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This is the second part of a series of study on the stability of
traveling wavefronts of reaction–diffusion equations with time
delays. In this paper we will consider a nonlocal time-delayed
reaction–diffusion equation. When the initial perturbation around
the traveling wave decays exponentially as x → −∞ (but the initial
perturbation can be arbitrarily large in other locations), we prove
the asymptotic stability of all traveling waves for the reaction–
diffusion equation, including even the slower waves whose speed
are close to the critical speed. This essentially improves the
previous stability results by Mei and So [M. Mei, J.W.-H. So,
Stability of strong traveling waves for a nonlocal time-delayed
reaction–diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A 138
(2008) 551–568] for the speed c > 2

√
Dm(3εp − 2dm) with a small

initial perturbation. The approach we use here is the weighted
energy method, but the weight function is more tricky to construct
due to the property of the critical wavefront, and the difficulty
arising from the nonlocal nonlinearity is also overcome. Finally,
by using the Crank–Nicholson scheme, we present some numerical
results which confirm our theoretical study.
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1. Introduction

Subsequently to [16], as the second part of this series of study, we further investigate the nonlocal
time-delayed reaction–diffusion equation

∂v

∂t
− Dm

∂2 v

∂x2
+ dm v = ε

∞∫
−∞

b
(

v(t − r, x − y)
)

fα(y)dy, (t, x) ∈ (0,∞) × R, (1.1)

with the initial condition

v(s, x) = v0(s, x), (s, x) ∈ [−r,0] × R. (1.2)

The model (1.1) describes a single-species population with age-structure and diffusion (cf. [24]). Here,
as explained in [16], v(t, x) denotes the total mature population of the species (after the maturation
age r > 0) at time t and position x. Dm > 0 is the diffusion rate of the mature species, dm > 0 is the
death rate of the matured, α > 0 is the total amount of diffusion for the immature species, and it is
assumed to satisfy

α � rDm, (1.3)

namely, the immatured is less mobile than the matured, and ε > 0 represents the impact of the death
rate of the immature. The birth function b(v) is one of the following two important types (see [12,
16])

b1(v) = pve−avq
, or b2(v) = pv

1 + avq
(1.4)

with a > 0, p > 0 and q > 0. When b(v) = b1(v) with q = 1, Eq. (1.1) is called the nonlocal Nicholson’s
blowflies equation. Lastly, the function fα(y) is the heat kernel

fα(y) = 1√
4πα

e−y2/4α with

∞∫
−∞

fα(y)dy = 1. (1.5)

By solving the equation

dm v = εp

∞∫
−∞

b
(

v(t − r, x − y)
)

fα(y)dy,

we obtain immediately the two constant equilibria v± of (1.1)

for b1(v): v− = 0 and v+ =
(

1

a
ln

εp

dm

)1/q

, (1.6)

for b2(v): v− = 0 and v+ =
(

εp − dm

adm

)1/q

. (1.7)

When εp > dm , we have v+ > v− = 0.
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A traveling wavefront of Eq. (1.1) connecting the constant states v± is an increasing solution of the
form of φ(x + ct), where c > 0 is the wave speed. Thus, it satisfies

⎧⎪⎪⎨
⎪⎪⎩

−cφ′(ξ) − Dmφ′′(ξ) + dmφ(ξ) = εp

∞∫
−∞

b
(
φ(ξ − cr − y)

)
fα(y)dy,

φ(±∞) = v±,

(1.8)

where ξ = x + ct and ′ = d
dξ

. The existence of such traveling wavefronts was first proved by So, Wu
and Zou [23] for b(v) = b1(v) with q = 1 by means of the method of the upper–lower solutions,
and later extended by Liang and Wu [12] to the general case b(v) = b1(v), or b(v) = b2(v). It was
proved that there exists a number c∗ > 0, called the critical wave speed (i.e., the minimum speed),
such that for c > c∗ , the wavefront φ(x + ct) exists. The boundedness of the critical wave speed c∗
and the asymptotic behavior of c∗ with respect to the delay time r and the diffusion rate Dm were
further analyzed by Wu, Wei and Mei [31]. They proved that c∗ → 2

√
Dm(εp − dm) as r → 0, and

c∗ = O (r−1/2) → 0 as r → ∞, while c∗ = O (
√

Dm) → ∞ as Dm → ∞. Then, Mei and So [17] showed
that, when the wavefront is as fast as c > 2

√
Dm(3εp − 2dm) and the initial perturbation around

the wavefront in a weighted Sobolev space is small enough, then the wavefront is asymptotically
stable. However, for the gap c∗ < c � 2

√
Dm(3εp − 2dm), the stability of these slower wavefronts

remains open. Obviously, as we know, such a stability result for the slower wavefronts is much more
significant and challenging from both the mathematical and physical points of view. The purpose of
the present paper is to resolve this case.

By using the weighted energy method, as in [16–18], the crucial step is to establish the basic L2-
energy estimate for v −φ. However, different from the case of local nonlinearity in [16], the technique
with a piecewise weight function cannot be applied to get the stability for all c > c∗ in the nonlocal
case. This is because the nonlocal integral term will produce a large upper bound which forces us to
look for a wave with a big enough wave-speed in order to eliminate it (see, for example, the stability
result given in [17] with c > 2

√
Dm(3εp − 2dm)). Here, we develop a new technique to overcome this

difficulty caused by the nonlocality. First of all, we introduce a non-piecewise weight function w(x) =
e−kx for some carefully selected positive number k, which is related to the critical wave speed c∗ .
Next we prove that, for any given wave with wave speed c > c∗ , the solution v(t, x) converges to the
corresponding traveling wavefront φ(x + ct) in the weighted Sobolev space H1

w(R). Hence, we have
the convergence result: supx∈I |v(t, x) − φ(x + ct)| = O (e−μt) for some positive constant μ, where
I = (−∞, x̄) is any interval with x̄ � 1, due to the shortage of w(x) → 0 as x → +∞. After that, we
further prove limx→+∞ |v(t, x) − φ(x + ct)| = O (e−μt). By combining these two convergence results,
we obtain the stability of the wavefront in the whole space (−∞,∞).

The rest of the paper is organized as follows. In Section 2, we state the existence result for traveling
wavefronts. Based on the property of the critical wavefront, we then introduce a weight function
which is ideal for our purpose. In Section 3, we combine the weighted energy method with the
comparison principle together and prove the stability for all traveling wavefronts (c > c∗). There will
be no restriction on the delay time r, the wave speed c and the initial perturbation. This essentially
improves and develops the previous stability results in [17]. In Section 4, we present some numerical
results based on the Crank–Nicholson scheme. These numerical results confirm our theoretical results.
Finally, in Section 5, we give a remark on the first part of this series of study [16] that the b′(v+) 	 1
can be removed by our new technique showed in this paper, even so b′(v+) 	 1 is reasonable as
explained in [16].

For the notations adopted in the present paper, in particular the weighted Sobolev space Hl
w(R)

as well as the space C([0, T ]; Hl
w (R)), we refer the reader to the first part of this series of study [16].

For other interesting research works related to this topic, please refer to [1–34] and the references
therein.
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2. Nonlinear stability

In this section, we first state the existence of traveling wavefronts and then introduce the nonlinear
stability result for traveling wavefronts.

By using the method of the upper–lower solutions, Liang and Wu [12] (see also the early work by
So, Wu and Zou [23]) proved the existence of the traveling wavefronts.

Proposition 2.1 (Existence of traveling wavefronts). (See [12,23].) Assume that

for b(v) = b1(v): 1 <
εp

dm
� e1/q, (2.1)

for b(v) = b2(v): either 1 <
εp

dm
� q

q − 1
if q > 1,

or 1 <
εp

dm
< ∞ if 0 < q � 1. (2.2)

Then there exist a minimum speed c∗ = c∗(r,α, ε, Dm,dm, p) ∈ (0,2
√

Dm(εp − dm)) and a corresponding
number λ∗ = λ(c∗) > 0 satisfying

Δ(λ∗, c∗) = 0,
∂

∂λ
Δ(λ∗, c∗) = 0, (2.3)

where

Δ(λ, c) = εpeαλ2−λcr − [
cλ − Dmλ2 + dm

]
, (2.4)

such that for all c > c∗ , the traveling wavefront φ(x + ct) of Eq. (1.1) connecting v± exists uniquely (up to
shift).

Furthermore, for c = c∗ , it holds that Δ(λ∗, c) = 0, i.e.,

εpeαλ2∗−λ∗c∗r = c∗λ∗ − Dmλ2∗ + dm, (2.5)

and for c > c∗ , it holds that Δ(λ∗, c) < 0, i.e.,

εpeαλ2∗−λ∗cr < cλ∗ − Dmλ2∗ + dm. (2.6)

We now define a weight function as

w(x) = e−2λ∗x, (2.7)

where λ∗ = λ∗(c∗) is the positive constant determined in Proposition 2.1. As showed in [31], we know
that c∗

2Dm
< λ∗ < c∗

Dm
. Obviously, it satisfies w(x) → +∞ as x → −∞ and w(x) → 0 as x → +∞.

Next, we state our stability result.

Theorem 2.2 (Nonlinear stability). Let εp
dm

satisfy (2.1) for b(v) = b1(v), or (2.2) for b(v) = b2(v). For any
given wavefront φ(x + ct) with a speed c > c∗ , if c satisfies

eλ2∗α <
cλ∗ − Dmλ2∗ + dm

c λ − D λ2 + d
, (2.8)
∗ ∗ m ∗ m
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the initial data holds

v− � v0(s, x) � v+, for (s, x) ∈ [−r,0] × R, (2.9)

and the initial perturbation is v0(s, x) − φ(x + cs) ∈ C([−r,0]; H1
w(R)), then the solution of (1.1) and (1.2)

satisfies v(t, x) − φ(x + ct) ∈ C([0,∞); H1
w(R)), and

v− � v(t, x) � v+, for (t, x) ∈ R+ × R, (2.10)

and

∥∥(v − φ)(t)
∥∥

H1
w (R)

� Ce−μt, t � 0, (2.11)

for some positive constant μ.
In particular, the solution v(t, x) also converges asymptotically to the wavefront φ(x+ ct) in the L∞-norm:

sup
x∈R

∣∣v(t, x) − φ(x + ct)
∣∣ � Ce−μt, t � 0. (2.12)

Remark 1.

1. The condition (2.8) is equivalent to

α <
1

λ2∗
ln

cλ∗ − Dmλ2∗ + dm

c∗λ∗ − Dmλ2∗ + dm
. (2.13)

Here α is independent of c, Dm and dm , but both λ∗ and c∗ are related to α. For given α,
we need the wave speed c to be large such as in (2.13). Conversely, when c is sufficiently

large, one can easily verify that 1
λ2∗

ln cλ∗−Dmλ2∗+dm

c∗λ∗−Dmλ2∗+dm
is sufficiently large. This ensures α is suffi-

ciently large as well. When c is sufficiently close to the critical wave speed c∗ , then one can

recognize that 1
λ2∗

ln cλ∗−Dmλ2∗+dm

c∗λ∗−Dmλ2∗+dm
	 1, which means α needed to be sufficiently small. Thus,

when α is small enough, we may obtain the stability for those slower waves with the speed
c ∈ (c∗,2

√
Dm(3εp − 2dm)], which is the unsolved gap in [17]. So, here we improve the previous

stability results in [17].
2. The smallness for the initial perturbation and the condition b′(v+) = 0 both required in [17] are

removed for our new stability result.
3. By a deep analysis on the wavefront φ(x + ct), it can be verified that

∣∣φ(ξ) − v−
∣∣ = O (1)e−λ1|ξ | as ξ → −∞, (2.14)

where λ1 = λ1(c) > 0 is determined by Δ(λ1, c) = 0 and satisfies 0 < λ1 < λ∗ . However, different
from the local case studied in [16], the weight function w(x) cannot be taken as w(x) = e2λ|x| for
λ ∈ (λ1, λ∗) as x → −∞, namely, the decay rate of the initial perturbation around the wavefront
cannot be released to

∣∣v0(s, x) − φ(x + cs)
∣∣ = O (1)e−λ|x|, for λ ∈ (λ1, λ∗), as x → −∞.

The reason is that the nonlocal term (integration) produces a big upper bound which cannot
be eliminated by the weight w(x) = e2λ|x| with λ ∈ (λ1, λ∗] (see (3.29) in the proof of the key
Lemma 3.3). That is why here we need to select a stronger weight function as w(x) = e2λ∗|x| for
x → −∞.
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3. Proof of nonlinear stability

As shown in [16] (see also [9,15,27]), one can similarly prove the following boundedness and the
comparison principle.

Lemma 3.1 (Boundedness). Let the initial data satisfy

v− = 0 � v0(s, x) � v+, for (s, x) ∈ [−r,0] × R. (3.1)

Then the solution v(t, x) of the Cauchy problem (1.1) and (1.2) satisfies

v− � v(t, x) � v+, for (t, x) ∈ [0,∞) × R. (3.2)

Lemma 3.2 (Comparison principle). Let v(t, x) and v(t, x) be the solutions of (1.1) and (1.2) with the initial
data v0(s, x) and v0(s, x), respectively. If

v− � v0(s, x) � v0(s, x) � v+, for (s, x) ∈ [−r,0] × R, (3.3)

then

v− � v(t, x) � v(t, x) � v+, for (t, x) ∈ R+ × R. (3.4)

Let the initial data v0(s, x) be such that v− � v0(s, x) � v+ for (s, x) ∈ [−r,0] × R , and let

{
V +

0 (s, x) = max
{

v0(s, x),φ(x + cs)
}
,

V −
0 (s, x) = min

{
v0(s, x),φ(x + cs)

}
,

for (s, x) ∈ [−r,0] × R. (3.5)

This implies

v− � V −
0 (s, x) � v0(s, x) � V +

0 (s, x) � v+, for (s, x) ∈ [−r,0] × R, (3.6)

v− � V −
0 (s, x) � φ(x + cs) � V +

0 (s, x) � v+, for (s, x) ∈ [−r,0] × R. (3.7)

Define V +(t, x) and V −(t, x) as the corresponding solutions of (1.1) and (1.2) with respect to initial
data V +

0 (s, x) and V −
0 (s, x), respectively, i.e.,

⎧⎪⎪⎨
⎪⎪⎩

∂V ±

∂t
− Dm

∂2 V ±

∂x2
+ dm V ± = ε

∞∫
−∞

b
(

V ±(t − r, x − y)
)

fα(y)dy, (t, x) ∈ R+ × R,

V ±(s, x) = V ±
0 (s, x), x ∈ R, s ∈ [−r,0].

(3.8)

By Lemma 3.2, it follows that

v− � V −(t, x) � v(t, x) � V +(t, x) � v+, for (t, x) ∈ R+ × R, (3.9)

v− � V −(t, x) � φ(x + ct) � V +(t, x) � v+, for (t, x) ∈ R+ × R. (3.10)

As in [16], we also need the following three steps to prove stability.

Step 1: The convergence of V +(t, x) to φ(x + ct).
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Let ξ := x + ct and

u0(s, ξ) := V +
0 (s, x) − φ(x + cs), u(t, ξ) := V +(t, x) − φ(x + ct). (3.11)

Then by (3.6) and (3.9), we have

u(t, ξ) � 0 and u0(s, ξ) � 0. (3.12)

It can be verified that u(t, ξ) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
+ c

∂u

∂ξ
− Dm

∂2u

∂ξ2
+ dmu − ε

∞∫
−∞

b′(φ(ξ − y − cr)
)
u(t − r, ξ − y − cr) fα(y)dy

= ε

∞∫
−∞

Q (t − r, ξ − y − cr) fα(y)dy, (t, x) ∈ R+ × R,

u(s, ξ) = u0(s, ξ), (s, x) ∈ [−r,0] × R,

(3.13)

where

Q (t − r, ξ − y − cr) = b(φ + u) − b(φ) − b′(φ)u (3.14)

with φ = φ(ξ − y − cr) and u = u(t − r, ξ − y − cr).
Multiplying (3.13) by e2μt w(ξ)u(t, ξ), one obtains

{
1

2
e2μt wu2

}
t
+ e2μt

{
1

2
cwu2 − Dm wuuξ

}
ξ

+ Dme2μt wu2
ξ + Dme2μt w ′uξ u

+
{
− c

2

w ′

w
+ dm − μ

}
e2μt wu2

− εe2μt w(ξ)u(ξ, t)

∞∫
−∞

b′(φ(ξ − y − cr)
)
u(t − r, ξ − y − cr) fα(y)dy

= εe2μt w(ξ)u(ξ, t)

∞∫
−∞

Q (t − r, ξ − y − cr) fα(y)dy. (3.15)

Notice that, by the Cauchy–Schwarz inequality,

∣∣Dme2μt w ′uuξ

∣∣ = Dme2μt w

∣∣∣∣uξ · w ′

w
v

∣∣∣∣ � Dme2μt wu2
ξ + Dm

4
e2μt

(
w ′

w

)2

wu2,

then (3.15) is reduced to

{
1

2
e2μt wu2

}
t
+

{
1

2
e2μtcwu2 − Dme2μt wuuξ

}
ξ

+
{
− c

2

w ′

w
+ dm − μ − Dm

4

(
w ′

w

)2}
e2μt wu2
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− εe2μt w(ξ)u(ξ, t)

∞∫
−∞

b′(φ(ξ − y − cr)
)
u(t − r, ξ − y − cr) fα(y)dy

� εe2μt w(ξ)u(ξ, t)

∞∫
−∞

Q (t − r, ξ − y − cr) fα(y)dy. (3.16)

Integrating the above inequality over R × [0, t] with respect to ξ and t , one further has

e2μt
∥∥u(t)

∥∥2
L2

w
+

t∫
0

∫
R

e2μτ

{
−c

w ′(ξ)

w(ξ)
+ 2dm − 2μ − Dm

2

(
w ′(ξ)

w(ξ)

)2}
w(ξ)u2(τ , ξ)dξ dτ

− 2ε

t∫
0

∫
R

∫
R

e2μτ w(ξ)b′(φ(ξ − y − cr)
)
u(τ , ξ)u(τ − r, ξ − y − cr) fα(y)dy dξ dτ

�
∥∥u0(0)

∥∥2
L2

w
+ 2ε

t∫
0

∫
R

∫
R

e2μτ w(ξ)u(τ , ξ)Q (τ − y − r, ξ − cr) fα(y)dy dξ dτ . (3.17)

We now turn to estimate the third term in (3.17). First of all, by using the change of variables y 
→ y,
ξ − y − cr 
→ ξ , τ − r 
→ τ , one can get

t∫
0

∫
R

∫
R

e2μτ w(ξ)b′(φ(ξ − y − cr)
)
u2(τ − r, ξ − y − cr) fα(y)dy dξ dτ

=
t−r∫

−r

∫
R

∫
R

e2μ(τ+r)w(ξ + y + cr)b′(φ(ξ)
)
u2(τ , ξ) fα(y)dy dξ dτ

= e2μr

t−r∫
0

∫
R

e2μτ

[
b′(φ(ξ))

w(ξ)

∫
R

w(ξ + y + cr) fα(y)dy

]
w(ξ)u2(τ , ξ)dξ dτ

+ e2μr

0∫
−r

∫
R

e2μτ

[
b′(φ(ξ))

w(ξ)

∫
R

w(ξ + y + cr) fα(y)dy

]
w(ξ)u2

0(τ , ξ)dξ dτ

� e2μr

t∫
0

∫
R

e2μτ

[
b′(φ(ξ))

w(ξ)

∫
R

w(ξ + y + cr) fα(y)dy

]
w(ξ)u2(τ , ξ)dξ dτ

+ e2μr

0∫
−r

∫
R

e2μτ

[
b′(φ(ξ))

w(ξ)

∫
R

w(ξ + y + cr) fα(y)dy

]
w(ξ)u2

0(τ , ξ)dξ dτ . (3.18)

Using the Cauchy–Schwarz inequality again,

∣∣u(τ , ξ)u(τ − r, ξ − y − cr)
∣∣ � η

u2(τ , ξ) + 1
u2(τ − r, ξ − y − cr) (3.19)
2 2η
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for a positive constant η which will be selected later (see Lemma 3.3 below), and using (3.18) and the
fact b′(φ) > 0 (which is proved in [16]), one can estimate the third term in (3.17) as follows:

2ε

∣∣∣∣∣
t∫

0

∫
R

∫
R

e2μτ w(ξ)b′(φ(ξ − y − cr)
)
u(τ , ξ)u(τ − r, ξ − y − cr) fα(y)dy dξ dτ

∣∣∣∣∣

� ε

∣∣∣∣∣
t∫

0

∫
R

∫
R

e2μτ w(ξ)b′(φ(ξ − y − cr)
)[

ηu2(τ , ξ) + 1

η
u2(τ − r, ξ − y − cr)

]
fα(y)dy dξ dτ

∣∣∣∣∣

= εη

t∫
0

∫
R

∫
R

e2μτ w(ξ)b′(φ(ξ − y − cr)
)
u2(τ , ξ) fα(y)dy dξ dτ

+ ε

η

∫
R

∫
R

e2μτ w(ξ)b′(φ(ξ − y − cr)
)
u2(τ − r, ξ − y − cr) fα(y)dy dξ dτ

� εη

t∫
0

∫
R

e2μτ w(ξ)

[∫
R

b′(φ(ξ − y − cr)
)

fα(y)dy

]
u2(τ , ξ)dξ dτ

+ εe2μr

η

t∫
0

∫
R

e2μτ

[
b′(φ(ξ)

) ∫
R

w(ξ + y + cr)

w(ξ)
fα(y)dy

]
w(ξ)u2(τ , ξ)dξ dτ

+ εe2μr

η

0∫
−r

∫
R

e2μτ

[
b′(φ(ξ)

) ∫
R

w(ξ + y + cr)

w(ξ)
fα(y)dy

]
w(ξ)u2

0(τ , ξ)dξ dτ . (3.20)

Substituting (3.20) into (3.17) yields

e2μt
∥∥u(t)

∥∥2
L2

w
+

t∫
0

∫
R

e2μτ Bη,μ,w(ξ)w(ξ)u2(τ , ξ)dξ dτ

�
∥∥u0(0)

∥∥2
L2

w
+ εe2μr

η

0∫
−r

∫
R

e2μτ

[
b′(φ(ξ)

) ∫
R

w(ξ + y + cr)

w(ξ)
fα(y)dy

]
w(ξ)u2

0(τ , ξ)dξ dτ

+ 2ε

t∫
0

∫
R

∫
R

e2μτ w(ξ)u(τ , ξ)Q (τ − y − r, ξ − cr) fα(y)dy dξ dτ , (3.21)

where

Bη,μ,w(ξ) := Aη,w(ξ) − 2μ − ε

η

(
e2μr − 1

)
b′(φ(ξ)

) ∫
R

w(ξ + y + cr)

w(ξ)
fα(y)dy (3.22)

and

Aη,w(ξ) : = −c
w ′(ξ)

w(ξ)
+ 2dm − Dm

2

(
w ′(ξ)

w(ξ)

)2
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− εη

∫
R

b′(φ(ξ − y − cr)
)

fα(y)dy

− εb′(φ(ξ))

η

∫
R

w(ξ + y + cr)

w(ξ)
fα(y)dy. (3.23)

As shown in [16], by the Taylor’s formula and the fact b′′(v) � 0 for v− � v � v+ , one can similarly
obtain

Q (t − r, x − y) = b(φ + u) − b(φ) − b′(φ)u � 0, (3.24)

which leads, with the fact u > 0 (see (3.12)), that

2ε

t∫
0

∫
R

∫
R

e2μτ w(ξ)u(τ , ξ)Q (τ − y − r, ξ − cr) fα(y)dy dξ dτ � 0. (3.25)

On the other hand, since 0 � b′(φ) � p (see (3.18) in [16]), and w(ξ+y+cr)
w(ξ)

= e−2λ∗(y+cr) , it follows that

εe2μr

η

0∫
−r

∫
R

e2μτ b′(φ(ξ)
)[∫

R

w(ξ + y + cr)

w(ξ)
fα(y)dy

]
w(ξ)u2

0(τ , ξ)dξ dτ

� εpe2μr

η

0∫
−r

e2μτ

∫
R

[∫
R

e−2λ∗(y+cr) fα(y)dy

]
w(ξ)u2

0(τ , ξ)dξ dτ

= εpe2μr

η

0∫
−r

e2μτ

∫
R

[
e4αλ2∗−2λ∗cr

∫
R

1√
4πα

e
−(

y√
4α

+√
4αλ∗)2

dy

]
w(ξ)u2

0(τ , ξ)dξ dτ

= εp

η
e2μr+4αλ2∗−2λ∗cr

0∫
−r

e2μτ w(ξ)u2
0(τ , ξ)dξ dτ

� C

0∫
−r

∥∥u0(τ )
∥∥2

L2
w

dτ . (3.26)

Applying (3.25) and (3.26) in (3.21), one then obtains

e2μt
∥∥u(t)

∥∥2
L2

w
+

t∫
0

∫
R

e2μτ Bη,μ,w(ξ)w(ξ)u2(τ , ξ)dξ dτ

�
∥∥u0(0)

∥∥2
L2

w
+ C

0∫
−r

∥∥u0(τ )
∥∥2

L2
w

dτ . (3.27)

Next, we will carefully select the numbers η, μ and the weight function w(ξ) to prove
Bη,μ,w(ξ) > 0. This is the crucial step in the present paper. For that purpose, we need the follow-
ing key lemma.
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Lemma 3.3. Let η = e2λ2∗α−λ∗cr . Then Aη,w(ξ) defined in (3.23) satisfies

Aη,w(ξ) � C1 > 0, ξ ∈ R, (3.28)

for some positive constant C1 .

Proof. Notice that η = e2λ2∗α−λ∗cr , w(ξ) = e−2λ∗ξ , w ′(ξ)
w(ξ)

= −2λ∗ and w(ξ+y+cr)
w(ξ)

= e−2λ∗(y+cr) , as well

as 0 � b′(φ(ξ)) � p (see (3.18) in [16]), and
∫

R fα(y)dy = 1. One may obtain

Bμ,η,w(ξ) = 2cλ∗ + 2dm − 2Dmλ2∗ − εη

∫
R

b′(φ(ξ − y − cr)
)

fα(y)dy

− εb′(φ(ξ))

η

∫
R

e−2λ∗(y+cr) fα(y)dy

� 2cλ∗ + 2dm − 2Dmλ2∗ − εηp

∫
R

fα(y)dy

− εp

η
e4λ2∗α−2λ∗cr

∫
R

1√
4πα

e
−(

y√
4α

+√
4αλ∗)2

dy

= 2cλ∗ + 2dm − 2Dmλ2∗ − εηp − εp

η
e4λ2∗α−2λ∗cr

= 2
[
cλ∗ + dm − Dmλ2∗ − εpe2λ2∗α−λ∗cr]

= 2
[
cλ∗ + dm − Dmλ2∗ − εpeλ2∗α−λ∗creλ2∗α

]
= 2

[(
cλ∗ + dm − Dmλ2∗

) − (
c∗λ∗ + dm − Dmλ2∗

)
eλ2∗α

] [
by (2.5)

]
= 2

(
c∗λ∗ + dm − Dmλ2∗

)[ cλ∗ + dm − Dmλ2∗
c∗λ∗ + dm − Dmλ2∗

− eλ2∗α
]

=: C1 > 0
[
by (2.8)

]
. (3.29)

The lemma is proved. �
Lemma 3.4. Let μ1 > 0 be the unique solution of the equation

C1 = 2μ1 + εpη
(
e2μ1r − 1

)
. (3.30)

If 0 < μ < μ1 , then

Bη,μ,w(ξ) � C2 > 0, ξ ∈ (−∞,∞), (3.31)

for some positive constant C2 .

Proof. Applying (3.28) to (3.22), and noting 0 � b′(φ) � p for v− � φ � v+ , and η = e2λ2∗α−λ∗cr , it can
be verified that

Bη,μ,w(ξ) � C1 − 2μ − ε

η

(
e2μr − 1

)
b′(φ(ξ)

) ∫
w(ξ + y + cr)

w(ξ)
fα(y)dy
R
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� C1 − 2μ − εp

η

(
e2μr − 1

) ∫
R

e−2λ∗(y+cr) fα(y)dy

= C1 − 2μ − εp

η

(
e2μr − 1

)
e4λ2∗α−2λ∗cr

∫
R

1√
4πα

e
−(

y√
4α

+√
4αλ∗)2

dy

= C1 − 2μ − εpη
(
e2μr − 1

)
=: C2 > 0, for 0 < μ < μ1. (3.32)

This completes the proof of the lemma. �
Below we will derive the basic energy estimates which are crucial for our main stability result.
Applying (3.31) to (3.27), and dropping the positive term

∫ t
0

∫
R e2μτ Bη,μ,w(ξ)w(ξ)u2(τ , ξ)dξ dτ ,

one then immediately establishes the first energy estimate as follows.

Lemma 3.5. It holds that

e2μt
∥∥u(t)

∥∥2
L2

w
� C

(∥∥u0(0)
∥∥2

L2
w

+
0∫

−r

∥∥u0(τ )
∥∥2

L2
w

dτ

)
, t � 0. (3.33)

Furthermore, differentiating Eq. (3.13) with respect to ξ , and multiplying it by
e2μt w(ξ)uξ (t, ξ), and integrating the resultant equation over R × [0, t] with respect to ξ and t , then
by using (3.33) in Lemma 3.5, one can obtain the second energy estimate as follows.

Lemma 3.6. It holds that

e2μt
∥∥uξ (t)

∥∥2
L2

w
� C

(∥∥u0(0)
∥∥2

H1
w

+
0∫

−r

∥∥u0(τ )
∥∥2

H1
w

dτ

)
, t � 0. (3.34)

Thus, (3.33) and (3.34) imply the following lemma.

Lemma 3.7. It holds that

∥∥u(t)
∥∥2

H1
w

� Ce−2μt

(∥∥u0(0)
∥∥2

H1
w

+
0∫

−r

∥∥u0(τ )
∥∥2

H1
w

dτ

)
, t � 0. (3.35)

Notice that, w(ξ) → 0 as ξ → ∞, we cannot expect H1
w(R) ↪→ C(R). However, for any interval

I = (−∞, ξ̄ ] for some large ξ̄ � 1, we may have the Sobolev’s embedding result H1
w(I) ↪→ C(I),

which when combining with (3.35) gives the following L∞-estimate.

Lemma 3.8. It holds that

sup
ξ∈I

∣∣u(t, ξ)
∣∣ � Ce−μt

(∥∥u0(0)
∥∥2

H1
w

+
0∫

−r

∥∥u0(τ )
∥∥2

H1
w

dτ

)1/2

, t > 0, (3.36)

for any interval I = (−∞, ξ̄ ] with some large ξ̄ � 1.
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Next, we need to extend the L∞-convergence in (3.36) to the whole space (−∞,∞). The key step
is to prove the convergence at ξ = ∞.

Lemma 3.9. It holds that

lim
ξ→∞

∣∣u(t, ξ)
∣∣ � Ce−μ2t , t � 0, (3.37)

where μ2 := dm − εb′(v+) > 0.

Proof. As shown in (3.24), i.e., Q (t − r, x − y) � 0, (3.13) is reduced to

∂u

∂t
+ c

∂u

∂ξ
− Dm

∂2u

∂ξ2
+ dmu − ε

∞∫
−∞

b′(φ(ξ − y − cr)
)
u(t − r, ξ − y − cr) fα(y)dy � 0. (3.38)

Taking limits as ξ → ∞, and noting that uξ (t,∞) = 0, uξξ (t,∞) = 0 due to the boundedness of
u(t, ξ) for all ξ ∈ (−∞,∞), one immediately obtains

d

dt
u(t,∞) + dmu(t,∞) − εb′(v+)u(t − r,∞)

∞∫
−∞

fα(y)dy � 0.

Since
∫

R fα(y)dy = 1, therefore

d

dt
u(t,∞) + dmu(t,∞) − εb′(v+)u(t − r,∞) � 0. (3.39)

Integrating (3.39) over [0, t], one then has

u(t,∞) + dm

t∫
0

u(τ ,∞)dτ − εb′(v+)

t∫
0

u(τ − r,∞)dτ � u0(0,∞). (3.40)

By the change of variable τ − r → τ to the third term of (3.40), it follows that

εb′(v+)

t∫
0

u(τ − r,∞)dτ = εb′(v+)

t−r∫
−r

u(τ ,∞)dτ

� εb′(v+)

t∫
0

u(τ ,∞)dτ + εb′(v+)

0∫
−r

u0(τ ,∞)dτ . (3.41)

Substituting (3.41) into (3.40), we have

u(t,∞) + [
dm − εb′(v+)

] t∫
u(τ ,∞)dτ � C3, (3.42)
0
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where

C3 := u0(0,∞) + εb′(v+)

0∫
−r

u0(τ ,∞)dτ .

By a straightforward but tedious computation, one can check

εb′
1(v+) < dm and εb′

2(v+) < dm.

Thus, when b(v) = b1(v) or b(v) = b2(v), one always has

εb′(v+) < dm.

Then, by the Gronwall’s inequality, (3.42) yields

u(t,∞) � Ce−μ2t, (3.43)

with μ2 = dm − εb′(v+) > 0. The proof is complete. �
Combining (3.37) and (3.38), and letting 0 < μ < min{μ1,μ2}, one finally proves the L∞-

convergence for all ξ ∈ R .

Lemma 3.10. It holds that

sup
x∈R

∣∣V +(t, ξ) − φ(x + ct)
∣∣ = sup

ξ∈R

∣∣u(t, ξ)
∣∣ � Ce−μt, t � 0, (3.44)

where 0 < μ < min{μ1,μ2}.

Step 2: The convergence of V −(t, x) to φ(x + ct).
Let ξ = x + ct and

u(t, ξ) = φ(x + ct) − V −(t, x), u0(s, ξ) = φ(x + cs) − V −
0 (s, x). (3.45)

As shown in the above, we can similarly prove that V −(t, x) converges to φ(x + ct).

Lemma 3.11. It holds that

sup
x∈R

∣∣V −(t, x) − φ(x + ct)
∣∣ = sup

ξ∈R

∣∣u(t, ξ)
∣∣ � Ce−μt, t � 0, (3.46)

where 0 < μ < min{μ1,μ2}.

Step 3: The convergence of v(t, x) to φ(x + ct).
Since the initial data satisfy

V −
0 (x, s) � v0(x, s) � V +

0 (x, s),

by Lemma 3.2, it can be verified that the corresponding solutions of (1.1) and (1.2) satisfy

V −(t, x) � v(t, x) � V +(t, x), (t, x) ∈ R+ × R.

Combining (3.44) in Lemma 3.10 and (3.46) in Lemma 3.11, we have the following stability result.
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Table 1
Case studies: parameters and initial data.

Case r α a p dm ε Dm v+ = 1
a ln p

d Initial data v0(s, x) for s ∈ [−r,0]
1 0.5 0.5 0.1 2.17 1 1 1 7.7472717

{
0, x � 0,

u+, x > 0

2 0.5 0.25 0.1 2.17 1 1 1 7.7472717

⎧⎨
⎩

0, x � −20,

40, −20 < x � 20,

u+, x > 20

3 10 10 0.1 2.17 1 1 1 7.7472717

{
0, x � 0,

u+, x > 0

4 10 5 0.1 2.17 1 1 1 7.7472717

⎧⎨
⎩

0, x � −20,

40, −20 < x � 20,

u+, x > 20

Lemma 3.12. It holds that

sup
x∈R

∣∣v(t, x) − φ(x + ct)
∣∣ � Ce−μt , t � 0, (3.47)

for 0 < μ < min{μ1,μ2}.

4. Numerical computations

In this section, we are going to carry out some numerical simulations, which will confirm our
theoretical results. Although a number of numerical results were also presented by Liang and Wu in
[12], the case of a large initial perturbation around the wavefront was not included.

The mathematical formulation given in Eqs. (1.1) and (1.2) is a nonlinear time-delayed partial dif-
ferential equation with a nonlocal nonlinearity. The computational results reported in this section
are based on the Crank–Nicholson scheme together with an approximation to the nonlocal linearity
by Simpson’s rule. It is noted that the nonlinear term is time-delayed; hence, the resulting finite-
difference equations are linear. The advantage of this simple implicit scheme is that: (i) it is linear
and, hence, no nonlinear solver (for example, an iterative method) is required to solve the result-
ing linear difference equations in each time step; (ii) the Crank–Nicholson scheme is unconditionally
stable and, hence, a larger time-step can be allowed which makes our scheme more efficient when
implemented.

In computation, the sizes of the time step and space step are chosen as t = 0.04 and x = 0.08.
Although the original model assumes the spatial domain is the whole domain, a finite computa-
tional domain (−L, L) is imposed. Here, we let L = 800, then the computational domain is sufficiently
large so that numerical boundary effect is ignorable. In this section, let the birth rate function be
b1(v) = pve−av with q = 1. We report the numerical simulations for four test cases (see Table 1). For
simplicity, we first choose Dm = 1, ε = 1 and dm = 1; other parameters and the initial data for each
case study are listed in Table 1. The final computed time is 120 for Cases 1 and 2, and 300 for Cases 3
and 4.

By using the Crank–Nicholson scheme, we obtain the following numerical results, which also
demonstrate the stability of the traveling wavefronts. In Case 1, the delay time is chosen to be small
(r = 0.5), and the initial data v0(s, x) is within [v−, v+]. The numerical results show that, after a
short time the solution v(t, x) of Eqs. (1.1) and (1.2) behaves as a traveling wave which propagates
from right to left with a positive speed c (see Fig. 1). This numerically confirms the stability of the
traveling wavefronts.

In Case 2, we still take the delay time small as in Case 1, but choose the initial data to exceed
v+ a lot in some points, namely, the initial perturbation around the traveling wavefront should be
really large. The numerical computations in Fig. 2 demonstrate that the solution v(t, x) asymptotically
behaves like a traveling wavefront propagating from right to left with a positive speed c.
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Fig. 1. Case 1: for the small delay time r = 0.5 and the initial data within [v−, v+], the presented graphs are for the solution
v(t, x) at different time t , which behave like a stable traveling wavefront.

Fig. 2. Case 2: for the small delay time r = 0.5 and the initial data exceeding v+ at some points, the presented graphs are for
the solution v(t, x) at different time t , which behave like a stable traveling wavefront.

Cases 3 and 4 are to show the stability of wavefronts with a large delay time. At this stage, we take
r = 10, but the initial data v0(s, x) is selected as what we did in Cases 1 and 2 before, respectively.
The numerical simulations presented in Figs. 3 and 4 show also that, after a short time, the solution
v(t, x) always behaves like a traveling wavefront which propagates from left to right with a positive
speed c.
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Fig. 3. Case 3: for the big delay time r = 10 and the initial data within [v−, v+], the presented graphs are for the solution
v(t, x) at different time t , which behave like a stable traveling wavefront.

Fig. 4. Case 4: for the big delay time r = 10 and the initial data exceeding [v−, v+], the presented graphs are for the solution
v(t, x) in different time t , which behave like a stable traveling wavefront.
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5. Remark

For the local time-delayed reaction–diffusion equation

∂v

∂t
− Dm

∂2 v

∂x2
+ dm v = εb

(
v(t − r, x)

)
, (t, x) ∈ (0,∞) × R, (5.1)

the stability has been proved in the first part [16] with a restriction b′(v+) 	 1, even so it is reason-
able as explained in [16]. Such a condition is needed in the stability proof for x � 1. However, as we
know, when x � 1, v = v+ is the stable node of (5.1). This will be an advantage for the stability proof.
By setting the weight function w(x) as (2.7), we can prove a similar result as Lemma 3.9, which leads
us to remove the condition b(v+) 	 1.
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