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In this paper, we study a class of time-delayed reaction–diffusion
equation with local nonlinearity for the birth rate. For all wave-
fronts with the speed c > c∗, where c∗ > 0 is the critical wave
speed, we prove that these wavefronts are asymptotically stable,
when the initial perturbation around the traveling waves decays
exponentially as x → −∞, but the initial perturbation can be
arbitrarily large in other locations. This essentially improves the
stability results obtained by Mei, So, Li and Shen [M. Mei,
J.W.-H. So, M.Y. Li, S.S.P. Shen, Asymptotic stability of traveling
waves for the Nicholson’s blowflies equation with diffusion, Proc.
Roy. Soc. Edinburgh Sect. A 134 (2004) 579–594] for the speed
c > 2

√
Dm(εp − dm) with small initial perturbation and by Lin and

Mei [C.-K. Lin, M. Mei, On travelling wavefronts of the Nicholson’s
blowflies equations with diffusion, submitted for publication] for
c > c∗ with sufficiently small delay time r ≈ 0. The approach
adopted in this paper is the technical weighted energy method
used in [M. Mei, J.W.-H. So, M.Y. Li, S.S.P. Shen, Asymptotic stability
of traveling waves for the Nicholson’s blowflies equation with
diffusion, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004) 579–594],
but inspired by Gourley [S.A. Gourley, Linear stability of travelling
fronts in an age-structured reaction–diffusion population model,
Quart. J. Mech. Appl. Math. 58 (2005) 257–268] and based on the
property of the critical wavefronts, the weight function is carefully
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selected and it plays a key role in proving the stability for any
c > c∗ and for an arbitrary time-delay r > 0.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this series of study, we consider a class of time-delayed reaction–diffusion equation arising from
the population dynamics (see, for example [27])

∂v

∂t
− Dm

∂2 v

∂x2
+ dm v = ε

∞∫
−∞

b
(

v(t − r, x − y)
)

fα(y)dy, t > 0, x ∈ R, (1.1)

with the initial condition

v(s, x) = v0(s, x), s ∈ [−r,0], x ∈ R, (1.2)

which describes the population distribution of single species with age-structure and spatial diffusion.
Here, v(t, x) denotes the total mature population at time t and location x. Dm > 0 is the diffusion
rate of the mature population in space, dm > 0 is the death rate of the mature population, and r > 0
denotes the maturation age. Let di(z) and Di(z) be the death rate and the spatial diffusion rate for
the immature population for age z ∈ [0, r], respectively. Define ε > 0 and α � 0 as follows:

ε = e− ∫ r
0 di(z)dz and α =

r∫
0

Di(z)dz. (1.3)

They represent the impact of the death rate of the immature and the effect of the dispersal rate of
the immature, respectively. If the mature population move more effectively than the immature, i.e.
Di(z) � Dm , then, according to (1.3) for α, we have

α � rDm. (1.4)

The function b(v(t, x)) is the birth function. As we know, the reaction term in a reaction–diffusion
equation, which is some what like the birth function in our equation (1.1), plays an important role
to depict the character of the equation. One interesting type of such a function is the Fisher–KPP’s
reaction function b(v) = v(1 − v) with bi-stable nodes v = 0 and v = 1 as the equilibria (see [4,
10,24,25]). The related nonlinear wave stability for the time-delayed reaction–diffusion equation was
studied by Smith and Zhao [25] by the upper–lower solution method. The other interesting type is the
reaction term with two nodes as the equilibria, but one is stable and the other one is unstable, for
example, the Nicholson’s blowflies birth rate b(v) = pve−av (see [6,8,11,14,15,20,21,26–29,33,34,37],
etc.). The related wave stability was then investigated in [15,20,21] by the technical weighted energy
method, because, as mentioned therein, the upper–lower solution method is defective in this case. For
such kind birth functions with one stable node and one unstable node, in this paper, as considered in
[14], we take the birth function as

b1(v) = pve−avq
or b2(v) = pv

1 + avq
, (1.5)

where p > 0, q > 0 and a > 0 are constants. Here, b1(v), as an exponential type, is a generaliza-
tion of the Nicholson’s blowflies birth rate as considered before, and b2(v) is the kind of important
rational-type function. Note that, for b1(v) with q = 1, it is the well-known Nicholson’s blowflies
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birth function, and the corresponding equation (1.1) is the so-called Nicholson’s blowflies equation
with diffusion. Lastly, fα(y) is the heat kernel

fα(y) = 1√
4πα

e− y2

2α with

∞∫
−∞

fα(y)dy = 1 for all α > 0. (1.6)

When α → 0, namely Di(z) ≈ 0, which means that the immature population is almost non-mobile,
by the property of the heat kernel we have

lim
α→0

∞∫
−∞

b
(

v(t − r, x − y)
)

fα(y)dy = b
(

v(t − r, x)
)
.

In this case, the nonlocal equation (1.1) is reduced to a local time-delayed reaction–diffusion equation
for α = 0:

∂v

∂t
− Dm

∂2 v

∂x2
+ dm v = εb

(
v(t − r, x)

)
. (1.7)

The models (1.1) and (1.7) as well as related equations have been extensively studied recently,
see [1–31] and [33–37] and the references therein. The existence of traveling wavefronts for the local
equation (1.7) and the nonlocal equation (1.1) were obtained by So and Zou [29], So, Wu and Zou [26]
and Liang and Wu [14] using the method of upper–lower solutions. The boundedness and the asymp-
totic behavior for the critical wave speed with respect to the delay time r as well as the diffusion rate
Dm were analyzed by Wu, Wei and Mei in [33,34]. Furthermore, the stability of the traveling wave-
fronts was showed by Mei, So, Li and Shen [21], Mei and So [20] and recently in Lin and Mei [15].
For the local equation (1.7) with b(v) = b1(v) and q = 1, i.e. the Nicholson’s blowflies equation, by
using the weighted energy method, Mei, So, Li and Shen [21] proved that the wavefronts are stable for
the wave speed c > 2

√
Dm(εp − dm) with a sufficiently small initial perturbation, but the case when

c∗ < c � 2
√

Dm(εp − dm) was left open, where c∗ > 0 is the critical wave speed. Later by using the
comparison principle together with the weighted energy method, Lin and Mei [15] further improved
it to c > c∗ for the delay time r � 1, because c∗ ≈ 2

√
Dm(εp − dm) as r � 1. The initial perturbation

is also improved to be arbitrarily large in a weighted Sobolev space by the comparison principle and
the squeeze technique. For the nonlocal equation (1.1) with b(v) = b1(v) and q = 1, the stability was
obtained in [20] with a much strong restriction on the wave speed c > 2

√
Dm(3εp − 2dm). The main

goal in the present paper and our second paper [18] is to study the stability of all traveling wave-
fronts with c > c∗ and arbitrary delay time r > 0. In this paper, we focus on the local equation (1.7)
and prove the stability of all wavefronts with arbitrary delay time r. Our approach is still the tech-
nical weighted energy method together with the comparison principle. But, inspired by Gourley [5]
(see also an extension to the nonlinear stability by Li, Mei and Wong [11]) and based on the property
of the critical wavefront speed, by selecting an ideal weight function and carefully taking the energy
estimates, we obtain the stability for all waves including those slower waves. No restriction is needed
for the delay time r and the speed c. For the nonlocal equation (1.1), the improved stability for all
wavefronts with c > c∗ is the content of our second paper [18], where some new techniques are
introduced to overcome the difficulty of the energy estimates caused by the nonlocal integral term.

For research related to other models of population dynamics, we refer to [1–3,5,6,11–13,16] and
the references therein. See also the review articles [7,8] and the textbooks [32,35,36].

Notations. Throughout the paper, C > 0 denotes a generic constant, while Ci > 0 (i = 0,1,2, . . .)
represents a specific constant. Let I be an interval, typically I = R . L2(I) is the space of the square
integrable functions defined on I , and Hk(I) (k � 0) is the Sobolev space of the L2-functions f (x)
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defined on the interval I whose derivatives di

dxi f (i = 1, . . . ,k) also belong to L2(I). L2
w(I) denotes the

weighted L2-space with a weight function w(x) > 0 and its norm is defined by

‖ f ‖L2
w

=
(∫

I

w(x)
∣∣ f (x)

∣∣2
dx

)1/2

.

Hk
w(I) is the weighted Sobolev space with the norm given by

‖ f ‖Hk
w

=
(

k∑
i=0

∫
I

w(x)

∣∣∣∣ di

dxi
f (x)

∣∣∣∣
2

dx

)1/2

.

Let T > 0 be a number and B be a Banach space. We denote by C0([0, T ]; B) the space of the B-
valued continuous functions on [0, T ]. L2([0, T ]; B) as the space of the B-valued L2-functions on
[0, T ]. The corresponding spaces of the B-valued functions on [0,∞) are defined similarly.

The rest of the paper is organized as follows. In Section 2, we introduce the travelling wavefronts,
their properties and state the nonlinear stability theorem. In Section 3, after establishing the compar-
ison principle and some key energy estimates in the weighted Sobolev spaces, we prove the nonlinear
stability result.

2. Traveling wavefronts and stability theorem

It is easily seen that Eq. (1.7) has two constant equilibria v± , where

for b1(v): v− = 0 and v+ =
(

1

a
ln

εp

dm

)1/q

, (2.1)

for b2(v): v− = 0 and v+ =
(

εp − dm

adm

)1/q

. (2.2)

A traveling wavefront of (1.7) connecting with v± is a monotone solution v(t, x) = φ(x + ct) satisfying

{
cφ′(ξ) − Dmφ′′(ξ) + dmφ(ξ) = εb

(
φ(ξ − cr)

)
,

φ(±∞) = v±,
(2.3)

where ξ = x + ct and ′ = d
dξ

.
By using the upper–lower solutions method as in [14,26,29], we can, similarly, prove the existence

of the traveling wavefronts.

Proposition 2.1 (Existence of traveling wavefronts). Assume that

for b(v) = b1(v): 1 <
εp

dm
� e1/q, (2.4)

for b(v) = b2(v): either 1 <
εp

dm
� q

q − 1
if q > 1,

or 1 <
εp

< ∞ if 0 < q � 1. (2.5)

dm
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Fig. 2.1. The graphs of Fc(λ) and Gc(λ) for c = c∗ and c > c∗ , respectively.

Then there exist a minimum speed c∗ = c∗(r, ε, Dm,dm, p) > 0 and a corresponding number λ∗ = λ(c∗) > 0
satisfying

Fc∗ (λ∗) = Gc∗ (λ∗), F ′
c∗ (λ∗) = G ′

c∗ (λ∗), (2.6)

where

Fc(λ) = εpe−λcr, Gc(λ) = cλ − Dmλ2 + dm, (2.7)

and (c∗, λ∗) is the tangent point of Fc(λ) and Gc(λ), such that for all c > c∗ , the travelling wavefront φ(x+ ct)
of Eq. (1.7) connecting v± exists uniquely (up to a shift).

The graphs of Fc(λ) and Gc(λ) are shown in Fig. 2.1 for c = c∗ and c > c∗ , respectively.
From the graphs, we can easily see that Fc(λ∗) = Gc(λ∗) for c = c∗ and Fc(λ∗) < Gc(λ∗) for c > c∗ ,

that is,

εpe−λ∗c∗r = c∗λ∗ − Dmλ2∗ + dm, for c = c∗, (2.8)

εpe−λ∗cr < cλ∗ − Dmλ2∗ + dm, for c > c∗. (2.9)

By a straightforward calculation, it can be verified that the wavefront φ(ξ) decays to the constant
state v− as follows

∣∣φ(ξ) − v−
∣∣ = O (1)e−λ1|ξ |, as ξ → −∞, (2.10)

where λ1 = λ1(c) is a c-depending function as showed in Fig. 2.1. It is also noted that

εpe−λcr < cλ − Dmλ2 + dm, for c > c∗, λ ∈ (λ1, λ∗]. (2.11)

Thus, we define a weight function as

w(x) =
{

e−2λ(x−x0−cr), for x � x0 + cr,
(2.12)
1, for x > x0 + cr,
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where λ is a positive number between λ1 = λ1(c) and λ∗ = λ∗(c∗), i.e., λ1 < λ � λ∗ (cf. Fig. 2.1), and
the number x0 is chosen to be sufficiently large such that (3.31) holds, i.e.,

b′(φ(x0 − cr)
)
<

min{λc + dm − Dmλ2,dm}
ε cosh(λcr)

.

We can now state our main theorem.

Theorem 2.2 (Nonlinear stability). Let εp
dm

satisfy (2.4) for b(v) = b1(v), or (2.5) for b(v) = b2(v), and let

b′(v+) be sufficiently small. For any given wavefront φ(x + ct) with the speed c > c∗ , if the initial data satisfy

v− � v0(s, x) � v+, for (s, x) ∈ [−r,0] × R, (2.13)

and the initial perturbation v0(s, x) − φ(x + cs) is in C([−r,0]; H1
w (R)), then the solution of (1.7) and (1.2)

satisfies

v− � v(t, x) � v+, for (t, x) ∈ R+ × R, (2.14)

and

v(t, x) − φ(x + ct) ∈ C
([0,∞); H1

w(R)
)
. (2.15)

In particular, the solution v(t, x) converges to the wavefront φ(x + ct) exponentially in time, that is,

sup
x∈R

∣∣v(t, x) − φ(x + ct)
∣∣ � Ce−μt, t � 0, (2.16)

for some positive number μ.

Remark 1.

1. As showed in Theorem 2.2, the wavefront stability holds for all wavefronts φ(x + ct) with c > c∗ ,
and for all delay time r > 0, which essentially improves the previous stability result for the wave-
fronts with speed c > 2

√
Dm − εp in [21]. In another word, when the initial perturbation around

the wavefront at x → −∞ is sufficiently small, the solution of (1.7) and (1.2) can be sufficiently
approximated by this specified traveling wavefront, which is very important and significant in the
physical application, as well as the issue of numerical simulation.

2. As the asymptotical profile, the wavefront φ(x + ct) satisfying v0(s, x) − φ(x + cs) ∈ H1
w(R) is

uniquely selected. In fact, from the definition of the weight function (2.12) and the weighted
Sobolev’s space H1

w(R), we have

f ∈ H1
w ⇔ √

w(x) f ∈ H1 ↪→ C(R),

see also a proof in [19]. Thus, the condition v0(s, x) − φ(x + cs) ∈ H1
w(R) implies that

∣∣v0(s, x) − φ(x + cs)
∣∣ = O (1)e−λ|x|, as x → −∞, s ∈ [−r,0], (2.17)

for λ ∈ (λ1, λ∗], while, from (2.11), we know that, for any two wavefronts φ(x+ ct) and φ(x+ ct +
x1), where x1 is a shift, the difference is

∣∣φ(x + cs) − φ(x + cs + x1)
∣∣ = O (1)e−λ1|x|, as x → −∞, s ∈ [−r,0]. (2.18)
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Since λ > λ1, i.e., the decay of |v0(s, x) − φ(x + cs)| is much faster than |φ(x + cs) − φ(x + cs +
x1)|, the condition (2.17) determines a unique wavefront, which is the asymptotical profile of
the original solution v(t, x). In another word, once the initial perturbation around the wavefront
φ(x + cs) at x → −∞ decays faster than O (e−λ1|x|), then the original solution v(t, x) to Eqs. (1.7)
and (1.2) behaves exactly as this traveling wavefront φ(x + ct).

3. Regarding the condition b′(v+) � 1, actually it is natural. In fact, we can easily check that, for
b(v) = b1(v),

b′
1(v+) = dm

ε

[
1 − ln

(
εp

dm

)q]
→ 0, as

εp

dm
→ e1/q.

Thus,

b′
1(v+) = 0, for

εp

dm
= e1/q.

In this case, the wavefront strength |v+ − v−| is the largest, and the wavefront is called the
strongest wave. So we prove the stability for the strong wavefronts.
Similarly, for b(v) = b2(v+), we have

b′
2(v+) = d2

m

ε2 p

[
1 − (q − 1)

εp − dm

dm

]
→ 0, as

εp

dm
→ q

q − 1
, for q > 1,

and thus

b′
2(v+) = 0, for

εp

dm
= q

q − 1
, q > 1.

3. Proof of main theorem

First of all, we state the following two lemmas which are given in [15].

Lemma 3.1 (Boundedness). Let

v− = 0 � v0(s, x) � v+, for (s, x) ∈ [−r,0] × R. (3.1)

Then the solution v(t, x) of the Cauchy problem (1.7) and (1.2) satisfies

v− � v(t, x) � v+, for (t, x) ∈ [0,∞) × R. (3.2)

Lemma 3.2 (Comparison principle). Let v(t, x) and v(t, x) be the solutions of (1.7) and (1.2) with the initial
data v0(s, x) and v0(s, x), respectively. If

v− � v0(s, x) � v0(s, x) � v+, for (s, x) ∈ [−r,0] × R, (3.3)

then

v− � v(t, x) � v(t, x) � v+, for (t, x) ∈ R+ × R. (3.4)
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As in [11,15], we will use the comparison principle and the weighed energy method to prove
Theorem 2.2. Let the initial data v0(s, x) be such that v− � v0(s, x) � v+ for (s, x) ∈ [−r,0] × R , and
define {

V +
0 (s, x) = max

{
v0(s, x),φ(x + cs)

}
,

V −
0 (s, x) = min

{
v0(s, x),φ(x + cs)

}
,

for (s, x) ∈ [−r,0] × R. (3.5)

Obviously,

v− � V −
0 (s, x) � v0(s, x) � V +

0 (s, x) � v+, for (s, x) ∈ [−r,0] × R, (3.6)

v− � V −
0 (s, x) � φ(x + cs) � V +

0 (s, x) � v+, for (s, x) ∈ [−r,0] × R. (3.7)

Let V +(t, x) and V −(t, x) be the corresponding solutions of (1.7) and (1.2) with the initial data
V +

0 (s, x) and V −
0 (s, x) respectively, i.e.,

⎧⎨
⎩

∂V ±

∂t
− Dm

∂2 V ±

∂x2
+ dm V ± = εb

(
V ±(t − r, x)

)
, (t, x) ∈ R+ × R,

V ±(s, x) = V ±
0 (s, x), x ∈ R, s ∈ [−r,0].

(3.8)

By the comparison principle (Lemma 3.2), we have

v− � V −(t, x) � v(t, x) � V +(t, x) � v+, for (t, x) ∈ R+ × R, (3.9)

v− � V −(t, x) � φ(x + ct) � V +(t, x) � v+, for (t, x) ∈ R+ × R. (3.10)

We will now prove the stability result (Theorem 2.2) in three steps.

Step 1. The convergence of V +(t, x) to φ(x + ct).
Let ξ := x + ct and

u(t, ξ) := V +(t, x) − φ(x + ct), u0(s, ξ) := V +
0 (s, x) − φ(x + cs). (3.11)

Then by (3.10) and (3.7), we have

u(t, ξ) � 0, u0(s, ξ) � 0. (3.12)

From Eq. (1.7), u(t, ξ) satisfies

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
+ c

∂u

∂ξ
− Dm

∂2u

∂ξ2
+ dmu − εb′(φ(ξ − cr)

)
u(t − r, ξ − cr)

= εQ (t − r, ξ − cr), (t, ξ) ∈ R+ × R,

u(s, ξ) = u0(s, ξ), (s, ξ) ∈ [−r,0] × R,

(3.13)

where

Q (t − r, ξ − cr) = b(φ + u) − b(φ) − b′(φ)u (3.14)

with φ = φ(ξ − cr) and u = u(t − r, ξ − cr).
Let w(ξ) > 0 be the weight function defined in (2.12). Multiplying (3.13) by e2μt w(ξ)u(t, ξ), where

μ > 0 will be specified later in Lemma 3.4, we obtain
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{
1

2
e2μt wu2

}
t
+

{
1

2
e2μtcwu2 − Dme2μt wuuξ

}
ξ

+ Dme2μt wu2
ξ + Dme2μt w ′uuξ

+
{
− c

2

w ′

w
+ dm − μ

}
e2μt wu2 − εe2μt wub′(φ(ξ − cr)

)
u(t − r, ξ − cr)

= εe2μt wu Q (t − r, ξ − cr). (3.15)

By the Cauchy–Schwarz inequality |xy| � δ
2 x2 + 1

2δ
y2 for any δ > 0 and then taking δ = 2, we have

∣∣Dme2μt w ′uuξ

∣∣ = Dme2μt w

∣∣∣∣uξ · w ′

w
v

∣∣∣∣ � Dme2μt wu2
ξ + Dm

4
e2μt

(
w ′

w

)2

wu2.

Applying the above inequality to (3.15), we obtain

{
1

2
e2μt wu2

}
t
+

{
1

2
e2μtcwu2 − Dme2μt wuuξ

}
ξ

+
{
− c

2

w ′

w
+ dm − μ − Dm

4

(
w ′

w

)2}
e2μt wu2

− εe2μt wub′(φ(ξ − cr)
)
u(t − r, ξ − cr)

� εe2μt wu Q (t − r, ξ − cr). (3.16)

Integrating (3.16) over R × [0, t] with respect to ξ and t yields

e2μt
∥∥u(t)

∥∥2
L2

w
+

t∫
0

∫
R

e2μτ

{
−c

w ′(ξ)

w(ξ)
+ 2dm − 2μ − Dm

2

(
w ′(ξ)

w(ξ)

)2}
w(ξ)u2(τ , ξ)dξ dτ

− 2ε

t∫
0

∫
R

e2μτ w(ξ)b′(φ(ξ − cr)
)
u(τ , ξ)u(τ − r, ξ − cr)dξ dτ

�
∥∥u0(0)

∥∥2
L2

w
+ 2ε

t∫
0

∫
R

e2μτ w(ξ)u(τ , ξ)Q (τ − r, ξ − cr)dξ dτ . (3.17)

Using (2.1) and (2.4) for b(v) = b1(v), or, (2.2) and (2.5) for b(v) = b2(v), a straightforward computa-
tion gives

b′
1(φ) = p

(
1 − aqφq)e−aφq � 0, or b′

2(φ) = p[1 − a(q − 1)φq]
(1 + aφq)2

� 0

for v− � φ � v+ with the corresponding constant equilibria v± given in (2.1) or (2.2), which gives

0 � b′(φ) � p, for v− � φ � v+. (3.18)

Furthermore, using the Cauchy–Schwarz inequality again, we obtain

∣∣2εe2μτ w(ξ)b′(φ(ξ − cr)
)
u(τ , ξ)u(τ − r, ξ − cr)

∣∣
� εe2μτ w(ξ)b′(φ(ξ − cr)

)[
ηu2(τ , ξ) + 1

η
u2(τ − r, ξ − cr)

]
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for any positive constant η, which will be specified later in Lemma 3.3. Thus, by the change of vari-
ables (see [15,21] for details), the third term on the left-hand side of (3.17) can be bounded as follows:

∣∣∣∣∣2ε

t∫
0

∫
R

e2μτ w(ξ)b′(φ(ξ − cr)
)
u(τ , ξ)u(τ − r, ξ − cr)dξ dτ

∣∣∣∣∣

� εη

t∫
0

∫
R

e2μτ w(ξ)b′(φ(ξ − cr)
)
u2(τ , ξ)dξ dτ

+ ε

η

t∫
0

∫
R

e2μτ w(ξ)b′(φ(ξ − cr)
)
u2(τ − r, ξ − cr)dξ dτ

= εη

t∫
0

∫
R

e2μτ w(ξ)b′(φ(ξ − cr)
)
u2(τ , ξ)dξ dτ

+ ε

η
e2μr

t−r∫
−r

∫
R

e2μτ w(ξ + cr)b′(φ(ξ)
)
u2(τ , ξ)dξ dτ

� εη

t∫
0

∫
R

e2μτ w(ξ)b′(φ(ξ − cr)
)
u2(τ , ξ)dξ dτ

+ ε

η
e2μr

t∫
0

∫
R

e2μτ w(ξ + cr)b′(φ(ξ)
)
u2(τ , ξ)dξ dτ

+ ε

η
e2μr

0∫
−r

∫
R

e2μτ w(ξ + cr)b′(φ(ξ)
)
u2

0(τ , ξ)dξ dτ . (3.19)

Substituting (3.19) into (3.17), we then have

e2μt
∥∥u(t)

∥∥2
L2

w
+

t∫
0

∫
R

e2μτ Bη,μ,w(ξ)w(ξ)u2(τ , ξ)dξ dτ

�
∥∥u0(0)

∥∥2
L2

w
+ 2ε

t∫
0

∫
R

e2μτ w(ξ)u(τ , ξ)Q (τ − r, ξ − cr)dξ dτ

+ ε

η
e2μr

0∫
−r

∫
R

e2μτ w(ξ + cr)b′(φ(ξ)
)
u2

0(s, ξ)dξ dτ , (3.20)

where

Bη,μ,w(ξ) := Aη,w(ξ) − 2μ − ε (
e2μr − 1

)
b′(φ(ξ)

) w(ξ + cr)
(3.21)
η w(ξ)
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and

Aη,w(ξ) := −c
w ′(ξ)

w(ξ)
+ 2dm − Dm

2

(
w ′(ξ)

w(ξ)

)2

− εηb′(φ(ξ − cr)
) − ε

η

w(ξ + cr)

w(ξ)
b′(φ(ξ)

)
. (3.22)

Using (2.1) and (2.4) for b(v) = b1(v), or (2.2) and (2.5) for b(v) = b2(v), another straightforward
computation shows

b′′
1(φ) = −paqφq−1(2 − aqφq)e−aφq � 0, or b′′

2(φ) = − paqφq−1[1 + q − a(q − 1)φq]
(1 + aφq)3

� 0

for v− � φ � v+ with the corresponding constant equilibria v± given in (2.1) or (2.2). This implies

b′′(φ) � 0, for v− � φ � v+. (3.23)

Thus, by (3.23) and the Taylor’s formula, we have

Q (t − r, ξ − cr) = b(φ + u) − b(φ) − b′(φ)u = b′′(φ̃)

2! u2 � 0, (3.24)

where φ̃ is some function between φ and φ + u = V +(t, x). With the help of (3.24) and the fact that
w > 0, u > 0, we immediately obtain

2ε

t∫
0

∫
R

e2μτ w(ξ)u(τ , ξ)Q (τ − r, ξ − cr)dξ dτ � 0. (3.25)

Finally, substituting (3.25) into (3.20), we obtain

e2μt
∥∥u(t)

∥∥2
L2

w
+

t∫
0

∫
R

e2μτ Bη,μ,w(ξ)w(ξ)u2(τ , ξ)dξ dτ

�
∥∥u0(0)

∥∥2
L2

w
+ ε

η
e2μr

0∫
−r

∫
R

e2μτ w(ξ + cr)b′(φ(ξ)
)
u2

0(s, ξ)dξ dτ

� C1

(∥∥u0(0)
∥∥2

L2
w

+
0∫

−r

∥∥u0(τ )
∥∥2

L2
w

dτ

)
(3.26)

for some positive constant C1.
The most important step now is to prove Bη,μ,w(ξ) � C > 0 for some constant C . For this we need

the following key lemma.

Lemma 3.3. Let η = e−λcr . Then

Aη,w(ξ) � C2 > 0, ξ ∈ R, (3.27)

for some positive constant C2 .
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Proof. Case 1: ξ � x0. From (2.12), we have w(ξ) = e−2λ(ξ−x0−cr) and w(ξ + cr) = e−2λ(ξ−x0) . Notice
that, b′(φ) is decreasing for φ ∈ (v−, v+) (since b′′(φ) < 0 as shown in (3.23)) and φ(ξ) is increasing
for ξ ∈ (−∞,∞). Thus, b′(φ(ξ)) is decreasing in ξ . This implies

0 < b′(φ(x0)
)
< b′(φ(ξ)

)
< b′(φ(ξ − cr)

)
< b′(φ(−∞)

) = b′(v−) = p. (3.28)

Notice also η = e−λcr . We then obtain

Aη,w(ξ) = 2λc + 2dm − Dm

2
(−2λ)2 − εηb′(φ(ξ − cr)

) − ε

η
b′(φ(ξ)

)
e−2λcr

� 2λc + 2dm − 2Dmλ2 − εηp − ε

η
pe−2λcr

= 2
(
cλ + dm − Dmλ2 − εpe−λcr)

=: C3 > 0, (3.29)

where we used (2.11) for the last step.
Case 2: x0 < ξ � x0 + cr. In this case, we have w(ξ) = e−2λ(ξ−x0−cr) and w(ξ + cr) = 1. Since

b′(φ(ξ)) is decreasing in ξ , i.e., b′(φ(x0 + cr)) < b′(φ(ξ)) � b′(φ(x0)) < b′(φ(ξ − cr)) � b′(φ(x0 − cr)),
and using the fact e2λ(ξ−x0−cr) � e0 = 1 due to ξ − x0 − cr � 0, we then obtain

Aη,w(ξ) = 2λc + 2dm − 2Dmλ2 − εηb′(φ(ξ − cr)
) − ε

η
b′(φ(ξ)

)
e2λ(ξ−x0−cr)

� 2λc + 2dm − 2Dmλ2 − εηb′(φ(x0 − cr)
) − ε

η
b′(φ(x0 − cr)

)

= 2λc + 2dm − 2Dmλ2 − 2εb′(φ(x0 − cr)
)(η

2
+ 1

2η

)

= 2λc + 2dm − 2Dmλ2 − 2εb′(φ(x0 − cr)
)

cosh(λcr)

=: C4. (3.30)

Now we need to prove C4 > 0. In fact, since b′(v+) � 1 (we assume it as a sufficient condition in
Theorem 2.2, see also Remark 1 for the explanation), we may take

b′(v+) <
min{λc + dm − Dmλ2,dm}

ε cosh(λcr)
.

Let x0 be sufficiently large such that

∣∣b′(v+) − b′(φ(x0 − cr)
)∣∣ � 1.

In that case, we have

b′(φ(x0 − cr)
)
<

min{λc + dm − Dmλ2,dm}
ε cosh(λcr)

. (3.31)

With this help, we further obtain from (3.30) that

Aη,w(ξ) � 2
[
λc + dm − Dmλ2 − εb′(φ(x0 − cr)

)
cosh(λcr)

] = C4 > 0. (3.32)



M. Mei et al. / J. Differential Equations 247 (2009) 495–510 507
Case 3: ξ > x0 + cr. In this case, w(ξ) = w(ξ + cr) = 1. Since b′(φ(ξ)) is decreasing in ξ , we have

Aη,w(ξ) = 2dm − εηb′(φ(ξ − cr)
) − ε

η
b′(φ(ξ)

)
� 2dm − εηb′(φ(x0 − cr)

) − ε

η
b′(φ(x0 − cr)

)
= 2dm − 2εb′(φ(x0 − cr)

)
cosh(λcr)

=: C5 > 0, (3.33)

because of (3.31).
Finally, let

C2 := min{C3, C4, C5}. (3.34)

Then (3.29), (3.32) and (3.33) imply (3.27). �
Lemma 3.4. It holds that

Bμ,η,w(ξ) > 0, ξ ∈ (−∞,∞), (3.35)

for 0 < μ < μ1 , where μ1 > 0 is the unique root of the following equation

C2 − 2μ1 − εp

η

(
e2μ1r − 1

) = 0. (3.36)

Proof. As shown in Lemma 3.3, we have 0 < b′(φ(ξ)) < p for ξ ∈ (−∞,∞), and

w(ξ + cr)

w(ξ)
=

⎧⎨
⎩

e−2λcr < 1, for ξ � x0,

e2λ(ξ−x0−cr) � e0 = 1, for x0 < ξ � x0 + cr,

1, for ξ > x0 + cr.

It follows immediately that

Bμ,η,w(ξ) = Aη,w(ξ) − 2μ − ε

η

(
e2μr − 1

)
b′(φ(ξ)

) w(ξ + cr)

w(ξ)

� C2 − 2μ − εp

η

(
e2μr − 1

)
> 0 (3.37)

for 0 < μ < μ1. �
By dropping the positive term

∫ t
0

∫
R e2μτ Bη,μ,w(ξ)w(ξ)u2(τ , ξ)dξ dτ in (3.26), we obtain the first

basic energy estimate.

Lemma 3.5. It holds that

e2μt
∥∥u(t)

∥∥2
L2

w
� C1

(∥∥u0(0)
∥∥2

L2
w

+
0∫

−r

∥∥u0(τ )
∥∥2

L2
w

dτ

)
, t � 0. (3.38)
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Next, differentiating (3.13) with respect to ξ , and multiplying it by e2μt w(ξ)uξ (t, ξ), then integrat-
ing the resultant equation with respect to (t, ξ) over [0, t] × R , and using the basic energy estimates
(3.38) in Lemma 3.5, we can similarly prove the second energy estimate.

Lemma 3.6. It holds that

e2μt
∥∥uξ (t)

∥∥2
L2

w
� C6

(∥∥u0(0)
∥∥2

H1
w

+
0∫

−r

∥∥u0(τ )
∥∥2

H1
w

dτ

)
(3.39)

for some positive constant C6 .

Combining Lemmas 3.5 and 3.6, and noting w(ξ) � 1 for all ξ ∈ R , from the definition of w , we
obtain the following decay rate.

Lemma 3.7. It holds that

∥∥u(t)
∥∥

H1 �
∥∥u(t)

∥∥
H1

w
� C7e−μt

(∥∥u0(0)
∥∥2

H1
w

+
0∫

−r

∥∥u0(τ )
∥∥2

H1
w

dτ

) 1
2

, t � 0, (3.40)

where C7 = max{√C1,
√

C6}.

Using Sobolev embedding theorem H1(R) ↪→ C0(R), we finally have the following stability result.

Lemma 3.8. It holds that

sup
x∈R

∣∣V +(t, x) − φ(x + ct)
∣∣ = sup

ξ∈R

∣∣u(t, ξ)
∣∣ � C8e−μt, t � 0, (3.41)

for some positive constant C8 .

Step 2. The convergence of V −(t, x) to φ(x + ct).
Let ξ = x + ct and

u(t, ξ) = φ(x + ct) − V −(t, x), u0(s, ξ) = φ(x + cs) − V −
0 (s, x). (3.42)

As in Step 1, we can similarly prove that V −(t, x) converges to φ(x + ct).

Lemma 3.9. It holds that

sup
x∈R

∣∣V −(t, x) − φ(x + ct)
∣∣ = sup

ξ∈R

∣∣u(t, ξ)
∣∣ � C9e−μt, t � 0, (3.43)

for some positive constant C9 .

Step 3. The convergence of v(t, x) to φ(x + ct).
Finally, we prove that v(t, x) converges to φ(x + ct) as follows.
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Lemma 3.10. It holds that

sup
x∈R

∣∣v(t, x) − φ(x + ct)
∣∣ � C10e−μt, t � 0, (3.44)

for some positive constant C10 .

Proof. Since the initial data satisfy V −
0 (x, s) � v0(x, s) � V +

0 (x, s), from Lemma 3.2, it can be verified
that the corresponding solutions of (1.7) and (1.2) satisfy

V −(t, x) � v(t, x) � V +(t, x), (t, x) ∈ R+ × R.

Thanks to Lemmas 3.8 and 3.9, we have the following convergence results,

sup
x∈R

∣∣V −(t, x) − φ(x + ct)
∣∣ � C9e−μt, sup

x∈R

∣∣V +(t, x) − φ(x + ct)
∣∣ � C8e−μt .

Combining these inequalities, the squeeze technique gives

sup
x∈R

∣∣v(t, x) − φ(x + ct)
∣∣ � C10e−μt, t > 0,

for some positive constant C10. This completes the proof. �
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