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ABSTRACT

Motivation: Synthetic biology is to engineer artificial biological
systems to investigate natural biological phenomena and for a
variety of applications. However, the development of synthetic gene
networks is still difficult and most newly created gene networks are
non-functioning due to uncertain initial conditions and disturbances
of extra-cellular environments on the host cell. At present, how to
design a robust synthetic gene network to work properly under these
uncertain factors is the most important topic of synthetic biology.
Results: A robust regulation design is proposed for a stochastic
synthetic gene network to achieve the prescribed steady states under
these uncertain factors from the minimax regulation perspective.
This minimax regulation design problem can be transformed to an
equivalent stochastic game problem. Since it is not easy to solve
the robust regulation design problem of synthetic gene networks by
non-linear stochastic game method directly, the Takagi-Sugeno (T-S)
fuzzy model is proposed to approximate the non-linear synthetic
gene network via the linear matrix inequality (LMI) technique through
the Robust Control Toolbox in Matlab. Finally, an in silico example is
given to illustrate the design procedure and to confirm the efficiency
and efficacy of the proposed robust gene design method.
Availability: http://www.ee.nthu.edu.tw/bschen/
SyntheticBioDesign_supplement.pdf

Contact: bschen@ee.nthu.edu.tw

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Synthetic biology will revolutionize how we conceptualize and
approach the engineering of biological systems. The vision and
applications of this emerging field will influence many other
scientific and engineering disciplines, as well as affect various
aspects of daily life and society (Andrianantoandro et al., 2006).
Synthetic biology builds living machines from the off-the-shelf
chemical ingredients, utilizing many of the same strategies that
electrical engineers employ to make computer chips (Tucker and
Zilinskas, 2006). The main goal of the nascent field of synthetic
biology is to design and construct biological systems with the
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desired behavior (Alon, 2003, 2007; Andrianantoandro et al., 2006;
Church, 2005; Endy, 2005; Hasty et al., 2002; Heinemann and
Panke, 2006; Kobayashi et al., 2004; Pleiss, 2006; Tucker and
Zilinskas, 2006). By a set of powerful techniques for the automated
synthesis of DNA molecules and their assembly into genes and
microbial genomes, synthetic biology envisions the redesign of
natural biological systems for greater efficiency as well as the
construction of functional ‘genetic circuit’ and metabolic pathways
for practical purposes (Andrianantoandro, et al., 2006; Ferber, 2004;
Forster and Church, 2007; Gardner, et al., 2000; Heinemann and
Panke, 2006; Isaacs, et al., 2006; Maeda and Sano, 2006; Tucker
and Parker, 2000). Synthetic biology is foreseen to have important
applications in biotechnology and medicine (Andrianantoandro
et al., 20006).

Though the engineering of networks of inter-regulating genes,
so-called synthetic gene networks, has demonstrated the feasibility
of synthetic biology (Gardner et al., 2000), the design of gene
networks is still a difficult problem and most of the newly designed
gene networks cannot work properly. These design failures are
mainly due to intrinsic perturbations such as gene expression noises,
splicing, mutation, uncertain initial states and disturbances such as
changing extra-cellular environments, and interactions with cellular
context. Therefore, how to design a robust synthetic gene network,
which could tolerate uncertain initial conditions, attenuate the effect
of all disturbances and function properly on the host cell, will
be an important topic for synthetic biology (Alon, 2003, 2007;
Andrianantoandro et al., 2006; Batt et al., 2007; Church, 2005;
Endy, 2005; Goulian, 2004; Hasty et al., 2002; Heinemann and
Panke, 2006; Kaznessis, 2006, 2007; Kitano, 2002, 2004; Kobayashi
et al., 2004; Pleiss, 2006; Salis and Kaznessis, 2006; Tucker and
Zilinskas, 2006). Previously, sensitivity analysis has been used
for analysis of the dynamic properties of gene networks either in
qualitative simulations of coarse-grained models or in extensive
numerical simulations of non-linear differential equation models or
stochastic dynamic models (de Jong, 2002; Szallasi et al., 2006).
For applications in synthetic biology, these approaches are not
satisfying. The local sensitivity analysis can provide only a partial
description of all possible behaviors of a non-linear gene network. In
particular, it cannot guarantee that a synthetic gene network behaves
as expected for all uncertain initial conditions and disturbances.
Moreover, obtaining all convergences of states and parameters by
extensive numerical simulations quickly becomes computationally
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intractable when the size of the synthetic network grows (Batt et al.,
2007).

An approach has recently been developed using semidefinite
programming to partition the parameter spaces of polynomial
differential equation models into so-called feasible and infeasible
regions (Kuepfer et al., 2007). Following that, a robustness analysis
and tuning approach of synthetic networks was proposed to provide
a means to assess the robustness of the expected behavior of a
synthetic gene network in spite of parameter variations (Batt et al.,
2007). This approach has the capability to search for parameter sets
for which a given property is satisfied through a publicly available
tool called RoVerGeNe. Several gene circuit design networks have
been introduced to implement or delete some circuits from an
existing gene network so as to modify its structure for improving
its robust stability or filtering ability (Chen and Chen, 2008; Chen
and Wu, 2008; Chen et al., 2008b). However, robust synthetic gene
network design is a different topic. It needs to design a complete
man-made gene network to be inserted into a host cell. Therefore, the
synthetic gene networks should be designed with enough robustness
to tolerate uncertain initial conditions and to resist all possible
disturbances on the host cell so that they can function properly in
a desired steady state. This is a so-called robust regulation design
that can achieve a desired steady state of synthetic gene networks
despite uncertain initial conditions and disturbances on the host cell.

In this study, a robust regulation design of synthetic gene network
is proposed to achieve a desired steady state in spite of uncertain
initial conditions, parameter variations and disturbances on the host
cell. Because most information of these uncertain factors on the host
cell is unavailable, in order to attenuate their detrimental effects,
their worst-case effect should be considered by the designer in
the regulation design procedure from the worst regulation error
perspective. The worst-case effect of all possible initial conditions
and disturbances on the regulation error to a desired steady state is
minimized for the robust synthetic gene networks, i.e. the proposed
robust synthetic gene network is designed from the minimax
regulation error perspective. The minimax design scheme is a simple
robust synthetic gene network design method because we do not
need the precise information of the initial conditions, parameter
variations and disturbances on the host cell, which are not easy to
measure in the design procedure. This minimax regulation design
problem for robust synthetic gene networks could be transformed to
an equivalent dynamic game problem (Basar and Olsder, 1999; Chen
et al., 2002). Dynamic game methods have been widely applied to
many fields of robust engineering design problems with external
disturbances. Recently, the application of dynamic game theory has
been used for robust model matching control of immune systems
under environmental disturbances (Chen et al., 2008a). A robust
drug administration (control input) is designed to obtain a prescribed
immune response under uncertain initial states and environmental
disturbances. In this study, the stochastic game theory will be used
for robust synthetic gene network design so that the engineered
gene network can work properly under uncertain initial conditions
and environmental disturbances on the host cell. The uncertain
initial states and disturbances are considered as a player doing
his best to deteriorate the regulation performance from the worst-
case point of view, while the system parameters to be designed are
considered as another player optimizing the regulation performance
under the worst-case deterioration of a former player. Since the
synthetic gene networks are highly non-linear, it is not easy to solve

the robust synthetic gene network design problem directly by the
non-linear dynamic game method directly. Recently, fuzzy systems
have been employed to efficiently approximate non-linear dynamic
systems to solve the non-linear control problem (Chen et al., 1999,
2000; Hwang, 2004; Li et al., 2004; Lian et al., 2001; Takagi and
Sugeno, 1985). A Takagi—Sugeno (T-S) fuzzy model (Takagi and
Sugeno, 1985) is proposed to interpolate several linearized genetic
networks at different operating points to approximate the non-
linear gene network via some smooth fuzzy membership functions.
Then with the help of the fuzzy approximation method, a fuzzy
dynamic game scheme (Chen et al., 2002) is developed so that the
minimax regulation design of robust synthetic gene networks could
be easily solved by the techniques of the linear dynamic game theory,
which can be subsequently solved by a constrained optimization
scheme via the linear matrix inequality (LMI) technique (Boyd
et al., 1994) that can be efficiently solved by the Robust Control
Toolbox in Matlab (Balas et al., 2008). Because the fuzzy model can
approximate any non-linear system, the proposed robust regulation
design method developed from the fuzzy stochastic game theory can
be applied to the robust regulation design problem of any synthetic
gene network that can be interpolated by a T-S fuzzy model. For
comparison, the conventional optimal regulation design method
without considering the effect of disturbances is also proposed for
the synthetic gene network. Because the effect of disturbances is
not attenuated efficiently, the optimal regulation design method of
synthetic gene networks is much influenced by the disturbances on
the host cell. Finally, an in silico example is given to illustrate the
design procedure and to confirm the efficiency and efficacy of the
proposed minimax regulation design method for robust synthetic
gene networks.

2 SYSTEMS AND METHODS

First, for the convenience of problem description, a simple design example
of a four-gene network in Batt et al. (2007) is provided to give an overview
of the design problem of robust synthetic gene networks. A more general
design problem of robust synthetic gene networks will be given in the
sequel. Let us consider a robust regulation design problem of a cascade loop
of transcriptional inhibitions built in Escherichia coli. (Hooshangi et al.,
2005). The synthetic gene network is represented in Figure 1. It consists of
four genes: fetR, lacl, cI and eyfp that code, respectively, three repressor
proteins, TetR, Lacl and CI, and the fluorescent protein EYFP (enhanced
yellow fluorescent protein) (Batt et al., 2007). aTc (anhydrotetracycline) is
the input to the system. The fluorescence of the system, due to the protein
EYFP, is the measured output. The protein CI inhibits gene eyfp. The protein
TetR inhibits gene lacl. The protein Lacl inhibits gene cl. The regulatory
dynamic equations of the synthetic transcriptional cascade in Figure 1 are

e
L

Fig. 1. Synthetic transcription cascade loop in silico design example. aTc
represses TetR, TetR represses lacl, Lacl represses cI, CI represses eyfp. aTc
is the system input and the fluorescent protein EYFP is the output.
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given as follows (Batt et al., 2007).
XtetR = KtetR,0 = VietRXtetR + W1 (1)
Xtact = kiact,0 +Kiact (T1act (XtetR) + Qact (Uate) = Tiact XeerR)Alact (Uate))
= YiaeIXlacl +W2
Yot =ker,0+Kerer Xiaer) = YerXer +ws3

Xe)fp = ke)fp,() + keyfp Yeyfp (xcl ) — YeyfpXeyfp +wy

with the uncertain initial conditions x;e;r(0), Xiacr(0), xc7(0) and x,yp(0) in
the host cell. kier,0, kiaer,0, ker,0 and keypp 0 are basal production rates of
the corresponding proteins, which are assumed to be given constants. kjqy,
ker and keyp, are the production rate parameters, while Vier, Viacr, yer and
Yeyp are decay rate parameters of the corresponding proteins. The regulatory
functions ricy, rer and reyy, are the Hill functions for repressors and ajqcr for
an activator.

The Hill function can be derived from considering the equilibrium binding
of the transcription factor to its site on the promoter region. For a repressor,
Hill function is an S-shaped curve which can be described in the form r(x)=
Br/(1+(x/K,)"). B,is the maximal expression level of promoter. K, is the
repression coefficient. The Hill coefficient n governs the steepness of the
input function. For an activator, Hill function can be described in the form
a(x)=pPax"/ (K +x"). Bq is the maximal expression level of promoter. K,
is the activation coefficient. n determines the steepness of the input function
(Alon, 2007). wy, wa, w3 and w4 are the disturbances of the synthetic gene
network, which denote the total of environmental noises, modeling residuals,
intrinsic parameter fluctuations in the host cell. Therefore, w;, i=1-4 are
assumed uncertain but bounded disturbances. The synthetic gene network
design is to specify Kiacr, kers keyfp and Viewrs Yiact» Vel» Yeyfp Such that the
system states Xesr, Xiacl» Xc1 and Xeyf, can approach the desired states xg4p,
Xa2, Xq3 and x44, respectively, in spite of uncertain initial conditions and
disturbances.

If a synthetic gene network consists of n genes, then Equation (1) can be
extended to the following n-gene network dynamics.

x=ko+f(x,k,y)+gw)+w, x(0)=xo (@)

where the state vector x denotes the concentrations of proteins in the
synthetic gene network. ko denotes the vector of basal production rates of the
corresponding proteins. f(x,k,y) denotes the regulation vector of synthetic
gene network, which is the function of production rate parameters k and
decay rate parameters y to be designed. g(u) denotes the input function to
the synthetic gene network. w denotes the vector of stochastic disturbances
on the host cell, whose statistics may be unavailable. The initial condition xo
is assumed stochastic with unknown covariance. The robust synthetic gene
network design is to select parameters k and y from feasible ranges so that
the state vector x can approach a desired state vector x4 in spite of uncertain
initial condition x(0) and disturbances w on the host cell. i.e. x — x4 at the
steady state despite uncertain x(0) and w. This is a robust regulation problem
of synthetic gene networks, i.e. the state vector x of synthetic gene networks
is robustly regulated to x4 in the host cell.
Let us denote the regulation error as

X=x—Xxq4 3)
Then the regulation error dynamic system is given by
¥=fG4xa,k,y)+v, X0) =T @

where v=ko+g(u)+w denotes the total uncertain disturbance in the
regulation error system because these terms always fluctuate in the host cell
and are not easily measured correctly. Because of the uncertainty of v and
X(0), the minimax regulation design method is an efficient but simple design
scheme for robust synthetic gene network. The uncertainty of disturbance v
and initial condition x(0) in the following minimax design can be considered
as a player maximizing their effects on the regulation error in the following

robust design problem of synthetic gene networks (Basar and Olsder, 1999;
Chen et al., 2002).

. E [ Jirsr chdz] -
min max
kelki k] ¥OVE [ i vTvdt+5cT(0)X(O):|

y €lyi, 2l

where Q is the weighting matrix. In general, Q is a diagonal weighting matrix
with Q=diag([q11, ¢22, - -, gnn]) to denote the punishment on regulation error.
If only the last state x, is required to be regulated to achieve the desired
steady state xg,, then we can let g,, = 1 and ¢11 =g ="-=¢n—1,—1=0.
[k1,k2] and [y1,y2] denote the allowable ranges of production rate vector k
and decay rate vector y, respectively. The allowable ranges are determined by
the engineering biotechnologies of synthetic biology. k and y to be designed
can be considered as another player minimizing the worst-case effect of
X(0) and v on the regulation error. If the disturbances v and initial condition
X(0) are deterministic, then the expectation operation E[ ] in (5) could be
neglected.

The physical meaning of (5) is that the worst-case effect of uncertain
X(0) and v on the regulation error ¥ must be minimized from the mean
energy perspective by k and y, which are chosen from the allowable ranges.
Therefore, for uncertain X(0) and v, the robust synthetic gene network design
is to solve the minimax problem in (5) subject to the regulation error dynamic
system in (4). This is the so-called stochastic game problem in the robust
synthetic gene network design (Basar and Olsder, 1999).

In general, it is not easy to solve the non-linear stochastic game problem
in (5) subject to (4) directly. It is always solved by a sub-minimax method.
First, let the upper bound g2 of (5) (Basar and Olsder, 1999; Chen et al.,
2002) be

E [ i ScTchdt}
min max - <g 6)

kelki k] ¥OvE [ i vTvdtHT(O);c(O)]

v €lvi, .l
We will first solve the sub-minimax problem in (6) and then decrease the
upper bound g2 as much as possible to approach its minimax solution. In
general, the minimax problem in (6) is equivalent to the following minimax
problem (Basar and Olsder, 1999; Chen et al., 2002)

i
min  maxE [ / (scTQSC— g2vTv) dt] <gE[FT(OFO0)], V¥O0) ()
kelki k] 7 0
y€lyi 2l
where g is to be minimized because it is the upper bound in (6) and should

be as small as possible to approach the minimax solution. Let us denote the
cost function as

1
J(k,r,v):E[f/ (iTQ;C_gzvrv)dz} 8)
0
3 RESULTS
3.1 Sub-minimax design for robust synthetic gene
networks

From the above analysis, the dynamic game problem in (6) or (7) is
equivalent to finding the worst-case disturbance v* which maximizes
J(k,y,v) and then the minimax k* and y* which minimize J(k, y,v*)
such that the minimax value J(k*,p*,v*) is less than ng[)NcT(O)fc(O)],
ie.

kK kY . E3 . ; 2 [T (o= ~
J (K y* v )_kel?ll?kzj J(k,r.v )_kE[r/;‘ll?kZJ m‘thJ(k,V,v)Sg E[x (O)X(O)], Vx(0) 9
velyy.»l velyr.»nl

Hence, if there exist k*, y* and v* such that the minimax design
problem in (9) is solved, then they can satisfy the minimax
performance of the robust synthetic gene network design in (6) as
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well. Therefore, the first step of robust synthetic gene network design
is to solve the following dynamic game problem:

min maxJ (k, Y, v) (10)
kelky,kp] 7
v €lvi,»l

subject to the error dynamic equation in (4). Since J (k*,y*,v*) <
ng[ch(O)}(O)] according to (9) and g2 is the upper bound of the
game in (6), the sub-minimax has to make g2 as small as possible,
too.

From the above analysis, we obtain the following sub-minimax
result for robust synthetic gene network design.

PrOPOSITION 1. The sub-minimax synthetic gene network design is
equivalent to solving the following constrained optimization for k*
and y*,
min g (1)
kelk 1 k2]
y€lyi. 2l

subject to the following Hamilton—Jacobi inequality (HJI)

~\T ~\T -
(B52) rGra ko) +3 0+ g (152 (L552) <0
E[V(#0))] < g?E[FT (0)%(0)]

(12)
with V(x) >0 and the worst-case disturbance is given by
1 avV(x
L) (13)
22 9%

PROOF. see Appendix A in the Supplementary Material.

REMARK 1.

(1) From (6), g2 is the upper bound of the game. In (11), we
minimize the upper bound g% to achieve the sub-minimax
solution for robust synthetic gene networks.

(2) The physical meaning of the constrained minimization in (11)
and (12) is that we want to specify k* and y* from the
allowable parameter ranges such that the upper bound g2 is
as small as possible until no positive solution V(x)> 0 of HJI
in (12) exists.

(3) At present, there exists no efficient analytic or numerical
method to solve the HJI in (12) for non-linear stochastic system
control or filtering designs (Zhang and Chen, 2006; Zhang
et al., 2005).

3.2 Minimax robust synthetic gene networks via fuzzy
interpolation method

Because it is very difficult to solve the non-linear HJI in (12),
no simple approach is available for solving the constrained
optimization problem in (11) for the minimax robust synthetic
gene network design problem. Recently, the T-S fuzzy model has
been widely employed (Chen er al., 1999, 2000; Hwang, 2004;
Takagi and Sugeno, 1985) to approximate the non-linear system via
interpolating several linearized systems at different operating points
so that the non-linear Nash stochastic problem could be transformed
to a fuzzy stochastic game problem (Chen et al., 2002). By using
such approach, the HJI in (12) can be replaced by a set of LMIs. In
this situation, the non-linear stochastic game problem in (10) could

be easily solved by the fuzzy dynamic method for the robust design
of sub-minimax design problem.

Suppose the non-linear system in (4) could be approximated by
a T-S fuzzy system (Takagi and Sugeno, 1985). The T-S fuzzy
model is a piecewise interpolation of several linearized models
through fuzzy membership functions. The fuzzy model is described
by fuzzy if-then rules and will be employed to deal with the non-
linear stochastic game problem for robust synthetic gene network
design under uncertain initial conditions and disturbances. The i-th
rule of fuzzy model for non-linear systems in (4) is of the following
form (Chen et al., 1999; Takagi and Sugeno, 1985).
RULE i
If X1 (¢) is F;1 and ... and X4(?) is Fig,

then x=A;(k,)i+v, i=1,2,...,L (14)

where Fj; is the fuzzy set. A;(k,y) is constant matrix with the
elements of k and y contained in its entries. g is the number of
premise variables and X1, ..., X4 are the premise variables. The fuzzy
system is inferred as follows (Chen et al., 1999, 2000; Li et al., 2004;
Lian et al., 2001; Takagi and Sugeno, 1985)

x(t)=

L miGa)IAk,y )7 L
Z':l”’;(L’))[ ’({(;)”(’)*” =3 hE Ak, FD+], JO)=F  (15)
=1 Hilx i=1

q
where (;(%(1)) = [] Fij(% (), hi(2(6)) = i (3(1))/ ZiLzl wi(x(#)) and
j=1
Fj(%;(1)) are the grade of membership of ;(¢) in Fj;.

We assume

L
ui(E(0)=0and Y i (@(1)>0 (16)

i=1
Therefore, we get the following fuzzy basis functions

L
hi(x(t))=0 and Zhi(fc(l))=1 a7

i=1

The T-S fuzzy model in (15) is to interpolate L linear systems
to approximate the non-linear system in (4) via the fuzzy basis
functions £;(X(¢)). We could specify system parameter A;(k,y ) easily
so that Z,'Lzl hi(x(t))A;(k,y)X can approximate f (X+x;,k,y) in (4)
by the fuzzy identification method (Takagi and Sugeno, 1985).

After the non-linear system in (4) is approximated by the T-S
fuzzy system in (15), the non-linear dynamic game problem in (10)
is replaced by solving a dynamic game problem in (6) subject to the
fuzzy system (15).

PRrROPOSITION 2. The sub-minimax robust synthetic gene network
design is to solve k* and y* by the following constraint optimization

min g2 (18)
kelky k]

y €lyi.v2l

subject to

PA,-(k,r)+AiT(k,r)P+Q+gi2PP§0, i=1,...,L

(19)
P<g*l,P>0
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and the worst-case disturbance v* is given by
1 L
V= 2 > hi()Px (20)
i=1

PROOF. see Appendix B in the Supplementary Material.

By the fuzzy approximation, the HJI in (12) can be approximated
by a set of algebraic inequalities in (19). By Schur complement
(Boyd et al., 1994), the constrained optimization problem in (18)
and (19) is equivalent to the following LMI-constrained optimization
problem

min  g? 21
kelky, k]
Y €y vl
subject to
PAik, ) +AT ke, )P+0 P ],
=1,2,....L
[ P I 22)
P<g%I, P>0
REMARK 2.

(1) The fuzzy basis functions 4;(x) in (15) and (17) can be replaced
by other interpolation functions, for example, cubic spline
functions.

(2) By the fuzzy approximation, the HJI in (12) of non-linear
dynamic game problem can be solved by Robust Control
Toolbox in Matlab efficiently (Balas et al., 2008). The
constrained optimization in (18) and (19) can be solved by
decreasing g2 until there is no positive definite solution P> 0
in (22) with k* €[k ,k2] and y™* €[y 1,y2].

In the LMI-constrained optimization in (22) for the robust
synthetic gene network design, we do not need the statistics
of initial conditions and disturbances on the host cell, which
are not easy to be measured. Therefore, the proposed method
is simple but robust for synthetic gene networks.

@3

~

REMARK 3. For comparison, the conventional optimal regulation
design is also proposed for synthetic gene networks. If the effect
of external disturbances and uncertain initial conditions on the
regulation error is not considered as (5) in the design procedure,
i.e. only the following optimal regulation design is considered.

) T ro
min E|:/ X Qxdt] (23)
0

kelky, ko]
vy €ly1,y2]

subject to (4) then we obtain the following sub-optimal regulation
design for synthetic gene networks.

PROPOSITION 3. The sub-optimal synthetic gene network design in
(23) is to solve the following constrained optimization

min  E[V(%(0))] 24)
kelky, k]
Y €lv1, 72l
subject to
- 7 i
V®)>0. aVEX)f(iﬂLxd,k,rHiTQiJrl<8VEX)> <8VEx) <0
ax 2 9% 9%
(25)

PROOF. see Appendix C in the Supplementary Material.

Because it is not easy to solve the above HIJI-constrained
optimization for the sub-optimal regulation design in (24) and
(25), the fuzzy approximation method is needed to simplify the
design procedure. If the non-linear error dynamic equation in (4)
is represented by the fuzzy interpolation system in (15), then the
optimal synthetic gene network design in (23) is equivalent to the
following optimal regulation design problem.

min  E [f(;f )?TQidt]
kelky, k]
v €ly1. 72l (26)
L
subject to X=>_ hj(X)A;(k,y)xi+v
i=1
PrOPOSITION 4. The sub-optimal regulation design problem in
(26) becomes how to solve the following constrained optimization
problem

min Tr(PRO) 27)
kelky, k]
v €lvi,rl
subject to
T .

where R(y denotes the covariance matrix E x0)xT (0)].
PROOF. Similar to the proof of Proposition 2.

Since the effect of stochastic disturbances on X is not considered
as (5) in the above sub-optimal synthetic gene network design, the
synthesized gene networks will be more sensitive to the external
disturbances or other uncertain factors. They will be compared with
the sub-minimax robust synthetic gene network in the simulation
example.

REMARK 4. Since the effect of the disturbance v on the regulation
error has not been attenuated efficiently on the design procedure of
the sub-optimal regulation in Propositions 3 and 4, the disturbance
will have much effect on the sub-optimal regulation design of
synthetic gene network. This property will be discussed and
compared with the proposed robust synthetic gene network in the
design example in the following section.

3.2.1 Design procedure  According to the analyses above, a
design procedure is developed for the proposed robust synthetic
gene network.

(1) Give feasible parameter ranges [ki.,kp] and [y1,y»] for
production rate parameters k and decay rate parameters y,
respectively, according to the biotechnology ability.

(2) Give the desired steady state x; according to the design
purpose and develop a regulation error dynamic (4) for a
synthetic gene network.

(3) Construct a T-S fuzzy model in (15) to approximate the
regulation error dynamic in (4).

(4) Solve the constrained optimization problem from the ranges
k €lky,k2] and y €[y1,y2] in (21) and (22) for the robust
synthetic gene network design k* and y*, respectively
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according to the sub-minimax scheme or solve the constrained
optimization problem in (27) and (28) for the sub-optimal
regulation design.

3.3 Design example in silico for the proposed robust
design

Consider the man-made synthetic gene network in the dynamic
equations (1) (Batt et al., 2007). The synthetic gene network is
shown in Figure 1. Where kyeir 0, Kiacr,0» ker,0 and keygy o are basal
production rates of the corresponding proteins, which are assumed
to be 5000, 587, 210 and 3487, respectively (Batt et al., 2007;
Hooshangi et al., 2005). kjger, ker and keyp, are the production
rate parameters while ViR, Viger, YeI and Yeyp, are the decay
rate parameters of the corresponding proteins in the host cell (i.e.
E. coli.). In the robust synthetic gene network design, we should
select the parameters k and y from feasible ranges so that the state of
synthetic gene network x; could approach a desired steady state x4 ;
for some biotechnical purpose. riger, rer and reyp, are the decreasing
Hill functions for regulations of repressors. aj,.; is an increasing
function since aTc is an activator. The Hill function is an S-shaped
curve (Alon, 2007). u,7c is the input to the synthetic gene network
system. We assume anhydrotetracycline input concentration to be
a constant value 10000 (i.e. u,7.=10000). For the convenience
of simulation, we assume that extrinsic disturbances wi—wy are
w; = [500n; 10 000y 100n3 100000n4]", where n;, i = 1,2,3,4
are independent Gaussian white noises with zero mean and unit
variance.

From the robust synthetic gene network design procedure, we
give the feasible parameter ranges of production rate parameters k
and decay rate parameters y as follows (Batt ef al., 2007)

Ytetr €[0.05,5]
Viaer €[0.01314,0.1517]
ver €10.7617,7.2815]
Veysp €10.007,0.067]

Kiger €170,7000]
ker €[75,8000]
Koyt €[30,30000]

(29)

Then we give the desired steady states of the synthetic gene network
are xg ;=[1000, 50000, 300, 500 OOO]T, i=tetR, lacl, cl, eyfp. Then
the regulation error dynamic equation in (4) is developed for the
synthetic gene network. Because it is very difficult to solve the
non-linear HJI in (12), no simple approach is available to solve
the constrained optimization problem in (11) for robust parameters
k;‘ and yl.*. We construct the T-S fuzzy model in (15) to approximate
the regulation error dynamic in (4) with the regulation error dynamic
system’s state variables as the premise variables in the following.

RULE i:
If X1 (¢) is Fj; and X (¢) is Fjp and X3(¢) is Fy3 and x4(¢) is Fiq,

then i =A;(k, y)¥+v, i=1,2,...,L

where the parameters A;(k,y ) and the number of fuzzy rules is L= 16.
To construct the fuzzy model, we need to find the operating points
of the regulation error dynamic system. The operating points for
X1 are chosen at x11 =—40 and x|, =4040. Similarly, the operating
points of Xp,x3,x4 are chosen at xp; =—38510, xpp =381, X371 =
—16.7, x3p =1686, x41 =—441590, and x4p =4372, respectively.
For the convenience of design, triangle-type membership functions
are taken for Rule 1 through Rule 16. We create two triangle-type
membership functions for each state (Fig. 2).

. 3
kS o 1 = e
1 by / :
“‘-»;) - ' . ~.- '
Pt b : : = = :
P ~_! . ~
= — Y —1‘/——‘-?bx2
B T2 n X
| \/ L s ;
e, o
__4—\:'_.?‘;3 i -y %,
K31 X3 T o

Fig. 2. Membership functions for four states X;, X2, X3 and X4.

In order to simplify the non-linear stochastic game problem of the
robust synthetic gene network, we just solve only the sub-minimax
problem in (6) instead. With the help of fuzzy approximation method
and LMI technique, we can easily solve the constrained optimization
problem in (21) and (22) instead of the non-linear constrained
optimization problem in (11) and (12) for the minimax robust
synthetic gene network design. Finally, we obtain the upper bound
of the game in (6) g% = 0.847536 and a common positive definite
symmetric matrix P for (22) as follows

0.45842 —0.0079  0.0143 —0.00068
—0.0079 0.07186 —0.000557 0.00268

0.0143  —0.000557 0.04847 0.000718
—0.00068 0.00268 0.000718 0.0578

P=

with the specified robust production rate parameters k;;ldz

7000, k% =4037.5 and k:‘yp=30000 and robust decay rate

parameters y,5 =5, v ;=0.1517, y; =4.0216 and V(:;fp =0.067
of the synthetic gene network. With these design parameters,
the parameters A; of fuzzy model are described in Appendix D
(Supplementary Material).

Figure 3 presents the simulation result for robust synthetic gene
networks by using Monte Carlo method with 50 rounds and with the
uncertain initial values. x1(0)—x4(0) are assumed normal-distributed
random numbers with means 5000, 8000, 2000, 10 000 and SDs
500, 800, 200, 1000, respectively. As can be seen, the synthetic gene
network has robust regulation ability to achieve the desired steady
state (black dashed line) in spite of uncertain initial states and the
disturbances on the host cell. Obviously, the robust synthetic gene
network by the proposed sub-minimax regulation design method
has robust stability to the uncertain initial conditions and enough
filtering ability to attenuate the disturbances on the host cell and can
approach the desired steady states.

For comparison, we solve the sub-optimal regulation design
problem in (27) and (28) for the specified production rate parameters
K 70, k};=4037.5 and k:‘}fp =15015 and decay rate parameters

lacl —

Veorp =2-525, y;{‘;d =0.1517, y}; =7.2815 and J’:yfp =0.067 of the
synthetic gene network. The simulation result of conventional
optimal regulation design is also shown in Figure 4. As can be seen,
the conventional optimal regulation design of the synthetic gene
network is more sensitive to the initial conditions and disturbances,
and cannot achieve the desired steady state under the uncertain initial
conditions and disturbances.

REMARK 5. The experimental systems in the above example may not
be fully observable. If we want to know whether all state variables
can approach to the desired states x,;, several fluorescent proteins
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o Robust Synthetic gene network
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Fig. 3. The robust synthetic gene network design with uncertain initial values
and the desired steady states x; =[1000, 50000, 300, 500000]7. And with
specified robust production rate parameters kj, ., =7000, k%; =4037.5 and
k¥ . =30000 while the specified robust decay rate parameters are y,;,, =5,
Yipey =0.1517, y/; =4.0216 and y;jp =0.067 of the synthetic gene network.
The Monte Carlo simulation method is used with 50 rounds.

The conventional optimal regulation design

Concentration

Tuﬂ: difiuses into the host cell

1 1
D 10 20 30 40 50 60
Time({min)

Fig. 4. The conventional optimal regulation design with uncertain initial
values and the desired steady states x; = [1000,50000,300,500000]7. And
with specified production rate parameters kj, ., =70, k7; =4037.5 and k; , =
15015, while the specified decay rate parameters are y,,, =2.525, v, =
0.1517, y;;=7.2815 and y,;, =0.067 of the synthetic gene network. It is
seen that the conventional optimal regulation design of the synthetic gene
network is sensitive to the initial conditions and disturbances and cannot
achieve the desired steady states. The Monte Carlo simulation method is
used with 50 rounds.

(red, green and cyan color) should be necessary to observe their
protein expressions of all state variables in the experimental design.

4 DISCUSSION

Because the initial conditions and disturbances on the host cell are
uncertain, to simplify the design problem, a robust synthetic biology

design is formulated as a stochastic game problem in this study.
The uncertain initial conditions and disturbances due to intrinsic
and extrinsic molecular noises on the host cell are considered as a
player maximizing the regulation error and the design parameters
are considered as another player minimizing the regulation error.
In order to avoid solving HJI in the stochastic game theory-based
design problem, a T-S fuzzy interpolation method is introduced to
simplify the design procedure of robust synthetic gene networks via
only solving a set of LMISs, which can be efficiently solved by Robust
Control Toolbox in Matlab.

In our study, we can select the weighting matrix Q= diag([g11,
422, 433, q44]) which denotes the punishment on the corresponding
tracking error x. If we only need to achieve a desired steady state
xg44 (EYFP), we just assign a value to the fourth diagonal element
q44 of the weighting matrix Q and set g11 = g2 =¢33 =0. The states
x1—x3 will not approach to the given steady state x;1—x43 because
of no any punishment. However, in this case, some infeasible steady
states of x1, xp and x3 may be obtained even an optimal x4 can be
achieved. In this study, the desired steady states of x1, xp and x3 are
given because we can avoid obtaining infeasible steady states in x1,
xp and x3 when an optimal x4 is achieved. Further, the undesired
steady states of x1, xo and x3 may also have metabolic toxicity on
host cell and should be avoided. Since the steady states of x|—x3 are
not that important, the desired steady states x,;;—x;3 can be adjusted
within feasible ranges, so that the desired steady state x4 can still
achieve some optimization as possible. This kind of design can avoid
hampering the optimization of x4 when x|, xp and x3 achieve some
feasible steady states.

In our in silico design example, we can design the specified
robust production rate parameters kl?k and decay rate parameters
Vi* within the feasible parameter ranges to achieve the desired
steady states of the synthetic gene network. As for the biological
implementation, we could refer to standard biological parts in
biological device datasheets to construct the genetic circuits with the
fine-tuned production rate parameters kl.* and decay rate parameters
Vi*' In this way, synthetic biologists can increase efficiency of gene
circuit design through registries of biological parts and standard
datasheets, which are developed concerned with proper packing
and characterizing of ‘modular’ biological activities so that these
biological parts or devices with some desired characteristics may be
efficiently assembled into gene circuits (Canton, et al., 2008).

Quantitative descriptions of devices in the form of standardized,
comprehensive datasheets are widely used in many engineering
disciplines. A datasheet is intended to allow an engineer to
quickly determine whether the behavior of a device will meet
the requirements of a system in which a device might be used
(Canton, et al., 2008). Such a determination is based on a set of
standard characteristics of device behavior, which are the product of
engineering theory and experience. In the datasheets of engineering,
the characteristics typically reported are common across a wide
range of device types, such as sensors, logic elements and actuators.
Recently, biological datasheets have been set as standards for
characterization, manufacture and sharing of information about
modular biological devices for a more efficient, predictable and
design-driven genetic engineering science (Arkin, 2008; Canton,
et al., 2008). Because datasheets of biological parts or devices
are an embodiment of engineering standard for synthetic biology
(Canton, et al., 2008), a good device standard should define
sufficient information about biological parts or devices to allow
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the design of gene circuit systems with the optimal parameters.
Datasheets contain a formal set of input—output transfer functions,
dynamic behaviors, compatibility, requirements and other details
about a particular part or device (Arkin, 2008; Canton, et al.,
2008). Since parameters k; are combinations of transcription and
translation, they could be measured from the input—output transfer
functions and dynamic behaviors of biological parts or devices in
biological device datasheets. From properly characterized input—
output transfer functions and dynamic behaviors of parts or devices
in biological device datasheets, an engineer can estimate the
corresponding parameters of biological parts or devices. When the
biological parts and devices in datasheets become more complete
in future, we can rapidly select from a vast list the parts that
will meet our design parameters k;. Therefore, we can ensure that
devices selected from datasheets can fit the optimal parameters
and systems synthesized from them can satisfy the requirements
of design specifications for robust synthetic gene networks.

In order to guarantee the biological feasibility of the calculated
optimal parameters, the ranges [k, k] and [y],)>] of parameters
should be determined by the whole parameters of biological parts
repositories (http://partsregistry.org/) so that the optimal parameters
selected within these ranges to minimize g% in Equations (21)
and (22) have biological meaning, or equivalently from the whole
biological parts in biological device datasheets, we can find a
set of biological parts whose parameters can minimize the g% in
Equations (21) and (22) to achieve the robust optimal design of
synthetic gene network.

In synthetic gene networks, there is much uncertainty about what
affects the behavior of biological circuitry and systems. For example,
devices will perturb the cellular functions and there are also likely
to be parasitic and unpredictable interactions among components
as well as with the host. Since k; is a combination of promoter
strength, ribosome binding site and degradation of the transcript,
there are some variations or uncertainties on the parameter value
k;. These variations or uncertainties of k; can be transformed to
an equivalent uncertain disturbance w; in Equation 1 from the
viewpoint of mathematic model. The proposed robust minimax
synthetic biology design method can predict the most robust value
of k; from the perspective of stochastic game. In our robust design
method, we do not need the statistics of these parameter uncertainties
because the proposed synthetic genetic network not only can achieve
the desired steady state but also can tolerate the worst-case effect
due to these uncertain parameter variations and external noises on
the host cell.

For comparison, a sub-optimal regulation design for synthetic
gene network is also developed for synthetic gene network. Because
the sub-optimal regulation design cannot efficiently attenuate the
effect of uncertain initial conditions and disturbances on the
regulation, it is not suitable for robust synthetic gene networks
with uncertain initial conditions and disturbances on the host cell.
As seen in the example in silico, the proposed robust synthetic
gene network can function properly in spite of uncertain initial
conditions and disturbances on the host cell. Design of more
robust and complex genetic circuits is foreseen to have important
applications in biotechnology, medicine and biofuel production, and
to revolutionize how we conceptualize and approach the engineering
of biological systems (Andrianantoandro et al., 2006). Therefore, it
has much potential for the robust synthetic gene network design in
the near future.
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