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A mixed 0-1 linear programming approach for

finding transcription factor binding sites

Student: James Changjui Fu Advisor : Hanlin Li

Institute of Information Management
National Chiao Tung University

ABSTRACT

The discrimination of transcription factor binding sites (TFBS) in multiple DNA
sequences is an essential work for function analysis of gene expression. Enumeration
methods that search all possible patterns have best precision among all current
algorithms but require an exponential computational time and have difficulties to
search for longer patterns. A predefined shared pattern can notably prunes the
searching space but such information is often unavailable. Finding unframed TFBS

today still relies on heuristic approaches which compromise to accuracy.

To effectively find TFBS, this study develops a mixed 0-1 linear programming
approach to solve a series of problems for issues including fixed-pattern TFBS finding,
ambiguous spacer TFBS finding and pattern-free TFBS finding. The proposed method
has the following advantages over current methods: (1) A pattern-driven instead of
sample-driven (or sequence-driven) design; (2) A global optimal solution is promised;
(3) Structural features of motifs are embeddable to help facilitate search process. And
with pattern-free approaches we can successfully determine TFBS within dispersed
spacers. We apply several experiments on every kind of TFBS finding programs and
in these examples the real TFBS are successfully determined in an acceptable

computational time.

Keywords: DNA-protein interaction, gene regulation, transcription factor binding site,

linear programming, integer programming.
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Chapter 1 Introduction

For past two decades, biologists have sequenced more and more complete
genome sets of various species. To extract all the secrets of life from these huge data,
procedures of how genes work in organism are continuously researched and discussed.
Gene transcription, a primary gateway to gene function, is controlled by a complex
regulatory mechanism in which many specific regulatory proteins bind to local
regions of gene upstream, called transcription factor binding sites (TFBS), to control
the gene expression. Therefore, the discrimination of TFBS from DNA sequences

therefore becomes an essential work for genome function analysis.

1.1  DNA-binding Motifs and Their Binding Sites

Before the discussion about TFBS, we need to know the mechanism of gene
regulatory. DNA transcription is the very first stage of gene expression. The
complexes of Rribonucleic acid (RNA) polymerases and general transcription factors
transcribe all kinds of genes at a basal level—like an idling engine—to remain the
minimum operation. In fact, the transcription of active genes generally rises far above
this basal level. To provide the needed extra boost in transcription, additional
gene-specific transcription factors (TF) play the critical role to control the throttle.
These transcription factors, also called regulators or activators, are like a set of keys
capable of wunlocking or locking the transcription. They bind to specific
locations—Ilike many particular keyholes—to stimulate or inhibit RNA polymerase to
transcribe a gene. The activation of a gene relies on presence of all required enhancers

and absence of all inhibitors (or at a low safe level).
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Figure 1 Gene expression. (a) Central dogma; (b) Transcription of a gene in prokaryotes; (C)
The complex of DNA strand, RNA polymerase, general transcription factors and CAP-cAMP
(CRP) dimer—a gene specific transcription factor; (d) Computer graphic of lac repressor
(pink) and CRP dimer (blue) binding to DNA.

Activators have at least two functional domains: a DNA-binding domain and a

transcription-activation domain. Many also have a dimerization domain that allows
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Figure 2 Zinc-containing modules: (a) Zinc fingers (Zif268), consisted by a series of zinc
finger which contains a zinc ion; (b) The GAL4 protein, a dimerized motif which contains two
zinc ions in each monomer.
the activators to bind to each others, forming homodimer (two identical monomers
bound together), heterodimers (two different monomers bound together), or even
higher multimers such as tetramers [Weaver, 2002]. Each DNA-binding domain, the
most part we concern about, has a DNA-binding motif, which is the part of the

domain that has a characteristic specialized for specific DNA binding. Most

DNA-binding motifs fall into the following classes:

1. Zinc-containing modules. These modules use one or more zinc ions to create a
proper shape to bind to DNA and include at least three kinds of modules. The

most often seen is zinc fingers, which is a chain of two or more zinc finger
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Figure 3 Homeodomain-DNA complex in fruit fly Drosophila--an example of mono-type
interaction. (@) Schematic representation; (b) A deformation caused by mutations in genes of
these regulators: Antennapedia. It grows legs where antennae would normally be.

monomers. Some zinc containing motifs also have dimerization domain

containing two identical monomers, e.g. the GAL4 motif.

2. Homeodomains (HDs). These resemble in structure and function the
helix-turn-helix DNA-binding domains such as the A phage repressor. The
mutation of their gene may cause severe deformation. Most homeodomain
proteins have weak DNA-binding specificity and rely on other proteins to help

them bind specifically and efficiently to their DNA targets.

3. bZIP and bHLH motifs. Most DNA-binding motifs are of this type. They have a
highly basic DNA-binding motif linked to one or both of the protein dimerization
motifs known as leucine zippers and helix-loop-helix (HLH) motifs. This kind of

motifs have very strong DNA-binding specificity.

These three classes cover a large majority of DNA-binding motifs but certainly
the list is not exhaustive. There are still other kinds of DNA-binding motifs not falling

into any of these categories.
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Figure 4 Dimerized DNA binding domain: (a) Leucine zipper (bZIP) complex. From left to
right: dimerization of leucine zipper and two computer graph illustrating binding domain; (b)
Two schematic diagrams of Helix-loop-helix (b HLH) complex; (¢) Max-Myc heterotetramer.



Transcription factor binding site is a short region within a particular nucleotide
sequence for a specific activator to bind. Because of various domains of DNA-protein
interaction, TFBS linked to different kinds of DNA-binding motifs has particular

characteristics for binding. Most TFBS can be categorized into three types:

(1) Mono-type TFBS. This kind of TFBS is for binding a monomer. DNA binding
domains like homeodomains have their binding sites of this type. Most mono-type
TFBS are relatively weak signals and difficult to determined. In fact, their binding
motifs usually require other auxiliary protein-protein interaction domains or

DNA-protein binding domains to help their binding.

(2) Dyad-type TFBS. Dimerized regulators bind to this kind of TFBS. Dyad-type
TFBS is the most often seen type and generally not longer than 22 bases. It
consists of two symmetrical half binding sites with a fixed number of in-between
spacers. As a result this kind of TFBS has very strong binding specificity to

regulators and relatively easy to determined.

(3) Series-type TFBS. The binding sites of chain-like regulatory protein like
zinc-fingers are of this type. This kind of TFBS contains several adjacent short
units of the same size. For example of zinc fingers Zif268, it has binding site

consisting of three units each of which is three-base long.

These types of TFBS have different features that make the specificity for
recognition. These features can be regarded as logical rules that might be helpful for

TFBS determination.



1.2  TFBS finding problem

To find TFBS, one has a collection of sequences that are known to contain
binding sites for a common factor, but neither the positions of the sites nor the
specificity of the factor are known. Besides that, TFBS are usually with some degree
of ambiguity. These make TFBS finding a difficult and challenging problem.
Experimental methods like DNA microarray (DeRisi et al., 1997; Lockhart et al.,
1996) and SAGE (Velculescu et al., 2000) are capable to precisely elucidate TFBS.
However, they are too laborious and time consuming to analyze enormous genome
data. More and more computer based methods like enumeration methods, probability
models and heuristics have been developed to find these conserved signals. In this
section we discuss current computer-based (say in silico) approaches and their

limitations.

Site Representation

Most transcription factor binding sites have variability on their component bases.
With this ambiguity regulatory system can take advantage of level control on the gene
expression. This makes the representation of DNA binding sites more complicated.
How to precisely describe this variability depends on what kind of methods is applied
in searching TFBS. Generally TFBS searching methods can be classified into two
categories:  pattern-driven  approaches and sequence-driven (also called
alignment-driven) approaches. Pattern-driven approaches search for a consensus
sequence which best fits all site occurrences. And the representation of this consensus
sequence includes simple DNA sequence and /[UPAC (acronym of: International
Union of Pure and Applied Chemistry) code sequence. Sequence-driven approaches

identify the site occurrences which maximize position weight matrix (PWM) and



information content (1C).

The simplest TFBS representation is merely a DNA sequence consisted only by
A, T, G and C. Although incapable of describing base variability, this expression is
still useful in pattern-driven enumeration methods. This is because flexible
representation like [UPAC code will lead to enormous searching space in enumeration

methods.

IUPAC is a degenerate naming rule consisting of 16 alphabets which describe
various combinations of nucleic acids codes, shown in Table 1. Any kind of
ambiguities in nucleic acids has a corresponding code and so [IUPAC code can be used
to completely describe a TFBS consensus. An obvious defect of [UPAC code is that it
fails to describe the base preference level at each position. Position weight matrix

(PWM) is designed for more precisely describing base variability.

In PWM the significance of a particular TFBS consensus is given by a measure

of statistical surprise from multiple aligned short sequences. It calculates log

Table1l TUPAC code for nucleic acids

TUPAC code Description
A Adenine
Thymine

Cytosine
Guanine
Uracil
A, G (purine)
T, C (pyrimidine)
G, T (keto)
A, C (amino)
G, C (strong)
A, T (weak)
T,G C
AT G
ATC
A, GC
A, T, G, C (any)

Z<ITOwW=uE~"~<0”27CWOOAH




(a) Alignment matrix

Base Position

Site Sequence 1 2 3 4 5 6
Site #1 A A T T C A
Site #2 A G G T A C
Site #3 A G T C C G
Site #4 A A T T C A
Site #5 A G G T A T
Site #6 A G G T C C
Site #7 A G G A T G
Site #8 A G G C C T
IUPAC sequence A R K H H N
(b) Profile
£ bi 1 2 3 4 5 6
A 1 0.25 0 0.125 0.25 0.25
T 0 0 0.375 0.625 0.125 0.25
G 0 0.75 0.625 0 0 0.25
C 0 0 0 0.25 0.625 0.25
(c) Position Weight Matrix
LLR(b,i) 1 2 3 4 5 6
A 2 0 -0 -1 0 0
T -0 -0 0.585 1.322 -1 0
G -00 1.585 1.322 -0 - 00 0
C -0 - 00 -0 0 1.322 0

(d) Logo model

2_

_.-?n-_ -m -;?E;—?—L

(e) Relative entropy
Position 1 2 3 4 5
Relative Entropy 2 1.189 1.046 0.701 0.701 0

Information content: 7, = 5.637

Figure 5 PWM and IC representation: (@) aligned site sequences and their consensus as an
ITUPAC sequence; (b) the profile of these sites; () Position Weight Matrix; (d) Logo display of
site sequences; (€) Information content of site sequences.

likelihood ratio (LLR) of four nucleic acids at each position as:

LLR(b,i) = log, yn )

Dy



where i is the position within the site, b e {A, T, G, C} refers to each of the possible
bases, f,; is the observed frequency of each base at that position and p, is the
frequency of base b in the whole genome. The maximum LLR among each position

are summed up as the significance of a given set of sites.

Information content (IC, Schneider et al., 1986), which is also known as the
Kullback-Leibler distance, is the sum of all relative entropies of four types of bases in

all positions defined as below:
_ J/ b,i
]seq - z Zfb,i logZ - (2)
i b Py

For pattern-driven methods, the criterion for best conserved consensus sequence
is to find the one with maximum matches among all site occurrences. For
sequence-driven methods, the criterion for identifying the best alignment of potential

sites is to choose the one with highest information content 7, .

Site Discovering

Pattern recognition approaches can also be categorized into two classes:
pattern-driven approaches and sequence-driven approaches. As previously mentioned,
pattern-driven approaches search for consensus sequence which best fits all site
occurrences. For consensus-based TFBS finding (Stormo, 2000), pattern-driven
algorithms that test all 4”m-wide possible consensus sequences promise an optimal
solution but are very time consuming and impractical for large m. (Pesole et al., 1992;
Tompa, 1999) Many heuristics are developed to prune the huge searching space
including testing only the substrings in the sequences (Li et al., 1999; Gelfand et al.,
2000), specifying a shared pattern to restrict the locations of mismatches (Brazma et

al., 1998; Califano, 2000; Sinha and Tompa, 2003; Régnier and Denise, 2004; Li and

10



Fu, 2005) and clustering (Buhler and Tompa, 2002; Pevzner and Sze, 2000; Liang et
al., 2004). In addition to the exact enumeration methods, efficient data structure like
suffix tree with fixed mismatches (Pavesi et al., 2001; 2004) can search for patterns of
longer length. This kind of approaches is not exact enumeration algorithm and takes
advantages of searching time polynomial to pattern length and exponential to the

number of tolerant mutations.

Sequence-driven methods are designed based on probabilistic modeling. The
challenge of sequence-driven approaches is to find the location of the sites and
representative PWM using only the sequence data, without any assumptions on the
statistical distributions of patterns in the sequences. The criterion for the best
alignment is the one with maximum IC. Current methods include a greedy algorithm
that builds up an entire alignment of sites by adding in new ones in each iteration
(Stormo and Hartzell, 1989; Hertz et al., 1990) and expectation maximization (EM)
that iteratively substitute the location of sites by expected locations (Lawrence and
Reilly, 1990) and its variant, Gibbs sampling (Lawrence et al., 1993) as a type of
Markov chain Monte Carlo (MCMC) algorithm. EM algorithm is also implemented in
the MEME program (Bailey and Elkan, 1995) which allows for the simultaneous
identification of multiple patterns. Other implements of sequence-driven approaches
include CONSENSUS (Hertz and Stormo, 1999), AlignACE (Hughes et al., 2000),
ANN-spec (Workman and Stormo, 2000), BioProspector (Liu et al., 2001),
MotifSampler (Thijs et al., 2001), GLAM (Frith et al., 2004), The Improbizer (Ao et
al., 2004), QuickScore (Régnier and Denise, 2004), SesiMCMC (Favorov et al., 2004)

and TFBSfinder (Tsai et al., 2006).

In most current TFBS finding methods, all the letters in the consensus sequence

are treated as independent variables. Because only some bases in binding region are

11



reactive to the transcription factor, solving this problem by calculating scores of all
bases may involve noise from bases inducting no interactions. Beside that, the
assumption of independent and identically distributed bases in background is too
strong. Even with a probability calculated from the sequence data, the contribution to
the accuracy is still limited. Another type of heuristics include testing only the
substrings in sequences and constructing data structures like a suffix tree or a graph
to extract overrepresented signals. This kind of methods compromises to a possible
situation of weeding out the exact consensus when all the motifs in sequences are

somehow ambiguous.

Most current methods also have obstacles to involve specific TFBS features like
inverted palindrome or direct repeats. By limitations from original concepts, statistical
models like EM or HMM need a much more complex design to embed the structural
features. In some tree-based enumeration methods it is even impossible to utilize

these structural features.

1.3  Formulation of Pattern-driven TFBS Finding

In this study a pattern-driven approach utilizing mixed 0-1 linear program is
proposed. A pattern-driven concept of discovering TFBS is to find the consensus
which has maximum matches among all proposed sites from multiple sequences. This
is a mixed 0-1 optimization problem and can be formulated as a mixed 0-1 nonlinear
program. We start by formulating a fixed-pattern TFBS finding problem as a mixed
0-1 nonlinear program. In many cases a predefined shared-pattern is available from
some preprocesses. This shared pattern provides information about positions of

reactive bases in the binding sites and makes a TFBS finding problem relatively easier

12



to solve.

Representations of fixed-pattern TFBS finding

To find TFBS of a specific regulation, a set of DNA sequences upstream genes
known co-regulated by the same factor is firstly prepared for analysis. A prerequisite

condition is that this DNA sequence set shall be prepared having at least one

Given
(1) A sequence set containing L sequences,
(i1) A shared pattern “NNNNN****#*NNNNN" in which ‘N’

and ‘*’ represent reactive and inactive bases respectively.

To find the best conserved consensus sequence
X Xg X3 Xy Xg A A AL X Xg Xo X s

where x, € {A, T,G,C } and i is the index of reactive base.

occurrence per sequence (OOPS). Namely, there exists at least one similar TFBS in

each sequence. A pattern-driven TFBS finding problem is defined as:

To find best conserved consensus sequence among the given sequence set, the
first step is to generate a set of candidate sites from sequence data. We use the
example of CRP-binding sites among DNA sequences of Escherichia coli (Stormo et
al., 1989), shown in Appendix, to illustrate the formulation. According to the
predefined shared pattern, candidate sites are extracted from each starting position of
each sequence, as shown in Figure 6, and indexed by (/, s) where / is the sequence
index and s is the start position. Denote 4 Lo € {A, T,G, C} as the ;M base present

in candidate site from (/, s) position.

With the pattern-driven concept, denote the consensus sequence to find as a

series of binary variables. Every reactive base (i.e., the notation ‘N’ in the shared

13



(@)
Sequence 1 (colel): TAATGTTTGTGCTGGTT
Sequence 2 (eco arabop): GACAAAAACGCGTAACA

(b)
(4, 5)=(1,1) TAATG. .. ... CTGGT
(4, 5)=(1,2) AATGT. .. ... TGGTT
(4, s)=(1,3) ATGTT...... GGTTT
(4, s)=(1,4) TGTTT...... GTTTT
(4, 5)=(2,1) GACAA. ... .. GTAAC
(,8)=(2,2) ACAAA. ... .. TAACA
(4, 5)=(2,3) CAAAA. ... .. AACAA
(4, 5)=(2,4) AAAAA. ... .. ACAAA

Figure 6 Site extraction for fixed-pattern TFBS finding (The first two sequences in
Appendix): (a) original sequence data; (b) schematic representation of the candidate sites.

pattern) in a consensus sequence is represented by two binary variables, u and v for
four different nucleotides A, T, C and G, and indexed by its relative position, i.
Obviously the example of CRP-binding sites needs 20 binary variables to represent
the consensus sequence. The binary codes for four nucleotide types are defined in
Table.2. Each feasible consensus sequence with a vector of (u, v) pairs is scored by
summing up base matches compared with the best fitting candidate site in every
sequences. To formulate the comparison, every base appearing in a candidate site is
represented by four kinds of comparison functions for different base types, as defined

in follows.

YVai = (I=u)1-v),

Y1 =WV 3)
Vg = u,(1-v,),
Yo, = (I=u,)v;.

The illustrative table for the base comparison between the consensus sequence

14



and candidate sites is listed in Table 3.

Ilustrative formulation for maximizing matches

The objective of a fixed-pattern TFBS finding is to find the consensus sequence
best conserved among all the input DNA sequences. For every single DNA sequence,
the scoring criterion is to compare its best fitting candidate sites with the consensus

sequence and to count the base matches. This can be formulated as below:

Score, = max{z 2,0, +0, 5+ 40, 1)
s

Yoot ®

where z, is the binary indicator of whether the candidate site at (/, s) is chosen to
compare with the consensus. A candidate site is scored only when its corresponding z
equals 1. All other non-basic candidate sites will have its corresponding z valued 0.

For the assumption of one occurrence per sequence (OOPS), only the candidate site

Table 2 The binary coding for each four bases

Base in consensus
sequence

O o —
([
—_— O =

Table 3 Tllustrative table of base comparison

Comparison Table Base in consensus sequence
Base u;:zsdldate C(%Ill:llzattir(l)ion A T G C
A (1-u)(1-v) 1 0 0 0
T uv 0 1 0 0
G u(1-v) 0 0 1 0
C (1-u)v 0 0 0 1

15



that best fits the consensus is to be scored in a sequence. That means for all /,
Yz, =L oz, {01 )

In sequence scoring fiunction (4), @, . is the comparison function defined by

the ;™ base in the candidate site from (/, s). That is,

Y, if d/,s,i =A
Y1 ifd,,, =T

O =1 " (6)
w Ve if dl,s,i =C
Ya,i if d/,s,i =G.

Every candidate site is evaluated by summing up ¢, .’s for a given (u, v) pair.

For example of the first candidate site in Figure 6, “TAATG...... CTGGT”, the site

score (i.e. number of base matches) 1is obtained from Z%:Hl =

,S,0

g Va2 tVas tVra T V65T Vest V10 Vs T Voo T Vrao) - When  comparing
with a consensus “TCATG******CATGA”, this score function will give 6 as the site

score for six matched letters.

The matching score of sequence 1 in Figure 6 is formulated as

Score, = maX{ 2y FVan tVas tYratVes tVes T V17 T Vex t Vao + Vrao)
+Zl,2(yA,] T Var T Vr3 T V6a T Vst Vet Vor T Vas T Vo +yT,]0)
+21,3(J’A,1 t V12t Vos T VraTVrs T V66 TVor T Vs T V1o +yT,m)

+Zl,4(yT,1 tVor T Vi3t Vst VrstVoe T V17T Vg T Voo +yT,10)

[ >z, =1 %

For a fixed-pattern TFBS finding problem, the objective is to maximize the total

matches among all the sequence, i.c., male Score, - When finding CRP-binding

16



18
Max ZScore,

I=1
S.t.

Score; =z, [Vr) + Yas + Va3 T V14 + Vo5 Tt V1ol
+Zo[Yan ¥ Va2 T Vrs T Voa + V15 Tt Yool
AF 0o
+Zy g0 Vst Vo2 F Vo3t Vau T Ves Tt Vool
Score, = Zy1 [yG,l t Va2t Ves T VastVas +---+yc,1o]
+Zz,2[J’A,1 tVeo T Va3 T VauaTVas +---+J’A,10]
AF coo

+Zz,9o[yc,1 T Va2 T V13t VratVrs +"'+yG,10]’
Score, =...,

Score,, =...,

90
>z, =1 Vie{l,..18},
s=1
=(-u)1-v,), V., =uv,
Yai =1=u)A=v)), yr; =uy, } Vie{l,...,lo},
Yei :(1_u[)vi> Ya.i :u[(l_vi)>
u,v, €{0,1}, z, €[0,1],

be{A,T,G,C}, iefl..l0}
le{l,...18}, sefl...90}

Figure 7 A mixed 0-1 nonlinear program for finding CRP-binding sites.

sites in E.Coli (see Appendix for complete data set), the mixed 0-1 nonlinear program
is formulated as shown in Figure 7. There are 18 sequences each of which 105-bp
long in this example. Because the length of the given pattern is 16 (i.e.
“NNNNN**#*¥F*¥NNNNN”), we have 90 candidate sites in each sequence. The
independent variables include 20 binary variables (i.e. # and v) for consensus
sequence and 18*90 binary variables (i.e. z) for indicating proposed sites. The
notation y in this program is used as comparison function for different cases and the

number of these constraints for comparison is 40. This program has 18 conservation

17



constraints (i.e. Z z,, =1) for assumption of one occurrence per sequence (OOPS)

N

and 18 scoring constraints. And so the total number of constraints is 76.

General formulation of fixed-pattern TFBS finding

The objective of fixed-pattern TFBS finding is to maximize the total matches

among all the sequence, i.e., male Score, -

With sequence score defined as

Score, :max{zs (Z,,S Zlﬁw )}, we have the objective function more precisely

described as:

maxzz(zm Zej |
l K i

(8)

Therefore a mixed 0-1 nonlinear program for fixed-pattern TFBS finding

problem can be generally formulated as program (P1).

Mixed 0-1 Nonlinear Program for Fixed-pattern TEBS Finding

Maximize » > (Zl,s D0, )
I s i

(P1)

Subjectto o (1—u)1-v,),
Yra = WY, Viell,.,M),
Y. =ul.(1—vl.),
Yei = (l_ui)vi’
YA if dl,s,i =A,
0, =1"" Tf Doi =T gy {l.,.L} VseN Viefl,.,M},
v Yei if dl,s,i =C,
Ya,i if dl,s,i =G,
Yoz, =1,  Viell,..,L}
u,v, €{0,1}, z, €[0,1],
be{A,T,G,C}, ie{l..,M}
le {1,...,L}, seN.
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Chapter 2 Propositions

In the previous chapter we formulate a nonlinear program (P1) for fixed-pattern
TFBS finding on DNA sequences. Unfortunately, (P1) is very hard to solve with
current optimization tools because of numerous binary variables. On the other hand,
with natures of nonlinear program containing product terms, (P1) can only obtain a
local optimum. These defects quality make (P1) impractical. In this chapter we
discuss techniques utilized to make (P1) solvable and even to conduct linearization

which can obtain the global optimal solution.

2.1 Relaxation of Binary Indicator z

Program (P1) contains many binary variables which make it difficult to solve.
The largest part of binary variables is from the indicators z. Every candidate site has a
binary variable z indicating whether it best fits the consensus sequence. For example
of finding CRP-binding sites, the formulation as program (P1) will have 1620 z’s.
This large number of binary variables makes (P1) intractable. A linear relaxation on z
is applicable to make (P1) solvable. For a TFBS finding problem, this relaxation
provides a very tight bound to (P1). In fact, by the following proposition, it is proven

having the same optimal value as (P1) has.

PROPOSITION 1 A4 selection problem as

Maximize (or minimize) Zi CX;
Subject to Zixl. =1,

where ¢, be constants and x, € {0,1}.

has a linear relaxation by loosing x; to be continuous from 0 to 1 which shares
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the same optimal value max ¢, (or minc,). [ |
i i

PROOF The proofis trivial. m

For Program (P1), the objective function (8) is separable by sequences, i.e.
max z; ZS (Zl,s zi Hl,s,i)z z; (max ZS (Zl,s zi 0,,, » Because only one chosen (u, v)
pair is involved in each iteration, Z{Qm can be regarded to as a constant. With
Proposition 1 we can have the result that Program (P1) share the same optimal value,
max Z/ zs (ZLS Zi elas,i ): Z/ (max zs (ZI,S Zi elas,i » = ZI (maX Zi 01,&!‘) , with a
relaxation where z’s are loosen to as continuous variables between 0 and 1. The
enormous binary variables are therefore eliminated successfully and Program (P1)

becomes manageable.

2.2  Disaggregated Nonlinear Formulation

To obtain the global optimal solution, program (P1) needs reformulated to a
mixed 0-1 linear program. Before utilizing the linearization approach proposed in the
following section, Program (P1) is firstly transformed to another formulation for
effective elimination on all product terms. The formulation underlying the
linearization process discussed in this chapter can be viewed as a disaggregated

version of Program (P1).

Denote S, as the index set of candidate sites having their ;™ base as

nucleotide type b, as defined as follows:

S, ={.9)|d,,, =b,be{AT,G,C}. (9)

From the definition of comparison function ¢, ., it can be restated that
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0,,;, =y, forall (I,s)eS,; - (10)

Then, with (9) and (10) the objective function (8)

maxZ(zlys Zel,s,ij
l,s i
has an equivalent disaggregated formulation as

maxZ[yb’i z} (11)

(1,5)eSy;

Therefore program (P1) is reformulated as program (P1a) shown below:

Disaggregated version of (P1)

Maximize Z(yb’i Zzl,s] (P1a)

b,i (1,5)€S, ;

Subject to
) yA,i = (l_ui)(l_vi)’
=uv,,
yT,l [ VZ (S {1,,10}:
Yo, =u,(1=v,),
Yei = (I=u;)v,,

S, ={t.9)|d,,, =b} Vbe{A,T,G,C} Viell,..10}

Yz, =1,  Viell,..,L}
U, v, € {0, 1}, z,

LV, [0, 1],
bei{A,T,G,C}, iell,..,10},
le {1,...,L}, seN.

.8

An important progression from (P1) to (Pla) is elimination of an ambiguous

term @, .. This is very important for further linearization because it makes the
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product term 7, z 0,,, more explicit to eliminate.
X i LS,

2.3 Replacement of Mixed 0-1 Product Terms

Program (Pla) cannot find the global optimum because the product terms
contained in the formulation. There are two kinds of product terms, uv, and

ybiz z, , » conducting nonlinearity of (Pla). To make the program globally solvable,

here we discuss how to eliminate product terms by a series of constraints.

The first kind of product term is u,v, which exists in Vs This product term

consists only by binary variable and can be replaced by a continuous variable based

on the following proposition.

PROPOSITION 2 A general binary product aH'f u, where u, € {0,1} and a
=
is nonzero constant can be replaced by a continuous variable w accompanied

with the following bounding constraints:

Hw<au, Vj,

(i) w > 0, n

(iii) w > a[Zuj -n+ 1}

PROOF Consider f(u) =aHZ:1”J' Because product of binary variables is
also binary, there are only two possible values for £ 0 and a. Because a is
nonzero, the case of /= 0 implies H;:lu‘/ = (0 and there must be at least one
u;, =0. The bounding constraints (i) and (ii) can make w = 0 = f when any of
u;, =0 and meanwhile constraints (iii) and (iv) are inactive. The other case of
f =« implies H::luj =1 and u, =1 for all j. Consider a(z_,-“j -n +1).

If f=qa (e, all y,=1) then a(Zjuj—n+1):a. If £=0 then
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a@,u ;—n +1)§ 0. That means with constraints (i) and (ii), constraint (iii)
J

can make W=« when f=a but will become inactive when f=0.
Therefore, with constraints (i), (i) and (iii) the nonnegative variable w can

completely substitute f. i

Therefore, the first kind of product term u,v, is a simplified case with ¢ =1

and can be replaced by a continuous variable y, accompanied with the following

constraints
w;, Su,,
w, <v,,
i i (12)
w, =20,
w, 2u, +v, —1
The second kind of product terms to eliminate is Ve, z(/,s)esm Z, - In the

relaxation version of Program (Pla), z z,, 1s a continuous variable within [0,

(1,5)eS) ;
L] (i.e., L is the number of sequences). This kind of mixed 0-1 product terms can be

eliminated with Corollary 1.

COROLLARY 1 4 mixed 0-1 product term aan- u, where y c{o,1},
=

xe (O,g] and a is nonzero constants can be replaced by a continuous variable

w accompanied with the following bounding constraints:

Hw<agu, Vj,
(i)w<aux,
(1) w>0,

vywzalx+g U —n))

PROOF Denote p(u) = Hj:l”j and obviously p(u) is also binary. From the
proof of Proposition 2 we know that when any u; =0, p(u) becomes 0 and

so does axH'f ;- In this condition constraints (i) and (iii) make w=0
-
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without violating (ii) and (iv). In the other case of u; =1 for all j, p(u)
becomes 1 and therefore ¢ xH'f U equals ax. For this case constraints (ii)
j=1

and (iv) make w tightly bounded to ax without violating (i) and (iii). O

In Program (P1la), the second kind of product terms to eliminate is ymz zZ,, -

The upper bound of z(l s, Zhs is L, the number of sequences, because every
S)E0p i

sequence has only one candidate site to propose, i.e. one occurrence per sequence
(OOPS). With Corollary 1, ybiz z,, can be replaced by a continuous variable ¢, .

accompanied with following constraints:

<
qp; = z(z,s)es,,_, Zls s
qp; < yb,iL >

qb,i 2 Z(]’S)ESIH_ Zl,s + (yb,i - 1)L >
9y, 2 0.

(13)

where L is the number of sequences.

Therefore, all the product terms in Program (P1a) can be successfully replaced
by other single continuous variables and a globally optimal solution is then available
for fixed-pattern TFBS finding. In fact, based on the techniques discussed in this
chapter, more flexible and complicated TFBS finding problems can also be
formulated as mixed 0-1 linear programs. In the following chapters we have a more

detailed discussion on these formulations.
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Chapter 3 Model 1: Fixed-pattern TFBS
Finding

With linearization techniques discussed in Chapter 2, program (P1) can be
transformed into a mixed 0-1 linear program which is solvable and promising on
global optimum. In this chapter we firstly illustrate the mixed 0-1 linear program for
fixed-pattern TFBS finding. Then, more details on TFBS finding is discussed and
formulated to appropriated logical constraints which help accuracy. Finally, software
designed using the proposed mixed 0-1 linear program is introduced and we discuss

on the experimental results about searching for TFBS by this software.

3.1  Mixed 0-1 linear program for Fixed-pattern TFBS
Finding

After applying relaxation and linearization discussed in Chapter 2 on (P1), we
have (P2), a mixed 0-1 linear program for finding fixed-pattern TFBS. From the
nature of binary variable and mixed 0-1 linear program, (P2) has advantages over

many current methods:

(i) A globally optimal solution is promised. Because the nonlinear formulation is
successfully replaced by a linear relaxation proven exactly to match the original
formulation at optimal points, this program can provide globally optimal

solution.

(i1)) Logical constraints are applicable for better searching quality. With binary
variables utilized, structured information profiting accuracy can be formulated

as logical constraints like structural constraints and exception rules. Some of
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Mixed 0-1 Linear Program for Fixed-pattern TEBS Finding

Maximize }Z 9. (P2)

Subject to

(iii)

(iv)

Y =l-u,—v,+w,

Yri = Wi

yG,i U =W Vie {1,710}5

Y, =Vi= W

w,Su,, w<v,

w, 20, w 2u, +v, -1,
qb,i < zzl,s’
(1,8)€S ;
9, < VoL,
0, > Y.z, +(v,, —DL, Vbe{A,T,G,C} Vie .10},

(1,8)€S, ;

qp,i >0,
S, = {(I,S) | d,; :b}

Yoz, =1, Vie{,..,L}

u,v, €{0,1}, z,, e[0,1],
be{A,T,G,C}, iell,..,10},
le {1,...,[,}, seN.

these constraints, especially structural constraints, can also notably reduce the

searching space and computation.

The program can be extended for more complicated formulation with
considerations of practical use. For situations of poor information of target
TFBS, e.g. spacer number unknown, this program can still find the TFBS with

some modification on the formulation.

Suboptimal solutions are available by excluding specific solutions. For case of
searching for weak signals in DNA sequences, this program can find more than
one solution to help explore the correct binding targets with further empirical

examinations.

26



(v) It is very straightforward to find the complete set of the second, third, etc. best

consensus sequences.

For utilizing information which helps accuracy, we discuss the formulation of

several types of logical constraints in the following sections.

3.2  Structural Constraints

Most TFBS are not only conserved signals but having some specific features
reflecting structures of the corresponding regulatory proteins. The proposed mixed
0-1 linear program is convenient for embedding logical constraints to elucidate
specific TFBS precisely and efficiently. Structural features of various types of TFBS
can be formulated as logical constraints to help facilitate the search process. There are
three general types of TFBS: mono-type TFBS like binding sites for homeodomains,
dyad-type TFBS like bHLH and bZIP binding sites, and serial-type TFBS like
zinc-finger binding sites. To find TFBS with specific structures, program (P2) is

further modified with several logical constraints incorporated.

The most often seen TFBS are dyad-type. This is because most gene regulators
are dimers or tetramers. This kind of TFBS usually has a length less than or equal to
22 and has two symmetric half parts forming an inverted palindrome or direct repeats.
For an inverted palindrome the homologous nucleotide bases are supposed
complement, i.e. adenine (A) should be paired with thymine (T) and guanine (G)
should be paired with cytosine (C). The logical constraint set describing inverted
palindrome, for example of CRP-binding sites, can be formulated as:

u, +u, =1,

(14)
v, +v,; =1.
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Another type of TFBS for binding dimerized protein has direct repeats where the
same sequence repeats tandem. The logical constraint set of direct repeat can be
formulated as:

u, = u5+i >

(15)

Vi =Vs,; -

1

Obviously, this kind of logical constraints establishes tight relationships between
two half sites and prunes a very large portion of searching space. Therefore, applying

such a constraint can notably improve both accuracy and computational performance.

3.3  Suboptimal Consensus

The proposed program can find the globally optimal solution. But practically
TFBS finding need more than one solution for further verification. This is because
there may be more than one kind of regulatory binding sites and the target TFBS may
relatively weaker than other signals. To find the suboptimal solutions, we need to
embed exception constraints to banish previously obtained solutions and iteratively

run the program with these exception constraints.

To exclude one or more solutions previously determined meaningless or not of

interest (e.g. *ATGT****** ACAT*), a constraint to be involved is as follows:

Var Vi3t VoatVrstVastVertVag T V1o S 8-, (16)

where 0<0 <8 is exclusiveness degree.

The exclusiveness degree decides the banishing range. All solutions having 8-
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matches with “*ATGT****** ACAT*” will be filtered. 6 = 0 means no exclusion. In
this example the right hand side of (16) is set as 8-0 because the number of reactive
letters in the excluded solution is 8. Note that this number need not equal to the

number of reactive bases.

3.4  General Exception Constraints

A reality among regulatory TFBS is that the background nucleotides are not
independently and identically distributed. There are always other noises than the
target TFBS in the data. When finding a weak signal, we will need exception
constraints to help dig out the target. For instance, the often seen poly-A and poly-T

tails should be excluded when searching for a direct repeat.

Solutions to be excluded may come from several sources: meaningless repeats,
binding sites for a co-regulator, and regions to form stem-loops in mRNA when
searching for binding sites of negative regulators, etc. Two kinds of exception

constraints are formulated for different cases of noise source:

Repeats with uncertain length

Repeats of arbitrary length like poly-A tail or poly-T tail are meaningless and
should be filtered out. For instance of poly-A tail, the constraint should be formulated

as follows to banish all the possible solutions containing too many ‘A’:

Var tVas tVas et Vo <10-6- a7

Empirical exception rules

Constraints for excluding a specific set of solutions can also be formulated

29



conveniently. For instance, consensus sequences consisting only of weak bases (A and
T) or only of strong bases (C and G) are usually not a regulatory site of concern. If

this kind of solutions is not expected, exclusive constraints can be attached as:

(u, +v, —2w,)>1 for all-weak consensus exclusion, (18)

(u, +v, —2w,)<9 for all-strong consensus exclusion. (19)
i=1
By utilizing binary variables, any if-then rules can also be formulated as logical
constraints. These constraints vary by cases and they notably help discriminate

weakly conserved TFBS.

3.5  Experimental Results

CRP-binding sites

For the example of finding CRP-binding sites on DNA of E. Coli, after solving
program (P2) we can obtain the globally optimum solution “TGTGA******TCACA”
with objective value 147. The related nonzero z, ~values indicate the starting
positions of the binding sites in the 18 sequences, as listed below:

Zi64 — 2258 2379 T 2466 — 2553 — Ze63 — 27207 = 2842 = Z912 = 210,17

(20)

=264 T 212,44 = Z1351 = Z1a74 T 21500 = Z16,56 — 217,87 — 218,81 — 1.

Based on the solution, we can also apply an exception constraint to find
suboptimal solutions. Program (P2) can find the exact global optimum solution. But in

some cases this globally optimal solution may be only an overrepresented but
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meaningless repeat more conserved than target TFBS. For further discovery of target
TFBS, we can apply exclusive constraints to find the suboptimal solutions. For
example of CRP-binding sites, the second best solution of (P2) can be obtained by

adding a new constraint as

Vit Voo T Vi3t VoaTVas T Vet VertVast Voot Var0 S 9. (21)

The new constraint is used to force the program to find a new solution different
from the solution of (P2). The found second best consensus sequence is
“AAATT****** AATTT” with score 129. This is a solution consisted by only weak
bases (i.e. A and T), so we can regard it as a meaningless solution. Similarly we can

find another solution by adding following constraint.

Var T Va2 T Vs T Vrat Vst Vas T Va7t V1t V1ot V10 S 9. (22)

The third best solution obtained is “TTTGA******TCAAA” with score 129.

Computational experiments

To analyze the effect of sequence length and number of sequences on the
computational time, several experiments are tested using the example of CRP-binding
sites. The solving engine for optimization is LINGO (Schrage, 1999), a widely used

optimization software, on a personal computer with a Pentium 4 2.0G CPU.

Figure 8 illustrates the experimental results for analyzing the time complexity.
Figure 8(a) is the computational time given various sequence lengths, where the
number of sequences is fixed at 18. The results show that the computational time

changes slightly even if the sequence length is increased from 105 to 1050. Figure 8(b)
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(a) Computational time versus sequence length

Sequence  Solving Time 0
Length (mm:ss) '
105 1:39 7 200 p . o« ¢ °*
£ . . .
210 1:21 E 140 F o ¢
315 1:44 £ 120 | .
420 1:43 g 1:00
525 1:48 % 040 L
630 1:54 £ 020
735 1:48 c
840 1:56 0'00 1 1 1 1 1 1 1 1 1 1
0 105 210 315 420 525 630 735 840 945 1050 1155
945 1:59 Length of a single sequence
1050 2:04
(b) Computational time versus number of sequences
Number of Solving Time
Sequences (mm:ss) 12:00
9 0:30 2 10:00 | e,
18 1:39 £
é 08:00 28
27 3:21 2
36 4:32 = 06:00 | * .
45 6:15 g 04:00 L . O
. =]
54 6:01 & 0200 | .
63 8:16 S o
72 1029 00:00 L L L L L L L L L
81 10:01 0 18 27 36 45 54 63 72 81 90 99
90 9.57 Number of sequences
(c) Computational time versus number of independent positions
Number of Solving Time
Indep Pos (h:mm:ss) 100000.0 .
2 0:00:01 Z 10000.0 .
3 0:00:03 g .
8 10000 [ .
4 0:00:21 E . ® ¢
5 0:01:23 S 100 F .
6 0:03:38 g 100 | ¢
.05- g .
7 0:05:18 é 10
8 0:08:25 8 ¢
9 0:15:52 01
1 2 3 4 5 6 7 8 9 10 11 12 13
e U5y Number of independent positions
11 2:33:20

Figure 8 Computational experiments for fixed-pattern TFBS finding. The relationship between
computational time and various factors involved in a motif finding problem. This figure illustrates the
computational time of solving Program 2 with (a) various sequences sizes; (b) various number of

sequences and (c¢) various independent positions.

is the computational time with various numbers of sequences. It shows that the
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solving time is roughly proportional to the number of sequences. The proposed model
is quite promising for treating the TFBS finding problems with long sequences and a
large number of sequences. Figure 8(c) shows that the computational time rises

exponentially as the number of independent positions increases.

3.6  Software Package: “Global Site Seer”

A software package named “Global Site Seer” is developed based on program
(P2) for solving fixed-pattern TFBS finding problems. This software is available from

http://www.iim.nctu.edu.tw/~cjfu/gss.htm
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Chapter 4 Model 2: Ambiguous-spacer TFBS
Finding

A more complicated TFBS finding problem is to find the consensus sequence in
an uncertain pattern format where the number of ignored letters between the two half
sites is unknown. In this chapter we introduce a modification of program (P2) to solve

this kind of TFBS finding problems.

41 Problem of Ambiguous-spacer TFBS Finding

A TFBS finding problem with Ambiguous spacers is defined as follows:

Generally the TFBS for binding dimerized regulators have their length not more

Given

(1) A sequence set containing L sequences co-regulated by a dimerized activator,

(i) An inverted palindrome shared pattern which has 5 adjacent reactive bases in
each half sites but in-between spacers unknown, i.e. “NNNNN*. . *NNNNN”.

To find the best conserved consensus sequence
X)X, X3 X, X5 (h) X6 X7 XXX

where x, € {A, T,G,C }, i is the index of reactive base, k is the spacer number to

find and comp(-) means a complement base.

than 22 bases. This is because of the space restriction on binding ¢ -helices of both
protein units to the major groove of DNA double strand helix structure. That means, a
reasonable range of spacer numbers is limited from O to 12 in the problem defined
above. Therefore, the concept of mixed 0-1 linear programming approach for this kind
of TFBS finding problem is to enumerate all possible spacer numbers k and

reformulate program (P2) to cover these enumerations.

34



(@)
Sequence #1: AAGACTGTTTTTTTGATC

Sequence #2:

(b)
D, =1{(,5,k)| k =0},

(4, s, k) =(1,1,0) AAGACTGTTTTTTTGATC

(L, s, k) = (1,2,0) NAGACTGTTTTTTTGATC

D, ={U,s. k)| k =1},

(s, k) =(1,1,1) AAGACTGTTTTTTTGATC

(s, k) =(1.2,1) AAGACTIGTTTTTITTGATC

D, ={U,s,k)| k =2},

(I, s, k)=(1,1,2) AAGACTGTTTTTTTGATC
(2, s, k) =(1,2,2) AAGACTGT[TTTTT[TGATC

Figure 9 Site extraction for ambiguous-spacer TFBS finding: (a) original sequence
data; (b) schematic representation of the candidate sites.

The data preparation step is similar to the preparation procedure of fixed-pattern
TFBS finding. To enumerate all possible &, a candidate set D = {DO,Dl s Dby Dy },
where D, is constructed as a fixed-pattern candidate set, is prepared for different k&
from 0 to 10. The candidate sites are thus indexed by (/,s,k). A simple illustration of
constructing D is shown in Figure 9. And therefore we can redefine the index set S,

as

S,, ={@.s,k)|dl,, =b} (23)

l,s,i

where d/, isthe i" base of a candidate site contained by D,.
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4.2  Mixed 0-1 linear program for Ambiguous-spacer

TFBS Finding

To solve a TFBS finding problem with an ambiguous spacer number, we need to
apply some modification on program (P2) to enumerate different k. Because the target
consensus sequence is fixed on its spacer number, we need to find k£ with the
maximum matching score. With the assumption of OOPS where each sequence has
only the best fitting candidate site proposed, the conservation constraints of site

indicator Z . is reformulated as follows:

Yz.=1  Viell,..L} (24)
s,k

Z%,.;,k = Zzz,sﬂk =.= ZZLM Vk €10, ...,10}. (25)

Constraint set (24) is a modification of (5) which is based on the assumption of
OOPS: only one Z is supposed to be nonnegative in a sequence. Constraint (25) is
used to make sure that all the nonzero Z have their corresponding candidate sites
from the same set D, _. By applying these two constraints we can then obtain a

solution with a fixed spacer number.

Because this kind of TFBS finding problem is only for analyzing dimerized

activator, structural constraint of inverted palindrome must be incorporated as

u +uy, =1,

v.+v,, =1.
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Mixed 0-1 Linear Program for TEBS finding with ambiguous spacers

Maximize ]Z Dv.i
N

Subject to Vs ==, = v, +w,,

Yri = Wi
Yo =U; =W,
Yo, =Vi= W,

w,Su,, w=<v,,

viedl,...,10},

w, 20, w 2u,+v, -1,

u; +uy =1,

v, +v, =1,

9p; Zzl,s,k’

(1,s,k)eS) ;

9p; < ViiLs

(P3)

G2 Dz (v, DL, (Vhe{A,T,G,C} Vie{l...10}

(1,5,k)eS) ;

Gp; = 0,
Sb,i = {(Z,S,k) | dIITS,i = b}

z,=1  Vie{,..,L}
s,k
Zzl,s,k = Zzz,s,k == Z:ZL,S,,C Vk e {0,...,10},

u,v, 0,1, z, <[0,1],
be{A,T,G,C}, iell..l10},

le{l,...L}, seX, kelo,.,10}

.8

Most of the exception rules for this problem are the same as those discussed in

the fixed-pattern motif finding case except the constraints for excluding solutions. The

modified constraint is as follows, for example of excluding “*ATGT****** ACAT*”":

Var T V13T VoatVrstVae T Vst VasgtVro

+ (Zz zs Z) i —L)M <8-7,
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where k" =6 is the spacer number of the excluded solution and M >8.

The addendum term (Z; ZS Zy g~ L)M lets constraints (26) exclude only the
solution “ATGT( k" )ACAT” with a specified spacer number ;* =¢. If all the

nonzero z, . arenot from p _,the constraints will become inactive.

Jox 2

After applying these constraints we have program (P3), the mixed 0-1 linear

program for ambiguous-spacer TFBS finding.

43  Experimental Results

CRP-binding sites

Using program (P3) to search for CRP binding sites we obtain the globally
optimal solution as “TGTGA******TCACA” with score 147, which is exactly the
solution found in program (P2). And the second best solution is
“GTGAA****TTCAC” with score 134. The relationship between the computational
time and the number of possible £’s (i.e. |k]) is linear, as shown in the experiment
result listed in Figure 10. The number of ignored letter k is between 0 andf , the

upper bound of k, and thus we have |[k| =k + 1 in this experiment.
FNR-binding sites

Program (P3) is also applied to solve an example of searching for binding sites
of fumarate and nitrate reduction (FNR) regulatory protein in E. coli. Both CRP and
FNR belong to the CRP/FNR helix-turn-helix transcription factor superfamily (Tan et
al., 2001). The sequence data, which is taken from GenBank, contains 12 DNA
sequences with lengths varied from 96 to 781. Owing to the dimer structure of the

binding protein, the consensus sequence in this example also has a constraint of
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k |kl  Consensus sequence Score Computational Time
0 1  TGTTT(O)AAACA 126 4:51
2 3 TGAMA(TTTCA 129 12:32
4 5 GTGAA(4)TTCAC 134 19:46
6 7  TGTGA(B)TCACA 147 24:28
§ 9  TGTGA(6)TCACA 147 25:49
10 11 TGTGA(6)TCACA 147 32:35
(b)
35:00
.
- 30:00 |
g 25:00 A .
£ 20:00 .
g 15:00
g .
é_ 10:00
]
O 05:00 *
00:00
0 1 2 3 4 5 6 7 8 9 10 11 12
|k |: Number of possible k's

Figure 10 Computational experiments of ambiguous-spacer TFBS finding using program
(P3) with various numbers of possible k’s (the example in Appendix): (a) Solutions of
various upper bound of spacer numbers and their corresponding computational time; (b)
[lustrative plot of relationship between |k and computational time. The number enclosed in

the consensus sequence is the spacer number £*.

inverse symmetry. The RegulonDB database (Huerta et al., 1998) lists the found
regulatory binding sites for eight of these twelve sequences while the exact positions
of other four sequences are not listed yet. Solving this example by program (P3) we
obtained the global optimal consensus sequence as “TTGAT****ATCAA” with score
107, which is the same consensus sequence as indicated by Tan et al. (2001). Table 4
illustrates the result including the consensus sequence and the predicted binding sites
for all of the 12 sequences. Some sites downstream of the transcription start (i.e. with
positive indices) are also listed because there are a few known cases in which

regulatory sites appear within transcription units (Tan et al., 2001). The proposed
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method has found some sites not listed in RegulonDB but having scores higher than

those listed in RegulonDB (e.g. the third solution in the Operon ansB row of Table 4).

The best predicted sites in the four undetermined sequences are also listed in Table 4.

Table 4 FNR binding sites found by program (P3)

Operon IeSneg?t‘h S'ts ri%?é]rcr(])lzgg) by nggi'géend Score Site seq. listed in RegulonDB* P((:)esri]tti%%
Consensus: TTGAT----ATCAA
narK 338 ATGAT----ATCAA -86 9  actatgGGTAATGATAAATATCAATGATagataa -79.5
TTGAT----ATCAA -48 10 atcttaTCGTTTGAT|TTACATCAAATTGccttta -41.5
ansB 345 TTGTT----GTCAA -48 8 acgttgTAAATTGTTTAACGTCAAATTTcccata -41.5
TTGTA----TCCAA -81 6 gCCtctAACT[TTGTAGATCTCCAAAATAtattca -74.5
TTTAT----TTTAA  -123 7
narG 525 TTGAT----ATCAA -55 10  ctcttgATICGTTATCAATTCCCACGCTGtttcag -41.5
dmsA 325 TTGAT----AACAA -48 9 CtittgaT/ACCGAACAATAATTACTCCTCacttac  -33
frd 781 TTCAG----ATCCA -37 7  AAAAATCGATCTCGTCAAAT[TTcagacttiatcca  -47
TTAAT----TTCAG -98 7
nirB 262 TTGAT----ATCAA -48 10 aaaggtGAAT[TTGAT|TTACATCAATAAGcggggt  -41.5
sodA 284 TTGAT----ATTTT -42 7 agtacgGCATTGATAATCATTTTICAATAtcattt  -34
frsx 96 TTGAC----ATCAA -7 9  atgttaAAATTGACAAATATCAATTACGgcttga 1
ccttaaCAACTTAAGGGTTTTCAAATAGatagac -103.5
(cyoA) 599 CTTCT----ATCAA  -113 7 N/A N/A
TTGTT----TTCAC  -198 7
(icdA) 290 ATGAC----AACAA 16 7 N/A N/A
TTGCT----AGCAT 73 7
(sdhC) 708 TTGAT----AATAA  -330 8 N/A N/A
(ulaA) 346 TCAAT----ATCAA  -278 8 N/A N/A
TTGGT----ATTAA  -257 8

* For visualizing the comparison, the letters in uppercase represent the binding site listed in RegulonDB; the letter in bold

face is the center of the site sequence; and the encompassed letters represent the exact binding site obtained by

program (P3).

** The second site listed in RegulonDB is not contained in the sequence data, which is only 96 bases long, from
GenBank.
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Chapter 5 Model 3: Pattern-free TFBS Finding

In the previous chapters we have discussed mixed 0-1 linear programming
approaches for finding TFBS with a given pattern. This pattern may be definitely
given or defined with ambiguity on center spacers. In this chapter we discuss a mixed
0-1 linear programming formulation of TFBS finding without any predefined share

patterns.

A predefined shared pattern can notably help discriminate the TFBS when
applying consensus based TFBS finding approaches. Unfortunately, such information
is unavailable in most cases, especially when analyzing an unknown functional
regulation. Finding unframed TFBS today still relies on heuristic approaches which
compromise to accuracy. This is because that exact enumeration approaches which
test all 4 M-wide patterns are very time consuming and only capable of searching
very short patterns. In this chapter a mixed 0-1 linear program for finding unframed
binding sites is introduced. This approach can exactly find the best conserved signals

in acceptable computational time without any predefined shared pattern.
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5.1 Problem of Pattern-free TFBS Finding

Given

(i) A set of DNA sequences each of which contains at least one motif of
a specific regulator,

(i) M, the length of consensus sequence,

(iii) K, the number of reactive bases,

To find the best conserved consensus sequence
XXy X500 Xy 1 Xy

where x; € {A, T,G,C,* } in which ‘*’ means an inactive base.

To find TFBS without any given shared pattern, a better idea than enumerating
all 4™ M-wide consensus sequences is to enumerate all reasonable combination of
reactive bases on the consensus sequence. Based on this concept, only two parameters,
the length of regulatory region, M, and the number of reactive bases, K, are required
for TFBS finding. A pattern-free TFBS finding problem can then be defined as

follows:

In this definition only K bases in the consensus sequence are reactive, although
their positions in the consensus are unknown. Therefore x,’s in this definition have
five alternatives including 4 nucleotide types and an inactive type (i.e. ‘*’). The
candidate set to prepare is simpler than those to construct in previous chapters. As
shown in Figure 11, all candidate sites are extracted with a given length M. A
difference on site extraction is that candidate sites are indexed by positions of their
center bases. That means the first few and the last few sites will contain some virtual
meaningless bases (i.e. bases represented by “.’). This prevents from a case ignoring

short signals which locate at the beginning or ending regions.
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(@)

Sequence #1: AAGACTGTTTTTTTGATCACGGA
Sequence #2: ..
(b)

Ls)=0,1) [eeoaao .. AAGACTGTTT|TTTTGATCACGGA

(L,s)=(1,2) Jouoeao--. AAGACTGTTTTTTTGATCACGGA

(L,s)=(1,3) oo --. AAGACTGTTTTTTTGATCACGGA

(,s)=(1,12) AAGACTGTTTTTTTGATCACGGA

(Z,8)=(1, 23) AAGACTGTTTTTTTGATCACGGA. .. ... ... |-
(l,s)=(1,24) AAGACTGTTTTTTTGATCACGGA. . . ... .... |

Figure 11  Site extraction for pattern-free TFBS finding (M = 20): (a) original

sequence data; (b) schematic representation of the candidate sites.

5.2  Formulation and Linearization

For presentation of the consensus sequence, each base x, is represented by
three binary variables, U, v, and e with a relation shown in Table 5. u, and v,

decide the nucleotide type and ¢, decides sensitivity as follows:

1, if i™ baseis reactive
0, otherwise.
Since the number of reactive bases in a consensus is K, we have
Zei =K. (28)

To determine base matching between a consensus and a candidate site, a series of
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comparing functions y, . are defined as

yA,i zei(l—ui)(l—vl.),

Yr; = €Uy,

[ RS R (29)

Vg = e,(1-u,)v,,

Yei = e, 1=v).

For base comparison we use the same notation g, as defined in (6). That is,
AR if 4 L =b- A candidate site is evaluated by summing up 0. ’s. Take a
candidate site “CGGTCAG” for example, the site score (i.e. number of base matches)
is obtained from 2;1 gl,s,i - ()’c,l T Y62 T Vo3t VraTVes Tas +y0,7) . When
comparing with a consensus “CTG*CAG” (M =7 and K = 6), this score function will

give 5 as the site score for five matched letters.

As defined in Chapter 2, binary variable zZ, is used in (4) to flag the candidate
site at (/,5). The best matching site in a sequence will have its corresponding z, be 1
whereas other z, s be 0. According to the assumption of one occurrence per
sequence (OOPS), the same conservation constraint (5) applied in (P1) is also

involved as

Table 5 Binary base codes for pattern-free consensus.

X; u, v, e,
A 0 0 1
T 1 1 1
G 1 0 1
Cc 0 1 1
* 0 0 0
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Mixed 0-1 Nonlinear Program for Pattern-free Motif Finding

M
Maximize ZZ(M,J ZZI,S} (P4)
i=l b

(1,5)eS;

Y, :ei(l_ui)(l_vi)a

Subject to
Yr; = Uy,
Yo = e,(l1-u,)v,,
Ve, =eu,(1-v,),
M
Zei =K,
i=1
>z, =1 Viel,..L}
e,u;,v, € {0, l}, z,, €[0,1],
be{A,T,G,C}, iefl..M}
le {1,...,L}, seN.

Yz, =1 z, {0l foralll (3)

For a given consensus sequence (i.e. a sequence of (u,,V,,e;)), the best candidate
sites of sequences are extracted and sum scored to obtain the total matches by

following formula:
Score = ZZ[Z,,S z&,,”)- (30)
I s i

A higher score means the consensus found is better conserved among all the

sequences. Similarly, the objective function has an equivalent disaggregated form as

izb‘,(yb,i ZZ/,SJ -

i=1 (1,5)€S),;

A pattern-free TFBS finding problem can then be formulated as program (P4).
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The objective is to find the consensus having the highest score among the search

space of patterns under a given M and K.

Program (P4) has similar product terms like those in program (P1) which bring
about nonlinearity. The product terms we encountered here include: eu., ev,,
e, and ybiz z,, - With the relaxation and linearization approaches discussed in

Chapter 2, these product terms can also be completely linearized.

For product terms e, and ev, the linearization can be simplified without
loss of generality. A good idea of reducing searching range of binary variables is to

add two constraints which make u,= 0 and v,= 0 when e =0:

u, <e,, v.<e,. (31)

eu. =u,, ev. =v.. (32)

According to Proposition 2 in Chapter 2, the binary product term ey, can be
replaced by a new continuous variable w accompanied with the following

constraints:

w,Su,, w,<v,, w<e,, (33)
w, 20, w,2u,+v,+e —2.

Therefore the comparing functions y, . have alternative definitions as follows:
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Yai =€ —U =Vt Wiy YV, =W,

Yoi Ui = Wi Ve, =Vi = Wi,

u,<e , v,<e, (34)
w,<u,, w,<v,, w <e,

w, 20, w, 2u,+v, +e —2.

Linearization of the last product term Ve, Z z, is quite similar to those terms
in program (P2). That is, a continuous variable g, =~ accompanied with following

constraints can replace ybiz z,, -

qp; = Z Zigs

(198,
Gp; < ViiLs
qpi 2 zzl,s + (¥, DL,

(1,5)€S), ;

4, 2 0.

(10)

Therefore all the product terms in program (P4) are successfully linearized. After
applying the relaxation of indicator z, ~and linearization of all product terms we can

have program (P5), a mixed 0-1 linear program for pattern free TFBS finding.

5.3  Structural Constraints

Most TFBS have some specific features reflecting structures of the
corresponding regulatory proteins. The proposed mixed 0-1 linear program is
convenient to embed logical constraints for elucidating specific TFBS precisely and
efficiently. Structural features of various types of TFBS can be formulated as logical
constraints to help facilitate the search process. There are three general types of
activators: mono-type TFBS like binding sites for homeodomains, dyad-type TFBS

like bHLH and bZIP binding sites, and serial-type TFBS like zinc-finger binding sites.
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Mixed 0-1 Linear Program for Pattern-free Motif Finding

M
Maximize ZZ%J
i=l b

Subject to

In (P5), a consensus is scored by calculating matches with all proposed candidate

Va;, =€ —U =V, + W,y Yo, =W,

Yo Ui =Wis Ve; =Vi— Wiy
u,<e , v,<e,,
w,<u,, w,<v,, w <e,,

w, 20, w2u +v, +e —2,

9p; = z Zyso

(L,s)ES) ;
9p; < VoL,
9p; 2 zzl,s + (yb,i 1L,

(1,5)€S, ;

9, 20,
Yz, =1 Vie{l..L}

e,u;,Vv, 6{0,1}, z,

270

.+ €10,1],
be{A,T,G,C}, ie{l..M}
le {1,...,L}, s eN.

constraints applied.

Mono-type TFBS
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To find TFBS with specific structure, (P5) is further modified with several logical

sites. Nevertheless, some TFBS may occur in form of inverted complement. For
example of a consensus “CACTCA”, the TFBS resembling to the inv/comp
“TGAGCG” should also be considered when scoring the consensus. Scoring an
inv/comp consensus is the same as to compare original consensus with a set of

inv/comp candidate sites. For testing inverted complement simultaneously, another



Sequence  TAATGTTTGACAGTGCAACTGTGG
Candidate Set 0 (Original):

7 TAATGTTTGACA
8 AATGTTTGACAG
9 ATGTTTGACAGT

v L uo
Il

Candidate Set 1 (Inv/comp):

TGTCAAACATTA

s=17
s=38 CTGTCAAACATT
s=9 ACTGTCAAACAT

Figure 12 Extraction of two candidate sets for original and inv/comp motifs. The

homologous candidate sites in different sets are inverse complement.

candidate set consisting of inv/comp candidate sites is involved. A new index ¢ is
introduced to distinguish the two sets of candidate sites: # = 0 for original set and ¢ = 1
for inv/comp set. The index of candidate sites becomes (/, s, f) instead of (/, s) in
program (P2). Variable z,, is replaced by Z, and Sy the replacement for S,

1s defined as:

Spi =1s,0) | d,,; =bYU{(,s.D) | d) i =comp(b)}, (35)

where comp(-) means a complement base.
And g¢,;, the replacement of product term ybizzl ., » 1s accompanied with

constraints shown below:

9p; < Z Zisys

(1,s,1)eSh;

<Ly,
4y, Vbis (36)
Gy 2 D 2, Ly, D),

(1,s,t)€S} ;

4, 2 0.
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Mono-type Motif Finding

M
Maximize Zqu,i (P6)
i=l b

Subjectto  Va;, =€ —U; =V, T W, Vi, =W,
Yo =Ui = Wiy Ve, =Vi—™ Wi
u,<e, v,<e,
w,<u,, w,<v,, w<e,,

w, 20, w, 2u, +v,+e, -2,
M

e, =K,

i
i=1

9p; = z Zysuo

(1,s,)€S, ;
qp; < yb,i[‘9
Gy 2 D215, + (v, — DL,

(1,s,0)€S, ;

qp; 2 0,

Yz, =1 Vieil..L}
S,t

S[,J,i =1{(,5,0)| d/,s,i =byU{(,s,])| dl,s,M—i-H =comp(b)}
where comp(-) is complement operation,

e,u,v, e {0, 1}, z,, €[0,1],

be{A,T,G,C}, iefl,..,M}

le{l,...L}, seN, te{o,l1}

,8

No matter from which candidate set, there is only one site proposed to match the

consensus for every sequence. Thus constraints for 7, are placed as follows:

<1. (37)

8,0 T

>z, =1foralll, 0<z

And therefore we have program (P6) as the mixed 0-1 linear program for

searching mono-type TFBS.
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(b)

ol g7 & 5|a|y 2%®
A A A Ad
PC PD PE PB‘ PA'

Figure 13 X repressor, an example of dimerized binding protein. (a) Geometry of the A
repressor-operator complex. (b) The operator fragment. This 20-mer contains two A OL1
half-sites, each of which binds a monomer of repressor. PA-PE are phosphate groups
(backbone) important for recognition. Base pair 4 (Guanine) is also regarded as a reactive base

with which Ser 45 of A repressor makes a hydrogen bond.
Dyad-type TFBS

Most gene regulators are dimers or tetramers. The binding sites of this kind of
regulators usually have length less/equal to 22 and have two symmetric half parts
forming an inverted palindrome or direct repeats. To find this kind of TFBS, the

consensus sequence will be like

(38)

XXy Xy Xppag oo Xans 1 Xans »

where x, € {A, T,G,C,* } in which ‘*’ means an inactive base.

The homologous bases in both half sites have the same sensitivity. Referring to
constraint (31), both an inactive base and its homologous base have 4 =y =0 since
e, =0- That means inactive bases should be free from invert complement relations.
The logical constraints for inverted palindrome and direct repeats are then formulated

as
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Sequence  TAATGTTTGACAGTGCAACTGTGG
Candidate Set 0 (even spacers, M=6):

s 7 TAATGTTTGACA
s=8 AATGTTTGACAG
s=9 ATGTTTGACAGT

s TAATGT . TGACAG
s=38 AATGTT .GACAGT
s=9 ATGTTT .ACAGTG

Figure 14 Extraction of two candidate sets for even-spacer and odd-spacer dyad motifs.

U +Uyp i =€

1

Vv, + V3 =€,  forinverted palindrome; (39)
€ =€y

Uy =Ups

V=V, for direct repeat. (40)
€ =€y

Many dyad-type TFBS have spacers (i.e. inactive bases) between the two half
sites. Because the two half sites are assumed connected in (38), there can only be even
number of center spacers when searching an inverted palindrome. program (P5) needs
modified to involve both even-spacer and odd-spacer cases. For testing odd-spacer
solutions simultaneously, another candidate set is constructed by extracting substrings
with a center position skipped, as illustrated in Figure 14. Both the two candidate sets
are put into the same program and distinguished by a new index p, where p = 0 for
even-spacer set and p = 1 for odd-spacer set. The index of candidate sites becomes (/,
s, p). Variable z,, is replaced by Zism and Sy the replacement for A is
defined as:
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Dyad-type Motif Finding

M
Maximize quhi
i=l b

Subject to

Vai =€ U =V + Wiy Y =W,
Yo, =U = Wi Ve, =Vi— W,
u,<e , v;,<e,,

w,S<u,, w,<v,, w<e,,

w, 20, w 2u,+v, +e —2,

U Ty =€

l
Vit Vo i =€ for inverted palindrome
€ = Cmivi»
qb,i < Zzl,s,p’
(L,s,p)eS) ;

9p: S Lqy,»
9p; 2 Zzl,s,p +L(g,, =1,

(Ls,p)eSy ;

9p; 2 0,

Yz, =1 Viefl..L}
ZZI,W = ZZLW =..= ZZL,W Vp e {O, 1},

Sy =\s,p)ld,,, =b,i<MUls,p)|d,, .., =b,M <i<2M|

e,u;,v, € {O, 1}, z,, €[0,1],
be{A,T,G,C}, iefl..M}
le {1,...,L}, seN, pe {0, 1}.

Sy =ls,p)ld,,, =bi<M{U\Ls,p)ld,, ., =b M <i<2M} (41)

The linearization constraints for gy, = yb,iz Zism becomes:
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9p; 2 Zzl,s,p +L(y,, =D,

(1,5,p)eSy;

9p; 2 0,

qb,i < Z Zl,s,P >

(1,s,p)ESH ;

qp, < Lyb,i‘

(42)

To ensure that all the proposed sites are from the same set, additional constraints

for z, , are placed as follows:

>z, =1foralll, 0<z, A <I;
S,p

Zzl,s,p - zzz,s,p == ZZLM for all p.
s s s

(43)

Therefore we have program (P7) as the mixed 0-1 linear program for searching

dyad-type TFBS.

Serial-type TFBS

Another often seen type of regulators is zinc-fingers which is a zinc-containing
protein chain. Zinc-fingers binding site is a serial-type TFBS which is a chain of
trinucleotide groups. Each of these trinucleotide groups contains two reactive bases.

The logical constraint is formulated as follows:

e, +e, +e,=2 forie{l,4,7,...} (44)

Constraint (44) should be set depending on the length of consensus which is
supposed a multiple of 3. K should be set equal to 2M/3 when searching zinc-fingers

binding sites.
Another feature of zinc-fingers binding sites is that the first base of each triplet
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(a) (b)

Finger 3
Finger 2
@)
His 49
Arg 46
Finger 1

Arg 24

Figure 15 Zif268 zinc finger regulator, an example of series-type regulator. (a) Arrangement
of the three zinc fingers of Zif268 in a curved shape to fit into the major groove of DNA. (b)
Summary of interactions between Zif268 zinc finger amino acids and DNA bases. Each of the
three fingers has two amino acids (all but one of the six are arginines) that make specific

contact with guanines in the DNA major groove.(Pavletich and Pabo, 1991)

must be ‘G’. This is because the first two of the three DNA contacting amino acids are
the same in every case: Arg and Asp. This arginine in each finger makes direct contact

with a guanine in each triplet. A base assignment constraint is placed as:
e,=1,u,=land v,=0  forie{l,4,7,....} (45)
Like a mono-type TFBS, there may be occurrences with the opposite direction.

Therefore the program for serial-type TFBS finding is formulated as program (P6)

accompanied with constraints (44) and (45).

5.4  Suboptimal Solutions and Exception Rules

The proposed program can obtain only one global optimal solution. Practically

biologists need more than one consensus sequence solution to make further
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discrimination and verification. In addition, there may be a case that the target signal
is weaker than other noises. To successfully find out the TFBS of concern, we need
exception constraints for two separate purposes: finding suboptimal solutions and
exclude noises. The exception constraints include constraints for excluded solutions

and general exception rules, as described in Chapter 3.

For the proposed program discussed in this chapter, the exception constraints are
totally the same as those discussed in Chapter 3. These include constraints for finding

suboptimal solutions (see §3.3) and general exception rules (see §3.4).

5.5  Complexity Analysis of Searching Space

When utilizing three binary variables (i.e. u, v, and e) to represent every base in
the consensus sequence, we may encounter a searching space of 2°* consensus
sequences. Fortunately, not all of these binary variables are independent and a large
part of searching space is pruned. First, only K of (y,,v,) pairs are independent
because only the bases at reactive positions are compared. Second, because only K of
es in a half site are allowed to be 1, the number of combinations of e, values is
C, . Therefore, the total number of possible combinations of binary variables is

22K C]]zl.

From the discussion in Chapter 3 we know the computational time is
proportional to the number of sequences and almost no effect to the size of each
sequence. The worst case of computational time may be roughly of order
O(l-2%* . C}') . Generally, the computational time is acceptable for most cases where

M less than or equal to 12 and K less equal to 7.
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(@)

K M Consensus Sequence Score  Computational Time (h:mm:ss)
3 7 TG..A....T..CA 92 0:17:44
8 T.TG. ... ... CA_A 94 0:21:31
9 T.TG. oo oo CA.A 94 0:26:59
10 T...T-A...... T.A...A 94 0:34:59
11 T T AL .. T.A.._A. 94 1:21:11
4 7 GTGA. .. ... TCAC 120 0:27:11
8 .GTGA. ... .. TCAC. 120 0:28:44
9 -.GTGA. ... .. TCAC. . 120 0:57:07
10 -.GTGA. .. ... TCAC. .. 120 0:58:08
11 -.-..GTGA...... TCAC. ... 120 1:17:19
5 7 GTGA.C. .G.TCAC 136 0:30:09
8 TGTGA. . .. .. TCACA 147 0:52:02
9 _TGTGA. ... .. TCACA. 147 1:13:41
10 --TGTGA. .. ... TCACA. . 147 2:42:36
11 .- TGTGA...... TCACA. .. 147 5:23:40
6 7 GTGAA.TA_TTCAC 151 0:27:10
8 TGTGA.C..G.TCACA 164 0:51:50
9 -TGTGA.C. .G.TCACA. 164 4:37:04
10 T_TGTGA. .. ... TCACA.A 165 10:58:17
11 A__TGTGA...... TCACA..T 166 33:23:59
(b)

6:00

ey
>
S

oy
S
S

Computational time (h:mm) .
o w
= >
S S

—_
=
(=}

0:00

Computational time versus length of half site and number of reactive letters

——K=3

——K =4

M : length of half site

10 11

12

Figure 16 Experiments of pattern-free TFBS finding on searching for CRP-binding sites in 18
E.coli DNA sequences, which taken from Stormo et al. (1989) (a) the list of consensus sequences
found under various reactive base numbers K and various half site lengths M. (b) polygon graph
illustrating the computational time under various settings.

Figure 16 illustrates a prediction of CRP-binding sites of E. Coli by program (P4)

with 7<M <11 and 3< K <6on a Pentium 4-3.0GHz PC. This example has 18

57



DNA sequences each of which has 105 bp. The consensus is considered inverted
palindrome and no exclusive constraints are applied. Although different solutions of
the consensus sequence in experiments of reactive letter number greater or equal to 4,

the positions of all the TFBS are the same as the results listed in Stormo et al. (1989).

5.6  Experimental Results

The proposed method is implemented and publicly available as the second
version of software Global Site Seer (GSS2). This section reports results of GSS2 on
several eukaryotic examples. All the examples are TFBS of dimerized regulators and
benefit from inverted palindrome. These examples include two C. Elegans sequence
sets regulated by daf-19 and 1in-32 collected from WormBase (Stein et al., 2001), and
a benchmark sequence set from assessment system of Tompa et al. (2005) originally
collected from TRANSFAC (Matys et al., 2003). All the sequence sets in FASTA

format are available at online supplementary.

daf-19 regulons

The C. elegans gene daf-19 encodes an RFX-type transcription factor that is
expressed specifically in all ciliated sensory neurons. Target sites for mammalian
RFX-type transcription factors (X boxes) typically are 13-14 bp imperfect inverted
repeats (Swoboda et al., 2000). The example set contains five sequences listed in
Swoboda et al. (2000) and three listed in WormBase. Our searching result is listed in
Table 6. Compared GSS2 prediction with Swoboda et al. (2000), the same consensus
is found but two variants on individual TFBS occur: TFBS in che-2 exactly matches
but at different location; and TFBS in osm-1 listed in Swoboda et al. (2000) doesn’t

appear. In fact, the osm-1 TFBS seems more like a silencer in our experiment because
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the TFBS listed in Swoboda et al. (2000) is at +4 position.

lin-32 regulons

lin-32 encodes a basic helix-loop-helix transcription factor that is required for
development of several types of neurons, including the touch receptor neurons and the
male sensory ray neurons (Krause et al., 1997; Portman and Emmons, 2000). This
sequence set contains 9 upstream sequences of various genes regulated by lin-32 with
length varying from 326 to 1050. The GSS2 prediction is listed in Table 7. The
accuracy is not verified here because no related experimental report from laboratory is
available for comparison. But in our opinion, this result is good because the reactive
bases in consensus sequence are close together and have a TG group. Therefore, these

TFBS are strong and meaningful signals and possibly the lin-32 binding sites.

hm17r (Tompa et al., 2005)

We also test a sequence set from an assessment system designed by Tompa et al.
(2005). The whole dataset in this assessment system includes 3 classes each of which
contains 56 sequence sets. This dataset is totally from real genome and the TFBS are
very hard to find because they have various features for binding zinc-finger, HTH,
HLH, and leucine-zipper, etc. Besides, the most intractable part is, the insertion and
deletion errors. Because the dataset is designed for assessing TFBS finding tools
designed in TCM (zero or more occurrence per sequence) mode, most of them are not
appropriate for testing the proposed mixed 0-1 linear program, which is designed for
OOPS (One Occurrence Per Sequence) mode from original concept. The sequence set
we used here is hm17r, a human DNA sequence set from real class of Tompa’s dataset.
Every sequence in hm17r is 500 bp long with a TFBS for a dimerized regulator. The

prediction is listed in Table 8. Comparing with answer of Tompa et al. (2005), there
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are two differences in this prediction: the TFBS position in Seq 3 is -328 differing
from Tompa’s answer, -173; in Seq 5 there is no occurrence by answer; and TFBS

position in Seq 9 is -173 differing from Tompa’s answer, -138. All different answers

Table 6 A Prediction of daf-19 binding sites.

Gene GSS2 Score Swoboda et al.(2000)
regulated | _ _GTT.CCATGG.AAC... Posi. 85 Motifs Posi.
che-2  ctgGTTgTCATGGtGACtgc -57 10 GTTgTCATGGtGAC -130
daf-19  ttgGTTtCCATGGaAACtac -109 12 GTTtCCATGGaAAC -109
osm-1 attGTAtCCATACcAACatc -1211 9 GCTaCCATGGCAAC -86
osm-6 catGTTaCCATAGtAACcac -100 11 GTTaCCATAGtAAC -100
xbx-1 CccCcGTTtCCATGGtAACCgt -79 12 GTTtCCATGGtAAC -79
dyf-3  ggaGTTtCTATGGgAACgga  -88 11 N/A N/A
pkd-2 tccGTTtCTATGCaAAAaac -231 9 N/A N/A
xbx-4  ctaGTTgCCATGAcCAACcgc -35 11 N/A N/A

Table 7 A Prediction of /in-32 binding sites.

.. Consensus Sequence Score
Gene regulated position

TGAAA (9) TTTCA 78

hlh-2 -457 tGGAAAtattaaagaATTCTtL 7
cfi-1 -738 tTAAAAttaaattatTTTCAa 9
cwp-4 -332 tTTAAAtatatttttTTTCAg 9
egl-46 -239 gTGAAAattgactagATTCAC 9
lin-22 -348 tTGAATtttctgggaTTTCTt 8
mab-3 -184 tTGAAAatttgacttTTCCAC 9
mab-5 -56 gTGAAAtatgtgtcgTTTCAC 10
tbb-4 -300 CAGAAAaagtcaacaTTACAg 8
twk-21 -374 cTGAAAattcaagtalTTAAa 9

Table 8 A Prediction of DNA motifs in ~m 1 7r sequence set.

GSS2 Score Tompa et al.(2005)
Seq. name
..... GGGAA.TTCCC..... Posi. 97 Motifs Posi.
Seq 0 actccGGGAALTTCCCtggee  -83 10 tccGGGAAETTCCCtyg -81
Seq 1 gctccGGGAAETTCCCtggee  -83 10 tccGGGAALTTCCCtg -81
Seq 2 gctccGGGAAETTCCCtggee -85 10 tccGGGAALTTCCCtg -83

Seq 3 ctccgGGGAAQTTGGCagtat -328 8 gcttggaaattccggagc  -173
Seq 4 aaagtGGGAAaTTCCTctgaa -144 9 gtGGGAAaTTCC -141
Seq 5 gtatcGGGAALTGCTCcctee -274 8 <No Instances> N/A
Seq 6 ggcagGGGAAtCTCCCtctcec -274 9 gGGGAATLCTCC -270
Seq 7 aatgtGGGATETTCCCatgag -79 9 aaatgtGGGATtETTCCC -80
Seq 8 aatcgTGGAALTTCCTctgac -86 8 GGAALTTCCT -80
Seq 9 catcgTGGATaTTCCCgggaa -173 8 attggggatttcctc -138
8

Seq 10  gccctGGGGGETTCCCeggge -136 tGGGGGCTTCCCe -132
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provided by Tompa have lower matches than the TFBS found by GSS2. These tests
illustrate that the determined consensus successfully helps determinate most TFBS

and can be regarded as a good result.

5.7  Software Package: “Global Site Seer v2”

A software package “Global Site Seer 2.0” is designed for pattern-free TFBS

finding and is available by http://www.iim.nctu.edu.tw/~cjfu/gss2.htm.
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Chapter 6 Discussion

6.1 Features of Proposed Methods

This study proposes a mixed 0-1 linear programming approach to search TFBS
under various conditions. The final result of this study is a mixed 0-1 linear program
for solving pattern-free TFBS finding problems. Advantageous features of this

approach include:

(i) A pattern-driven design which can search longer patterns than current
enumeration approaches. Because only the reactive bases are enumerated in

consensus sequence, the computational time is notably reduced.

(ii) A global optimal consensus is promised. As a nature of mixed 0-1 linear

program, the consensus sequence with maximum matches is surely obtained.

(iii) No prerequisite shared pattern is needed. The proposed method can search
TFBS of an undiscovered regulation with limited information like length of

regulatory region and number of reactive bases.

(iv) Capable of identifying TFBS with spacers dispersed in regulatory region.
Most current TFBS finding methods have difficulty to search patterns containing
inactive bases. Contrarily, the proposed method benefits from these inactive

bases because searching space is pruned.

(v) Structural features can be involved. In the proposed method various structure
features of TFBS can be formulated to help prune searching space and improve

precision, e.g. inverted palindrome or direct repeat.

This approach also has several weaknesses as follows:

(i) Exponential growing computational time to the number of reactive bases.
Although a notable feature over current pattern-driven enumeration methods is
that the critical factor of searching time is number of reactive bases instead of

pattern length, the limitations on length of regulatory sites still exist.
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(i) Only one solution obtained. By nature of optimization program, the proposed
method cannot simultaneously search multiple patterns. Finding suboptimal
solutions in this approaches still required individual program in which

previously obtained optimal consensus sequences are excluded.

(iii) Difficult to search consensus with base variability. The proposed method
utilizes consensus sequences consisted only by four distinct nucleic acid types.
The consensus sequence is a distinct ideal model of TFBS and only exact base
matches within sites contribute the matching score. But in fact, there may be
some reactive bases replaceable by other nucleotides which have similar

sensitivity to regulators.

As a nature of pattern-driven and mixed 0-1 linear programming design, the
proposed method can find the optimal consensus in an acceptable computational time.
The most advantaged property to current heuristic methods is the capability of
embedding logical constraints. These logical constraints telling many kinds of specific

features and exclusive rules notably increase the precision and efficiency.

6.2  Issues in Approach Design

Based on assumptions of occurrences in each sequence, there are several
different searching modes for the computer-based determination of transcription
binding sites. These modes are generally defined in studies of sequence-driven
approaches which apply probability models to iteratively search the most significant
conserved signal. CONSENSUS (Hertz and Stormo, 1995), a statistical based system
for identifying consensus patterns of DNA sequence and protein sequences, provides
three modes of searching: One Occurrence per Sequence (OOPS), One or More
Occurrences per Sequence (OMOPS) and Zero or More Occurrences per Sequence

(ZMOPS). Another TFBS searching tool, MEME (Bailey et al., 1995), also can search
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motif under three different modes: One Occurrence per Sequence (OOPS), Zero or
One Occurrence per Sequence (ZOOPS) and Two-Component Mixture (TCM)—each

sequence may contain any number of non-overlapping occurrences of each motif.

Which sequence mode is appropriate depends on the purpose of motif finding
work. When a sequence set is given from any combination of upstream sequences of
various genes and the purpose is to discover any possible regulations, searching tools
capable of handling TCM mode are obviously much appropriate. For analyzing
function of a particular regulator, the sequence set shall be prepared more
conscientiously from sequences upstream genes regulated by the target transcription
factor. And in this case OOPS and OMOPS are more suitable for finding the DNA

motifs precisely.

The proposed approach is only designed for searching sequences in OOPS or
OMOPS mode and is very powerful when analyzing a specific function regulatory. It
is not appropriate to search sequences in ZOOPS, ZMOPS and TCM modes for any

possible undiscovered regulatory.

6.3 Benchmark Results

Assessment system of Tompa et al. (2005)

In 2005 Tompa et al. designed an assessment system for TFBS finding tools. In
this system they prepared three testing groups each of which contains 56 eukaryotic
DNA sequence sets in various sizes. A statistical evaluation system is designed to
measure the accuracy of all kinds of TFBS finding tools. The benchmark data set is
designed in AMOPS or TCM modes, containing TFBS with insertion and deletion

errors. These sequence sets contain all kinds of noises and most TFBS are relatively
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weak. Generally, a TFBS searching tool which has accuracy over 0.2 is regarded as a

good design.

Testing results of proposed approach

The testing result of proposed method on benchmark system of Tompa et al.
(2005) is poor. Possible defects of the proposed method which lead to this poor

performance may include:
Q) Designed in OOPS mode
(i) Unable to handle insertion and deletion errors
(iii)  No further refining strategies for multiple suboptimal alternatives

(iv)  Weak on treating base variability

And surely, all these weaknesses are active issues of further researches.
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Chapter 7 Concluding Remarks

This study develops a series of mixed 0-1 linear programming approaches to

search for transcription factor binding sites. The most advantageous property of the

proposed method to existing DNA motif finding tools and is capable to find TFBS

without any given shared patterns. Nevertheless, the accuracy still can be improved by

more complex design. Some issues remain for further study:

(1)

(i)

The first issue is about the treatment of multiple consensuses. For searching a
weak target signal, one needs more than one solution for further verification.
These solutions can be obtained by applying exception constraints for banishing
previously known solutions in the proposed method. Two strategies to obtain the
final solution are designed as follows: One is to apply different scoring
functions like PSSM or log-likelihood function to verify these consensus
sequences. That is, for every consensus we can make a log-likelihood evaluation
of all the TFBS in sequences and then compare the score to obtain the final
solution. Another strategy is to count the number of occurrences. As a post
treatment step, more other TFBS may be determined based on a consensus
accompanied with a score threshold. The consensus having most TFBS

occurrences is more possibly the target.

Another issue is about the quality of sequence set. The collection step of a
sequence set is critical to accuracy. The proposed method is originally designed
for sequence sets which have one occurrence per sequence (OOPS), and may not
be appropriate if not all the sequences contain target TFBS. Other modes like

ZOOPS (Zero or One Occurrence per Sequence) or TCM (zero or more
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(iii)

occurrences per sequence) are not considered in this method. Although TCM
mode is regarded as the most convenient to biologists, it compromises to
accuracy. The consensus sequence is supposed to be an ideal binding pattern so
it allows no ambiguity. Any sequence with no occurrences is not recommended

because it will dramatically affect the quality of the consensus sequence.

The third issue is to formulate various possible features. More complicated
features can be articulated as logical constraints. One feature is the specific base
group positioned case by case. An example is trinucleotide group: many dyad
type TFBS have at least 3 reactive bases close together in half site. Another
example is TG kink, an often seen structure in regulatory region (Schultz et al.,
1991). It may not contact regulatory protein but is very important because it
allows DNA strand bend to fit the regulatory protein. The exact positions of
these specific groups in the consensus vary by cases. Formulating these features

may be difficult but very helpful in finding related TFBS effectively.
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Appendix

The Escherichia coli DNA sequences containing CRP-binding sites. This data set

contains 18 gene upstream sequences, each of which is 105-bp long.
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