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SUMMARY

A recovery test measures the residual drawdown after an aquifer pumping test has ended and analyzes
the recovery data to determine hydrogeological parameters such as transmissivity and storage coeffi-
cient. To our knowledge, the solution for the distribution of residual drawdown following a constant-
head test has never been presented. In this paper, we first develop a mathematical model that describes
the residual drawdown taking into consideration the wellbore-storage effect and the drawdown distribu-
tion occurring at the end of a previous constant-head test. Then, the Laplace-domain solution of the
model is developed using the Laplace transforms and its time-domain solution is obtained using the Steh-
fest algorithm. Numerical results show that the distribution of residual drawdown depends on the
boundary condition related to the well drawdown and the initial condition related to the aquifer draw-
down. The well residual drawdown (i.e., the residual drawdown at wellbore) during the early recovery
period will be over-estimated by the approximate residual drawdown solution based on the Theis-type
solution and superposition principle due to the neglect of wellbore storage. For a large recovery time, the
effect of wellbore storage is negligible and the approximate residual drawdown solution is therefore
applicable.

© 2009 Elsevier B.V. All rights reserved.

Introduction

An aquifer test serves mainly to determine the hydrogeological
parameters of a site under investigation. The pumping and con-
stant-head tests are the two well-known aquifer tests; the former
involves the withdrawal of water at a constant pumping rate while
the latter involves the injection or withdrawal of water at the test
well with a constant drawdown or buildup at the well throughout
the test period. Note that the application of constant-head test is
suitable to low-permeability aquifers which are mainly composed
of silty or clayey material (Driscoll, 1986; Freeze and Cherry, 1979).
The hydrogeological parameters of low-permeability aquifers can
be determined by analyzing the measured pumping rate at the test
well (Batu, 1998) or drawdown at the observation well (Mishra and
Guyonnet, 1992) for the constant-head test. Studies of the draw-
down solution for a constant-head test have been presented previ-
ously (e.g., van Everdingen and Hurst, 1949; Carslaw and Jaeger,
1959). However, the analytical solution for the drawdown distribu-
tion (Carslaw and Jaeger, 1959) developed in terms of an integral
form is difficult to accurately resolve. It is because the integrand
comprises the product and the square of the Bessel functions with
a singularity at the origin. Peng et al. (2002) proposed a unified
numerical method to evaluate the analytical solution and gave
the dimensionless drawdown in a tabular form with better
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accuracy while comparing with the approximate solutions given
in Harvard’s problem report, (1950) and Jaeger (1956). In addition,
a number of studies have also been devoted to developing the
approximate drawdown solution for a constant-head test (e.g.,
Ritchie and Sakakura, 1956; Mishra and Guyonnet, 1992; Hiller
and Levy, 1994). Note that Mishra and Guyonnet (1992) proposed
an approximate drawdown solution based on the Theis equation
(Theis, 1935) and Boltzmann transformation technique. Applying
the superposition principle, their Theis-type solution can also be
used to analyze the constant-head recovery data, which is similar
to the Theis recovery equation.

After the completion of a constant-head test, the water levels in
the test well and observation well will start to rise/fall. Such in-
crease/decrease in water levels is referred to as recovery, and the
diminishing drawdown that occurs during the same recovery per-
iod is termed as the residual drawdown. The analysis of residual
drawdown data can provide an independent check on the hydro-
geological parameters determined from the previous drawdown
data analysis. There are many studies that present data analyzes
for water-level recovery after constant pumping (e.g., Berg, 1975;
Mishra and Chachadi, 1985; Goode, 1997; Batu, 1998; Shapiro
et al,, 1998; Samani and Pasandi, 2003; Singh, 2003; Todd and
Mays, 2005; Willmann et al., 2007). However, the analysis of recov-
ery data after a constant-head test has not been addressed before,
and further the related field data are also not available.

The objective of this paper is to develop a mathematical model
that describes the residual drawdown by taking into consideration
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the effects of the well radius and wellbore storage as well as the
drawdown distribution from the previous constant-head test. This
model uses the well drawdown at the test well as the boundary
condition and the aquifer drawdown at the end of the constant-
head test as the initial condition. A new solution to residual draw-
down is then developed in the Laplace domain using the Laplace
transform technique and its time-domain solution is obtained
using the Stehfest algorithm (Stehfest, 1970). This solution can
be employed to investigate the effect of the wellbore storage on
the residual drawdown and to determine the aquifer parameters
if coupled with an optimization algorithm (e.g., Lin and Yeh,
2005; Yeh and Chen, 2007; Yeh et al., 2007), extended Kalman filter
method (e.g., Leng and Yeh, 2003; Yeh and Huang, 2005; Huang
and Yeh, 2007), or nonlinear least-square method (e.g., Yeh,
1987; Yeh and Han, 1989). In addition, an approximate residual
drawdown solution based on the Theis-type solution and superpo-
sition principle is also presented and discussed.

Description of the proposed method

A radial groundwater flow equation describing the drawdown
distribution in a confined aquifer, which is homogeneous, isotropic,
and uniform in thickness, can be written as (Yeh and Yang, 2006):

s 10s Sos
ar Trar Tar
where s(r, t) is the drawdown; t is the time; r is the radial distance
from the centerline of the test well; r,, is the radius of the well
screen; S and T are the storage coefficient and transmissivity of
the aquifer, respectively. Note that the radius of well casing is de-
noted as r.

Assume that a constant-head test has been conducted at a test
well by continuously pumping for a period of time. The water level
in the test well is maintained at a constant sq (i.e., groundwater is
withdrawn from the test well that has a fixed drawdown) and the
aquifer drawdown is expressed as s;(r,t;) at constant-head test
time t;. Once the constant-head test has terminated, the water le-
vel in the test well rises gradually in time and therefore the well
residual drawdown, s,(t;), reduces with recovery time t,. The
residual drawdown in the aquifer is expressed as s, (r, t;). Consider
that the initial drawdown for the constant-head test is zero every-
where (i.e., s;(r,t; = 0) = 0) while the initial residual drawdown
for the recovery test equals the final drawdown distribution (i.e.,
Sy(r,t = 0) = s1(r,t; = ty)) at the completion of the constant-head
test (at time ty,). Fig. 1 shows the schematic diagram of drawdown
distributions at the start of the constant-head test and recovery
test.

There is no wellbore-storage effect during the constant-head
test because the water level in the test well is kept constant. How-

w<r<ooand t>0 (1)

Q(t)
Constant-head test

s,(r,t,=0)=0

s,(rt,=0)=s,(rt,=t,)

Confined aquifer (T, S)

Fig. 1. Schematic diagram of the initial conditions of constant-head test and
recovery test.

ever, this effect should be considered in the recovery test because
the storage of the well casing will affect the water-level recovery in
response to the change in aquifer residual drawdown. Therefore, it
is considered in the analysis of residual drawdown in this study.

If a zero drawdown is maintained at an infinite distance from
the well, the drawdown solution to Eq. (1), subject to the con-
stant-head boundary condition at the test well, can be obtained
from the analogous problem of heat conduction as (Carslaw and
Jaeger, 1959, p. 335)

230 [ e (- D) YOl (Yl i
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s1(p,T1) =50 Jo) + Y5 (x) *
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where p = r/r,, is the dimensionless radial distance; t; = Tt /12 is
the dimensionless constant-head test time; o = 12,S/r? is the coeffi-
cient of wellbore storage; Jo and Y, are the Bessel functions of the
first and second kinds of order zero, respectively; and x is a dummy
variable. Therefore, after the end of the constant-head test, the
residual drawdown will start with s;(p, t,) at the dimensionless
time Tt,/r2.

The initial conditions for the residual drawdown in the aquifer
and the well residual drawdown are, respectively, denoted as

$2(0,T2 =0) =51(p,Th), 1< p<oo 3)

Sw(T2 =0) =g 4)

where 1, = Tt /r? is the dimensionless recovery time which begins
after the constant-head test has ended. Note that the initial condi-
tion for the residual drawdown, i.e., Eq. (3), is a function of the ra-
dial distance p and the constant-head test period, 7. In addition,
the water starts to flow from the aquifer to the test well once the
constant-head test has ended. The continuity requirement for the
flow between the confined aquifer and the test well can be ex-
pressed as

952(p,T2)| 1 dsw(T2)
o e 2 dr

73> 0 )

The inner and outer boundary conditions for the residual draw-
down are, respectively,

S2(p=1,72) =8u(T2), 72>0 (6)

Sz(pHOC,Tz):O, 7, >0 (7)

By applying the Laplace transforms, Eq. (1) subject to Egs. (3)-
(7) can be transformed into a non-homogeneous ordinary differen-
tial equation in the Laplace domain. The residual drawdown solu-
tion is then derived by the method of variation of parameters
(Kreyszig, 2006). Appendix “Derivation of Eq. (8)” gives the deriva-
tion of the residual drawdown solution and the result is
52(p, T2) = L {SoA + @1 ®A + (D3 — D3)lo(pA) + PaKo(pA)}  (8)
with

_ Ko(p4)
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1
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1

where L~ indicates the Laplace inverse, A= ,/@p, and p is the
Laplace variable.
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The first term on the right-hand side (RHS) of Eq. (8) is contrib-
uted by the inner boundary condition while the remaining terms
are contributed by the initial condition, which is in fact the aquifer
drawdown produced by the previous constant-head test. Eq. (8)
can be numerically inverted using the Stehfest algorithm (Stehfest,
1970). Note that the first term on the RHS of Eq. (8) is a function of
the coefficient of wellbore storage « and the dimensionless recov-
ery time 7, which has no relationship with the initial condition of
the recovery test s;(p, Tn). Eq. (8) therefore can reduce to the solu-
tion of Cooper et al. (Eq. (7), 1967) if s;(p,ts) equals zero for
1<p<.

Moreover, if p = 1, Eq. (8) can reduce to the well residual draw-
down solution as

,1{ SoKo(\/0D)
PKo(/ap) + 2./opK: (\/op)
N 200 [T xs1(x, ‘ch)Ko(x\/@)dx}
PKo(/ap) + 2/0pK+ (/op)
Note that Eq. (9) can be used to determine the hydrogeological

parameters if coupled with an optimization algorithm in analyzing
the recovery data.

Sw(T2) =L

9)

MG drawdown solution and approximate residual drawdown
solution

The constant-head drawdown solution, Eq. (2), is expressed in
an integral form that contains an integration ranging from zero
to infinity. The integration is difficult to evaluate analytically be-
cause the integrand is a function of the Bessel functions and has
a singularity at the origin. Although Eq. (2) can be evaluated accu-
rately using a numerical algorithm proposed in Peng et al. (2002)
or Yang and Yeh (2002), a simplified formula approximating Eq.
(2) should be developed for practical applications.

Mishra and Guyonnet (1992) presented a Theis-type approxi-
mate solution for a constant-head test to describe the drawdown
distribution as

___% o’
sl(p,ﬁ),w(a/%)w(%), p>1 (10)

where W is the Theis well function and ap?/t, is called the
Boltzmann variable. The numerator W(xp?/4t,) is the drawdown
distribution due to a constant-rate pumping while the denominator

1.0
Dimensionless radial distance p = 102
Eq. (2) (Carslaw and Jaeger,1959)
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Fig. 2. Dimensionless drawdowns in Eq. (2) (solid lines) and Eq. (10) (dashed lines)
versus dimensionless constant-head test time for o ranging from 107> to 101

W(a/4t1) is the drawdown at the well. Therefore, the ratio
W (ap?/41,)/W (o /474) represents a normalized well function. Eq.
(10), hereinafter called MG drawdown solution, can then be em-
ployed to approximately represent the drawdown distribution for
a constant-head test.

With regard to the approximation of the residual drawdown
distribution, the traditional analysis of a recovery test assumes that
a hypothetical recharge well with a recharge rate equaling the
pumping rate is used to replace the test well upon completion of
the constant-head test (Todd and Mays, 2005). Similar to the Theis
recovery equation, the approximate solution for residual draw-
down based on the MG drawdown solution and superposition
principle can be developed as:

52(0%2) = gy [W(4<r(:[frz>> ‘W@_@] p=1

(11)
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This new approximate residual drawdown solution, Eq. (11), is
much simpler than Eq. (8). Accordingly, Eq. (11) can approximate
Eq. (8) if the effects of the well radius and wellbore storage are very
small. Again, the approximate well residual drawdown solution in
test well (i.e., p = 1) can be obtained as:

Su(T2) = W(;;‘lfh) {W (4(%0i Tz)> ) W<%>}

In the next section, we examine the effect of wellbore storage
on the well residual drawdown and compare Eq. (9) with Eq.
(12) at the well, i.e., p=1.

(12)

Analysis of well residual drawdown

Fig. 2 shows the comparison of the dimensionless drawdowns
s1(p,T1)/So in Eq. (2) to those in Eq. (10) as a function of the dimen-
sionless test time t; for o ranging from 107> to 10~ and p = 100.
The solid lines represent the analytical drawdown solution, Eq.
(2), and the dashed lines stand for the MG drawdown solution,
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Eq. (10). The difference in drawdown solutions decreases with
increasing test time. Note that Eq. (2) is evaluated using the
numerical approach presented in Peng et al. (2002).

Furthermore, Fig. 3 shows the difference in drawdown solutions
versus the inverse of Boltzmann variable, 7,/0p?, representing a
dimensionless time variable ranging from 10~ to 10%. The largest
difference is 9.72 x 1072 at t/ap? =2, indicating the MG draw-
down solution approximates the analytical drawdown solution
with errors less than 1%. Mishra and Guyonnet (1992) conclude
that their approximation is adequate for practical applications
when the dimensionless variable 7,/0p? > 5, which reveals an
estimated error less than 8.99 x 1073,

In general, the radius of the well casing generally ranges from
0.05 to 0.25 m and the hydraulic conductivity for silty sand ranges
from 8.6 x 1073 to 8.6 m/day (Batu, 1998). Therefore, the dimen-
sionless constant-head test time t; ranges from 8.6-t; to
8.6 x 10% - t; (day) if r. = 0.10 m and the thickness of confined aqui-
fer is 10 m. In field applications, for example, 7; is usually larger
than 1 while the period of constant-head test is more than 3 h.
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Fig. 5. Dimensionless well residual drawdowns predicted by Eq. (9) (solid lines) and Eq. (12) (dashed lines) versus dimensionless recovery time for o ranging from 10> to
107! at (a) 1, =1, (b) 7, = 10% and (c) 7, = 10°, respectively.
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In addition, the value of storage coefficient generally falls within
the range of 107°-103 for confined aquifers. Thus, 7;/xp? ranges
from 107! to 10 times 7; for dimensionless radial distance
p =100. The difference between Eq. (2) and Eq. (10) is therefore
less than 5 x 1073 m if the constant-head drawdown sq is 0.5 m.
Under this circumstance, the MG drawdown solution approxi-
mates the analytical drawdown solution reasonably well.

The second term on the RHS of Eq. (9) includes an integrand in
terms of the product of drawdown distribution s (p, 7,) and mod-
ified Bessel function Ko(p./ap). It is rather difficult to accurately
evaluate the integration for that term if the s;(p, 7;) is presented
by Eq. (2). As mentioned before, the MG drawdown solution, Eq.
(10), gives less than 1% error when approximating s (p, ts). There-
fore, Eq. (9) along with Eq. (10) is used to evaluate the well residual
drawdown and the results compared with those of the approxima-
tion solution, Eq. (12), are given in the following section.

Fig. 4 demonstrates the dimensionless well residual drawdown,
i.e., sw(T2)/So of Eq. (9), contributed by the inner boundary condi-
tion (solid line) and initial condition (dashed line) versus the
dimensionless recovery time 7, for o ranging from 10~ to 107!
at 7, =1, 10% and 10°, respectively. As can be seen, the contribution
from the initial condition increases with 7, at the beginning and
then decreases with time. In addition, the peak value from the ini-
tial condition increases from 3.14x 1072 to 1.94x 107},
1.63 x 107" to 4.40 x 107", and 3.70 x 107! to 6.43 x 107! at
T,=1, 10%, and 10° respectively, when « varies from 107> to
10~'. This indicates that neglecting contribution from the initial
condition may result in an error ranging from 1% to 60% when
the period of the constant-head test t;, varies from 1 to 10°. Note
that the contribution from the inner boundary condition is inde-
pendent of 7.

Fig. 4 also shows that the effect of o on the contribution from
the inner boundary condition is opposite to that from the initial
condition. If the diameter of well screen is equal to the well casing,
then o reduces to S. The rise of well residual drawdown contrib-
uted from the inner boundary condition, shown as the solid line
in Fig. 4, is faster for a larger S because a larger S can supply more
water to the test well. The well residual drawdown contributed
from the initial condition recovers slowly, shown as the dashed
line in Fig. 4, for a larger S because a larger S requires more water
to raise the residual drawdown of the aquifer.

Fig. 5a-c demonstrates the dimensionless well residual draw-
down solution of Eqs. (9) and (12) versus the recovery time 7, with
o ranging from 107> to 10! at 7, = 1, 102, and 10°. As can be seen,
Eq. (12) is not suitable for analyzing the recovery data at the begin-
ning, especially when the period of constant-head test, 7, is very
short. However, Eq. (12) gives a prediction error of less than 0.01
when 1, exceeds 50 for t; ranging from 1 to 10°. In addition, the
solid lines in Fig. 5a-c represent the curves of dimensionless well
residual drawdown versus dimensionless recovery time for the
constant-head test period 7, = 1, 10%, and 10°, respectively.

Conclusions

In the past, Theis recovery method was commonly used to
check the results obtained from the pumping test data analyzes.
However, the residual drawdown solution and the analysis of the
recovery data after a constant-head test have so far not been pre-
sented. In this paper, we develop a mathematical model that de-
scribes the residual drawdown solution for a recovery test in
consideration of the wellbore-storage effect and the constant-head
drawdown distribution caused by the previous constant-head test.
The Laplace-domain and time-domain solutions of this model are
obtained by the Laplace transforms and Stehfest algorithm, respec-
tively. The new residual drawdown solution (Eq. (8)) shows that

the water contributing to the residual drawdown comes from
two sources; one is from the inner boundary condition related to
the well drawdown while the other is from the initial condition re-
lated to the aquifer drawdown produced by the previous constant-
head test. Eq. (8) reduces to the solution obtained by Cooper et al.
(1967) if a zero drawdown is used as the initial condition. The well
residual drawdown (Eq. (9)) during the early recovery time will be
over-estimated by the approximate well residual drawdown solu-
tion (Eq. (12)) due to the neglect of wellbore storage. For a large
recovery time, the effect of wellbore storage is negligible and the
approximate residual drawdown solution is therefore applicable.
However, when the dimensionless recovery time is less than 50,
the well residual drawdown solution is suggested to use because
the difference between Eq. (9) and Eq. (12) exceeds 0.01 for t;
ranging from 1 to 10°.
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Appendix A. Derivation of Eq. (8)

By taking the Laplace transform with respect to time, the sub-
sidiary equations of Eq. (1) can be obtained as:

d53(p.p) , 1 ds3(p,p)

dp? p op
where $;(p, p) denotes the Laplace transform of s, (p, 72), s1(p, T1) is
the initial condition of s,(p, 7,) shown in Eq. (3), and p is a Laplace
variable. Similarly, the boundary conditions, i.e., Eqs. (5) and (6),
after taking the Laplace transform become

= a[pS2(p, p) = $1(p; Th)] (A1)

ds;(p.p)| 1
“dp o ﬂ[PSZ(P =1,p) —so] (A2)
$2(00,p) =0 (A3)

The solution to non-homogeneous linear ordinary differential
equation (ODE), Eq. (A1), subjected to the boundary conditions,
Egs. (A2) and (A3), can be found by the method of variation of
parameters (Kreyszig, 2006) as

53(p.p) = [C1lo(P/3B) + C2Ko(pv/EP) + [ 1o (PV/3B) + >Ko (/)]
(Ad)

with

1= oc/m xs1(x, Th)Ko(X\/2p)dx

1

¢, _ S0+ [2v/EPL (v/aP) — plo(v/oP)] - [2 J;™ X81 (%, Tn) Ko (x/2P) dY
2 PKo(v/0p) + 2/apK (/ap)

¢ =—0a /]‘ﬂ xs1(x, Th) Ko (x/0p)dx

p
b =2 [ s (x Tl (AP

where Iy and K, are the modified Bessel functions of the first and
second kinds of order zero, respectively; and I; and K; are the mod-
ified Bessel functions of the first and second kinds of order one,
respectively. Note that Iy(p,/@p) and Ko(p./0p) form a basis for
solution of the corresponding homogeneous ODE and the Wronski
determinant (Kreyszig, 2006) of those two modified Bessel func-
tions equals —1/p.
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Eq. (A4) is a Laplace-domain solution which can be reduced to
that of Cooper et al. (Eq. (7), 1967) if s1(p, 7)) =0 for 1 < p < oc.
By taking the inverse Laplace transform, the time-domain solution
for the residual drawdown can now be expressed as Eq. (8).
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