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摘要 
 多媒體串流（Streaming）技術的目的，是使消費者在下載多媒體檔案的同時，

可以先觀賞已收到的部份，而不需要等到完整下載後，才開始觀賞。目前最被廣泛

接受的串流通訊協定是 Real Time Protocol(RTP)，它是針對即時串流的特殊需求所

設計的。此協定也可搭配 Real Time Streaming Protocol (RTSP)使用。RTSP 提供

Server 與 Client 之間的雙向溝通，Client 可以透過 RTSP 下指令給 Server 作像是

「播放」、「暫停」、「停止」等動作。市面上有許多軟體廠已有解決方案，此些 Servers
都符合 RTP 及 RTSP 的規範，但只提供單純的多媒體檔案串流。此些 Servers 無

法支援如即時串流無線攝影機所或 USB 攝影機所拍攝到的影像，或將變動位元速

率 (Variable-bit-rate) 的多媒體檔案，做規劃平整 (Smoothing) 的動作，來達到較

平順的傳送等。 
本論文針對此需求，提出一套符合 RTP 及 RTSP 且可以很輕易被擴充功能的

Client/Server 軟體系統平台 。在本系統裡，Server 端可以向各種攝影機擷取影像

及聲音，即時的壓縮到 MPEG-4 的格式，儲存或馬上串流到多個 Clients。Client
可向 Server 要求串流攝影機的即時影像和聲音，或已儲存的多媒體檔案等。Client
如果要求的是已儲存的檔案，Server 會先針對 Video 的統計特性，做頻寬平整的動

作，達到較佳的串流效果及網路資源的利用。Client 若為監控中心，因為此系統提

供簡單的軟體輸出/輸入界面，所以可在系統上輕鬆的加裝影像處理程式，達到自動

化監控的效果。本論文將仔細地介紹此系統的架構、設計想法及使用方法，尤其會

特別闡述如何使 Server 可以在非常準確的時間，將每張 frame 傳送出去。 

本文所提出的目標及期望達到的功能都已達到和實現。然而，在觀察 Server
的傳送情況後發現，每張 frame 被傳送出去的時間準確度並不理想，且此誤差在多

個 clients 連線時將更明顯。本文在最後將提出可改善此系統的方向及未來可努力的

目標。 
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Abstract 
Streaming technology allows people to enjoy the multimedia contents while 

still downloading. Up to date, the most widely used and accepted streaming 
protocol is Real Time Protocol (RTP), which is specially designed for the needs of 
real-time streaming, and can be used in conjunction with Real Time Streaming 
Protocol (RTSP). RTSP provides bidirectional communication between the server 
and the client. Several software companies have come out with their streaming 
solutions that comply with RTP and RTSP. However, they merely fulfill the needs 
of streaming stored media files. They can neither stream real-time captured 
video/audio acquired from various types of cameras, nor transmit VBR multimedia 
contents in a smoother manner. 

In this work, an RTP/RTSP-compliant client/server streaming system that is 
flexible enough to be added with new functions is implemented. In particular, the 
server can acquire audiovisual data from different kinds of cameras, real-time 
encoding them into MPEG-4 format, and store or stream the resulted bitstreams 
to multiple clients. The client can ask the server to stream live-captured or stored 
media contents. If the client requests the stored video, the server can run the 
smoothing algorithm to smoothen the VBR traffic, so a better streaming 
experience and more efficient utilization of network resources can be obtained. 
Since the client software is designed to provide a clean and easy-to-use software 
input/output interface, image processing functions can be added to it effortlessly 
to allow automotive monitoring of unattended areas. Certainly, the architectures, 
design ideas, and the usages of the client and server systems will be explained in 
details. How the server can stream data following tight timing constraints will be 
addressed specifically.  

Apparently, the proposed goals are achieved and expected functions are 
realized. However, it is observed at the server side that the inter-departure times 
between frames are not equal to the expected values. This discrepancy becomes 
more obvious when more clients are present. Finally, possible ways to enhance 
the proposed system and the directions of the future work will be suggested. 
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1 Introduction 
1.1 Background 

With wide spread of network infrastructure and extensive usage of both wired and 

wireless devices, consumers can enjoy multimedia contents on their PCs, set-top boxes, 

Digital TVs, and mobile phones at any time and any place.  For example, the user can 

use his or her PC to download the latest episode of Star Wars from one of the content 

providers. When the downloading process is completed, the user can start watching the 

movie. This is extremely convenient because the user does not need to go out when he 

or she feels lazy or it is raining outside. The user is only one “press” away from enjoying 

the high resolution media contents. This way of retrieving and enjoying the media 

contents is referred as the traditional downloading method. 

So far, the story sounds terrific and seems to end perfectly. However, in fact, the 

story is not even close to what it looks like. For instance, what if one is in the coffee shop 

and suddenly wants to watch a movie of two-hour long? Can he or she wait there for the 

completion of downloading? Two-hour move is usually of size greater than 1 GB, and if 

only IEEE 802.11b (11Mbps) wireless network is available in the coffee shop, he or she 

will have to wait for approximately 10 to 20 minutes if the network is not congested. If the 

network is shared by multiple users (congested), which is often the case, he or she will 

need to wait a lot longer. For another example, what if one is using a handheld device 

(e.g. a PDA or mobile phone) that has much lower transmission rate and much lesser 

memory space (around 256 to 512 MBs)? He or she will have to wait for couple of hours 

to download the complete movie. In addition, the worst thing is that the memory is not 

even sufficient to store the complete media file!  

To overcome this serious problem, the technology called “streaming” has been 

developed. Instead of transmitting the whole file, the content server will divide the media 

file into tiny minipackets (usually around 1024 bytes), and transmit them to the user 

according to the transmission schedule specified for the file. When the player that the 

user is using receives the stream of packets, it will start to render them on the display 

device. Thus, the streaming technology allows one to start watching or listening to the 

media content as soon as he or she has received a certain amount of the content. Of 

course, the content provider has to continuously transmit the remaining data with the 
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transmission rate equal to or higher than the playback rate to guarantee smooth (no 

delay) presentation at his or her display device. The major distinction between 

“streaming” and the traditional downloading is that the former offers “play while 

downloading” while the later merely provide “play after downloading”. In short, streaming 

enables playback of audiovisual content in real time, while with the traditional 

downloading method, the entire file has to be retrieved before playback begins. 

Actually, media streaming has emerged as an important service offered over the 

Internet in these days. There are two types of streaming: pseudo streaming and true 

streaming [1]. The former replies on the TCP/IP, the Internet protocol used for 

conventional web pages, while the later employs, up to date, the most widely used and 

accepted streaming protocol, Real Time Protocol (RTP) [2], which is defined in RFC-3550 

by Internet Engineering Task Force (IETF),and is specially designed for the needs of 

real-time streaming. According to [2], RTP provides end-to-end delivery services 

including payload type identification, sequence numbering, timestamping, and 

transmission monitoring, for multimedia data with real-time properties, such as video and 

audio. Typically, RTP does not work on its own but do rely on and run on top of suitable 

underlying network such as UDP (primarily) or TCP. Moreover, RTP consists of two major 

components: 

 The real-time transport protocol (RTP), which carries real-time data. 

 The RTP control protocol (RTCP), which monitors reception quality and exchanges 

information about the participants in an active session. 

RTP can be used in conjunction with Real Time Streaming Protocol (RTSP) [3], 

which is defined in RFC-2326 by IETF and layered on top of RTP. RTSP acts as a 

“network remote control” to provide bidirectional communication between the server and 

the client similar to HTTP. According to [3], RTSP establishes and controls one or more 

than one time-synchronized stream of media data. For example, in a client/server 

scenario with RTSP functionalities, the client can issue “PLAY”, “PAUSE, and “STOP” 

requests to control the streaming process of the server. 

Since the streaming technology has been realized on RTP and enhanced by RTSP, 

and high-speed network infrastructure has been widely spread, one may think of the 

application that for some places like wards in hospitals or rooms with unattended sick 
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elders (targeted areas or places) that need to be automatically monitored because of 

limited budget to hire caretakers or a shortage of nurses, several wireless cameras can 

be installed to help monitor the status of these targeted areas. These cameras will send 

their captured audiovisual contents to a centralized streaming server in real time. The 

client system with automotive image processing functions can ask the server to stream 

these live captured contents to it, so it can analyze the contents. When discovering 

abnormal events, the client system may notify the related personnel by sending him or 

her an SMS or email. The related personnel, upon receiving the notification, will connect 

to the streaming server immediately to receive the stored or the most recently recorded 

audiovisual contents, and perform the necessary actions. To realize this application, at 

first thought, the system designer may want to use one of the free streaming servers 

available in the market. In fact, at present several software companies have come out 

with their streaming solutions, such as the Media Server and Player from Microsoft, the 

Helix Server and Player of Real, and the Darwin Streaming Server and QuickTime Player 

of Apple. These solutions do comply with RTP and RTSP, but however, they only fulfill the 

need of streaming stored multimedia contents. They neither can work with various kinds 

of cameras, nor stream live-captured audiovisual contents. In addition, they do not 

provide automotive image processing functions for surveillance purpose. 

Furthermore, to enhance the streaming experience, the system designer may want 

to control the actual streaming process. For example, the system designer can adapt the 

transmission rate to the congestion level of the network. In reality, due to the VBR nature 

of the common media contents, it is not easy to allocate the network resources for 

streaming. The burstiness of these contents does add burden to the network. Therefore, 

a streaming control technique called “smoothing” has been developed to overcome this 

disadvantage. Its task is to smoothen the VBR traffic so that the traffic will behave 

CBR-like. However, the aforementioned commercial solutions do not adopt this concept 

into their transmission control. Therefore, it is necessary to implement an 

RTP/RTSP-compliant client/server streaming system that can work with any type of 

camera, provide simple interface for image processing software developers to embed 

their programs into the client system, and offer the options of whether to turn on the 

smoothing function or not. 
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1.2 Motivations 
The motivations of this work are as the following: 

 Commercial streaming systems cannot support streaming of live-captured 

audiovisual contents acquired from various types of cameras. 

 Image processing programs allow the surveillance system to monitor unattended 

targeted places automatically. However, the commercial streaming solutions do not 

offer this function. 

 The VBR characteristic of media contents adds burden to the network, so their 

transmission schedules should be smoothened by smoothing algorithm. However, 

the commercial streaming solutions do not adopt this concept. 

 

1.3 Research Goals 
 The goals of this research are as follows: 

 Implementing a client/server system that is fully compliant with RTP and RTSP. 

 Designing the system in such a way that it provides the options of whether to turn on 

the smoothing functions or not. 

 Designing a simple software interface for the client system in such a way that image 

processing algorithms can be added to it in an effortless manner. 

 Describing how to build, organize, and use this system. 

 Discussing the execution of the system. 

 

1.4 Thesis Outline 
 The organization of this paper is as follows. We survey the current available 

streaming servers developed by Apple, Real, and Microsoft in Chapter 2. In Chapter 3, 

RTP and RTSP are introduced and discussed, and some programming techniques 

needed to implement the system are mentioned and explained. The implementation 

details, usage of the system, and execution results are presented in Chapter 4. At last, 

this project is concluded in Chapter 5. 
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2 Streaming Technologies 
 In this section of the paper, streaming technologies involved to design and 

implement the proposed client/server streaming system will be discussed. In particular, 

the Real-time Transport Protocol (RTP) [2], its subpart, the RTP Control Protocol (RTCP) 

[2], and Real Time Streaming Protocol (RTSP) [3] will be addressed in detail. 

 

2.1 The Real-time Transport Protocol 
In a client/server media streaming system, if video/audio data are transmitted using 

The Transmission Control Protocol (TCP) from a server to a client, intolerable delay will 

be introduced frequently in the case of packet losses. This drawback results from the fact 

that TCP always recovers these losses by retransmitting lost packets to provide reliable 

service, so the client must wait for receipt of all retransmissions. If this waiting time is 

significantly long, the client’s playback buffer will soon be empty and the player will stop 

playback since it runs out of contents, causing extremely unpleasant viewing experiences. 

Thus, although TCP guarantees delivery of data but does not guarantee timely delivery 

as this retransmission mechanism causes additional end-to-end packet delay. 

 One of the solutions to solve this problem is to use a more light-weight but unreliable 

protocol, The Datagram Protocol (UDP). UDP, unlike TCP, does not support automatic 

retransmission, and cannot be used to detect or signal packet losses. Hence, UDP 

cannot adapt itself to the changing network conditions. However, in a congested network 

where packet losses do occur, it does provide a faster transmission than TCP. 

The Real-Time Transport Protocol (RTP) [2] is a protocol which can compensate for 

the missing functions of UDP. It is usually used on top of UDP to make use of UDP’s 

multiplexing and checksum services [2]. In fact, its packets are usually encapsulated in 

UDP packets. According to [2], RTP provides end-to-end delivery services for data with 

real-time characteristics, such as interactive audio and video. The services provided 

include content type identification, sequence numbering, timestamping and monitoring 

QoS of data transmission. The detailed descriptions about RTP will be given in the 

following sections. 

RTP consists of two tightly-linked protocols: RTP for transmission of data with 

real-time properties and RTP Control Protocol (RTCP) for monitoring QoS of 
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transmission and for conveying participants' information in a session [2]. 

 

2.1.1 RTP 
RTP provides end-to-end network transport functions suitable for applications 

transmitting real-time data, such as audio/video, over multicast or unicast network 

services. Its main purpose is to carry real-time audiovisual data. In other words, media 

data are packetized into several RTP packets in the format specified in the following 

section. These RTP packets are passed down to the lower layer protocol like UDP, which 

in turn, transmit them to the client side. 

 

2.1.1.1 RTP Packet Format 
As can be seen from Figure 1, RTP packets consist of a header followed by payload 

data which can be either a portion of video frame or audio samples. How different types 

of video/audio data are formatted to be carried by RTP packets is specified in payload 

format specification documents. For example, 3GPP MPEG4 AV payload format is 

defined in RFC3016 and Simple MPEG4 AV payload format is defined in RFC3640. 

 

 
Figure 1 – RTP Packet Format 

 

Referring to Figure 2, an RTP header has the following fields: 

 Version (V): 2 bits 

It specifies the version of RTP. The Value 2 is set for RFC3550. 

 Padding (P): 1 bit 

It indicates whether this packet contains padding bytes at the end. Padding may be 

necessary for some encryption algorithms or for carrying several RTP packets in a 

lower-layer data unit. The last byte of the padding stores the number of padding 

bytes that should be ignored including itself. 

-6- 



 

 
Figure 2 – RTP Header Format [2] 

 

 Extension (X): 1 bit 

This bit is set when exactly one header extension is placed after the fixed header. 

The header extension is to allow individual implementations to conduct experiments. 

 CSRC count (CC): 4 bits 

Contributing source (CSRC) is a source of a stream that contributes to the combined 

stream produced by a mixer. A mixer combines the packets from one or more 

sources in some manner, and forwards a new combined RTP packet. CC represents 

the number of CSRC sources of this RTP packet. The ideas of a mixer and the 

CSRC will become apparent in Section 3.1.2.2. 

 Marker (M): 1 bit 

It is used to indicate the important events such as frame boundaries.  

 Payload type (PT): 7 bits 

It identifies the format of the payload. 

 Sequence number: 16 bits 

This number increments monotonically each time an RTP packet is sent. Its initial 

value should be random to avoid know-plaintext attacks on encrypted data. It can be 

used by the receiving end to detect packet loss or re-order out-of-sequence packets. 

 Timestamp: 32 bits 

It reflects the instant when the first byte of the payload data is sampled for 

applications transmitting live-captured data, or when the payload data should be 
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presented for applications transmitting stored data. As it reconstructs the timing of a 

single stream, it is used when performing synchronization or jitter calculation. Its 

initial value should be random to avoid know-plaintext attacks on encrypted data. 

Note that timestamps for different media streams may advance at different rates and 

usually have independent, random offsets. 

 SSRC: 32 bits 

Synchronization source (SSRC) is the source of a stream of RTP packets. Its value 

is randomly selected to be globally unique within a particular RTP session. So if a 

single sender generates multiple streams in one RTP session, the possible 

confusion caused by only having a single network address can be avoided because 

the sender will have several distinct SSRC identifiers. 

 CSRC list: 0 to 15 items, 32 bits each 

It is a list of CSRCs which contribute to the payload of this RTP packet. 

 

2.1.1.2 RTP Example 
 To illustrate the notion of SSRC, CSRC, and a mixer more clearly, Figure 3 is 

presented. In the figure, participants A, B, and C, each having its own unique SSRC, are 

hosting a conference in an RTP session. Assume that the speed of the links between A 

and the mixer, and B and the mixer is high, while the bandwidth between the mixer and C 

is low. Obviously, C cannot enjoy high-speed network access like A or B. Instead of 

forcing all participants to transmit and receive poor-quality conference data, a mixer can 

be placed near C. In such arrangement, A and B can still enjoy their high-quality 

conference, because that the mixer, when receiving high-quality conference data from A 

and B, can translate, resynchronize, and combine these data into lower-bitrate ones, and 

forward them to C across the lower-speed link. 
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Figure 3 – An example of using SSRC, CSRC, and Mixer 

 

2.1.2 RTCP 
RTCP monitors the data delivery in a manner scalable to large multicast networks, 

and provides minimal control and identification functionality [2]. It is based on the periodic 

exchanges of control packets between all participants in an RTP session. 

According to [2], RTCP provides the following three key functions: 

 It gives feedbacks on the reception quality of a session by transmitting RTCP sender 

and receiver reports, as described in following section. 

 It carries a canonical name (CNAME) for each participant. As the SSRC identifier of 

a participant may change if a conflict occurs or when a program is restarted, 

receivers need CNAME to keep track of each source. 

 It can help the sender and the receiver adjust their clock drifts. 

 

2.1.2.1 RTCP Packet Types 
RTCP has five packet types: 

 SR: 
- Sender report, for senders to transmit their transmission and reception statistics. 

 RR: 
- Receiver report, for receivers to transmit their reception statistics, including number 

of lost packets, highest sequence number received, jitter, and other delay 

measurements to calculate the round-trip delay time. 

 SDES: 
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- Source description items, including CNAME. 

 BYE: 
- Indication of end of participation 

 APP: 
-Application-specific functions 

 

2.1.2.2 RTCP Sending Rules 
To reduce the bandwidth consumption required by RTCP packets, multiple RTCP 

packets from a single participant can be concatenated to form a compound RTCP packet. 

Therefore, each RTCP packet must end on a 32-bit boundary to be stackable. There are 

two constraints that must be followed: 

 Each compound RTCP packet must contain a report packet (SR or RR) to maximize 

the resolution of reception statistics, and this report packet must be the first to 

appear to facilitate header validation. 

 Each compound RTCP packet must include SDES CNAME, so new receivers can 

identify sources of streams and begin to synchronize the media data streams as 

soon as possible. In another case, as the SSRC identifier of a participant may 

change if a conflict occurs or when a program is restarted, receivers need CNAME to 

keep track of each source. 

 

In Figure 4, a typical compound RTCP packet is presented. Observe that at least 

one report packet and SDES CNAME are included. 

 
Figure 4 – A typical compound RTCP packet 

 

There are few general sending rules for RTCP packets [2]: 

 The Traffic generated by RTCP should occupy 5% of an RTP session bandwidth. 

 Sender reports should occupy one-forth of the RTCP bandwidth. 

 The target interval between two RTCP packets must be larger than 5 seconds. 

However, the actual RTCP interval should be varied over the range between half 

and 1.5 times of the target interval. 
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2.1.2.3 RTCP Packet Formats 
 
Sender Report 
Sender reports are used to provide reception quality feedback and senders’ information 

by participants who are senders, and possibly receivers at the same time. Referring to 

Figure 5, a sender report consists of three sections: the header, the sender info, and the 

report blocks. The fields in the header section are: 

 Version (V): 2 bits 

- It specifies the version of RTP. The Value 2 is set for RFC3550. 

 Padding (P): 1 bit 

- It indicates whether the compound RTCP packet contains padding bytes at the end 

of last individual RTCP packet. Padding may be necessary for some encryption 

algorithms. 

 Reception Report Count (RC): 5 bits 

- It counts the number of reception report blocks contained in this compound RTCP 

packet. 

 Packet Type (PT): 8 bits 

- Its value is set to 200 to identify this packet as an RTCP SR packet. 

 Length: 16 bits 

- It represents the length of this RTCP packet including the header, the sender into, 

the report blocks, and any padding. 

 SSRC: 32 bits 

- It indicates the synchronization source (SSRC) identifier for the originator of this 

sender report. 
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Figure 5 – Format of Receiver Report [2] 

 

The sender information block contains the following fields. 

 NTP Timestamp: 64 bits 

- It indicates the wallclock time in Network Time Protocol (NTP) format, which is in 

seconds relative to 00:00 UTC on January 1st, 1990, when this report was sent. The 

integral part is in the first 32 bits and the fractional part is in the last 32 bits. 

 RTP Timestamp: 32 bits 

- It represents the same time instant as the NTP timestamp but is in the same units 
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and random offset as the RTP timestamps in RTP packets. With RTP timestamps, 

intra-media and inter-media data can be synchronized for sources whose NTP 

timestamps are in synchronization. 

 Sender's Packet Count: 32 bits 

- It contains the total number of RTP packets sent by the sender since the start of the 

transmission until now. 

 Sender's Octet Count: 32 bits 

- It contains the total number of RTP data payload bytes sent by the sender since the 

start of the transmission until now. 

 

 The third section contains zero or more reception report blocks that have the 

following fields: 

 SSRC_n (source identifier): 32 bits 

- It indicates the SSRC identifier of the source to which this reception report block is 

meant. 

 Fraction Lost: 8 bits 

- It shows the percentage of RTP packets lost from SSRC_n since previous SR or 

RR was sent. 

 Cumulative Number of Packets Lost: 24 bits 

- It contains the total number of RTP packets lost from SSRC_n since the start of the 

transmission until now. 

 Extended Highest Sequence Number Received: 32 bits 

- The lower 16 bits represent the highest sequence number received from SSRC_n, 

and higher 16 bits show the number of sequence number wrap-ups. 

 Interarrival Jitter: 32 bits 

- This field is an estimation of the statistical variance of RTP packet interarrival time, 

measured in timestamp units. Let Si and Ri be the RTP timestamp and the time of 

arrival of ith RTP packet, respectively. Let D(i,j) be the variation between the 

difference of ith and jth RTP packets’ timestamps and the difference of these two 

packets’ arrival times. Thus, D(i,j) can be computed as follows: 
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The interarrival jitter should be calculated constantly as the following whenever an 

RTP packet arrives from SSRC_n: 

 

 Last SR timestamp (LSR): 32 bits 

-  This field contains the center 32 bits out of 64 bits in the NTP timestamp included 

in the most recent SR from SSRC_n. 

 Delay since last SR (DLSR): 32 bits 

-  This field is the difference between the time the last SR was received and the 

time this reception report is generated. Referring to Figure 6, upon receiving this 

information, the sender can compute the round-trip propagation delay as RTT = 

(S_Clock – LSR) – DLSR, where S_Clock is the time this report is received. 

Sender Timeline

Receiver Timeline

LSR S_Clock

DLSR
 

Figure 6 – Calculation of Round-trip delay 

 
Receiver Report 
 The purpose of the receiver report is identical to that of the sender report. Unlike the 

sender report, the receiver report is targeted for the receiver who is not also a sender at 

the same time. As can be observed from comparing Figure 7 with Figure 5, a receiver 

report is almost identical to a sender report except that the packet type field in a receiver 

report is 201, and that a receiver report does not contain the sender information. 

Therefore, the receiver report’s format will not be explained in detail here. 
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Figure 7 – Format of Receiver Report [2] 

 
SDES 

 
Figure 8 - Format of SDES [2] 

 

 Referring to Figure 8, an SDES packet consists of a header and zero or more 
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chunks, each of which is composed of items describing the source that this chunk is 

designated to. In the header section of a SDES packet, following fields are present: 

 Version (V), Padding (P), Length: 
- They are the same as those defined in the format of SR packet. 

 Packet Type (PT): 8 bits 

- Its value is set to 202 to identify this as an SDES packet. 

 Source count (SC): 5 bits 

- It is the number of SSRC/CSRC chunks contained in this SDES packet. 

 

There are eight types of items but only CNAME is mandatory. Each type of item is 

composed of the type, the length, and the text. 

 CNAME: Canonical End-Point Identifier SDES Item 

 
Figure 9 – Format of CNAME item [2] 

CNAME item should be formatted as in Figure 9. CNAME is used to eliminate the 

ambiguity caused when having SSRC conflicts. It must be included in each 

compound RTCP packet to provide the binding between SSRC and CNAME. 

Therefore, it should be unique among all participants within a session, remain 

unchanged during the lifetime of a session, and be derived algorithmically. For 

example, a CNAME can be “james@nctu.edu.tw” or “james@140.113.13.81”, where 

the part before ‘@’ is the user name and the part after ‘@’ is the host name. 

 

 
Figure 10 – Format of NAME item [2] 
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 NAME: User Name SDES Item 

NAME item should be formatted as in Figure 10. It contains the real name of the 

source. For example, it can be “James Chen”. 

 

 EMAIL: Electronic Mail Address SDES Item 

 
Figure 11 – Format of EMAIL item [2] 

EMAIL item should be formatted as in Figure 11. It contains the email address of the 

source and is expected to remain fixed for the lifetime of a session. For example, it 

can be “james@yahoo.com”. 

 

 PHONE: Phone Number SDES Item 

 
Figure 12 – Format of PHONE item [2] 

NAME item should be formatted as in Figure 12. The phone number of the source 

should be formatted with a plus sign in front replacing the international access code. 

For instance, it can be “+1 416 224 8736”, which is a phone number in Toronto, 

Canada. 

 

 LOC: Geographic User Location SDES Item 

 
Figure 13 – Format of LOC item [2] 
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LOC item should be formatted as in Figure 13. The degrees of details depend on the 

applications and should be left to the application users. This item should remain 

unchanged for the lifetime of the session, except for mobile participants. 

 TOOL: Application or Tool Name SDES Item 

 
Figure 14 – Format of TOOL item [2] 

 

TOOL item should be formatted as in Figure 14. The name/version should be those 

of the application that is generating the stream, for example, “Skype”, and should 

remain unchanged for the lifetime of the session. 

 NOTE: Notice/Status SDES Item 

 
Figure 15 – Format of NOTE item [2] 

 

NOTE item should be formatted as in Figure 15. It describes the current status of the 

source, for example, “busy” or “active”. 

 PRIV: Private Extensions SDES Item 

 
Figure 16 – Format of PRIV item [2] 

 

PRIV item should be formatted as in Figure 16. It is used to define trial or 

application-specific SDES functionalities. It contains a prefix including a length-string 
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pair. The prefix length field describes the length of the prefix string, which is a name 

chosen to be unique with respect to other PRIV items that might be received. The 

value string field carries the desired data. 

BYE 

 
Figure 17 - Format of BYE [2] 

 A BYE RTCP packet signifies one or more sources’ terminations. Referring to Figure 

17, it contains the following fields: 

 Version (V), Padding (P), Length: 
- They are the same as those defined in the format of SR packet. 

 Packet Type (PT): 8 bits 

- Its value is set to 203 to identify this as a BYE packet. 

 Source Count (SC): 5 bits 

- The number of SSRC/CSRC identifiers included in this BYE packet. 

 

APP 

 
Figure 18 - Format of APP [1] 
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 The APP packet type is meant for trial use as new features or new applications are 

developed. It should be formatted as in Figure 18. It contains the following fields: 

 Version (V), Padding (P), Length: 
- They are the same as those defined in the format of SR packet. 

 Subtype: 5 bits 

- It is used to permit a set of APP packets to belong to a new defined group. 

 Packet Type (PT): 8 bits 

- Its value is set to 204 to identify this as an APP packet. 

 Name: 4 octets 

- This field contains the name chosen by the creator of this application to be unique 

with respect to other APP packets that this application might receive. 

 Application-dependent Data: variable length 

- These data may or may not appear in an APP packet and must be a multiple of 32 

bits long. 

 

2.2 The Real Time Streaming Protocol 
 To save the cost of storing multimedia data in large storage devices, such as hard 

drives, and to reduce the time to wait for multimedia files to be downloaded completely, 

streaming technology is used widely today. It allows users to enjoy multimedia content 

while downloading. Typically, the real-time multimedia data are compressed by content 

providers (servers), transmitted through the network, and decompressed and playbacked 

by the content subscribers (clients). The flow is just like a water stream and this is why 

this technology is called “streaming”. Clients can play the first received packet, 

decompress the second, while receiving the third and the forth; thus, clients can start 

enjoying the multimedia without waiting for the completion of data downloading. 

The Real Time Streaming Protocol (RTSP) [3] is an application-level and 

client-server multimedia presentation control protocol, which enables controlled 

deliveries of single or multiple time-synchronized streams of real-time multimedia data 

such as video and audio, using the Transmission Control Protocol (TCP) or the User 

Data Protocol (UDP). It was developed to tackle the needs for efficient delivery of 

streamed multimedia over IP networks. It provides VCR-style remote control 
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functionalities, like pause, fast forward, reverse, and absolute positioning, to control the 

streams of data from content providers. It provides methods for choosing delivery 

channels and delivery mechanisms based upon RTP. It supports both unicast for a single 

user and multicast for a large number of participants. 

 

2.2.1 Supporting Operations 
 Quoted from [3], RTSP supports the following operations: 

 Retrieval of media from content provider 

- If the client demands a media presentation, it can request a presentation 

description via HTTP. 

 Invitation of a media server to a conference 

- If the contents of a media server are desired by the participants in an existing 

conference, the server can be invited to the conference by the participants. 

 Addition of media to an existing presentation 

- The server can inform the client about additional available media becoming 

available. If the informed media are desired by the client, they can be added to the 

existing RTSP session. 

 

2.2.2 Properties 
Referring to [3], RTSP has the following elegant properties: 

 Extendable 

- New functions can be added to RTSP effortlessly. 

 Easy to parse 

- RTSP can be parsed by standard HTTP or MIME parsers. 

 Secure 

- RTSP employs current web security mechanisms at the transport level and within 

the protocol itself. All existing HTTP authentication mechanisms are applicable. 

 Transport-independent 

- Since RTSP runs on application-level, it does not rule out the use of an unreliable 

datagram protocol (UDP), or a reliable stream protocol such as TCP. 

 Multi-server capable 
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- The client can automatically establish several simultaneous control sessions with 

different media servers. Media synchronization is performed at the transport level 

such as RTP. 

 Separation of stream control and conference initiation 

- Stream control is detached from inviting a media server to a conference.  

 Suitable for professional applications 

- RTSP supports frame-level accuracy and allows remote digital editing. 

 Presentation description neutral 

- The protocol can convey the type of format to be used and does not require a 

particular presentation description which, however, must include at least one 

RTSP URI. 

 Proxy and firewall friendly 

- The protocol should be readily handled by both application and transport layer 

firewalls. 

 HTTP-friendly 

- As RTSP reuses HTTP concepts, the existing infrastructure can be utilized. 

 Appropriate server control 

- If a client can begin a stream, it must be able to stop a stream. Servers should not 

start streaming to clients if clients cannot stop the stream. 

 Transport negotiation 

- Before the client actually needs a media stream, it can negotiate the transport 

method. 

 Capability negotiation 

- The client will be informed via an easy mechanism if any basic feature is missing. 

 

2.2.3 RTSP States 
 According to [3], media data flow and RTSP controls do not have to be sent via the 

same protocol. For instance, RTSP controls may run on TCP while the data may be 

transmitted via RTP. In fact, if there is no more RTSP control is issued by the client to the 

server, the data flow will still continue until the end of the presentation. In addition, RTSP 

requests during the lifetime of a media stream may be from different TCP connections. 
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Therefore, it is essential for both the server and the client to maintain “session state” to 

be able to associate RTSP requests and responses, respectively, with a stream. 

 Referring to Figure 19, note that the rectangles represent methods which cause 

state changes if necessary, and the ellipses denote various states. The methods are 

described in the next section. Initially, the server (or client) is in “Init” state. After receiving 

“SETUP” request (response), it will transit to “Ready” state. Sequentially, it will receive 

“PLAY” request (response) so the streaming process can be started (“Playing” state). In 

addition, it the streaming process needs to be halted for some reason, it will receive 

“PAUSE” request (response) and go back to “Ready” state. 

 
Figure 19 – RTSP State Machine 

 

2.2.4 Method Definitions 
 A summary of available RTSP methods are listed in Table 1 [3]. Note that “direction” 

field indicates that in what direction the request should be sent. Also note that the field 

“object” specifies what objects they operate on. The field “Server req.” or “Client req.” 

states whether a method is required to be supported, optional, or recommended by the 

server or the client, respectively. 
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Table 1 – Overview of RTSP methods, their directions, and what objects they operate on. 

Legend: P=presentation, S=stream, R=Responds to, Sd=Send, Opt: Optional, Req: 

Required, Rec: Recommended [3]. 

 
 

 DESCRIBE 

- It requests information about a presentation. For example [3], if the client wants the 

information about “rtsp://server.example.com/fizzle/foo” and it understands three 

types of description formats, “application/sdp”, “application/rtsl”, and 

“application/mheg”, it can issue a request as: 
Request from client to server: 

DESCRIBE rtsp://server.example.com/fizzle/foo RTSP/1.0 

CSeq:  312 

User-Agent: PhonyClient 1.2 

Accept:  application/sdp, application/rtsl, application/mheg 

Response from server to client: 
RTSP/1.0 200 OK 

CSeq:  312 

Date:  23 Jan 1997 15:35:06 GMT 

Server:  PhonyServer 1.0 

Content-Type: application/sdp 

Content-Length: 376 

v=0 

o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4 

s=SDP Seminar 

i=A Seminar on the session description protocol 
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u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps 

e=mjh@isi.edu (Mark Handley) 

c=IN IP4 224.2.17.12/127 

t=2873397496 2873404696 

a=recvonly 

m=audio 3456 RTP/AVP 0 

m=video 2232 RTP/AVP 31 

m=application 32416 UDP WB 

a=orient:portrait 

The server then replies to the client with the information formatted in the type 

“application/sdp”. 
 

 GET_PARAMETER 

- It inquires about the value of a parameter of a presentation. For example [3], if the 

server wants to know the values of “packets_received” and “jitter”, it can issue a 

request like the following: 
Request from server to client: 

GET_PARAMETER rtsp://example.com/fizzle/foo RTSP/1.0 

CSeq:  431 

Content-Type: text/parameters 

Session:  12345678 

Content-Length: 15 

packets_received 

jitter 

Response from client to server: 
RTSP/1.0 200 OK 

CSeq: 431 

Content-Length: 46 

Content-Type: text/parameters 

packets_received: 10 

jitter: 0.3838 

 

 Options 

- It queries what methods are supported. For example [3]: 
Request from client to server: 
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OPTIONS * RTSP/1.0 

CSeq:   1 

User-Agent:  PhonyClient/1.2 

Require: 

Proxy-Require: gzipped-messages 

Supported:  play-basic 

Response from server to client: 
RTSP/1.0 200 OK 

CSeq:   1 

Public:   DESCRIBE, SETUP, TEARDOWN, PLAY, PAUSE 

Supported:  play-basic, implicit-play, gzipped-messages 

Server:  PhonyServer/1.0 

 
 PAUSE 

- It halts the stream delivery of a presentation. For example [3]: 
Request from client to server: 

PAUSE rtsp://example.com/fizzle/foo RTSP/1.0 

CSeq:  834 

Session:  12345678 

Response from server to client: 
RTSP/1.0 200 OK 

CSeq:  834 

Date:  23 Jan 1997 15:35:06 GMT 

Range:  npt=45.76- 

 

 

 PING 

- It may be used by both the server and the client to check each other’s liveness. For 

example [3], if the client wants to perform a single-hop liveness check, and the 

server responds with a positive result, then they should have a conversation like 

the following: 
Request from client to server: 

PING * RTSP/1.0 

CSeq:  123 

Session: 12345678 
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Response from server to client: 
RTSP/1.0 200 OK 

CSeq:  123 

Session: 12345678 

 
 PLAY 

- It informs the server to start transmitting the requested data. For example [3], if the 

client only wants to enjoy the contents from 10 to 15 seconds, 20 to 25 seconds, 

and 30 seconds to the end, it can request the server as the following” 
Request from client to server: 

PLAY rtsp://audio.example.com/twister.en RTSP/1.0 

CSeq:  833 

Session:  12345678 

Range:  npt=10-15, npt=20-25, npt=30- 

 
 REDIRECT 

- It informs the client that it has to connect to another server. For example [3], if the 

server wants to redirect the traffic to a new server at a specific time, it can issue a 

request as the following: 
Request from server to client: 

REDIRECT rtsp://example.com/fizzle/foo RTSP/1.0 

CSeq:  732 

Location:  rtsp://bigserver.com:8001 

Range:  npt=0- ;time=19960213T143205Z 

Session:  uZ3ci0K+Ld-M 

 
 SETUP 

- It specifies the transport mechanism for the streamed media. In the following 

example [3], the client wants to create an RTSP session containing the media, 

“rtsp://example.com/foo/bar/baz.rm” and accepts two types of transport 

mechanisms: RTP/AVP/UDP received on client port 4588 and 4589, and 

RTP/AVP/TCP received on RTSP control channel. The sever answers with the 

response indicating that it prefers the first acceptable transport mechanism, that it 
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will send and receive RTP and RTCP via ports 6256 and 6257 respectively, and 

that it will use “2A3F93ED” as its SSRC. 
Request from client to server:  

SETUP  rtsp://example.com/foo/bar/baz.rm RTSP/1.0 

CSeq:  302 

Transport: RTP/AVP/UDP;unicast;client_port=4588-4589, 

RTP/AVP/TCP;unicast;interleave=0-1 

Response from server to client: 
RTSP/1.0 200 OK 

CSeq:  302 

Date:  23 Jan 1997 15:35:06 GMT 

Server:  PhonyServer 1.0 

Session:  47112344 

Transport: RTP/AVP;unicast;client_port=4588-4589; 

server_port=6256-6257;ssrc=2A3F93ED 

Accept-Ranges: NPT 

 
 SET_PARAMETER 

- Opposite to GET_PARAMETER, it sets the value of a parameter of a presentation. 

For example [3]: 
Request from client to server: 
SET_PARAMETER rtsp://example.com/fizzle/foo RTSP/1.0 

CSeq: 421 

Content-length: 20 

Content-type: text/parameters 

barparam: barstuff 

 

Response from server to client: 
RTSP/1.0 451 Parameter Not Understood 

CSeq: 421 

Content-length: 10 

Content-type: text/parameters 

barparam 

 TEARDOWN 

- It ends the session by stopping the stream delivery and freeing the resources 
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associated with the session. For example [3], if the client wants to end the session 

“rtsp://example.com/fizzle/foo” and the server grants the request, then they will 

have the following dialogue: 
Request from client to server: 

TEARDOWN rtsp://example.com/fizzle/foo RTSP/1.0 

CSeq:  892 

Session:  12345678 

Response from server to client: 
RTSP/1.0 200 OK 

CSeq:  892 

Server:  PhonyServer 1.0 

 

2.2.5 RTSP Status Codes 
In an RTSP response message corresponding to an RTSP request message, a 

numerical value named “status code” is included to give the result of the attempt to 

understand and satisfy the request. The first digit of the status code defines the class of 

the response, which is one of the followings: 

 1xx: Informational 

- It indicates that the request was received and the process continues. 

 2xx: Success 

- It indicates that the request was successfully received, understood, and accepted. 

 3rr: Redirection 

- It indicates that a further action must be performed so the request can be 

completed. 

 4xx: Client Error 

- It indicates that the request contains syntax-error or cannot be accomplished. 

 5xx: Server Error 

- It indicates that the server was not able to accomplish a valid request 

In Table 2, all available status codes and their usage with RTSP methods are listed. 
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Table 2 – Status codes and their usage with RTSP methods [3] 

 
 

 

-30- 



 

2.2.6 A Typical RTSP Unicast Session Example 
 

Server Timeline

Describe

Media Server

Laptop

Desktop

PDA

Client Timeline

SETUP track 1

SETUP track 2

PLAY

TEARDOWN

SDP

OK

OK

OK

OK

Audio/Video Data (RTP)
RTCP

 
Figure 20 – A typical RTSP unicast session example 

 To summarize what have been described, an example is illustrated in Figure 20. As 

can be seen in the figure, a client (possibly a laptop, a desktop, or a PDA) wants to 

establish a connection with the media server in order to enjoy the media data. The first 

thing that the client has to do is to issue the request “DESCRIBE”, which asks the server 

for the information about the desired presentation. The server then replies with the 

information in accordance with Session Description Protocol (SDP) [4]. The client 

continues the action by issuing two “SETUP” requests to setup media data “track 1” and 

“track 2”. Since these two requests are valid and understood by the server, the server 

replies with “OK” to the client for both requests. After the setup procedure, the client 
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wants to start to enjoy the media data, so it proceeds with issuing “PLAY” request. The 

server agrees with the request by replying “OK”, and starts to stream the data via RTP 

channel. While transmitting the data, the client may simultaneously send reports about its 

reception statistics to the server via RTCP channel. In this way, the server can adjust its 

sending rate or change its transmission method when the RTP channel bandwidth alters. 

If the client wants to end the presentation, the client can issue a “TEARDOWN” request 

indicating the end of the session so the server can stop streaming the data.  

 

2.3 Introduction to Traffic Smoothing Algorithms 
Nowadays, numerous multimedia streaming applications like video-on-demand 

services, transmissions of recorded sports events or concerts, and distant learning 

depend on the efficient transfer of prerecorded video. Content servers usually store video 

on large and fast disks [5]－[7]. Clients such as PCs or set-top boxes, which have a 

limited-size playback buffer for storing temporary media data, can connect to content 

servers through IP networks.  

If high-quality videos are demanded, they will still require a huge amount of storage 

space and transmission bandwidth, even when they are already compressed by the most 

advanced encoding technologies such as MPEG-4 or H.264. These modern encoding 

schemes generate bitstreams of constant quality but variable-bit-rate (VBR) to avoid the 

quality degradation caused by constant-bit-rate (CBR) encoding methods [8] [9]. 

However, this VBR characteristic can cause significant burstiness on multiple time scales 

due to the natural variations within and between scenes, and the frame structure of the 

encoding algorithm [10], and as a result, complicates the allocation of disk, memory, and 

network resources [11]. Therefore, to be able to efficiently transmit constant-quality video, 

a technique that can smooth the burstiness is required. Intuitively, one may suggest that 

the server, network, and client could allocate resources based on the peak bitrate of the 

video, such over-reserving is exceedingly wasteful and depreciates the benefits of a 

constant-quality encoding. 

Fortunately, prerecorded video gives us an opportunity to reduce the variability of the 

network bandwidth requirements by transmitting frames to the client playback buffer in 

advance of each burst [12]. Based on a priori knowledge of the size of each frame, the 
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server can precompute a transmission plan that minimizes the bitrate variation and peak 

bitrate while avoiding both underflow and overflow of the client’s buffer. This technique is 

what we call “bandwidth smoothing”. Its benefits are the results of removing both 

short-term burstiness (e.g. large size difference between I-frames and P-frames) and 

medium term burstiness within and between scenes [13]. 

 So far, in this field, six major smoothing algorithms have been proposed [13]－[18]. 

They have a common primary goal that is to reduce the peak rate of the stream, but 

however, they differ in what performance metrics they attempt to optimize. Hence, they 

can generate different transmission schedules of different performance properties, such 

as minimum number of rate changes in transmission, minimum variability of the 

bandwidth requirements, minimum utilization of the client buffer, minimum number of 

on–off segments in an on–off transmission model, change of transmission rates only at 

periodic intervals, and minimum general cost metrics through dynamic programming. 

 For the implementation of the system concerned in this paper, since MVBA [13] 

achieves the goals of minimizing the peak transmission rate and the rate variability, and it 

is easier to implement than other algorithm, it will be selected among six smoothing 

algorisms to help the server transmit more efficiently. 

 

2.3.1 MVBA 
Goals 
 The goals of MVBA, as claimed by the authors [13], are that given a fixed-size client 

buffer, a feasible transmission plan with: 

 minimum variance of transmission rate 

 minimum peak transmission rate 

 and maximum lowest transmission rate 

will be computed based on the a prior knowledge of frame sizes in the stored video. Note 

that a feasible transmission plan is a transmission plan that ensures the client buffer will 

never be drained nor overflowed. If the client buffer starves, then the presentation will be 

held up until more data are received. Conversely, if the client’s buffer is overloaded with 

data, then all the lately arriving data will be discarded until some spaces of the buffer 

become available. 
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Main Concepts 
 Intuitively, because CBR transmission is the smoothest possible, during the 

computation of the transmission plan, CBR transmission segments should be 

extended as far as possible. 

 When the transmission rate must be increased or decreased to avoid starving or 

overflowing the client buffer, respectively, this rate change should be taken place as 

early as possible as to ensure the minimum rate variability. 

 

Therefore, with MVBA, the transmission rate changes always occur at the earliest 

possible times for both rate increases and decreases. Thus, the generated transmission 

plan indeed gradually modifies the bandwidth requirement of the stream. 

 

Concept Realization 
 Up to now, only the goals of MVBA and the ideas behind MVBA have been 

introduced. How MVBA can be implemented in a real server system is still unmentioned 

and should be described now. In [13], the authors provide a complete pseudo code and 

ways that can generate an MVBA transmission schedule. The following notations are 

worth knowing [13]: 

 Cmax: the maximum transmission rate at which the server can stream over a given 

interval, without overflowing the client buffer. 

 Cmin: the minimum transmission rate at which the server can stream over a given 

interval, without draining the client buffer. 

In fact, the resulted transmission schedule will consist of a series of CBR 

transmission segments that might be Cmax or Cmax. Thus, to implement MVBA in a real 

server system, the system developer will just have to re-write the pseudo code in the 

used programming language such as C or C++. The resulted transmission plan will be 

the number of bytes that should be sent at each time instants. For example, for a video 

with the framerate of 25 frames per second, then the transmission plan probably will 

specify that at 0 ms, 1666.67 bytes should be transmitted, at 40 ms, 566.67 bytes should 

be transmitted, at 80 ms, another 333.33 bytes should be transmitted, and so on. 
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2.3.2 Packet-based MVBA 
 It is well known that in the current model of Internet, the data being transmitted from 

the source to the destination are not injected into the network bit by bit or byte by byte. 

Instead, in the real world, the data are sent as packets. Because along the path from the 

source to the destination, packets might pass by many different types of networks, each 

of which can support different maximum packet size (MTU), packets should not be made 

to be larger than the smallest MTU in these networks to avoid unnecessary 

fragmentations and reassembly. In addition to the maximum packet size, the size of each 

packet should be integers. A problem arises at this point. Recalling from previous section 

that at each time instant, the generated transmission plan will specify at each time instant 

how many bytes should be transmitted. The numbers of bytes specified may be of 

multiple decimal digits of precision or larger than the smallest MTU. To cope with this 

problem, a packet-based MVBA is needed and developed [24]. 

 In short, the packet-based MVBA will generate a feasible transmission plan that 

follows the original MVBA generated plan the closest possible. The first step is to divide 

each video frame into fixed-size (say 1024 bytes) packets. For example, a frame of 3000 

bytes will be segmented into two full 1024-byte packets and one 952-byte packet. Now 

instead of a series of frames available, a series of packets are on hand. Secondly, 

instead of just knowing the numbers of bytes that should be sent for different time 

instants as specified by the original MVBA, the accumulated number of bytes should also 

be computed. In other words, the total number of bytes that should be sent before and at 

each time instant is calculated. This new information will be referenced to derive the new 

packet-based plan.  

Now, it is time to derive the new transmission schedule. Essentially, for the time 

instant belonging to the Cmax segment in the original MVBA plan, the packet-based MVBA 

will take a number of packets from the series of available packets in order whose sizes 

sum up to be smaller or equal to the original accumulated number of bytes. This step 

ensures that the new schedule will approximate the old one the best and the client buffer 

will not be overflowed. Conversely, for the time instant belonging to the Cmin segment in 

the original MVBA plan, the packet-based MVBA will take a number of packets from the 

series of available packets in order whose sizes sum up to be equal to or larger the 
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original accumulated number of bytes. This step is to guarantee that the new schedule 

will follow the original one the closest possible and the client buffer will never starve. 

 This short section only describes the packet-based MVBA in brief. For a more 

complete and in depth discussions about it, readers are encouraged to refer to [24]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-36- 



 

3 Some Programming Techniques 
Traditional C/C++ programming techniques are not sufficient to provide enough 

functionality for system designers to implement an extremely complicated, sophisticated, 

and multi-functional system, such as the proposed client/server streaming system. Hence, 

more advanced programming techniques are needed. In this section, the notions of 

threads and synchronization objects are explained and discussed. 
 

3.1 Threads 
In a typical client/server system, both the server and the client programs have to be 

able to deal with many things concurrently. For example, the server program may have to 

transmit media data to several clients at the same time, receive RTSP requests from 

those clients simultaneously, and manages interactions with the user (keyboard and 

mouse input). However, since a typical C/C++ program usually executes the instructions 

from top to bottom, possibly with several function calls, there is no notion of multitasking. 

This kind of program is called “single process, single thread”. To be able to handle 

multiple tasks concurrently, the programming technique,” single process, multiple 

threads” or multitasking, should be employed. 

To define more formally, each process is provided by the operating system with the 

resources needed to execute a program. A process owns a virtual address space, 

executable code, open handles to system objects, a security context, a unique process 

identifier, environment variables, a base priority, minimum and maximum working set 

sizes, and at least one thread of execution. In addition, each process is started with a 

single thread (primary thread); however, it can create additional threads from any of its 

threads when needed. Threads are the entities within a process that can be scheduled 

for execution, and they share the virtual address space of the process and system 

resources. Moreover, each thread maintains its own exception handlers, scheduling 

priority, thread local storage, unique thread identifier, and set of structures the system will 

use to save the thread context, which includes the thread's set of machine registers, the 

kernel stack, a thread environment block, and a user stack in the address space of the 

process[19]. Since Microsoft® Windows® supports preemptive multitasking, which 

creates the effect of simultaneous execution of multiple threads in a process, in this 
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implementation of the client/server system, we will take advantages of it. 
 

3.2 Mutex and Semaphores 
Naturally, in a process that has multiple threads executing at the same time to 

achieve the team effort, these threads may want to communicate with each other in some 

way as to synchronize with or send information to each other. Intuitively, a global variable 

or array (shared memory) can be a good location to place shared messages or data 

since all threads can see and have access to it. However, a conflict occurs when two or 

more threads are writing new information to the shared memory. To prevent this problem, 

a synchronization object called mutex is needed to manage the shared memory. Each 

thread must wait for the ownership of a mutex before executing the code that accesses 

the shared memory, and after writing to the shared memory, the thread releases the 

mutex object. Normally, if more than one thread is waiting on a mutex, the thread that has 

been waiting in the queue (“first in, first out” or FIFO order) for the longest time is selected 

to own the mutex when it becomes available. 

 In the case when it is desirable that more than one and fewer than a maximum 

number of threads are allowed to access to the shared memory, a synchronization object 

called semaphore is needed. A semaphore maintains a count between zero and a 

specified maximum value. The count is decremented every time when a thread 

completes a wait for the semaphore and enters the critical section (the code segment 

where the thread executes the code that accesses the shared memory), and 

incremented each time when a thread releases the semaphore. If the count is zero, the 

thread that wishes to enter the critical section must wait until someone releases the 

semaphore. Let’s say if the count is three, then simultaneously three threads can access 

to the shared memory. When they do enter the critical section, the count will be reduced 

to zero. At this time, no more thread can access to the share memory.  Thus, the 

semaphore acts as a gatekeeper that limits the number of threads sharing the resource 

to a specified maximum number. In this implementation, to control the rate of 

transmission, the scheduling thread can release the semaphore according to the 

schedule. When the transmission thread is executing too fast, it can be slowed down by 

the semaphore mechanism since it must wait for the count to become greater than one. If 
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the transmission rate is too low, the transmission thread can be speeded up by 

incrementing the count of the semaphore. 

 

3.3 Token Bucket 
Traffic shaping allows one to control the traffic entering the network, and the rate at 

which the traffic is being sent. To implement this mechanism in a system, two major 

approaches are available: leaky-bucket and token-bucket schemes [20]. The former 

re-shapes bursty traffic to a steady one. The later realizes traffic shaping by dictating 

when and how much traffic can be inserted into the network based on the presence of 

tokens in the bucket. In the proposed system, the token bucket method is preferable and 

utilized to implement the smoothing algorithm, because the traffic that the streaming 

server generates will not be steady but variable according to a predefined schedule. 

To illustrate the token bucket method more clearly, Figure 21 is provided. As 

depicted, the bucket contains tokens generated by the token generator, which produces 

tokens according to a predefined schedule (i.e. transmission plan). A token can represent 

that a flow is allowed to transmit a packet or a unit of bytes defined by the system 

designer. If the bucket is empty, a flow cannot transmit any data. Thus, the traffic shaping 

can be realized by defining a desired transmission plan that is to be used by the token 

generator to create tokens. 

 
Figure 21 – Illustration of token bucket 
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4 Streaming System Implementation 
In this chapter, how the proposed interactive RTP/RTSP streaming system is 

designed, developed, organized, and built will be explained in detail. Specifically, the 

system development environment, the expected system capabilities, the system 

architecture, and implementations of RTP streaming and RTSP controls will be explained 

in depth. 

 

4.1 System Development Environment 
The equipments on the following lists are needed when designing, developing, 

implementing, and executing the system. In addition, the hardware and software setup 

procedures are also provided. 

 

4.1.1 Hardware Requirements  
 One standard IBM-compatible PC for the server 
 One standard IBM-compatible PC for the client 
 One D-Link DSB-C320 USB 1.1 Web Camera 

- Supports up to 640x480 resolution 
 Several SOHO Wireless Internet Camera 

- Supports IEEE 802.11b 

- Compresses images into Motion-JPEG format 

- Supports up to 640x480 resolution 
 One D-Link DI-784 11a/11g Dualband 108 Mbps Wireless Router 

- Supports IEEE 802.11a, 802.11b, and 802.11g 

- Has built-in 4-port switch 

- Supports DHCP 
 

4.1.2 Software Requirements 
 Microsoft® Windows® 2000/NT/XP Operating System 
 Microsoft® Visual C++ 6.0® 
 MPEG-4 encoder/decoder libraries 
 Software development kit for SOHO Wireless Internet Camera 
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 Motion-JPEG decoder library 
 Viscom Software VideoCap Live v1.5 ActiveX Control 

 D-Link DSB-C320 USB 1.1 Web Camera Driver 

 

4.1.3 Hardware Setup 
 As depicted by Figure 22, several wireless cameras are connected to the streaming 

server via the wireless router either by the wireless or wired connection. In addition, a 

USB web camera is attached to the streaming server via USB 1.1 connection. The 

streaming clients can connect to the server to acquire either stored or live-captured 

MPEG-4 media files through the IP network. 

 
Figure 22 – Illustration of system hardware setup 

 

4.1.4 Software Setup 
Server PC 
1. Install Microsoft® Windows® 2000/NT/XP. 

2. Install Microsoft® Visual C++ 6.0®. 

3. Install drivers for SOHO Wireless Internet Camera and D-Link DSB-C320 USB 1.1 

Web Camera. 

4. Install Viscom Software VideoCap Live v1.5 ActiveX Control. 

5. When writing the program, remember to include the software development kit for 

SOHO Wireless Internet Camera, Motion-JPEG decoder library, and MPEG-4 

encoder library. 
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Client PC 
1. Install Microsoft® Windows® 2000/NT/XP. 

2. Install Microsoft® Visual C++ 6.0®. 

3. When writing the program, remember to include MPEG-4 decoder library. 

 

4.2 Expected System Capabilities 
 Different implementations of streaming systems have diverse goals to achieve and 

expectations to fulfill. This applies to the proposed system implementation as well. Unlike 

the commercial streaming solutions, the proposed system does not focus on the 

performance of the codec used in the system and the friendliness of the graphical user 

interface (GUI) to the consumers. In fact, it concentrates on providing a more efficient 

transmission and simpler integration with image processing functions. The following 

sections will discuss, in detail, about what abilities that the server and the client are 

expected to possess. 

 

4.2.1 Expected Capabilities of Server System 
 As depicted by Figure 23, in this work, the server system is designed to be capable 

of handling the following tasks: 

1. The server should be able to accept and react to the user input. Particularly, when 

the user presses a button or checks a box, it should call the function specifically 

written to deal with this event. 

2. The server should be able to accept the connection requests from clients. 

3. The server, if requested by the program user, should be able to smooth its VBR 

traffic by using packet-based MVBA. 

4. The server should be able to receive, recognize, parse, and verify RTSP requests 

sent by its clients. In addition, it should reply to its clients with corresponding RTSP 

responses when required. 

5. The server should be able to perform RTSP state changes if necessary when 

receiving proper and valid RTSP requests sent by its clients. 

6. The server should be able to packetize media data frames into fixed-size RTP 

packets. 
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7. The server should be able to parse MPEG-4 files. In particular, it must be able to 

open and close MPEG-4 files stored in its storage device, get frame data from them, 

read timestamps of frames, and so on. 

8. When capturing audiovisual contents from any type of camera, the server should be 

able to compress them into MPEG-4 format. 

9. After encoding the live-captured media contents into MPEG-4 format, the server 

must know how to save them into its storage device. In this way, when connecting to 

it, clients can see these MPEG-4 files available to them. 

10. As described in Section 4.1, the selected wireless cameras compress video into 

MJPEG format. Thus, when the server receives MJPEG compressed data from 

these cameras, in order to transcode the video from MJPEG format to MPEG-4 

format, it should be able to decode the MJPEG data to reconstruct the original 

signal. 

11. The server should be able to acquire audiovisual contents from USB cameras 

connected to it. 

12. The server should be able to acquire audiovisual contents from wireless cameras. 

13. The server should be able to transmit RTP packets via UDP. 

14. The server should be able to transmit RTP packets via TCP. 

 
Figure 23 – Tasks that the server must handle in the proposed system 

 

4.2.2 Expected Capabilities of Client System 
As depicted by Figure 24, in this work, the client system is aimed to be capable of 

handling the following tasks: 

1. The client should be able to accept and react to the user input. Particularly, when the 
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user presses a button or checks a box, it should call the function specifically written 

to deal with this event. 

2. The client should be able to connect with the server. 

3. The client should be able to de-packetize received RTP packets to reconstruct the 

original media data frames. 

4. The client should be able to issue a sequence of RTSP requests to the server in 

order to establish a streaming session with the server and to receive desired data. In 

addition, it should be able to receive, recognize, parse, and verify RTSP responses 

replied by the server. 

5. The client should be able to perform RTSP state changes if necessary when 

receiving proper RTSP responses replied by the server. 

6. The client should be able to decode received MPEG-4 audiovisual data. 

7. The server should be able to receive RTP packets from UDP. 

8. The server should be able to receive RTP packets from TCP. 

 
Figure 24 - Tasks that the client must handle in the proposed system 

4.3 System Architecture 
These server and client implementations allow one to setup multiple streaming 

sessions. The server can stream multimedia data to multiple clients in a real-time fashion 

while the client can receive and play the media contents transmitted by the server. 

Figure 25 represents a typical client/system block diagram illustrating the uses of 

RTP and RTSP. A shown by the block on the bottom-left of the figure, the server can 

acquire images from wireless cameras or USB cameras, encode or transcode these 

acquired image data into MPEG-4 format. Then, the server will place these MPEG-4 
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bitstreams on the buffer, where these bitstreams will be waiting to be packetized by the 

packetizer into RTP packets and then placed onto the output packet buffer. Each time 

when an RTP packet becomes current (ready to be transmitted by the server and 

playbacked by the client), it will be transmitted to the client by the streamer, which if 

enabled by the RTCP mechanism, can adapt its transmission behavior to the network 

conditions. In addition, RTSP is often implemented on the top level, and is responsible for 

the streaming controls, e.g. SETUP, PLAY, PAUSE, STOP, and so on. The session 

controller maintains the RTSP state machine, deals with RTSP requests and responses, 

and reacts to the state transitions by performing necessary actions. On the left side of the 

figure is the client system. Basically it works similarly to the server but in a reverse 

direction. Upon receiving RTP packets, the receiver will place them onto the packet buffer, 

where the de-packetizer will collect and integrate them to reconstruct the original 

MPEG-4 bitstreams. The audio/video decoders will decode the bitstreams, so the original 

media contents can be rendered on any kind of display device and the speaker in a 

synchronized fashion. In our system, we follow closely to Figure 25 but do omit the RTCP 

mechanism, since the focus of this work is about streaming. 

 
Figure 25 – Illustration of client/server system with RTP and RTSP in use 
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In the proposed client/server architecture, ten different modules are provided. They 

can be helpful and useful in creating multimedia streaming applications. The system 

designers who are developing the streaming server will need 3GP Parser module, 3GP 

Creator module, Sub Server module, Server Dialog module, and SP_encore library. The 

streaming client developers will need 3GP Parser module, Sub Client module, Server 

Dialog module, and SP_decore library. Since the MPEG-4 compression algorithms and 

their implementations are not the main subjects here, details about SP_decore and 

SP_encore libraries will not be described. 

 

4.3.1Architecture of Streaming Server System 
In the server workspace, there are five modules, each of which is responsible for 

some tasks shown in Figure 23 and is listed below. 

1. 3GP Parser module 

- It is responsible for reading and parsing MPEG-4 compressed video files. 

- It handles the seventh task presented in Figure 23. 

2. 3GP Creator module 

- It is responsible for creating MPEG-4 files (.mp4) and virtual files (.3gp) for 

clients to access live-captured audiovisual contents. 

- It handles the ninth task shown in Figure 23. 

3. Sub Server module 

- It deals with all the matters about the transmission of streaming data on the 

server side, including the connection initiations, the connection negotiation, 

the connection establishments, the streaming of RTP packets, and RTSP 

related jobs. 

- It handles the second to sixth, and thirteenth to fourteenth tasks presented in 

Figure 23. 

4. Server Dialog module 

- It is responsible for defining and creating the user interface for the server, and 

interacting with users. 

- It handles the first, and tenth to twelfth tasks shown in Figure 23. 

5. SP_encore.lib library 
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- It is responsible for compressing the captured frames into the MPEG-4 format. 

- It handles the eighth task in Figure 23. 

How the five modules link to each other is depicted in Figure 26. The top block, the 

graphical user interface (GUI) represents the server dialogue. The MPEG-4 block is 

equivalent to the SP_encore.lib library. The gray blocks, as a whole, symbolize the sub 

server module. By comparing Figure 26 with Figure 25, it is not hard to realize that the 

architecture of the proposed server system mimics the typical one. However, they do 

differ in some parts. Beneficially, the streamer in the proposed server is enhanced by the 

bandwidth smoother, whose implementation details are given in the later section. 

 

IP Network
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Packetizer

Data Streamer

TCP/UDP

Bandwidth 
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Figure 26 – Architecture of server system 
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Stepping a little bit deeper, on the top of Figure 26, the graphical user interface (GUI) 

is where the program will interact with the user. The user can trigger events by typing in 

texts in the boxes or pressing down the buttons provided in the GUI. For example, initially, 

the user can start the streaming service by pressing the start button. This event triggering 

can take place because the arrow pointing to both the GUI and the streaming service 

blocks provides means of communication between the two. Because at any time, a client 

may want to connect to the server in order to view the images captured by one of the 

cameras (wireless and web cameras) in real-time or stored in the server storage, the GUI 

block has to encode raw images acquired from the cameras into MPEG-4 format by using 

the MPEG-4 encoder. While compressing these images periodically and place them on a 

buffer, the server has to employ 3GP creator module in order to create a virtual file in the 

disk, so when a client connect to the server, the client will see that there are MPEG-4 files 

which are associated with different cameras available in the server storage. Whether the 

client is interested in the stored or live-captured audiovisual contents, the server will use 

the 3GP parser module to parse the MPEG-4 file (i.e. whether real or virtual, respectively) 

that the client demands. In turn, the 3GP parser will feed information to both the 

bandwidth smoothing and the RTP packetizer modules. To the former module, it will 

provide the presentation timing and the size of each compressed frames. With this 

information, the former module can calculate a smoother transmission plan according to 

the algorithm described in the earlier section. To the later module, the 3GP parser will not 

only provide the information given to the former one, but also offer a single compressed 

frame data to the packetizer whenever the packetizer is requesting one. The packetizer, 

as implied by its name, packetizes frames into fixed-size RTP packets in accordance with 

RTP [2]. In addition, strictly regulated by the bandwidth smoother, which follows the 

predefine transmission plan precisely, the packetizer feeds the RTP packets to the data 

streamer in a controlled manner. The data streamer will stream each RTP packet to the 

client via the established audio/video channels. If the user of the server presses the 

pause button, or the RTSP state and message processor receives a valid PAUSE 

request sent by the client via the RTSP channel, the processor will inform the data 

streamer to stop the streaming process. The data streamer will halt its transmission and 

perform necessary calculations in order to stream timely as the presentation is resumed. 
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Moreover, if the user presses the stop button, or the processor receives a valid STOP 

request, the processor will inform the data streamer to stop the streaming process and 

end the streaming session. The data streamer will terminate its transmission and release 

all the resources associated with the session. 

 

4.3.1.1 Threads Used in Streaming Server System 
 

StatusTimeFunc()GUI Thread

TunnelMain()Packet Scheduler()

O
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RTSP Processor
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MPEG4
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Figure 27 – Threads of server system 

 
 Having talked about the tasks and the architecture of the server system, it is time to 

explain how the system can be implemented in software. Intuitively, since lots of tasks 

have to be handled at the same time by the server program, multiple threads are 

definitely needed. 

Indeed, referring to Figure 27, there are several threads running simultaneously in 

the server system when the connections are established with clients.  Note that the 

overlaps between the gray ellipses/rectangles and threads (white rectangles) represent 

the relationships between the shared data (gray shapes) and the threads. Specifically, 

the following threads will execute once the server starts: 

 GUI thread 

- Responsible for interacting with the user of the server program. 

 Transcoder() 
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- Responsible for acquiring audiovisual contents from various types of cameras, 

encoding or transcoding them into MPEG-4 format, and placing the resulted 

bitstreams onto the buffer where StreamerletIs() thread can access. 

 StatusTimeFunc() 

- Responsible for collecting and displaying all the clients’ statuses on the GUI. 

 OverallListenerThread() 

- Responsible for accepting new incoming connections. Every time a new 

connection is accepted and established successfully, it will create an instance of 

“RTSPProcessorThread()”, which from this point, will take control of this 

connection. 

 PacketScheduler() 

- Responsible for injecting RTP packets into network via UDP sockets. It is the data 

streamer for transmission over UDP. 

However, the following group of threads will start only when a client is connecting to 

the server. For each new RTSP session, the system will start a new group of these 

threads. 

 RTSPProcessorThread() 

- Responsible for accepting, parsing, extracting, and replying the RTSP messages, 

and performing necessary state transitions. It is equivalent to the session controller 

shown in Figure 25. 

 StreamerletIs() 

- Responsible for packetizing each data frame into RTP packets if UDP is used as 

the transmission protocol. It acquires frames from the target MPEG-4 file using 

3GP parser module and packetizes them according to the predefined schedule for 

the requested audiovisual content. It places packetized RTP packets onto the 

buffer where “PacketScheduler()” can access. On the other hand, it TCP is 

selected as the transmission protocol, this thread will also acquire frames from the 

target MPEG-4 file according to the predefined schedule for the requested 

audiovisual content, but however, will not packetize them. Then it will place these 

acquired frames onto the buffer where “TunnelMain()” can access. 

 BandwidthSmoother() 
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- Responsible for controlling the frequency of packetizing a new frame performed by 

StearmerletIs(), so the transmission behavior (rate) of the data streamer can be 

adjusted to improve the overall transmission performance. 

Finally, the following thread will be created only when a client who demands that the 

RTP packets are to be transmitted over TCP is connecting to the server. For each new 

RTSP session, the system will start a new one. 

 TunnelMain() 

- Responsible for injecting media data frames into network via TCP sockets. It is the 

data streamer for transmission over TCP. 

4.3.2 Architecture of Streaming Client System 
In the client workspace, there are three modules, each of which is responsible for 

some tasks shown in Figure 24 and is listed below. 

1. Sub Client module 

- It deals with all the matters about the transmission of streaming data on the 

client side, including the connection initiations, the connection negotiation, the 

connection establishments, the receiving of RTP stream, and RTSP related 

jobs. 

- It handles the second to fifth, and seventh to eighth tasks presented in Figure 

24. 

2. Client Dialog module 

- It is responsible for defining and creating the user interface for the client, and 

interacting with users. 

- It handles the first task in Figure 24. 

3. SP_decore.lib library 

- It is responsible for decompressing the MPEG-4 compressed frames. 

- It handles the sixth task in Figure 24. 

 

The architecture of the client system is much simpler than that of the server system. 

Referring to Figure 28, the top block, the graphical user interface (GUI) represents the 

client dialogue module. Following that is a group of gray blocks, which as whole, are the 

sub client module. The MPEG-4 decoder block is the SP_decore.lib library. 
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Figure 28 – Architecture of client system 

 Continuing with Figure 28, the GUI block, as described previously, is responsible for 

the interactions with the user. Whenever the user presses a button or types in some texts 

in a blank box, the GUI block must be able to trigger an event properly. At the beginning 

of a streaming session, the user will ask the streaming service interface to setup the 

connection with the server and check the availability of the desired media file in the 

server’s storage by clicking the open or play button. The streaming service interface 

block in turn will call the RTSP state and message processor to handle the user’s 

command by exchanging RTSP control messages with the server via the RTSP channel. 

When the data transmission begins, the data receiver, who receives RTP packets, will 

place received packets on the buffer where the RTP de-packetizer block can access and 

de-packetize those packets. After de-packetizing, original compressed frames will form 

and are ready to be decoded by the MPEG-4 decoder block. Eventually, the 
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decompressed frames will be playbacked (displayed) on the GUI. 

 

4.3.2.1 Threads Used in Streaming Client System 
 

 
Figure 29 – Threads of client system 

 
After discussing about the tasks and the architecture of the client system, it is time to 

explain how the system can be implemented in software. Apparently, since lots of tasks 

have to be handled at the same time by the client program, multiple threads are definitely 

required. 

Referring to Figure 29, there are several threads running simultaneously in the client 

system when the RTSP session is in progress. Note that the overlaps between the gray 

ellipses/rectangles and threads (white rectangles) represent the relationships between 

the shared data (gray shapes) and the threads. Specifically, the following threads will 

execute once the client starts: 

 GUI thread 

- Responsible for interacting with the user of the client program. 

 VideoStatusTimeFunc() 

- Responsible for collecting and displaying the video receiving status on the GUI. In 

addition, it is also responsible for getting received MPEG-4 video frames from the 

buffer where the receiving threads can access, and displaying them on the GUI. 
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 AudioStatusTimeFunc() 

- Responsible for collecting and displaying the audio receiving status on the GUI. In 

addition, it is also responsible for getting received MPEG-4 audio frames from the 

buffer where the receiving threads can access, and playback them. 

 RTSPProcessorThread() 

- Responsible for sending, accepting, parsing, and extracting the RTSP messages, 

and performing necessary state transitions. It is equivalent to the session controller 

shown in Figure 25. 

 

The following thread is created only when TCP is selected to be the means of media 

data transmission. 

 TunnelMain() 

- Responsible for receiving the streamed media data frames via TCP, and placing 

them on the buffer where “AudioStatusTimeFunc()” or “VideoStatusTimeFunc()” 

can access. 

However, the following two types of threads are little bit different. In fact, there will be 

a pair of instances for each type. One is for the video connection, while the other is for the 

audio connection. In addition, they are created only when UDP is selected to be the 

means of media data transmission. 

 RecvThreadIsK() 

- Responsible for receiving the streamed RTP packets via UDP, and placing them on 

the buffer where “DePktThreadIsK()” can access. 

 DePktThreadIsK() 

- Responsible for de-packetizing the RTP packets received by “RecvThreadIsK()” 

thread, and placing them on the buffer where “AudioStatusTimeFunc()” or 

“VideoStatusTimeFunc()” can access. 

 

4.4 Graphical User Interface Thread 
 For a system to be interactive with the user, it must have an interface where the user 

and it can communicate with each other. To be more user-friendly, nowadays a type of 

interface called the graphical user interface (GUI) is commonly used. In the proposed 
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system, GUI plays an important role who allows the user and the system to interact with 

each other. In a GUI, usually there is more than one control item present. For example, 

there might be a button to start and a button to stop some service. For another example, 

if the system is a media player, then there should be an item (picture box) that can render 

the images on the monitor so the user can view them. For the proposed system, there is 

a GUI for the server and another for the client. The required control items for each of both 

are explained in the following section. 

 

4.4.1 Control Items Required 
 The following list defines a minimal set of control items that the server’s GUI must 

contain in order to provide the desired streaming functions. When one of the buttons is 

triggered (i.e. pressed), one or more than one interface function contained in the 

streaming service interface block will be called to handle this event. The streaming 

service interface blocks for the server and the client will be introduced and explained in 

Section 5.3 and Section 5.4 respectively. 

 A “Start” button 

- This button allows the user to start streaming service. 

 A “Stop” button 

- This button allows the user to stop streaming service. 

 A “Preview” button for each connected USB camera 

- This button allows the user to activate the USB camera and preview the images 

that the camera captures. 

 A “Stop Previewing” button for each connected USB camera 

- This button allows the user to deactivate the USB camera and stop previewing. 

 An “URI” edit field for each IP wireless camera 

- This edit field is the place where the user can enter the IP address of the wireless 

camera. 

 A “Connect” button for each IP wireless camera 

- This button allows the user to connect to the wireless camera and preview the 

images that the camera captures. 

 A “Stop Connecting” button for each IP wireless camera 
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- This button allows the user to disconnect the wireless camera and stop previewing. 

 

The following list defines a minimal set of control items that the client’s GUI must 

contain in order to provide the desired streaming functions. 

 An “URI” edit field 

- This edit field is the place where the user can enter the IP address and the name of 

the desired media file. 

 An “Open” button 

- This button allows the user to connect to the streaming server. 

 A “Stop” button 

- This button allows the user to disconnect with the streaming server. 

 A “Pause” button 

- This button allows the user to pause  

 A “Seek to” button 

- This button allows the user to forward or backward the presentation to a specified 

time instant. 

 An “Seek Time” edit field 

- This edit field is the place where the user can enter the desired time instant that the 

presentation should be sought to. 

 A “TCP Tunnel” check box 

- This check box allows the user to specify whether to receive RTP packets via TCP 

or UDP channel. 

 

In fact, the reason why the streaming service blocks on both the server and the client 

can be bridges connecting the GUIs and the underlying modules is that because 

whenever the user triggers an event and a corresponding function in the streaming 

service interface block is called to handle this event, the corresponding member function 

of the instance of “RTSPStreamerServer” or “RTSPStreamClient” created for this 

streaming session will be called to deal with this event. Figure 30 illustrates this idea. In 

summary, GUI accepts the command from the user and calls the corresponding function 

provided by the streaming service interface block. The called function in turn will call the 
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corresponding member function of the instance of “RTSPStreamerServer” or 

“RTSPStreamClient” created for this streaming session. This member function, finally, 

will perform the necessary jobs. The following two sections describe the 

“RTSPStreamerServer” or “RTSPStreamClient” classes. 

 
Figure 30 – Relationships between GUI and underlying modules 

 

4.4.2 Members of RTSPStreamServer Class 
 The following bulleted list describes when an event is triggered, what function in the 

streaming service interface block will be called. In addition, it also portrays what member 

function of the instance of “RTSPStreamerServer” will in turn be used to handle the 

event. 

 When the “Start” button is pressed (referring to Figure 31) 

- “StartServer()” in the streaming service interface block will be called to create an 

“RTSPStreamerServer” object, which handles all the streaming tasks, including 

RTP and RTSP related matters. 

 When the “Stop” button is pressed 

- “StopServer()” in the streaming service interface block will be called to delete the 

created “RTSPStreamerServer” object so all the streaming services provided will 

be canceled. 
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Figure 31 – When “Start” button is pressed 

 When a live-captured media frame is compressed and ready to be placed onto the 

output buffer 

- “CaptureToServer()” in the streaming service interface block will be called. 

- The member function “SelectCaptureBufferLink()” in turn will be called to place this 

frame onto the output buffer where the data packetizer can access. 

 When GUI desires to know the number of connected clients and the status of each 

- “GetClientNumber()” and “GetClientStatus()” of the streaming service interface 

block will be called. 

- The number of connected clients and the status of each client stored in the 

“RTSPStreamerServer” object will be read by the above two functions, which in 

turn will return the results to GUI. 

 

 

4.4.3 Members of RTSPStreamClient Class 
The following bulleted list describes when an event is triggered, what function in the 

streaming service interface block will be called. In addition, it also portrays what member 

function of the instance of “RTSPStreamerClient” will in turn be used to handle the event. 

 When the “Open” button is pressed (referring to Figure 32) 

- “StreamCreateClient()” in the streaming service interface block will be called to 

create an “RTSPStreamClient” object, which handles all the streaming tasks, 
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including RTP and RTSP related matters. 

- “StreamOpenConnection()” in the streaming service interface block will be called. 

This function in turn will call the member function “Open()”, which will connect to 

server’s RTSP port, create channels to receive streamed data, and send 

DESCRIBE, SETUP and PLAY requests to the server. 

 
Figure 32 – When “Open” button is pressed 

 When the “Stop” button is pressed 

- “StreamCloseConnection()” in the streaming service interface block will be called. 

It in turn will call the member function “Close()” to close the connection with the 

server. 

- “StreamReleaseClient ()” in the streaming service interface block will be called to 

release all the resources associated with the “RTSPStreamerClient” object and 

then delete this object. 
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 When the “Pause” button is pressed 

- “StreamPauseConnection()” in the streaming service interface block will be called. 

It in turn will call the member function “SendPauseCmd()”, which will send pause 

command to the “RTSPProcessoreThread()” if the current state is PLAY; otherwise, 

“SendPlayCmd()” will send play command to the “RTSPProcessoreThread()” . 

Details about this thread will be given the later section. 

 When the “Seek to” button is pressed 

- “StreamPlayConnection()” in the streaming service interface block will be called. It 

in turn will call the member function “SendPlayCmd()”, which sends play command 

to the “RTSPProcessoreThread()”. Details about this thread will be given the later 

section. 

- After the presentation is resumed, “StreamSeekConnection()” in the streaming 

service interface block will be called. It in turn will call the member function 

“SeekStream()”, which eventually will make the server transmit the data of the 

desired presentation time instant. 

 To get a received frame 

- “VideoStatusTimeFunc()” or “AudioStatusTimeFunc()” can call 

“StreamGetVideoFrame()” or “StreamGetAudioFrame()” in the streaming service 

interface block, respectively, which in turn will call the member function 

“GetVideoFrame()” or “GetAudioFrame()”. These sequential calls will result in 

returning a media frame to the thread, which upon receiving the frame, can use the 

decoder to decompress it and ask the GUI to render it. 

 To know the current presentation time 

- “VideoStatusTimeFunc()” or “AudioStatusTimeFunc()” can call 

“StreamGetCurrentVideoTime()” or “StreamGetAudioFrame()” in the streaming 

service interface block, respectively, which in turn will call the member function 

“GetCurrentVideoTime()” or “GetCurrentAudioTime()”. These sequential calls will 

result in returning the timestamp of the current frame to the thread, which can ask 

the GUI to display this information to the user. 

 To find out the length of the duration that the received frames still residing on the 

buffer but not yet rendered on the display device are worthy of 
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- “VideoStatusTimeFunc()” or “AudioStatusTimeFunc()” can call 

“StreamGetBufferVideoTime()” or “StreamGetBufferAudioTime ()” in the streaming 

service interface block, respectively, which in turn will call the member function 

“GetBufferVideoTime()” or “GetBufferAudioTime()”. These sequential calls will 

result in returning the buffer length to the thread, which can ask the GUI to display 

this information to the user. . 

 To find out the current RTSP state 

- “StreamGetState()” in the streaming service interface block will be called. 

- The current RTSP state stored in the “RTSPStreamerServer” object will be read by 

the function, which in turn will return the results to the calling thread. 

 

4.4.4 Transcoder Thread 
 This thread is only present on the server side and is created when the streaming 

service is up and running. Essentially, it plays a very important role of transcoding 

live-captured media data to the desired format. More precisely, it is responsible for 

acquiring audiovisual contents from various types of cameras, encoding or transcoding 

them into MPEG-4 format, and placing the resulted bitstreams onto the buffer where 

“StreamerletIs()” thread can access. 

 Stepping a bit deeper, before this thread kicks off, the GUI has to create MPEG-4 

virtual files by getting help from 3GP creator module first. The reason of doing so is 

simple: when a client wishing to view the live-captured audiovisual contents connects to 

the server, the client has to see (feel) that there are MPEG-4 files which are associated 

with different cameras available in the server storage. Therefore, before transcoding, the 

GUI has to make these non-exiting files virtually exist in the database. After this step is 

done, “Transcoder()” thread can get started. This thread does the following tasks in a 

loop: 

 It uses the API provided by wireless cameras’ SDK or Viscom Software VideoCap 

Live v1.5 ActiveX Control to acquire frames from various types of cameras. 

 If the frames are from the selected wireless cameras, these frames are in MJPEG 

format. Therefore, they have to be decoded by using MJPEG decoder, which is 

included in the SDK as well. If the frames are from USB cameras, they are raw data. 
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Thus, no decoding is required. 

 Now the captured data are in raw format, the thread can render them on the display 

device if desired. 

 The thread will feed these raw data into MPEG-4 encoder. 

 The thread will call “CaptureToServer()” described earlier to place each MPEG-4 

frame onto the output buffer. 

 

As a side note, the frequency that this loop cycles has to match the desired frame 

rate as not to acquire too many or too few frames from the cameras. To implement this, 

every time the thread reaches the end of the look, it has to check the system time. If it is 

still too early to cycle again, this thread will call “Sleep(1)” to sleep for one millisecond. 

When waking up, the thread will check again and sleep again if necessary. This job is 

repeated until it is time to run the loop again. 

 

4.4.5 StatusTimeFunc 
 This thread is only present on the server side and is created when the streaming 

service is up and running. It is responsible for collecting and displaying all the clients’ 

statuses on the GUI. Because the streaming service interface block is designed in such a 

way that the GUI can communicate with the underlying modules effortlessly, this thread 

function is very simple to implement. Essentially, as described in the earlier section, it will 

call “GetClientNumber()” to know how many clients are connecting to it. With this number, 

it will know how many times “GetClientStatus()” should be called to get each client’s 

status. These statuses can be displayed on the display device by simply using 

“SetWindowText()” (function call provided by Windows®) to place texts on the desired 

edit field. 

 

4.4.6 VideoStatusTimeFunc and AudioStatusTimeFunc 
 These two threads are only present on the client side when the streaming is in 

progress. They perform identical tasks except that one is for the video and the other is for 

audio. To make this section easier to follow and understand thoroughly, only 

“VideoStatusTimeFunc()” will be discussed here. Note that this thread is where the image 
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processing functions should be inserted because, as described in earlier section, this 

thread is responsible for getting received MPEG-4 video frames from the receiving buffer, 

and displaying them on the GUI. 

 Naturally, this thread runs in a loop of getting a frame from receiving buffer, decoding 

it, and displaying it on the GUI. Initially, it will call “StreamGetBufferVideoTime()” to find 

out how many frames are still in the receiving buffer (i.e. have not been rendered). This 

number of frames may be expressed in timestamp units to represent the buffer length. If 

the length of the buffer is too short (i.e. shorter than the pre-defined threshold), it will 

sleep for a while and start the loop again; otherwise, it will call “StreamGetVideoFrame()” 

to get a MPEG-4 compressed frame. To be able to display the frame on the GUI, this 

thread has to use MPEG-4 decoder to decompress the compressed data. Thus, it uses 

the function “decore()” provided by SP_decore.lib library to decode the frame. Now, since 

the frame is in the uncompressed format (raw data), it is time for the image processing 

functions to kick off. The image processing function can be implemented in two different 

ways: a normal subroutine function call or an independent thread. The choice can be 

made based on the application needs and the complexity of the image processing 

algorithm. For example, if the image processing algorithm does not consume too much 

computational power (i.e. easy and fast to finish the processing), it can be implemented 

as a subroutine call. Therefore, after the decoding process is done, the thread will call 

this image processing function. The instructions below this function call will not executed 

until the function returns. This is okay since the execution time of this function will not be 

too long. In other words, the loop that this thread is running will not be held by the image 

processing function. On the other hand, if the image processing algorithm is a 

heavy-weighted one, it cannot be implemented as a function call, since it will take a long 

time to process the image. Consequently, it has to be run in a separate thread. In short, 

“VideoStatusTimeFunc()”, after decoding each frame, can place it on a temporary buffer. 

Then, this independent image processing function can always take a frame from this 

temporary buffer to perform its analysis, and report to the GUI when detecting an 

abnormal event. 

At the end of the loop, the status about this streaming can be acquired by using 

functions provided by the streaming service interface block such as  
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 StreamGetCurrentVideoTime() 

 StreamGetBufferVideoTime() 

 StreamGetTimeScale() 

 StreamGetLossRate() 

 StreamGetTransmitRate() 

and displayed on the GUI. 

 

4.5 Implementation of RTSP Messages and State Changes 
On the server side, for each connection successfully established between the server 

and a client, the “OverallListenerThread()” will create another thread named 

“RTSPProcessorThread()”, whose job is to handle all the exchanges of RTSP messages 

between the server and the client. These messages include RTSP requests sent by the 

client and the RTSP responses replied by the server. For each incoming RTSP request, 

“RTSPProcessorThread()” will first check its validity. If the request is invalid, it will be 

discarded; otherwise, another function called “handle_server_event()” will be utilized to 

perform the proper state change if necessary. For example, if the client sends a PLAY 

request to the server, who is currently in READY state, “handle_server_event()” will 

realize that the client has demanded to start the streaming process, and it is time to 

transit to PLAY state. On the other hand, the packetizer thread (named “StreamerletIs()” 

in this implementation), which has been waiting for the PLAY request and is currently 

being halted, will see that the RTSP state is changed to PLAY state, so it will start the 

streaming process. How “RTSPProcessorThread()” and “StreamerletIs()” can 

communicate with each other is discussed below. The basic way to implement the 

inter-thread communication is through the use of a shared memory. To avoid conflicts that 

occur when several threads are accessing the same memory, the notion of mutex is 

utilized. Details about mutex are given in previous section. 

Before looking into how the inter-thread communication is carried out, two structures 

have to be described first. The first structure is “STREAMING_DATA”: 

typedef struct _Streaming_data{ 

pIII_mutex hRTSP_STREAMER_Mutex; 

 RTSP_STREAMER controlData; 
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 … 

}STREAMING_DATA; 

Note that a lot of variables contained in this structure are omitted for simplicity. This 

structure contains a mutex named “hRTSP_STREAMER_Mutex” and “controlData”, 

which is the second structure to be introduced: 

typedef struct _RTSP_STREAMER{ 

int   cmdis; 

int   states; 

… 

}RTSP_STREAMER; 

This structure contains two integers, “cmdis” and “states”. Unsurprisingly, 

“STREAMING_DATA” is the shared memory shared by the two threads, and 

“hRTSP_STREAMER_Mutex” is used to protect this shared memory from being used by 

the two simultaneously. In addition, “cmdis” represents the latest received RTSP request 

and “states” is the current RTSP state. For the same example mentioned above, in 

“handle_server_event()”, “RTSPProcessorThread()”  will lock 

“hRTSP_STREAMER_Mutex” first, avoiding “StreamerletIs()” to use the 

“STREAMING_DATA” at the same time. After acquiring the mutex, 

“RTSPProcessorThread()” will change “cmdis” to the PLAY request and “states” from 

READY to the PLAY state. “StreamerletIs()”, upon sensing this change by reading the 

shared memory (mutual exclusion guaranteed by the mutex), will start the packetization 

process. 

 

4.5.1 OverallListenerThread 
 According to RTSP [3], RTSP typically runs over a reliable connection based 

transport level protocol such as TCP. Therefore, to be more compliant with other 

streaming solutions, in the proposed system, TCP is chosen to be the channel for the 

RTSP communication between the client and the server. Since TCP is 

connection-oriented (i.e. the connection between two ends has to be setup before the 

actual transmission takes place), the setup procedures must be taken care of. This is the 

main job of “OverallListenerThread()”. It assists the server to accept an incoming 
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connection attempt of a client on the designated socket. After this connection is setup 

successfully, it passes the control of this connection to another thread whose job is to 

receive and reply RTSP messages, and starts to wait for another new incoming 

connection. 

In the proposed system, on the server side, the socket bound to port 554 is specially 

opened to listen for an incoming connection from the client. To bind this socket with port 

554 and let it start listening, the following code is executed: 

struct sockaddr_in s_in; 

int fd = socket(AF_INET, SOCK_STREAM,IPPROTO_TCP); 

s_in.sin_family = AF_INET; 

s_in.sin_addr.s_addr = INADDR_ANY; 

s_in.sin_port = htons(554); 

bind(fd, &s_in, sizeof(struct sockaddr)); 

listen(fd, 5); 

The second line creates a socket file descriptor named “fd”, which is used to handle a 

socket, and binds it to a specific transport service provider. In this case, the first 

parameter is the address family specification and set “AF_INET” by default. The second 

and the third parameters indicate that this socket is a reliable two-way connected 

communication stream (TCP). Now it is time to bind this socket to a port on the local 

machine. As can be observed from the code, “s_in” is a pointer to a structure named 

“sockaddr_in” that contains information about the port and IP address. “INADDR_ANY” 

denotes the IP address of this machine. The port, as desired, is set to 554. The second 

last line then binds “fd” to port 554 using “s_in”. The last line, finally, makes “fd” socket 

listen for an incoming connection. 

 After letting the “fd” start listening on port 554, “OverallListenerThread()” can begin 

its job. The following few lines summarize the job that this thread is working on: 

while(server is running){ 

struct sockaddr_in client_addr; 

int sin_size = sizeof(struct sockaddr_in); 

int client_fd = accept(fd,&client_addr,&sin_size); 

/*Creates an instance of RTSPProcessorThread() to handle this established 
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connection (i.e. passing client_fd to RTSPProcessorThread()).*/ 

} 

 

Basically, as long as the server is up and running, this thread is listening on port 554 

to wait for a new incoming connection from the client. After a connection is accepted, a 

new socket file descriptor (named “client_fd”) will be created to take over the control of 

this connection (instead of the original “fd”). The original socket file descriptor will still be 

listening on port 554 and will accept the next new incoming connection by calling 

“accept()” function call again. This is done by placing these lines in a while loop. On the 

other hand, the newly created one will be passed as a parameter to 

“RTSPProcessorThread()”, who will use function calls like “send()” and “recv()” to 

perform RTSP message exchanges. According to [20], in this case, “fd” are “client_fd” 

are called “listening socket” and “connected socket”, respectively, since “fd” during its life 

time, always listens to new incoming connection, while “client_fd”, on the other hand is 

created and used to perform actual data transmission when a connection is successfully 

setup. 

 As a side note, most of TCP socket related structures and functions employed in the 

implementation, such as “struct sockaddr_in”, “socket()”, “bind()”, “connect()”, “listen()”, 

“accept()”, “send()”, and “recv()”, are contained in the Windows® Socket library. They can 

be used directly after including wsock32.lib and winsock.h in the program. 

OverallListenerThread()
{*:554, *:*}

Session 1
RTSPProcessorThread()

{140.113.13.81:554, 
140.100.1.1:4000}

Server
140.113.13.81

Session 2
RTSPProcessorThread()

{140.113.13.81:554, 
140.100.1.1:5000}

Connected socket

Connected socket

Listening socket

Session 1
RTSPProcessorThread()

{140.100.1.1:4000,
140.113.13.81:554, }

Client
140.100.1.1

Session 2
RTSPProcessorThread()

{140.100.1.1:5000,
140.113.13.81:554, }

 
Figure 33 – Illustration of multiple RTSP sessions connecting to a server [20] 
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Figure 33 [20] is a typical scenario when a client creates multiple streaming sessions 

with a single server. It illustrates how the server deals with multiple socket file descriptors 

bound to the same port (554). Initially, on the server side, “OverallListenerThread()” will 

call “socket()”, “bind()”, and “listen()” to create a socket that listens to incoming 

connection from the client. As mentioned above, this socket is called “listening socket” 

[20]. At this time, since no connection has been setup on port 554, any incoming 

connection attempt with any source/destination pair will be handled by this socket without 

a doubt. When the client on the left hand side creates Session 1 and calls “connect()” to 

connect to the server, the server will call “accept()” to accept this connection. “accept()” 

function, upon executing successfully, will return a new socket handler to take over the 

control of this connection. So this new socket is called “connected socket” [20], as 

described earlier. Therefore, on the server side, both the original socket and the newly 

created socket are now bound to port 554. If again, the client creates another session 

and connects to the server via port 554 on the server machine, then the server will have 

the original socket, and two newly created sockets bound to port 554. How the server 

distinguishes the packets sent from Session 1 and Session 2 which are of same IP 

address, and how it differentiates the data packets and connecting requests from new 

clients, are described below. Note that the wildcard notation within the braces beneath 

“OverallListenerThread()” denotes that the listening socket listens to any incoming 

connection with any source address other than ones already managed by other sockets. 

Therefore, if a packet from 140.100.1.1:4000 and destined to 140.113.13.81:554 will not 

be handled by this listening socket. Indeed, it will be captured by the connected socket of 

Session 1 since its source/destination pair matches that of this socket. In summary, even 

though multiple socket file descriptors are bound to 554, any incoming packet or 

connecting request will not be captured by the wrong socket since source/destination pair 

information contained in the packet will enable the underlying kernel program to deliver 

the packet to the correct socket. 

 

4.5.2 RTSPProcessorThread 
 This thread is implemented on both the server and the client systems. Its main tasks 

are to handle RTSP message exchanges between the client and the server, and call 
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corresponding event handling functions. 

 In the thread, the system keeps on waiting for incoming RTSP messages. Because 

multiple RTSP messages may be bundled to be transmitted in a single TCP packet, the 

function call “extract_one_rtsp()” is continuously utilized to extract a single RTSP 

message from the bundled RTSP messages contained in a received TCP packet until all 

RTSP messages are processed. Each time an RTSP message is extracted, the 

subroutine “ParseRTSP()” is called to check whether it is a response or request message. 

If it is a request message, the RTSP method contained in it will be read out. After 

described functions are executed successfully, the part that differs between the server 

and the client begins. In particular, the server will call “handle_server_event()” and the 

client will call “handle_client_event()”. Both functions are to perform the necessary event 

handling tasks and RTSP state transitions. 

 Before the two handlers are explained in detail, one thing that worth noting has to be 

mentioned. Recall that it is essential that both the server and the client have to send 

HELLO requests and reply HELLO response to each other on a periodic basis. In this 

implementation, the “RTSPProcessorThread()” of the client will send HELLO request to 

the server periodically by using “send_hello()” function call. Upon receiving the HELLO 

request, in addition to replying with an OK response (code 200 in Table 2) by using 

“send_reply()” to the client, the server will send another HELLO request to the client, in 

the hope of that the client will also reply an OK response. In this way, both the server and 

the client will periodically send a HELLO request to each other. If nothing goes wrong, 

they will reply to each other with an OK response, as specified by RFC 2326 [3]. 

 

4.5.2.1 handle_server_event 
 This function is implemented in a double-nested manner. That is, inside a structure 

of switch and case statements, there is another switch-case structure. On the outer 

switch-case structure, the expression being evaluated is the current RTSP state, while for 

the inner one, the expression being evaluated is the RTSP operational code contained in 

the RTSP message. This function is done in this way because obviously, for the RTSP 

state machine to transit from one state to another state correctly, and for the server to 

perform appropriate event handling tasks, the current RTSP state has to be known before 
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anything else takes place. After recognizing the current RTSP state, the RTSP 

operational code (i.e. RTSP method or response) has to be examined. If its value is 

invalid for the current state, for example, the server receives PLAY or PAUSE request 

while in Init state, then 

send_reply(455,…, "Accept: OPTIONS, DESCRIBE, SETUP, TEARDOWN\n",…); 

is called to send an error message to the client saying that this method is not valid for the 

current state and informing the client about all the valid requests. In addition, if the server 

cannot recognize this operational code, then 

send_reply(501, …, "Accept: OPTIONS, DESCRIBE, SETUP, TEARDOWN\n",…) 

is called to tell the client that this operational code is not implemented. If the operational 

code is valid for the current state, then an event handling function will be called. For 

example, when the current state is Init and SETUP request is received and recognized, 

then the following tasks will be done by the event handler “handle_setup_request()”. 

 It will check if the number of the connected clients has reached the maximum value. 

If it has, then the server will call “send_reply(453,…)” to inform the client that there is 

not enough bandwidth. 

 It will parse the setup information contained in this RTSP request message so the 

desired settings can be applied to the server’s transport system. For example, in the 

request message the client might specify whether the UDP or TCP should be 

employed to deliver the RTP packets. For another example, the client will specify 

which track in the media file that it wants the server to setup. 

 The most important of all, it will call “stream_server_start()”, which in turn will create 

“StreamerletIs()” thread to perform packetization task. 

 Finally, after the above jobs have been successfully accomplished, it will call 

“send_setup_reply ()” to inform the client that the setup request has been fulfilled, 

and about the newly created session ID. 

 

4.5.2.2 handle_client_event 
 This function works in a similar way as “handle_server_event()”. However, unlike 

“handle_server_event()” which deals with RTSP requests most of the time, it handles 

RTSP responses. Unsurprisingly, the client will make a state transition only when it 
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receives an OK (status code = 200) response sent by the server. For example, after the 

client sends a PLAY request to the server while in Ready state, it will not move to Play 

state right away. Instead, it will transit to Play state after receiving the OK response 

indicating that the PLAY request has been granted. Now two questions arise. Who 

generates the RTSP requests and who sends them to the server? These questions can 

be solved easily by observing Figure 30. Remember that GUI and the underlying services 

(e.g. “handle_client_event()”) can communicate with each other via the streaming service 

interface block and “RTSPStreamerClient” object. Therefore, after the user presses the 

“Pause” button in the GUI, for example, “StreamPauseConnection()” in the streaming 

service interface block will be called by the GUI event handling function. 

“StreamPauseConnection()” will in turn call “SendPauseCmd()”, which is a member 

function “RTSPStreamerClient”. “SendPauseCmd()” will call “SendPauseRequest()”, 

which finally will call “handle_client_event()” and give it the CMD_PAUSE command. 

“handle_client_event()”, like usual, will evaluate two expressions as described earlier: the 

current RTSP state and the operational code. In this case, it will realize that the current 

state is Play state and the operational code is CMD_PAUSE. Thus, it will call 

“send_pause_request()” to actually send the RTSP PAUSE request to the server. 

 

4.6 Implementation of RTP Streaming 
 In this section, how the RTP transmission channels are setup, and the packetizer, 

de-packetizer, streaming control, and bandwidth smoothing are implemented in the 

software will be explained exhaustively. 

 

4.6.1 RTP Transmission Channel Setup 
 Without a doubt, RTP transmission channels have to be setup before the actual 

streaming process can kick off. Thus, it is essential that the operations involved for the 

proposed client/server systems to establish the RTP channels must be introduced before 

discussing about the RTP streaming. 

 In fact, the data transmission channels are setup after client and server have 

exchanged DESCRIBE request and response as required by RTSP [3]. For the server to 

know at which ports the client is waiting for the media data, there must be means of 
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communication. In effect, this is carried out by the exchanges of SETUP messages. For 

simplicity, now it is assumed that the targeted media data contain only video; thus, only 

one port for the client and another for the server are required to transmit the media data. 

First of all, the client has to find an unoccupied port randomly (let’s say port X). In SETUP 

request sent by the client to the server, the client will contain the information about port X 

and whether the data is to be transmitted over TCP or UDP. If the TCP is chosen, the 

following procedure will be followed: 

1. The client will create a socket that in turn will try to connect to port X on the server 

side. 

2. Upon receiving information about port X, the server will create a socket that in turn 

will listen and accept an incoming connection on port X. 

3. Obviously, the above two steps will result in establishing a connection between the 

client and the server. The server will create “StreamerletIs()”, which feeds media 

frames to the data streamer (i.e. “TunnelMain()” in this case). Sequentially, both the 

client and the server will create their own “TunnelMain()” threads and are now ready 

for the streaming process. 

4. The server will reply SETUP response to the client indicating that SETUP request 

was granted. 

 

On the other hand, if UDP is chosen, the following procedure will be followed: 

1. The client will create “RecvThreadIsK()”, which contains a socket that receives RTP 

packets on port X. 

2. Upon receiving information about port X, the server will create “StreamerletIs()”, 

which feeds media frames to the data streamer (i.e. “PacketScheduler()” in this case) 

along with destination IP address and port (i.e. port X). As a result, each time 

“PacketScheduler()” receives a frame from “StreamerletIs()”, it will know to what IP 

address and what port this packet should be sent to. 

3. The server will reply SETUP response to the client indicating that SETUP request 

was granted. 

 

 

-72- 



 

4.6.2 Packetizer and De-Packetizer 
 For the server system, a structure named “rtp_hdr_t”, which represents the RTP 

header as defined in RFC 3550 [2], is defined as follows: 

typedef struct { 

    unsigned int version:2; 

    unsigned int p:1; 

    unsigned int x:1; 

    unsigned int cc:4; 

    unsigned int m:1; 

    unsigned int pt:7; 

    unsigned int seq:16; 

    u_int32 ts; 

    u_int32 ssrc; 

    u_int32 csrc[1];  

} rtp_hdr_t; 

Observing from the above code, this structure is compliant with RFC 3550 [2]. It contains 

two bits for the protocol version, one bit for the padding bit, one bit for the extension bit, 

four bits for the CSRC count, one bit for the marker bit, seven bits for the payload type, 

two bytes for the sequence number, four bytes for the timestamp, four bytes for the 

SSRC, and 4 bytes for each of the CSRC. The purposes and the usages of these fields 

are described in Section 3.1.2.1. 

 How the packetizer works in the server system is as follows. It takes one frame from 

the media file at a time, divides it into fixed-sized segments (usually 1024 bytes), and 

adds an RTP header structure described above to each of them. Certainly, all the bit 

fields in the header structure have to be filled with correct information, in accordance with 

RFC 3550 [2]. Moreover, in the proposed system, following this standard header, three 

extra fields are piggybacked: 

 int ChunkSize; 

 int flags_tot; 

 int offset; 

“ChunckSize” is the summation of the size of these three fields and the size of the 
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payload. “flags_tot” is to indicate whether this packet is a subpart of a key frame or a 

predicted frame. With this information, the data streamer can decide whether to drop 

delayed packets or not. If a packet is delayed but it is a subpart of a key frame, then it will 

not be dropped by the data streamer. On the other hand, if the data streamer is about to 

transmit a packet belonging to a predicted frame, but finds it delayed intolerably, the data 

streamer may drop it, if desired, to reduce the level of congestion. The field “offset” 

represents the difference between the position of the starting byte of this frame and that 

of the payload contained in this packet. With this information, the de-packetizer can find 

out what part of the frame this packet belongs to. 

 On the client side, the de-packetizer is present. As implied by its name, the 

de-packetizer in effect reverses the work done by the packetizer. Whenever it receives 

an RTP packet, it will check that whether the SSRC contained in the header of the packet 

agrees with that of this RTP session. If they don’t match, this packet will be dropped; 

otherwise, the packet will be analyzed and processed further. In particular, its sequence 

number and timestamp will be check against those of previously received RTP packets. 

For example, if an incoming packet’s sequence number is smaller than that of any 

previously received packet (i.e. normally, its sequence number should be larger than 

those of received packets), the de-packetizer will try to solve this problem by reordering 

the receiving buffer according to the received packets’ sequence numbers. For another 

example, if some packets belonging to a frame that is about to be playbacked are 

seriously delayed, the de-packetizer cannot wait any longer and must hand over this 

incomplete frame to the decoder. Eventually, these delayed packets will arrive and the 

de-packetizer will find that their timestamps indeed belong to a frame that has already 

been rendered. Thus, the de-packetizer will not attempt to reorder the sequence but 

discard them directly. 

 

4.6.3 Streaming Control 
In a client/server system, to allow smooth playback of the media data at the client 

side, the client’s buffer should never be empty or over-loaded. Therefore, the server must 

always transmit media data to the client according to the schedule defined for the media 

data as not to drain nor overflow the client’s buffer. Intuitively, the server could use a 
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stopwatch to find out when it should transmit each part of the data. Specifically, the server 

can record the time it starts the streaming process, and by continuously comparing the 

current time and the start time, it will know whether it should transmit the next part of the 

data to the client now or later. In addition, to save the CPU consumption, each time when 

the server reads its stopwatch and finds that it is still too early to transmit the next part of 

the media data, it can relinquish the CPU by invoking the sleep request and let other 

processes run. However, the control of the streaming becomes more complicated if the 

client is allow to pause, rewind, or forward the presentation of the media data. This 

chapter gives details about how this complication can be simplified, and how the actual 

streaming process can be implemented by just using a few variables. 
 

4.6.3.1 Implementation of Streaming Control 
 In the following paragraphs, timestamps, timescales, pre-sent data, and 

computations of the start time and sleep time are described. 

As a side note, without the loss of generality, the propagation delay and the media 

decompression time are neglected in the proposed system. In other words, it is assumed 

that as soon as the data are injected into the network by the server, the client can 

playback them. 

 
Timestamps and Timescales

Different media files may have different sets of timestamps which advance at 

different rates, depending on the desired accuracy [2]. To be able to synchronize different 

streams, for example, an audio track and a video track in a presentation, different 

timestamps must be able to be converted from one to another, and into the normal clock 

(i.e. hours, minutes, seconds and milliseconds). This is the use of timescales. To illustrate 

the meaning of timescales, some examples are provided. For  the frame data with the 

timestamp equal to half of the value of its corresponding timescale will have a 

presentation time equivalent to 500 milliseconds, while for the frame data with the 

timestamp equal to a quarter of the value of its corresponding timescale will have a 

presentation time equivalent to 250 milliseconds. For a typical example, in the proposed 

system, the timescale for the live-captured video is 1000 while the timescale for the 
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stored video is 90000. To synchronize the two, their least common multiple (i.e. 90000) 

can be used. Hence, the frame from the former with the timestamp equal to 500 will be 

played at the same time as the frame from the later with the timestamp equal to 4500, 

because for the former, 500 over 1000 can be converted into 4500 over 90000, which is 

the same as that of the later. 

 

Pre-sent data 

Since the network jitter and the roundtrip delay changes do exist in the current model 

of Internet, it is often desirable for the server to transmit data ahead of their actual 

presentation times so that even when the network congests for a short while, the client 

can still playback the media data smoothly. The size of the pre-sent data should be made 

to be smaller or equal to the size of the client buffer as not to overflow the client buffer. In 

fact, in the proposed system, data are transmitted one second ahead of their actual 

presentation times. For example, when the streaming process just begins, the frame data 

with presentation times from 0 to 1 second will be transmitted as fast as possible. After 40 

milliseconds, for media with the framerate equal to 25 frames per second, the frame data 

with presentation time at 1 second and 40 milliseconds will be sent. After another 40 

milliseconds, the frame data with presentation time at 1 second and 80 milliseconds will 

be sent. This process will be continued until the presentation ends. Therefore, it is 

essential that the system designer uses two variables to keep track of the timestamp of 

the last transmitted frame and the timestamp of the frame that the client may playback 

now. In this way, each time when the server looks at its stopwatch, it can figure out the 

timestamp of the frame that the client may playback currently by calculating the time 

difference between the current time and the start time of the streaming process, and then 

compare this timestamp with the timestamp of the last transmitted frame. If the difference 

between them is smaller than the value of the media’s timescale (i.e. the client playback 

buffer may not contain data that are worth one-second), it will transmit the next frame 

immediately; otherwise, it will sleep for a while. 
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Calculation of Start Time 

During the lifetime of a streaming session, there are three major scenarios that 

should be addressed: 

1. Normal presentation: the streaming process continues to run without any user 

intervention (PAUSE, REWIND, or FORWARD). 

2. Paused presentation: the streaming process is paused and then resumed at the very 

same time instant of presentation. 

3. Sought presentation: The streaming process is paused but then resume at a 

different time instant of presentation. In other words, the presentation of the media 

data was rewound or forwarded (sought). 

 

In the first scenario, the server periodically reads its stopwatch, performs the 

calculation, and makes the transmission decision described above. In the second and the 

third scenarios, because the streaming process is paused for a period of time and then 

resumed, the time difference between the recorded start time and the current time cannot 

be used to calculate the correct timestamp of the frame that the client is playing; 

consequently, the server cannot make the right transmission decision. This problem can 

be solved by shifting the original start time to a new time instant that is properly placed a 

certain distance away from the current time. The calculation for this distance is different 

for these two scenarios because for the former case, the pre-sent frames are still placed 

at the client’s buffer waiting to be played, while for the later case, the pre-sent frames 

become useless to the client since the presentation is sought (rewound or forwarded) to a 

new point of time. 

For the second scenario, to work out the time distance away from the current time 

which the new start time should be placed, one has to realize that since the pre-sent 

frames are still useful to the client, the state of streaming process should be restored to 

the one just before pausing. In other word, this time distance, in fact, should be equal to 

the time difference between the old current time and the original start time just before 

pausing. Thus, it is not hard to imagine that the timestamp of the frame that the client 

should be playing now and the timestamp of the last transmitted frame remain the same 

as the ones just before pausing. Since all the conditions for the transmission decision 
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making remain, the result of it that would have been made just before pausing would be 

identical to the one now. 

In the last scenario, since the pre-sent data are no longer useful to the client even 

though they still reside in the client’s buffer, the calculation to derive the new position of 

the start time is a little bit different. Instinctively, when the streaming process is resumed, 

the client is waiting for the media data that it rewound or forwarded to (data at the sought 

presentation time), so the server has to stream those data right away. To make this 

happen, the time difference between the current time and the new start time should be 

set to equal to the sought presentation time; equivalently, the new start time should be 

placed at a distance equal to the value of sought presentation time away from the current 

time. In addition, since the server has not transmitted any media data ahead of time, the 

timestamp of the last transmitted frame is equal to the sought presentation time. As a 

result, the server will not sleep for a few run and will desperately transmit the media data 

since it sees that the difference between the timestamp of the frame that the client may 

be playing now and the timestamp of the frame sent lastly is too small, and does not want 

to drain the client’s buffer. 

 

Calculation of Sleep Time 
As described previously, when the server reads its stopwatch and realizes that it is 

still too early to transmit the next part of the media data, the server can relinquish the 

CPU so other processes or threads can be up and running. So how long the server 

should sleep? If it sleeps too long, it will not be able to follow the schedule of the media 

file precisely. To the other extreme, if it only rests for a very short period of time, obviously 

the overhead required for the frequent context switches between processes or threads 

would degrade the overall system performance. The rule of thumb is that if it is x 

milliseconds earlier than the time that the next frame should be transmitted, the server 

should sleep for max(1 , x - c) milliseconds. c milliseconds fixed offset is needed here 

because if the context switch needed by the server to regain the CPU is delayed for some 

reason, the server will not be able to wake up on time. Therefore, it is essential to leave 

some safety margin. 
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4.6.3.2 Important Variables, Their Meanings, and Their Initial 
Values 

 struct _timeb StartLocalTime; 

- This time variable is used to store the time of the instant when the streaming 

process commences, and is subject to changes because the client may request to 

pause, rewind, or forward the streaming process of the media data. 

 struct _timeb NowLocalTime; 

- This time variable is used to store the current system time. 

 int LocalTimeDiff; 

- This time variable is used to store the time difference between StartLocalTime and 

NowLocalTime. 

 bool bPause = false; 

- bPause is a flag used to indicate whether the streaming process has been paused 

or not. 

 int LastVideoChunkId=LastAudioChunkId = 0; 

- These variables are used to store the timestamps of the frames previously 

acquired from the media file. 

 int LastPauseVideoFrameTimestamp= LastPauseAudioFrameTimestamp=0; 

- These variables are used to store the timestamps of the frames that will be 

acquired next from the hard drive when the pause command is issued. 

 int NowPauseVideoFrameTimestamp= NowPauseAudioFrameTimestamp=0; 

- These variables are used to store the timestamps of the frames that will be 

acquired next from the media if a play request is issued while streaming process 

has been paused. 

 int StartVideoChunkId=StartAudioChunkId=0; 

- These variables are used to store the timestamps of the first frames of the 

video/audio. 

 int NormalVideoChunkId=NormalAudioChunkId=0; 

- These variables are used to store the timestamps of the frames that the client may 

be playing at this moment. 

 int VideoTimeScale= mp4_file_info->pCurrentVideoTrackis->mp4vinfois.TimeScale; 
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- This variable is used to store the timescale of the streamed video. 

 int AudioTimeScale= mp4_file_info->pCurrentAudioTrackis->mp4ainfois.TimeScale; 

- This variable is used to store the timescale of the streamed audio. 

 int SleepTime; 

- This variable represents the duration that this thread should sleep. 

 long tempTime = 0; 

- tempTime is a temporary variable used to calculate the new streaming start time. 

 

4.6.3.3 Software Implementation to Calculate the Start Time 
When the streaming process of the requested media data starts for the first time, the 

server has to record the start time: 

_ftime(&StartLocalTime); 
 
 If the streaming process is paused (whether the client seeks to a new presentation 

time or not), the server will set bPause flag to true indicating that the streaming process 

has been paused. Additionally, the server will record the timestamp of the next frame 

acquired from the hard drive. By setting the flag and recording the timestamp, when 

resuming the streaming process, the server will know that the process was paused 

before, and whether the process was sought to a new presentation time or not (by 

comparing the recorded timestamp and the timestamp of the next frame acquired from 

the hard drive now).  The following code is executed when pausing: 

bPause = true; 

IIIGetNextSampleTimeStamp(…, VideoTrackCodeName, 

   &LastPauseVideoFrameTimestamp); 

IIIGetNextSampleTimeStamp(…, AudioTrackCodeName, 

   &LastPauseAudioFrameTimestamp); 

 
 When the server finds that it should start or re-start the streaming process, it should 

run the following code segment: 
01|_ftime(&NowLocalTime); 
02|if(bPause==true){ // resume streaming 

03| bPause=false; 

04| IIIGetNextSampleTimeStamp(…, VideoTrackCodeName, &NowPauseVideoFrameTimestamp); 
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05| IIIGetNextSampleTimeStamp(…, AudioTrackCodeName, &NowPauseAudioFrameTimestamp); 

06| if( NowPauseVideoFrameTimestamp != LastPauseVideoFrameTimestamp){ 

07|  LastVideoChunkId = NowPauseVideoFrameTimestamp; 

08|  LastAudioChunkId = NowPauseAudioFrameTimestamp; 

09|  tempTime = NowLocalTime.time*1000 + NowLocalTime.millitm -  

10|   (long)((float)NowPauseVideoFrameTimestamp/(float)VideoTimeScale*1000); 

11| } 

12| else{  

13|  tempTime = NowLocalTime.time*1000 + NowLocalTime.millitm -  

14|   (long)((float)NormalVideoChunkId/(float)VideoTimeScale*1000); 

15| } 

16| StartLocalTime.time = (tempTime - tempTime%1000)/1000; 

17| StartLocalTime.millitm = tempTime%1000;   

18|} 
 The server looks at its stopwatch on line 1 and checks whether the streaming 

process was paused or not on line 2. If the process was not paused, then of course the 

start time does not need to be changed. If the process was paused, the server will first set 

bPause to false to prevent executing this segment of code again in the next round, and 

then start to adjust the start time. On lines 4 to 5, the server reads the timestamps of the 

video and audio frames that it will acquire from the media file the next. On line 8, the 

server then compares the video timestamp with the one recorded when pausing (i.e. 

LastPauseVideoFrameTimestamp) to see if the presentation was sought. In both cases, 

tempTime is used to store the new start time in milliseconds. On lines 9 to 10, tempTime 

is equal to the current time minus the value of the sought presentation time, which is 

equal to NowPauseVideoFrameTimestamp expressed in milliseconds. On lines 13 to 14, 

tempTime is equal to the current time minus the difference between the old current time 

and the original start time just before pausing, which is equal to NormalVideoChunkId 

expressed in milliseconds. Lastly, on lines 16 to 17, tempTime is converted from 

milliseconds to equivalent seconds and milliseconds, which then are stored in 

StartLocalTime.time and StartLocalTime.millitm, respectively. 

 

 

 

-81- 



 

4.6.4 Bandwidth Smoothing 
 With the packet-based MVBA smoothing algorithm, it is possible to generate a 

smoother transmission plan. In the plan, how many RTP packets should be transmitted 

by the server at each time slot are indicated. For example, at the beginning of the 

transmission (first time slot), seven RTP packets should be sent out according to the 

transmission plan. The next time slot, say 33 ms later for the presentation with a frame 

rate of 29.97 frames/second, eight RTP packets should be transmitted. In other words, 

the number of RTP packets that should be transmitted in each slot is specified in the 

transmission plan. How this plan can be used to control the transmission behavior of the 

data streamer block of the server system is the subject of this section. 

 According to [21], the token bucket algorithm is used to control the amount of data 

that is inserted into the network. It is a transmission control mechanism that determines 

when the traffic can be transmitted, based on the presence of tokens in the bucket. The 

token bucket contains tokens, each of which represents a unit of bytes. Imaging that if the 

token bucket leaks a variable number of tokens periodically, and it is up to the system 

designer to control the period length and the number of tokens released in each period, 

then it is possible to let the bucket leak tokens according to the predefined plan. This 

concept is exactly what the proposed system uses to control the transmission behavior of 

the data streamer. Instead of letting the data streamer completely control when RTP 

packets should be injected to the network, the bandwidth smoother will tell the data 

streamer when to do so by releasing a proper number of tokens in each period of time 

according to the transmission plan generated by the packet-based algorithm. Specifically, 

the bandwidth smoother and the data streamer share a common semaphore named 

“sem_nctu_smoothing_LeakyBucketToken”, whose count’s initial value is zero. When the 

streaming process starts, the data streamer will obtain an RTP packet from the buffer 

where the packetizer places packetized RTP packets. Before the data streamer inserts 

this packet into the network, it will call: 

III_SemWait(…,&StreamerInfois->sem_nctu_smoothing_LeakyBucketToken); 

This function call causes the data streamer to wait if no token (i.e. the count of the 

semaphore is zero) has been released by the bandwidth smoother; otherwise, the data 

streamer will inject the packet into the network and the count of the semaphore will be 
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decremented by one. On the other hand, the bandwidth smoother will examine the 

transmission plan generated by the packet-based MVBA algorithm to find out how many 

tokens the token bucket should leak in each period. For example, when a period starts 

and the bandwidth smoother finds that it should release seven tokens (i.e. so seven RTP 

packets can be inserted into the network by the data streamer), then it will call the 

following instruction seven times to increment the semaphore by seven. 

III_SemPost(…,&StreamerInfois->sem_nctu_smoothing_LeakyBucketToken); 

As a result, the data streamer will see that the count of the semaphore has grown by 

seven, and realize that it can transmit seven more packets. 

 In summary, the token bucket algorithm allows the system designer to limit or control 

the data transmission in a simple manner. In this work, the traffic smoothing concept is 

realized on the proposed system by asking both the data streamer and the bandwidth 

smoother (two independent but related threads) to utilize a shared semaphore. The 

bandwidth smoother, who acts as a traffic patrol, will increment the semaphore’s count by 

one each time when it thinks that it is time to transmit another RTP packet. The data 

streamer, on the other hand, will check the count of the semaphore. If it finds that the 

count is zero, it will be held until the count becomes positive. If it finds that the count is 

equal to a certain number greater than zero, then it will inject this number of RTP packets 

into the network and set the count of the semaphore to zero. 

 

4.7 Assembling Pieces 
 The proposed client and server systems are extremely complicated because they 

involve several protocols, require multiple concurrent threads, and have many modules 

linking together to accomplish the goals mentioned in Section 1.3. Thus, to make the 

aforementioned concepts of designs more understandable, this section is written to 

provide a summary about what has been said in this chapter, and more importantly, to 

describe how the pieces can be gathered to accomplish the proposed goals. 
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Server’s Expected capabilities 

 Starting with reviewing what the systems can do, the server is expected to have a 

GUI that can interact with the program user. The GUI is responsible for collecting the user 

events such as button-pressing or text-typing, and then transferring these actions into the 

system by calling corresponding event handling functions. The server has to know how to 

parse MPEG-4 files in order to transport the data in a timely fashion. Moreover, the server 

must be able to acquire audiovisual contents from various types of cameras such as 

wireless or USB cameras. If these acquired contents are not in MPEG-4 format, it has to 

be able to transcode them into MPEG-4. In the proposed system, the transcoding is 

carried out with the uses of MJPEG decoder and MPEG-4 encoder. Before starting a 

streaming session, the server has to be able to listen and accept incoming connections. 

Upon establishing the connection with the client, they can start to exchange RTSP 

messages. Then the server can find out what media files to send and how to send them. 

Regarding to RTSP, the server has to manage a state machine for each of its connected 

clients. Upon receiving an RTSP request from one of the clients, the server has to find out 

the corresponding state machine, perform the state change, react to it if necessary, and 

reply to the client with a response indicating the result of this request. If the streaming 

process is started, the server has to packetize the desired media data into fixed-size RTP 

packets, and transmit them via UDP or TCP with the rate controlled by the traffic 

smoothing function that computes the transmission plan according to packet-based 

MVBA.  

 
Server’s Architecture 

As can be observed, the server has to handle so many tasks at the same time. Thus, 

it is not hard to think of that several modules are needed to accomplish these tasks. 

Essentially, the server uses five modules: 3GP Parser, 3GP Creator, Sub Server, Server 

Dialog, and SP_encore.lib modules. The first two and the last modules mainly deal with 

MPEG-4 related tasks, such as parsing, creating virtual files for live-captured media files 

being accessible by the clients, and encoding raw media data into MPEG-4 format. Sub 

Server module is the most important one. It provides RTP and RTSP services to the 

system. Server Dialog module is the GUI, which interacts with the user. 
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Client’s Expected capabilities 
 Having talked about the server’s capabilities and architecture, it is time to turn the 

focus to the client. The client, compared with the server, has fewer capabilities. It has to 

have a GUI just like that of the server in order to interact with the user and react to the 

user inputs by calling corresponding event handlers. In addition, it must know how to 

connect to the server to establish the streaming session. After the streaming session is 

established, it has to prepare and mange an RTSP state machine, just like the server, 

and be ready to exchange RTSP messages with the server. After exchanging connection 

information about RTP transmission with the server via RTSP means, the client must get 

prepared to receive RTP packets either from UDP or TCP channel. Obviously, the client 

has to know how to de-packetize the received RTP packets, and parse and decode the 

reconstructed MPEG-4 frames in order to render the desired audiovisual contents. 

 
Client’s Architecture 

Again, several modules are required to perform these jobs. There are three modules 

present: Sub Client, Client Dialog, and SP_decore.lib modules. The first module takes 

care of the RTP and RTSP related tasks. In addition, Client Dialog module is the GUI. 

Finally, the last module, as implied by its name, is for MPEG-4 decoding. 

 
Operations of Threads on Server Side 
 After reviewing the capabilities and architectures of the client and server systems, it 

is time to describe how the threads employed by both systems operate to achieve the 

final goals. Referring to Figure 27 again, on the server side, there is a GUI thread that 

awaits the user inputs. When the user presses the “Start” button, several other threads 

will begin. First, “Transcoder()” will start to acquire audiovisual contents from the 

connected cameras, transcode or encode them into MPEG-4 format, and then place the 

resulted bitstreams onto the buffer where the data packetizer can access when needed. 

As a side note, these live-captured media data can be rendered to the GUI at the same 

time if desired. In addition to “Transcoder()” thread, “OverallListenerThread()” in effect will 

start listening to new incoming connections at port 554 via TCP connection. The listening 

is done by the listening socket, and whenever a connection is accepted and setup, a 
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connected socket will be created to handle this connection. The listening socket will still 

exist to listen to new incoming connections. The created connected socket will be handed 

over to another thread called “RTSPProcessorThread()”, which is responsible for 

exchanging RTSP messages with the client and reacting to them when they are valid for 

the current RTSP state. RTP connection information is obtained by the server when it 

receives SETUP request. After this information arrives and RTP channels are setup, 

“StreamerletIs()” thread will start functioning. Before doing anything, it will check the type 

of the target media file, if the file is live-captured, it will get the data from the buffer where 

“Transcoder()” thread places MPEG-4 bitstreams. On the other hand, if the file is stored 

media, it will get the data from the storage device. Whether the file is live-captured or 

obtained from the storage, it will be packetized into RTP packets by “StreamerletIs()” if 

the transmission is via UDP. The rate that “StreamerletIs()” packetizes is controlled by the 

token bucket realized by “BandwidthSmoother()” thread. “StreamerletIs()” will place these 

packets onto the buffer where “PacketScheduler()” can access. “PacketScheduler()” is a 

thread that inserts packets on the buffer into UDP, which in turn injects them into the 

network. On the other hand, if TCP is selected as the means of transportation, 

“StreamerletIs()” will not packetize media frames into RTP packet format to make the 

uses of timestamping and sequence-numbering provided by RTP, since TCP guarantees 

correct transmission (ordered arrivals and re-transmission if loss occurs). 

“StreamerletIs()” will hand over these frames to “TunnelMain()” thread, which inserts 

frames on the buffer into TCP. TCP in turn will inject them into the network. 

 
When and by Whom Threads are Created on Server Side 

Having talked about how these threads work together, it is time to see when and by 

whom they are created. The GUI thread is the primary thread of the process, thus it is 

started when the program begins. When the user presses the “Start” button, the GUI 

thread create both “Transcoder()” and ”StatusTimeFunc()” to transcode the acquired 

frames and display clients’ statuses, respectively. In addition, recall that an object of 

“RTSPStreamServer” class is created when “StartServer()” in the streaming service 

interface block is called by the GUI thread to start the stream server, the construction 

function of this class will create “OverallListenerThread()” to listen to and accept new 
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incoming connections from the clients and “PacketScheduler()” to hand over RTP 

packets to UDP. Whenever “OverallListenerThread()” accepts and establishes a TCP 

connection with a new client, it will create a brand-new “RTSPProcessorThread()” and 

pass the control of this connected connection to “RTSPProcessorThread()”, which is in 

charge of exchanging RTSP messages with this client and performing RTSP state 

changes when necessary. When “RTSPProcessorThread()” receives a SETUP request 

while in Init state, it will create “StreamerletIs()” to packetize media frames , and 

“TunnelMain()” if the client demands that the RTP packets are to be transmitted over TCP 

instead of UDP. 

 
Operations of Threads on Client Side

Like the server, the client also has several threads running together to accomplish 

the final goals. Referring to Figure 29 again, on the top-right, the GUI thread waits for the 

user input. When the user presses the “Open” button, the GUI thread will try to connect to 

server’s port 554 (handled by “OverallListenerThread()” on the server side) to establish a 

TCP connection with the server for RTSP message exchanges. After the connection is 

setup and ready for data transmission, “RTSPProcessorThread()” will take over the 

control of this connected socket and start to handle RTSP message exchanges with the 

server and perform necessary RTSP state changes. At the same time, 

“VideoStatusTimeFunc()” and “AudioStatusTimeFunc()” will continuously collect and 

display the receiving statuses for video and audio on the GUI, respectively, and also 

decode and render the received media frames on the GUI. After PLAY request is granted 

by the server and RTSP state is transited to PLAY state, “TunnelMain()” thread will be 

present to receive RTP packets if transmitted over TCP, or “RecvThreadIsK()” thread will 

be there to receive RTP packets if transmitted over UDP. If RTP packets indeed are sent 

via UDP channel, “DePktThreadIsK()” will be responsible for reconstructing the original 

un-packetized media frames from the received RTP packets. Depending on the data 

transmission channel selection, either “TunnelMain()” or “DePktThreadIsK()” will place 

the received frame data on the buffer where “VideoStatusTimeFunc()” and 

“AudioStatusTimeFunc()” can access. 
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When and by Whom Threads are Created on Client Side
After the explanations of how these threads work together are given, it is time to see 

when and by whom they are created. The GUI thread is the primary thread of the process, 

thus it is started when the program begins. When the user presses the “Start” button, the 

GUI thread will connect to port 554 of the server to establish the TCP connection for the 

RTSP control messages. If this connection is setup successfully, 

“RTSPProcessorThread()” will be created by the GUI to take over this connected 

connection and start to handle all RTSP related tasks. In addition, at this time, 

“VideoStatusTimeFunc()” and “AudioStatusTimeFunc()” will also be created by the GUI. If 

the user desires that the media data are to be delivered via TCP, “TunnelMain()” thread 

will be created by the GUI to receive them from TCP when SETUP request is issued and 

sent to the server. Moreover, “RecvThreadIsK()” and “DePktThreadIsK()” will also be 

created by the GUI to be able to receive RTP packets via UDP and de-packetize those 

received RTP packets. 

 

Summary 
 Section 4.7 can be summarized as follows. Referring to Figure 34, when both the 

client and the server systems first start up, only GUI threads will be up and running since 

they are the primary threads of the processes. These GUI threads will sit there waiting for 

the user inputs, such as button pressing or text editing. Referring to Figure 35, when the 

“Start” button on the server side is clicked to start the streaming service, four more 

threads will be created. Their functions are described earlier. In particular, 

“OverallListenerThread()”, which is designed to establish RTSP connections with multiple 

clients, will have a TCP listening port listening and accepting any incoming connection 

request arriving at port 554. The GUI thread of the client upon being requested by its user, 

will try to establish a TCP connection with “OverallListenerThread()”. Referring to Figure 

36, after this TCP connection is established, the control of the connected socket on the 

server side will be passed from “OverallListenerThread()” to “RTSPProcessThread()”. 

Similarly, on the client side, the control of the connected socket will be passed from GUI 

thread to “RTSPProcessThread()”. Therefore, “RTSPProcessThread()” threads on both 

sides can start their RTSP message exchanges via TCP channel. 

-88- 



 

 

GUI Thread GUI Thread

Server Client

IP Network  
Figure 34 – Threads present when both server and client programs start 

 
Figure 35 – Threads present when server starts its service and client connects to it 

 
Figure 36 – Threads present when RTSP message exchanges are in progress 

 

When SETUP messages are being exchanged by the client and the server, the RTP 

channel used to transport the RTP packets should be setup. If UDP is selected as the 

RTP channel, referring to Figure 37, on the client side, “RecvThreadIsK()” and 

“DePktThreadIsK()” will be created to receive RTP packets and de-packetize received 

RTP packets, respectively. On the server side, if live-captured data are to be transmitted, 

then “StreamerletIs()” will acquire media frames from “Transcoder()” thread, packetize 

them into RTP packets, and hand over these packets to “PacketScheduler()”, which in 

turn will transmit these packets to “RecvThreadIsK()” on the client side. If stored media 

are to be streamed, then “StreamerletIs()” will acquire media frames from the storage 

device, packetize them into RTP packets with the rate regulated by 

“BandwidthSmoother(), and hand over these packets to “PacketScheduler()”, which in 
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turn will transmit these packets to “RecvThreadIsK()” on the client side. On the other 

hand, if TCP is preferred, referring to Figure 38, then on both sides, “TunnelMain()” 

threads will be created. The TCP connection between them is setup in the way similar to 

the RTSP channel. On the server side, if live-captured data are to be transmitted, then 

“StreamerletIs()” will acquire media frames from “Transcoder()” thread. On the other hand, 

if stored media are to be streamed, then “StreamerletIs()” will acquire media frames from 

the storage device. In either case, “StreamerletIs()” will hand over these frames to 

“TunnelMain()”, which in turn will transmit these packets to “TunnelMain()” on the client 

side. 

 

 
Figure 37 – Threads present when both RTSP and RTP via UDP are in progress 

 

 
Figure 38 – Threads present when both RTSP and RTP via TCP are in progress 
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5 Usages of Modules 
 This chapter gives descriptions about how to use the implemented modules to 

develop the server and the client systems. In particular, the usages of 3GP Parser and 

Creator modules, Sub Server module, and Sub Client module will be described in detail. 

 
5.1 Using 3GP Parser module 

This section gives information about how to use 3GP Parser module. Some simple 

examples will be given to illustrate how this module can be used. After that, a complete 

description of its API will be given. 

 

5.1.1 Getting started with 3GP Parser module 
 

 
IIIMP4FileInit()

IIIMP4FileOpen()

IIIRetMp4MediaInfo()

IIIGetNextSample()

IIISampleDataFree()

IIIMP4FileClose()

Repeats until:
EOF reached
Presentation ended

 

 

 

 

 

 

 

 

 

 

 

Figure 39 – Typical usage of 3GP Parser module 

 

Referring to Figure 39, to deal with a MPEG-4 file, one has to define a pointer for 

Mp4FileInfo structure, and specify the name of the file to be opened, its data type (MP4 

or THREEGPP), and the memory mode (III_MEM_NROMAL_MODE, 

III_MEM_SAVE_MODE, III_MEM_ULTRA_SAVE_MODE). For example, the code can be 

written as: 



 

Mp4FileInfo *mp4_file_info; 

char buffer[] = “starwar.mp4”; 

FILEFORMAT FILETYPE = MP4; 

 

Next, the desired MPEG-4 file can be initialized and opened as the following: 

IIIMP4FileInit(&mp4_file_info, buffer, III_MEM_SAVE_MODE); 

IIIMP4FileOpen(&mp4_file_info,FILETYPE); 

 

To retrieve the media information about the file (for example, the timescales of the 

video/audio), one can write the code as follows: 

IIIRetMediaInfo *mp4vinfo; 

IIIRetMediaInfo *mp4ainfo; 

IIIRetMp4MediaInfo(mp4_file_info,  

    mp4_file_info->pCurrentVideoTrackis->TrackID,  

    VideoTrackCodeName,  

    &mp4vinfo); 

IIIRetMp4MediaInfo(mp4_file_info,  

    mp4_file_info->pCurrentAudioTrackis->TrackID,  

    AudioTrackCodeName,  

    &mp4ainfo); 

VideoTimeScale = mp4vinfo->TimeScale; 

AudioTimeScale = mp4ainfo->TimeScale; 
It is obvious to realize that the media information is placed in the memory location 

pointed by mp4vinfo or mp4ainfo.  

After acquiring the desired media information, remember to release the resources 

associated with mp4vinfo and mp4ainfo. 

IIIMp4MediaInfoFree(&mp4vinfo); 

IIIMp4MediaInfoFree(&mp4ainfo); 
 

To get video/audio frames, one can perform the following actions: 

pRetSampleData video_buffer; 
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pRetSampleData audio_buffer; 

IIIGetNextSample(mp4_file_info, 

mp4_file_info->pCurrentVideoTrackis->TrackID, 

    VideoTrackCodeName, 

    &video_buffer); 

IIIGetNextSample(mp4_file_info, 

    mp4_file_info->pCurrentAudioTrackis->TrackID, 

    AudioTrackCodeName, 

    &audio_buffer); 

The acquired frame will be placed in video_buffer or audio_buffer.  

 

After using this frame, the resources associated with it can be released as follows: 

IIISampleDataFree(&video_buffer); 

IIISampleDataFree(&audio_buffer); 

 

Finally, after finishing using the media file, one can close it by calling: 

IIIMP4FileClose(&mp4_file_info,FILETYPE); 

 

 

5.1.2 The complete API 
Here, the complete API of 3GP Parser module will be described. 

 int IIIMP4FileInit(Mp4FileInfo** FileInfo, char* Filename, int nMemMode) 

- It initializes the MPEG-4 file named Filename by opening the file, checking out the 

file’s validity, finding out the size of the file, and setting the memory consuming 

mode. 

 int IIIMP4FileOpen(Mp4FileInfo** FileInfo, FILEFORMAT filetype) 

- It opens the selected MPEG4 file that is of filetype type by checking if the atom tree 

structure fits the correct requirements or not, allocating memory space for the 

non-container atoms, getting atoms from the file, filling the table entries within 

non-fix-length atoms, taking all track atoms, and classifying them and storing them 

into video track handler, audio track handler, and other handler. 
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 int IIIMP4FileClose(Mp4FileInfo** lpFileInfo, FILEFORMAT filetype) 

- It releases the resources associated with lpFileInfo. 

 int IIIRetMp4MediaInfo(Mp4FileInfo* lpFileInfo, unsigned int nTrackID, int 

nTrackType, pIIIRetMediaInfo *pptmpIIIRetMediaInfo) 

- It acquires the media information about the nTrackID in lpFileInfo that is of 

nTrackType type. The information acquired includes the timescale, the duration, 

the atom length, the average bitrate, the sampling rate, and so on. 

 int IIIMp4MediaInfoFree(pIIIRetMediaInfo *pptmpIIIRetMediaInfo) 

- It releases the resources associated with pptmpIIIRetMediaInfo. 

 int IIIGetNextSample(Mp4FileInfo* lpFileInfo, unsigned int nTrackID, int nTrackType, 

pRetSampleData *pptmpRetSampleDatais) 

- It gets the next video/audio sample from the nTrackID in lpFileInfo that is of 

nTrackType type. 

 int IIIGetSample(Mp4FileInfo* lpFileInfo, unsigned int nTrackID, int nTrackType, int 

nRequesdTime, pRetSampleData *pptmpRetSampleDatais) 

- It gets the video/audio sample that has the timestamp equal to nRequesdTime 

from the nTrackID in lpFileInfo that is of nTrackType type. 

 int IIIGetNextSampleTimeStamp(Mp4FileInfo* lpFileInfo, unsigned int nTrackID, int 

nTrackType, int *pnRetTimestampis) 

- It gets the timestamp of the next sample from the nTrackID in lpFileInfo that is of 

nTrackType type. 

 int IIISetMemConsumeMode(Mp4FileInfo* pFileInfo,int nModeis) 

- It sets the memory consuming mode. nModeis can be one of the following: 

 III_MEM_NROMAL_MODE 

 III_MEM_SAVE_MODE 

 III_MEM_ULTRA_SAVE_MODE 

 int IIINextKeyFrame(Mp4FileInfo* lpFileInfo, unsigned int nTrackID, int nTrackType, 

pRetSampleData *pptmpRetSampleDatais) 

- It returns the frame data of the very next key frame from the nTrackID in lpFileInfo 

that is of nTrackType type. 

 int IIIPrevKeyFrame(Mp4FileInfo* lpFileInfo, unsigned int nTrackID, int nTrackType, 
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pRetSampleData *pptmpRetSampleDatais) 

- It returns the frame data of the previous key frame from the nTrackID in lpFileInfo 

that is of nTrackType type. 

 int IIISampleDataFree(pRetSampleData *pptmpRetSampleDatais) 

- It releases the resources associated with the sampled data 

pptmpRetSampleDatais. 

5.2 Using 3GP Creator module 
3GP Creator module is needed to create a new MPEG-4 media file. This section 

gives information about how to use 3GP Creator module. Some simple examples will be 

given to illustrate how this library can be used. 

To create a new MPEG-4 video file from the bitstream located at position 

TargetBuffer, the following should be done: 

MP4_local_file* m_SaveMP4File; 

FileName[]= “starwar.mp4”; 

int width; 

int height; 

int nFormatLength; 

MP4FileNew(&m_SaveMP4File, FileName); 

GetVideoInfo(TargetBuffer,&width,&height,&nFormatLength); 

CreateTrack(m_SaveMP4File, VideoTrackCodeName, width, height, 

FRAMERATE, TIMESCALE, 1, 0, 0, 0, nFormatLength, 

TargetBuffer, "temp.m4v", 1); 

To add a new video frame to the same MPEG-4 media file, the following function 

should be called: 

AddVideoFrame(m_SaveMP4File,TargetLength,TargetBuffer, TimeStamp,  

IsKeyFrame); 

Note that TimeStamp shows the timestamp of the frame and IsKeyFrame notifies that 

whether this frame is an I-Frame. 

Finally, after all the frames are added to the newly created MPEG-4 file, it can be 

closed by calling: 

MP4FileFlush(m_SaveMP4File); 
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5.3 Using Sub Server module 
Since the streaming server has to stream media data to multiple clients in 

accordance with RTP and exchange control messages with them in compliance with 

RTSP, it needs help from a special module other than Windows® standard library 

winsock.h and winsock2.h, which only provide fundamental TCP/UDP services. Sub 

Server module is such a great module. By using the following interface provided by this 

module, the server program can start or stop its streaming action and communicate with 

its clients with ease. 

 

5.3.1 Getting started with Sub Server module 
To create and start a simple streaming server which can transmit stored media files 

to single or multiple clients can follow the code listed below: 

void *test_stream_server = NULL; 

RTSPSERVERINFO test_server_info; 

test_server_info.lpRootDir = (char *)malloc(256 * sizeof(char)); 

sprintf(test_server_info.lpRootDir,"C:\\video"); 

test_server_info.Port = 554; 

test_server_info.VideoPort = 2030; 

test_server_info.AudioPort = 2020; 

test_server_info.source_from_capture = 1; 

test_server_info.ServerStatus = SERVER_RUNNING; 

test_server_info.MaxClient = 150; 

StartServer(&test_stream_server, &test_server_info); 

 

To stop running the streaming server, issue the following line: 

StopServer(&test_stream_server); 

 

To get the number of connecting clients and their corresponding status, run the 

following code: 

int client_number; 

CLIENT_STATUS client_status; 
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GetClientNumber(&test_stream_server, &client_number); 

for( int i=1;i<=client_number;i++){ 

 GetClientStatus(&test_stream_server, i, &client_status); 

 printf("%s: ", client_status.peerAddr); 

switch(client_status.rtsp_state){ 

  case 0: 

   printf("INIT\n"); 

   break; 

  case 1: 

   printf("PAUSE\n "); 

   break; 

  case 2: 

   printf("PLAY(%dk) \n ", client_status.transmitRate); 

   break; 

  default: 

   break; 

 } 

 } 

 

5.3.2 The complete API 
 StartServer(void ** StreamServer, LPRTSPSERVERINFO in_server_info) 

- It starts a streaming server which is characterized by in_server_info that specifies 

the root dir, the RTSP port, video/audio ports, camera IP addresses, the FGS 

transfer rate, the maximum number of clients, and so on. 

 StopServer(void ** StreamServer) 

- It stops the running streaming server. 

 CaptureToServer(void ** StreamServer,int stream_type, int input_channel, int 

real_time_capture,MediaItem *mediabuffer) 

- It feeds the real-time captured and compressed video/audio data acquired from 

cameras to the output buffer, where data frames are waiting to be transmitted by 

other thread upon requested. 
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 GetClientNumber(void ** StreamServer,int * client_number) 

- It returns to the caller the number of clients connecting to the streaming server. 

 GetClientStatus(void ** StreamServer,int client_number, CLIENT_STATUS * 

client_status) 

- It returns to the caller the status of specified client. 

 

The interface functions listed above look simple and in fact, can be used in an 

effortless way. This user-friendly feature is accomplished by hiding several extremely 

complicated sub-blocks of functions from the GUI designer. These sub-blocks are: 

 Interface 

- It provides simple interface functions to the server program so the server can 

stream the media data and exchange control messages with clients in an effortless 

way. 

 Stream 

- It contains a OverallListenerThread() to handle connection setup requests from 

clients and a RTSPProcessorThread() for each client to handle client’s control 

messages. 

 Net 

- It is one level above TCP/IP. The actual streaming of video/audio data is 

scheduled and performed by this sub-block. 

 RTSP 

- It contains ParseRTSP() for the server to parse RTSP control messages 

It deals with handling RTSP related messages. 

 III Services 

- It provides fundamental functions to support mutex, semaphores, threads, time, 

memory management, and several base classes. 

 Input 

- It provides two types of classes for the programmer to use. The first is MediaBuffer 

and the second is MediaItem. 

 TCP Tunnel 

- It deals with the packets sent via TCP tunnel instead of the UDP method. 
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5.4 Using Sub Client module 
Since the client receives media data to from the streaming server in accordance with 

RTP and exchange control messages with the server in compliance with RTSP, it needs 

help from a special module other than Windows® standard library winsock.h and 

winsock2.h, which only provide fundamental TCP/UDP services. Sub Client module is 

such a great module. By using the following interface provided by this module, the client 

program can receive streaming data from the server and communicate with the server 

with ease. 

 

5.4.1 Getting started with Sub Client module 
Getting connected to a streaming server is quite easy when using Sub Client module, 

because this module offers a very neat and simple interface for the system designer to 

work with. First of all, we want to create a client and setup the connection between the 

client and the server: 

void * test_stream_client; 

int ReTransFlag,TCP_tunnel_Flag; 

char URL[]=”rtsp://guest:guest@192.168.0.100/starwar.mp4”; 

StreamCreateClient(&test_stream_client); 

StreamOpenConnection(&test_stream_client,0,0,URL,0,100); 

Note that the second and the third parameters of StreamOpenConnection() denote 

whether the retransmission flag is on, and if this connection is via TCP tunnel or not, 

respectively.To get a video frame from received buffer, the following function has to be 

called: 

MediaItem *ucBuffer; 

unsigned long data_readed; 

unsigned long time_stamp; 

StreamGetVideoFrame(&test_stream_client, &ucBuffer, &data_readed, &time_stamp,0); 

 

The following code allows you to get the current video frame timestamp, the duration of 

video frames in received buffer, the timescale of the video, and the current average 

transmission bitrate. 
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unsigned long LastTimeStamp; 

unsigned long TimeScale; 

double dLossRate; 

int transmitRate; 

StreamGetCurrentVideoTime(&test_stream_client, &temptest); 

StreamGetBufferVideoTime(&test_stream_client, &time_stamp, &LastTimeStamp); 

StreamGetTimeScale(&test_stream_client, VIDEOSTREAM, &TimeScale); 

StreamGetLossRate(&test_stream_client, VIDEOSTREAM, &dLossRate); 

StreamGetTransmitRate(&test_stream_client, VIDEOSTREAM, &transmitRate); 

 

 

To terminate the connection between the server and the client, run the following lines: 

StreamCloseConnection(&test_stream_client); 

StreamReleaseClient(&test_stream_client); 
 

5.4.2 The complete API 
 StreamCreateClient(void ** StreamClient) 

- It creates a streaming client by allocating necessary media buffer and creating the 

RTSPStreamClient object. 

 StreamOpenConnection(void ** StreamClient, int ReTransFlag, int TCP_tunnel_Flag, 

char * url, unsigned int StartSec, unsigned int EndSec) 

- It opens the connection between the server and the client. 

 StreamPauseConnection(void ** StreamClient) 

- It pauses the connection between the server and the client. 

 StreamSeekConnection( void ** StreamClient, int *VideoSec, int accurate) 

- It asks the server to get ready to transmit the media data whose presentation time 

is specified. 

 StreamPlayConnection(void ** StreamClient) 

- It requests the server to start to transmit the desired media data. 

 StreamGetSeekTime( void ** StreamClient, int *VideoSec) 

- Because it is possible that a user might seek the media data to an incorrect time of 
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presentation, this function is needed to correct the erroneous seek time and return 

the corrected one. 

 StreamGetAudioFrame( void ** StreamClient, MediaItem **ucBuffer, unsigned long 

*nActualRead, u_int32 *nTimeStamp, int goback) 

- It gets the next available received audio frame. 

 StreamGetVideoFrame( void ** StreamClient, MediaItem **ucBuffer, unsigned long 

*nActualRead, u_int32 *nTimeStamp, int goback) 

- It gets the next available received video frame. 

 StreamGetCurrentAudioTime( void ** StreamClient, u_int32 *TimeStamp) 

- It returns the current audio time stamp. 

 StreamGetCurrentVideoTime( void ** StreamClient, u_int32 *TimeStamp) 

- It returns the current video time stamp. 

 StreamGetBufferAudioTime( void ** StreamClient, u_int32 *TotalTimeStamp, 

u_int32 *LastTimeStamp) 

- It returns the duration of received audio frames currently placed in buffer. 

 StreamGetBufferVideoTime( void ** StreamClient, u_int32 *TotalTimeStamp, 

u_int32 *LastTimeStamp) 

- It returns the duration of received video frames currently placed in buffer. 

 StreamGetTimeScale( void ** StreamClient, int stream_type, DWORD *TimeScale) 

- It returns the timescale of the specified media data. 

 StreamGetDuration( void ** StreamClient, int stream_type, DWORD *Duration) 

- It returns the total duration of the specified media data. 

 StreamGetState(void ** StreamClient,int *rtsp_state) 

- It returns the current state of the client. 

 StreamGetLossRate(void ** StreamClient,int stream_type,double *dLossRate) 

- It returns the average loss rate of the streaming session. 

 StreamGetTransmitRate( void ** StreamClient,int stream_type, int *transmitRate) 

- It returns the average transmission bitrate of the streaming session. 

 StreamCloseConnection(void ** StreamClient) 

- It closes the connection between StreamClient and the server. 

 StreamReleaseClient(void ** StreamClient) 
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- It releases the resources associated with StreamClient. 

 StreamGetVideoEsdsData(void ** StreamClient,BYTE *DataOut, DWORD *OutLen) 

- It acquires video decoder specific information data. 

 StreamGetAudioEsdsData(void ** StreamClient,BYTE *DataOut, DWORD *OutLen) 

- It acquires audio decoder specific information data. 

 StreamGetFrame(void ** StreamClient,MediaItem **ucBuffer, unsigned long 

*nActualRead,u_int32 *nTimeStamp,int stream_type, int goback) 

- It gets the next frame of specified media data. It is used by both 

StreamGetAudioFrame() and StreamGetVideoFrame() which specify their 

stream_type when calling StreamGetFrame(). 

 StreamGetLastVideoTime(void ** StreamClient,u_int32 *TimeStamp) 

- It returns the timestamp of the previously acquired video frame. 

 StreamGetLastAudioTime(void ** StreamClient,u_int32 *TimeStamp) 

- It returns the timestamp of the previously acquired audio frame. 

 StreamGetStreamCodecInfo(void ** StreamClient,int *VideoCodec,int *AudioCodec) 

- It returns the information of the codec including whether the data contains audio or 

video, and if applicable, their compression methods. 

 

The interface functions listed above look simple and in fact, can be used in an 

effortless way. This user-friendly feature is accomplished by hiding several extremely 

complicated sub-blocks of functions from the GUI designer. These sub-blocks are: 

 Interface 

- It provides simple interface functions to the server program so the server can 

stream the media data and exchange control messages with clients in an effortless 

way. 

 Stream 

- It defines a class of objects named RTSPStreamClient, which defines all the 

functions needed to handle a streaming client, necessary variables, and memory 

buffers. 

 Net 

- It is one level above TCP/IP. The actual streaming of video/audio data is 
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scheduled and performed by this sub-block. 

 RTSP 

- It contains ParseRTSP() for the server to parse RTSP control messages 

It deals with handling RTSP related messages. 

 III Services 

- It provides fundamental functions to support mutex, semaphores, threads, time, 

memory management, and several base classes. 

 Input 

- It provides th types of classes for the programmer to use. They are 

MediaInputStream, MediaBuffer and MediaItem. 

 TCP Tunnel 

- It deals with the packets sent via TCP tunnel instead of the UDP method. 
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6 System Execution 
 In this chapter, the executions of the proposed system are introduced and shown. In 

particular, the pictures of server interface and the client interface, and the results of 

executions are given and described in detail. 

 

 
Figure 40 – Server interface 
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6.1 Server Interface 
 When the streaming server program is started, its outlook is as shown in Figure 40. 

On the left, there are two “URI” edit fields for the user to input the IP addresses of 

wireless IP cameras. Before streaming service begins, the user must click on “Open 

Connection CH1” and “Open Connection CH1” buttons in order to get images from these 

cameras. In addition, if the USB camera is also connected to the server PC and the 

audiovisual contents that it captures are desired, the “Preview” button also has to be 

clicked. After these cameras are connected, their images can be shown on the GUI for 

previewing purpose. To start serving the client, “Streaming Start” button should be 

pressed. To stop the service at any time, “Streaming Stop” button can be pressed. Finally, 

the gray edit field on the right side is for displaying the connection status. Its uses will 

become clear in Section 6.3. 

 

6.2 Client Interface 
When the streaming client program is started, its outlook is as shown in Figure 41. 

On the top left, “URI” edit field is for the user of the client to input the URI of the desired 

media file. The URI includes the IP address of the server and the name of the file. On the 

bottom there is a gray picture box. This picture box is where the received visual contents 

will be rendered. To connect to the server, “Open” button has to be clicked. To stop the 

connection with the server, “Stop” button is to be pressed. To pause the streaming 

process, “Pause” should be clicked. To resume the paused streaming process, “Pause” 

should be clicked again. To forward or backward the presentation, the user has to pause 

the streaming process, enter the desire presentation time in the edit field on the right side, 

and then click on “Seek” button. If the user demands that the data should be transmitted 

via TCP instead of UDP, then the check box marked “TCP Tunnel” should be checked. 

Finally, the gray edit fields marked “Audio Receiving Status” and “Video Receiving Status” 

are for displaying the receiving statuses. Their uses will become clear in Section 6.3. 
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Figure 41 – Client interface 

 

6.3 Results of Executions 
When the server is connecting to two wireless cameras and one USB camera 
 Figure 42 shows the outlook of the server program when two wireless cameras and 

one USB camera are connected. Obviously, the images that they capture are being 

previewed in the picture boxes of the GUI. 
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Figure 42 – Server interface when connecting to two wireless cameras and one USB 

camera 
 
When four clients are connecting to the server: 
 In Figure 43, the streaming service is started by clicking on “Streaming Start” button. 

At this time, a total of four clients are connecting to the server as shown on the edit field 

on the bottom right. Their IP addresses, and corresponding RTSP states and 

transmission rates are also displayed. 
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Figure 43 – Server interface when four clients are connecting to it 

 
When client is receiving live-captured contents: 
 In Figure 44, the client program is connecting to the server to receive live-captured 

contents by specifying URI of the desired media file and pressing “Open” button. As can 

be observed, the receiving statuses for audio and video are shown separately. These 

statuses include the buffer lengths in milliseconds, the current presentation times, the 

loss rate, and the transmission rates. As a side note, since the cameras used here do not 

capture sounds, the audio receiving status field does not show anything. 
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Figure 44 – Client interface when acquiring live-captured contents 

 
When client is receiving stored contents: 

In Figure 45, the client program is connecting to the server to receive stored media 

contents by specifying URI of the desired media file and pressing “Open” button. Note 

that because “cindy.mp4” includes both video and audio, the receiving statuses for both 

are shown. 
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Figure 45 – Client interface when acquiring stored contents 

 
When Windows® Media Player® is used as client: 
 In Figure 46, on the left, the Windows® Media Player® is playing the lived-captured 

contents, while on the right, it is playing the stored media contents. 
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Figure 46 – Using Windows® Media Player® as Clients. The left one is for live-captured 

while the right one is for stored video. 

 

6.4 Observations on Server Transmission Behavior 
Inter-departure Time between Groups of Packets 

In the proposed server system, each media frame is segmented into a group of RTP 

packets. Therefore, for the video with the framerate of 25 frames per second, supposedly 

the inter-departure time between RTP packet groups should be 40 milliseconds. To 

guarantee that the inter-departure times are accurate, in the system, the actual control of 

the timing is done by reading the system clock. This is as far as what can be done by the 

from the software point of view. To verify that the resulted inter-departure times match the 

expected values, some measurements are taken and presented in this section. To 

conduct this simple experiment, the software “WinPcap: The Windows Packet Capture 

Library” [22] is utilized to measure the departure times of all packets. 
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 In Figure 47, the histogram of inter-departure times between groups of packets when 

the server is streaming to a single client is shown. Note that the horizontal axis 

represents the inter-departure times between groups of packets, while the vertical axis 

represents the accumulated numbers of times for different inter-departure times. As can 

be observed from the figure, the measured inter-departure times between groups are not 

40 milliseconds. Instead, the bars in the histogram mainly appear at three locations: 23, 

35, and 47 milliseconds. Referring to Figure 48, when the situation becomes more 

complicated (i.e. more clients are connecting to the server), this phenomenon still exist. 

Note that even though the bars still mainly appear at the three mentioned locations, 

however, they do spread out noticeably. 
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Figure 47 – Histogram of inter-departure times between groups of packets when 

streaming to one client 
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Figure 48 – Histogram of inter-departure times between groups of packets when 

streaming to six clients 
 

Bandwidth Smoothing Results
 In the proposed server system, the user can select whether to turn on the 

packet-based MVBA traffic smoothing feature or not. To test the performance of this 

feature, the networking monitoring function of Windows® Task Manager is employed. As 

can be observed from Figure 49, when this feature is not in use, the traffic is bursty due to 

the VBR characteristic of MPEG-4 compression algorithm. However, when the smoothing 

feature is enabled, the traffic is much smoother as shown by Figure 50. Note that only 2 

MB client buffer size is assumed when computing the smoother transmission plan. In fact, 

the client buffer size is normally larger. 
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Figure 49 – Transmission rate for unsmoothed traffic 

 

 
Figure 50 – Transmission rate for smoothed traffic with 2MB client buffer 
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6.5 Discussions 
 Regarding to the execution results, it is proud to say that the server and the client 

systems work successfully. They both meet the proposed expectations. In particular, the 

server system can acquire audiovisual contents from various types of cameras. In 

addition, it can transcode these acquired contents into MPEG-4 format in real-time. It can 

provide streaming services to multiple clients, who may ask for either live-captured 

contents or stored media files. The data transmission can take place either via UDP or 

TCP, as designated by the client. If the desired media file is stored type, the server may 

stream it in a smoother manner since the bandwidth smoothing technique is embedded 

into the server. Finally, the server is fully compliant with both RTP and RTSP protocols. 

For the client side, the client system can connect to the server to request the desired 

media contents. Upon receiving MPEG-4 data, it can decode and render them in 

real-time. Lastly, the proposed system is so flexible that the user can even use 

Windows® Media Player® as the client program. 

  

The implemented client and server system seem to work fine until the measurements 

mentioned above are taken. The resulted inter-departure times are not the same as 

those of expected when the server is streaming to a single client. This problem gets 

worse when the server is streaming to multiple clients as described earlier. The possible 

reasons for this discrepancy are: 

 The TCP and the UDP socket kernel programs (Windows® Socket Library) do not 

function in the expected way. This is to say that when “send()” or “sendto()” is called 

to send a packet via TCP or UDP, respectively, the packet is not transmitted 

immediately. 

 The bars in the histogram of second case (Figure 48) spread out because: 

- Socket kernel programs are too busy to handle outbound packets destined to six 

clients. Therefore, packets cannot be injected into the network on time. 

- CPU is exhausted due to fact that there are too many packetizers 

(“StreamerletIs()” threads) executing concurrently, and as a result, “send()” or 

“sendto()” functions are not called at the exact times. 

 

-115- 



 

This problem may become more serious when the wireless transmission comes into 

play whether at the client side or the server side because: 

 IEEE 802.11 DCF mechanism will cause one’s transmission delayed when the 

medium is in use. Thus, the inaccuracy of inter-departure times will probably be 

enlarged. 

 When multiple stations are sharing the same medium (i.e. air), the overall 

transmission rate may eventually saturate [23], and cannot reach the maximum 

supported transmission rate of IEEE 802.11. Consequently, the delayed 

inter-departure times might be extended even longer. 

 

Finally, the packet-based MVBA algorithm is successfully embedded into the server 

system. This feature can be useful when streaming stored media files. However, since 

MVBA is not intended for online or real-time applications, such as sports events or video 

conferences, respectively, this feature cannot be used to improve the transmission of 

live-captured audiovisual contents. 
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7 Conclusions 
 To reduce the time that people have to wait before starting to enjoy the multimedia 

contents, streaming technology has been developed and widely accepted. The 

mainstream streaming protocols are RTP and RTSP. The former is designed for the 

needs of streaming data with real-time characteristics. It has a subpart named RTCP, 

which allows the monitoring of reception quality. The later acts like a “network remote 

control”. It provides bi-directional communication between the server and the client. Many 

commercial streaming solutions that adopt these two protocols are out there. However, 

they are incapable of getting media contents from various types of cameras, and 

smoothing bursty traffic. 

 

In this work, a real-time interactive RTP/RTSP multimedia streaming monitoring 

system with bandwidth smoothing technique is designed, developed and implemented 

successfully. In short, unlike other commercial solutions that merely can stream stored 

video or audio, the proposed system can stream either live-captured audiovisual contents 

that are real-time encoded into MPEG-4 format or stored ones. 

 

Apparently, the server system is capable of acquiring captured images from various 

types of cameras. In addition, to smoothen the burstiness of VBR contents that may 

cause inefficient utilization of the network resources, the proposed system is further 

enhanced by the packet-based MVBA smoothing algorithm, which can compute a 

smoother transmission plan. Moreover, in the client system, a simple and easy image 

capturing software interface is designed and implemented. With this interface, one can 

acquire received media frames effortlessly, so he or she can do any kind of 

post-processing. For example, if automotive image processing functions are needed to 

allow automatic monitoring on unattended target zones, the system developer can get 

received frames from the image capturing software interface without any difficulty, and in 

turn feed them to the image processing functions in a graceful way. 
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Finally, the execution results are presented. These results indicate that the proposed 

system is implemented successfully, and that the goals of this work are achieved. 

However, some issues do arise. The inter-departure times are not equal to the expected 

values. This discrepancy becomes more obvious when more clients are present. Without 

a doubt, if IEEE 802.11 wireless connection is in use either at the client side or the server 

side, this problem will be even more harmful. 

 

 From the system designer’s point of view, let’s conclude what factor limits the 

capability of the server system. If the main threads used by the server are to be divided 

into groups based on their functions, they can be sorted into the following units: 

 Transcoding unit 

- It includes “Transcoder()” thread. 

- The server system only contains a single entity of this unit. 

- It is responsible for acquiring images from various types of cameras, transcoding 

these images into MPEG-4, and placing the resulted bitstreams onto the buffer 

where the planning unit can access. 

- The number of cameras that this unit can support to perform real-time transcoding 

depends on the computation power of the server machine. 

 Transmission unit 

- It includes “PacketScheduler()” thread. 

- The server system only contains a single entity of this unit. 

- It is responsible for handing over all the RTP packets destined to each connected 

clients to the network card, which in turn inserts these packets to the network. 

 Planning unit 

- It includes “StreamerletIs()” and “RTSPProcessorThread()” threads. 

- Whenever the server accepts a new connection from a client, the server will 

exclusively create a new entity of this unit to deal with all the RTP and RTSP 

packets destined to or received from this client. 

- “StreamerletIs()” is in charge of packetizing frames acquired either from the 

storage device or the buffer where the transcoding unit places the MPEG-4 

bitstreams into RTP packets, and putting these packets on the buffer where the 
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transmission unit can access. 

- “RTSPProcessorThread()” is in charge of exchanging RTSP messages with the 

client and performing necessary RTSP state transitions. 

 

Obviously, among these three units, the most CPU-consuming one is the 

transcoding unit. This is because of the fact that the MPEG-4 encoding task requires 

large computation power, especially its motion search part, which accounts for over 

eighty percent of the overall MPEG-4 computation. In other words, if the transcoding unit 

is not taken into consideration, then the server can easily stream media data to more than 

ten clients concurrently. The reasons are that the transmission unit in fact consumes light 

computation power, and even though the number of the entities of the planning units 

increases as the number of the clients becomes larger, but due to their low computational 

power requirement, the overall server system performance is not affected greatly. 

Therefore, the key factor that limits the server’s capability is the encoding unit. 

 

After numerous measurements are taken, it is found that 7 milliseconds in average 

will be needed by the MPEG-4 encoder to encode a single 320x240 full-color frame. For 

the case when images acquired from a single camera are to be encoded at the frame 

rate of 25 frames per second, which is equivalent to 40 milliseconds of inter-frame time, 

then within this period of time the server system will take about 10 milliseconds to 

perform transcoding, and 1 millisecond to transmit a group of RTP packets (around 5 to 6 

packets) to each connected client. Thus, in this case, the server can support up to 30 

clients simultaneously. If the server provides the service of streaming three different 

videos acquired from three cameras to clients, it will take 30 milliseconds out of the 

40-millisecond inter-frame time just to transcode the captured contents into MPEG-4. As 

a result, the number of clients that the server can support is decreased to 10. 

 

 In the future, the system may be enhanced by adding the following features to it: 

 The feedback mechanism provided by RTCP can be implemented to the system so 

the server can adapt its transmission behavior to the network conditions. 

 The proposed packet-based MVBA smoothing algorithm is designed for stored 
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media applications and cannot apply to the live-events such as live baseball games 

(i.e. small start-up delay is tolerable). Therefore, online smoothing techniques should 

be studied and realized in the future system. 

 For some applications, any noticeable delay is not allowed. Thus, real-time 

smoothing algorithms should be researched and implemented in the upcoming 

system. 

 Since RTSP is extendible, some other nice functions should be added to the system. 

For example, for the client system that contains automotive image processing 

functions, if RTSP is modified to provide a means for the client to send messages to 

the server, then when the client detects that the monitored area is in danger, it can 

report to the server about the abnormal event via RTSP channel. In turn, the server 

can either record the event or notify the related personnel. 

 Since the current transcoding unit is CPU-consuming, the server system can be 

improved by either upgrading the CPU or replacing the encoder with a more efficient 

one. 
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