
 i

以混合 0-1 變數線性規劃方法 

尋找基因轉錄因子結合位點 
 

研究生：傅昶瑞           指導教授：黎漢林 

國立交通大學資訊管理研究所 

摘要 

基因轉錄因子結合位點 (Transcription factor binding site, TFBS) 的搜尋在基

因組的功能性分析上扮演關鍵性的角色。在眾多搜尋方法之中，以共同序列

(consensus sequence)為基礎的窮舉法相對最為準確，但其指數成長的運算量卻讓

這類方法無法搜尋較長的序列。藉由預先給定的樣版來輔助搜尋能顯著地減少運

算量，只是這類資訊較難以取得，也因此目前 TFBS 的搜尋大多仍仰賴準確率低

但速度較快的啟發式方法。 

為了能有效準確搜尋 TFBS，本研究發展一套混合 0-1 線性規劃法來求解三

種不同類型的 TFBS 搜尋問題。這包括固定樣版 TFBS 搜尋，模糊樣版 TFBS 搜

尋，以及無樣版 TFBS 搜尋。本方法的優點包括：(1)以共同序列為基礎的設計，

(2)可得到全域最佳解，以及(3)可套用結構性的限制以加速運算並提高準確率。

而在無樣版 TFBS 搜尋中，本方法更可以成功找到因結構鬆散而難以發現的

TFBS。本研究以多個範例來針對三種不同類型的 TFBS 搜尋問題進行一系列實

驗，也都在可接受的時間下成功找到了實際存在的 TFBS。 

 

關鍵詞：DNA-蛋白質交互作用，基因調控，轉錄因子結合位點，線性規劃，整

數規劃 
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ABSTRACT 

The discrimination of transcription factor binding sites (TFBS) in multiple DNA 
sequences is an essential work for function analysis of gene expression. Enumeration 
methods that search all possible patterns have best precision among all current 
algorithms but require an exponential computational time and have difficulties to 
search for longer patterns. A predefined shared pattern can notably prunes the 
searching space but such information is often unavailable. Finding unframed TFBS 
today still relies on heuristic approaches which compromise to accuracy. 

To effectively find TFBS, this study develops a mixed 0-1 linear programming 
approach to solve a series of problems for issues including fixed-pattern TFBS finding, 
ambiguous spacer TFBS finding and pattern-free TFBS finding. The proposed method 
has the following advantages over current methods: (1) A pattern-driven instead of 
sample-driven (or sequence-driven) design; (2) A global optimal solution is promised; 
(3) Structural features of motifs are embeddable to help facilitate search process. And 
with pattern-free approaches we can successfully determine TFBS within dispersed 
spacers. We apply several experiments on every kind of TFBS finding programs and 
in these examples the real TFBS are successfully determined in an acceptable 
computational time. 

 

Keywords: DNA-protein interaction, gene regulation, transcription factor binding site, 

linear programming, integer programming. 
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Chapter 1  Introduction 

For past two decades, biologists have sequenced more and more complete 

genome sets of various species. To extract all the secrets of life from these huge data, 

procedures of how genes work in organism are continuously researched and discussed. 

Gene transcription, a primary gateway to gene function, is controlled by a complex 

regulatory mechanism in which many specific regulatory proteins bind to local 

regions of gene upstream, called transcription factor binding sites (TFBS), to control 

the gene expression. Therefore, the discrimination of TFBS from DNA sequences 

therefore becomes an essential work for genome function analysis. 

1.1 DNA-binding Motifs and Their Binding Sites 

Before the discussion about TFBS, we need to know the mechanism of gene 

regulatory. DNA transcription is the very first stage of gene expression. The 

complexes of Rribonucleic acid (RNA) polymerases and general transcription factors 

transcribe all kinds of genes at a basal level—like an idling engine—to remain the 

minimum operation. In fact, the transcription of active genes generally rises far above 

this basal level. To provide the needed extra boost in transcription, additional 

gene-specific transcription factors (TF) play the critical role to control the throttle. 

These transcription factors, also called regulators or activators, are like a set of keys 

capable of unlocking or locking the transcription. They bind to specific 

locations—like many particular keyholes—to stimulate or inhibit RNA polymerase to 

transcribe a gene. The activation of a gene relies on presence of all required enhancers 

and absence of all inhibitors (or at a low safe level). 
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Activators have at least two functional domains: a DNA-binding domain and a 

transcription-activation domain. Many also have a dimerization domain that allows 

(a)        (b) 

 
(c) 

 
(d) 

 
Figure 1  Gene expression. (a) Central dogma; (b) Transcription of a gene in prokaryotes; (c) 
The complex of DNA strand, RNA polymerase, general transcription factors and CAP-cAMP 
(CRP) dimer—a gene specific transcription factor; (d) Computer graphic of lac repressor 
(pink) and CRP dimer (blue) binding to DNA. 
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the activators to bind to each others, forming homodimer (two identical monomers 

bound together), heterodimers (two different monomers bound together), or even 

higher multimers such as tetramers [Weaver, 2002]. Each DNA-binding domain, the 

most part we concern about, has a DNA-binding motif, which is the part of the 

domain that has a characteristic specialized for specific DNA binding. Most 

DNA-binding motifs fall into the following classes: 

1. Zinc-containing modules. These modules use one or more zinc ions to create a 

proper shape to bind to DNA and include at least three kinds of modules. The 

most often seen is zinc fingers, which is a chain of two or more zinc finger 

(a) 

 

(b) 

 
Figure 2  Zinc-containing modules: (a) Zinc fingers (Zif268), consisted by a series of zinc 
finger which contains a zinc ion; (b) The GAL4 protein, a dimerized motif which contains two 
zinc ions in each monomer. 
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monomers. Some zinc containing motifs also have dimerization domain 

containing two identical monomers, e.g. the GAL4 motif. 

2. Homeodomains (HDs). These resemble in structure and function the 

helix-turn-helix DNA-binding domains such as the λ phage repressor. The 

mutation of their gene may cause severe deformation. Most homeodomain 

proteins have weak DNA-binding specificity and rely on other proteins to help 

them bind specifically and efficiently to their DNA targets. 

3. bZIP and bHLH motifs. Most DNA-binding motifs are of this type. They have a 

highly basic DNA-binding motif linked to one or both of the protein dimerization 

motifs known as leucine zippers and helix-loop-helix (HLH) motifs. This kind of 

motifs have very strong DNA-binding specificity. 

These three classes cover a large majority of DNA-binding motifs but certainly 

the list is not exhaustive. There are still other kinds of DNA-binding motifs not falling 

into any of these categories. 

(a)        (b) 

     

Figure 3  Homeodomain-DNA complex in fruit fly Drosophila--an example of mono-type 
interaction. (a) Schematic representation; (b) A deformation caused by mutations in genes of 
these regulators: Antennapedia. It grows legs where antennae would normally be. 
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(a) 

(b) 

(c) 

 
Figure 4  Dimerized DNA binding domain: (a) Leucine zipper (bZIP) complex. From left to 
right: dimerization of leucine zipper and two computer graph illustrating binding domain; (b) 
Two schematic diagrams of Helix-loop-helix (bHLH) complex; (c) Max-Myc heterotetramer. 
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Transcription factor binding site is a short region within a particular nucleotide 

sequence for a specific activator to bind. Because of various domains of DNA-protein 

interaction, TFBS linked to different kinds of DNA-binding motifs has particular 

characteristics for binding. Most TFBS can be categorized into three types: 

(1) Mono-type TFBS. This kind of TFBS is for binding a monomer. DNA binding 

domains like homeodomains have their binding sites of this type. Most mono-type 

TFBS are relatively weak signals and difficult to determined. In fact, their binding 

motifs usually require other auxiliary protein-protein interaction domains or 

DNA-protein binding domains to help their binding. 

(2) Dyad-type TFBS. Dimerized regulators bind to this kind of TFBS. Dyad-type 

TFBS is the most often seen type and generally not longer than 22 bases. It 

consists of two symmetrical half binding sites with a fixed number of in-between 

spacers. As a result this kind of TFBS has very strong binding specificity to 

regulators and relatively easy to determined. 

(3) Series-type TFBS. The binding sites of chain-like regulatory protein like 

zinc-fingers are of this type. This kind of TFBS contains several adjacent short 

units of the same size. For example of zinc fingers Zif268, it has binding site 

consisting of three units each of which is three-base long. 

These types of TFBS have different features that make the specificity for 

recognition. These features can be regarded as logical rules that might be helpful for 

TFBS determination. 
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1.2 TFBS finding problem 

To find TFBS, one has a collection of sequences that are known to contain 

binding sites for a common factor, but neither the positions of the sites nor the 

specificity of the factor are known. Besides that, TFBS are usually with some degree 

of ambiguity. These make TFBS finding a difficult and challenging problem. 

Experimental methods like DNA microarray (DeRisi et al., 1997; Lockhart et al., 

1996) and SAGE (Velculescu et al., 2000) are capable to precisely elucidate TFBS. 

However, they are too laborious and time consuming to analyze enormous genome 

data. More and more computer based methods like enumeration methods, probability 

models and heuristics have been developed to find these conserved signals. In this 

section we discuss current computer-based (say in silico) approaches and their 

limitations. 

Site Representation 

Most transcription factor binding sites have variability on their component bases. 

With this ambiguity regulatory system can take advantage of level control on the gene 

expression. This makes the representation of DNA binding sites more complicated. 

How to precisely describe this variability depends on what kind of methods is applied 

in searching TFBS. Generally TFBS searching methods can be classified into two 

categories: pattern-driven approaches and sequence-driven (also called 

alignment-driven) approaches. Pattern-driven approaches search for a consensus 

sequence which best fits all site occurrences. And the representation of this consensus 

sequence includes simple DNA sequence and IUPAC (acronym of: International 

Union of Pure and Applied Chemistry) code sequence. Sequence-driven approaches 

identify the site occurrences which maximize position weight matrix (PWM) and 
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information content (IC). 

The simplest TFBS representation is merely a DNA sequence consisted only by 

A, T, G and C. Although incapable of describing base variability, this expression is 

still useful in pattern-driven enumeration methods. This is because flexible 

representation like IUPAC code will lead to enormous searching space in enumeration 

methods. 

IUPAC is a degenerate naming rule consisting of 16 alphabets which describe 

various combinations of nucleic acids codes, shown in Table 1. Any kind of 

ambiguities in nucleic acids has a corresponding code and so IUPAC code can be used 

to completely describe a TFBS consensus. An obvious defect of IUPAC code is that it 

fails to describe the base preference level at each position. Position weight matrix 

(PWM) is designed for more precisely describing base variability. 

In PWM the significance of a particular TFBS consensus is given by a measure 

of statistical surprise from multiple aligned short sequences. It calculates log 

Table 1  IUPAC code for nucleic acids 

IUPAC code Description 
A Adenine 
T Thymine 
C Cytosine 
G Guanine 
U Uracil 
R A, G (purine) 
Y T, C (pyrimidine) 
K G, T (keto) 
M A, C (amino) 
S G, C (strong) 
W A, T (weak) 
B T, G, C 
D A, T, G 
H A, T, C 
V A, G, C 
N A, T, G, C (any) 
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likelihood ratio (LLR) of four nucleic acids at each position as: 

b

ib

p
f

ibLLR ,
2log),( =  (1) 

(a) Alignment matrix 
   Base Position   

Site Sequence 1 2 3 4 5 6 
Site #1 A A T T C A 
Site #2 A G G T A C 
Site #3 A G T C C G 
Site #4 A A T T C A 
Site #5 A G G T A T 
Site #6 A G G T C C 
Site #7 A G G A T G 
Site #8 A G G C C T 

IUPAC sequence A R K H H N 
 
(b) Profile 

ibf ,  1 2 3 4 5 6 
A 1 0.25 0 0.125 0.25 0.25 
T 0 0 0.375 0.625 0.125 0.25 
G 0 0.75 0.625 0 0 0.25 
C 0 0 0 0.25 0.625 0.25 

 
(c) Position Weight Matrix   

),( ibLLR  1 2 3 4 5 6 
A 2 0 -∞  -1 0 0 
T -∞  -∞  0.585 1.322 -1 0 
G -∞  1.585 1.322 -∞  -∞  0 
C -∞  -∞  -∞  0 1.322 0 

 
(d) Logo model 

 

(e) Relative entropy 

Position 1 2 3 4 5 6 
Relative Entropy 2 1.189 1.046 0.701 0.701 0 

   Information content: seqI = 5.637 

Figure 5  PWM and IC representation: (a) aligned site sequences and their consensus as an 
IUPAC sequence; (b) the profile of these sites; (c) Position Weight Matrix; (d) Logo display of 
site sequences; (e) Information content of site sequences. 
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where i is the position within the site, { }C G, T, A,∈b  refers to each of the possible 

bases, ibf ,  is the observed frequency of each base at that position and bp  is the 

frequency of base b in the whole genome. The maximum LLR among each position 

are summed up as the significance of a given set of sites. 

Information content (IC, Schneider et al., 1986), which is also known as the 

Kullback-Leibler distance, is the sum of all relative entropies of four types of bases in 

all positions defined as below: 

∑∑=
i b b

ib
ibseq p

f
fI ,

2, log  (2) 

For pattern-driven methods, the criterion for best conserved consensus sequence 

is to find the one with maximum matches among all site occurrences. For 

sequence-driven methods, the criterion for identifying the best alignment of potential 

sites is to choose the one with highest information content seqI . 

Site Discovering 

Pattern recognition approaches can also be categorized into two classes: 

pattern-driven approaches and sequence-driven approaches. As previously mentioned, 

pattern-driven approaches search for consensus sequence which best fits all site 

occurrences. For consensus-based TFBS finding (Stormo, 2000), pattern-driven 

algorithms that test all m4 m-wide possible consensus sequences promise an optimal 

solution but are very time consuming and impractical for large m. (Pesole et al., 1992; 

Tompa, 1999) Many heuristics are developed to prune the huge searching space 

including testing only the substrings in the sequences (Li et al., 1999; Gelfand et al., 

2000), specifying a shared pattern to restrict the locations of mismatches (Brazma et 

al., 1998; Califano, 2000; Sinha and Tompa, 2003; Régnier and Denise, 2004; Li and 
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Fu, 2005) and clustering (Buhler and Tompa, 2002; Pevzner and Sze, 2000; Liang et 

al., 2004). In addition to the exact enumeration methods, efficient data structure like 

suffix tree with fixed mismatches (Pavesi et al., 2001; 2004) can search for patterns of 

longer length. This kind of approaches is not exact enumeration algorithm and takes 

advantages of searching time polynomial to pattern length and exponential to the 

number of tolerant mutations. 

Sequence-driven methods are designed based on probabilistic modeling. The 

challenge of sequence-driven approaches is to find the location of the sites and 

representative PWM using only the sequence data, without any assumptions on the 

statistical distributions of patterns in the sequences. The criterion for the best 

alignment is the one with maximum IC. Current methods include a greedy algorithm 

that builds up an entire alignment of sites by adding in new ones in each iteration 

(Stormo and Hartzell, 1989; Hertz et al., 1990) and expectation maximization (EM) 

that iteratively substitute the location of sites by expected locations (Lawrence and 

Reilly, 1990) and its variant, Gibbs sampling (Lawrence et al., 1993) as a type of 

Markov chain Monte Carlo (MCMC) algorithm. EM algorithm is also implemented in 

the MEME program (Bailey and Elkan, 1995) which allows for the simultaneous 

identification of multiple patterns. Other implements of sequence-driven approaches 

include CONSENSUS (Hertz and Stormo, 1999), AlignACE (Hughes et al., 2000), 

ANN-spec (Workman and Stormo, 2000), BioProspector (Liu et al., 2001), 

MotifSampler (Thijs et al., 2001), GLAM (Frith et al., 2004), The Improbizer (Ao et 

al., 2004), QuickScore (Régnier and Denise, 2004), SesiMCMC (Favorov et al., 2004) 

and TFBSfinder (Tsai et al., 2006).  

In most current TFBS finding methods, all the letters in the consensus sequence 

are treated as independent variables. Because only some bases in binding region are 
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reactive to the transcription factor, solving this problem by calculating scores of all 

bases may involve noise from bases inducting no interactions. Beside that, the 

assumption of independent and identically distributed bases in background is too 

strong. Even with a probability calculated from the sequence data, the contribution to 

the accuracy is still limited. Another type of heuristics include testing only the 

substrings in sequences and  constructing data structures like a suffix tree or a graph 

to extract overrepresented signals. This kind of methods compromises to a possible 

situation of weeding out the exact consensus when all the motifs in sequences are 

somehow ambiguous. 

Most current methods also have obstacles to involve specific TFBS features like 

inverted palindrome or direct repeats. By limitations from original concepts, statistical 

models like EM or HMM need a much more complex design to embed the structural 

features. In some tree-based enumeration methods it is even impossible to utilize 

these structural features. 

1.3 Formulation of Pattern-driven TFBS Finding 

In this study a pattern-driven approach utilizing mixed 0-1 linear program is 

proposed. A pattern-driven concept of discovering TFBS is to find the consensus 

which has maximum matches among all proposed sites from multiple sequences. This 

is a mixed 0-1 optimization problem and can be formulated as a mixed 0-1 nonlinear 

program. We start by formulating a fixed-pattern TFBS finding problem as a mixed 

0-1 nonlinear program. In many cases a predefined shared-pattern is available from 

some preprocesses. This shared pattern provides information about positions of 

reactive bases in the binding sites and makes a TFBS finding problem relatively easier 
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to solve. 

Representations of fixed-pattern TFBS finding 

To find TFBS of a specific regulation, a set of DNA sequences upstream genes 

known co-regulated by the same factor is firstly prepared for analysis. A prerequisite 

condition is that this DNA sequence set shall be prepared having at least one 

occurrence per sequence (OOPS). Namely, there exists at least one similar TFBS in 

each sequence. A pattern-driven TFBS finding problem is defined as: 

To find best conserved consensus sequence among the given sequence set, the 

first step is to generate a set of candidate sites from sequence data. We use the 

example of CRP-binding sites among DNA sequences of Escherichia coli (Stormo et 

al., 1989), shown in Appendix, to illustrate the formulation. According to the 

predefined shared pattern, candidate sites are extracted from each starting position of 

each sequence, as shown in Figure 6, and indexed by (l, s) where l is the sequence 

index and s is the start position. Denote { }C G, T, A,,, ∈isld  as the thi  base present 

in candidate site from (l, s) position. 

With the pattern-driven concept, denote the consensus sequence to find as a 

series of binary variables. Every reactive base (i.e., the notation ‘N’ in the shared 

Given 
(i) A sequence set containing L sequences, 
(ii) A shared pattern “NNNNN******NNNNN” in which ‘N’ 

and ‘*’ represent reactive and inactive bases respectively. 
 
To find the best conserved consensus sequence 

  10987654321 xxxxxxxxxx ∗∗∗∗∗∗ , 

where { } C G, T, A, ∈ix  and i is the index of reactive base. 
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pattern) in a consensus sequence is represented by two binary variables, u and v for 

four different nucleotides A, T, C and G, and indexed by its relative position, i. 

Obviously the example of CRP-binding sites needs 20 binary variables to represent 

the consensus sequence. The binary codes for four nucleotide types are defined in 

Table.2. Each feasible consensus sequence with a vector of (u, v) pairs is scored by 

summing up base matches compared with the best fitting candidate site in every 

sequences. To formulate the comparison, every base appearing in a candidate site is 

represented by four kinds of comparison functions for different base types, as defined 

in follows. 

.)1(
),1(

,
                        ),1)(1(

,C

,G

,T

,A

iii

iii

iii

iii

vuy
vuy

vuy
vuy

−=

−=

=

−−=

 (3) 

The illustrative table for the base comparison between the consensus sequence 

(a) 

Sequence 1 (cole1):  TAATGTTTGTGCTGGTT 

Sequence 2 (eco arabop): GACAAAAACGCGTAACA 

(b) 

(l, s) = (1,1) TAATG......CTGGT 

(l, s) = (1,2)  AATGT......TGGTT 

(l, s) = (1,3)   ATGTT......GGTTT 

(l, s) = (1,4)    TGTTT......GTTTT 

(l, s) = (2,1) GACAA......GTAAC 

(l, s) = (2,2)  ACAAA......TAACA 

(l, s) = (2,3)   CAAAA......AACAA 

(l, s) = (2,4)    AAAAA......ACAAA 
 
Figure 6  Site extraction for fixed-pattern TFBS finding (The first two sequences in 
Appendix): (a) original sequence data; (b) schematic representation of the candidate sites. 
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and candidate sites is listed in Table 3. 

Illustrative formulation for maximizing matches 

The objective of a fixed-pattern TFBS finding is to find the consensus sequence 

best conserved among all the input DNA sequences. For every single DNA sequence, 

the scoring criterion is to compare its best fitting candidate sites with the consensus 

sequence and to count the base matches. This can be formulated as below: 

⎭
⎬
⎫

⎩
⎨
⎧

=+++= ∑∑
s

sl
s

slslslsll zθθθzScore 1    )...(max ,10,,2,,1,,, , (4) 

where slz ,  is the binary indicator of whether the candidate site at (l, s) is chosen to 

compare with the consensus. A candidate site is scored only when its corresponding z 

equals 1. All other non-basic candidate sites will have its corresponding z valued 0. 

For the assumption of one occurrence per sequence (OOPS), only the candidate site 

Table 2  The binary coding for each four bases 

Base in consensus 
sequence u v 

A 0 0 

T 1 1 

G 1 0 

C 0 1 

 
Table 3  Illustrative table of base comparison 

Comparison Table Base in consensus sequence 

Base in candidate 
sites 

Comparison 
function A T G C 

A (1-u)(1-v) 1 0 0 0 

T uv 0 1 0 0 

G u(1-v) 0 0 1 0 

C (1-u)v 0 0 0 1 



 16

that best fits the consensus is to be scored in a sequence. That means for all l, 

.}1,0{,1 ,,∑ ∈=
s

slsl zz  (5) 

In sequence scoring fiunction (4), islθ ,,  is the comparison function defined by 

the thi  base in the candidate site from (l, s). That is, 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
=
=
=

=

G. if
C if
T if
A if

,,,G

,,,C

,,,T

,,,A

,,

isli

isli

isli

isli

isl

dy
dy
dy
dy

θ  (6) 

Every candidate site is evaluated by summing up isl ,,θ ’s for a given (u, v) pair. 

For example of the first candidate site in Figure 6, “TAATG......CTGGT”, the site 

score (i.e. number of base matches) is obtained from ∑=

10

1 ,,i islθ = 

)( 10,T9,G8,G7,T6,C5,G4,T3,A2,A1,T yyyyyyyyyy +++++++++ . When comparing 

with a consensus “TCATG******CATGA”, this score function will give 6 as the site 

score for six matched letters.  

The matching score of sequence 1 in Figure 6 is formulated as 

1Score = max{ )( 10,T9,G8,G7,T6,C5,G4,T3,A2,A1,T1,1 yyyyyyyyyyz +++++++++  

)( 10,T9,T8,GG,76,T5,T4,G3,T2,A1,A2,1 yyyyyyyyyyz ++++++++++  

)( 10,T9,T8,TG,76,G5,T4,T3,G2,T1,A3,1 yyyyyyyyyyz ++++++++++  

)( 10,T9,T8,T7,T6,G5,T4,T3,T2,G1,T4,1 yyyyyyyyyyz ++++++++++  

}1   ,1 =∑s sz . (7) 

For a fixed-pattern TFBS finding problem, the objective is to maximize the total 

matches among all the sequence, i.e., ∑l lScoremax . When finding CRP-binding 
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sites in E.Coli (see Appendix for complete data set), the mixed 0-1 nonlinear program 

is formulated as shown in Figure 7. There are 18 sequences each of which 105-bp 

long in this example. Because the length of the given pattern is 16 (i.e. 

“NNNNN******NNNNN”), we have 90 candidate sites in each sequence. The 

independent variables include 20 binary variables (i.e. u and v) for consensus 

sequence and 18*90 binary variables (i.e. z) for indicating proposed sites. The 

notation y in this program is used as comparison function for different cases and the 

number of these constraints for comparison is 40. This program has 18 conservation 
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Figure 7  A mixed 0-1 nonlinear program for finding CRP-binding sites. 
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constraints (i.e. 1, =∑
s

slz ) for assumption of one occurrence per sequence (OOPS) 

and 18 scoring constraints. And so the total number of constraints is 76. 

General formulation of fixed-pattern TFBS finding 

The objective of fixed-pattern TFBS finding is to maximize the total matches 

among all the sequence, i.e., ∑l lScoremax . With sequence score defined as 

( ){ }∑ ∑=
s i islsll θzScore ,,,max , we have the objective function more precisely 

described as: 

∑∑ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

l s i
islsl θz ,,,max . (8) 

Therefore a mixed 0-1 nonlinear program for fixed-pattern TFBS finding 

problem can be generally formulated as program (P1). 

Mixed 0-1 Nonlinear Program for Fixed-pattern TFBS Finding 

Maximize ∑∑ ∑ ⎟
⎠

⎞
⎜
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l s i
islsl θz ,,,  (P1)

Subject to 
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Chapter 2  Propositions 

In the previous chapter we formulate a nonlinear program (P1) for fixed-pattern 

TFBS finding on DNA sequences. Unfortunately, (P1) is very hard to solve with 

current optimization tools because of numerous binary variables. On the other hand, 

with natures of nonlinear program containing product terms, (P1) can only obtain a 

local optimum. These defects quality make (P1) impractical. In this chapter we 

discuss techniques utilized to make (P1) solvable and even to conduct linearization 

which can obtain the global optimal solution. 

2.1 Relaxation of Binary Indicator z 

Program (P1) contains many binary variables which make it difficult to solve. 

The largest part of binary variables is from the indicators z. Every candidate site has a 

binary variable z indicating whether it best fits the consensus sequence. For example 

of finding CRP-binding sites, the formulation as program (P1) will have 1620 z’s. 

This large number of binary variables makes (P1) intractable. A linear relaxation on z 

is applicable to make (P1) solvable. For a TFBS finding problem, this relaxation 

provides a very tight bound to (P1). In fact, by the following proposition, it is proven 

having the same optimal value as (P1) has. 

Proposition 1 A selection problem as  

has a linear relaxation by loosing ix  to be continuous from 0 to 1 which shares 

Maximize (or minimize) ∑i ii xc

Subject to ,1=∑i ix  

where ic  be constants and { }1 0,∈ix . 
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the same optimal value ii
cmax  (or ii

cmin ). ■ 

Proof The proof is trivial. □ 

For Program (P1), the objective function (8) is separable by sequences, i.e. 

( ) ( )( )∑ ∑ ∑∑ ∑ ∑ =
l s i islsll s i islsl θzθz ,,,,,, maxmax . Because only one chosen (u, v) 

pair is involved in each iteration, ∑i islθ ,,  can be regarded to as a constant. With 

Proposition 1 we can have the result that Program (P1) share the same optimal value, 

( ) ( )( ) ( )∑ ∑∑ ∑ ∑∑ ∑ ∑ ==
l i isll s i islsll s i islsl θθzθz ,,,,,,,, maxmaxmax , with a 

relaxation where z’s are loosen to as continuous variables between 0 and 1. The 

enormous binary variables are therefore eliminated successfully and Program (P1) 

becomes manageable. 

2.2 Disaggregated Nonlinear Formulation 

To obtain the global optimal solution, program (P1) needs reformulated to a 

mixed 0-1 linear program. Before utilizing the linearization approach proposed in the 

following section, Program (P1) is firstly transformed to another formulation for 

effective elimination on all product terms. The formulation underlying the 

linearization process discussed in this chapter can be viewed as a disaggregated 

version of Program (P1).  

Denote ibS ,  as the index set of candidate sites having their thi  base as 

nucleotide type b, as defined as follows: 

{ }{ }C G, T, A,,),( ,,, ∈== bbdslS islib . (9) 

From the definition of comparison function islθ ,, , it can be restated that 
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  ),(  allfor   ,,,, ibibisl Sslyθ ∈= . (10) 

Then, with (9) and (10) the objective function (8) 

∑ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

sl i
islsl θz

,
,,,max  

has an equivalent disaggregated formulation as 

∑ ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∈ib Ssl
slib

ib

zy
, ),(

,,
,

max . (11) 

 Therefore program (P1) is reformulated as program (P1a) shown below: 

Disaggregated version of (P1) 

Maximize ∑ ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∈ib Ssl
slib

ib

zy
, ),(

,,
,

 (P1a)
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An important progression from (P1) to (P1a) is elimination of an ambiguous 

term islθ ,, . This is very important for further linearization because it makes the 
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product term ∑i islsl θz ,,,  more explicit to eliminate. 

2.3 Replacement of Mixed 0-1 Product Terms 

Program (P1a) cannot find the global optimum because the product terms 

contained in the formulation. There are two kinds of product terms, iivu  and 

∑ slib zy ,, , conducting nonlinearity of (P1a). To make the program globally solvable, 

here we discuss how to eliminate product terms by a series of constraints. 

The first kind of product term is iivu  which exists in iby , . This product term 

consists only by binary variable and can be replaced by a continuous variable based 

on the following proposition. 

Proposition 2 A general binary product ∏ =

n

j ju
1

α  where { }1,0∈ju  and α 

is nonzero constant can be replaced by a continuous variable w accompanied 

with the following bounding constraints: 

.1 (iii)

,0 (ii)

,      (i)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−≥

≥

∀≤

∑ nuw

w

juw

j
j

j

α

α
 ■ 

Proof Consider ∏ =
=

n

j juuf
1

)( α . Because product of binary variables is 

also binary, there are only two possible values for f: 0 and α. Because α is 

nonzero, the case of f = 0 implies 0
1

=∏ =

n

j ju  and there must be at least one 

0=ju . The bounding constraints (i) and (ii) can make w = 0 = f when any of 

0=ju  and meanwhile constraints (iii) and (iv) are inactive. The other case of 

α=f  implies 1
1

=∏ =

n

j ju  and 1=ju  for all j. Consider ( )1+−∑ nu
j jα . 

If α=f  (i.e., all 1=ju ) then ( ) αα =+−∑ 1nu
j j . If 0=f  then 
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( ) 01 ≤+−∑ nu
j jα . That means with constraints (i) and (ii), constraint (iii) 

can make α=w  when α=f  but will become inactive when 0=f . 

Therefore, with constraints (i), (ii) and (iii) the nonnegative variable w can 

completely substitute f. □ 

Therefore, the first kind of product term iivu  is a simplified case with 1 =α  

and can be replaced by a continuous variable iw  accompanied with the following 

constraints 

.1
,0
,
,

−+≥
≥
≤
≤

iii

i

ii

ii

vuw
w

vw
uw

 (12) 

The second kind of product terms to eliminate is ∑ ∈ ibSsl slib zy
,),( ,, . In the 

relaxation version of Program (P1a), ∑ ∈ ibSsl slz
,),( , is a continuous variable within [0, 

L] (i.e., L is the number of sequences). This kind of mixed 0-1 product terms can be 

eliminated with Corollary 1. 

Corollary 1 A mixed 0-1 product term ∏ =

n

j jux
1

α  where { }1,0 ∈ju , 

( ]ς,0∈x  and α is nonzero constants can be replaced by a continuous variable 

w accompanied with the following bounding constraints: 

( )( ). (iv)
,0 (iii)

, (ii)

,      (i)

nuxw
w

xw

juw

j j

j

−+≥

≥
≤

∀≤

∑ςα

α

ςα

 ■ 

Proof Denote ∏ =
=

n

j juup
1

)(  and obviously p(u) is also binary. From the 

proof of Proposition 2 we know that when any 0 =ju , p(u) becomes 0 and 

so does ∏ =

n

j jux
1

α . In this condition constraints (i) and (iii) make w=0 
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without violating (ii) and (iv). In the other case of 1 =ju  for all j, p(u) 

becomes 1 and therefore ∏ =

n

j jux
1

α  equals αx. For this case constraints (ii) 

and (iv) make w tightly bounded to αx without violating (i) and (iii). □ 

In Program (P1a), the second kind of product terms to eliminate is ∑ slib zy ,, . 

The upper bound of ∑ ∈ ibSsl slz
,),( ,  is L, the number of sequences, because every 

sequence has only one candidate site to propose, i.e. one occurrence per sequence 

(OOPS). With Corollary 1, ∑ slib zy ,, can be replaced by a continuous variable ibq ,  

accompanied with following constraints: 

.0

,)1(

,

,

,

,),( ,,

,,

),( ,,

,

,

≥

−+≥

≤

≤

∑

∑

∈

∈

ib

ibSsl slib

ibib

Ssl slib

q

Lyzq

Lyq

zq

ib

ib

 (13) 

where L is the number of sequences. 

Therefore, all the product terms in Program (P1a) can be successfully replaced 

by other single continuous variables and a globally optimal solution is then available 

for fixed-pattern TFBS finding. In fact, based on the techniques discussed in this 

chapter, more flexible and complicated TFBS finding problems can also be 

formulated as mixed 0-1 linear programs. In the following chapters we have a more 

detailed discussion on these formulations. 
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Chapter 3  Model 1: Fixed-pattern TFBS 

Finding 

With linearization techniques discussed in Chapter 2, program (P1) can be 

transformed into a mixed 0-1 linear program which is solvable and promising on 

global optimum. In this chapter we firstly illustrate the mixed 0-1 linear program for 

fixed-pattern TFBS finding. Then, more details on TFBS finding is discussed and 

formulated to appropriated logical constraints which help accuracy. Finally, software 

designed using the proposed mixed 0-1 linear program is introduced and we discuss 

on the experimental results about searching for TFBS by this software. 

3.1 Mixed 0-1 linear program for Fixed-pattern TFBS 

Finding 

After applying relaxation and linearization discussed in Chapter 2 on (P1), we 

have (P2), a mixed 0-1 linear program for finding fixed-pattern TFBS. From the 

nature of binary variable and mixed 0-1 linear program, (P2) has advantages over 

many current methods: 

(i) A globally optimal solution is promised. Because the nonlinear formulation is 

successfully replaced by a linear relaxation proven exactly to match the original 

formulation at optimal points, this program can provide globally optimal 

solution. 

(ii) Logical constraints are applicable for better searching quality. With binary 

variables utilized, structured information profiting accuracy can be formulated 

as logical constraints like structural constraints and exception rules. Some of 
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these constraints, especially structural constraints, can also notably reduce the 

searching space and computation. 

(iii) The program can be extended for more complicated formulation with 

considerations of practical use. For situations of poor information of target 

TFBS, e.g. spacer number unknown, this program can still find the TFBS with 

some modification on the formulation. 

(iv) Suboptimal solutions are available by excluding specific solutions. For case of 

searching for weak signals in DNA sequences, this program can find more than 

one solution to help explore the correct binding targets with further empirical 

examinations. 

Mixed 0-1 Linear Program for Fixed-pattern TFBS Finding 

Maximize ∑
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(v) It is very straightforward to find the complete set of the second, third, etc. best 

consensus sequences. 

For utilizing information which helps accuracy, we discuss the formulation of 

several types of logical constraints in the following sections. 

3.2 Structural Constraints 

Most TFBS are not only conserved signals but having some specific features 

reflecting structures of the corresponding regulatory proteins. The proposed mixed 

0-1 linear program is convenient for embedding logical constraints to elucidate 

specific TFBS precisely and efficiently. Structural features of various types of TFBS 

can be formulated as logical constraints to help facilitate the search process. There are 

three general types of TFBS: mono-type TFBS like binding sites for homeodomains, 

dyad-type TFBS like bHLH and bZIP binding sites, and serial-type TFBS like 

zinc-finger binding sites. To find TFBS with specific structures, program (P2) is 

further modified with several logical constraints incorporated. 

The most often seen TFBS are dyad-type. This is because most gene regulators 

are dimers or tetramers. This kind of TFBS usually has a length less than or equal to 

22 and has two symmetric half parts forming an inverted palindrome or direct repeats. 

For an inverted palindrome the homologous nucleotide bases are supposed 

complement, i.e. adenine (A) should be paired with thymine (T) and guanine (G) 

should be paired with cytosine (C). The logical constraint set describing inverted 

palindrome, for example of CRP-binding sites, can be formulated as: 

.1
,1

11

11

=+
=+

−

−

ii

ii

vv
uu  (14) 
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Another type of TFBS for binding dimerized protein has direct repeats where the 

same sequence repeats tandem. The logical constraint set of direct repeat can be 

formulated as: 

. 
, 

5

5

ii

ii

vv
uu

+

+

=
=  (15) 

Obviously, this kind of logical constraints establishes tight relationships between 

two half sites and prunes a very large portion of searching space. Therefore, applying 

such a constraint can notably improve both accuracy and computational performance. 

3.3 Suboptimal Consensus 

The proposed program can find the globally optimal solution. But practically 

TFBS finding need more than one solution for further verification. This is because 

there may be more than one kind of regulatory binding sites and the target TFBS may 

relatively weaker than other signals. To find the suboptimal solutions, we need to 

embed exception constraints to banish previously obtained solutions and iteratively 

run the program with these exception constraints. 

To exclude one or more solutions previously determined meaningless or not of 

interest (e.g. *ATGT******ACAT*), a constraint to be involved is as follows: 

,89,T8,A7,C6,A5,T4,G3,T2,A δ−≤+++++++ yyyyyyyy  (16) 

where  80 ≤≤ δ is exclusiveness degree. 

The exclusiveness degree decides the banishing range. All solutions having 8-δ 
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matches with “*ATGT******ACAT*” will be filtered. δ = 0 means no exclusion. In 

this example the right hand side of (16) is set as 8-δ because the number of reactive 

letters in the excluded solution is 8. Note that this number need not equal to the 

number of reactive bases. 

3.4 General Exception Constraints 

A reality among regulatory TFBS is that the background nucleotides are not 

independently and identically distributed. There are always other noises than the 

target TFBS in the data. When finding a weak signal, we will need exception 

constraints to help dig out the target. For instance, the often seen poly-A and poly-T 

tails should be excluded when searching for a direct repeat. 

Solutions to be excluded may come from several sources: meaningless repeats, 

binding sites for a co-regulator, and regions to form stem-loops in mRNA when 

searching for binding sites of negative regulators, etc. Two kinds of exception 

constraints are formulated for different cases of noise source: 

Repeats with uncertain length 

Repeats of arbitrary length like poly-A tail or poly-T tail are meaningless and 

should be filtered out. For instance of poly-A tail, the constraint should be formulated 

as follows to banish all the possible solutions containing too many ‘A’: 

δ−≤++++ 10... 10,A3,A2,A1,A yyyy . (17) 

Empirical exception rules 

Constraints for excluding a specific set of solutions can also be formulated 



 30

conveniently. For instance, consensus sequences consisting only of weak bases (A and 

T) or only of strong bases (C and G) are usually not a regulatory site of concern. If 

this kind of solutions is not expected, exclusive constraints can be attached as: 

( ) exclusion, consensusweak allfor            12
10

1

-wvu
i

iii ≥−+∑
=

 (18) 

( ) exclusion. consensus strongallfor           92
10

1

-wvu
i

iii ≤−+∑
=

 (19) 

By utilizing binary variables, any if-then rules can also be formulated as logical 

constraints. These constraints vary by cases and they notably help discriminate 

weakly conserved TFBS. 

3.5 Experimental Results 

CRP-binding sites 

For the example of finding CRP-binding sites on DNA of E. Coli, after solving 

program (P2) we can obtain the globally optimum solution “TGTGA******TCACA” 

with objective value 147. The related nonzero slz ,  values indicate the starting 

positions of the binding sites in the 18 sequences, as listed below: 

.181,1887,1756,1620,1574,1451,1344,1264,11

17,1012,942,827,763,653,566,479,358,264,1

=========

=========

zzzzzzzz
zzzzzzzzzz

 (20) 

Based on the solution, we can also apply an exception constraint to find 

suboptimal solutions. Program (P2) can find the exact global optimum solution. But in 

some cases this globally optimal solution may be only an overrepresented but 
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meaningless repeat more conserved than target TFBS. For further discovery of target 

TFBS, we can apply exclusive constraints to find the suboptimal solutions. For 

example of CRP-binding sites, the second best solution of (P2) can be obtained by 

adding a new constraint as 

910,A9,C8,A7,C6,T5,A4,G3,T2,G1,T ≤+++++++++ yyyyyyyyyy . (21) 

The new constraint is used to force the program to find a new solution different 

from the solution of (P2). The found second best consensus sequence is 

“AAATT******AATTT” with score 129. This is a solution consisted by only weak 

bases (i.e. A and T), so we can regard it as a meaningless solution. Similarly we can 

find another solution by adding following constraint. 

910,T9,T8,T7,A6,A5,T4,T3,A2,A1,A ≤+++++++++ yyyyyyyyyy . (22) 

The third best solution obtained is “TTTGA******TCAAA” with score 129.  

Computational experiments 

To analyze the effect of sequence length and number of sequences on the 

computational time, several experiments are tested using the example of CRP-binding 

sites. The solving engine for optimization is LINGO (Schrage, 1999), a widely used 

optimization software, on a personal computer with a Pentium 4 2.0G CPU. 

Figure 8 illustrates the experimental results for analyzing the time complexity. 

Figure 8(a) is the computational time given various sequence lengths, where the 

number of sequences is fixed at 18. The results show that the computational time 

changes slightly even if the sequence length is increased from 105 to 1050. Figure 8(b) 
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is the computational time with various numbers of sequences. It shows that the 

(a) Computational time versus sequence length 

Sequence 
Length 

Solving Time 
(mm:ss) 

105 1:39 
210 1:21 
315 1:44 
420 1:43 
525 1:48 
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945 1:59 

1050 2:04  
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(b) Computational time versus number of sequences 

Number of 
Sequences 

Solving Time 
(mm:ss) 

9 0:30 
18 1:39 
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45 6:15 
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(c) Computational time versus number of independent positions 

Number of 
Indep Pos 

Solving Time 
(h:mm:ss) 

2 0:00:01 
3 0:00:03 
4 0:00:21 
5 0:01:23 
6 0:03:38 
7 0:05:18 
8 0:08:25 
9 0:15:52 

10 0:53:27 
11 2:33:20  
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Figure 8  Computational experiments for fixed-pattern TFBS finding. The relationship between 
computational time and various factors involved in a motif finding problem. This figure illustrates the 
computational time of solving Program 2 with (a) various sequences sizes; (b) various number of 
sequences and (c) various independent positions. 
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solving time is roughly proportional to the number of sequences. The proposed model 

is quite promising for treating the TFBS finding problems with long sequences and a 

large number of sequences. Figure 8(c) shows that the computational time rises 

exponentially as the number of independent positions increases. 

3.6 Software Package: “Global Site Seer” 

A software package named “Global Site Seer” is developed based on program 

(P2) for solving fixed-pattern TFBS finding problems. This software is available from 

http://www.iim.nctu.edu.tw/~cjfu/gss.htm 
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Chapter 4  Model 2: Ambiguous-spacer TFBS 

Finding 

A more complicated TFBS finding problem is to find the consensus sequence in 

an uncertain pattern format where the number of ignored letters between the two half 

sites is unknown. In this chapter we introduce a modification of program (P2) to solve 

this kind of TFBS finding problems. 

4.1 Problem of Ambiguous-spacer TFBS Finding 

A TFBS finding problem with Ambiguous spacers is defined as follows: 

Generally the TFBS for binding dimerized regulators have their length not more 

than 22 bases. This is because of the space restriction on bindingα-helices of both 

protein units to the major groove of DNA double strand helix structure. That means, a 

reasonable range of spacer numbers is limited from 0 to 12 in the problem defined 

above. Therefore, the concept of mixed 0-1 linear programming approach for this kind 

of TFBS finding problem is to enumerate all possible spacer numbers k and 

reformulate program (P2) to cover these enumerations. 

Given 
(i) A sequence set containing L sequences co-regulated by a dimerized activator, 
(ii) An inverted palindrome shared pattern which has 5 adjacent reactive bases in 

each half sites but in-between spacers unknown, i.e. “NNNNN*…*NNNNN”. 
To find the best conserved consensus sequence 

10987654321 )( xxxxxkxxxxx , 

where { } C G, T, A, ∈ix , i is the index of reactive base, k is the spacer number to 
find and comp(·) means a complement base. 



 35

The data preparation step is similar to the preparation procedure of fixed-pattern 

TFBS finding. To enumerate all possible k, a candidate set { }1010 ,...,,...,, DDDDD k= , 

where kD  is constructed as a fixed-pattern candidate set, is prepared for different k 

from 0 to 10. The candidate sites are thus indexed by (l,s,k). A simple illustration of 

constructing D is shown in Figure 9. And therefore we can redefine the index set ibS ,  

as 

{ },),,( ,,, bdkslS k
islib ==  (23) 

where k
isld ,,  is the thi  base of a candidate site contained by kD . 

(a) 
Sequence #1:   AAGACTGTTTTTTTGATC 

Sequence #2:   … 

(b) 

{ }0),,(0 == kkslD , 

(l, s, k) = (1,1,0) AAGACTGTTTTTTTGATC 

(l, s, k) = (1,2,0) AAGACTGTTTTTTTGATC 

 … … 

{ }1),,(1 == kkslD , 

(l, s, k) = (1,1,1) AAGACTGTTTTTTTGATC 

(l, s, k) = (1,2,1) AAGACTGTTTTTTTGATC 

 … … 

{ }2),,(2 == kkslD , 

(l, s, k) = (1,1,2) AAGACTGTTTTTTTGATC 

(l, s, k) = (1,2,2) AAGACTGTTTTTTTGATC 

 … … 

Figure 9  Site extraction for ambiguous-spacer TFBS finding: (a) original sequence 
data; (b) schematic representation of the candidate sites. 
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4.2 Mixed 0-1 linear program for Ambiguous-spacer 

TFBS Finding 

To solve a TFBS finding problem with an ambiguous spacer number, we need to 

apply some modification on program (P2) to enumerate different k. Because the target 

consensus sequence is fixed on its spacer number, we need to find k with the 

maximum matching score. With the assumption of OOPS where each sequence has 

only the best fitting candidate site proposed, the conservation constraints of site 

indicator kslz ,,  is reformulated as follows: 

{ }Llz
ks

ksl ...,,11
,

,, ∈∀=∑ , (24) 

∑∑∑ ===
s

ksL
s

ks
s

ks zzz ,,,,2,,1 ...  { }10...,,0∈∀k . (25) 

Constraint set (24) is a modification of (5) which is based on the assumption of 

OOPS: only one kslz ,,  is supposed to be nonnegative in a sequence. Constraint (25) is 

used to make sure that all the nonzero kslz ,,  have their corresponding candidate sites 

from the same set kD . By applying these two constraints we can then obtain a 

solution with a fixed spacer number. 

Because this kind of TFBS finding problem is only for analyzing dimerized 

activator, structural constraint of inverted palindrome must be incorporated as 
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Most of the exception rules for this problem are the same as those discussed in 

the fixed-pattern motif finding case except the constraints for excluding solutions. The 

modified constraint is as follows, for example of excluding “*ATGT******ACAT*”: 

( ) ,8*,,

9,T8,A7,C6,A5,T4,G3,T2,A

δ−≤−+

+++++++

∑ ∑ MLz

yyyyyyyy

l s ksl

 (26) 

Mixed 0-1 Linear Program for TFBS finding with ambiguous spacers 
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where 6=∗k  is the spacer number of the excluded solution and 8 ≥M . 

The addendum term ( )MLz
l s ksl∑ ∑ −*,,  lets constraints (26) exclude only the 

solution “ATGT( ∗k )ACAT” with a specified spacer number 6=∗k . If all the 

nonzero kslz ,,  are not from *kD , the constraints will become inactive. 

After applying these constraints we have program (P3), the mixed 0-1 linear 

program for ambiguous-spacer TFBS finding. 

4.3 Experimental Results 

CRP-binding sites 

Using program (P3) to search for CRP binding sites we obtain the globally 

optimal solution as “TGTGA******TCACA” with score 147, which is exactly the 

solution found in program (P2). And the second best solution is 

“GTGAA****TTCAC” with score 134. The relationship between the computational 

time and the number of possible k’s (i.e. |k|) is linear, as shown in the experiment 

result listed in Figure 10. The number of ignored letter k is between 0 and k , the 

upper bound of k, and thus we have |k| = k + 1 in this experiment. 

FNR-binding sites 

Program (P3) is also applied to solve an example of searching for binding sites 

of fumarate and nitrate reduction (FNR) regulatory protein in E. coli. Both CRP and 

FNR belong to the CRP/FNR helix-turn-helix transcription factor superfamily (Tan et 

al., 2001). The sequence data, which is taken from GenBank, contains 12 DNA 

sequences with lengths varied from 96 to 781. Owing to the dimer structure of the 

binding protein, the consensus sequence in this example also has a constraint of 
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inverse symmetry. The RegulonDB database (Huerta et al., 1998) lists the found 

regulatory binding sites for eight of these twelve sequences while the exact positions 

of other four sequences are not listed yet. Solving this example by program (P3) we 

obtained the global optimal consensus sequence as “TTGAT****ATCAA” with score 

107, which is the same consensus sequence as indicated by Tan et al. (2001). Table 4 

illustrates the result including the consensus sequence and the predicted binding sites 

for all of the 12 sequences. Some sites downstream of the transcription start (i.e. with 

positive indices) are also listed because there are a few known cases in which 

regulatory sites appear within transcription units (Tan et al., 2001). The proposed 

(a) 

k  |k| Consensus sequence Score Computational Time 

0 1 TGTTT(0)AAACA 126 4:51 
2 3 TGAAA(2)TTTCA 129 12:32 
4 5 GTGAA(4)TTCAC 134 19:46 
6 7 TGTGA(6)TCACA 147 24:28 
8 9 TGTGA(6)TCACA 147 25:49 

10 11 TGTGA(6)TCACA 147 32:35  
(b) 
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Figure 10  Computational experiments of ambiguous-spacer TFBS finding using program 

(P3) with various numbers of possible k’s (the example in Appendix): (a) Solutions of 

various upper bound of spacer numbers and their corresponding computational time; (b) 

Illustrative plot of relationship between |k| and computational time. The number enclosed in 

the consensus sequence is the spacer number ∗k . 



 40

method has found some sites not listed in RegulonDB but having scores higher than 

those listed in RegulonDB (e.g. the third solution in the Operon ansB row of Table 4). 

The best predicted sites in the four undetermined sequences are also listed in Table 4. 

 

Table 4  FNR binding sites found by program (P3) 

Operon Seq. 
length 

Site seq. found by 
program (P3) 

Predicted 
Position Score Site seq. listed in RegulonDB* Center 

Position 
Consensus: TTGAT----ATCAA     

narK 338 ATGAT----ATCAA 
TTGAT----ATCAA 

-86 
-48 

9 
10 

actatgGGTAATGATAAATATCAATGATagataa
atcttaTCGTTTGATTTACATCAAATTGccttta

-79.5 
-41.5 

ansB 345 TTGTT----GTCAA 
TTGTA----TCCAA 
TTTAT----TTTAA 

-48 
-81 
-123 

8 
6 
7 

acgttgTAAATTGTTTAACGTCAAATTTcccata
gcctctAACTTTGTAGATCTCCAAAATAtattca

-41.5 
-74.5 

narG 525 TTGAT----ATCAA -55 10 ctcttgATCGTTATCAATTCCCACGCTGtttcag -41.5 
dmsA 325 TTGAT----AACAA -48 9 ctttgaTACCGAACAATAATTACTCCTCacttac -33 

frd 781 TTCAG----ATCCA 
TTAAT----TTCAG 

-37 
-98 

7 
7 

AAAAATCGATCTCGTCAAATTTcagacttatcca -47 

nirB 262 TTGAT----ATCAA -48 10 aaaggtGAATTTGATTTACATCAATAAGcggggt -41.5 
sodA 284 TTGAT----ATTTT -42 7 agtacgGCATTGATAATCATTTTCAATAtcattt -34 
fnr** 96 TTGAC----ATCAA -7 9 atgttaAAATTGACAAATATCAATTACGgcttga

ccttaaCAACTTAAGGGTTTTCAAATAGatagac
1 

-103.5 
(cyoA) 599 CTTCT----ATCAA 

TTGTT----TTCAC 
-113 
-198 

7 
7 

N/A N/A 

(icdA) 290 ATGAC----AACAA 
TTGCT----AGCAT 

16 
73 

7 
7 

N/A N/A 

(sdhC) 708 TTGAT----AATAA -330 8 N/A N/A 
(ulaA) 346 TCAAT----ATCAA 

TTGGT----ATTAA 
-278 
-257 

8 
8 

N/A N/A 

* For visualizing the comparison, the letters in uppercase represent the binding site listed in RegulonDB; the letter in bold 
face is the center of the site sequence; and the encompassed letters represent the exact binding site obtained by 
program (P3). 

** The second site listed in RegulonDB is not contained in the sequence data, which is only 96 bases long, from 
GenBank. 
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Chapter 5  Model 3: Pattern-free TFBS Finding 

In the previous chapters we have discussed mixed 0-1 linear programming 

approaches for finding TFBS with a given pattern. This pattern may be definitely 

given or defined with ambiguity on center spacers. In this chapter we discuss a mixed 

0-1 linear programming formulation of TFBS finding without any predefined share 

patterns.  

A predefined shared pattern can notably help discriminate the TFBS when 

applying consensus based TFBS finding approaches. Unfortunately, such information 

is unavailable in most cases, especially when analyzing an unknown functional 

regulation. Finding unframed TFBS today still relies on heuristic approaches which 

compromise to accuracy. This is because that exact enumeration approaches which 

test all M4  M-wide patterns are very time consuming and only capable of searching 

very short patterns. In this chapter a mixed 0-1 linear program for finding unframed 

binding sites is introduced. This approach can exactly find the best conserved signals 

in acceptable computational time without any predefined shared pattern. 
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5.1 Problem of Pattern-free TFBS Finding 

To find TFBS without any given shared pattern, a better idea than enumerating 

all M4  M-wide consensus sequences is to enumerate all reasonable combination of 

reactive bases on the consensus sequence. Based on this concept, only two parameters, 

the length of regulatory region, M, and the number of reactive bases, K, are required 

for TFBS finding. A pattern-free TFBS finding problem can then be defined as 

follows: 

In this definition only K bases in the consensus sequence are reactive, although 

their positions in the consensus are unknown. Therefore ix ’s in this definition have 

five alternatives including 4 nucleotide types and an inactive type (i.e. ‘*’). The 

candidate set to prepare is simpler than those to construct in previous chapters. As 

shown in Figure 11, all candidate sites are extracted with a given length M. A 

difference on site extraction is that candidate sites are indexed by positions of their 

center bases. That means the first few and the last few sites will contain some virtual 

meaningless bases (i.e. bases represented by ‘.’). This prevents from a case ignoring 

short signals which locate at the beginning or ending regions. 

Given 
(i) A set of DNA sequences each of which contains at least one motif of 

a specific regulator, 
(ii) M, the length of consensus sequence, 
(iii) K, the number of reactive bases, 

To find the best conserved consensus sequence 
  MM xxxxx 1321 ... − , 
where { } * C, G, T, A, ∈ix  in which ‘*’ means an inactive base. 
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5.2 Formulation and Linearization 

For presentation of the consensus sequence, each base ix  is represented by 

three binary variables, iu , iv  and ie , with a relation shown in Table 5. iu  and iv  

decide the nucleotide type and ie  decides sensitivity as follows: 

⎩
⎨
⎧

=
                 otherwise. ,0

reactive is base  if  ,1 thi
ei  (27) 

Since the number of reactive bases in a consensus is K, we have 

Ke
i

i =∑ . (28) 

To determine base matching between a consensus and a candidate site, a series of 

(a) 
Sequence #1:             AAGACTGTTTTTTTGATCACGGA 

Sequence #2:    …… 

(b) 
(l, s) = (1, 1) ..........AAGACTGTTTTTTTGATCACGGA 

(l, s) = (1, 2) ..........AAGACTGTTTTTTTGATCACGGA 

(l, s) = (1, 3) ..........AAGACTGTTTTTTTGATCACGGA 

……             …… 

(l, s) = (1, 12)             AAGACTGTTTTTTTGATCACGGA 

……             …… 

(l, s) = (1, 23)             AAGACTGTTTTTTTGATCACGGA.......... 

(l, s) = (1, 24)             AAGACTGTTTTTTTGATCACGGA.......... 

……             …… 

Figure 11  Site extraction for pattern-free TFBS finding (M = 20): (a) original 

sequence data; (b) schematic representation of the candidate sites. 
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comparing functions iby ,  are defined as 
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For base comparison we use the same notation isl ,,θ  as defined in (6). That is, 

ibisl y ,,, =θ  if bd isl =,, . A candidate site is evaluated by summing up isl ,,θ ’s. Take a 

candidate site “CGGTCAG” for example, the site score (i.e. number of base matches) 

is obtained from ∑=

7

1 ,,i islθ = )( 7,G6,A5,C4,T3,G2,G1,C yyyyyyy ++++++ . When 

comparing with a consensus “CTG*CAG” (M = 7 and K = 6), this score function will 

give 5 as the site score for five matched letters. 

As defined in Chapter 2, binary variable slz ,  is used in (4) to flag the candidate 

site at (l,s). The best matching site in a sequence will have its corresponding slz ,  be 1 

whereas other slz , s be 0. According to the assumption of one occurrence per 

sequence (OOPS), the same conservation constraint (5) applied in (P1) is also 

involved as 

Table 5  Binary base codes for pattern-free consensus. 

 

ix  iu  iv  ie  

A 0 0 1 

T 1 1 1 

G 1 0 1 

C 0 1 1 

* 0 0 0 
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∑ ∈=
s

slsl zz }1,0{,1 ,,  for all l. (3) 

For a given consensus sequence (i.e. a sequence of ( iu , iv , ie )), the best candidate 

sites of sequences are extracted and sum scored to obtain the total matches by 

following formula: 

∑∑ ∑ ⎟
⎠

⎞
⎜
⎝

⎛
=

l s i
islslzScore ,,, θ . (30) 

A higher score means the consensus found is better conserved among all the 

sequences. Similarly, the objective function has an equivalent disaggregated form as 
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A pattern-free TFBS finding problem can then be formulated as program (P4). 

Mixed 0-1 Nonlinear Program for Pattern-free Motif Finding 
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The objective is to find the consensus having the highest score among the search 

space of patterns under a given M and K. 

Program (P4) has similar product terms like those in program (P1) which bring 

about nonlinearity. The product terms we encountered here include: iiue , iive , 

iii vue  and ∑ slib zy ,, . With the relaxation and linearization approaches discussed in 

Chapter 2, these product terms can also be completely linearized. 

For product terms iiue  and iive  the linearization can be simplified without 

loss of generality. A good idea of reducing searching range of binary variables is to 

add two constraints which make iu = 0 and iv = 0 when ie =0: 

iiii eveu ≤≤         , . (31) 

From this dependency we can induce two logical relations: 

iiiiii vveuue ==         , . (32) 

According to Proposition 2 in Chapter 2, the binary product term iii vue  can be 

replaced by a new continuous variable iw  accompanied with the following 

constraints: 

.2     , 0
,     ,     , 

−++≥≥
≤≤≤

iiiii

iiiiii

evuww
ewvwuw

 (33) 

Therefore the comparing functions iby ,  have alternative definitions as follows: 



 47

.2     , 0
,     ,     , 

,     , 
,     , 

,     , 

,C,G

,TA,

−++≥≥
≤≤≤

≤≤

−=−=

=+−−=

iiiii

iiiiii

iiii

iiiiii

iiiiiii

evuww
ewvwuw

eveu
wvywuy

wywvuey

 (34) 

Linearization of the last product term ∑ slib zy ,,  is quite similar to those terms 

in program (P2). That is, a continuous variable ibq ,  accompanied with following 

constraints can replace ∑ slib zy ,, . 
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Therefore all the product terms in program (P4) are successfully linearized. After 

applying the relaxation of indicator slz ,  and linearization of all product terms we can 

have program (P5), a mixed 0-1 linear program for pattern free TFBS finding. 

5.3 Structural Constraints 

Most TFBS have some specific features reflecting structures of the 

corresponding regulatory proteins. The proposed mixed 0-1 linear program is 

convenient to embed logical constraints for elucidating specific TFBS precisely and 

efficiently. Structural features of various types of TFBS can be formulated as logical 

constraints to help facilitate the search process. There are three general types of 

activators: mono-type TFBS like binding sites for homeodomains, dyad-type TFBS 

like bHLH and bZIP binding sites, and serial-type TFBS like zinc-finger binding sites. 
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To find TFBS with specific structure, (P5) is further modified with several logical 

constraints applied.  

Mono-type TFBS 

In (P5), a consensus is scored by calculating matches with all proposed candidate 

sites. Nevertheless, some TFBS may occur in form of inverted complement. For 

example of a consensus “CACTCA”, the TFBS resembling to the inv/comp 

“TGAGCG” should also be considered when scoring the consensus. Scoring an 

inv/comp consensus is the same as to compare original consensus with a set of 

inv/comp candidate sites. For testing inverted complement simultaneously, another 

Mixed 0-1 Linear Program for Pattern-free Motif Finding 
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candidate set consisting of inv/comp candidate sites is involved. A new index t is 

introduced to distinguish the two sets of candidate sites: t = 0 for original set and t = 1 

for inv/comp set. The index of candidate sites becomes (l, s, t) instead of (l, s) in 

program (P2). Variable 
slz ,
 is replaced by tslz ,,  and ibS ,′ , the replacement for ibS , , 

is defined as: 

)},(comp |)1,,{(}|)0,,{( 1,,,,, bdslbdslS iMslislib ===′ +−U  (35) 

where comp(·) means a complement base. 

And ibq , , the replacement of product term ∑ tslib zy ,,,
, is accompanied with 

constraints shown below: 
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Sequence TAATGTTTGACAGTGCAACTGTGG 

Candidate Set 0 (Original): 
… 
s = 7 
s = 8 
s = 9 
… 

… 
TAATGTTTGACA 
AATGTTTGACAG 
ATGTTTGACAGT 

… 

Candidate Set 1 (Inv/comp): 
… 
s = 7 
s = 8 
s = 9 
… 

… 
TGTCAAACATTA 
CTGTCAAACATT 
ACTGTCAAACAT 

… 

Figure 12  Extraction of two candidate sets for original and inv/comp motifs. The 

homologous candidate sites in different sets are inverse complement. 
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No matter from which candidate set, there is only one site proposed to match the 

consensus for every sequence. Thus constraints for tslz ,,  are placed as follows: 

10,  allfor   1 ,,
,

,, ≤≤=∑ tsl
ts

tsl zlz . (37) 

And therefore we have program (P6) as the mixed 0-1 linear program for 

searching mono-type TFBS. 
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Dyad-type TFBS 

Most gene regulators are dimers or tetramers. The binding sites of this kind of 

regulators usually have length less/equal to 22 and have two symmetric half parts 

forming an inverted palindrome or direct repeats. To find this kind of TFBS, the 

consensus sequence will be like 

,...... 212121 MMMM xxxxxx −+
 (38) 

where { } * C, G, T, A, ∈ix  in which ‘*’ means an inactive base. 

The homologous bases in both half sites have the same sensitivity. Referring to 

constraint (31), both an inactive base and its homologous base have 0== ii vu  since 

0=ie . That means inactive bases should be free from invert complement relations. 

The logical constraints for inverted palindrome and direct repeats are then formulated 

as 

(a)  (b) 

  

Figure 13  λ repressor, an example of dimerized binding protein. (a) Geometry of the λ 

repressor-operator complex. (b) The operator fragment. This 20-mer contains two λ OL1 

half-sites, each of which binds a monomer of repressor. PA-PE are phosphate groups 

(backbone) important for recognition. Base pair 4 (Guanine) is also regarded as a reactive base 

with which Ser 45 of λ repressor makes a hydrogen bond. 
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Many dyad-type TFBS have spacers (i.e. inactive bases) between the two half 

sites. Because the two half sites are assumed connected in (38), there can only be even 

number of center spacers when searching an inverted palindrome. program (P5) needs 

modified to involve both even-spacer and odd-spacer cases. For testing odd-spacer 

solutions simultaneously, another candidate set is constructed by extracting substrings 

with a center position skipped, as illustrated in Figure 14. Both the two candidate sets 

are put into the same program and distinguished by a new index p, where p = 0 for 

even-spacer set and p = 1 for odd-spacer set. The index of candidate sites becomes (l, 

s, p). Variable 
slz ,
 is replaced by pslz ,,  and ibS ,′′ , the replacement for  ibS , , is 

defined as: 

 
Sequence TAATGTTTGACAGTGCAACTGTGG 

Candidate Set 0 (even spacers, M=6): 
…… 
s = 7 
s = 8 
s = 9 
…… 

…… 
TAATGTTTGACA 
AATGTTTGACAG 
ATGTTTGACAGT 

…… 

Candidate Set 1 (odd spacers, M=6): 
…… 
s = 7 
s = 8 
s = 9 
…… 

…… 
TAATGT.TGACAG 
AATGTT.GACAGT 
ATGTTT.ACAGTG 

…… 

Figure 14  Extraction of two candidate sets for even-spacer and odd-spacer dyad motifs. 
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{ } { }.2,|),,(,|),,( ,,,,, MiMbdpslMibdpslS pislislib ≤<=≤==′′ +U  (41) 

The linearization constraints for ∑= pslibib zyq ,,,,
 becomes: 

Dyad-type Motif Finding 
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To ensure that all the proposed sites are from the same set, additional constraints 

for pslz ,,  are placed as follows: 

. allfor   ...

;10,  allfor   1
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Therefore we have program (P7) as the mixed 0-1 linear program for searching 

dyad-type TFBS. 

Serial-type TFBS 

Another often seen type of regulators is zinc-fingers which is a zinc-containing 

protein chain. Zinc-fingers binding site is a serial-type TFBS which is a chain of 

trinucleotide groups. Each of these trinucleotide groups contains two reactive bases. 

The logical constraint is formulated as follows: 

{ }. ...... ,7 ,4 ,1 for  221 ∈=++ ++ ieee iii  (44) 

Constraint (44) should be set depending on the length of consensus which is 

supposed a multiple of 3. K should be set equal to 2M/3 when searching zinc-fingers 

binding sites.  

Another feature of zinc-fingers binding sites is that the first base of each triplet 
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must be ‘G’. This is because the first two of the three DNA contacting amino acids are 

the same in every case: Arg and Asp. This arginine in each finger makes direct contact 

with a guanine in each triplet. A base assignment constraint is placed as: 

{ }. ...... ,7 ,4 ,1 for         0  and  1  ,1 ∈=== ivue iii  (45) 

Like a mono-type TFBS, there may be occurrences with the opposite direction. 

Therefore the program for serial-type TFBS finding is formulated as program (P6) 

accompanied with constraints (44) and (45). 

5.4 Suboptimal Solutions and Exception Rules 

The proposed program can obtain only one global optimal solution. Practically 

biologists need more than one consensus sequence solution to make further 

(a)    (b) 

  

Figure 15  Zif268 zinc finger regulator, an example of series-type regulator. (a) Arrangement 

of the three zinc fingers of Zif268 in a curved shape to fit into the major groove of DNA. (b) 

Summary of interactions between Zif268 zinc finger amino acids and DNA bases. Each of the 

three fingers has two amino acids (all but one of the six are arginines) that make specific 

contact with guanines in the DNA major groove.(Pavletich and Pabo, 1991) 
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discrimination and verification. In addition, there may be a case that the target signal 

is weaker than other noises. To successfully find out the TFBS of concern, we need 

exception constraints for two separate purposes: finding suboptimal solutions and 

exclude noises. The exception constraints include constraints for excluded solutions 

and general exception rules, as described in Chapter 3. 

For the proposed program discussed in this chapter, the exception constraints are 

totally the same as those discussed in Chapter 3. These include constraints for finding 

suboptimal solutions (see §3.3) and general exception rules (see §3.4). 

5.5 Complexity Analysis of Searching Space 

When utilizing three binary variables (i.e. u, v, and e) to represent every base in 

the consensus sequence, we may encounter a searching space of M32  consensus 

sequences. Fortunately, not all of these binary variables are independent and a large 

part of searching space is pruned. First, only K of (
iu , iv ) pairs are independent 

because only the bases at reactive positions are compared. Second, because only K of 

ie s in a half site are allowed to be 1, the number of combinations of ie  values is 

M
KC . Therefore, the total number of possible combinations of binary variables is 

M
K

K C⋅22 . 

From the discussion in Chapter 3 we know the computational time is 

proportional to the number of sequences and almost no effect to the size of each 

sequence. The worst case of computational time may be roughly of order 

)2(O 2 M
K

K Cl ⋅⋅ . Generally, the computational time is acceptable for most cases where 

M less than or equal to 12 and K less equal to 7. 
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Figure 16 illustrates a prediction of CRP-binding sites of E. Coli by program (P4) 

with 117 ≤≤ M  and 63 ≤≤ K on a Pentium 4-3.0GHz PC. This example has 18 

(a) 

K M Consensus Sequence Score Computational Time (h:mm:ss) 
3 7   TG..A....T..CA 92 0:17:44 
 8 T.TG........CA.A 94 0:21:31 
 9 .T.TG........CA.A. 94 0:26:59 
 10 T...T.A......T.A...A 94 0:34:59 
 11 .T...T.A......T.A...A. 94 1:21:11 

4 7 GTGA......TCAC 120 0:27:11 
 8 .GTGA......TCAC. 120 0:28:44 
 9 ..GTGA......TCAC.. 120 0:57:07 
 10 ...GTGA......TCAC... 120 0:58:08 
 11 ....GTGA......TCAC.... 120 1:17:19 

5 7 GTGA.C..G.TCAC 136 0:30:09 
 8 TGTGA......TCACA 147 0:52:02 
 9 .TGTGA......TCACA. 147 1:13:41 
 10 ..TGTGA......TCACA.. 147 2:42:36 
 11 ...TGTGA......TCACA... 147 5:23:40 

6 7 GTGAA.TA.TTCAC 151 0:27:10 
 8 TGTGA.C..G.TCACA 164 0:51:50 
 9 .TGTGA.C..G.TCACA. 164 4:37:04 
 10 T.TGTGA......TCACA.A 165 10:58:17 
 11 A..TGTGA......TCACA..T 166 33:23:59 

(b) 

Computational time versus length of half site and number of reactive letters
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Figure 16  Experiments of pattern-free TFBS finding on searching for CRP-binding sites in 18 
E.coli DNA sequences, which taken from Stormo et al. (1989) (a) the list of consensus sequences 
found under various reactive base numbers K and various half site lengths M. (b) polygon graph 
illustrating the computational time under various settings. 
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DNA sequences each of which has 105 bp. The consensus is considered inverted 

palindrome and no exclusive constraints are applied. Although different solutions of 

the consensus sequence in experiments of reactive letter number greater or equal to 4, 

the positions of all the TFBS are the same as the results listed in Stormo et al. (1989). 

5.6 Experimental Results 

The proposed method is implemented and publicly available as the second 

version of software Global Site Seer (GSS2). This section reports results of GSS2 on 

several eukaryotic examples. All the examples are TFBS of dimerized regulators and 

benefit from inverted palindrome. These examples include two C. Elegans sequence 

sets regulated by daf-19 and lin-32 collected from WormBase (Stein et al., 2001), and 

a benchmark sequence set from assessment system of Tompa et al. (2005) originally 

collected from TRANSFAC (Matys et al., 2003). All the sequence sets in FASTA 

format are available at online supplementary. 

daf-19 regulons 

The C. elegans gene daf-19 encodes an RFX-type transcription factor that is 

expressed specifically in all ciliated sensory neurons. Target sites for mammalian 

RFX-type transcription factors (X boxes) typically are 13-14 bp imperfect inverted 

repeats (Swoboda et al., 2000). The example set contains five sequences listed in 

Swoboda et al. (2000) and three listed in WormBase. Our searching result is listed in 

Table 6. Compared GSS2 prediction with Swoboda et al. (2000), the same consensus 

is found but two variants on individual TFBS occur: TFBS in che-2 exactly matches 

but at different location; and TFBS in osm-1 listed in Swoboda et al. (2000) doesn’t 

appear. In fact, the osm-1 TFBS seems more like a silencer in our experiment because 
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the TFBS listed in Swoboda et al. (2000) is at +4 position. 

lin-32 regulons 

lin-32 encodes a basic helix-loop-helix transcription factor that is required for 

development of several types of neurons, including the touch receptor neurons and the 

male sensory ray neurons (Krause et al., 1997; Portman and Emmons, 2000). This 

sequence set contains 9 upstream sequences of various genes regulated by lin-32 with 

length varying from 326 to 1050. The GSS2 prediction is listed in Table 7. The 

accuracy is not verified here because no related experimental report from laboratory is 

available for comparison. But in our opinion, this result is good because the reactive 

bases in consensus sequence are close together and have a TG group. Therefore, these 

TFBS are strong and meaningful signals and possibly the lin-32 binding sites. 

hm17r (Tompa et al., 2005)  

We also test a sequence set from an assessment system designed by Tompa et al. 

(2005). The whole dataset in this assessment system includes 3 classes each of which 

contains 56 sequence sets. This dataset is totally from real genome and the TFBS are 

very hard to find because they have various features for binding zinc-finger, HTH, 

HLH, and leucine-zipper, etc. Besides, the most intractable part is, the insertion and 

deletion errors. Because the dataset is designed for assessing TFBS finding tools 

designed in TCM (zero or more occurrence per sequence) mode, most of them are not 

appropriate for testing the proposed mixed 0-1 linear program, which is designed for 

OOPS (One Occurrence Per Sequence) mode from original concept. The sequence set 

we used here is hm17r, a human DNA sequence set from real class of Tompa’s dataset. 

Every sequence in hm17r is 500 bp long with a TFBS for a dimerized regulator. The 

prediction is listed in Table 8. Comparing with answer of Tompa et al. (2005), there 
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are two differences in this prediction: the TFBS position in Seq_3 is -328 differing 

from Tompa’s answer, -173; in Seq_5 there is no occurrence by answer; and TFBS 

position in Seq_9 is -173 differing from Tompa’s answer, -138. All different answers 

Table 6  A Prediction of daf-19 binding sites. 

GSS2  Score Swoboda et al.(2000) Gene 
regulated  ...GTT.CCATGG.AAC... Posi. 85 Motifs Posi. 

che-2 ctgGTTgTCATGGtGACtgc -57 10 GTTgTCATGGtGAC -130 
daf-19 ttgGTTtCCATGGaAACtac -109 12 GTTtCCATGGaAAC -109 
osm-1 attGTAtCCATACcAACatc -1211 9 GCTaCCATGGcAAC -86 
osm-6 catGTTaCCATAGtAACcac -100 11 GTTaCCATAGtAAC -100 
xbx-1 cccGTTtCCATGGtAACcgt -79 12 GTTtCCATGGtAAC -79 
dyf-3 ggaGTTtCTATGGgAACgga -88 11 N/A N/A 
pkd-2 tccGTTtCTATGCaAAAaac -231 9 N/A N/A 
xbx-4 ctaGTTgCCATGAcAACcgc -35 11 N/A N/A 

 

Table 7  A Prediction of lin-32 binding sites. 

Consensus Sequence Score 
Gene regulated position 

TGAAA   (9)   TTTCA 78 
hlh-2 -457 tGGAAAtattaaagaATTCTt 7 
cfi-1 -738 tTAAAAttaaattatTTTCAa 9 

cwp-4 -332 tTTAAAtatatttttTTTCAg 9 
egl-46 -239 gTGAAAattgactagATTCAc 9 
lin-22 -348 tTGAATtttctgggaTTTCTt 8 
mab-3 -184 tTGAAAatttgacttTTCCAc 9 
mab-5 -56 gTGAAAtatgtgtcgTTTCAc 10 
tbb-4 -300 cAGAAAaagtcaacaTTACAg 8 

twk-21 -374 cTGAAAattcaagtaTTTAAa 9 
 

Table 8  A Prediction of DNA motifs in hm17r sequence set. 

GSS2  Score Tompa et al.(2005) 
Seq. name 

.....GGGAA.TTCCC..... Posi. 97 Motifs Posi.
Seq_0 actccGGGAAtTTCCCtggcc -83 10 tccGGGAAtTTCCCtg -81 
Seq_1 gctccGGGAAtTTCCCtggcc -83 10 tccGGGAAtTTCCCtg -81 
Seq_2 gctccGGGAAtTTCCCtggcc -85 10 tccGGGAAtTTCCCtg -83 
Seq_3 ctccgGGGAAgTTGGCagtat -328 8 gcttggaaattccggagc -173
Seq_4 aaagtGGGAAaTTCCTctgaa -144 9 gtGGGAAaTTCC -141
Seq_5 gtatcGGGAAtTGCTCcctcc -274 8 <No Instances> N/A 
Seq_6 ggcagGGGAAtCTCCCtctcc -274 9 gGGGAAtCTCC -270
Seq_7 aatgtGGGATtTTCCCatgag -79 9 aaatgtGGGATtTTCCC -80 
Seq_8 aatcgTGGAAtTTCCTctgac -86 8 GGAAtTTCCT -80 
Seq_9 catcgTGGATaTTCCCgggaa -173 8 attggggatttcctc -138

Seq_10 gccctGGGGGcTTCCCcgggc -136 8 tGGGGGcTTCCCc -132
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provided by Tompa have lower matches than the TFBS found by GSS2. These tests 

illustrate that the determined consensus successfully helps determinate most TFBS 

and can be regarded as a good result. 

5.7 Software Package: “Global Site Seer v2” 

A software package “Global Site Seer 2.0” is designed for pattern-free TFBS 

finding and is available by http://www.iim.nctu.edu.tw/~cjfu/gss2.htm. 
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Chapter 6  Discussion 

6.1 Features of Proposed Methods 

This study proposes a mixed 0-1 linear programming approach to search TFBS 

under various conditions. The final result of this study is a mixed 0-1 linear program 

for solving pattern-free TFBS finding problems. Advantageous features of this 

approach include: 

(i) A pattern-driven design which can search longer patterns than current 

enumeration approaches. Because only the reactive bases are enumerated in 

consensus sequence, the computational time is notably reduced. 

(ii) A global optimal consensus is promised. As a nature of mixed 0-1 linear 

program, the consensus sequence with maximum matches is surely obtained. 

(iii) No prerequisite shared pattern is needed. The proposed method can search 

TFBS of an undiscovered regulation with limited information like length of 

regulatory region and number of reactive bases. 

(iv) Capable of identifying TFBS with spacers dispersed in regulatory region. 

Most current TFBS finding methods have difficulty to search patterns containing 

inactive bases. Contrarily, the proposed method benefits from these inactive 

bases because searching space is pruned. 

(v) Structural features can be involved. In the proposed method various structure 

features of TFBS can be formulated to help prune searching space and improve 

precision, e.g. inverted palindrome or direct repeat. 

This approach also has several weaknesses as follows: 

(i) Exponential growing computational time to the number of reactive bases. 

Although a notable feature over current pattern-driven enumeration methods is 

that the critical factor of searching time is number of reactive bases instead of 

pattern length, the limitations on length of regulatory sites still exist. 



 63

(ii) Only one solution obtained. By nature of optimization program, the proposed 

method cannot simultaneously search multiple patterns. Finding suboptimal 

solutions in this approaches still required individual program in which 

previously obtained optimal consensus sequences are excluded. 

(iii) Difficult to search consensus with base variability. The proposed method 

utilizes consensus sequences consisted only by four distinct nucleic acid types. 

The consensus sequence is a distinct ideal model of TFBS and only exact base 

matches within sites contribute the matching score. But in fact, there may be 

some reactive bases replaceable by other nucleotides which have similar 

sensitivity to regulators. 

As a nature of pattern-driven and mixed 0-1 linear programming design, the 

proposed method can find the optimal consensus in an acceptable computational time. 

The most advantaged property to current heuristic methods is the capability of 

embedding logical constraints. These logical constraints telling many kinds of specific 

features and exclusive rules notably increase the precision and efficiency. 

6.2 Issues in Approach Design 

Based on assumptions of occurrences in each sequence, there are several 

different searching modes for the computer-based determination of transcription 

binding sites. These modes are generally defined in studies of sequence-driven 

approaches which apply probability models to iteratively search the most significant 

conserved signal. CONSENSUS (Hertz and Stormo, 1995), a statistical based system 

for identifying consensus patterns of DNA sequence and protein sequences, provides 

three modes of searching: One Occurrence per Sequence (OOPS), One or More 

Occurrences per Sequence (OMOPS) and Zero or More Occurrences per Sequence 

(ZMOPS). Another TFBS searching tool, MEME (Bailey et al., 1995), also can search 
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motif under three different modes: One Occurrence per Sequence (OOPS), Zero or 

One Occurrence per Sequence (ZOOPS) and Two-Component Mixture (TCM)—each 

sequence may contain any number of non-overlapping occurrences of each motif. 

Which sequence mode is appropriate depends on the purpose of motif finding 

work. When a sequence set is given from any combination of upstream sequences of 

various genes and the purpose is to discover any possible regulations, searching tools 

capable of handling TCM mode are obviously much appropriate. For analyzing 

function of a particular regulator, the sequence set shall be prepared more 

conscientiously from sequences upstream genes regulated by the target transcription 

factor. And in this case OOPS and OMOPS are more suitable for finding the DNA 

motifs precisely. 

The proposed approach is only designed for searching sequences in OOPS or 

OMOPS mode and is very powerful when analyzing a specific function regulatory. It 

is not appropriate to search sequences in ZOOPS, ZMOPS and TCM modes for any 

possible undiscovered regulatory. 

6.3 Benchmark Results 

Assessment system of Tompa et al. (2005) 

In 2005 Tompa et al. designed an assessment system for TFBS finding tools. In 

this system they prepared three testing groups each of which contains 56 eukaryotic 

DNA sequence sets in various sizes. A statistical evaluation system is designed to 

measure the accuracy of all kinds of TFBS finding tools. The benchmark data set is 

designed in AMOPS or TCM modes, containing TFBS with insertion and deletion 

errors. These sequence sets contain all kinds of noises and most TFBS are relatively 
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weak. Generally, a TFBS searching tool which has accuracy over 0.2 is regarded as a 

good design. 

Testing results of proposed approach 

The testing result of proposed method on benchmark system of Tompa et al. 

(2005) is poor. Possible defects of the proposed method which lead to this poor 

performance may include: 

(i) Designed in OOPS mode 

(ii) Unable to handle insertion and deletion errors 

(iii) No further refining strategies for multiple suboptimal alternatives 

(iv) Weak on treating base variability 

And surely, all these weaknesses are active issues of further researches. 
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Chapter 7  Concluding Remarks 

 This study develops a series of mixed 0-1 linear programming approaches to 

search for transcription factor binding sites. The most advantageous property of the 

proposed method to existing DNA motif finding tools and is capable to find TFBS 

without any given shared patterns. Nevertheless, the accuracy still can be improved by 

more complex design. Some issues remain for further study: 

(i) The first issue is about the treatment of multiple consensuses. For searching a 

weak target signal, one needs more than one solution for further verification. 

These solutions can be obtained by applying exception constraints for banishing 

previously known solutions in the proposed method. Two strategies to obtain the 

final solution are designed as follows: One is to apply different scoring 

functions like PSSM or log-likelihood function to verify these consensus 

sequences. That is, for every consensus we can make a log-likelihood evaluation 

of all the TFBS in sequences and then compare the score to obtain the final 

solution. Another strategy is to count the number of occurrences. As a post 

treatment step, more other TFBS may be determined based on a consensus 

accompanied with a score threshold. The consensus having most TFBS 

occurrences is more possibly the target. 

(ii) Another issue is about the quality of sequence set. The collection step of a 

sequence set is critical to accuracy. The proposed method is originally designed 

for sequence sets which have one occurrence per sequence (OOPS), and may not 

be appropriate if not all the sequences contain target TFBS. Other modes like 

ZOOPS (Zero or One Occurrence per Sequence) or TCM (zero or more 
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occurrences per sequence) are not considered in this method. Although TCM 

mode is regarded as the most convenient to biologists, it compromises to 

accuracy. The consensus sequence is supposed to be an ideal binding pattern so 

it allows no ambiguity. Any sequence with no occurrences is not recommended 

because it will dramatically affect the quality of the consensus sequence. 

(iii) The third issue is to formulate various possible features. More complicated 

features can be articulated as logical constraints. One feature is the specific base 

group positioned case by case. An example is trinucleotide group: many dyad 

type TFBS have at least 3 reactive bases close together in half site. Another 

example is TG kink, an often seen structure in regulatory region (Schultz et al., 

1991). It may not contact regulatory protein but is very important because it 

allows DNA strand bend to fit the regulatory protein. The exact positions of 

these specific groups in the consensus vary by cases. Formulating these features 

may be difficult but very helpful in finding related TFBS effectively. 
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Appendix 

The Escherichia coli DNA sequences containing CRP-binding sites. This data set 

contains 18 gene upstream sequences, each of which is 105-bp long. 
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