 
every decoding cycle (one decoding cycle corresponds to processing one trellis stage), 
each shift register i always holds the survivor sequence for state i. The decoded data 
can be obtained from the output of the shift registers. 
  In order to illustrate REA, new parameters should be introduced. We denotes 

branch labels associated with the path belonging to state i at trellis step k as ][i
ku) , with 

the hat to distinguish from TBM. The branch label associated with the mth branch 

merging into state i as ),( imu . Thus, we can formally state the algorithm as follows: 

 
Memory: 

(D +1) *N  branch labels ( ][i
ku) ,…, ][i

Dku −
) ) 

Algorithm: 
// Update of the stored symbol sequences according to 
// the current decision bits di,k (decision bit of state i at step k) 
for t=k-D to k-1 {  for State=0 to N-1 { 

][State
ku) = )],([

1
, StatedZ

t
kstateu +

)  ;} 
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} 
// setting the first information symbol of the path 
for State=0 to N-1 { 

][State
ku) = )],[( , Stated kStateu ; 

} 
 
  The corresponding hardware implementation of REA is provided as below. 

[0]
Kû

[1]
Kû

[2]
Kû

[3]
Kû

[0]
1-Kû

[1]
1-Kû

[2]
1-Kû

[3]
1-Kû

[0]
D-Kû

[1]
D-Kû

[2]
D-Kû

[3]
D-Kû

[0]
1D-Kû +

[1]
1D-Kû +

[2]
1D-Kû +

[3]
1D-Kû +

Figure 2.10 Hardware Architecture of REA 
 
  REA successfully reduces the decoding latency. However, when the constraint 
length increases, REA becomes critical in terms of area and power dissipation. The 
register exchange algorithm needs the same number of multiplexers and registers as 
the number of states (N) multiplied by the survivor path length (S) and they are 
activated every cycle to update data in memory. Thus, REA is mostly applied if 
latency or total memory size is critical. 
 
2.4.3 The Hybrid method 

 
  REA is a direct implementation whose critical path consists of one multiplexers and 
one latch, thus allowing high data throughput. However, area and power consumption 
rapidly become a critical concern as constraint length grows. TBM, based on RAM, 
achieve low power and small circuit area but leads to high latency and low throughput. 
These drawbacks motivated the former researchers to find the balance point. The 
hybrid method [13,14] was thus developed. 
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  The underlying idea of the Hybrid method is as follows. A continuous exchange 
registers carried out the whole surviving path leads to unacceptable area and power 
dissipation. It is nevertheless possible to perform a partial REA that generates 
segments of survivor paths. After results of partial REA are produced, theses segments 
of survivor paths are stored in a memory space till sequence of survivor path length S 
is processed. The fast TBM can then be executed since only a few steps of traceback 
are required. By doing so, the reduced REA becomes acceptable in area and power 
consumption and high latency in TBM could be improved. 
  An example is given below in Figure 2.11. The survivor path length (S) is 
determined as 8, however, partial REA of length 4 is applied. Therefore, the results 
generated at t=4 and t=8 should be saved as well as the pointer of the previous states. 
Until t=8, the fast TBM could be realized with only one-step traceback. Detailed 
computation of the required hardware and latency will be given in Chapter 3. 
 

 
Figure 2.11 Example of Hybrid method 
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2.5 Summary of the Chapter 
 
  In this chapter, convolutional encoders and Viterbi decoders are introduced. We put 
more emphasis on the architecture of Viterbi decoders, especially survivor memory 
unit (SMU). Three conventional methods used to implement SMU are illustrated. 
TBM has the drawbacks of low throughput and high latency. REA requires larger area 
and power for multiplexers and exchange registers. These flaws in the two methods 
motivate us to research for the improved techniques. Even though the Hybrid method 
had attempted to balance the area/efficiency trade-off, we believe that the hardware 
could be further reduced. Thus, three improved methods corresponding to the three 
conventional implementation techniques will be the highlight of the next chapter. 
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Chapter 3 

Three Improved SMU Designs 
 
3.1 Overview 
 
  As mentioned in Chapter 2, the existing methods in implementing SMU such as 
TBM and REA fall victims to different flaws. Thus, in the Chapter 3, we aim to 
derive the new designs that could improve low decoding efficiency of TBM and 
reduce some memory space as well. On the other hand, for REA and the Hybrid 
method, the amelioration will be mainly made in the reduction of hardware 
requirements. These improved SMU designs are all originated from a concept that 
was aroused by an interesting observation. 
 
3.2 The observation 
 
  A feedforward convolutional coder is the encoder structure with no feedback 
loops. As in Figure 2.1, no feedback lines are drawn back to any of the registers. By 
examining all the possible inputs and register states, the corresponding trellis 
diagram of the coder could be generated as in Figure 2.4. With trellis diagram, the 
VA decoder could follow the prescribed paths to finish Add-Compare-Select (ACS) 
and then choose one ML path as the final estimation.  

When a path is chosen at last, trace-back has to be done to read out the estimated 
input sequence. It is a process of mapping from present states to previous states on 
the trellis diagram and then decides what input symbol the segment represents. In 
most cases, only one step of trellis diagram will be provided and used in the 
trace-back process, since pattern of every step in trellis is actually the same. 
However, when observation is made on a two-step trellis for a (2,1,2) code as in 
Figure 3.1, one interesting phenomena is found.  

For convenience of better explanation, we take the rightmost step as the present 
step and the steps followed to the left are the past steps. When decoding, we used to 
and have to know states of both the present and the previous steps to decode out 
only one input symbol. However, by observing the two-step trellis diagram, we find 
that even though the previous states are unknown. The decoded output is certain for 
every present state. That is, assuming the present state is a, there are two possible 
paths from the previous states a and c. Yet, these two paths represent the same input 
0. Not merely so, if we trace further back to one more step, four possible paths will 
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lead to the previous state a and c. Therefore, it makes totally four paths form the 
leftmost step to the rightmost state a. These four paths stand for the uncertainty and 
the necessity of trace-back. However, if we look closer, these four paths generate the 
same two-bit output 00. This explains to us that with mere the knowledge of the 
present state, we could decode two output symbols in block. The corresponding 
two-bits output for each of the present states are listed in Figure 3.1. 
 

 
Figure 3.1 Phenomena of the same output for a certain state 

 
  Being afraid of spotting this phenomena by chance, we exam another trellis 
diagram of a rate-1/2 code with v=3. It means that the encoder structure consist of 
three registers. The trellis diagram is shown in Figure 3.2. From the leftmost step to 
rightmost step, there are 23 = 8 possible paths converging into the state a of the 
current step. However, by tracing back the eight different paths, they all lead to the 
same three-bit output 000. The same experiment could be made on the state b to 
obtain the three-bit output 010 or randomly selected state e corresponding to 
three-bit output 100. Namely, by merely knowing the present state, we could decode 
three symbols out in block, and states in the middle could be neglected. 
  This occurs to us that in the SMU stage, signals can be processed in block. By 
doing so, we could now decode out more than one symbol a time. An explanation of 
this phenomenon resulted from the observations might be needed, before we go on 
the discussion. It is quite easy to unveil the puzzle. We take use of state information 
to decode signals in block. Therefore, the key should be laid behind the meaning of 
states. It is obvious to know that states in trellis shows the content stored in registers. 
This is what we certainly noticed. However, it is easy to ignore what are stored in 
the registers. They are actually the decoded present and previous input signals.  



 
Chapter 3                                                                      18/40 

 18

 

Figure 3.2 Three-step Trellis for a (2,1,3) code 
 

  Conclusively, from the observations, we find that a state compose of multiple 
input symbols. Therefore, it is easy to expect that hardware could be reduced since 
the states in some steps are needless to be saved. Also, the decoding efficiency 
should be raised since multiple decoded symbols could be acquired by reading a 
current state. Three improved SMU designs are evolved from the concept and will 
be discussed in the following sections. 
  Before going into the next section, one point we have to make clear first is the use 
of the term “stage” and “step”. In the Chapter 2, while explaining trellis diagram 
with dimension of time, we refer to step with a specified time parameter such as step 
t = 4. Without the specification of time, we often use stage in the trellis diagram such 
as the next stage. However, in the thesis, these two words are used alternatively 
without discernment. 
 
3.3 Stage-Hopping TBM (SH-TBM) 
 
  Conventionally in TBM, survivor states have to be recorded every stage and the 
traceback operation has to be done one stage after another, since it is the relationship 
between the current and previous states help decipher one input symbol. However, if 
smaller memory size is desired, obviously state information of some stages will have 
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to be neglected. Thus, we expect that there does exist some redundant stages and 
even without them traceback could still be complete. Fortunately, for decoding of 
general convolution encoders with no feedback loops, we find that the redundant 
stages do appear for further usage. 
  We have known the fact that, from the previous section, multiple input symbols 
could be read out by merely knowing one survivor state of a single stage. Since a 
state could tell us what the current and previous input symbols are, the stages in the 
middle are not necessarily stored. For general coder schemes, a parameter named BS 
(block size) has to be well defined to indicate how many stages traceback could hop 
over at once. 
 It is obvious to see that for the encoder schemes with only a string of registers as 

in Figure 2.1, a state contains the same number of input symbols as the number of 
registers. However, for the encoders with more than one string of registers as in 
Figure 2.2, the string with least number of registers will dominate the definition. It is 
due to the fact that the input symbols will be drop out for the unequal length of 
registers in different strings. Therefore, a sound definition of the BS should be: 
 
 
where NRn stands for the number of registers in the nth string and NS represents the 
number of overall register strings. 

BS indicates two important facts: one is the number of input symbols that could 
be read out by one state, and the other is the number of stages that traceback could 
hop over once. Hence, the task left to be solved now is how to eliminate the 
redundant stages in between and reserve only the needed survivor states that are 
every BS stages away to carry on traceback. 

 
Figure 3.3(a) shows the conventional memory management technique for the 

(2,1,2) code. We can see that every survivor state in different paths is well stored in 
the memory. Even though the input could still be decoded out correctly as 0011 by 
knowing the current state a and state d that is two-stage away, we could not directly 
neglect previous state c, since trace-back may not be carried on without the link to 
state d.  Therefore, we shall not just get rid of contents in memory but should take 
the strategy of updating memory as in Figure 3.3(b). The update procedure provided 
here is just a guideline for implementation. Actually, as long as the right survivor 
states every BS away are stored, the profit of memory reduction could still be gained 
for TBM. The overall procedure could be divided into six steps: 
 
 

} 1 },,{ { NSnNRMinMaxBS n ≤=
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Step 1: Check BS is even or odd. 
Step 2: If it is even, then start by storing survivor states in the extra 
temporary row of memory. Else, if it is odd, start by storing survivor states 
in the original memory space. 
Step 3: At the beginning of every block, the survivor states will be stored 
into the assigned row of memory after ACS process. 
Step 4: For the rest signals from the same block, the newly selected survivor 
will not be stored. Instead, it will be used as an indicator to copy the data, 
which it is pointed to, to the other row of memory iteratively. 
Step 5: Repeat step 1~4 until the entire sequence is processed. 
Step 6: Traceback and decode output block-by-block 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

Figure 3.3 The procedure of Stage-Hopping TBM 
 

In this way, as we can see in Figure 3.3(c), half of memory size could be saved at 
last. As for general convolution coders, only one-BSth of the conventional memory 
size is required. Since for a block of survivor states, only one survivor state is saved 
at last.  

In conclusion, Stage-Hopping TBM takes use of the fact that multiple input 
symbols could be read out by merely knowing one survivor state so as to eliminate 
the necessity of storing those redundant stages in between with updating states skills. 
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By doing so, memory used to save survivor paths could be reduced. In addition, 
decoding efficiency could be greatly improved as an important value of the method 
due to the fact that fewer stages remained to realize traceback operation. A detailed 
computation of the decoding efficiency and the required memory size will be given 
later in Chapter 4 to make the overall comparisons. 
 
3.4 Facilitated REA (FREA) 
 
  REA uses a direct hardware implementation of the trellis structure. Survivor states 
are stored in N shift register and each shift register i always holds the survivor state 
for state i. The traceback operation of TBM is replaced by updating the entire 
contents of every shift register during every decoding cycle to obtain high 
throughput and low latency. However, as constraint length grows, the area and 
power dissipation increase quickly. As a result, it will be less preferable to be 
applied with a large number of states in the trellis or with long constraint length. 
  The concept of the improvement is the same as Stage-Hopping TBM. Basically, 
the FREA could be considered as using exchange register technique to implement 
the six- step procedure mentioned in the Stage-Hopping TBM. 
  However, direct conversion may be problematic. First, contents stored in memory 
of SH-TBM are previous state information which is different from the decision 
values in REA method. Luckily, the problem can be easily solved that the state 
information stored is actually the decoded data, which is even more desirable to 
acquire. Second, the REA continuously recorded the previous state information. On 
the other hand, only those survivor states every BS away are needed to be solved. 
Therefore, the design should be adjusted to execute the correct procedure. 
  Before constructing the overall FREA, the elementary structure is our first target 
to realize. Since only survivor states every BS away are necessary to be stored. The 
recursive manner should be applied on the elementary structure as shown in Figure 
3.4. As we marked on the figure, there are three differences from the conventional 
REA design. (1) The feedback line is drawn to replace the original data stored in the 
register so that only survivor states every BS cycles will be recorded and those states 
in the middle stages will be surpassed. (2) The set_inital signal is active every BS 
cycle as a signal to restore the content of registers. This will be explained more in 
the entire FREA design. (3) Decision values are only fed into MUX and do not write 
in the registers. An easy example is given in Figure 3.5 where a two-step trellis is 
formed. The necessary survivor states (0,3,2,0) are stored at last by SH-TBM. The 
equivalent functions of elementary component of FREA is provided in the lower part 
of the Figure 3.5 which generates the same results at t =2. 
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Figure 3.4 Elementary component structure of the FREA method 

 

Figure 3.5 Equivalent function of SH-TBM and the elementary component of REA 
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  From the above, we should somehow sense that the number of multiplexers used 
in the FREA is less than that required in REA since the multiple steps of trellis are 
processed by a single column of multiplexers. 
  To construct the entire FREA, the elementary components have to be well 
connected, where some tricks are applied to make the FREA function properly. The 
overall hardware structure of FREA is shown in Figure 3.6 in the next page. The 
tricks lie in the use of set_initial signal to control the contents of registers. (1)At 
leftmost stage, when the set_initial is active, the register will be set into default 
value as (0,1,2,3) for the selection of survivor states of the latest stage. (2) As for the 
rest of registers, the contents of the registers will be past to the next stage after BS 
cycles, set_initial is active, so that contents of register i will always save the survivor 
state that is BS-step away for the state i on the same survival path.  
  Originally, in REA, the number of multiplexers required is equal to N (the number 
of states) *S (the length of survivor path). With FREA, BS states can be iteratively 
allocated by only one column of multiplexers, so only N*S/BS multiplexers are 
needed. In addition, decision unit is no longer required since state information 
already represents the decoded input symbols. Moreover, the wire connections can 
have fewer crossings. These improvements will not only reduce the required 
hardware but facilitate the implementation of SMU. Details of the required number 
of multiplexers and decoding efficiency will be provided in the Chapter 4 later. 
 
3.5 Improved Hybrid Method (IHY) 
 
  With the previous introduction of the Hybrid method and Stage-Hopping TBM, 
one might find that the improved decoding efficiency of SH-TBM is the same as the 
decoding efficiency of the Hybrid method when the partial REA of length BS is 
applied. However, the better decoding efficiency of the Hybrid method is obtained at 
the cost of lot more hardware than SH-TBM. To implement the Hybrid method, 
memory used to store survivor states is required. Besides, multiplexers and registers 
are also necessary for the partial REA. Therefore, there are still some rooms left for 
improvements of the Hybrid method. We name it Improved Hybrid (IHY) method. 
  The first improvement is directly inherited from the FREA. That is, when the 
partial REA is implemented, we could modify it into the FREA structure so that the 
number of multiplexers could be reduced. The structure is the same as in Figure 3.5 
and 3.6. A little difference between Hybrid method and IHY is that the length of 
partial REA should be always chosen as the constant multiple of BS so that FREA 
could be easily constructed. If the length of signals is not so, some measurements as 
zero-stuffing or eliminating the unwanted output signals should be taken. 
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Figure 3.6 The hardware structure of FREA 
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The second improvement is lying on the traceback and decision procedure. In the 
conventional Hybrid method [14,15], traceback has to be assisted with previous state 
information which may be saved in a lookup table and make the decision of the 
input symbol in the decision unit. In the IHY, a state plays two roles. One is the 
previous state information and the other is the decoded data. Thus, the traceback and 
decision could be operated easily with some multiplexers. An example is given as in 
the Figure 3.7. BS of the coder is 2 and the partial REA length is 4. Thus, the 4-bit 
output of partial REA will be sequentially stored in the memory. When tracing back, 
the last 2 bits of the 4-bit output could serve as the indicator of the previous state so 
that the traceback and decision operated could be mixed up and implemented easily. 
 

 
Figure 3.7 Example of the mixed traceback and decision operations 

 
3.6 Summary of the Chapter 
   
  In this Chapter, three improved methods of implementing SMU are proposed. 
Stage-Hopping TBM (SH-TBM) is proposed to improve the drawbacks of low 
decoding efficiency without the cost of any extra hardware; instead, it could further 
reduce the required memory space. Facilitated REA (FREA) and Improved Hybrid 
method (IHY) are brought up to decrease the required number of multiplexers so 
that the drawback of large circuit area could be ameliorated. Of all three improved 
methods, decision unit (DU) is no longer needed since states stored in the memory 
are equivalent to the storage of decoded data. 
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Chapter 4 

Experimental Results and Analysis 
 
4.1 Decoding performance 
 
  In the previous chapter, we have demonstrated how the improved methods are 
developed to reduce the hardware complexity and increase the decoding efficiency. 
However, one may question if the decoding performance is sacrificed. Therefore, the 
first thing we want to verify is the decoding performance. At first, we simulate the 
rate-1/2 code with v=6, which is the inner channel coder of DVB-T system, by C++ 
program. The input generated is random binary signals, the channel is AWGN and the 
receiver is soft Viterbi decoder. The experimental results are shown in Table I.  

In Table I, case 1 uses conventional TBM with memory length that is equal to 5 
times constraint length which guarantee the generation of common tail. Case 2 uses 
10 times constraint length which has longer decoding depth and case 3 applies 
SH-TBM whose memory length equals to 10 times constraint length dividing by 
BS=6. Though case 3 intrinsically executes SH-TBM, it can also represent the 
decoding performance of FREA and IHY since they are based on the same concept 
with different hardware designs. We can see in table that longer survivor path seems 
to produce a little better decoding performance from the comparison between case 1 
and case 2. From case 2 and case 3, we successfully prove that three newly proposed 
survivor memory management methods of SMU do not degrade the decoding 
performance. On the contrary, some additional advantages could be acquired. 
 

Table I. Performance of Viterbi Decoder with different                   
memory management techniques of SMU 

SNR / BER   Case 1   Case 2   Case 3 
0dB 0.168584 0.155538 0.152853334 
0.5dB 0.095194 0.088226 0.088806667 
1dB 0.04808 0.0402442 0.04044 
1.5dB 0.01883 0.0158866 0.01509 
2dB 0.006908 0.0049522 0.005268 
2.5dB 0.0018922 0.0014524 0.001472333 
3dB 0.0004536 0.0003482 0.000361067 
3.5dB 0.0000932 0.00008054 8.30666E-05 
4dB 0.000018504 0.000015188 1.61136E-05 
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4.2 Decoding efficiency and Hardware Reduction 
   
  In this section, graphical method is introduced to illustrate the decoding efficiency 
and the required memory size of three conventional methods and three corresponding 
improved methods for comparisons. The reason of using graphical method is to 
carefully estimate the decoding efficiency and memory size in real hardware 
implementations instead of the mathematic calculations, used in software simulations, 
given as in previous chapters. 
 
4.2.1 TBM vs. Stage-Hopping TBM 
 
(1) TBM 
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Figure 4.1 Graphic representation of a conventional TBM 

 
  The decoding cycle refers to the generation time for a decision vector computed by 
ACS unit and is also equal to the duration of one traceback. Length of the survivor 
path (S) is chosen as D (sufficient length of signals to create common tail) + H 
(decoding depth). H here is selected as 0.5D. From t=0 to 1.5D, decision vectors are 
generated by ACS units. Till then, a survivor path is chosen and follows on a depth 
D+H traceback, in order to get H decoded data. In the figure, TB memory represents 
the memory used to save states on the survivor paths or the decision vectors of every 
stage. From the figure, we could make an overall analysis as follows: 
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Table II. Analysis of TBM 
 In the example In general case 
TB memory (R/W) (1.5D+D)*N=2.5*D*N (D+H+D)*N= 2*D*N   
TB memory 1.5D*2*N=3*D*N (D+H)*2*N=2*(D+H)*N 
Latency 3*D 2*(D+H) 
Decoding Efficiency 0.5D/3D =1/6 H/(H+D+H)=H/(D+2*H) 
where R/W means that memory could finish read and write in one cycle and the unit 
of TB memory is symbols. 
 
(2) Stage-Hopping TBM 
 
( I ) Software Implementation  
Though the states only BS steps away are necessary to be stored, the memory size 

do not reduce as expected compared with decision value method. Since it only uses 
one-bit decision value to record the upper or lower path, we find that the TB memory 
size is actually the same as shown in Figure 4.2, which are the results of the example 
given in Figure 2.9 by decision value method and SH-TBM. However, decision value 
method still requires state memory table and decision data lookup table to read out the 
previous state and decode. Hence, there is still certain amount of memory reduction 
gained by eliminating the need of state memory and decoded data lookup table in 
SH-TBM. The new decoder design could be drawn as in Figure 4.3. 

 

 

Figure 4.2 Required memory size of decision value method and SH-TBM 
 

  One might be disappointed by the results. Luckily, it is a totally different story 
when it is implemented on real hardware. Since there is no reason to separate ACS 
and traceback operation, the ACS should still be under process while tracing back in 
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SMU. Hence, the memory needed to store the results of ACS will be related to the 
duration of traceback. That is to say that the longer time the traceback requires, the 
larger memory the SMU needs. More details will be illustrated by graphic 
representation and lot more discussion in memory reduction will be provided later. 
 

 

Figure 4.3 TBM decoder design and SH-TBM decoder design 
 
(II) Hardware Implementation 
 
  H is chosen the same as 0.5D and BS here is assumed to be 2. At first, D+0.5D data 
are read in and create the corresponding decision vectors after ACS units. The major 
differences come in the phase of traceback and decoding. In the traceback, the speed 
is increased since fewer stages are left to be traced and a state can now output two 
decoded symbols at a clock so that H decoded data could be acquire faster. In the 
Figure 4.4, we could see that the slope of the acquisition and data-trace lines is –BS. 
   

 
Figure 4.4 Graphic representation of SH-TBM 
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Table III. Analysis of SH-TBM 
 In the example In general case 
TB memory (R/W) (1.5D+D/BS)*N=2*D*N (D+H+D/BS)*N 
TB memory [1.5D+(1.5D/BS)]*N=2.25*D*N [(D+H)+(D+H)/BS]*N 
Latency 2.25*D (D+H)+(D+H)/BS 
Decoding Efficiency 0.5D/2.25D =1/4.5 H/[H+(D+H)/BS] 
 
(3) Comparisons 
  H itself is a trade-off factor when it comes to TBM. The longer the decoding path is, 
the larger the latency or decoding efficiency is. However, if the H is chosen to be 
small, the memory intensity will be low and control signals will be more sophisticated. 
This issue will be overlooked in the research. In the later discussion, we will fix H as 
a constant parameter. 
 
(a) Decoding Efficiency and Latency 
We can see that the decoding latency of Stage-Hopping TBM is D+H+(D+H)/BS. 

D is often chosen as 4 to 5 times constraint length. BS for the (n,1,v) code is the same 
as v = K-1. This indicates the fact that the traceback operation can now be realized in 
only a few clock cycles (D+H)/BS. It will be more obvious to see in the decoding 
efficiency. The improved decoding efficiency is H/[H+(D+H)/BS]. As the BS grows, 
the decoding efficiency could be improved much better approaching to the 
performance of REA. The improvement of decoding efficiency is also shown below in 
the Figure 4.5, with D = 5v and H = v. We have to emphasize that the decoding 
efficiency improvement is gained without extra hardware, and even more the memory 
size is further reduced, which will be explained next. 

 
Figure 4.5 Decoding Efficiency of TBM and SH-TBM 
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(b) Memory reduction in hardware implementation 

  Memory reduction ratio is computed as )11(
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is as constraint length increases the memory space used to save survivor sequence will 
be much smaller in SH-TBM than in conventional TBM. As for (n,1,v) code, BS is 
equal to v and assume D=5v, H=v. We can see the memory reduction curve as in 
Figure 4.6. About 5/11≒45% of original TB memory can be saved at most. Besides, 
decision unit (DU) is no longer needed. Thus, hardware could be further reduced. 

 
Figure 4.6 Memory reduction ratios 

 
4.2.2 REA vs. Facilitated REA 
 

 
Figure 4.7 Graphic representations of REA and FREA 
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Figure 4.8 Different register allocations of REA and FREA 
 

Table IV. Analysis between REA and FREA 
 REA FREA 
overall size of registers N*D N*D 
number of MUXs N*D N*D/BS 
Latency D D 
Decoding Efficiency 1 1 
where the unit of size of registers is symbols  
 
  Figure 4.7 represents both REA and FREA, since the only difference in them is the 
hardware implementation. There are two modifications demanded for explanations: 
 
(a) The overall size of registers 

  In conventional REA, the unit of one register is one-bit decision value. On the other 
hand, the unit of one register is BS bits, since content of registers has to be over- 
written. However, one register in FREA will be repeatedly utilized BS times before it 
transmits its content to the next register so that the overall size of registers is actually 
the same, which is illustrated as in Figure 4.8 with BS =3. 
 
(b) The number of Multiplexers 

  The major advantage of FREA is the reduction of multiplexers. Compared with 
REA, multiplexers used in FREA are still two-to-one multiplexers. The complexity of 
multiplexer remains the same. However, since only the state information that is BS 
steps away is required, a multiplexer can be used repeatedly until state of the correct 
previous step is acquired. Thus, we can say that only one-BSth of multiplexers in REA 
are needed to realize the same task. More analyses are listed in Table IV. 
 
  So far, we have only displayed the comparisons of hardware requirements between 
REA and FREA. Without implementation of the FREA, one might render the method 
doubtful. Therefore, we do implement the elementary component as described in 
Figure 3.4 and send in the decision vectors as in Figure 3.5 to observe the result. 
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  The entire VLSI program for the elementary component of FREA and its test file 
are listed in the appendix A. The simulation result is now shown as follows: 
 

 
Figure 4.9 Simulation results of elementary component of FREA 

 
  We can see that as the decision vector [0,0,0,1] generated from ACS outputs, the 
contents of registers become [0,2,0,3]. At the next clock cycle, new decision vector is 
formed as [0,1,1,0] and lead to the record of [0,3,2,0] in the registers. The result 
matches with the description in the Figure 3.5. Thus, we could now validate the 
correctness of the function of the elementary component. 
 
4.2.3 Hybrid method vs. Improved Hybrid method (IHY) 
 

 
Figure 4.10 Graphic representation of Hybrid method 
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Figure 4.11 Graphic representation of IHY 
 

  Inherited from SH-TBM and FREA, we can daringly expect the same degree of 
reduction in the number of multiplexers and memory. In addition, IHY can decode out 
input symbols a little faster since it could read out multiple symbols a time.  

Graphic representations as Figure 4.10 and 4.11 could display these improvements 
more clearly. The Hybrid method has improved the speed of acquisition trace by using 
partial REA of length 2. However, the data trace still has to be done one symbol after 
another. A slight increase of decoding efficiency can be gained at data-trace since two 
symbols can be read out once in IHY when its BS equal to two. Due to the faster 
traceback time, some of the TB memory could be saved. Besides, most important of 
all, the number of multiplexers could be reduced by BS. For the case when the length 
of partial REA equals to BS, only a column of multiplexers are needed. This makes 
the implementation easier and the required hardware area smaller. 
 

Table V. Analysis between Hybrid method and Improved Hybrid method 
 Hybrid method Improved Hybrid method 
TB memory (R/W) (D+H+D/Dp)*N (D+H+D/Dp)*N 
TB memory [D+H+D/Dp+H]*N [D+H+(D+H)/Dp]*N 
Number of MUXs N*Dp N*Dp /BS 
Latency D+H+D/Dp+H D+H+(D+H)/Dp 
Decoding Efficiency H/(H+D/Dp+H) H/(H+(D+H)/Dp) 
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4.3 Power dissipation and Summary of the Chapter 
 
  Though we do not measure the real power dissipation of the improved methods, we 
could still approximately estimate their relativity. First, TBM and SH-TBM consumes 
the lowest power. IHY could save a little power since fewer multiplexers are turned 
on than Hybrid method. REA requires the largest power since multiplexers and 
registers have to remain active in every cycle. The reduction of multiplexers in FREA 
should make it dissipate less power. An overall estimation is as followed: 
 
◎ Power: T=SH<IH<H<FR<R 
◎ Hardware: SH≦T<IH≦H<FR≦R 
◎ Throughput: T≦SH<IH≦H<R=FR 
 
( T:TBM, SH: SH-TBM, H: Hybrid, IH: IHY, R:REA,FR:FREA) 
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Chapter 5 

Conclusion 
 

5.1 Conclusion 
 
  Motivated by the desire of improving the existing implementation methods of 
SMU in Viterbi Decoder, we start by observing trellis diagram of some commonly 
used convolutional coders. From the trellis diagrams, we found an important concept 
that state information contains multiple input symbols for feedforward convolutional 
encoders without feedback loop. That is excluding RSC.  

With the concept, we begin by defining a parameter called BS. It indicates two 
important facts: one is the number of input symbols that could be read out by one 
state, and the other is the number of stages that traceback could hop over once. By 
applying the concept on TBM, Stage-Hopping TBM is then developed. It stores only 
states that are BS steps away in memory so that the memory size should be reduced. 
The improved memory size eliminates the need of previous state table and decoded 
data table compared with decision value method when investigating it by software 
implementation. On the other hand, by graphic representations, we can see that up to 
45% of the original TB memory can be saved for (n,1,v) code in hardware design. 
Most important of all, the decoding efficiency considered as the major drawback of 
TBM is improved approaching performance of REA as constraint length increases. 
  Corresponding to REA, Facilitated REA (FREA) is proposed based on the same 
state information concept to reduce the hardware complexity of REA. REA suffers 
large circuit area and large power consumption since the huge amount of 
multiplexers and registers in REA structure are active in every clock cycle. By 
repeatedly utilizing a column of multiplexers, we reserve only the previous state 
information that is BS steps away. Therefore, only one-BSth of the original 
multiplexers is needed. The FREA hardware design is a bit different than the 
conventional REA. The size of registers, the connection and the extra control signal 
are modified so that the new design not only makes it function properly and but also 
reduces the hardware requirements. 
  Combined REA with TBM, the Hybrid method was then generated. Thus, 
Improved Hybrid (IHY) method will naturally inherit the improvements of Stage- 
Hopping TBM and Facilitated REA. The number of multiplexers could be reduced 
and a small amount of memory could be saved. Most important of all, the traceback 
in IHY could be realized faster and its hardware implementation becomes very 
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simple that only a few of multiplexers will cut out for the task. Besides, among the 
three new methods, no decision unit (DU) is needed because states stored already 
consist of the decoded input symbols. 
  These improvements are gained almost without any cost. Just that the extent of 
the improvement depends on the structure of the convolutional encoders. Thus, for 
some systems, there may be no advantage that can be acquired by applying these 
methods. Even so, without any cost, we should be satisfied with the advantages that 
these methods could bring to us as long as the encoder allows. Besides, decoders of 
the punctured convolutional code could also take use of these improved methods. 
There is actually little limitation in utilizing these new designs. 
  To sum up, we propose three new SMU design for Viterbi decoders. 
Stage-Hopping method can obtain higher throughput without extra hardware. 
Furthermore, memory size could be reduced by 45% at most in hardware 
implementation. On the other hand, FREA improves REA in the reduced number of 
required multiplexers. At last, IHY inherits both advantages of SH-TBM and FREA 
so that it can not only improve the Hybrid method in both the reduced number of 
multiplexers but also acquire the ability to realize faster traceback operation. 
 
5.2 Future work 
 
  Power dissipations of three new designs mentioned in Chapter 4 are only under 
logical estimation. The actual measurement of power dissipation may be of help for 
the designer to choose the customized SMU structures. 
  Other than being applied on the designs of SMU, the concept of state information 
contains multiple input symbols can be also of use in the joint source-channel 
decoder designs [16]. The channel decoder could be referred as the course selector 
for the candidates of source decoder. By doing so, the complexity of entire decoding 
system should be decreased. This application might worth some more future works. 
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Appendix A. VLSI program documentation 
(1) The VLSI program of the elementary component of FREA and IHY 
------------------------------------------------------------------------------------------------------ 
module vit(clk,rst,ACS_0,ACS_1,ACS_2,ACS_3,out); 
input clk,rst,ACS_0,ACS_1,ACS_2,ACS_3; 
output [1:0] out; 
reg    [1:0] reg_0,reg_1,reg_2,reg_3; 
 
always@(posedge clk or posedge rst) 
begin 
  if (rst) 
    begin 
      reg_0<=0; 
      reg_1<=1; 
      reg_2<=2; 
      reg_3<=3; 
    end 
end 
 
always@(posedge clk) 
begin 
  case(ACS_0) 
    1'b0:reg_0<=reg_0; 
    1'b1:reg_0<=reg_1; 
  endcase 
  case(ACS_1) 
    1'b0:reg_1<=reg_2; 
    1'b1:reg_1<=reg_3; 
  endcase 
  case(ACS_2) 
    1'b0:reg_2<=reg_0; 
    1'b1:reg_2<=reg_1; 
  endcase 
  case(ACS_3) 
    1'b0:reg_3<=reg_2; 
    1'b1:reg_3<=reg_3; 
  endcase 
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end 
 
endmodule 
------------------------------------------------------------------------------------------------------ 
(2) Test file  
 
timescale  1ns/10ps                                                            
`include    "vit.v"                                                            
module test;                                                                    
parameter cycle=1;                                                              
reg        clk,rst;                                                           
reg        ACS_0,ACS_1,ACS_2,ACS_3; 
wire [1:0] out;                                                            
vit vit(.clk(clk),.rst(rst),.ACS_0(ACS_0),.ACS_1(ACS_1),.ACS_2(ACS_2),. 
ACS_3(ACS_3),.out(out));     
always #(cycle/2.0) clk=~clk;                                                   
initial begin                                                                   
$dumpfile("testing.cvd");                                                       
$dumpvars;                                                                      
clk=0;rst=0;                                                   
#(cycle*3/4.0)   rst=1;                                                       
#(cycle*9/4.0)   rst=0; 
#(cycle*5/2.0)     ACS_0=0; 
                 ACS_1=0; 
                 ACS_2=0; 
                 ACS_3=1; 
#(cycle)          ACS_0=0; 
                 ACS_1=1; 
                 ACS_2=1; 
                 ACS_3=0; 
#(cycle)          ACS_0=0; 
                 ACS_1=0; 
                 ACS_2=0; 
                 ACS_3=0; 
                                           
#(cycle*9)     $finish;            
end              
endmodule      


