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中文摘要 

  本文旨在研究 OFDMA 系統的頻率同步相關課題。跟一般 OFDM 系統不同

的是來從事頻率同步的導引信號只具備近似的週期性。缺乏理想週期性的原因是

由於離散傅立葉轉換大小為 2 的冪次方，無法被奇數整除。我們若仍然運用傳統

基於週期性導引信號的相關性來做頻率估計的方法，其性能將可能很不理想。 

 

  我們利用內插法從接收的信號樣本中重建具完整週期性的導引信號，使得應

用時域相關性的頻率偏移估測方法可以適當的使用而不至造成性能損失。我們會

比較線性和基於 sinc 函數（即理想低通）的內插濾波器。如同我們所預期的，

電腦模擬的結果顯示我們所提出的解決方法在 AWGN 和複徑衰退的通道下皆有

性能的改善，尤以後者更為顯著。我們也觀察到性能增益與OFDM符號(或者FFT )
長度的有很大的關係。這個長度決定了非週期性的程度也直接影響了內插（或性

能）增益的多寡。 
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Abstract

This thesis deals with the frequency synchronization issue of an OFDMA system. We

consider the situation that the preamble used for synchronization and channel estimation

has an almost-periodic structure. The lack of ideal periodicity is due to the fact that the

discrete Fourier transform size, being a power of two, is not divisible by three. This non-

periodicity causes the frequency synchronizer that assumes a periodic pilot structure to

suffer from serious performance loss.

We propose an interpolation approach to reconstruct the received preamble samples

in a periodic format so that conventional time-domain correlation-based frequency off-

set estimation algorithms become applicable. We examine both linear and sinc-based

interpolation filters. Simulation results indicate that, as expected, the proposed solution

brings about performance improvement in both AWGN and multipath fading channels.

Significant performance enhancement is obtained in the latter case. We also observe that

the performance gain is a function of the OFDM symbol (or FFT) size which determines

the extent of non-periodicity and therefore the interpolation gain.
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Chapter 1

Introduction

The Orthogonal Frequency Division Multiplexing (OFDM) technique enjoys several

distinct advantages–multipath immunity, bandwidth efficiency, and resistance to nar-

rowband interference–that make it a very attractive transmission scheme for high rate

wireless communications.

It has been adopted in several international communication standards, e.g., digital

audio broadcasting (DAB), digital video broadcasting-terrestrial (DVB-T), high per-

formance local area networks (HIPERLAN/2) [7], IEEE 802.11a/g wireless local area

networks (WLAN) [6], and very-high-speed digital subscriber line (VDSL). Recently, it

has been used or is being considered in IEEE 802.11n , IEEE 802.16 [1]-[4], and IEEE

802.20. Some of these standards are likely to include the Multiple Input Multiple Output

(MIMO) option for capacity enhancement.

The main difference between traditional frequency division multiplexing (FDM) and

OFDM is that in OFDM, the spectra of the individual carriers do overlap. The overlap-

ping property can increase the frequency efficiency in an OFDM system. Nevertheless,

the OFDM carriers exhibit orthogonality over a symbol interval only if they are spaced in

frequency domain exactly at the reciprocal of the symbol interval, which can be accom-

plished by using the discrete Fourier transform (DFT). Hence, a set of equally spaced

subcarriers is used for parallel data transmission in OFDM systems.

Both intersymbol interference (ISI) and intercarrier interference (ICI) can be com-

1



pletely eliminated by inserting between symbols a small time interval known as a guard

interval (GI). The length of the GI is made equal to or greater than the maximum delay

spread of the class of multipath fading channels of concern. If the symbol signal wave-

form is extended periodically into the GI (normally referred to as cyclic prefix, CP),

orthogonality of the carrier is maintained over the symbol period, thus eliminating ICI.

ISI is also eliminated because successive symbols do not overlap due to the CP. Hence

the receiver needs only to perform one-tap equalization, greatly reducing its complexity.

Such an arrangement enables an OFDM-based system to overcome frequency selective

fading in broadband wireless transmission and is the major reason for its current popu-

larity.

With all its merits, OFDM systems, unfortunately, are far more sensitive to synchro-

nization errors, especially the carrier frequency offset (CFO), than single-carrier systems.

The CFO is caused by the misalignment in subcarrier frequencies due to fluctuations in

transmitter and receiver radio frequency (RF) oscillators or the Doppler shift induced

by the time-varying channel effect. This frequency offset can destroy the subcarrier

orthogonality and introduces ICI. Hence, if the CFO is not properly estimated and com-

pensated for, the ICI would cause significantly degradation of the bit-error-rate (BER)

performance.

Therefore, the main purpose of frequency synchronizer is to ensure inter-carrier or-

thogonality. Various approaches have been proposed to estimate the CFO, either blindly

or with the aid of pilot symbols and training sequences. Blind estimation algorithms

achieve higher spectrum efficiency at the cost of increased complexity and slow conver-

gence rate whence are not suitable for tracking time-varying CFO. An alternative design

technique is data-aided estimation which inserts pilot tones in some or all subcarriers.

It is a simpler method to obtain reliable estimate at the cost of lower effectively data

rate [13].

OFDM can also be used in conjunction with a multiple access scheme. If frequency

2



division multiple access is employed then the resulting transmission technique is referred

to as OFDMA. This scheme has been adopted by IEEE 802.16e [1]-[4]; it is proposed

as a candidate air interface for the next generation broadband wireless networks [8].

In an OFDMA system, each user is assigned an exclusive set of orthogonal subcarriers

for transmission. There are two major subcarrier-assignment schemes, namely, subband

based and interleaved. The former scheme divides the whole bandwidth into small

continuous subbands, and each user is assigned to one or several subbands. For the

interleaved subcarrier assignment scheme, subcarriers assigned to different users are

interleaved over the whole bandwidth. Both schemes, however, inherit from OFDM the

weakness of being sensitive to frequency error. In an OFDMA system, CFO will further

cause multiple-access interference (MAI) which might become the dominant factor that

limits the system performance.

In this thesis, we use IEEE 802.16e standard (WiMAX) uplink as a model system for

it has an almost-periodic pilot format that we are interested in. For the broadcast link

(downlink) of the WiMAX system, CFO estimation is relatively simple since relative

orthogonality among different users’ assigned subcarriers can be maintained.

The remainder of this thesis is organized as follows. In Chapter 2, the system model

and a time-domain correlation-based pilot-aided fractional CFO estimation method are

introduced. Chapter 3 then presents two interpolations to generate periodic time-domain

preamble for CFO estimation application. Based on the repetitive structure of the

interpolated preamble, we examine the performance of the correlation-based algorithms

in Chapter 4 in details. In Chapter 5, we further investigate the performance of the

optimal maximum-likelihood frequency estimator and its simplified version. We extend

our discussion to frequency synchronization of a subband-based OFDMA system in

Chapter 6, assuming multiple preambles are available. A guard band between subbands

is inserted so that signals from different users can be separated by filter banks. Existing

CFO estimation algorithms can then be applied after each user signal is filtered. Finally,

3



we draw conclusion and suggest future works in Chapter 7.
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Chapter 2

Frequency Synchronization with
Almost-Periodic Preamble for
TDD-OFDMA System

For practical OFDM(A) applications, data transmission is organized in frames, and

training blocks (carrying known symbols) are located at the beginning of each frame for

synchronization purposes. In this chapter, we will explore the downlink fractional CFO

estimation based on the received preamble symbols.

2.1 OFDM System Fundamentals

OFDM is a multi-carrier transmission technique that subdivides the whole band-

width into multiple frequency sub-carriers as shown in Fig. 2.1. In an OFDM system,

the input data stream is divided into several parallel sub-streams of reduced data rate

(thus increased symbol duration) and each sub-stream is modulated and transmitted on

a separate orthogonal sub-carrier. The increased symbol duration improves the robust-

ness of OFDM against the channel delay spread. Furthermore, the introduction of the

CP can completely eliminate ISI as long as the CP duration is longer than the chan-

nel delay spread. The CP is typically a repetition of the last samples of data portion

of the block that is appended to the beginning of the data payload as shown in Fig.

2.2. Hence, each time-domain OFDM symbol waveform contains a “useful interval” of

5



length Tu and CP with duration Tg. The value of Tg/Tu might be 1/4, 1/8, 1/16 and

1/32, depending on the transmission environment. The CP prevents inter-block inter-

ference and makes the channel appear circular and permits low-complexity frequency

domain equalization. A perceived drawback of CP is that it introduces overhead, which

effectively reduces bandwidth efficiency.

Data
Source

FEC
Encoder

Digital
Modulator

S/P
Conversion IFFT

0X

1X

1NX

P/S D/A
Converter

Figure 2.1: Block diagram of an OFDM transmitter.

Cyclic
Prefix Data Payload

sT

uT

Total Symbol
Period

Useful Symbol
Period

gT
gT

Figure 2.2: Insertion of Cyclic Prefix (CP).

A typical OFDM transmitter takes an N -point inverse discrete fourier transform

(IDFT) on every block of N complex datas {Xk} drawn from a QAM or PSK constel-

lation before making parallel-to-serial conversion on the resulting time-domain block.

An OFDM symbol (block) is then preceded by an Ng-sample cyclic prefix that is longer

6



than the maximum channel delay spread to form an “extended” symbol so that ISI can

be eliminated at the receiving end by simply discarding the prefix part. The received

(time-domain) OFDM signal, y(n), are given by

y(n) =
1√
N

N−1∑

k=0

XkHke
j2πn(k+ε)

N + w(n)

= x(n)e
j2πnε

N + w(n)

n = −Ng,−(Ng − 1), ..., 0, 1, 2, ..., N − 1 (2.1)

where the subscripts, n and k denote the nth OFDM sample in one OFDM block and

the kth subcarrier, respectively. Xk is the transmitted frequency-domain complex data.

Hk is the complex transfer function of the channel at the frequency of the kth subcarrier.

x(n) is the time-domain complex signal after passing Xk through a multipath channel

without both CFO and AWGN effect. ε is the CFO normalized to the subcarrier spacing

(assume the sampling interval is Ts (or Tu/N), the subcarrier spacing is 1/NTs (or 1/Tu))

and w(n) denotes the samples of the complex envelop of AWGN.

2.2 OFDMA System Fundamentals

OFDMA is a multiple-access and multiplexing scheme that provides multiplexing

operation of data streams from multiple users through the downlink sub-channels and

uplink multiple access by means of uplink sub-channels. The OFDMA symbol structure

consists of three types of sub-carriers as shown in Fig. 2.3.

• Data sub-carriers for data transmission

• Pilot sub-carriers for channel estimation and synchronization purposes

• Null sub-carriers for no transmission; used for guard bands and DC carriers

7



Guard Band
Sub-carriers

Pilot
Sub-carriers

Data
Sub-carriers

DC
Sub-carrier

. . . . . .

. . .

Figure 2.3: OFDMA Sub-Carrier Structure.

2.3 Downlink Structure

In IEEE 802.16e system, the downlink can be divided into a three segment structure

and includes a preamble which begins the transmission. This preamble subcarriers are

divided into three carrier-sets. There are three possible groups consisting of a carrier-set.

Each of them may be used by any segment. A typical downlink period is illustrated in

Fig. 2.4.
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Figure 2.4: Basic structure of OFDMA downlink transmission.

2.3.1 Preamble Structure

The first symbol of the downlink transmission is the preamble. There are three

types of preamble carrier-sets, those are defined by allocation of different subcarriers for

each one of them. Those subcarriers are modulated using a boosted BPSK modulation

with a specific Pseudo-Noise (PN) code. 114 preambles forms sequentially indexed with
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k Guard Band Length (GB) Nu

FFT size (N) = 128 -18 ∼ 17 10 54
FFT size (N) = 512 -72 ∼ 71 40 216
FFT size (N) = 1024 -142 ∼ 141 86 426
FFT size (N) = 2048 -284 ∼ 283 172 852

Table 2.1: Parameter setting of OFDMA downlink preamble.

{0, 1, ..., 113}. The 114 preamble forms can be divided into three segments indexed

from segment 0 to segment 2 and every segment has 38 preamble forms. The preamble

modulation series in Hexadecimal format can be found in Appendix A.

The preamble carrier-sets in frequency-domain are defined in (2.2),

PreambleCarrierSetn = n + 3 · k (2.2)

where

• PreambleCarrierSetn specifies all subcarriers allocated to the specific preamble,

• n is the segment of the preamble carrier-set indexed 0...2,

• k is a running index defined as in Tab. 2.1.

Each segment uses one type of preamble composed of a carrier-set out of the three

available carrier-sets in the following manner: (In the case of segment 0, the DC carrier

will not be modulated at all and the appropriate PN will be discarded; therefore, DC

carrier shall always be zeroed. For the preamble symbol, there will be GB guard band

subcarriers defined as in Tab. 2.1 on the left side and the right side of the spectrum.)

• Segment 0 uses preamble carrier-set 0

• Segment 1 uses preamble carrier-set 1

• Segment 2 uses preamble carrier-set 2

9



From above definition, (2.1) can be rewritten as

y(n) =
1√
N

∑

k∈Di

XkHke
j2πn(k+ε)

N + w(n)

= x(n)e
j2πnε

N + w(n)

n = −Ng,−(Ng − 1), ..., 0, 1, 2, ..., N − 1 (2.3)

where the subscripts, i denotes the ith segment, Di = {−Nu+i,−Nu+i+3, ...,−3+i, 0+

i, 3+i, ..., Nu−3+i} is the set of modulated subcarrier indices and Nu is defined in Tab.

2.1. As an example, Fig. 2.5 depicts the frequency-domain preamble structure of each

segment for 128-point FFT size. The subcarrier locations of preamble in segment 1 and

segment 2 are only circular frequency-shifting in segment 0. From circular frequency-

shifting theorem [27], the inverse DFT of the circularly frequency-shifted DFT X[k] =

G[〈k − k0〉N ], with k0 an integer, is given by x[n] = W−k0n
N g[n], where g[n] is the IDFT

of G[k] and WN is defined as e
j2π
N ; that is,

W−k0n
N g[n] ⇔ G[〈k − k0〉N ] (2.4)

Hence, each segment has the same structure in time-domain but with some different

phase rotation (or called linear phase shift).

From above, this preamble structure can be visualized as upsampling in frequency-

domain [26]. A factor-of-L sampling rate expansion thus leads to a L-fold repetition

of the original time-domain waveform, indicating that the inverse Fourier transform is

compressed by a factor of L. Hence, in IEEE 802.16e preamble structure, every third

subcarrier is used, preamble consists of three identical parts within an OFDM symbol.

Figure 2.6 shows the structure of preamble in time domain, where N is the FFT length.

Due to the periodic property, we can utilize the correlation between any two parts of

the received (time-domain) preamble sequences to perform frequency synchronization.

Unfortunately, these three repetitions are not exactly the same, since the FFT size

(N=128, 512, 1024, 2048) is not the multiple of 3. Hence, the N samples obtained from

10
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Figure 2.5: Frequency-domain structure of OFDMA downlink preamble for 128-point
FFT size.
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Figure 2.6: Time-domain preamble of TDD-OFDMA WiMAX system.

the A/D converter can not be divided by 3 exactly and will lead to three incomplete

repetitions. The reason is owing to the samples obtained from the A/D converter is not

complete. Therefore, this imperfectly repetitive structure in time-domain will lead to

fault frequency synchronization. This almost-periodic property can be depicted in Fig.

2.7. The blue solid curve denotes the continuous waveform before the A/D converter

and the red circles denote the discrete samples after the A/D converter. Hence, we can

easily know that there is no alignment of the samples between any two parts of the three

repetitions in Fig. 2.7.

A practical example for 128-point FFT size is shown in Fig. 2.8 and we overlap
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Figure 2.7: Almost-periodic preamble sequences in time-domain.

the three truncated repetition for demonstration. Because 128 is not multiple of 3

and the remainder of 128 divided by 3 is equal to 2, we discard two points (the 43-th

point and the 86-th point) to keep the three incomplete repetition and utilize the three

parts to implement correlation-based CFO estimation. Hence, repetition 1 is indexed

from sample 1 to sample 42, repetition 2 is indexed from sample 44 to sample 85 and

repetition 3 is indexed from sample 87 to sample 128.

2.4 Time-Domain Correlation-Based Fractional CFO

Estimation by Using Almost-Periodic Preamble

After the division of preamble sequences as shown in Fig. 2.8, each part of the three

sections can be considered as a repetition. Then, we will present four correlation-based

algorithms for fractional CFO estimation. In the following, we still take 128-point FFT

size (N = 128) as an applicable example and the other cases (N = 512, 1024, 2048) can

also be implemented by the same way.
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Figure 2.8: Illustration of the almost-periodic preamble samples for IDcell 0 preamble
in segment 0.

2.4.1 Algorithm 1

First, we consider the correlation between the first two incomplete repetitions as

shown in Fig. 2.9. According to (2.3), the sample-by-sample correlation function

ignoring the noise effect can be written as

C1 =
41∑

n=0

y(n)y(n + 43)∗

=
41∑

n=0

x(n)ej2πnε/N · [x(n + 43)ej2π(n+43)ε/N ]∗

=
41∑

n=0

x(n)x(n + 43)∗ej2πnε/Ne−j2π(n+43)ε/N

= e−j2π·43·ε/N
41∑

n=0

x(n) · x(n + 43)∗

= e−j86πε/N · Φ1 (2.5)
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where Φ1 =
∑41

n=0 x(n) · x(n + 43)∗ and N = 128.

CP 0~41 42 43~84 86~12785

conj

angle -64/43

Figure 2.9: Block diagram of algorithm 1.

If we ignore the Φ1 effect arises from the incomplete repetitions, the normalized CFO

ε estimation can be obtained by using the phase of the correlation function C1 and is

given by

ε̂1 = − 64

43π
∠C1. (2.6)

2.4.2 Algorithm 2

Then, we consider the correlation between the first and the third repetitions as

shown in Fig. 2.10. According to (2.3), the sample-by-sample correlation function

ignoring the noise effect can be written as

C2 =
41∑

n=0

y(n)y(n + 86)∗

=
41∑

n=0

x(n)ej2πnε/N · [x(n + 86)ej2π(n+86)ε/N ]∗

=
41∑

n=0

x(n)x(n + 86)∗ej2πnε/Ne−j2π(n+86)ε/N

= e−j2π·86·ε/N
41∑

n=0

x(n)x(n + 86)∗

= e−j172πε/N · Φ2 (2.7)
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where Φ2 =
∑41

n=0 x(n) · x(n + 86)∗ and N = 128.

CP 0~41 42 43~84 86~12785

conj

angle -32/43

Figure 2.10: Block diagram of algorithm 2.

If we ignore the Φ2 effect arises from the incomplete repetitions, the normalized CFO

ε estimation can be obtained by using the phase of the correlation function C2 and is

given by

ε̂2 = − 32

43π
∠C2. (2.8)

2.4.3 Algorithm 3

The algorithm 3 is a combination of algorithm 1 and algorithm 2 as shown in

Fig. 2.11. Hence, the sample-by-sample correlation function can be obtained from the

multiplication of C1 and C2 and is given by

C3 = C1× C2

= e−j86πε/N

41∑
n=0

x(n) · x(n + 43)∗ × e−j172πε/N

41∑
n=0

x(n)x(n + 86)∗

= e−j258πε/N

41∑
n=0

x(n) · x(n + 43)∗ ×
41∑

n=0

x(n)x(n + 86)∗

= e−j258πε/NΦ1 × Φ2

= e−j258πε/NΦ3 (2.9)

where Φ3 = Φ1 × Φ2 and N = 128.
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Figure 2.11: Block diagram of algorithm 3.

If we ignore the Φ3 effect arises from the incomplete repetitions, the normalized CFO

ε estimation can be obtained by using the phase of the correlation function C3 and is

given by

ε̂3 = − 64

129π
∠C3. (2.10)
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2.4.4 Algorithm 4

Finally, the algorithm 4 is an extension of algorithm 1 by extending the length of

the correlation window and is depict in Fig. 2.12.

C4 =
41∑

n=0

y(n)y(n + 43)∗ ×
41∑

n=0

y(n + 43)y(n + 86)∗

=
41∑

n=0

x(n)ej2πnε/N · [x(n + 43)ej2π(n+43)ε/N ]∗ ×

{
41∑

n=0

x(n + 43)ej2π(n+43)ε/N · [x(n + 86)ej2π(n+86)ε/N ]∗}

=
41∑

n=0

x(n)x(n + 43)∗ej2πnε/Ne−j2π(n+43)ε/N ×
41∑

n=0

x(n + 43)x(n + 86)∗ej2π(n+43)ε/Ne−j2π(n+86)ε/N

= e−j2π86ε/N

41∑
n=0

x(n)x(n + 43)∗ ×
41∑

n=0

x(n + 43)x(n + 86)∗

= e−j172πε/NΦ4 (2.11)

where Φ4 =
∑41

n=0 x(n)x(n + 43)∗ ×∑41
n=0 x(n + 43)x(n + 86)∗ and N = 128.

If we ignore the Φ4 effect arises from the incomplete repetitions, the normalized CFO

ε estimation can be obtained by using the phase of the correlation function C4 and is

given by

ε̂4 = − 32

43π
∠C4. (2.12)

2.5 Numerical Results and Discussion

Numerical results are provided in this section to demonstrate the performance of

the four algorithms. The MSE is defined as

MSE =
1

Mc

Mc∑

k=1

(ε− ε̂(k))2 (2.13)

where Mc is the total Monte Carlo runs, and ε̂(k) is the normalized CFO estimate of

the kth Monte Carlo run. From Fig. 2.13 to Fig. 2.15, the four proposed estimators
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conjconj

angle -32/43

Figure 2.12: Block diagram of algorithm 4.

give good MSE performance in AWGN channel even if the three repetitions are not

incomplete.

The frequency-selective fading channel is modelled as a linear FIR filter with impulse

response given by

h(k) =

CL−1∑
n=0

αne−jΦδ(k − n) (2.14)

where Φ is uniformly distributed in [0, 2π) and αn is Rayleigh distributed with an expo-

nential power profile

ᾱ2
n = (1− e−Ts/Trms)e−nTs/Trms (2.15)

with CL = 16, Trms = 30ns and Ts = 50ns. We use Jakes channel model with maximum

Doppler shift of 500 Hz to simulate time-correlated Rayleigh fading αn.

While multipath fading channel exists, the four proposed estimators give bad MSE

performance if we do not do any things to deal with the three incomplete repetitions

first; see Fig. 2.16, Fig. 2.17 and Fig. 2.18. Even if the SNR is very high, the MSE

of each algorithm is bounded at 10−2.
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Hence, in order to reduce the MSE of the four proposed estimators when multipath

exists, we will introduce the interpolations in next chapter. The interpolations can be

used to construct the losing samples from the existing samples by some proper weighting

factor. Then, the three repetitions are nearly identical and the MSE performance will

be better.
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Figure 2.13: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 0 without interpolation.
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Figure 2.14: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 1 without interpolation.
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Figure 2.15: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 2 without interpolation.
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Figure 2.16: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 0 without interpolation.
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Figure 2.17: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 1 without interpolation.
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Figure 2.18: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 2 without interpolation.
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Chapter 3

Interpolation Methods for
Almost-Periodic Preamble in
Time-Domain

In chapter 2, we have provided some general preamble-based fractional CFO estima-

tion schemes for TDD OFDMA downlink system. However, the estimation performances

are not very good especially when the multipath exists. The reason is that there is no

alignment of the preamble samples between any two parts of the three incomplete rep-

etitions as shown in Fig. 2.7. This property leads to fault correlation-based frequency

synchronization. Hence, this chapter will develop two interpolation methods to recon-

struct the complete preamble. Based on the interpolation methods, the correlation-based

CFO estimation can be improved as well.

3.1 Oversampling

From Fig. 2.7, if we increase the sampling rate of the A/D converter by an integer

factor of 3, we will have three completely identical parts. Then, the samples of the

complex envelope of the received OFDM signal is given by

yos(m) =
1√
N

N−1∑

k=0

XkHke
j2πm(k+ε)

N + w(m)

= xos(m)e
j2πmε

N + w(m)

m = −Ng,−Ng +
1

3
,−Ng +

2

3
,−(Ng − 1), ..., 0,

1

3
,
2

3
, 1, 1

1

3
, ..., N − 1

3
(3.1)
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where we assume that the oversampling interval is Tu/3N , Tu is the useful duration of

one OFDMA block.

Then, the three perfectly repetitive structures in time domain can be obtained by

oversampling if we ignore the channel, CFO, and noise effect; see Fig. 3.1. In Fig. 3.1,

the red circles denote the originally discrete samples after the A/D converter without

oversampling and the green squares denote the new samples obtained from oversampling.

A practical example via oversampling for 128-point FFT size is shown in Fig. 3.2
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Figure 3.1: Preamble sequences via oversampling in time-domain.

In practical systems, however, to increase the sampling rate is almost impossible.

Therefore, we should provide some alternative methods such as interpolations instead of

oversampling. In order to obtain the green squares in Fig. 3.1 without oversampling,

we can utilize the original samples such as the red circles in Fig. 3.1 to interpolate by

taking weighted average. In the remaining of this chapter, some interpolations (either

linear or sinc) will be presented. In other words, all these methods are based on the

originally discrete samples (red circles) to generate the new samples (green squares).

The detail description of the two interpolations will be introduced in Sec. 3.2 and Sec.

3.3 respectively.
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Figure 3.2: Three perfect preamble sequences via oversampling for IDcell 0 in segment
0.

3.2 Linear Interpolation

The first method is the linear interpolation that is often employed to estimate sample

values between pairs of adjacent sample values of a discrete-time sequence. The linear

interpolation is implemented by first passing the input sequence y(n) to be interpolated

through an up-sampler whose output yu(m) is then passed through a second discrete-

time system that “fills in” the zero-valued samples inserted by the up-sampler with

values obtained by a linear interpolation of the pair of input samples surrounding the

zero-valued samples, as indicated in Fig. 3.3. In our case, we develop the input-output

relation of a linear factor-of-3 interpolator. Hence, the output of the up-sampler can be
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expressed as

yu(m) =





y(n), m = 3n
0, m = 3n + 1
0, m = 3n + 2

0 ≤ n ≤ N − 1 (3.2)

where y(n) is the received preamble sequences after the A/D converter and is defined in

(2.3).

L D is c rete -time
sy stem

)(ny
)(myu

)(int my

Figure 3.3: A factor-of-L interpolator.

The overall input-output relationship at the linear interpolator output can be written

as

ylinear(m) =





y(n), m = 3n
2
3
y(n) + 1

3
y(n + 1), m = 3n + 1

1
3
y(n) + 2

3
y(n + 1), m = 3n + 2

0 ≤ n ≤ N − 1 (3.3)

where ylinear(m) is the output of the linear interpolator, and (1
3
, 2

3
) are the weighting

factors.

Here, if yu(m) is two zero-valued samples inserted between a pair of input samples,

it is replaced with the average of the four original input samples, yu(m− 2), yu(m− 1),

yu(m + 1) and yu(m + 2) :

ylinear(m) = yu(m) +
2

3
[yu(m− 1) + yu(m + 1)] +

1

3
[yu(m− 2) + yu(m + 2)]. (3.4)

On the other hand, if yu(m) is one of the original input samples, its neighbors, yu(m−2),

yu(m− 1), yu(m + 1) and yu(m + 2) are all equal to 0. Hence, (3.4) can be expressed in

convolution sum as

ylinear(m) = yu(m) ∗ hlinear(m) 0 ≤ m ≤ 3N − 1 (3.5)

where hlinear(m) is the impulse response of the discrete-time system in Fig. 3.3 and is
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given by

hlinear(m) =





1
3
, m = −2

2
3
, m = −1

1, m = 0
2
3
, m = 1

1
3
, m = 2

(3.6)

The interpolated samples thus lie on a straight line joining the pair of input samples,

as illustrated in Fig. 3.4 for a factor-of-3 linear interpolation. The green triangles

denote the result of the linear interpolation and the orange dotted curve denotes the

continuous waveform obtained from linear interpolation. From practical example, the

repetitive property of the time-domain preamble sequences by linear interpolation can

be shown in Fig. 3.5. Hence, linear interpolation is a feasible method to solve the

foregoing problem.
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Figure 3.4: Illustration of the linear interpolation method.

3.2.1 Analysis of The Three Repetitive Structures via Linear
Interpolation

In this subsection, we will compare the difference between any two parts of the three

identical structures. A convenient way is to find the MSE. This result is shown in Tab.
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Figure 3.5: IDcell 0 preamble sequences in segment 0 via linear interpolation.

FFT size = 128 & IDcell = 0 in segment 0 MSE

repetition 1 & 2 0.1612× 10−3

repetition 2 & 3 0.1608× 10−3

repetition 1 & 3 0.1601× 10−3

Table 3.1: MSE between any two parts of the three repetitions by linear interpolation.

3.1. Although the MSE is quite small, there is little amount of information since each

reconstructed sample is interpolated by only two neighboring samples. Therefore, this

method is suboptimal and then we will present a better method in the next section.

3.3 Sinc Interpolation

The second method is sinc interpolation which is derived from the sampling theo-

rem. We can utilize the sinc function to reconstruct the new samples from old samples.

Likewise, it can be easily shown that for a factor-of-3 sinc interpolator, the discrete-time
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system following the factor-of-3 up-sampler as illustrated in Fig. 3.3 is characterized

by the input-output relation written as

ysinc(m) = yu(m) ∗ hsinc(m) 0 ≤ m ≤ 3N − 1 (3.7)

where hsinc(m) is the impulse response of the discrete-time system in Fig. 3.3 and is

given by

hsinc(m) = sinc(
m

3
) − 3L ≤ m ≤ 3L (3.8)

with L is the truncated sidelobe length of the sinc function. Fig. 3.6 illustrates the

impulse response of hsinc(m) with L = 5.

−5 0 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.6: The impulse response of hsinc(m) with L = 5.

In Fig. 3.7, the black triangles denote the result of sinc interpolation. From prac-

tical examples, the repetitive property of the time-domain preamble sequences by sinc

interpolation can be shown in Fig. 3.8. This result reveals that the sinc interpolation

is more accurate than linear interpolation but with higher computational complexity.
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Figure 3.7: Illustration of the sinc interpolation method.

3.3.1 Analysis of The Three Repetitive Structures via Sinc In-
terpolation

Likewise, we still compare the difference between any two parts of the three repetitive

structures. The MSE as a function of the sidelobe length is shown in Fig. 3.9. Hence,

in order to achieve the MSE of 10−4, the sidelobe length of 5 (L = 5) is enough.
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Figure 3.8: IDcell 0 preamble sequences in segment 0 via sinc interpolation with side-lobe
length = 5.
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Figure 3.9: MSE between any two parts of the three repetition via sinc interpolation.
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Chapter 4

Downlink Pilot-Assisted Frequency
Synchronization via Interpolation

After the interpolations (either linear or sinc) introduced in chapter 3, we will have

three repetitive structures. Based on the three repetitive structures, the correlation

between the three repetitive samples in time-domain can be used to perform CFO esti-

mation. This chapter still presents the same correlation-based algorithms as introduced

in chapter 2 for CFO estimation but with interpolation. Hence, the four algorithms

should be modified properly. Besides, the performance of the identical algorithms with-

out interpolation is also illustrated. Finally, the simulation results verify the superior

performance of the proposed methods (interpolations) with regard to estimation accu-

racy.

4.1 Repetitive Structure of Interpolated Preamble

The structure of the factor-of-3 interpolated preamble sequences with index set

{0, 1, ..., 3N − 1} is illustrated in Fig. 4.1, where samples connected together by

the same arrow-line are almost identical. After the factor-of-3 interpolation, in addi-

tion to the original N preamble samples, we will have additional 2N samples obtained

from interpolations. In Fig. 4.1, the N original preamble samples are indexed with

{0, 3, ..., 3(N−1)}, and the interpolated samples are indexed with {1, 2, ..., 3N−2, 3N−
1}. Therefore, the total 3N samples are multiple of 3, and there is no misalignment
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when the sample-by-sample correlation is implemented. Consequently, repetition 1 is

indexed with {0, 1, ..., N − 1}, repetition 2 is indexed with {N, N + 1, ..., 2N − 1}, and

repetition 3 is indexed with {2N, 2N + 1, ..., 3N − 1}.

CP 0 1 N-2 N-1 N N+1 2N- 2 2N- 1 2N 2N+1 3N-2 3N-1··· ··· ···

Figure 4.1: Structure of a interpolated preamble symbol, where samples connected to-
gether by the same arrow-line are almost identical.

From above descriptions, the four algorithms introduced in chapter 2 can be per-

formed well without discarding some samples and only require some modifications when

interpolation exists. The modification of each algorithm is described in detail in the

next section.

4.2 Time-Domain Correlation-based Fractional CFO

Estimation by Using Almost-Periodic Preamble

with Interpolations

If we neglect the inaccuracy of the interpolated samples and AWGN effect, THREE

conditions are satisfied in a preamble symbol

• Condition 1 :

yint(m) = yint(m + N) 0 ≤ m ≤ N − 1 (4.1)
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• Condition 2 :

yint(m + N) = yint(m + 2N) 0 ≤ m ≤ N − 1 (4.2)

• Condition 3 :

yint(m) = yint(m + 2N) 0 ≤ m ≤ N − 1 (4.3)

where yint(m) is the output of the interpolator either form linear interpolation ylinear(m)

or from sinc interpolation ysinc(m).

Because we neglect the inaccuracy of the interpolated samples, the output of the

interpolator yint(m) is equal to the oversampling sample yos(m) as defined in (3.1).

Consequently, we can utilize (3.1) to modify the four algorithms as introduced in chapter

2 in the following. For derivation purpose, (3.1) can be rewritten as

yos(m) =
1√
N

N−1∑

k=0

XkHke
j2πm(k+ε)

3N + w(m)

= xos(m)e
j2πmε

3N + w(m) 0 ≤ m ≤ 3N − 1 (4.4)

where m is an integer. Hence, we can replace yos(m) with yint(m) and replace xos(m)

with xint(m) respectively.

4.2.1 Modified Algorithm 1 via Interpolations

First, we consider the correlation between the first two repetitions satisfing condition

1 as shown in Fig. 4.2. If we ignore the noise effect, the sample-by-sample correlation
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function can be written as

C1 =
N−1∑
m=0

yint(m)yint(m + N)∗

=
N−1∑
m=0

xint(m)ej2πmε/3N · [xint(m + N)ej2π(m+N)ε/3N ]∗

=
N−1∑
m=0

xint(m)xint(m + N)∗ej2πmε/3Ne−j2π(m+N)ε/3N

= e−j2πNε/3N

N−1∑
m=0

‖xint(m)‖2

= e−j2πε/3

N−1∑
m=0

‖xint(m)‖2 (4.5)

where yint(m) is the output of the interpolator either form linear interpolation ylinear(m)

or from sinc interpolation ysinc(m).

The normalized CFO ε is estimated using the phase of the correlation function and

is given by

ε̂1 = − 3

2π
∠C1. (4.6)

CP IFFT

conj

IFFT IFFT

angle -3/2

Figure 4.2: Block diagram of modified algorithm 1 via interpolations.

4.2.2 Modified Algorithm 2 via Interpolations

Then, we consider the correlation between the first and the third repetitions satisfy-

ing condition 3 as shown in Fig. 4.3. If we ignore the noise effect, the sample-by-sample
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correlation function can be written as

C2 =
N−1∑
m=0

yint(m)yint(m + 2N)∗

=
N−1∑
m=0

xint(m)ej2πmε/3N · [xint(m + 2N)ej2π(m+2N)ε/3N ]∗

=
N−1∑
m=0

xint(m)xint(m + 2N)∗ej2πmε/3Ne−j2π(m+2N)ε/3N

= e−j2π2Nε/3N

N−1∑
m=0

‖xint(m)‖2

= e−j4πε/3

N−1∑
m=0

‖xint(m)‖2 (4.7)

where yint(m) is the output of the interpolator either form linear interpolation ylinear(m)

or from sinc interpolation ysinc(m).

The normalized CFO ε is estimated using the phase of the correlation function and

is given by

ε̂2 = − 3

4π
∠C2. (4.8)

CP IFFT IFFTIFFT

conj

angle -3/4

Figure 4.3: Block diagram of modified algorithm 2 via interpolations.

4.2.3 Modified Algorithm 3 via Interpolations

Algorithm 3 is a combination of algorithm 1 and algorithm 2, and is shown in

Fig. 4.4. Hence, the sample-by-sample correlation function can be obtained from the
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multiplication of C1 and C2 and is given by

C3 = C1× C2

= e−j2πε/3

N−1∑
m=0

‖xint(m)‖2 × e−j4πε/3

N−1∑
m=0

‖xint(m)‖2

= e−j2πε{
N−1∑
m=0

‖xint(m)‖2}2 (4.9)

where yint(m) is the output of the interpolator either form linear interpolation ylinear(m)

or from sinc interpolation ysinc(m).

The normalized CFO ε is estimated using the phase of the correlation function and

is given by

ε̂3 = − 1

2π
∠C3. (4.10)

CP IFFT IFFT IFFT

conj

conj

angle -1/2

Figure 4.4: Block diagram of modified algorithm 3 via interpolations.

4.2.4 Modified Algorithm 4 via Interpolations

Finally, the modified algorithm 4 is an extension of modified algorithm 1 by extend-

ing the length of the correlation window from N samples to 2N samples. If we ignore
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the noise effect, the sample-by-sample correlation function can be written as

C4 =
2N−1∑
m=0

yint(m)yint(m + N)∗

=
2N−1∑
m=0

xint(m)ej2πmε/3N · [xint(m + N)ej2π(m+N)ε/3N ]∗

=
2N−1∑
m=0

xint(m)xint(m + N)∗ej2πmε/3Ne−j2π(m+N)ε/3N

= e−j2πNε/3N

2N−1∑
m=0

‖xint(m)‖2

= e−j2πε/3

2N−1∑
m=0

‖xint(m)‖2 (4.11)

where yint(m) is the output of the interpolator either form linear interpolation ylinear(m)

or from sinc interpolation ysinc(m).

The normalized CFO ε is estimated using the phase of the correlation function and

is given by

ε̂4 = − 3

2π
∠C4. (4.12)

4.3 Simulation Results and Discussions

Performance improvement due to linear or sinc interpolation can be obtained in the

proposed correlation-based algorithms in both the AWGN channel and the multipath

fading channel. We discuss each algorithm respectively and compare the performance

improvement between the cases with and without interpolations (linear or sinc).

For AWGN channel, performance improvement of algorithm 1 is about 2 dB at low

SNR if the interpolation is present. When SNR increases, the performance advantages of

the proposed scheme will increase; see Fig. 4.5, Fig. 4.13 and Fig. 4.21. Significant

performance improvement can be obtained in the multipath fading channel by using the

proposed interpolations; see Fig. 4.6, Fig. 4.14 and Fig. 4.22. The performance

improvement of algorithm 2 with interpolations in AWGN channel is about 5 dB at low
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SNR. When SNR increases, the performance advantages of the proposed scheme will

increase; see Fig. 4.7, Fig. 4.15 and Fig. 4.23. When multipath exists, significant

performance improvement is obtained under the interpolations; see Fig. 4.8, Fig. 4.16

and Fig. 4.24. For the other two algorithms, we have similar simulation results.
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Figure 4.5: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 0 via Algorithm 1.

39



0 5 10 15 20 25 30 35 40
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

M
S

E
 o

f t
he

 C
ar

rie
r 

F
re

qu
en

cy
 O

ffs
et

FFT size = 128, for IDcell 0 in segment 0 with Algorithm 1

 

 
Without interpolation
Linear interpolation
Sinc interpolation

Figure 4.6: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 0 via Algorithm 1.
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Figure 4.7: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 0 via Algorithm 2.
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Figure 4.8: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 0 via Algorithm 2.
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Figure 4.9: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 0 via Algorithm 3.
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Figure 4.10: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 0 via Algorithm 3.
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Figure 4.11: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 0 via Algorithm 4.
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Figure 4.12: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 0 via Algorithm 4.
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Figure 4.13: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 1 via Algorithm 1.
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Figure 4.14: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 1 via Algorithm 1.
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Figure 4.15: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 1 via Algorithm 2.
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Figure 4.16: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 1 via Algorithm 2.
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Figure 4.17: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 1 via Algorithm 3.
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Figure 4.18: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 1 via Algorithm 3.
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Figure 4.19: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 1 via Algorithm 4.
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Figure 4.20: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 1 via Algorithm 4.

0 5 10 15 20 25 30 35 40
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

M
S

E
 o

f t
he

 C
ar

rie
r 

F
re

qu
en

cy
 O

ffs
et

FFT size = 128, for IDcell 0 in segment 2 with Algorithm 1

 

 
Without interpolation
Linear interpolation
Sinc interpolation

Figure 4.21: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 2 via Algorithm 1.

48



0 5 10 15 20 25 30 35 40
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

M
S

E
 o

f t
he

 C
ar

rie
r 

F
re

qu
en

cy
 O

ffs
et

FFT size = 128, for IDcell 0 in segment 2 with Algorithm 1

 

 
Without interpolation
Linear interpolation
data3

Figure 4.22: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 2 via Algorithm 1.
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Figure 4.23: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 2 via Algorithm 2.
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Figure 4.24: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 2 via Algorithm 2.
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Figure 4.25: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 2 via Algorithm 3.
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Figure 4.26: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 2 via Algorithm 3.
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Figure 4.27: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 2 via Algorithm 4.
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Figure 4.28: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 2 via Algorithm 4.
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Chapter 5

Downlink Pilot-Assisted
Maximum-Likelihood
Frequency-Offset Estimation

This chapter further explore maximum-likelihood (ML) CFO estimates of TDD-

OFDMA WiMAX downlink system that uses three of identical fractional-period OFDM

blocks obtained from interpolations. An efficient algorithm is provided to solve the

associated highly nonlinear ML equation. We convert the problem of obtaining the

ML solution from searching exhaustively over the entire uncertainty range to that of

solving a spectrum polynomial of degree 4, thereby greatly reducing the computational

load. By properly truncating the polynomial, we obtain a closed-form expression for the

corresponding zeros so that the root-searching procedure is greatly simplified.

5.1 Maximum-Likelihood Estimation of Carrier Fre-

quency Offset

Let s(p, q) be the qth sample of the pth(time-domain) short pilot symbol and assume

that the preamble part of a transmitted package consists of three identical short pilot

symbols obtained from interpolations, as shown in Fig. 2.6. We thus have the relation

s(p, q) = r((p − 1)N + q) for p = 1, 2, 3 and q = 1, ..., N where r(·) is the interpolated

preamble samples. Consider a frequency-selective channel with a maximum delay spread

53



shorter than a CP duration. After discarding the CP, the remaining received three pilot

symbols y(p, q) can be represented as

y(p, q) = e
j2πε((p−1)N+q)

3N x(p, q) + v(p, q) (5.1)

for p = 1, 2, 3, and q = 1, ..., N , where x(p, q) = xint((p − 1)N + q) is the interpolated

channel output corresponding to the transmitted pilot symbol s(p, q), y(p, q) = yint((p−
1)N + q) and v(p, q) = w((p− 1)N + q).

Define the two vectors

Y(q) =
[

y(1, q) y(2, q) y(3, q)
]T

(5.2)

and

A(ε) =
[

1 e
j2πεN

3N e
j2πε2N

3N

]T

(5.3)

where (·)T denotes the matrix transpose. Then, we have

Y(q) = A(ε)e
j2πεq
3N x(1, q) + V(q)

= A(ε)x(q) + V(q), q = 1, ..., N (5.4)

where x(q) = ej2πεq/3Nx(1, q), and V(q) = [v(1, q) v(2, q) v(3, q)]T . The received sam-

ples can thus be expressed compactly as

Y = A(ε)X + V (5.5)

where Y = [Y(1), ...,Y(N)], X = [x(1), ..., x(N)], and V = [V(1), ...,V(N)]. Hence,

given the received sample vectors Y, we have to estimate ε through the deterministic

vector A(ε).

Since the noise is temporally white Gaussian, Y(q) is a multivariate Gaussian dis-

tributed random vector with covariance matrix σ2
vI, where I is the identity matrix. The

joint ML estimates of A and X, treating X as a deterministic unknown vector, are
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obtained by minimizing the joint probability density function

f(Y|A,X) =
N∏

q=1

f(Y(q)|A, x(q))

∝ exp

[
−1

∑N
q=1 ‖Y(q)−Ax(q)‖2

σ2
v

]
(5.6)

The corresponding log-likelihood function, after dropping constant and unrelated terms,

is given by

Λ(A, x(q)) =
N∑

q=1

‖Y(q)−Ax(q)‖2 (5.7)

For a given A, setting ∇x(q)‖Y(q)−Ax(q)‖2 = 0, where ∇x(q) denotes complex gradient

operation with respect to x(q), we obtain the conditional ML estimate x̂(q) = xLS(q) =

A+Y(q), where A+ = AH/K and H denotes the Hermitian operation. Substituting the

least-square solution xLS(q) into (5.7), we obtain

Λ(A) =
N∑

q=1

‖Y(q)−AA+Y(q)‖2

=
N∑

q=1

‖P⊥
AY(q)‖2

= Ntr
(
P⊥

AR̂Y Y

)
(5.8)

where tr(·) denotes the trace of a matrix, R̂Y Y = (1/N)
∑N

q=1 Y(q)YH(q), and P⊥
A =

I −AA⊥. Note that the (i, j)th entry of the matrix R̂Y Y , R̂Y Y (i, j), is the correlation

value of ith and jth received symbols, i.e., R̂Y Y (i, j) = N−1
∑N

q=1 y(i, q)y∗(j, q). As R̂Y Y

is the (time-averaged) autocorrelation matrix of the received sample vectors Y(q), it is

a Hermitian matrix such that R̂Y Y (i, j) = R̂∗
Y Y (j, i), where (∗) denotes the complex

conjugate. The CFO estimate is then given by

ε̂ = arg
{

min
ε

tr
(
P⊥

AR̂Y Y

)}

= arg
{

max
ε

tr
(
PAR̂Y Y

)}

= arg
{

max
ε

AHR̂Y Y A
}

(5.9)
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Although (5.9) gives a compact representation of the ML CFO estimate, it requires an

exhaustive search over the entire uncertainty range. The resulting complexity may make

its implementation infeasible.

We observe, however, that A has a special structure that can be of use to reduce the

complexity of searching the desired CFO solution of (5.9). Invoking an approach similar

to that used by the MUSIC algorithm, we set z = ej2πεN/3N and define the parameter

vector

A(z) = [1, z, z2]T (5.10)

so that the log-likelihood Λ = AHR̂Y Y A can be expressed as a polynomial of order 5 as

follows:

Λ(z) = A(z)HR̂Y Y A(z) =
2∑

n=−2

s(n)zn (5.11)

where s(n) =
∑

i,j R̂Y Y (i, j), for n = j− i, and n = −2, ..., 2. To highlight the usefulness

of this important observation, we restate it in the form of the following proposition.

Proposition 1: The log-likelihood function for a candidate CFO ε is given by

Λ(ε) =
2∑

n=−2

s(n)e
j2πnεN

3N (5.12)

Some remarks about this proposition are in order.

Remarks:

R1. s(n) is the summation of diagonal entries of R̂Y Y and is also equivalent to the

aperiodic autocorrelation value of the waveform {y(i, j), 1 ≤ i ≤ 3, 1 ≤ j ≤ N},
i.e., s(n) =

∑3−n
m=1

∑N
j=1 y∗(m + n, j)y(m, j).

R2. It can be shown that, in the absence of noise

s(n) = σ̂2
x(K − |n|)e−jnθo = ∆(n) (5.13)

where θo = 2πεN/3N , and σ̂2
x = (1/N)

∑N
n=1 |x(n)|2. When noise is present,

the mean value of s(n) is the same as its noiseless value except for n = 0; more
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specifically, E[s(n)] = ∆(n)+Kσ2
wδ(n), where δ(·) is the Kronecker delta function.

Evaluating (5.11) at the unit circle z = ej2πεN/3N = ejθ, we obtain the DTFT of

the sequence s(n), which has an envelope similar to sinc2(ε) whose maximum value

is at the correct “modified” frequency ε′ = ε(N/3N).

R3. Due to the Hermitian nature of R̂Y Y , s(n) is a conjugate symmetric sequence of

length 5. The symmetric property of s(n) guarantees that its Fourier transform

Λ(ej2πε) is real and nonnegative. This also follows from the semi-positive defi-

niteness of the quadratic form AHR̂Y Y A. Because s(n) and the log-likelihood

function constitute a Fourier transform pair, we will henceforth refer to Λ(ej2πε)

as the log-likelihood spectrum or spectrum, for short, and the polynomial defined

by (5.11) the spectrum polynomial.

R4. {s(n), n = 0, 1, 2} = C constitutes a set of sufficient statistic for estimating ε.

Almost all previous correlation-based algorithms use only a subset of C. It is

expected that an algorithm that uses the sufficient statistic would outperform

those that use only a part of the sufficient statistic.

R5. Computing the desired CFO estimate through (5.11) is equivalent to searching

for the peak of the candidate spectrum Λ(ej2πε). Hence, the spectrum can be

computed using a DFT, but the resolution of the CFO estimate ε̂ depends on

the size of the DFT. Padding more zeros in the sequence s(n) results in higher

resolution at the expense of inducing higher computation complexity.

As the spectrum is a real smooth function of θ, taking a derivative of Λ(ejθ) with

respect to θ and setting ∂Λ(ejθ)/∂θ = Λ̇(θ) = 0, we obtain

F (z) = F ∗(z) (5.14)

where F (z) =
∑2

n=1 ns(n)zn is a polynomial of order 2. As mentioned before, in a

noiseless environment, Λ(ej2πε), the Fourier transform of {s(n)}, is a scaled version of

57



the function sinc2(ε), and all roots of Λ̇(z) = Λ̇(θ)|ejθ=z = j(F (z) − F ∗(z)) are on the

unit circle.

For simplicity, we shall use the first approach, i.e., the desired estimate is to be

obtained by

ε̂ =
3N

j2πN
lnẑ (5.15)

where

ẑ = arg

{
max
zi∈Ω

Λ(z)

}
, Ω =

{
z|Λ̇(z) = 0, |z| = 1

}
(5.16)

Note that we have converted the exhaustive search problem of (5.9) to a root-finding

problem, reducing the candidate solution number from infinity to at most 4.

We summarize the procedure leading to (5.16) as follows.

1) Collect three received symbols obtained from interpolations and construct the sample

correlation matrix R̂Y Y .

2) Calculate the coefficients of F (z) based on R̂Y Y .

3) Find the nonzero unit-magnitude roots of (5.14).

4) Obtain the CFO estimate from (5.15) and (5.16).

We notice that the solutions of (5.14) are the nonzero roots of the polynomial

G(z) = z2(F (z)− F ∗(z)) (5.17)

On the other hand, (5.14) implies that the roots of Λ̇(z) satisfy the equation Im{F (z)} =

0, where Im{F (z)} is the imaginary part of F (z). This observation indicates that the

nonzero roots of F1(z) = z−1F (z) = 0 (the root z = 0 of F (z) is undesired) are a subset

of the roots of Im{F (z)} = 0. When F (z) is an arbitrary polynomial, its roots are not

necessarily a subset of those of the corresponding G(z) defined by (5.17).
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Proposition 2: In the absence of noise, the polynomial defined by (5.17), G(z), can

be decomposed into

G(z) = F1(z)Q(z) (5.18)

where the desired CFO estimate is one of the roots of Q(z) defined by

Q(z) = z3 − s(−1)

2× s(2)
= z3 − d (5.19)

where d = s(−1)/(2× s(2)).

When noise is present, the above equality becomes an approximation only. Never-

theless, the desired CFO estimate can still be derived immediately from taking the 3th

root of d. The global maximum that collocated with a root of Q(z) corresponds to the

desired CFO estimate while the remaining roots of Q(z) locate at a local minimum (null)

of the spectrum. On the other hand, the roots of F1(z) are at the local sidelobe peaks

of the spectrum. It is clear that the union of the roots of Q(z) and F1(z) is the set of

the roots of G(z). Hence, the complexity of extracting the roots is significantly reduced,

for we only have to solve the equation Q(z) = 0, which happens to have a closed-form

expression for its roots. The above discussion suggests the following simplified CFO

estimate algorithm.

1) Collect three received symbols obtained from interpolations and construct the sample

correlation matrix R̂Y Y .

2) Compute the coefficients d based on two correlation values s(−1) and s(2).

3) Solve Q(z) = 0 for the three unit-magnitude roots of d, {zi}.

4) Find the estimate from (5.15) and (5.16).

5.2 Simulation Results and Discussions

Numerical examples are provided in this section to examine the behavior of the

proposed CFO estimation technique. We utilize three short training symbols which are
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the same as those used in the IEEE 802.16e downlink preamble. CFO is normalized

by subcarrier spacing and the mean values and mean-squared errors (MSE) of various

estimates are computed by 104 independent trials.
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Figure 5.1: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 0 via maximum-likelihood estimation.
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Figure 5.2: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 0 via maximum-likelihood estimation.
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Figure 5.3: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 1 via maximum-likelihood estimation.
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Figure 5.4: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 1 via maximum-likelihood estimation.
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Figure 5.5: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel using IDcell 0 preamble in segment 2 via maximum-likelihood estimation.
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Figure 5.6: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel using IDcell 0 preamble in segment 2 via maximum-likelihood estimation.
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Chapter 6

Uplink Pilot-Assisted Frequency
Synchronization via Interpolation

In this chapter, we consider the problem of estimating CFOs of all active users in the

uplink communication of an OFDMA system. It is assumed that each user transmits

a training block (carrying known symbols) at the beginning of the uplink frame for

synchronization purposes. Our methods are only suitable for a subband-based carrier

assignment scheme, where a group of adjacent subcarriers is allocated to one user so

that signals from different users can be easily separated at the BS through a filter bank.

Hence, if the preamble is still almost-periodic in time-domain as described in chapter 2,

then the interpolation introduced in chapter 3 and the proposed algorithms introduced

in chapter 4 can be applied for uplink environments.

6.1 Signal Models for OFDMA Uplink Transmis-

sions

We consider the uplink of an OFDMA network in which Q active users simulta-

neously communicate with the BS as depicted in Fig. 6.1. The waveform arriving at

the BS is given by the superposition of the signals from all active users. The frequency-

domain subcarriers allocation of each active user for subband-based OFDMA is depicted

in Fig. 6.2. We use N to denote the total number of subcarriers. In the presence of
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CFOs, the time-domain received signal samples of the OFDMA block is given by

r(n) =

Q∑
q=1

{e j2πnεq
N

1√
N

N−1∑

k=0

Xq,kHq,ke
j2πnk

N }+ w(n)

=

Q∑
q=1

xq(n)e
j2πnεq

N + w(n)

n = 0, 1, 2, ...N − 1 (6.1)

where Xq,k is the transmitted frequency-domain complex data of the qth user, Hq,k is

the associated channel frequency responses of the qth user, xq(n) is the time-domain

complex signal after passing Xq,k through a multipath channel without both CFO and

AWGN effect, εq is the qth CFO normalized to the subcarrier spacing and w(n) is the

noise contribution and it is modeled as a circularly symmetric white Gaussian process

with variance σ2
v = 2N0, where N0/2 is the two-sided power spectral density of the

thermal noise.
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Figure 6.1: Discrete-time model of the baseband OFDMA system.
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Figure 6.2: Frequency-domain subcarriers allocation for each active user.

6.2 Carrier Frequency Offset Estimation

When the time-domain signal r(n) is received, we first transform to frequency-

domain by FFT operation to obtain R(k)

R(k) =
N−1∑
n=0

r(n)e−
j2πkn

N (6.2)

and utilize the frequency-domain filter bank to separate each user Rq(k).

Rq(k) =

{
R(k), (q − 1)N/Q ≤ k ≤ qN/Q− 1
0, otherwise

0 ≤ k ≤ N − 1 (6.3)

Then we transform the isolated frequency-domain signal of each active user {Rq(k)}Q
q=1

into time-domain by IFFT operation to obtain {rq(n)}Q
q=1

rq(n) =
1√
N

N−1∑

k=0

Rq(k)e
j2πnk

N (6.4)

and interpolations (chapter 3) follow IFFT operation. After that, we also have almost

three identical parts. Finally, the time-domain correlation-based CFO estimation (chap-

ter 4) can be performed well.
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6.3 Simulation Results and Discussions

In this section, numerical results are presented to demonstrate the performance of

our proposed design. The total number of subcarriers is 512 and is equally distributed

among 4 active users. Hence, each active user has 128 subcarriers. From the simula-

tion results, we have demonstrated that the interpolations can enhance the estimation

accuracy when correlation-based fractional CFO estimation is implemented with almost-

periodic preamble.
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Figure 6.3: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel via Algorithm 1.
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Figure 6.4: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel via Algorithm 1.
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Figure 6.5: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel via Algorithm 2.
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Figure 6.6: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel via Algorithm 2.
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Figure 6.7: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel via Algorithm 3.
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Figure 6.8: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel via Algorithm 3.
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Figure 6.9: MSE of normalized CFO ε̂ estimate as a function of the SNR in AWGN
channel via Algorithm 4.
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Figure 6.10: MSE of normalized CFO ε̂ estimate as a function of the SNR in multipath
fading channel via Algorithm 4.
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Chapter 7

Conclusion

In this thesis, we consider the problem of pilot-aided estimation of the fractional

CFO for TDD-OFDMA systems when the time domain pilot sequence has a almost-

periodic structure. We propose an interpolation approach to reconstruct a periodic

structure of the received pilot samples. Both linear and sinc-based interpolation filters

are considered. The sinc-based filter yields better performance at high SNR region. We

also find that the interpolation (performance) gain is an increasing function of SNR and

depends on the pilot sequence length and channel condition. Dividing the pilot length

of the WiMAX system by three, we obtain a remainder r which measures the degree

of non-periodicity of the pilot length. The interpolation gain is more impressive when

r = 2 than the r = 1 case. Numerical results also indicate the gain is larger in fading

channels than in AWGN channels.
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Appendix A

A Technical Overview of Physical
Layer in Mobile WiMAX System

The term WiMAX (Worldwide Interoperability for Microwave Access) has become

synonymous with the IEEE 802.16 Wireless Metropolitan Area Network (MAN) air

interface standard. The IEEE 802.16 WirelessMAN standard provides specifications

for an air interface for fixed, portable, and mobile Broadband Wireless Access (BWA)

systems. The standard includes requirements for high data rate Line of Sight (LOS)

operation in the 10-66 GHz range for fixed wireless networks as well as requirements for

Non Line of Sight (NLOS) fixed, portable, and mobile systems operating in licensed and

unlicensed bands from 2 to 11 GHz bands. The latest 802.16e amendment is supporting

for mobility in WiMAX system. In this appendix, we provide a general introduction to

IEEE 802.16e TDD OFDMA system.

A.1 WiMAX Architecture and Applications

Mobile WiMAX is a broadband wireless solution that enables convergence of mobile

and fixed broadband networks through a common wide area broadband radio access

technology and flexible network architecture. The Mobile WiMAX Air Interface adopts

OFDMA for improved multi-path performance in non-line-of-sight environments. Scal-

able OFDMA (SOFDMA) is introduced in the IEEE 802.16e Amendment to support

scalable channel bandwidths from 1.25 to 20 MHz.
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A.2 OFDMA Sub-Channelization

Active (data and pilot) sub-carriers are grouped into subsets of sub-carriers called

subchannels. The WiMAX OFDMA PHY [5] supports sub-channelization in both DL

and UL. The minimum frequency-time resource unit of sub-channelization is one slot,

which is equal to 48 data tones (sub-carriers).

There are two types of sub-carrier permutations for sub-channelization: diversity

and contiguous. The diversity permutation draws sub-carriers pseudo-randomly to form

a sub-channel. It provides frequency diversity and inter-cell interference averaging. The

diversity permutations include DL FUSC (Fully Used Sub-Carrier), DL PUSC (Par-

tially Used Sub-Carrier) and UL PUSC and additional optional permutations. With

DL PUSC, for each pair of OFDM symbols, the available or usable sub-carriers are

grouped into clusters containing 14 contiguous sub-carriers per symbol, with pilot and

data allocations in each cluster in the even and odd symbols as shown in Fig. A.1.

Even Symbols

OddSymbols

DataSub-Carrier

PilotSub-Carrier

Even Symbols

OddSymbols

DataSub-Carrier

PilotSub-Carrier

Even Symbols

OddSymbols

DataSub-Carrier

PilotSub-Carrier

Figure A.1: DL Frequency Diverse Sub-Channel

A re-arranging scheme is used to form groups of clusters such that each group is made

up of clusters that are distributed throughout the sub-carrier space. A sub-channel in

a group contains two (2) clusters and is comprised of 48 data sub-carriers and eight (8)

pilot subcarriers.
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Analogous to the cluster structure for DL, a tile structure is defined for the UL PUSC

whose format is shown in Fig. A.2.

Data Sub-CarrierPilot Sub-Carrier

Symbol0

Symbol1

Symbol2

Data Sub-CarrierPilot Sub-Carrier

Symbol0

Symbol1

Symbol2

Data Sub-CarrierPilot Sub-Carrier

Symbol0

Symbol1

Symbol2

Figure A.2: Tile Structure for UL PUSC

The available sub-carrier space is split into tiles and six (6) tiles, chosen from across

the entire spectrum by means of a re-arranging/permutation scheme, are grouped to-

gether to form a slot. The slot is comprised of 48 data sub-carriers and 24 pilot sub-

carriers in 3 OFDM symbols.

The contiguous permutation groups a block of contiguous sub-carriers to form a

subchannel. The contiguous permutations include DL AMC and UL AMC, and have

the same structure. A bin consists of 9 contiguous sub-carriers in a symbol, with 8

assigned for data and one assigned for a pilot. A slot in AMC is defined as a collection

of bins of the type (N x M = 6), where N is the number of contiguous bins and M is the

number of contiguous symbols. Thus the allowed combinations are [(6 bins, 1 symbol),

(3 bins, 2 symbols), (2 bins, 3 symbols), (1 bin, 6 symbols)]. AMC permutation enables

multi-user diversity by choosing the sub-channel with the best frequency response.

In general, diversity sub-carrier permutations perform well in mobile applications

while contiguous sub-carrier permutations are well suited for fixed, portable, or low

mobility environments. These options enable the system designer to trade-off mobility

for throughput.
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Parameters Values

System Channel Bandwidth (MHz) 1.25 5 10 20
Sampling Frequency (Fp in MHz) 1.4 5.6 11.2 22.4

FFT Size (NFFT) 128 512 1024 2048
Number of Sub-Channels 2 8 16 32

Sub-Carrier Frequency Spacing 10.94kHz
Useful Symbol Time (Tb = 1/f) 91.4 microseconds

Guard Time (Tg =Tb/8) 11.4 microseconds
OFDMA Symbol Duration (Ts = Tb + Tg) 102.9 microseconds
Number of OFDMA Symbols (5 ms Frame) 48

Table A.1: OFDMA Scalability Parameters

A.3 Scalable OFDMA

The IEEE 802.16e Wireless MAN OFDMA mode is based on the concept of scal-

able OFDMA (S-OFDMA). S-OFDMA supports a wide range of bandwidths to flexibly

address the need for various spectrum allocation and usage model requirements. The

scalability is supported by adjusting the FFT size while fixing the sub-carrier frequency

spacing at 10.94 kHz. Since the resource unit sub-carrier bandwidth and symbol dura-

tion is fixed, the impact to higher layers is minimal when scaling the bandwidth. The

S-OFDMA parameters are listed in Tab. A.1.

A.4 TDD Frame Structure

The 802.16e PHY supports TDD, FDD, and Half-Duplex FDD operation; however

the initial release of Mobile WiMAX certification profiles will only include TDD. With

ongoing releases, FDD profiles will be considered by the WiMAX Forum to address spe-

cific market opportunities where local spectrum regulatory requirements either prohibit

TDD or are more suitable for FDD deployments. To counter interference issues, TDD

does require system-wide synchronization; nevertheless, TDD is the preferred duplexing

mode for the following reasons:

• TDD enables adjustment of the downlink/uplink ratio to efficiently support asym-
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metric downlink/uplink traffic, while with FDD, downlink and uplink always have

fixed and generally, equal DL and UL bandwidths.

• TDD assures channel reciprocity for better support of link adaptation, MIMO and

other closed loop advanced antenna technologies.

• Unlike FDD, which requires a pair of channels, TDD only requires a single channel

for both downlink and uplink providing greater flexibility for adaptation to varied

global spectrum allocations.

• Transceiver designs for TDD implementations are less complex and therefore less

expensive.

Figure A.3 illustrates the OFDM frame structure for a Time Division Duplex (TDD)

implementation. Each frame is divided into DL and UL sub-frames separated by Trans-

mit/Receive and Receive/Transmit Transition Gaps (TTG and RTG, respectively) to

prevent DL and UL transmission collisions. In a frame, the following control information

is used to ensure optimal system operation:

• Preamble: The preamble, used for synchronization, is the first OFDM symbol of

the frame.

• Frame Control Head (FCH): The FCH follows the preamble. It provides the

frame configuration information such as MAP message length and coding scheme

and usable sub-channels.

• DL-MAP and UL-MAP: The DL-MAP and UL-MAP provide sub-channel al-

location and other control information for the DL and UL sub-frames respectively.

• UL Ranging: The UL ranging sub-channel is allocated for mobile stations (MS)

to perform closed-loop time, frequency, and power adjustment as well as bandwidth

requests.
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• UL CQICH: The UL CQICH channel is allocated for the MS to feedback chan-

nelstate information.

• UL ACK: The UL ACK is allocated for the MS to feedback DL HARQ acknowl-

edgement.

Figure A.3: WiMAX OFDMA Frame Structure

78



Index IDcell Segment Series to modulate (in hexadecimal format)

0 0 0 0x01E52A9B3
1 1 0 0xC96FF8AB1
2 2 0 0xA1F5CE648
3 3 0 0x1E2BF6919
4 4 0 0x051798B72
5 5 0 0x932D7FA8E
6 6 0 0x2CBD50F73
7 7 0 0xF86F6A451
8 8 0 0x2BA44F7E7
9 9 0 0xEEFA172C3
10 10 0 0xFF46C729A
11 11 0 0x0362D5C61
12 12 0 0x27DDC7CA5
13 13 0 0x17EAEDAC6
14 14 0 0x94ACD9E03
15 15 0 0x1A1AC22DD
16 16 0 0xFD5E18DA6
17 17 0 0x35DEB6E0E
18 18 0 0xA0185E326
19 19 0 0x93B3F9C75
20 20 0 0x632481EA8
21 21 0 0x8BB8104A5
22 22 0 0x87C89EF75
23 23 0 0x207AA794C
24 24 0 0x6A4D1C403
25 25 0 0x7761B4BD7
26 26 0 0x31ABBF06D
27 27 0 0x69C6E455F
28 28 0 0xAB3B3CFF0
29 29 0 0x731412685
30 30 0 0xA3135C034
31 31 0 0xFECCB2B85
32 0 1 0xAA37BDA7C
33 1 1 0x90955CE1F
34 2 1 0xADBC1B844
35 3 1 0xA04A3B197
36 4 1 0x015E56CB3
37 5 1 0x64D6F4038

Table A.2: Preamble modulation series per segment and IDcell for the 128 FFT mode
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Index IDcell Segment Series to modulate (in hexadecimal format)

38 6 1 0xD2DD02238
39 7 1 0xFEA763CB2
40 8 1 0x8CE0D5FB6
41 9 1 0xCC25D7A7E
42 10 1 0x7019D3A92
43 11 1 0x784CF7EAB
44 12 1 0x07085DAC8
45 13 1 0x4CEEB5E1F
46 14 1 0x9E5CD5B80
47 15 1 0x63A76FD05
48 16 1 0xAA276F96F
49 17 1 0x3370F5082
50 18 1 0x35A644170
51 19 1 0x16FD73B8B
52 20 1 0xEEE990E94
53 21 1 0x28A3120FC
54 22 1 0xC2FBC2993
55 23 1 0x880BCACD3
56 24 1 0xAFA4DB918
57 25 1 0xAE1E49884
58 26 1 0xF7945E264
59 27 1 0x38374CA42
60 28 1 0x5AAE39B00
61 29 1 0x138069E54
62 30 1 0x966707005
63 31 1 0xA5037759E
64 0 2 0x3FE158D96
65 1 2 0xAED3B839F
66 2 2 0xF5AE23268
67 3 2 0x1895E68BE
68 4 2 0x1443C94EC
69 5 2 0x929547307
70 6 2 0xA17D3230C
71 7 2 0xD54FC0C33
72 8 2 0xAB77F079C
73 9 2 0xC3CA00A66
74 10 2 0x025519879
75 11 2 0x6CF39F815

Table A.3: Preamble modulation series per segment and IDcell for the 128 FFT mode
(continued)
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Index IDcell Segment Series to modulate (in hexadecimal format)

76 12 2 0xF69E451B1
77 13 2 0x91BC72EBF
78 14 2 0xF964A5447
79 15 2 0xF8CD36F4A
80 16 2 0x726A3C802
81 17 2 0x118D1B682
82 18 2 0xDED9E703A
83 19 2 0x3E8929773
84 20 2 0x2C64AA7F9
85 21 2 0x2249CEA0F
86 22 2 0x01363A94E
87 23 2 0x69D77721F
88 24 2 0xAE103C9B9
89 25 2 0x89E2A6940
90 26 2 0xA7BC42645
91 27 2 0xBBB6B9C0F
92 28 2 0x5BF7598F8
93 29 2 0x4AE4C79FE
94 30 2 0x1FDC748C9
95 31 2 0x877D5E6E4
96 0 0 0x0FE322452
97 1 1 0x4DC778B5F
98 2 2 0xADD9E3F88
99 3 0 0x2C1C857DC
100 4 1 0xCFB4B5503
101 5 2 0xCD8505E21
102 6 0 0x82892F4CE
103 7 1 0x3979FD176
104 8 2 0x5FA49C311
105 9 0 0xBA7857B19
106 10 1 0xBC030C4CA
107 11 2 0x517F3CBD6
108 12 0 0x7E545BE73
109 13 1 0xDDCA69C3F
110 14 2 0xA01A2C8C7
111 15 0 0x1C0B64435
112 16 1 0x330282DF2
113 17 2 0x147FCCF4B

Table A.4: Preamble modulation series per segment and IDcell for the 128 FFT mode
(continued)
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