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[1] Groundwater plays a vital role in regional water resources management. In
conventional design, a full-scale network system is installed initially to use groundwater
resources. However, the system capacity may exceed water demand in the early stages
because water demand generally increases with time. Therefore, this work proposes a
novel optimal capacity expansion model capable of determining an optimal schedule to
expand system capacity according to increasing water demand. The proposed algorithm
hybridizes a genetic algorithm (GA) and constrained differential dynamic programming
(CDDP). The chromosomes of the GA represent a possible design alternative, a
groundwater network with capacity that expands with time. The CDDP algorithm is then
used to compute the optimal pumping policy associated with the chromosome. Simulation
results indicate that the capacity expansion model saves more total present value cost
than conventional designs for the same annual interest rate and water demand. Results of

this study demonstrate promise for the proposed model in facilitating a cost-effective
groundwater network design with capacity expansion for regional groundwater supply.
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1. Introduction

[2] Water demand increases with time because of increas-
ing population and rising economies. Incrementally expand-
ing water resource capacity is a cost-effective strategy that
satisfies increasing water demand [Braga et al., 1985;
Rosegrant and Cai, 2002; Jenkins et al., 2004; Pulido-
Velazquez et al., 2006]. Optimizing capacity expansion has
become a significant issue in water resources management
[Voivontas et al., 2003; Mahmoud, 2006]. However, previ-
ous investigations cannot effectively solve the groundwater
capacity expansion problem under fully dynamic conditions.
Developing an optimal groundwater capacity expansion
model that can determine an optimal network expansion
schedule and consider time-varying pumping rates to fulfill
increasing water demand is an important issue.

[3] Voivontas et al. [2003] and Mahmoud [2006] studied
optimal capacity expansion for a surface water system.
Voivontas et al. [2003] developed a capacity expansion
model of an integrated water resource management for
islands. Their model considers the conjunctive operation
and expansion schedule of an integrated water resources
system including groundwater wells, reservoirs, desalina-
tion plants and shipping water. Mahmoud [2006] applies an
optimization model to determine the optimal expansion
schedules of a desalination plant. Mahmoud integrates
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objective space dynamic programming (OSDP) and mixed
integer programming to solve the capacity expansion prob-
lem. Both studies focus on the expansion schedule of
surface water and either ignore or greatly simplify ground-
water systems as a subsurface reservoir without considering
the dynamic hydraulic head.

[4] For a capacity expansion problem that emphasizes
the groundwater system, the decision variables are mainly
the well network and its expansion schedule that include the
location and installation schedule of each well in the design
network. Furthermore, for the groundwater capacity expan-
sion problem, computing the spatially distributed hydraulic
head is necessary, requiring much more computational work
than a problem considering only the surface water system.
Basagaoglu and Yazicigil [1994] propose capacity expan-
sion models to determine the optimal expansion schedules
for a hypothetical multiaquifer system using mixed integer
programming and the response matrix method. Their study
examines the impact of various demand increasing curves,
including the linear curve, convex curve and concave curve,
and simplifies operation cost to planning a capacity expan-
sion system. The study indicates that simplified operation
cost affects computational time and total cost, and demand
requirement variations may influence variations in selecting
well network design and expansion schedule. Watkins and
McKinney [1998] developed a capacity expansion model for
conjunctive use management. Their model also applies the
response matrix method to simulate hydraulic head response
for a confined aquifer. The model computes the optimal
network design and associated expansion schedule by
assuming steady pumping rates. Both studies determine
the optimal network design and associated expansion sched-
ule, and simplify the capacity expansion problem by as-
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suming steady pumping rates or linear operation cost. The
studies also apply the response matrix method to simulate
hydraulic head response that implies a linear assumption for
the groundwater system.

[s] For a groundwater system planning problem that
considers a time-varying pumping system, the hydraulic
head will vary in time and become a dynamic optimization
problem. The problem progresses to a nonlinear dynamic
problem when considering a nonlinear objective function or
nonlinear groundwater system such as an unconfined aqui-
fer. Because water demand increases with time, time-varying
pumping rates are more cost-effective than constant pump-
ing. However, solving a nonlinear dynamic optimization
problem is computationally demanding and previous studies
propose methods to increase computational efficiency
[Hsiao and Chang, 2002; Chang and Hsiao, 2002; Chu et
al., 2005; Hsiao and Chang, 2005; Chang et al., 2007].
Hsiao and Chang [2002] have further designed optimal well
networks with time-varying pumping rates. They apply a
hybrid algorithm, genetic algorithm (GA) and constrained
differential dynamic programming (CDDP) to solve the
discrete nonlinear dynamic optimization problem. Their
study simultaneously determines optimal well network
designs and a set of time-varying pumping rates. Using
the CDDP algorithm, the proposed model computes time-
varying pumping rates with sixty periods for a 15-year
planning horizon. They further apply the hybrid algorithm
to groundwater remediation planning problems [Chang and
Hsiao, 2002; Chu et al., 2005; Hsiao and Chang, 2005,
Chang et al., 2007].

[6] To summarize the previous discussion, for a ground-
water system planning problem, expanding system capacity
according to increasing water demand and considering time-
varying pumping rates is the most cost effective system
planning strategy. However, the problem will be a discrete
nonlinear dynamic problem without significant simplifica-
tion and solving the problem is computationally demanding.
Very few methodologies proposed by previous studies can
solve the problem efficiently. Although Hsiao and Chang
[2002] propose a model to solve a discrete nonlinear
dynamic groundwater planning problem, their network
system design is static and does not expand with schedule.
Their methodology cannot directly apply to a groundwater
capacity expansion problem without modification. There-
fore, this study proposes a novel methodology to solve a
groundwater system planning problem considering capacity
expansion by integrating GA and the modified CDDP, a
hybrid procedure customized from Chang et al.’s studies
[Hsiao and Chang, 2002; Chang and Hsiao, 2002; Chu et
al., 2005; Hsiao and Chang, 2005; Chang et al., 2007]. The
algorithm optimizes the capacity expansion problem on an
unconfined aquifer while minimizing total costs, including
fixed costs and operation costs.

2. Formulation
2.1.

[7] The objective function of the optimal planning model
minimizes the present total cost value. The total cost
consists of fixed cost for well network installation and well
pumping operation cost. Mathematical formulations of the
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optimization model, including the objective function and
required constraints, are as follows:
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where
) is a set of the candidate locations to install
a well network within the aquifer;
I is a set of well locations and is also a subset of €2;
u;, 1is the decision variable, time-varying pumping rate,
for the ith well at the rth operation time step;
i denotes the ith well within the candidate network I;
¢t denotes the rth operation time step;
¢y 1s the fixed cost of well installation for unit length;
¢y is the unit cost of pumping water and also can be
formulated as ¢c; = p X g X ¢3 X At
c3 1s the cost of electric power per unit work;
p is water density;
g 1is acceleration due to gravity;
y; is the depth of the ith well in the candidate network;
P; is the construction period of the ith well
and each construction period contains 7 operation
time steps (n > 1);
R is the interest rate;
is the hydraulic head at operation time step ¢ + 1;
L; 1is the ground surface elevation for the ith well;
d, is the amount of the water demand at operation
time step ¢
is the minimum pumping rate;
Umax 1S the maximum pumping rate;
Nmin 1S the required minimum groundwater head.

Umin

Equation (1) represents the present total cost value. The first
term of equation (1) is the present fixed cost value and the
second term is the operation cost. The decision variable is
u;;, which is the pumping rate for the ith well in the
candidate network at time step t. Equation (2) is the transfer
function of hydraulic head for an unconfined aquifer. The
associated numerical model for equation (2) is modified
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Figure 1.

from ISOQUAD [Pinder and Frind, 1972], which is a finite
element numerical model originally designed for a confined
aquifer. The thickness of an unconfined aquifer varies with
the groundwater table over time; therefore this work applies
the Picard method to update aquifer thickness value in the
ISOQUAD modification. Equation (3) ensures that the
optimal pumping policy does not cause environmental
impact by groundwater overpumping. Equation (4) ensures
that system productivity fulfills the water demand for each
time step. Equation (5) is the capacity constraint for each
well.

[8] The proposed groundwater optimal planning problem
as defined by equations (1)—(5) is a mixed discrete, non-
linear, and dynamic optimization problem. The decision
variables include discrete variables describing the well
network designs, and continuous variables describing the
time-varying pumping rates. The capacity and number of
wells in each network design increase at a specific time step.
Conventional gradient-based algorithms, such as nonlinear
programming (NLP), cannot solve this problem because of
discrete variables. The number of continuous decision
variables, i.e., time-varying pumping rates, also increase
with each time step. Computational loading greatly
increases with increasing the number of time steps when
using only conventional mixed nonlinear programming
(MNLP) or other heuristic algorithms such as the genetic
algorithm (GA), taboo search (TS), or simulation annealing
(SA). No single algorithm adequately solves the problem
defined by equations (1)—(5). Therefore this study proposes
a hybrid algorithm.

2.2. Hybrid Algorithm to Solve the Groundwater
Capacity Expansion Problem

[9] This section describes the hybrid algorithm modified
from studies by Hsiao and Chang [2002], Chang and
Hsiao [2002], Chu et al. [2005], Hsiao and Chang [2005],
and Chang et al. [2007]. The algorithm development

Satisfying GA stopping

Calculating fitness
(total cost)

criterion?

Hybrid algorithm of the groundwater capacity expansion planning model.

includes two steps, “problem reformulation” and “GA-
CDDP integration.”
2.2.1. Reformulation of the Problem

[10] This study explores the problem structure and refor-
mulates the problem into a two-level optimization problem
to facilitate hybrid algorithm development and ensure that
the algorithm consistently solves the problem defined by
equations (1)—(5). The two-level optimization problem is
formulated asPrimary problem

1
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subject to equations (2), (3), (4), and (5).

[11] Solving the two-level optimization problem defined
by equations (6) and (7) and associated constraints (equa-
tions (2)—(5)) is equivalent to solving the original one
defined by equations (1)—(5). However, the two-level
formulation decomposes the original problem into two
groups. The primary problem contains all the discrete
variables: the fixed cost and the discrete decision variables,
stepwise expansion network designs. This study uses a GA
to solve the primary problem. Each chromosome (stepwise
expansion network design) within the GA is associated with
a secondary problem as indicated by equation (7) and the
secondary problem solution is the time-varying pumping
rate for the network design. The secondary problem con-
tains all nonlinear and dynamic characteristics. The objec-
tive function (equation (7)) and constraints (equations (2)—
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Figure 2. Aquifer used for case study (modified from
Chang et al. [1992]).

(5)) in the secondary problem are nonlinear and are sepa-
rable in time. Hence, the CDDP algorithm, a nonlinear
dynamic algorithm, is suitable to solve the secondary
problem.

2.2.2. GA-CDDP Integration

[12] This study develops a hybrid algorithm by integrat-
ing the GA and modified CDDP as illustrated in Figure 1, to
solve the two-level formulation described in equations (2)—
(7). The hybrid algorithm in Figure 1 includes two parts:
GA iteration and modified CDDP. The GA accomplishes
the discrete search for an optimal stepwise expansion
network design. This work uses the modified CDDP algo-
rithm during the GA search to determine the optimal time-
varying pumping rates for each well in the network design
by minimizing the present value of operation cost. The main
hybrid algorithm, as indicated in Figure 1, is a simple GA
embedded in a modified CDDP algorithm. The whole
algorithm solves the primary problem defined by equation
(6) and the CDDP solves the secondary problem defined by
equation (7) associated with each chromosome.

[13] Although Hsiao and Chang [2002], Chang and
Hsiao [2002], Chu et al. [2005], Hsiao and Chang
[2005], and Chang et al. [2007] provide the basic principle
for the hybrid GA-CDDP, their work requires significant
modifications. The modification involves two important
issues: one is chromosome coding of the stepwise expan-
sion network design, and the other is CDDP modification to
adapt the stepwise expansion network.

[14] First, the chromosome-coding scheme used by the
GA indicates how each chromosome represents a stepwise
expansion network design. A binary string composed of
binary bits represents the chromosome. This study assumes
three expansion intervals for the pumping network, there-
fore four options of well installation exist for each candidate
well site; not installing the well, installing the well at the
beginning of interval I, installing the well at the beginning
of interval II, and installing the well at the beginning of
interval III. Two binary bits are used to encode the four
options, creating a chromosome of twice as many bits as the
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total number of candidate wells. Each two-bit binary is
decimalized into 0 to 3. The decimalized value that equals 0
indicates no well will be installed at the associated candi-
date site; otherwise, the decimalized value that equals 1, 2
or 3 represents a pumping well will be installed at the
associated candidate site in the beginning of interval I, II or
III.

[15] Second, the CDDP algorithm modification is needed
because the number of decision variables increase with
expansion intervals. Since pumping rates for each well are
the decision variables in the CDDP algorithm, the number
of wells for each network design also defines the number of
decision variables. For a stepwise expansion network,
pumping wells are installed at the beginning of each
expansion interval. Since the network designs (chromo-
somes) have defined the number of wells at each interval,
CDDP modification is possible. For each time step, a
second-order Taylor’s expansion (shown as equation (8))
is used to approximate the operation cost (equation (7)) on
the nominal policy [Murray and Yakowitz, 1979; Jones et
al., 1987]:

L = 6xtTZ,6xt + 6uf§,6xt + 614?6,&1, + D,Su, + E,6x, (8)

Equation (8) contains five coefficient matrixes, decision
variables (u,) and state variables (x,). The variable u, is a
m x 1 vector, the variable x, is a n x 1 vector, where m is
the number of decision variables and n is the number of
state variables. 4, is a n X n matrix, B, is a m X_n matrix,
C,isam X m matrix, D,isam X 1 vector and E, is a n X
1 vector. The number of decision variables, according to
the previous discussion, increase at the beginning of each
expansion interval; hence the size of the coefficient matrix
(B, C, D, also varies accordingly. Since the chromo-
somes specify the number of decision variables and
expansion schedule before CDDP computation, the CDDP
algorithm can be modified to adapt the time-varying size

of decision variables and coefficient matrix (B,, C,, D,).
2.2.3. Stopping Criterion for GA-CDDP

[16] The proposed algorithm is composed of the GA and
the CDDP; therefore, the stopping criterions of both parts
should be defined specifically. The stopping criterion of the
GA is that the optimal fitness value is the same for 10
consecutive generations. The stopping criterion of CDDP is
that the ratio of objective function value change between
two consecutive iterations is less than a constant value, ¢,
(shown as equation (9)):

(1) _ ()
\ I /J(,,)s:, (9)

3. Numerical Results

[17] The current work performs numerical studies on the
basis of a hypothetical groundwater problem modified from
Chang et al. [1992] that verifies effectiveness of the
proposed approach. This work assumes the aquifer
(Figure 2) of the hypothetical problem as homogeneous
and isotropic, and uses the modified ISOQUAD to simulate
groundwater variation. The site area is 3000 x 5000 m? and
described with 77 finite element nodes, sixty elements, and
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Figure 3. Water demand curves used in this study.

35 candidate well locations. Constant head and no-flow
boundaries circumvent the flow domain. Initial conditions
on hydraulic head for each node are assumed to be 80 m and
the aquifer thickness is 100 m. Table 1 lists aquifer
properties and simulation parameters. The entire planning
horizon in the management model is 15 years and is divided
into three capacity expansion intervals and a total of sixty
simulation time steps. The simulation time step is 91.25
days (equals a quarter of year). Each interval contains
twenty simulation time steps and each interval is 5 years.
Wells are installed at the beginning of each interval. This
study investigates three different demand curves including
the convex curve, linear curve and concave curve
[Basagaoglu and Yazicigil, 1994], as Figure 3 illustrates.
The following demonstrates four cases. Case 1 is a non-
expansion case associated with the convex curve of demand
increasing. Cases 2, 3, and 4 are expansion cases, where
demand increases on the basis of a convex, linear and
concave demand curve.

[18] Parameters related to the GA, including population
size, crossover probability, and mutation probability, are
determined by GA parameter sensitivity analysis. Popula-
tion size and crossover probability for performing GA
sensitivity analysis ranged from 80 to 120 and 0.5 to 0.8,
respectively. The mutation probability for each sensitivity
computation is assigned as the multiplicative inverse of
population size [De Jong, 1975]. Population size, crossover
probability, and mutation probability were specified as 100,
0.8 and 0.01, respectively, on the basis of sensitivity
analysis (shown as Table 1).

3.1.

[19] Results of cases 1 and 2 shown in Table 2 illustrate
total cost saving caused by employing the capacity expan-
sion design concept. Case 1 is a nonexpansion (NE) case
and case 2 is a capacity expansion (CE) case. Both case 1
and case 2 apply convex demand curves. The optimal
construction policy in case 1 installs 22 wells during initial
planning, while optimal solution for case 2 also installs 22

Total Cost Saving of Capacity Expansion

wells but with the policy to install 5, 6, and 11 wells at
intervals I, II and III, respectively. The fixed present value
cost for cases 1 and 2 are $440,000 (100%) and $280,392
(64%) USD, respectively. Therefore, a capacity expansion
model saves 36% of fixed cost compared to a nonexpansion
model. The operation present value cost for cases 1 and 2
are $992,484 (100%) and $993,005 (100.05%) and the total
present value cost is $1,432,484 (100%) and $1,273,398
(89%). The result clearly indicates that with only a slight
increase of operation cost (0.05% more), the capacity
expansion model saves 11% of total cost for the hypothet-

Table 1. Aquifer Properties, Simulation, and Optimization Para-
meters of Example Application

Value
Aquifer properties
Specific yield 0.1
Porosity 0.2
Horizontal and vertical 0.005 m/s
hydraulic conductivity

Initial groundwater head 80 m
Aquifer thickness 100 m

Simulation parameters

Simulation time step length 91.2 (D), 0.25 (Y)

Capacity expansion interval length 5(Y)

Planning horizon 15 (Y)

Electric power cost 0.45°
(dollars per kilowatt hour)

Fixed cost for unit length 200"
well installation

Optimization parameters

Mutation probability for GA 0.01

Number of generations for GA 10
stopping criterion

Maximum absolute changing rate for 10°°
CDDP stopping criterion

Population size for GA 100

Crossover probability for GA 0.8

*Values are in U.S. dollars.
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Table 2. Summary of Numerical Results Under Different Design Policies and Different Water Demand Curve Types®

Nonexpansion Model

Capacity Expansion Model

Case 1 Case 2 Case 3 Case 4
Water demand curve type convex convex linear concave
Number of wells for period 1 22 5 7 8
Number of wells for period 2 22 11 11 11
Number of wells for period 3 22 22 16 13
Present value of fixed cost (USD) 440,000 280,392 239,126 218,494
Present value of operation cost (USD) 992,484 993,005 1,059,023 1,123,846
Present value of total cost (USD) 1,432,484 1,273,398 1,298,149 1,342,340

*The cost of unit length well installation (c;) is $200 U.S. dollars (USD). Average water demand for 15 years (m/s) is 105.65. The annual interest rate is

8%.

ical case. Fixed cost reduction results in total present value
cost savings for the capacity expansion model. Although the
number of installed wells for both cases is the same,
installing part of the wells required for the future saves
the total present value of fixed cost because of interest
saving.

[20] A look into the efficiency of system capacity utili-
zation further explores cost saving of the capacity expansion
design. Case 1| requires first fulfilling maximum water
demand which only occurs at the end of the planning
horizon, and most system capacity is unused at intervals |
and II, during the first 10 years, as shown in Figure 4.
However, the cost (the interest) for unused capacity must
still be paid. The designed pumping system capacity for the
capacity expansion case (case 2) requires water demand
satisfaction at each interval; therefore, the unused capacities
are much less than that of case 1. The shadow area in Figure
4 is the amount of unused capacity saved by the capacity
expansion model.

[21] Figures 5, 6, 7, and 8 illustrate optimal pumping well
locations and water levels at the end of the planning horizon
for all cases. The water levels represent various policy

influences on the groundwater system. The water level
value and pattern shown in Figure 5 and 6 for cases 1 and
2, respectively, are very similar. Results are consistent with
the assumption; water demands are the same for the two
cases, hence, groundwater pumping and water tables are
also expected to be similar. On the other hand, water
demand at the end for case 3 is larger than that of case 4
according to Figure 3. Therefore, pumping at the end for
case 3 should be larger than that for case 4 and water levels
for case 3 are expected to be less than for case 4. Water
levels demonstrated in Figures 7 and 8 fulfill the expecta-
tion. Results indicated from Figures 5—8 demonstrate that
the proposed model optimizes a groundwater capacity
expansion problem as defined in equation (2).

3.2. Impact of Varied Increasing Water Demand Rate
on Present Value Cost

[22] The impacts of varied increasing water demand rate
on present value cost can be illustrated by examining the
results of cases 2, 3, and 4 summarized in Table 2. Although
total demands for the three cases are the same and average
water demand is 105.65 m?/s, the types of water demand
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Figure 4. The time-varying total pumping capacities with and without considering capacity expansion.
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Figure 5. The water level of case 1 (NE and convex increasing demand) at the end of the 15th year.

increase for cases 2, 3, and 4 are different, namely, the
convex curve, linear curve, and concave curve, as Figure 3
demonstrates. Water demands increase with time, as do
system capacities indicated in Table 2. In case 2, the number
of wells in the pumping system for the optimal expansion
schedule at the three expansion intervals are 5, 11, and 22.
The numbers of wells for case 3 are 7, 11, and 16, and 8, 11,
and 13 for case 4. Water demand quantity also defines the
number of required wells because of each well capacity
constraint. Therefore, case 2 has the greatest number of
wells at the end since it has the largest water demand at the

ending period as shown in Figure 3. Case 2’s numbers of
wells at the ending period are much larger than those of
cases 3 and 4; therefore, case 2 has the greatest fixed cost.
The present value of fixed costs for cases 2, 3, and 4 are
$280,392 (100%), $239,126 (85%), and $218,494 (78%),
respectively. Equation (1) indicates that the more the pump-
ing volume, the higher the operation cost. Therefore, the
operation cost distribution in time is similar to their demand
curves, and case 2 will have a higher operation cost than the
other case near the end of the planning period. However,
because of the discounting effect of computing present

A : wells for period I, m:wells for period II, ®:wells for period III

ml]lilf.‘ i 7 , % \I'."‘\‘|I}||
L1 L gl
|IIIEIJJ.‘IJ"/, I A \\\\11||1|
Lttt | ! I

2 otk e—@— e B B S
| ol o6 6] 0 | 11 ok r
el /i
L 1 . / L B
r |

20004 Hr---HIl—-€k e P oo
||[J|||‘|“\ \ | | I'Iilll1

1500t H+-+-@— 1+l — A T
gty \ ; L1
el ! Pl

1000+l — @ ® B e i
L > S b 21z 38
[ ! :  m,

BOO0E A @ \ e N o
e | a2y
(Ll . , b oLl

B e A il
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 6. The water level of case 2 (CE and convex increasing demand) at the end of the 15th year.
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Figure 7. The water level of case 3 (CE and linear increasing demand) at the end of the 15th year.

value, case 2 has the smallest operation cost. Table 2 shows
operation cost for the three cases as $993,005 (100%),
$1,059,023 (107%), and $1,123,846 (113%), respectively.

3.3.
Present

Value Cost

Impact of Different Annual Interest Rates on

[23] Table 3 summarizes present value cost for cases 1
and 2 under different annual interest rates varying from 8 to
14%. Table 3 indicates that present values of fixed cost for
the capacity expansion (CE) model are significantly less
than for the non—capacity expansion (NCE) model and that

fixed cost present value saving increases with increasing
interest rates. The ratio of fixed present value cost of the CE
model to that of the NCE model is 64, 58, 53, and 49% for
interest rates at 8, 10, 12, and 14%, respectively. The total
cost ratio in Table 3 between the two models is 89, 86, 82,
and 79% with respect to the same set of interest rate
alternatives. Fixed present value cost contributes the most
savings to total present value costs. Figure 9 shows the
previous results of fixed cost and total cost ratio and it
indicates that the cost ratios vary linearly with respect to
annual interest rates. On the basis of Figure 9, one can
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Figure 8. The water level of case 4 (CE and concave increasing demand) at the end of the 15th year.
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Figure 9. Fixed cost and total cost saving ratio diagram (comparison of case 1 and case 2).

approximately estimate that the ratios of the fixed cost and
total cost are higher than 70 and 95% if the interest rate is
less than 5%. As expected, the cost saving for the CE model
decreases with lower interest rates.

4. Discussion

[24] This section addresses the required computational
resources for using the proposed hybrid algorithm to solve a
practical field case. Table 4 summarizes the CPU time to
solve the four cases. To more objectively estimate the
CPU time, this study repeatedly computes each case four
times. The average numbers of generations for GA con-
vergences are less than 30 and the average CPU times for
the cases considering capacity expansion are nearly 1 h. The
computer solving the cases is equipped with Intel®™
Core™?2 Quad Processor Q9450 (2.66 GHz CPU) and 4 GB
of memory. Table 4 indicates minimal computational loading
for these hypothetical cases.

[25] On the basis of CPU time for solving the hypothetical
cases, this work estimates the required computational demand
when applying the algorithm to a more general field case.
When applying the hybrid algorithm, most computational
loading derives from the modified CDDP. According to
Mansfield [1998], the CPU time for CDDP increases with
the order of O(n’), where n is the number of state
variables, and increases with the order of O(m), where m is
the number of time steps [Mansfield et al., 1998]. Therefore,
rapidly increasing CPU time caused by increased number of
state variables is an important computational issue when
applying the algorithm to a problem with a large number of
state variables. For groundwater system planning cases, the
number of state variables equals the number of active nodes,
other than the Dirichlet boundary nodes, in the numerical
simulation model. Therefore, when applying the proposed
algorithm to solve a field case, CPU time approximately

increases with the order of O(nd”) where, nd is the number
of active nodes used to simulate the groundwater system. The
number of active nodes for hypothetical cases is 63 and the
maximum required CPU time is approximately | h.

[26] Following the previous discussion, a representative
field case with more nodes is used to illustrate the potential
increment of computational requirement for a field applica-
tion, and how the computing time can be managed by
parallel computation. For example, assuming a field case
with 1260 nodes (20 times of state variables number to the
hypothetical cases), the CPU time will be approximately
8000 h according to the previous discussion for the same
computer. Although the CPU time seems very large, the
wall clock time can be reduced significantly using parallel
computation because the main algorithm of the proposed
hybrid algorithm is a GA. Since computing the fitness of
each chromosome is independent, the GA efficiently applies
parallel computation. If the example field case can be
computed using a parallel computer with 100 CPU nodes,

Table 3. Summary of the Cost Present Values Under Different
Interest Rates for Cases 1 and 2

Annual Interest Rate

8% 10% 12% 14%
Case 2, CE
Fixed cost, FC (USD) 280,392 255,167 233,884 215,874
Operation cost, OC (USD) 993,006 832,695 703,761 600,146
Total cost, TC (USD) 1,273,398 1,087,862 937,644 816,020
Case 1, NE
Fixed cost, FC (USD) 440,000 440,000 440,000 440,000
Operation cost, OC (USD) 992,484 831,336 702,228 597,603
Total cost, TC (USD) 1,432,484 1,271,336 1,142,228 1,037,603
Costs Ratio, CE/NE
Fixed cost, FC (%) 64 58 53 49
Operation cost, OC (%) 100.05 100.16 100.22 100.43
Total cost, TC (%) 89 86 82 79
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Table 4. Summary of the Performance Analysis

OPTIMIZING SYSTEM CAPACITY

Case 1 Case 2 Case 3 Case 4
First Test
Number of GA generation 21 30 35
CPU Times (min) 39.9 62.0 68.5
Second Test
Number of GA generation 18 46 17
CPU Times (min) 349 94.0 35.1
Third Test
Number of GA generation 18 18 28
CPU Times (min) 40.5 39.3 57.7
Fourth Test
Number of GA generation 35 20 26
CPU Times (min) 75.6 40.5 50.0
Average
Number of GA generation 23 29 27
CPU Times (min) 47.7 58.9 52.8

wall clock time will be only 80 h, which is less than 1 week.
The estimation is based on each single CPU having the
same computing power with that used to solve the hypo-
thetical cases. Using a more powerful CPU and more CPU
nodes can possibly reduce wall clock time to within 1 day.
In summary, although computational loading of the pro-
posed algorithm increases significantly with problem size
(number of nodes), parallel computing and an advanced
computing machine can still solve a practical field problem
within reasonable wall clock time.

5. Conclusion

[27] The proposed approach optimizes minimum total
cost, including fixed cost and time-varying operation cost,
of a groundwater supply system on unconfined aquifers
under a capacity expansion framework. The decision vari-
ables of the groundwater network include well locations,
installation schedule, and time-varying pumping rates for
each well in the network. The optimal capacity expansion
problem for groundwater management is a complex mixed
nonlinear dynamic problem, since well locations and instal-
lation schedule are discrete variables while time-varying
pumping rates are continuous. The proposed hybrid algo-
rithm optimizes the capacity expansion problem under
reasonable computational resources.

[28] Numerical results indicate that installing the well
system under capacity expansion significantly saves fixed
cost present value (FC) compared to installing a full
capacity system initially. Moreover, saving fixed present
value cost increases with interest rates. The proposed
algorithm solves problems of various water demand pat-
terns, including convex curve, linear curve, and concave
curve, and results demonstrate that the model proposes an
adequate system expansion schedule according to water
demands.
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