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Abstract

Grossberg established a remarkable convergence theorem for a class of competitive systems without knowing and
using Lyapunov function for the systems. We present the parallel investigations for the discrete-time version of the
Grossberg’s model. Through developing an extended component-competing analysis for the coupled system, without
knowing a Lyapunov function and applying the LaSalle’s invariance principle, the global pattern formation or the
so-called global consensus for the system can be achieved. A numerical simulation is performed to illustrate the present
theory.
� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

‘‘Convergence of dynamics” means that every solution tends to a single stationary solution, as time tends to infinity.
One of the commonest ways to establish convergence of dynamics is to find a Lyapunov function for the system, that is,
a continuous real-valued function V on state space, which is nonincreasing along trajectories of the system. One then
applies the LaSalle’s invariance principle to conclude the convergence. For example, Cohen and Grossberg [9] derived a
convergence theorem for neural network systems of the form:
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where x = (x1,x2, . . . ,xn), ai P 0, g0i P 0 for all j. There exists a Lyapunov function for (1):
V ðxÞ ¼ �
Xn
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Z xi

0
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They showed that if ai > 0, the matrix [xij] of coupling weights is symmetric, and g0i > 0 for every i, then V is a strict
Lyapunov function and therefore the system is quasi-convergent, see also [19]. Forti and Tesi [10] proved the global
stability for the Hopfield-type neural network of the form:
779/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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_xi ¼ �lixi þ
Xn

j¼1

T ijgjðxjÞ þ I i; ð2Þ
where li > 0, gi is a nondecreasing function, i = 1, 2, . . . ,n. Again, the results obtained therein employed a Lyapunov
function of the so-called generalized Lur’e–Postnikov type. However, it is not always possible to find a suitable Lyapu-
nov function when considering convergent dynamics.

Grossberg [11] considered a class of ‘‘competitive systems” of the form
_xi ¼ aiðxÞ½biðxiÞ � Cðx1; x2; . . . ; xnÞ�; i ¼ 1; 2; . . . ; n; ð3Þ

where ai > 0; oC=oxi P 0; x ¼ ðx1; x2; . . . ; xnÞ 2 Rn. System (3) was proposed as a mathematical model for the resolution
to a dilemma in science for hundred of years: How do arbitrarily many individuals, populations, or states, each obey
unique and personal laws, succeed in harmoniously interacting with each other to form some sort of stable society, or
collective mode of behavior. Such a system can have any number of competing populations, any interpopulation signal
functions bi(xi), any mean competition function, or adaptation level C(x), and any state-dependent amplifications ai(x)
of the competitive balance. A suitable Lyapunov function for system (3) is not known. The work in [11] employed a
skillful component-competing analysis to prove that any initial value. x(0) P 0 (i.e. xi(0) P 0, for any i) evolves to a
limiting pattern x(1) = (xi(1),x2(1), . . . ,xn(1)) with 0 6 xi(1): = limt?1xi(t) <1, under some conditions on ai,
bi, C. Systems of the form (3) include the generalized Volterra–Lotka systems and an inhibitory network [14].

Recently, Cohen–Grossberg’s model has attracted much scientific interests, cf. [1,8,15,21]. As we observe, Gross-
berg’s model (3) has more general form than the Cohen–Grossberg’s model (1). Indeed, while the coupling terms are
in the form of linear summation in system (1), no special form is demanded for the adaptation level C(x1,x2, . . . ,xn)
in (3). On the other hand, there have been growing interests in discrete-time systems, cf. [2–7,9,10,12,13,16–18]. These
investigations include the discrete-time counterparts of the Hopfield’s models and the cellular neural networks.

System (3) can be approximated, via Euler’s difference scheme or delta-operator circuit implementation [13], by
xiððk þ 1ÞdÞ ¼ xiðkdÞ þ daiðxðkdÞÞ½biðxiðkdÞÞ � CðxðkdÞÞ�; ð4Þ
where one takes xi(kd) as the kth iteration of xi. In this study, we consider the following discrete-time version of the
Grossberg’s model, namely,
xiðk þ 1Þ ¼ xiðkÞ þ baiðxðkÞÞ½biðxiðkÞÞ � CðxðkÞÞ�; ð5Þ

where i ¼ 1; 2; . . . ; n; k 2 N0 :¼ f0g [N. We first establish the theory for (5) with b = 1, i.e.
xiðk þ 1Þ ¼ xiðkÞ þ aiðxðkÞÞ½biðxiðkÞÞ � cðxðkÞÞ�: ð6Þ
The results are then extended to (5). The main goal of this investigation is to explore the conditions on functions ai, bi,
and C, under which system (5) or (6) possesses global limiting patterns x(1): = (x1(1),x2(1), . . . ,xn(1)) with
�1 < xi(1): = limt?1xi(t) <1 for every i, given any initial value x(0). Extension for the global consensus or global
pattern formation from the continuous-time systems to the one for discrete-time models is by no means trivial. In fact,
the orbits for the discrete-time dynamical systems are even more unpredictable. Additional elaborations need to be
made in deriving the conditions to conclude the discrete-time global pattern formations.

Below, in Section 2, we state the main results of this presentation. In Section 3, we justify three key lemmas for The-
orem 1 and give an example with numerical illustration. A conclusion is drawn in Section 4.
2. Main results

Definition 1 (Global consensus). A discrete-time competitive system x(k + 1) = F(x(k)) is said to achieve global

consensus (or global pattern formation) if, given any initial value xð0Þ 2 Rn, the limit xi(1): = limk?1 xi(k) exists, for all
i = 1, 2, . . . ,n.

We describe the following conditions for our main results.
Condition (A1): Each ai(x) is continuous, and
0 < aiðxÞ 6 1; for all x 2 Rn; i ¼ 1; 2; . . . ; n: ð7Þ

Condition (A2): C(x) is bounded and continuously differentiable with bounded derivatives; namely, there exist con-

stants M1, M2, rj such that for all x 2 Rn,
M1 6 CðxÞ 6 M2; ð8Þ

0 6
oC
oxj
ðxÞ 6 rj; j ¼ 1; 2; . . . ; n: ð9Þ
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Condition (A3): bi(n) is continuously differentiable, strictly decreasing and there exist di > 0; li; ui 2 R such that for
all i = 1, 2, . . . ,n.
� di 6 b0iðnÞ < 0 for all n 2 R; ð10Þ
biðnÞ > M2; for n 6 li; and biðnÞ < M1; for n P ui: ð11Þ
Condition (A4): For i = 1, 2, . . . ,n,
0 < di 6 1�
Xn

j¼1

rj < 1: ð12Þ
For later uses, we set
d :¼ minfdi : i ¼ 1; 2; . . . ; ng; ð13Þ
M :¼ maxfjM1j; jM2jg: ð14Þ
Theorem 1. System (6) with ai, bi, and C satisfying conditions (A1)–(A4) achieves global consensus.

The proof of Theorem 1 consists of three lemmas which will be stated below. We consider the following conditions
for an extension of Theorem 1 to system (5).

Condition (Al)0: Each ai(x) is continuous, and there exists B > 0 such that
0 < aiðxÞ 6 B; for all x 2 Rn; i ¼ 1; 2; . . . ; n: ð15Þ
Condition (A4)0: There exists b > 0 such that for i = 1, 2, . . . ,n,
0 < di 6
1

b
�
Xn

j¼1

rj <
1

b
: ð16Þ
Condition (A4)00: There exist B, b > 0 such that for i = 1, 2, . . . ,n,
0 < di 6
1

Bb
�
Xn

j¼1

rj <
1

Bb
: � ð17Þ
Corollary 1. System (5) with ai, bi, and C satisfying conditions (A1)–(A3), and (A4)0 achieves global consensus.

In fact, we only need that function ai is continuous, positive and bounded above by some real number B > 0, for all i,

instead of condition (A1). This is due to that system (6) can be rewritten as
xiðk þ 1Þ ¼ xiðkÞ þ
aiðxðkÞÞ

B
½BbiðxiðkÞÞ � BCðxðkÞÞ�:
We thus obtain the following corollary.

Corollary 2. System (5) with ai, bi, and C satisfying condition (A1)0,(A2), (A3), and (A4)00 achieves global consensus.

Remark 1. From Corollary 2, we find that the smaller b in (5) (d in (4)) is, the weaker restrictions on functions a1, bi, C

are.

We define DxiðkÞ :¼ xiðk þ 1Þ � xiðkÞ, so that system (6) becomes
DxiðkÞ ¼ aiðxðkÞÞ½biðxiðkÞÞ � CðxðkÞÞ�: ð18Þ
In order to state the key lemmas for our main result, Theorem 1, we introduce some notations and definition:
giðkÞ ¼ biðxiðkÞÞ � CðxðkÞÞ; DgiðkÞ ¼ giðk þ 1Þ � giðkÞ;
ĝðkÞ ¼ maxfgiðkÞ : i ¼ 1; 2; . . . ng; �gðkÞ ¼ minfgiðkÞ : i ¼ 1; 2; . . . ng;
IðkÞ ¼ minfi : giðkÞ ¼ ĝðkÞg; JðkÞ ¼ minfi : giðkÞ ¼ �gðkÞg;
x̂ðkÞ ¼ xIðkÞðkÞ; �xðkÞ ¼ xJðkÞðkÞ;
b̂ðkÞ ¼ bIðkÞðx̂ðkÞÞ; �bðkÞ ¼ bJðkÞðxðkÞÞ;
Db̂ðkÞ ¼ b̂ðk þ 1Þ � b̂ðkÞ; D�bðkÞ ¼ �bðk þ 1Þ � �bðkÞ;
DbiðxiðkÞÞ ¼ biðxiðk þ 1ÞÞ � biðxiðkÞÞ:
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Definition 2. (i) A jump of type-1 is said to occur from i to j at the kth iteration if I(k) = i, I(k + 1) = j. (ii) A jump of
type-2 is said to occur from i to j at the kth iteration if J(k) = i, J(k + 1) = j.

Lemma 1. Consider system (6) with ai, bi, and C satisfying (7), (8), (10) and (11). Given any initial value xð0Þ 2 Rn; fxðkÞg
will be attracted to some compact set in Rn. Hence sequence fxiðkÞjk 2 N0g are bounded above and below for all i = 1,

2, . . . , n.

We consider an arbitrary orbit fxðkÞjk 2 N0g. Then, by Lemma 1, fjaiðxðkÞÞjjk 2 N0g is bounded below by some

positive number, say 0 < qi 6 |ai(x(k))| for all k 2 N0 and fb0ðxiðkÞÞjk 2 N0g are bounded above by some negative number,

say b0iðxiðkÞÞ < �ei < 0 for all k 2 N0. We define
q :¼ minfqi : i ¼ 1; 2; . . . ; n; g; e :¼ minfei : i ¼ 1; 2; . . . ; ng: ð19Þ
Lemma 2. Consider system (6) with ai, bi, and C satisfying (7), (9), (10) and (12). Then

(I) for function ĝ, either case ðĝ-ðiÞÞ or case ðĝ-ðiiÞÞ holds, where
ðĝ-ðiÞÞ : ĝðkÞ < 0; for all k 2 N0;

ðĝ-ðiiÞÞ : ĝðkÞP 0; for all k P K1; for some K1 2 N0;
(II) for function �g, either case (�g � ðiÞ) or case (�g-ðiiÞ) holds, where
ð�g-ðiÞÞ : �gðkÞ < 0; for all k 2 N0;

ð�g-ðiiÞÞ : �gðkÞ 6 0; for all k P K2; for some K2 2 N0;
If Lemma 2 is valid, there are only four possibilities to consider.

Case (i): Both ðĝ-ðiÞÞ and (�g-ðiÞ) hold. This case is impossible from our definition of ĝ and �g.
Case (ii): Both ðĝ-ðiÞÞ and (�g-ðiiÞ) hold. Then sequence {xi(k)} will always be nonincreasing as k is increasing, for all

i = 1, 2, . . . ,n. By Lemma 1, {xi(k)} are bounded below for every i, hence the limit xi(1) exists, for every
i = 1, 2, . . . ,n.

Case (iii): Both ðĝ-ðiiÞÞ and (�g-ðiÞ) hold. Then sequence {xi(k)} will always increase as k increases, for all i = 1, 2, . . . ,n.
By Lemma 1, {xi(k)} are bounded above for every i, hence the limit xi(1) exists, for every i = 1, 2, . . . ,n.

Case (iv): Both (�g-ðiiÞ) and ðĝ-ðiiÞÞ hold.

Accordingly, we are left with the case (iv) only, for the conclusion of global consensus for system (6). We thus
assume that ĝð0ÞP 0; �gð0Þ 6 0, without loss of generality.

Lemma 3. Consider system (6) with ai, bi, and C satisfying conditions (A1)–(A4). Then

ðiÞ limk!1b̂ðkÞ ¼ limk!1CðxðkÞÞ; ðiiÞ limk!1�bðkÞ ¼ limk!1CðxðkÞÞ.
If Lemma 3 holds, then
limk!1b̂ðkÞ ¼ limk!1CðxðkÞÞ ¼ limk!1�bðkÞ ¼: B: ð20Þ
On the other hand, �gðkÞ 6 giðkÞ 6 ĝðkÞ, for each i = 1, 2, . . . , n, for all k 2 N0. Equivalently,
�bðkÞ � CðxðkÞÞ 6 biðxiðkÞÞ � CðxðkÞÞ 6 b̂ðkÞ � cðxðkÞÞ;
for all k 2 N0. Thus, �bðkÞ 6 biðxiðkÞÞ 6 b̂ðkÞ for all k 2 N0

Therefore
limk!1�bðkÞ 6 limk!1biðxiðkÞÞ 6 limk!1b̂ðkÞ:
We obtain
limk!1b̂ðkÞ ¼ limk!1biðxiðkÞÞ ¼ limk!1�bðkÞ ¼ B;
by (20). Therefore we conclude that
limk!1biðxiðkÞÞ ¼ B; for all i ¼ 1; 2; . . . n: ð21Þ
Subsequently, limk?1xi (k) exists, for every i = 1,2, . . . , n, by (10) and (21). Hence, global consensus of system (6) is

achieved, if functions ai, bi, and C satisfy conditions (A1)–(A4).



306 C.-W. Shih, J.-P. Tseng / Chaos, Solitons and Fractals 41 (2009) 302–310
3. Proofs of lemmas

Proof of Lemma 1. For a given initial vale x(0), we consider the iteration sequence {x(k)} and their components xi(k).
We divide the proof into seven steps.

(i) By (8) and (11), bi(xi) � C(x) < 0, for all xi P ui. Therefore
DxiðkÞ ¼ aiðxðkÞÞ½biðxiðkÞÞ � CðxðkÞÞ� < 0; ð22Þ

if xi(k) > ui. Similarly, bi(xi) � C(x) > 0, for all xi 6 li. By (8) and (11). Therefore

DxiðkÞ ¼ aiðxðkÞÞ½biðxiðkÞÞ � CðxðkÞÞ� > 0; ð23Þ

if xi(k) 6 li. In addition, we have

jbiðxiðkÞÞj 6 dijxiðkÞj þ jbið0Þj; for all k 2 N0; ð24Þ

since that biðxiðkÞÞ � bið0Þ ¼ b0ið�ÞxiðkÞ, and |bi(xi(k))| 6 |bi(0)| + di|xi(k)|, where ‘‘ � ” means some real number be-
tween xi(k) and 0.
(ii) Let Li be fixed constants. Since (di|xi| + Li)/|xi| = di + Li/|xi| ? di < 1, as |xi| ?1 we have
dijxij þ Li < ~dijxij; if jxijP ~ui; ð25Þ

for some constants ~ui > 0 and ~di, with 0 < di < ~di < 1:

(iii) It follows from (7), (14), and (24) that
jDxiðkÞj ¼ jaiðxðkÞÞ½biðxiðkÞÞ � CðxðkÞÞ�j 6 jbiðxiðkÞÞ � CðxðkÞÞj 6 dijxiðkÞj þ jbið0Þj þ jCðxðkÞÞj
6 dijxiðkÞj þ jbið0Þj þM :

Hence, by choosing Li = |bi(0)| + M in (25), there exist constants ~ui and ~di with ~ui > 0; 0 < di < ~di < 1 such that

jDxiðkÞj < ~dijxiðkÞj < jxiðkÞj; if jxiðkÞj > ~ui: ð26Þ
(iv) Set, for each i; ~qi :¼ maxfjuij; jlij; ~uig Let eQ :¼ ½�~q1; ~q1� � . . .� ½�~qn; ~qn�. Then eQ is a compact set, hence |ai(x)
[bi(xi) � C(x)]| is bounded on eQ, say
jaiðxÞ½biðxiÞ � CðxÞ�j 6 K; ð27Þ

for all x 2 eQ, for all i. Set qi :¼ ~qi þ K, and Q: = [�q1,q2] � � � � � [�qn,qn].

(v) We show that if �qi 6 xi(0) 6 qi, then �qi < xi(k) < qi, for all k 2 N0.

Case (a): If xið0Þ 2 ½�qi;�~qi�, then Dxi(0) > 0, due to xið0Þ 6 �~qi 6 li; in addition, |Dxi(0)| < |xi(0)|, due to
xið0Þ 6 �~ui. Hence xi(1) still stays in ð�qi; ~qiÞ or moves into ð�qi; ~qiÞ If the former case occurs, we con-
sider xi(1) as case (a) again. If the latter case occurs, we consider xi(1) as in the following case (b).

Case (b): If xið0Þ 2 ð�~qi; ~qiÞ, then |Dxi(0)| < K, by (27). Hence xi(1) will stay in ½�qi;�~qi� or ð�~qi; ~qiÞ or ½~qi; qi�.
Then we can still consider xi(1) as in case (a), case (b), and case (c), respectively.

Case (c): If xið0Þ 2 ½~qi; qi�, then Dxi(0) < 0, by xið0ÞP ~qi P ~ui and |Dxi(0)| < |xi(0)|, by xi(0) P ũi. Hence xi(1) still
stays in ½~qi; qi�, or moves into ð�~qi; ~qiÞ. If the former case occurs, we consider xi(1) as in case (c) again. If
the latter case occurs, we consider xi(1) as in case (b). From the above arguments, we find that if
�qi 6 xi(0) 6 qi, then�qi < xi(1) < qi, and we can prove that�qi < xi(k) < qi, for all k P 2, by induction.
(vi): If xi(0) < �qi, then
Case (d): {xi(k)} either increases as k increases and remains bounded above by �qi;
Case (e): {xi(k)} enters [�qi,qi] at some iteration, and never leaves [�qi,qi] again.
(vii) if xi(0) > qi, then
case (f): {xi(k)} either decreases as k increases and remains bounded below by qi;
case (g): {xi(k)} enters [�qi,qi] at some iteration, and never leaves [�qi,qi] again.
We find that no matter which of cases (d)–(g) occurs, {xi(k):k 2 open N0} are bounded above and below for all i. There-
fore, {|ai(x(k))|} are bounded below by some positive number, say 0 < qi 6 |ai(x(k))|, and fb0iðxiðkÞÞg are bounded above
by some negative number, say b0iðxiðkÞÞ 6 �ei < 0. In fact, it is impossible for the above case (d) and case (f) to occur.
This is due to that if case (d) occurs, then
biðxiðkÞÞ � CðxðkÞÞ ¼ biðxiðkÞÞ � biðliÞ þ biðliÞ � CðxðkÞÞ > biðxiðkÞÞ � biðliÞ ¼ b0ið�Þ½xiðkÞ � li�P eiK
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for all xi(k) 6 �qi 6 li � K, where ‘‘ � ” means some real number between xi(k) and li. Therefore, Dxi(k) =
ai(x(k))[bi(xi(k)) � C(x(k))] > eiK qi. Hence {xi(k)} increases unboundedly and yields a contradiction. Therefore case
(d) never occurs. Similarly, case (f) never occurs. By the arguments above, we find that given any initial value
xð0Þ; fxðkÞ : k 2 N0g is attracted to set Q. h

Proof of Lemma 2. For function ĝ, if ĝðkÞP 0 for some k, say I(k) = i, then gj(k) 6 gi(k), for all j – i. Consider two
possibilities: |Dgi(k)| 6 gi(k), and |Dgi(k)| > gi(k).

Case (i): |Dgi(k)| 6 gi(k). It follows that
ĝðk þ 1ÞP giðk þ 1Þ ¼ giðkÞ þ DgiðkÞP 0:
Case (ii): |Dgi(k)| > gi(k). Let us elaborate:
DgiðkÞ ¼ giðk þ 1Þ � giðkÞ ¼ biðxiðk þ 1ÞÞ � Cðxðk þ 1ÞÞ � ½biðxiðkÞÞ � CðxðkÞÞ�
¼ biðxiðk þ 1ÞÞ � biðxiðkÞÞ � ½Cðxðk þ 1ÞÞ � CðxðkÞÞ�

¼ b0ið�Þ½xiðk þ 1Þ � xiðkÞ� �
Xn

j¼1

oC
oxj
ð�Þ½xjðk þ 1Þ � xjðkÞ�;
where ‘‘ � ” means some real number between xi(k + 1) and xi(k), ‘‘�” means some point on the segment connecting
x(k + 1) and x(k). Thus,
DgiðkÞ ¼ b0ið�ÞaiðxðkÞÞgiðkÞ �
Xn

j¼1

oC
oxj
ð�ÞajðxðkÞÞgiðkÞP �diaiðxðkÞÞgiðkÞ �

Xn

j¼1

rjajðxðkÞÞgiðkÞ

P �digiðkÞ �
Xn

j¼1

rjgiðkÞ ¼ �di �
Xn

j¼1

rj

" #
gjðkÞP �giðkÞ;
by (7), (8), (10) and (12) and gi(k) P max{gj(k),0}, for all j. Hence Dgi(k) > 0, since |Dgi(k)| > gi(k) and Dgi(k) P �gi(k).
Therefore, ĝðk þ 1ÞP giðk þ 1Þ ¼ giðkÞ þ DgiðkÞ > 0.

For function �g, if �gðkÞ 6 0 for some k, say J(k) = i, then gj(k) P gi(k), for all j – i. Hence either |Dgi(k)| 6 �gi(k) or
|Dgi(k)| > �gi(k) holds.

Case (i): |Dgi(k)| 6 �gi(k). It follows that �gðk þ 1Þ 6 giðk þ 1Þ ¼ giðkÞ þ DgiðkÞ 6 0.
Case (ii): |Dgi(k)| > �gi(k). We compute
DgiðkÞ ¼ giðk þ 1Þ � giðkÞ ¼ biðxiðk þ 1ÞÞ � Cðxðk þ 1ÞÞ � ½biðxiðkÞÞ � CðxðkÞÞ�
¼ biðxiðk þ 1ÞÞ � biðxiðkÞÞ � ½Cðxðk þ 1ÞÞ � CðxðkÞÞ�

¼ b0ið�Þ½xiðk þ 1Þ � xiðkÞ� �
Xn

j¼1

oC
oxj
ð�Þ½xjðk þ 1Þ � xjðkÞ�;
where ‘‘ � ” means some real number between xi(k + 1) and xi(k), ‘‘�” means some point on the segment connecting
x(k + 1) and x(k). Thus
jDgiðkÞj ¼ b0ið�ÞaiðxðkÞÞgiðkÞ �
Xn

j¼1

oC
oxj
ð�ÞajðxðkÞÞgiðkÞ 6 �diaiðxðkÞÞgiðkÞ �

Xn

j¼1

rjajðxðkÞÞgiðkÞ

6 �digiðkÞ �
Xn

j¼1

rjgiðkÞ ¼ di þ
Xn

j¼1

rj

" #
ð�giðkÞÞ 6 �giðkÞ;
by (7), (8), (10) and (12) and gi(k) 6 min{gj(k), 0}, for all j. Hence Dgi(k) < 0, since |Dgi(k)| > �gi(k) and Dgi(k) 6 �gi(k).
Therefore, �gðk þ 1Þ 6 giðk þ 1Þ ¼ giðkÞ þ DgiðkÞ < 0.

From the above arguments, we find that function ĝ may keep negative at all iterations. But once it becomes
nonnegative at some iteration, it will always remain nonnegative after that iteration. Similarly, �g may keep positive at
all iterations. But once it becomes non-positive at some iteration, it will always be nonpositive after that iteration. This
completes the Proof of Lemma 2. With Lemma 2 and previous arguments, we assume that ĝð0ÞP 0; �gð0Þ 6 0, without
loss of generality. h
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Proof of Lemma 3. We assert that limk!1b̂ðkÞ exists, and denote it by bB; moreover, we shall justify that
limk!1CðxðkÞÞ ¼ bB.

Case (i): There exist finitely many jumps of type-1. In this case, there exist some K3 2 N, and some i, say i = 1, such
that ĝðkÞ ¼ g1ðkÞP 0, for all k P K3. Hence {x1(k)} will be non-decreasing as k is increasing. By Lemma 1,
{x1(k)} are bounded above. Therefore, limk?1x1(k) exists, hence limk?1b1(x1(k)) exists, denoted by �B.
Equivalently, limk!1b̂ðkÞ ¼ bB. Next, we justify that limk!1CðxðkÞÞ ¼ bB. Assume otherwise,
limk!1CðxðkÞÞ–bB. It follows from ĝðkÞ ¼ g1ðkÞP 0, for all k P K3, that b1(x1(k)) P C(x(k)), for all
k P K3. There exist some e > 0, and a sequence fk‘g1‘¼1 of positive integers with k1 > K3 such that
jCðxðk‘ÞÞ � B̂j > e, for all ‘ 2 N. Because limk!1b1ðx1ðkÞÞ ¼ bB, for such e, there exists K4 2 N, such that
jb1ðx1ðkÞÞ � bBj 6 e

2
, for all k P K4. Therefore g1ðk‘Þ ¼ b1ðx1ðk‘ÞÞ � Cðxðk‘ÞÞ > e

2
, for all k‘ P K4.We find that

{x1(k)} is always increasing after the K4th iteration. In fact,
Dx1ðk‘Þ ¼ a1ðxðk‘ÞÞ½biðxiðk‘ÞÞ � Cðxðk‘ÞÞ� > q
e
2
;

if kl P K4. Hence {x1(k)} will increase unboundedly, and yield a contradiction to Lemma 1.
Case (ii): There exist infinitely many jumps of type-1. We shall justify that fb̂ðkÞg decreases as {k}"1. Consider a fixed

k 2 N0.
Subcase (a): There is no jump of type-1 occurring at the kth iteration. Suppose I(k) = I(k + 1) = i, then gi(k) P 0,
gi(k + 1) P 0. In addition, b̂ðk þ 1Þ ¼ biðxiðk þ 1ÞÞ 6 biðxiðkÞÞ ¼ b̂ðkÞ, thanks to (10), and
Dxi(k) = ai(x(k))gi(k) P 0. Thus fb̂ðkÞg decreases as k increases.

Subcase (b): There is a jump of type-1 occurring at the kth iteration and gi(k) P 0, gj(k) P 0, where
I(k) = i – I(k + 1) = j. We derive that b̂ðk þ 1Þ ¼ bjðxjðk þ 1ÞÞ 6 bjðxjðkÞÞ 6 biðxiðkÞÞ ¼ b̂ðkÞ, due to
(10), Dxj(k) = aj(x(k))gj(k) P 0, and by I(k) = i – j.

Subcase (c): There is a jump of type-1 occurring at the kth iteration and gi(k) P 0, gj(k) < 0, where
I(k) = i – I(k + 1) = j. Notably, we still have gj(k + 1) P 0. We claim that
bjðxjðk þ 1ÞÞ � bjðxjðkÞÞ 6 biðxiðkÞÞ � bjðxjðkÞÞ: ð28Þ
Indeed, LHS ¼ b0jð�ÞDxjðkÞ ¼ b0jð�ÞajðxðkÞÞgjðkÞ 6 b0jð�ÞgjðkÞ 6 �djgjðkÞ 6 giðkÞ � gjðkÞ ¼ biðxiðkÞÞ � bjðxjðkÞÞ ¼ RHS,
by (7), (10), (1 � di)gj(k) < 0 6 gi(k) and gj(k) < 0. Herein, ‘‘ � ” is as previous use. Hence,
b̂ðk þ 1Þ ¼ bjðxjðk þ 1ÞÞ 6 biðxiðkÞÞ ¼ b̂ðkÞ.

All the above cases indicate that fb̂ðkÞg decreases as {k} increases. By Lemma 1, {x(k)} are attracted into some
compact set Q in Rn. Therefore, {bi(xi(k))} are bounded below, and so are fb̂ðkÞg. Hence fb̂ðkÞg decreases and
converges to some number bB as k tends to infinity (denoted by fb̂ðkÞg # bB).

Next, we verify that limk!1CðxðkÞÞ ¼ bB. Assume otherwise: limk!1CðxðkÞÞ–bB, then there exist some l > 0, and a
sequence fklg1l¼1 of positive integers, such that
jCðxðklÞÞ � bBj > l
eq
; ð29Þ
where e, q are defined in (19). Because fbbðkÞg # bB, for k :¼ min l
eq ; l
n o

> 0 there exists L 2 N such that
bB 6 bIðkÞðxIðkÞðkÞÞ 6 bB þ k; ð30Þ
for all k P L. Moreover
ĝð‘Þ ¼ bIð‘ÞðxIð‘Þð‘ÞÞ � Cðxð‘ÞÞP 0; ð31Þ
for all ‘ 2 R. Consider the kLth iteration and note that kL > L. By (29)–(31), we have
ĝðkLÞ ¼ b1ðx1ðkLÞÞ � CðxðkLÞÞ >
l
eq
;

where, for convenience, we set I(kL) = 1. The jump of type-1 may or may not occur at the kLth iteration. If it does not
occur, then
jDb̂ðkLÞj ¼ jb̂ðkL þ 1Þ � b̂ðkLÞj ¼ jb1ðx1ðkL þ 1ÞÞ � b1ðx1ðkLÞÞj ¼ b01ð�Þjjx1ðkL þ 1Þ � x1ðkLÞj

¼ jb01ð�Þjja1ðxðkLÞÞjjĝðkLÞj ¼ b01ð�Þjja1ðxðkLÞÞjjĝðkLÞj > eq
l
eq
¼ l:
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But this is impossible, because of (30). Suppose a jump of type-1 takes place at the kLth iteration. Assume that
I(kL + 1) = 2. Below we consider three different cases for b2(x2(kL)).

Subcase (a): B̂ 6 b2ðx2ðkLÞÞ < b1ðx1ðkLÞÞ. Then g2ðkLÞ > l
eq, and jDb2ðx2ðkLÞÞj ¼ jb02ð�Þjja2ðxðkLÞÞjjg2ðkLÞj > eq l

eq ¼ l,
which is impossible, due to (30).

Subcase (b): B̂ > b2ðx2ðkLÞÞP CðxðkLÞÞ. Then g2(kL P 0), and x2(kL + 1) P x2(kL). Thus,
b̂ðkL þ 1Þ ¼ b2ðx2ðkL þ 1ÞÞ 6 b2ðx2ðkLÞÞ < bB, which is impossible, since fb̂ðkÞg # bB.

Subcase (c): b2(x2(kL)) < C(x(kL)). Then g2(kL) < 0, and
Db2ðx2ðkLÞÞ ¼ b2ðx2ðkL þ 1ÞÞ � b2ðx2ðkLÞÞ ¼ b02ð�Þa2ðxðkLÞÞg2ðkLÞ 6 �d2g2ðkLÞ 6 �g2ðkLÞ:
Thus, b2(x2(kL + 1)) = b2(x2(kL)) + Db2(x2(kL)) < b2(x2(kL)) � g2(kL) = C(x(kL)). Hence b̂ðkL þ 1Þ ¼ b2ðx2ðkL þ 1ÞÞ <
CðxðkLÞÞ < bB, which is impossible, since fb̂ðkÞg # bB.

From the above discussions, we conclude that limk!1CðxðkÞÞ ¼ bB.
The second part of the lemma asserts that limk!1�bðkÞ exists, denoted by �B, and limk!1CðxðfcÞÞ ¼ �B. The scheme

of the proof parallels the first part and is thus omitted. h

We provide an example to illustrate our theory.

Example 1. Consider the following system in the form (6) with n = 2:
x1ðk þ 1Þ ¼ x1ðkÞ þ ½0:1 sinðx1ðkÞÞ þ 0:3�f�0:2x1ðkÞ � ½0:1 tanhðx1ðkÞÞ þ 0:2 tanhðx2ðkÞÞ�g
x2ðk þ 1Þ ¼ x2ðkÞ þ ½0:1 sinðx2ðkÞÞ þ 0:3�f�0:3x2ðkÞ � ½0:1 tanhðx1ðkÞÞ þ 0:2 tanhðx2ðkÞÞ�g:
We check that condition (A1) holds:
0 < a1ðxÞ ¼ 0:1 sinðx1Þ þ 0:3 6 1; 0 < a2ðxÞ ¼ 0:1 sinðx2Þ þ 0:3 6 1;
where x = (x1,x2). Condition (A2) also holds, since that with M1 = �0.3, M2 = 0.3, ri = 0.1 and r2 = 0.2, it follows that
for all x = (x1, x2),
M1 6 CðxÞ ¼ 0:1 tanhðx1Þ þ 0:2 tanhðx2Þ 6 M2;

0 6
oC
ox1

x 6 r1; 0 6
oC
ox2

x 6 r2:
In addition, condition (A3) holds, since that b1(n) = �0.2n and b2(n) = �0.3n are continuously differentiable, strictly
decreasing and there exist d1 = 0.2 and d2 = 0.3 such that
�d1 6 b01ðnÞ < 0; �d2 6 b01ðnÞ < 0 for all n 2 R:
Moreover, (11) holds trivially. Finally, condition (A4) also holds obviously. Hence the system achieves global consen-
sus, due to Theorem 1. The numerical simulation for the system with 15 initial points is illustrated in Fig. 1.
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Fig. 1. Illustration for the orbits of Example 1.
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4. Conclusions

For the investigations of stability and convergence for neural networks and other systems, in continuous-time or
discrete-time, knowing a Lyapunov function and applying the associated arguments are very effective. However, finding
a Lyapunov function is not always a feasible task, especially for those systems in general form. Indeed, it is rather dif-
ficult or even impossible to exploit a suitable Lyapunov function for system (3) and its discrete-time version (5).

In comparing the analysis for the proofs of Theorem 1 and the continuous model, we find that the behaviors of dis-
crete-time orbits {x(k)} are more unpredictable than the ones for continuous-time orbits {x(t)}. Hence, instead of that
only upper growth ĝðtÞ for gi(t) is considered for the continuous-time case, both upper growth ĝðkÞ and lower growth
�gðkÞ of gi(k) need to be controlled for the discrete-time situation. Accordingly, additional conditions on functions ai, bi,
C are required for estimations of Dxi(k) and monotonicity of fb̂ðkÞg and f�bðkÞg, to achieve the global consensus for the
discrete-time system (4).

In this presentation, we have successfully developed an analytical component-competing approach to conclude glo-
bal pattern formation for the discrete-time model (5). The technique itself is an interesting and efficient methodology for
studying stability and global dynamics for coupled systems. The component-competing analysis developed herein has
also been applied to delayed recurrent neural networks successfully [20].
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