
ELSEVIER Pattern Recognition Letters 18 (1997) 289-298

Pattern Recognition
Letters

Design of a mathematical expression understanding system

Hsi-Jian Lee *, Jiumn-Shine Wang
Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan, ROC

Received 1 March 1996; revised 31 December 1996

Abstract

A scientific document usually consists of text and mathematical expressions. In this iaaper, we present a system for
segmenting and understanding text and mathematical expressions in a document. The system can be divided into six stages:
page segmentation and labeling, character segmentation, feature extraction, character recognition, expression formation, and
error correction and expression extraction. After we extract all text lines in a document, we separate all symbols in each text
line and calculate direction-feature vectors and aspect ratios for those symbols. Then, a nearest-neighbor algorithm
recognizes characters. In the expression formation stage, we build a symbol relation tree for each text line that represents the
relationships among the symbols in the text line. Each text line is decomposed into a collection of primitive tokens:
operands, operators and separators. Heuristic rules based on these primitive tokens are used to correct text recognition errors.
Finally, we extract all mathematical expressions according to basic expression forms. Several pages of documents were
scanned to test the method. All mathematical expressions are understood. In the expressions generated, a few symbols are
misrecognized. The average recognition rate was 96.16%. © 1997 Elsevier Science B.V.

Keywords: Character segmentation; Character recognition; Expression formation; Error correction

1. Introduct ion

Two kinds of analysis are necessary to read scien-
tific documents: page layout analysis and optical
character recognition. A document may consist of
various kinds of components, such as text, images,
graphics, and mathematical expressions. Page layout
analysis is performed to determine the physical struc-
ture of a document (Tsujimoto and Asada, 1992).
Then character recognition is performed to identify
characters in text components. Most proposed sys-
tems cannot handle all components of documents

* Corresponding author. E-mail: hjlee@csie.nctu.edu.tw.

such as mathematical expressions and tables. In this
paper, we present a system that extends the capacity
of an optical character recognition system to the
point of being able to understand mathematical equa-
tions.

Recently several researchers have proposed algo-
rithms for recognizing mathematical expressions
(Chen and Yin, 1992; Okamoto and Miao, 1990; Lee
and Lee, 1994). They showed some sound recogni-
tion results, but several problems still exist in their
recognition systems, including how to extract mathe-
matical expressions from documents automatically,
how to improve the recognition rate when various
typefaces are used, and how to correct the recogni-
tion errors in mathematical expressions. This paper is
intended to solve some of these problems.

0167-8655/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved.
PII S0167-8655(96)00008-1

290 H.-J. Lee, J.-S. Wang/Pattern Recognition Letters 18 (1997) 289-298

Input Document

Characters
I OpticalScanning I

I ",~-"-'- Digitized Binary Image
[Feature Extraction I I 1. Page Segmentation and Labeling J

i "~---" Text lines

[Training 1 J 2. CharacterSegmentation [

I ",~------ Characters

3. Feature Extraction I ; I
W _1 j 4. Character Recognition]

istic R [5. Expression Formation I

~ . ~ Symbol Relation Tree

] ~l 6. Error Correction and
~] Expression Extraction J

Resull

Fig. 1. System flow diagram for mathematical equation under-
standing.

In this paper, we propose an off-line system for
understanding printed documents. Our system auto-
matically extracts and interprets the mathematical
expressions in a digitized document. The results can
then be sent to a desktop publishing system that can
then reconstruct the mathematical expressions. The
system block diagram is shown in Fig. 1. The major
components are numbered. These modules are ex-
plained in detail in the following sections.

2. P a g e s e g m e n t a t i o n a n d l a b e l i n g

2.1. Text line extraction

Text-line extraction consists of segment extrac-
tion, noise removal, and segment merging. We de-
fine a segment as a rectangular area that contains a
text line or a part of one. Run-length image represen-
tation is used for page segmentation because of its
efficiency.

In the segment extraction process, we perform
run-smearing line-by-line and extract adjacent black
runs as segments. The process scans the input image
from top to bottom, left to right. Since many small

r - - I LT---I r - - - i
i i D r--==--q
I I I I

I
I II

r - l V--1 F - l r - n

r---q [--------~
I II I
r-i r ~ l []

I I I 1 ~ 1
I I

Fig. 2. Determination of leftmost column positions. The left edges
of segments denote possible column locations.

segments are extracted, erroneous segment merging
may result. We merge very small segments such as
dots over the letters " i " and " j " into the segment
nearest to them.

In the last step, we merge segments into text
lines. Because a document may have multiple
columns, these columns must be extracted first. Here,
columns are extracted by first detecting their left
edges. The leftmost column positions are defined by
local maxima in a vertical projection profile (see Fig.
2). After the columns have been extracted, we ex-
tract text lines from each column. First, a horizontal
projection profile is computed for all segments in the
same column. We partition columns horizontally
where the projection value is zero. Second, we merge
neighboring segments in the same partition columns
into text lines if the spaces between them are smaller
than a threshold proportional to the word heights.
Third, we merge neighboring text lines in different
columns if the blank spaces between them are small.

2.2. Text line labeling

There are two categories of mathematical expres-
sions in a document: embedded and isolated. An

Now, the ne~e~smy condition Js that U be a local mini-
mum with respect to changes in s. Differentiating U with
respect to s yields:

U = t c - x l) / (p l + p ~) , Isolated mathematical
I ID expression To show that the center iff m~tgs lies on the plane delineat-

ed by the contact points alld is orthogonal to the support
plane, let c - x! = a(.~l -x~)+bn, where u, b ~ R

~ Embedded mathemaucal expression

Fig. 3. An example of isolated and embedded mathematical
expressions.

H.-J. Lee, J.-S. Wang~Pattern Recognition Letters 18 (1997) 289-298 291

S T A ~ L E .xK)SES OF' OBIF.C'F:S t~7

APPE,~OtX

In t h ~ appcnd+~, it i~ shown that for stable pose,~ wi~.h
two po{n~s o f cabinet, the center of ma~s must lie in the
plane tha~ includes those points and the normal to th~
su'ppo~xirtg plane. This formed part o f : h e necessary ¢on-
ditions of Section 3.2.

Consider '.he case of stable sopp~)~ by two edge points.
Without]os.~ ~f g¢llcraiRy, the edges are parameterized
by arc ~engt,~ a~.d g~'¢en by x,(s,J and x:(s-) . The tange~l~
a~e thet~ tr(:~} .'- x;(s3. Contact with a Mane {replies thai
ohe (~L~er~ts and the line between :l~e two co~tact points
a~e copianar, o~

where n<a. ~) is the soeface normal The object is tree to
r0ck while maintainitag two poi~t~ of contact, and this
corre~9onds to a curve of contact points given hnplicitly
by (26) and n+ x It.+ ~ 0 for a secotld sm'face point. This
curve can be j'epj'esented in the domah~ of the ~ u r f a ~ as
[u, v ! + [- (O , +;(s~]- Different ia t ing (26} whh respec t t~ s
give.~

(g l (td ' U} - - g :) , {n . i< r .L 1~14.1;.') = ,,~, {273

whm-+ t% meaos ~,m.i+u, ~ o t e th~t th is empress ion hoMs
whet~eP X,~ iS a s~+ff~tC~ Or eclge pol.q', 'l-he p~temil~! on+
ergy iS give0, by

~.~ "" xz) " {t, × t_,)..--. 0 . {22~

-Otis re]ares & m s';, ,~rtd ~he p~rt{al de¢ivativc~ ~re used
~0 find ,)~'~,]<'J.tl. Ilk.roe{?'

,'3,r .-. 7

U ~ (c - x,0+. v)) - n{ . , ~), !2,~)

Now. tl~e neeessaty comtitJon is 1bat U b+ a +oea~ mini+
mum for chan~¢,~ in s, Differentiating Ltxvith respect to s
yields

U ' = { ~ - ~,) " Cn+~'" "+ mj,"), {29}

Fig. 4. Original document image.

embedded mathematical expression is contained
within a text line, while an isolated mathematical
expression appears alone on a separate text line. In
general, isolated mathematical expressions are taller,
and the line spaces above and below them are larger

than those between text lines that contain no mathe-
matical expressions. On the basis of these two prop-
erties, text lines in a document are labeled either
TEXT or EXP to denote text and expressions, re-
spectively. Fig. 3 shows a portion of a document

, i r - - l C : ~ i i t O

I I I I [- - I o n 1-71 I I i r - - " l I IOC::) o
~ r - - 7 1 I r " -~ t I O i 1 1 - ' 1 1 " ' I

I--I i'--I i ' - - i 0 0 1 I f - - lC~ I I r" '-- ' l i ' - - I I IO0 , , 0 , 't I i - - - - I [- - I
r--7 i----7 D I i r"71 irT~ r--Tr7 or7 Di-7r-70 o o.ODol I i i I----I r--7
I - " '7 I "7 1 i t - - ' 7 1 i r-- I I--I i i i~ r " l c ~ r--Ti-l l i r l r - i i i r l r - - l i i n
l II I r - " ' l m - - 7 f - - I r - I I - - l l i r ' ' ' '~ D D - r - - l r - - h I r - - I I ' - - t I IDI:1
["---IOt i ra7 i - - i
~ n I r--~ OI--'-'l I--'I 0 r-~ I---I I-----I

OF--~ o 1--7 == P--'---I OO-O-Ooo=o 0
Ot~1 i 0 0 O r - " 7 C ~ L _ ~ r - 7 r - - - - 7
I'--', f ' " i i " " - I -- 1 " " ~ I I i ' ~ 1:3 r " - 7 ~ r ' - I t I r h i l I r - - " i r - - t r ' - i i i I ' - 1
i"--I i i I ' - ' '11 ' - I f ' - '~ I I i ' ~ r ' - " l I ~1 I I I f" l I'1 t : 3 1 ' - - I I'-1 i,r '--I [' - - i I ' - - i i I t::: l
c ~ i]m C : 2 0 r - - l 1 7

r-I -ml.O o0-o [~ o= O- r-mO'I~ 0 E3

r " 7 ~ i o Or-~ r-Tr-'71 I I'-------q ~ 0
o ~ i II I

D-D~E3oOo D~7Oo4=D r-7

C ~ I ~ I II I r ' l r ~ r - - I n r - - ' I F - - ' l
r - - ' n r 7 1 i b m l l O I - " ' l I i o n V'-'7

c3 -o-rT.r-7 nr--7 r7

Fig. 5. Results after segment extraction and noise removal.

2 9 2 H.-J. Lee, J.-S. Wang~Pa t t e rn Recognition Letters 18 (1997) 289 -298

E X P ,
[

I
i I

I
I i

E X P I

1 ,

EXPI

E X P [1 E X P D

[I
I I
I I
½ ,

E X P I I E X P [~

I I
E X P 1:3 E X P I I E X P IZ3

l

E ~ p r - n F.XP I J E X P E l

Fig. 6. Text line extraction result. Neighboring segments are
merged into text lines after segment merging.

page containing isolated and embedded mathematical
equations.

We use the Bayes decision rules to assign all text
lines to one of two classes: text and expression, and
to assign all line spacing to one of two classes:
text-space and expression-space. A text line is la-
beled TEXT, if it belongs to the text class and the
line spaces above and below belong to the text-space
class. Otherwise it is labeled EXP. After text line
labeling, isolated mathematical expressions can only
exist on the text lines labeled EXP, and embedded
mathematical expressions can only exist within the
text lines labeled TEXT. Fig. 4 shows a portion of a
digitized document containing mathematical expres-
sions. Fig. 5 shows the results of segment extraction
and small segment merging. Fig. 6 shows the results
of text line extraction, in which horizontal neighbor-
ing segments have been merged into text lines.

3. Feature extraction and character recognition

We must separate characters in text lines, before
performing feature extraction. After scanning the
image of a text line once, we locate all connected
components in the image and treat them as charac-
ters. We choose the directional features to represent
characters by dividing characters into four rows and
four columns of equally sized rectangular blocks,
which results in 4 x 4 blocks. We next compute
4-dimensional directional features for each block; it
forms a 64-dimensional feature vector (Tung and
Lee, 1994).

Let W be the width and H be the height of the
bounding rectangle of a character. Since the direc-

tional feature vectors are not invariant to scaling,
they are normalized with respect to (W + H) . Al-
though the directional feature vectors are powerful to
printed characters, some problems still remain. When
the aspect ratios of characters such as " - " (minus),
" [" (left matrix symbol), "] " (right matrix symbol),
and "1" (absolute symbol) are very large or very
small, segmentation of these characters is not reli-
able. We therefore modify segmentation according to
aspect ratio. When the aspect ratio R = W/H of an
input symbol is very large, the input image is divided
into 2 x 5 image blocks. When the aspect ratio is
very small, the input image is divided into 5 × 2
image blocks. Therefore, the characters are divided
into three classes, denoted as Or, $22 and 1"23,
according to the aspect ratios.

Let (v 1, v 2 , v 3, v 4) be a 4-dimensional directional
feature vector extracted from each image block and
normalized, where v E is the vertical feature, v 2 is the
horizontal feature and the others are two diagonal
features. When the aspect ratio of a symbol is very
small (smaller than a threshold T]), the horizontal
feature and the two diagonal features are more im-
portant than the vertical feature. Therefore, we re-
place the directional feature vector (vj, v 2, v 3, v 4)
by (w l, w 2 , w 3, w 4) according to the following for-

W 2 - - X 02 ,

~HXTI ~HXTI
W 3 : ~ / X U3, W4 = W X u4 ,

where T~ denotes an aspect ratio threshold value. A
40-dimensional (5 × 2 × 4) modified directional fea-
ture vector is thus extracted. When the aspect ratio of
a symbol is very large (larger than a threshold T2),
the directional feature vectors are modified similarly.

To recognize the characters, we determine the
class i to which a character Y belongs by using the
aspect ratio R. We next classify each input character
by a minimum distance classifier using the direc-
tional features. The symbol Y belongs to the class j
if

where N is the dimension of the feature vector, and
mik is the mean of the kth directional features of the

mulas:

H X T I
W I : U I ,

W

H.-J. Lee, J.-S. Wang~Pattern Recognition Letters 18 (1997) 289-298 2 9 3

ith reference pattern. The reference character set is
given in Table 1.

4. Expression formation

Expression formation is used to translate the
recognition results to a tree structure, called symbol
relation tree that represents the relationships among
the symbols in a mathematical expression. Six math-
ematical relations are taken into account: up, down,
right, superscript, subscript and subexpression.
They are illustrated in Fig. 7. A sample symbol
relation tree is shown in Fig. 8. To build symbol
relation trees for mathematical expressions, we use
six spatial coordinates min_x, center_x, max_x,
m i n y , center y and max_y to describe the rela-
tionships among input symbols.

The expression formation algorithm uses the con-
cept of symbol grouping proposed by Lee and Lee
(1994). A symbol group is defined as a set of
symbols that are bounded by a mathematical symbol.
If we represent a symbol as a function f , then its
operands are bounded by the function. For example,
~ '= i is a symbol group since the two operands
from, " i = 1", and to, " n " , are bounded by the
function E; x / y is a symbol group bounded by
,, ,,; ~ +y2 is a symbol group bounded by v r.

S y m b o l .

- - ~ up l i n k

- - ~ s u p e r s c r i p t l i n k

- - - - ~ r i g h t l ink

- - ~ s u b e x p r e s s i o n l i n k

- - ~ s u b s c r i p t l i n k

- - ~ d o w n l i n k

Fig. 7. Six mathematical relations.

Our expression formation algorithm operates with
a list of symbols, and constructs a s y m b o l r e l a t i o n

t r e e that reflects the structure of the expression. The
expression formation algorithm consists of three main
steps as described below.

Step 1. Analyze and group characters
Each character in a mathematical expression is

inspected to determine whether or not the character
is a special mathematical symbol. If such a symbol is
found, we generate a symbol group based on this
symbol. This step is executed repeatedly to build the
symbol relation tree for the symbol group. Special
mathematical symbols include horizontal lines " - - " ,
summation " E " , product " I ' I " , integration " f "
and root " (" .

Step 2. Form matrix
Since matrix structures cannot be detected by the

previous step, we must analyze the ordered symbol

Examplc: x = - b + ~b2 - 4ac

Fig. 8. An example for a symbol relation tree.

2a

294 H.-J. Lee, J.-S. W a n g / P a t t e r n Recognit ion Letters 18 (1997) 2 8 9 - 2 9 8

a x xn A + b 2 B . E 3 & a X &

(a) (1~)

Fig. 9. Several examples of superscripts and subscripts: (a) legal
examples; (b) illegal examples.

list to extract matrix structures. The process of ma-
trix formation is performed as follows:
• Find a pair of enclosure symbols (i.e., ' [' and '] ').
• Obtain the rectangular area enclosed by this pair.
• Find those symbols located within the rectangular

area enclosed by the symbols.
• Divide these symbols into groups according to

their spatial proximity. If one symbol is close to
another symbol, the two are put in the same
group.

• Build the matrix symbol relation tree.

Step 3. Form superscript and subscript
The superscripts or subscripts of a symbol X will

be the successor of X in an ordered symbol list. We

Table 1
Contextual character classes

Class Description Examples

1 Ascender All capital letters, numerals, and b, d, f,
h, k, l,i, t,b, d, 0

2 Centered a c e m n o r s u v w x z a c e m n o r s u v

w x z a o~ l~ v o ' r Tr e

3 Descender g p q y g p q y . y T / ~ b
4 Full-height j j f ~

5 Centered - + * #,
6 Centered . / ? ! ^ l \ & $ < > ~ D c A tO

c

can determine the superscript or subscript relation-
ship between two successive symbols or symbol
groups by using spatial coordinates and contextual
information. The symbols that can be recognized by
our system are grouped into the six character classes
shown in Table 1.

Results of expression formation

~ Text-line symbol
relation tree T

I Token Generation]

Error Correction [

I

exprcssion] Embedded mathematical

I expression extraction

I String Generation I

1.
Final results

Character strings

I" I
Embedded
mathematical
expressions

Fig. 10. Postprocessing flow diagram.

H.-J. Lee, J.-S. Wang/Pattern Recognition Letters 18 (1997) 289-298 2 9 5

Symbols belonging to the first four classes can be
superscripts or subscripts of other symbols. They can
also have other symbols as superscripts or subscripts.
Symbols belonging to class 5 can only be super-
scripts of other symbols, but cannot have other sym-
bols as superscripts or subscripts. Symbols belonging
to class 6 cannot be superscripts or subscripts of
other symbols, and cannot have other symbols as
superscripts or subscripts. Some legal examples are
given in Fig. 9(a) and some illegal examples in Fig.
9(b). This heuristic information is used to prevent
generation of illegal superscripts and subscripts.

5. E r ro r correction and expression extraction

After expression formation, text-line symbol rela-
tion trees are built. The next task our system per-
forms is the correction of recognition errors which
may have occurred and the extraction of mathemati-
cal expressions that appear in text lines. Two post-
processing modules, an error corrector and an ex-
pression extractor, are designed. The postprocessing
procedure is shown in Fig. 10, and the main steps are
explained in the following sections.

5.1. Token generation

Basically, a text line is composed of operands,
mathematical operators and separators. An operand
is defined as a character string composed of letters
and numerals. A separator is defined as a symbol
that separates operands and mathematical operators
within text lines. The token generation process is
used to extract the primitive tokens from text lines.
For this, text lines can be treated like mathematical
expressions. We can traverse the symbol relation tree
to extract all primitive tokens from text lines.

First, we find all linearly linked lists, whose
nodes are linked in the symbol relation tree. Second,
for each linearly linked list, we insert a blank separa-
tor between the two succeeding symbols if the space
between them is larger than a threshold value (1
mm). Third, we scan each linearly linked list from
left to right and extract all primitive tokens from it.

5.2. Error correction

At the recognition stage, there may still be some
similar symbols that can result in recognition errors

by our system. These similar symbols are grouped
into several confusion sets, such as {V, v, V, v},
{O, o, O, o, 0 (zero)}, {S, s, S, s, 5 (five), 5 (five)},
among others. We use heuristic rules to correct the
recognition errors in expressions. We check each
symbol in an operand and if we find similar symbols
in the operand, we can select the correct symbol
from its corresponding confusion set by using the
heuristic rules we propose. Below, we provide our
heuristic rules and give some examples to illustrate
how errors are corrected.

Rule 1. Some special function names appear fre-
" " " " C O S " " " quently in expressions, such as sm , , tan ,

. log' csc , sec , cot , ' and " e x p " , etc. For
example, in the expressions (1) x = 5in O, (2) y =
cOsx, the first confusion is caused by the symbols
" 5 " and " s " ; the second by the symbols " o " and
" 0 " (zero). These recognition errors can be cor-
rected by using this rule.

Rule 2. For every binary operator P, there must
exist two operands. These two operands will gener-
ally be of the same typeface and size. See the
following three expressions: (1) B = ~/<i< ,bi, (2)
A = aXb + c, (3) X = c + D. The first-confusion is
caused by the symbols " 1 " and " / " ; the second by
the symbols " X " and " × "; the last by the symbols
" e " and " C . " These recognition ambiguities are
flagged when rule 2 is applied.

Rule 3. There are no symbols in the subscript posi-
tion of a numerical. For example, see expressions:
(1) A = 12 + 3, (2) X = 5 2 + a. The first confusion
is caused by the symbols " l " (ell) and " 1 " ; the
second by the symbols " S " and " 5 . " Rule 3 changes
the recognition results into " l " and " S " , respec-
tively.

Rule 4. Symbols in the same operand generally
possess the same properties. See expressions: (1)
A = x y + 5, (2) y = 3Pqr. The first confusion is
caused by the symbols " x " and " x " ; the second by
the symbols " p " and " P " . Rule 4 corrects these
recognition errors.

5.3. Embedded mathematical expression extraction

The final step of our system consists of an algo-
rithm for extracting embedded mathematical expres-

296

Table 2

Basic forms o f expressions

H.-J. Lee, J.-S. Wang/Pattern Recognition Letters 18 (1997) 289-298

Form Format Descr ipt ion Examples

1 op_ 1 operator op_ 2
2 op_llg

3 symbol g roup

4 E o p _ l o r Y l o p _ l o r f o p _ l
5 (op_ l)

6 let_O (let_I, let_2,..let_n)
7 op_l(op_2)or(op_l)op_2

or(op_ lXop_2)
8 operator op_ 1

Operator is a b inary operator.

ap and sb can be nil, but they cannot be null both.

A symbol g roup can be an expression.

The operators "]~ Y l " and " f " have only one operand.

The pair enclosure symbols " (" and ") " can be

replaced by "{ , I" and " [" , and op_ 1 must

have been marked.

The form represents a function.

Note that these operands between the pai r

o f enclosure symbols must have been marked .

Operator has only one operand at its right.

a + b
C2, xYz 4
a + b
- - , £ ~ ' = , , ~/a+b

X

~2~= 13i, l-Ii= ji 2, f2o 12 x dx
(a + b), (x /y)
Note: " a + b " and "x/y'"
have been marked by form 1.

g(x, y, z), f (p , q, r)
3 x y (a + b)

Ox, Vx, - 3 , + 5

sions. This algorithm is divided into equation mark-
ing and equation extraction.

In equation marking, we scan all primitive tokens
on text lines from left to fight and mark those that
belong to embedded mathematical expressions• We
determine whether a primitive token belongs to an
embedded mathematical expression according to the
basic expression forms. The marking phase is per-
formed iteratively until there are no primitive tokens

left unmarked. The basic expression forms are listed
in Table 2, where op_ k is the kth operand of a basic
expressions, sb is the subscript of an operand, sp is
the superscript of an operand and l e t k represents
the kth letter of a basic expression. According to the
basic expression forms, we can mark primitive to-
kens that form basic expressions and group them into
new operands.

In equation extraction, we extract all embedded

S o u r c e t e x t l ine : port plane, let c - Xl = a(x2 - x1) + bn, where a, b E R.

Token gene ra t i on :

port plane , let c - xl = a

M a r k i n g :

Iteration 1 : mark by using form 2.
port plane , let c _ xl = a

x 2 - Xl) + bn , where a

x 2 - Xl) + bn , where a

, b ~ R

, b ~ R

Iteration 2: mark by using form 1.
port plane , let c - x 1 = :3. X 2 - Xl) + bn , where a , b ~ R

, b E R

* * * * * *

herat ion 3: mark by using form 5.
port plane , let c - Xl = a x 2 - Xl) + bn , where a

* * * * * * *

Iteration 4: mark by using form 1.
port plane , tet c - xl = a (x 2 - xl) + bn , where a

* # * * * * * * * *

Iteration 5: mark by using form 1.
port plane , let c _ Xl = a (x 2 - Xl) + bn , where a ,

* * * * * * * * * * * *

E x t r a c t i o n : I~ expression t,-[
P

b ~ R
• * ,

b ~ R

I_ _1

expression

Fig. 11. An example o f expression extract ion.

H.-J. Lee, J.-S. Wang/Pattern Recognition Letters 18 (1997) 289-298 297

Table 3
The result of experiments

Document 1 Document2 Document 3

Before error After error Before error After error Before After error
correction correction correction correction correction correction

No. of test 3473 3473 4197 4197 3540 3540
symbols
No. of error 215 137 204 147 240 144
symbols
Recognition rate 93.80% 96.06% 95.14% 96.50% 93.22% 95.93 %
for whole system

mathematical expressions from a text line. The task
can easily be performed by scanning the primitive
tokens on text lines from left to right and extracting
all marked tokens in order. These tokens form em-
bedded mathematical expressions. An example illus-
trating how expressions are extracted from text lines
is shown in Fig. 11. Two embedded expressions are
extracted from a text line in this example.

6. Experimental results

The proposed system was implemented in UNIX-
C on a Sparc workstation. The original documents
were scanned using Microtek MSF-300G scanner
linked to a personal computer. Our symbol set in-
cluded 127 letters, 36 mathematical operators, 20
numerals and 7 separators. In our experiment, we

used several documents to test our system. Table 3
shows the matching results. In these experiments, the
percentage of symbols in mathematical expressions
is about 15%. All isolated mathematical expressions
in these documents are extracted, but several embed-
ded mathematical expressions are not identified. The
experiments yielded a final recognition rate of about
96% and the error correction modules improved the
recognition rate by about 2.5%.

Table 4 shows the error distribution. The major
errors were due to symbol similarities, which can be
reduced significantly by the process of error correc-
tion.

7. Conclusion

In this paper, we have presented a system for
segmenting and interpreting text and mathematical

Table 4
Experiment error distributions

Document 1 Document2 Document 3

Before error After error Before error After error Before error After error
correction correction correction correction correction correction

No. % No. % No. % No. % No. % No. %

Errors due to 36 16.7% 36 26.3% 17 8.3%
scanning
Errors due to 117 54.4% 39 28.5% 78 38.2%
symbol similarity
Errors due to 26 12.1% 26 19.0% 48 23.5%
touching symbols
Errors due to 15 7.0% 15 11.0% 46 22.5%
broken symbols
Misc. errors 21 9.8% 21 15.3% 15 7.4%
Total 215 100% 137 100% 204 100%

17 11.6% 19 7.9% 19 13.2%

21 14.3% 117 48.8% 21 14.6%

48 32.7% 67 27.9% 67 46.5%

46 31.3% 7 2.9% 7 4.9%

15 10.2% 30 12.5% 30 20.8%
147 100% 240 100% 144 100%

298 H.-J. Lee, J.-S. Wang/Pattern Recognition Letters 18 (1997) 289-298

expressions in documents. The system is divided into

six stages: page segmentation and labeling, character
segmentation, feature extraction, character recogni-

tion, expression formation, and error correction and
expression extraction. Heuristic rules are used to

correct recognition errors. The recognition results

demonstrate the applicability of the proposed system.

Below, we list some approaches to further im-
proving the performance of our system.

1. Correct recognition errors due to touching and

broken symbols.
2. Add more heuristic rules for correcting errors in

mathematical expressions.

3. Add a contextual analysis postprocessor to correct
errors in text.

4. Add a parser to check the correctness of mathe-

matical expressions we recognize.

References

Chen, L.H. and P.Y. Yin (1992). A system for on-line recognition
of handwritten mathematical expression. Computer Processing
of Chinese and Oriental Languages 6, 19-39.

Lee. H.J. and M.J. Lee (1994). Understanding mathematical ex-
pressions using procedure-oriented transformation. Pattern
Recognition 27, 447-457.

Okamoto, M. and B. Miao (1990). Recognition of mathematical
expressions by using the layout structures of symbols. Techni-
cal Report, Institute of Information Engineering, Shinshu Uni-
versity.

Tsujimoto, S. and H. Asada (1992). Major components of a
complete text reading system. Proc. IEEE 80, I 133-1149.

Tung, C.H. and HJ. Lee (1994). Increasing character recognition
accuracy by detection and correction of erroneously identified
characters. Pattern Recognition 27, 1259-1266.

