
國 立 交 通 大 學

資訊管理研究所

博 士 論 文

以角色與工作為基礎的工作流程授權管理

Role and Task Based Authorization Management

for Workflows

研 究 生： 吳 美 玉

指導教授： 劉 敦 仁

中 華 民 國 九 十 四 年 一 月

國 立 交 通 大 學

資訊管理研究所

博 士 論 文

以角色與工作為基礎的工作流程授權管理

Role and Task Based Authorization Management

for Workflows

研 究 生：吳美玉

研究指導委員會：黃景彰 博士

李瑞庭 博士

曾文貴 博士

羅濟群 博士

楊 千 博士

指導教授：劉敦仁 博士

中 華 民 國 九 十 四 年 一 月

以角色與工作為基礎的工作流程授權管理

Role and Task Based Authorization Management for Workflows

研 究 生：吳美玉 Student：Mei-Yu Wu

指導教授：劉敦仁 Advisor：Dr. Duen-Ren Liu

國 立 交 通 大 學
資 訊 管 理 研 究 所
博 士 論 文

A Dissertation

Submitted to Institute of Information Management

College of Management

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Information Management

January 2005

Taipei, Taiwan, Republic of China

中華民國九十四年一月

i

Role and Task Based Authorization Management for Workflows
Student: Mei-Yu Wu Advisor: Dr. Duen-Ren Liu

Institute of Information Management
National Chiao Tung University

Abstract

Role-based authorizations for assigning tasks of workflows to roles/users are crucial

to security management in workflow management systems. The authorizations must

enforce Separation of Duty (SoD) constraints to prevent fraud and errors. This work

analyzes and defines several duty-conflict relationships among tasks, and designs

authorization rules to enforce SoD constraints based on the analysis. A novel

authorization model that incorporates authorization rules is then proposed to support the

planning of assigning tasks to roles/users, and the run-time activation of tasks. Different

from existing work, the proposed authorization model considers the AND/XOR split

structures of workflows and execution dependency among tasks to enforce separation of

duties in assigning tasks to roles/users. Moreover, this work discusses the authorization

management of organizational roles in a process-view. A process-view, an abstracted

process derived from a base process, can provide adaptable task granularity to suit

different needs of workflows participants. Authorization mechanisms are proposed to

derive a role’s permissions on virtual activities based on the role’s permissions on base

activities. The proposed authorization mechanisms consider duty-conflict relationships

among base activities to enforce SoD. A prototype system is developed to realize the

effectiveness of the proposed authorization model.

Keywords ： Role-based access control, workflow, process-view, authorization

management, separation of duty

ii

Acknowledgement

終於完成了博士學程，首先要感謝我的恩師 劉敦仁教授，謝謝老師從碩士班

開始的諄諄教誨與悉心指導，使得我在研究所期間，習得學術工作者應有的倫理

規範與社會責任，同時也讓我的寫作進步許多，老師嚴謹的治學研究態度，更將

是我一輩子的榜樣。

同時還要感謝口試委員 黃景彰教授、李瑞庭教授、曾文貴教授、羅濟群教授

以及楊千教授，謝謝您們在百忙之中，於論文口試期間，仍細審論文並給予指正

與建議，使得本論文能夠更臻完善，在此深表感激。此外，還要感謝在投稿過程

中的匿名審查者所給予的各項指正。

另外，還要謝謝所有關心我的朋友，謝謝許許多多在生活上與研究上無可取

代的歷屆學長姐、實驗室伙伴與室友，其中尤其要感謝淑惠，總是貼心的幫助我

完成許多行政與生活上的事務，感謝她體貼的接送與適時的鼓舞，分擔了我許多

的煩憂。

最後，我得感謝我的先生志坤，感謝他永遠的支持與關懷，感謝他毫無怨言

地當我的出氣筒，陪伴我走過許多快樂與悲傷的時光，感謝所有家人的支持，來

自家人的愛與關懷，是我最溫暖而厚實的依靠。謝謝你們。

美玉 2005/01

iii

Contents

Abstract ... i

Acknowledgement... ii

Contents ... iii

List of Figures...v

List of Tables... vi

Chapter 1. Introduction..1
1.1. Motivation..1
1.2. Goals ..2
1.3. Contributions ...2
1.4. Organization...3

Chapter 2. Related Work..4
2.1. Role-based Access Control ..4

2.1.1. Separation of duty..5
2.2. Workflow management..6
2.3. Process-View ...7

Chapter 3. Task-based Separation of Duty...9
3.1. Analysis of duty-conflict relationships ..10
3.2. Authorization rules for SoD...11

Chapter 4. Authorization Model for Workflows..17
4.1. Role-task planning algorithm...18

4.1.1. Execution-dependency considering the AND/XOR split structure20
4.2. User-Role-Task planning algorithm...21
4.3. Plan-adjust algorithm...22
4.4. Illustrative examples ..24

Chapter 5. Authorization Management for Process-View ..28
5.1. Grouping and data aggregations ..28
5.2. The permissions on an activity ..30
5.3. Permissions on a virtual activity without considering duty-conflict

relationships among base activities..31
5.4. Permissions on a virtual activity considering duty-conflict relationships among

base activities...33

iv

Chapter 6. System Implementation and Demonstration...38
6.1. System implementation..38
6.2. System demonstration..40
6.3. Discussion..43

Chapter 7. Comparison with Related Work...44

Chapter 8. Conclusions and Future Works ..48
8.1. Summary..48
8.2. Future Works..49

References ...50

v

List of Figures

Figure 1. Role-Based Access Control Model.. 4

Figure 2. Examples of Process-views ... 7

Figure 3. The role-task planning algorithm .. 19

Figure 4. The user-role-task assignment algorithm .. 22

Figure 5. Plan adjust algorithm in run-time phase.. 23

Figure 6. An example of workflow W .. 25

Figure 7. Example of a virtual activity “scheduling production” 29

Figure 8. The algorithm of derivation for general cases... 37

Figure 9. The system architecture... 38

Figure 10. Enactment of data for authorization control.. 41

Figure 11. Activation of “Issuing item-request” by John as Clerk 42

Figure 12. Verifying SoD in the activation of “Approving item-request” by John as

assistant manager .. 42

vi

List of Tables

Table 1. The meaning of functions contained in authorization rules.............................. 11

Table 2. The implied meaning of functions .. 12

Table 3. Capable roles of each task and duty-conflict relationships in workflow W 25

Table 4. Capable users of roles. .. 27

Table 5. Permissions on activity ... 30

Table 6. Permissions of role r under strict privilege principle.. 34

Table 7. Permissions of role r under lenient privilege principle..................................... 35

1

Chapter 1. Introduction

1.1. Motivation

As effective process management tools, workflow management systems (WfMSs)

enable a business to analyze, simulate, design, enact, control and monitor its business

processes[7][11][17][30][32]. A workflow (process) consists of a set of tasks (activity),

and the ordering of tasks, or control flow dependencies, that specify the order of

execution among the tasks. Workflows commonly process sensitive business information.

The important information should be controlled securely to avoid attack by outsider or

unauthorized access by insiders. Therefore, adequate access control mechanisms are

needed to protect workflow-related sensitive information from insecure access.

Consequently, security policies with appropriate authorization mechanisms are required

to ensure that tasks are performed by authorized users.

Role-based access control (RBAC, [4][9][10][22][28][31]) has become a widely

accepted access control mechanism for security management. Role-based authorizations

for assigning tasks of workflows to roles/users are crucial to security management in

workflow management systems. The authorizations must enforce Separation of Duty

(SoD) constraints to prevent fraud and errors. Separation of duty (SoD)

[9][12][14][20][21][22][27] is a security principle to spread the responsibility and

authority for a complex action or task over different users or roles, to prevent fraud and

errors. Under this principle, conflicting (mutually exclusive) tasks are executed by

different roles/users.

Thomas et al. [29] presented task-based authorization control to manage the

execution of tasks by controlling the run-time execution status of tasks. They considered

neither SoD nor authorizations among tasks, roles and users. Schier [23] also presented a

role and task-based security model. Although authorization rules for SoD have been

designed, they are merely derived from SoD in RBAC. Moreover, Lee et al. [19]

implemented role-based access control in computer supported collaborative writing

(CSCWriting). They focused on integrating distributed version management and RBAC

for CSCWriting environments. Accordingly, they did not consider the issues of role-base

authorizations and SoD.

2

A novel virtual workflow process, i.e., a process-view, in a WfMS is proposed by

Shen and Liu [26]. A process-view, i.e., an abstracted process derived from an

implemented base process, is employed to provide aggregate abstraction of a process.

They focused on develop view mechanism in workflow management systems. They did

not discuss the aggregation of virtual activity and permissions for a role in a

process-view.

1.2. Goals

According to the motivations, this dissertation lists major goals as follows:

 Analyze and define several duty-conflict relationships among tasks

 Design authorization rules to enforce separation of duty constraints

 Propose an authorization model

 To derive the aggregation of virtual activity

 Analyze and define privilege principle for a role in a Process-view

 Implement a prototype system

 To evaluate the system

1.3. Contributions

This work analyzes and defines various duty-conflict relationships among tasks

from the aspect of how enterprises set up tasks. A task defines a set of task-related

privileges to be assigned to roles or users. Assigning a task to a role or a user gives the

role or the user the duty to perform the task; the duty is then called a task-duty. Some

duty-relationships are enforced on tasks to ensure the correctness of the work and to

support auditing. The duty relationship between two tasks is called a duty-conflict

relationship. Moreover, this work designs authorization rules for SoD, based on the

defined duty-conflict relationships and execution dependencies of workflow tasks. A

novel authorization model that incorporates authorization rules is then proposed to

support the planning of assigning tasks to roles/users, and the run-time activation of tasks.

Different from existing work, the proposed model enforces SoD by taking into account

the AND/XOR split structure of workflows and execution dependency among tasks in

assigning tasks to roles/users.

Besides, this work also discusses the authorization management in process-views.

3

Process-views allow a workflow management system to provide various aggregated

views of a process for different levels or departments in an organization or for different

organizations in a supply chain. An aggregation of a set of base activities called a virtual

activity. This work discusses the authorization management of organizational roles in a

process-view. The derivation of a virtual process (process-view) involves grouping the

base activities in a base process and aggregation functions into virtual activities. This

work defines several permissions for a role on base activities. The permissions for a role

on a virtual activity are according to the permissions of aggregated base activities under

strict or lenient privilege principle. An algorithm is proposed to derive permissions for a

role on the virtual activity in general cases. The derivation also considers the

duty-conflict relationships among base activities. Furthermore, a prototype system that

can conduct authorization management in task-based workflow environments is designed

and implemented. An analyzed procurement process is deployed in the system to

demonstrate the proposed authorization management of workflow tasks.

1.4. Organization

The rest of this paper is organized as follows. Chapter 2 presents the related work on

role-based access control, workflow management and process view. Chapter 3 analyzes

and defines various duty-conflict relationships among tasks, and presents authorization

rules for SoD. Chapter 4 illustrates the proposed algorithms for planning role-task and

user-role-task assignments and plan-adjust algorithm in run-time. Chapter 5 discusses the

authorized permissions for a role in a process-view. Chapter 6 elucidates the architecture

and implementation of the system. Chapter 7 compares related work with our proposed

work. Conclusions and future works are finally made in Chapter 8.

4

Chapter 2. Related Work

In this chapter, we will discuss the related work with our topic including role-based

access control, workflow management, and process-view.

2.1. Role-based Access Control

Role-based access control (RBAC, [4][9][10][22]) has become a widely accepted

access control mechanism for security management. Ferraiolo proposes the concept of

role-based access control (RBAC) and elucidate RBAC is a non-discretionary access

control [10]. In role-based access control model [9][10], a user can play several roles and

a role can be assigned to several users. The permission assignments are not assigned to

users but to roles. The permissions are enacted with roles and roles are authorized to users.

Permissions assign to roles will reduce the complex of management and easy to change

access control rules when employee left or change to another position in the organization.

Figure 1. Role-Based Access Control Model
Reference: [22]

The role-based access control model, proposed by Sandhu etc. illustrated in Figure1,

contains users, roles, permissions and sessions.[22] Users are people in real world or

executable program as subject. Roles are the position of the organization and in other

words, the collection of the permissions. For example in bank environment, “teller” and

“accountant” are all a kind of role. Permissions are the privilege to access the objects in

U
USERS

R
ROLES

P
PERMIS
SIONS

.

.

.

CONSTRAINTS

RH
ROLE

HIERARCHY
UA

USER
ASSIGNMENT

PA
PERMISSION

ASSIGNMENT

rolesuser

S
SESSIONS

5

the systems. Sessions are the collection of activating users and users can change roles

dynamically to achieve the purpose of least privilege.

The authorizations for granting access permissions are based on the concept of roles.

A role represents a duty or a job position (title) with the authority and responsibility to

perform certain job functions within an organization. In RBAC, access permission is

associated with roles, and users are assigned to appropriate roles. By assigning users to

roles, rather than permission, RBAC reduces the complexity of the access control.

2.1.1. Separation of duty

Moreover, authorization constraints or policies must be defined to enforce the legal

assignment of access privileges to roles and roles to users, and thereby ensure secure

access. Separation of duty (SoD) [9][12][21][22][27] is the most important feature of

role-based access control model. SoD is a security principle to spread the responsibility

and authority for a complex action or task over different users or roles, to prevent fraud

and errors. Under this principle, conflicting (mutually exclusive) roles are authorized to

different users. For example, “purchaser” and “cashier” are mutually exclusive role

therefore they should not be authorized to the same user. There are two kinds of

separation of duty, i.e. strong exclusion, namely static separation of duty (SSoD), and the

weak exclusion, namely dynamic separation of duty (DSoD). SSoD restricts that a user

cannot own two mutual exclusive roles while DSoD allows that a user owns two mutual

exclusive roles but cannot activate them at the same time.

Thomas et al. [29] presented task-based authorization control to manage the

execution of tasks and to provide an authorization mechanism for task execution through

the control of run time execution status of tasks. They considered neither SoD nor

authorizations among tasks, roles and users. Schier [23] also presented a role and

task-based security model. Although authorization rules for SoD have been designed

based on mutual exclusive (duty-conflict) tasks, the proposed work is merely an

extension of RBAC model. Their definition of mutual exclusive tasks is simply derived

from the definition of mutual exclusive roles in RBAC. In addition, the proposed

authorization rules for SoD are merely derived from SoD in RBAC. Schier’s

authorization rules only contain static and dynamic SoD. Extending from the rule in

RBAC that mutual exclusive roles cannot be assigned to the same user, mutual exclusive

tasks con not be assigned to the same role or user. Moreover, Lee et al. [19] implemented

6

role-based access control in computer supported collaborative writing (CSCWriting).

They focused on integrating distributed version management and RBAC for CSCWriting

environments. Accordingly, they did not consider the issues of role-base authorizations

and SoD.

2.2. Workflow management

Several researchers [1][2][3][5][6][13][14][15][16] have addressed role-based

access control and authorization management in workflow systems. Workflow

management systems allow businesses to analyze, simulate, design, enact, control and

monitor their overall business processes. The major issues concern the design of

role-based authorization mechanisms in support of separation of duty. Bertino et al. [5]

elucidated a flexible model to specify and enforce authorization constraints in workflow

management systems. A logical authorization language, defined as clauses in a logic

program, is proposed to express authorization constraints on role assignments and user

assignments. Ahn et al. [1] developed a system architecture to enforce role-based access

control in Web-based workflow management systems. The architecture mainly consists

of a role server for maintaining user-role assignments and issuing certificates with

client’s role information. Atluri and Huang proposed a Workflow Authorization Model

(WAM) [3]. The model associates each task with authorization templates that specify

static parameters of authorization defined during the design period. Huang and Atluri [13]

also presented a secure Web-based workflow management system (SecureFlow). Botha

and Eloff [6] considered conflicting tasks, conflicting users (such as family members) and

the access history of documents to support the SoD requirements for workflow systems.

Furthermore, as the demand for the globalization of business increases, access

control mechanisms and security models of inter-organizational workflows are presented

[2][16]. Atluri et al. [2] considered the issues of conflict-of-interest among competing

organizations of inter-organizational workflows in decentralized workflow environments.

A variation of Chinese Wall Security model is proposed to address such issues. The

model mainly prevents sensitive dependency information or sensitive output of a task

leaking to another task agent (organization) with conflict-of-interest. Kang et al. [16]

proposed a notion of role domain, instead of an organization’s role structure, to specify

the data access policy associated with each task of the workflow.

7

Most of the above literatures have addressed SoD constraints in role-based

authorizations of workflows. Although SoD has been discussed, most of the works do not

consider SoD constraints in relation to various duty-conflict relationships and

execution-dependencies among tasks. A task specifies the rights of each member of a set

of roles to perform operations on each member of a set of object categories. [8] Moreover,

they do not consider authorization planning for assigning users/roles to workflow tasks. If

we only use role-based access control to achieve the objective of separation of duty for

organization, it is not enough to show the real activity in the organization, i.e. task-based

enterprising environment. Although Bertino et al. [5] proposed algorithms for

authorization planning to assign roles/users to workflow tasks, their algorithms mainly

determine valid assignments by consistency-checking authorization constraints

expressed in logical language, and making deductive inferences. Although examples

have been presented to illustrate how to express static and dynamic SoD via the proposed

authorization language, they also do not consider the variations of SoD that arise from

various duty relationships among tasks. Furthermore, the proposed authorization

planning algorithms do not consider the AND/XOR split structure of a workflow.

2.3. Process-View

Workflow management system allows various participants to collaborate in

effectively managing a workflow-controlled business process. Shen and Liu [26] propose

a process-view workflow management to provide appropriate process abstraction for

various roles within an enterprise. Process-views are derived through the bottom-up

aggregation of activities to provide various levels of abstraction of a base process as

Figure 2.

Figure 2. Examples of Process-views
Reference: [26]

base process a1

process-views
various views on
the same base
process

a2 a3

a4

a5

a6 a7

accounting dep.

$

partner 1managerial level partner 2

va1*

va2*

va3*

va4* va1 va2 va3 va1. va2. va1+ va2+va1' va2'

marketing dep.

8

For example, a process modeler can design an appropriate process-view for the

marketing department as follows. The base activities, a1, a2 and a3, in the base process are

mapped into the virtual activity, va1, in the process-views. The base activities a4 and a5 are

mapped into the virtual activity va2 and a6 and a7 are mapped into va3.

A process-view is proposed for providing adaptable task granularity. The design of a

process-view must first identify all base activities within it and then arrange them based

on dependencies and ordering structures. A process-view is a two-tuple <VA, VD>,

where VA is a virtual activities and VD is a set of virtual dependencies. Process-views

allow a process modeler to flexibly provide different roles with appropriate views of an

implemented process. For example, process-views provide high-level managers with

aggregated information on a desired process which is different from the need for

accountant. They focus the process-view derived from base process neither derive the

aggregation of virtual activity nor analyze and define permissions for a role on a virtual

activity in a process-view.

9

Chapter 3. Task-based Separation of Duty

A workflow consists of a set of tasks, and their order of execution, according to

control flow dependencies [11][32]. The various tasks in a workflow are typically

performed by multiple collaborating users/roles in an organization. A role implicitly

defines a job position and its corresponding authority to perform a set of tasks. Each task

is assigned to one or more roles. Users are assigned appropriate roles based on their

capabilities. A role can be assigned to one or several users. Moreover, roles are partially

ordered by organizational position within the organization. For two roles Ri and Rj, Ri > Rj,

if the position of Ri is higher than the position of Rj in the organization.

Workflow management systems generally include process definition tools and

workflow engines [32]. A process definition tool supports facilities that define a

workflow (process definition) during the period of design, while a workflow engine

governs the run-time enactment of workflow according to the process definition. Tasks

are executed according to the control flow dependencies in a workflow. During run-time,

a single execution of a workflow (process) is called a workflow (process) instance, while

the execution of a task (activity) within a workflow instance is called a task instance [32].

Each instance represents a separate execution of the process, and has its own associated

process instance data. Here, an execution/activation of a workflow/task represents an

enactment of a workflow/task instance.

[Execution-dependency] Two tasks Ti and Tj are execution-dependent tasks, denoted as

Ti ～ Tj, if they are correlated, such that the execution (processing) of one task (Ti)

depends on the execution (processing) of the other task (Tj). Ti x Tj indicates that tasks Ti

and Tj are not execution-dependent.

Execution dependency among tasks can generally be derived from the accessed data

objects. If task Ti accesses data objects that are created/modified by task Tj, then the

execution of Ti depends on the execution of Tj. For instance, a simple procurement

workflow includes two tasks, “purchase” and “verify” which are execution-dependent in

the process of purchasing items (workflow instance). The authorization of the “verify”

task on a computer (purchased item) must consider the authorization of the “purchase”

task on a computer.

10

Separation of duty (SoD) [9][12][21][22][27] is a security principle that spreads

the responsibility and authority for a complex action or task over various users or roles, to

prevent fraud or error. In general, two strategies can be used to enforce the separation of

duty. Static separation of duty prevents conflicting (mutually exclusive) roles or

operations from being assigned to the same user. Dynamic separation of duty provides

flexibility by allowing conflicting roles or operations be assigned to a user, but the user

must not activate them at the same time. Notably, static SoD constraints are imposed

during design time, while dynamic SoD constraints are imposed during run-time.

Although SoD has been addressed, most work does not consider SoD with respect to

various duty-conflict relationships and execution- dependencies among tasks.

3.1. Analysis of duty-conflict relationships

A task defines a set of task-related privileges to be assigned to roles or users.

Assigning a task to a role or a user gives the role or the user the duty to perform the task;

the duty is then called a task-duty. The planning of tasks not only defines task-privileges,

but also implicitly defines task-duties of roles/users. Some duty-relationships such as

duty-balancing and duty-supervising are enforced on tasks to ensure the correctness of

the work and to support auditing. The duty relationship between two tasks is called a

duty-conflict relationship, as if assigning the two tasks to the same user or role results in

fraud. We have defined several duty relationships, including duty-conflict,

duty-balancing, duty-supervising, duty-coordinating and non-proprietary duty. For

clarity, this work presents duty-conflict, duty-balancing, and duty-supervising

relationships.

[Duty-Conflict Tasks] Two tasks Ti and Tj are duty-conflict tasks, denoted as Ti ⊕ Tj, if

they have duty-conflict relationships; that is, their implicit task-duties conflict.

Duty-conflict relationships can be further distinguished into duty-balancing and

duty-supervising relationships.

[Duty-Balancing Tasks] Two tasks Ti and Tj are duty-balancing tasks, denoted as Ti ≡ Tj,

if the implicit task-duty of Ti (Tj) is to review task Tj (Ti). Ti and Tj have an equal level of

task duty.

[Duty-Supervising Tasks] Task Ti supervises task Tj, denoted as Ti f Tj, if the implicit

11

task-duty of Ti is to supervise task Tj. Ti has a higher task-duty than Tj.

Tasks that have duty-conflict (duty-balancing) relationships should not be assigned

to the same role/user, to ensure separation of duty. If Ti has a higher task-duty than Tj, Ti

must be performed by a role with a higher position than the role that performs Tj. The

duty-balancing relationship is commutable; Ti ≡ Tj implies Tj ≡ Ti. The duty-balancing

relationship is also a kind of duty-conflict relationship; that is, Ti ≡ Tj ⇒ Ti ⊕ Tj. The

duty-supervising relationship is not commutative; Ti f Tj does not imply Tj f Ti. The

duty-supervising relationship is also a kind of duty-conflict relationship; Ti f Tj ⇒ Ti ⊕

Tj.

3.2. Authorization rules for SoD

This section presents authorization rules based on various duty-relationships among

tasks. The designed authorization rules can enforce the principle of separation of duty

(SoD) in the assignment and activation of roles or tasks. Several novel authorization rules,

including duty-supervising and execution-dependent rules, have been designed to impose

the SoD in task-based access control environments, such as workflow management

systems. For clarity, we only present some of the proposed authorization rules. Table 1

lists the defined functions used in the authorization rules. In this work, O denotes an

object, T a task, R a role and S a subject. Table 2 shows the implicit meanings of functions

used in authorization rules. For example, the function “T ∈ active_tasks(R)” implies the

function “T ∈ authorized_tasks(R)”. “Role R can activate task T”, implies that role R is

authorized to perform task T.

Table 1. The meaning of functions contained in authorization rules

Functions Meaning

authorized_tasks(R) The set of tasks that were assigned to role R

authorized_roles(S) The set of roles that were assigned to user S

authorized_tasks(S) The set of tasks that were assigned to user S

authorized_objects(T) The set of objects that were assigned to task T

12

active_tasks(R) The set of tasks that are activated by role R

active_roles(S) The set of roles that are activated by user S

active_tasks(S, R) The set of tasks that are executed by user S as role R

active_objects(S, R, T) The set of objects that are accessed by user S in role R

to execute task T

activated_roles(S) The set of roles that were activated by user S

executed_tasks(S, R) The set of tasks that were executed by user S in role R

accessed_objects(S, R, T) The set of objects that were accessed by user S in role R

to execute task T

Table 2. The implied meaning of functions

Functions Implied functions

T ∈ active_tasks(R) T ∈ authorized_tasks(R)

R ∈ active_roles(S) R ∈ authorized_roles(S)

T ∈ active_tasks(S, R) R ∈ active_roles(S) ; T ∈ authorized_tasks(R)

O ∈ active_objects(S, R, T) T ∈ active_tasks(S, R) ; O ∈ authorized_objects(T)

R ∈ activated_roles(S) R ∈ authorized_roles(S)

T ∈ executed_tasks(S, R) R ∈ authorized_roles(S) ; T ∈ authorized_tasks(R)

O ∈ accessed_objects(S, R, T) R ∈ authorized_roles(S) ; T ∈ authorized_tasks(R) ;

O ∈ authorized_objects(T)

SoD variations are either static or dynamic, as described below.

Static SoD: Static SoD requires that two duty-conflict tasks cannot be assigned to the

same role or user. The authorization constraints on user-role/role-task assignments are

validated during the design phase to enforce SoD.

13

Rule 1：【Static SoD — Role and Task】

∀Ti, Tj ∈ TaskSet, R∈ RoleSet

Ti ∈ authorized_tasks(R) and (Ti ⊕ Tj) ⇒ Tj ∉ authorized_tasks(R)

If task Ti (for example, preparing a check) and task Tj (for example, auditing a check)

have a duty-conflict relationship, and role R was authorized to perform task Ti, then role

R cannot also be authorized to perform task Tj .

Rule 2：【Static SoD — User, Role and Task】

∀Ti, Tj ∈ TaskSet, Rx,Ry ∈ RoleSet, S ∈ SubjectSet and x≠y, i≠j

Ti ∈ authorized_tasks(Rx) and Tj ∈ authorized_tasks(Ry) and

Rx ∈ authorized_roles(S) and (Ti ⊕ Tj) ⇒ Ry ∉ authorized_roles(S)

If tasks Ti and Tj have a duty-conflict relationship; roles Rx and Ry are authorized to

perform tasks Ti and Tj, respectively; also, if role Rx was assigned to user S, then role Ry

can not also be assigned to user S.

Dynamic SoD variations: Static SoD is too strict to describe a real-world security

principle. The constraints of dynamic SoD variations are weaker than those of static SoD.

Dynamic SoD variations provide flexibility by allowing two duty-conflict tasks to be

assigned to different roles and then to the same user. The authorization constraints on

role/task/object activation are then validated during the run-time phase to enforce SoD.

For example, dynamic SoD enforces that a user cannot activate different duty-conflict

roles simultaneously. Notably, dynamic SoD variations may also strictly require

duty-conflict tasks cannot be assigned to the same role, as in Rule 1.

 The authorization rules for dynamic SoD variations include authorization rules for

dynamic SoD and execution-dependent SoD. Authorization rules for dynamic SoD

specify whether a user (subject) may activate several roles, execute several tasks and/or

access several objects simultaneously. The authorization rules that govern

execution-dependent SoD mainly enforce SoD during the activation of

execution-dependent tasks. Two tasks are execution-dependent if they are work-related

14

and the execution (process) of one task (B) depends on the execution (process) of the

other task (A). For example, the tasks of a single workflow instance are

execution-dependent. Defining authorization rules requires that execution-dependency

among tasks be considered to enforce SoD.

SoD can be enforced on various levels, including the role-level (role activation),

task-level (task execution) or the object-level (object access). The authorization rules for

SoD on the task-level are presented below. The authorization rules for SoD on other

levels are similar, and are therefore omitted for clarity.

A subject may activate two duty-conflict roles simultaneously but cannot activate the

roles to execute duty-conflict tasks, as described in Rule 3. Tasks Ti and Tj have a

duty-conflict relationship. If role Rx was authorized to perform task Ti; role Ry was

authorized to perform task Tj, and user S has activated role Rx, then user S can activate

role Ry but can not execute task Tj in role Ry. Formally, “a user activates a role” or “a role

executes a task” implies that the role has been assigned to the user and that the task has

been assigned to the role.

Rule 3：【Dynamic SoD】

∀Ti, Tj ∈ TaskSet, Rx,Ry ∈ RoleSet, S ∈ SubjectSet, and x≠y, i≠j

(Ti ⊕ Tj) and Ti ∈ active_tasks(S, Rx) and Ry ∈ active_roles(S) and Tj ∈

authorized_tasks(Ry) ⇒ Tj ∉ active_tasks(S, Ry)

A session denotes a particular instance of a connection of a user to the system. At any

moment, a user may establish several sessions. Dynamic SoD focuses on enforcing SoD

within the user’s current active sessions, while execution-dependent SoD enforces SoD

across current active sessions and previous (historical) sessions. The SoD is enforced

beyond the user’s active sessions via execution dependency among tasks, as described in

Rule 4. Tasks Ti and Tj are duty-conflict and execution-dependent tasks (Ti ⊕ Tj and Ti

～ Tj). Subject S executed task Ti in role Rx, and role Ry is authorized to perform task Tj.

Subject S can activate Ry, but subject S cannot execute task Ti in role Ry. Notably, the

execution-dependent relationship does not imply a duty-conflict relationship. Two tasks

may have execution-dependency without a duty-conflict relationship. A stricter rule can

be defined as follows. Tasks Ti and Tj are duty-conflict and execution-dependent tasks.

15

Roles Rx and Ry are authorized to perform tasks Ti and Tj, respectively. If subject S has

activated role Rx, then S cannot activate Ry.

Rule 4：【Execution-dependent SoD】

∀Ti, Tj ∈ TaskSet, Rx, Ry ∈ RoleSet, S ∈ SubjectSet, and x≠y, i≠j

(Ti ⊕ Tj) and (Ti ～ Tj) and Ti ∈ executed_tasks(S, Rx) and Ry ∈ active_roles(S) and Tj ∈

authorized_tasks(Ry) ⇒ Tj ∉ active_tasks(S, Ry)

Notably, the execution-dependent relationship does not imply a duty-conflict relationship.

Two tasks may have execution-dependency without a duty-conflict relationship. A stricter rule

can be defined as follows. Tasks Ti and Tj are duty-conflict and execution-dependent tasks. Roles

Rx and Ry are authorized to perform tasks Ti and Tj, respectively. If user S activated role Rx, then S

cannot activate Ry.

The above illustrates the authorization rules for duty-conflict tasks. Those rules also

apply to duty-balancing tasks. The duty-supervising relationship is also a kind of

duty-conflict relationship; that is, Ti f Tj ⇒ Ti ⊕ Tj. Accordingly, dynamic SoD for

duty-supervising tasks must follow the dynamic SoD for duty-conflict tasks. Furthermore,

additional authorization rules are required for duty-supervising tasks, as described in

Rule 5. Users SA and SB activate roles Rx and Ry to execute task Ti and Tj, respectively. If

tasks Ti and Tj have a duty-supervising relationship, Ti f Tj. Role Rx must have a higher

position than role Ry.

Rule 5：【Dynamic SoD for duty-supervising tasks】

∀Ti, Tj ∈ TaskSet, Rx,Ry ∈ RoleSet, SA,SB ∈ SubjectSet and x≠y, i≠j

Tj ∈ active_tasks(SB, Ry) and Ti ∈ active_tasks(SA, Rx) and (Ti f Tj) ⇒ Rx > Ry

SoD for duty-supervising tasks can also be enforced across sessions via

execution-dependent relationships. Execution-dependent SoD for duty-supervising tasks

must follow the authorization rules for execution-dependent SoD for duty-conflict tasks.

Additionally, Rule 6 is applied. If subject SB has executed task Tj in role Ry; SA activates

Rx to execute task Ti; tasks Ti and Tj are duty-supervising and execution-dependent tasks,

then role Rx must have a higher position than Ry.

16

Rule 6：【Execution-dependent SoD for duty-supervising tasks】

 ∀Ti, Tj ∈ TaskSet, Rx,Ry ∈ RoleSet, SA,SB ∈ SubjectSet and x≠y, i≠j, A≠B

Tj ∈ executed_tasks(SB, Ry) and Ti ∈ active_tasks(SA, Rx) and (Ti f Tj) and (Ti ～ Tj) ⇒

Rx > Ry

17

Chapter 4. Authorization Model for Workflows

The proposed authorization model handles the assignment of workflow tasks to

roles/users. The assignments must satisfy the authorization constraints for SoD defined in

Chapter 3. The proposed authorization model includes the planning phase and the

run-time phase. The planning phase generates initial workflow activation plans in

advance. These plans assign tasks to a set of valid roles/users, to satisfy the constraints of

SoD. The planning phase is carried out before the workflow execution starts, while the

run-time phase is executed upon the actual activation of each task during the execution of

the workflow. The enactment of a workflow decides the current task to be activated.

According to the selected role/user activation plan (current plan) generated by the

planning phase, the run-time phase identifies the user authorized to activate the current

task in a certain role. Dynamic SoD variations are more realistic security policies. Both

planning and run-time phases assign tasks to roles/users to satisfy dynamic SoD

variations. The authorization must also satisfy the constraints of execution-dependent

SoD, specified in Chapter 3, since workflow tasks generally have execution-dependent

relationships. The planning phase includes two algorithms, for role-task planning and

user-role-task planning, to determine valid role-task assignments and user-role-task

assignments, respectively. The planning begins with role-task planning, and then assigns

users to tasks in user-role-task planning. Sections 4.1 and 4.2 detail the algorithms.

Notably, the current activation plan may need to be modified during the run-time

phase for the following reasons. The planned user, authorized to perform the current task

according to the current plan, may not be available. Furthermore, the activation of the

current task by the planned user may violate the constraints (authorization rules) of

dynamic SoD variations since the activation plan is generated in the planning phase

before the workflow is executed. The planning phase can consider only the assignment of

those tasks of the workflow that are being planned, and cannot verify run-time activation

of tasks when a user activates several tasks from more than one workflow execution.

Consequently, the activation of the current task by the planned user must be verified to

ensure that constraints of dynamic SoD variations are not violated. If the authorization

check fails, the current activation plan must be modified. The run-time phase identifies

an available user authorized to activate the current task, and generates a new activation

plan from the current activation plan. Section 4.3 presents the plan-adjust algorithm to

18

determine a new valid activation plan in the run-time phase.

4.1. Role-task planning algorithm

Figure 3 depicts the role-task planning algorithm. The algorithm first invokes the

GenExecDependency() function to generate the execution dependency among tasks of the

workflow W. The algorithm then invokes the recursive function RoleAssignment() to

generate the set of all valid role-task assignments in the input workflow. If no valid

role-task assignment is found, then the algorithm returns a failure; otherwise, it returns

success. The tasks of the input workflow are recorded in a list, Tlist, ordered with a

topological order according to the ordering dependency in the workflow. The algorithm

uses RTplan to record a valid role-task activation plan, that is, a list of role-task

assignments, (Ri, Ti), for each task Ti in Tlist. AllRTplans records the set of all valid

assignments generated by the algorithm.

The RoleAssignment() function finds valid role assignments for current task by

recursively finding role assignments for the next task in Tlist. Notably, the assignment of

valid roles to current tasks must satisfy the constraints of SoD. The SoD verification must

satisfy the constraints of execution-dependent SoD as specified in Chapter 3, since

workflow tasks have execution-dependent relationships. When planning the activation of

current task, the algorithm conducts SoD verification based on the duty-relationships

among the current task and all previously assigned tasks. Notably, the assigned tasks are

those activated before the current task during workflow execution, since tasks are planned

(assigned) in topological order, according to the ordering dependency (control flow) of

the workflow.

Algorithm The role-task planning algorithm
Input: 1) workflow W;

2) capable_roles(Ti); the set of roles which have the capability to execute task Ti.
3) Tlist: a list of tasks with topological order in a workflow W

Output: Fail if no valid role-task assignment; Success, otherwise.
assigned_role(T): the role assigned to execute task T in an activation plan;
valid_roles(T): the set of roles that are valid (authorized) to execute task T;
RTplan: a valid role-task plan, i.e., a list of role-task assignment, <Ri, Ti>, of tasks in Tlist;
AllRTplans: a set of all valid RTplans;

begin

19

GenExecDependency(Tlist, W)
T1 = the first task of Tlist; AllRTplans = {}; RTplan = {};

for each task Ti ∈ Tlist do assigned(Ti) = False;
return RoleAssignment(T1);

end;

function RoleAssignment(Ti: task) : Boolean
begin

valid_roles(Ti) = {r | r ∈ capable_roles(Ti)};
for each task Tj where Tj ∈Tlist , Tj ∼ Ti and assigned(Tj) == True do

if Tj ⊕ Ti then valid_roles(Ti) = valid_roles(Ti) － assigned_role(Tj)

if Ti f Tj then valid_roles(Ti) = {r | r ∈ valid_roles(Ti) and r > assigned_role(Tj)};
if Tj f Ti then valid_roles(Ti) = {r | r ∈ valid_roles(Ti) and r < assigned_role(Tj)};

 endfor;
result = Fail;
Tk = NextTaskFromTaskList(Tlist, Ti);
R = ChooseNextRole(valid_roles(Ti));

while R is not Null do
 assigned_role(Ti) = R;

 assigned(Ti) = True;

if Tk == Null then

{ RTplan = CreateNewRTplan(Tlist);
 AddRoleTaskPlans(AllRTplans, RTplan);
 result = Success; }

 else if RoleAssignement(Tk) == Success then
result = Success;

 R = ChooseNextRole(valid_roles(Ti));

endwhile;
assigned(Ti) = False;

return result;

end

Figure 3. The role-task planning algorithm

Initially, valid_roles(Ti) is the set of roles that are capable to execute the current task

Ti. According to the roles previously assigned to tasks and the SoD constraints, roles that

are not valid to activate Ti are excluded from valid_roles(Ti). Considering each previously

assigned task Tj, where Tj and Ti have execution-dependency (Tj ∼ Ti), valid roles for task

20

Ti must exclude the role assigned to Tj that has a duty-conflict relationship with task Ti (Tj

⊕ Ti). Moreover, if Ti and Tj have a duty-supervising relationship, Ti f Tj, then valid roles

of task Ti must have a higher position than the role assigned to Tj.

After the SoD verification has been conducted, valid_roles(Ti) is the set of roles that

can validly activate the current task Ti. The while-loop considers each role in

valid_roles(Ti) as a seed to explore possible role-task activation plans by recursively

finding role assignments for the subsequent task Tk in Tlist. If the current task is the last

task in Tlist, then a valid role-task assignment of the workflow has been found. A new

RTplan, an <assigned_role(Tj), Tj> list, is created to record the role assignments

according to the assigned_role(Tj), for each task Tj in Tlist. The RTplan is added to the

AllRTplans. The algorithm finds all valid role-task plans of a workflow. If only one

role-task plan is needed, then the statement “result = Success” in the while-loop can be

changed to “return Success”. The algorithm then returns only one valid role-task plan.

The complexity of the role-task planning algorithm is O(mn) in worst case, which m

is the maximum number of capable_roles of all tasks and n is the number of tasks in the

workflow.

4.1.1. Execution-dependency considering the AND/XOR split structure

The GenExecDependency() function can be implemented by simply assigning

execution dependency to all tasks of the workflow W, without considering the AND/XOR

split structure of the workflow. The AND-SPLIT structure splits the workflow execution

into multiple parallel paths (tasks) that are all executed, while the XOR-SPLIT structure

splits the workflow execution into multiple mutually exclusive alternative paths

(XOR-paths), only one of which is executed. Tasks in different XOR-paths are not

executed in the same workflow instance. Thus, no execution dependency exists among

tasks in different XOR paths. Further checking can be conducted to remove the execution

dependency from tasks in different XOR-paths. Our current implementation checks the

AND/XOR split structure to determine execution dependency. Moreover, as described in

Chapter 3, execution dependency among tasks can be derived from the accessed data

objects. If task Ti accesses data objects that are created/modified by task Tj, then the

execution of Ti depends on the execution of Tj. The GenExecDependency() function can

also be further implemented by checking the accessed data objects to determine the

execution dependency among tasks.

21

4.2. User-Role-Task planning algorithm

Figure 4 shows the user-role-task planning algorithm. The algorithm primarily

invokes the recursive function UserAssignment() to find a valid user-role-task assignment

of the input workflow based on the valid RTplan generated by the role-task planning

algorithm. If no valid user-role-task assignment is found, the algorithm returns failure;

otherwise, it returns success. The RTplan is a list of valid role-task assignments, <Ri, Ti>,

of tasks in Tlist. The algorithm uses URTplan to record a valid user-role-task activation

plan; that is, a list of user-role-task assignments, <Ui, Ri, Ti>, for each task Ti in Tlist. The

UserAssignment() function determines valid user assignments for current <role, task>

pair by recursively finding user assignments for subsequent <role, task> in RTplan. The

assignments must satisfy the SoD constraint that no duty-conflict (duty-supervising)

tasks are assigned to the same user. Notably, duty-supervising and duty-balancing

relationships imply duty-conflict relationships. The user-role-task planning algorithm is

similar to the role-task planning algorithm depicted in Figure 3, and a detailed

explanation of the algorithm is thus omitted. Notably, the algorithm can be easily

modified to find the set of all valid user-role-task assignments, AllURTplans. The

complexity of the user-role-task planning algorithm is O(Qn) in worst case, which Q is the

maximum number of capable_users of all role-task assignments and n is the number of

tasks in the workflow.

Algorithm The user-role-task planning algorithm
Input: 1) capable_users(Ri); the set of users which have the capability to activate role Ri.
 2) Tlist: a list of tasks with topological order in a workflow
 3) RTplan: a valid role-task plan, i.e., a list of role-task assignment, <Ri, Ti>, of tasks in

Tlist;
Output: Fail if no valid user-role-task assignment; Success, otherwise.
assigned_user(R, T): the user assigned to execute task T as role R in an activation plan;
valid_users(R, T): the set of users that are valid (authorized) to execute task T as role R;
URTplan: a valid user-role-task plan, i.e., a list of user-role-task assignment, <Ui, Ri, Ti>, of tasks

in Tlist;

begin
<R1, T1> = the first role-task assignment of RTplan; URTplan = {};

for each role-task assignment <Ri, Ti> ∈RTplan do assigned(Ri, Ti) = False;
return UserAssignment(RTplan, R1, T1);

end;

22

function UserAssignment(RTplan: role-task assignment, Ri: role, Ti: task) : Boolean
begin

valid_users(Ri, Ti) = { u | u ∈ capable_users(Ri)};
for each task Tj where Tj ∈ Tlist , Tj ∼ Ti and assigned(Rj, Tj) == True do

if Tj ⊕ Ti then valid_users(Ri, Ti) = valid_users(Ri, Ti) － assigned_user(Rj, Tj)

 endfor;
<Rk, Tk> = NextRoleTaskFromRTPlan(RTPlan, <Ri, Ti>);
U = ChooseNextUser(valid_users(Ri, Ti));

while U is not Null do
 assigned_user(Ri, Ti) = U;

 assigned(Ri, Ti) = True

if <Rk, Tk> == Null then

{ URTplan = CreateNewURTplan(RTplan)
 return Success; }

else if UserAssignement(RTplan, Rk , Tk) == Success then return Success;
U = ChooseNextUser(valid_users(Ri, Ti));

 endwhile;
 assigned(Ri, Ti) = False;

 return Fail;

end

Figure 4. The user-role-task assignment algorithm

4.3. Plan-adjust algorithm

The activation plans generated by the role-task planning and the user-role-task

planning algorithms can be utilized in various ways. For instance, the workflow engine

may store some RTplans in advance, without storing a URTplan. The user assignments

are then determined in run-time to enact each task, using the user-role-task planning

algorithm. Notably, the assignment must satisfy the constraints (authorization rules) of

dynamic SoD variations. Moreover, a minimal workload policy may be implemented to

choose the user with the lowest workload from all users that satisfy the SoD constraints.

The complexity of the plan-adjust algorithm is O(Qn-k+1) which Q is the maximum

number of capable_users of unassigned role-task assignments, n is the number of tasks in

the workflow and k is from the kth task need to be reassigned tasks.

23

Case 1: Some RTplans and URTplans for the workflow W are stored in advance.
URTplan-adjust (W, Tk)
begin

Find another valid URTplan, NUplan, from URTplanSet, where NUplan contains <Ui, Ri, Ti>,
for i = 1 to n, and NUplan satisfies the following conditions.

(a) Ui == AUi and Ri == ARi, for i = 1 to k-1.
(b) The activation of Tk, <Uk, Rk, Tk>, satisfies the constraints of dynamic SoD variations.
(c) Uk has the lowest workload among users satisfying (a) and (b).

if no valid URTplan can be found, then invoke the RTplan-adjust(W, Tk) to find a valid
URTplan.

if no valid URTplan can be found, then the enactment of workflow W aborts and fails.
end

Case 2: Some RTplans for the workflow W are stored in advance.
RTplan-adjust (W, Tk)
begin
 repeat

Find another valid RTplan, NRplan, from RTplanSet, where NRplan contains < Ri, Ti>, for i =
1 to n, and NRplan satisfies the following conditions.
(a) Ri == ARi, for i = 1 to k-1.
(b) The activation of Tk, <Rk, Tk>, satisfies the constraints of dynamic SoD variations.

if a valid RTplan, NRplan, has been found then
 begin

Set assigned_users(Ri, Ti) = AUi, according to the actual activations of task Ti, <AUi, ARi,
Ti>, for i = 1 to k-1.

Set assigned_users(Rj, Tj) = False, for j = k to n.
Invoke the UserAssignment(NRplan, Rk, Tk) algorithm to find a valid URTplan, NUplan,

where the activation of Tk, <Uk, Rk, Tk>, in NUplan satisfies constraints of dynamic SoD
variations.

 endif
until no more valid RTplan exists or a valid URTplan has been found
if no valid URTplan can be found, then the enactment of workflow W aborts and fails.

end

Figure 5. Plan adjust algorithm in run-time phase

An alternative approach is to store some RTplans and some URTplans in advance.

The enactment of a workflow is based on the chosen activation plan. The run-time phase

24

executes the plan-adjust algorithm to find an available user for the current task and to

generate a new activation plan based on the actual activation of tasks, as described below.

The plan-adjust algorithm is invoked when the planned user, assigned to activate the

current task, is not available, or when the run-time activation of the current task by the

planned user violates the constraints of dynamic SoD variations.

Assume that the workflow W involves n tasks, T1, T2, ..., Tn, where T1, T2, ... , Tk-1

have been activated and Tk is the current task to be activated. Let <AUi, ARi, Ti> represent

the actual activation of task Ti by user AUi in role ARi, for i = 1 to k-1. The activation plan

of the current task is <PUk, PRk, Tk>. However, PUk is not available, or the constraints of

dynamic SoD variations are violated. RTplanSet and URTplanSet contain some RTplans

and some URTplans, respectively. The URTplan-adjust() algorithm, depicted in Figure 5,

finds another valid URTplan, called NUplan, from URTplanSet, where NUplan follows

the actual activation of task Ti, <AUi, ARi, Ti>, for i = 1 to k-1, such that the activation of

current task Tk, <Uk, Rk, Tk>, satisfies the constraints of dynamic SoD variations. The

RTplan-adjust() algorithm finds another valid RTplan, called NRplan, from RTplanSet,

where NRplan follows the actual activation of task Ti, <ARi, Ti>, for i = 1 to k-1. The

algorithm then finds a valid URTplan, called NUplan, based on NRplan and the actual

activation of task Ti, <AUi, ARi, Ti>, for i = 1 to k-1, by invoking the

UserAssignment(NRplan, Rk, Tk) algorithm. The activation of Tk, <Uk, Rk, Tk>, in NUplan,

must satisfy the constraints of dynamic SoD variations.

4.4. Illustrative examples

In this section, we use an example to illustrate how the algorithms perform in the

assignment of tasks to roles and users. Figure 6 shows a workflow W which contains six

tasks, from T1 to T6. After the task T2, the execution is split into two paths. For the case of

AND-split, two parallel paths will be executed concurrently; as a result, T3, T5 and T4 will

be executed in the same workflow instance, and thus may have execution-dependency.

For the case of XOR-split, only one path will be executed; the execution of T4 excludes

the execution of T3 and T5, and thus there is no execution dependency between T4 and T3

(T5). The algorithms proposed in Section 4.1.1 take into account the AND/XOR split

structure in the assignment of tasks to roles/users.

25

Figure 6. An example of workflow W

Table 3 shows the capable roles that can perform each task and the duty-conflict

relationships among tasks of W. The role hierarchy is that Rp has a higher position than

(supervises) Rx, Ry and Rz; Rx, Ry and Rz have higher positions than (supervise) Ra, Rb, Rc

and Rd.

Table 3. Capable roles of each task and duty-conflict relationships in workflow W

Task Capable roles Duty-conflict relationship

T1 Ra, Rb, Rx, Ry, Rz, Rp T1 ⊕ T2

T2 Ra, Rx, Rc, Rd, Ry, Rz, Rp T2 ⊕ T1 ; T3 f T2 ; T4 f T2

T3 Rx, Ry, Rz, Rp T3 f T2 ; T3 ⊕ T5

T4 Rx, Ry, Rz, Rp T4 f T2 ; T6 f T4

T5 Rx, Ry, Rz, Rp T3 ⊕ T5 ; T6 f T5

T6 Rp T6 f T4 ; T6 f T5

The role-task planning algorithm first determines the execution dependency among

tasks of W, as described in Section 4.1. Notably, the AND/XOR split structure is

considered. The tasks of W are then assigned in topological order, T1, T2, T3, T4, T5, T6.
When assigning the current task, the algorithm checks each previously assigned task with

an execution dependency on the current task, to determine the roles that can be validly

assigned to the current task. T1 is assigned to role Ra and assgned(T1) is set to true. T2 has

a duty-conflict relationship with T1. Consequently, the valid_roles(T2) do not include role

Ra assigned to task T1. The valid roles for T2 are Rx, Rc, Rd, Ry, Rz and Rp. Rx is first

assigned to T2. The assignments of T3 and T4 are different in the cases of AND-split and

XOR-split structures.

T
1

T
6

T
5

T
3

T
4

T
2

26

Suppose that the split structure is XOR-split. XOR-SPLIT structure splits into

multiple mutually exclusive alternative paths (XOR-paths), only one of which is executed.

Thus, no execution dependency exists among T4 and T3, as well as T4 and T5. There is no

need to consider the duty-conflict relationships between tasks that have no execution

dependency. Since task T3 supervises task T2, the role assigned to T3 must have a higher

position than the role assigned to T2. Consequently, T3 is assigned with role Rp. In the

assignment of T4, only the role assigned to T2 is considered to determine the valid role of

T4, since T4 has execution dependency with T2, and T4 does not have execution

dependency with T3. T4 is assigned with role Rp, since T4 supervises T2. In the following

steps, the valid roles of T5 are Rx, Ry and Rz, which are derived by excluding the role Rp

assigned to T3. However, no valid role can be found for T6, under the assignment of T4

with Rp, since T6 supervises T4 and T5. The algorithm backtracks to try another valid role

of previous assigned task. By backtracking to the assignment of T2, the algorithm chooses

a valid role Rc of T2. In the following recursive call of RoleAssignment() function, the

valid roles of T3 are Rx, Ry, Rz and Rp. Rx is chosen for T3. The valid roles of T4 are Rx, Ry,

Rz and Rp. Notably, for AND-split structure, the valid roles of T4 will be Ry, Rz and Rp,

excluding the role Rx assigned to T3. Rx is chosen for T4. Next, the valid roles of T5 are Ry,

Rz and Rp, which exclude the role Rx assigned to T3. Ry is chosen for T5. Next, the valid

role of T6 is Rp, which satisfy the SoD constraints. One possible valid RTplan has been

found, i.e., RTplan = {< Ra, T1>, < Rc, T2>, < Rx, T3>, < Rx, T4>, < Ry, T5>, < Rp, T6>}.

The algorithm can continue to find another valid RTplan = {< Ra, T1>, < Rc, T2>, < Rx,

T3>, < Rx, T4>, < Rz, T5>, < Rp, T6>}, by assigning T5 with the valid role Rz. The

algorithm can find all valid RTplans by exploring all valid roles of each task.

The RTplans generated by the role-task planning algorithm are used as the input to

the user-role-task planning algorithm. The user-role-task planning algorithm finds valid

users for each pair of (role, task) assignment in a RTplan by employing the similar

approach of the role-task planning algorithm. Table 4 shows the capable users who have

the capability to play the role. The assignment is similar to the assignment of the role-task

planning algorithm, and thus the detailed illustrations of the assignment are omitted. The

user-role-task planning algorithm finds one possible URTplan shown as the following:

URTplan = {< Annie, Ra, T1>, < Bob, Rc, T2>, < Frank, Rx, T3>, < Gary, Rx, T4>, < Gary,

Ry, T5>, < Sam, Rp, T6>}. Similarly, the algorithm can find all valid URTplans by

exploring all valid users of each pair of (role, task) assignment.

27

Table 4. Capable users of roles.

Role Capable users of a role

Ra Annie, Bob, Calla, Gary, John, Sam

Rb Annie, Bob, David, Gary, John, Sam

Rc Bob, Calla, David, Kevin, Mary, Nancy, Tom

Rd Calla, David, Ella, Kevin, Mary, Nancy, Tom

Rx Frank, Gary, John, Sam

Ry Gary, John, Kevin, Mary, Sam

Rz Gary, John, Kevin, Nancy, Tom

Rp Sam, Tom

28

Chapter 5. Authorization Management for Process-View

Adopting workflow management systems (WfMS) to manage business processes is

an important trend in modern enterprises. The new value of WfMS for enterprise is agility,

flexibility and visibility. WfMS can help decision makers fully utilize business processes.

However, workers (representing organizational roles) cannot easily obtain a global view

of a complex and large workflow.

A process-view, an abstracted process derived from a base process, is proposed to

provide adaptable task granularity in previous related work [26]. Process-view is a good

solution that different workflow participants can acquire different needs and types of

authority. For example, a general manager may require aggregated information on a

specific process rather than detailed information. In additional, an accounting manager

may not have the authority or need to know each specific step of the production flow.

These requirements necessitate the need to design a novel model for assigning the

authority of process-oriented views of business tasks to organizational roles.

In base processes, access rights are associated with roles, and users are assigned to

appropriate roles. The access rights/authorized permissions of roles for process-views are

not considered in existing researches. This work discusses the authorization management

of organizational roles in a process-view. Several base activities are aggregated into a

virtual activity in a process-view. An organizational role r’s permissions on a virtual

activity vai can be derived from r’s permissions on those base activities belong to vai.

Moreover, the derivation needs to consider the duty-conflict relationships among base

activities.

5.1. Grouping and data aggregations

The derivation of a virtual process (process-view) involves grouping the base

activities in a base process into virtual activities. A virtual activity contains a set of base

activities in the base process. Base activities may manipulate some data objects. Data

aggregations may be specified on a virtual activity to provide aggregate views of data

derived from the data objects of base activities. In general, data aggregations may apply

aggregate functions on collections of data objects manipulated by base activities of a

virtual activity. These aggregate functions are used in simple statistical computations,

29

including SUM, AVERAGE, MAXIMUM and MINIMUM, that summarize information

from data objects handled by the base activities. Different roles may have different needs

of data aggregations that are defined by the process modeler.

Let vai represent a virtual activity and aj denotes a base activity. Dr(vai) denotes the

aggregate data object of vai for role r; D(aj) denotes the data object handled by aj, i.e.,

data object of aj, for brevity; r
vai

S is the set of base activities that are specified in the data

aggregation of vai for role r; r
vai

DS is the set of data objects of base activities in r
vai

S used to

derive the aggregate data object of vai for role r; and F denotes an aggregate function.

r
vai

S ={ aj | aj ∈ vai : aj is specified in the data aggregation of vai for role r }

r
vai

DS ={ D(aj) | aj ∈ r
vai

S }

The formal expression of aggregating the data objects of base activities to derive the

data object of vai for role r is illustrated in the following.

Dr(vai)= F ({D(aj) | aj ∈ r
vai

S }) i.e., Dr(vai) = F (r
vai

DS)

Notably, r
vai

S may include all or partial base activities in vai, as specified in the data

aggregation for role r defined by the process modeler. The aggregate function may apply

to some or all data objects of base activities in vai.

receiving
order

check
stock

production
FAB I

production
FAB IIorder amount stock amount

production amount (FAB I)

production amount

delivery amount

FAB I
FAB II
production amount
stock amount

production amount (FAB II)

product manager :

sales manager :

Figure 7. Example of a virtual activity “scheduling production”

30

Figure 7 illustrates a virtual activity “scheduling production” which represents an

abstraction of four base activities “receiving order”, “check stock”, “production FAB I”

and “production FAB II”. Only production data are described for clarity. The data objects

of “receiving order”, “check stock”, “production FAB I” and “production FAB II” are

order amount, stock amount, production amount (FAB I), and production amount (FAB

II), respectively. The sales manager only needs to know the delivery amount, including

production distribution and stock amount but not the production details.

managersales
vai

DS = { D(production FAB I), D(production FAB II), D(stock amount)}

The production manager may want to know the production amount but not the stock

amount.

managerproduct
vai

DS = { D(production FAB I), D(production FAB II)}

5.2. The permissions on an activity

A role is a job function defined as a named collection of responsibilities, which

reflect organizational regulations and business procedures. Several permissions on an

activity are defined and illustrated in Table 5. A role is assigned a collection of the

permissions on base activities. The permissions of role r on a virtual activity vai can be

derived from role r’s permissions on base activities in vai.

Table 5. Permissions on activity

Permissions

on activity aj

Descriptions Implied Permissions on

activity aj

manage Manage; Read the data object of aj view, agg_view, awareness

execute Execute; Read/Write the data object of aj view, agg_view, awareness

view Read the data object of aj agg_view, awareness

agg_view Read aggregate data object awareness

awareness Be aware of aj null

31

For a role r, given a permission p on an activity aj, the access privilege of role r is

described as follows.

 manage: role r can monitor the progress of aj and reassign a user to perform aj; role

r can read the data object of aj.

 execute: role r can execute aj and read/write the data object of aj.

 view: role r can read the data object of aj.

 agg_view: role r can read Dr(vai), the aggregate data object of a virtual activity vai,

only if role r has the agg_view permission on all base activity aj ∈ r
vai

S . Notably, r
vai

S

is the set of base activities specified in the data aggregation of vai for role r.

 awareness: the basic and minimum permission for an activity; role r is aware of aj.

Notably, if role r only has the agg_view permission without the view permission on

aj, then role r can not read the data object of aj.

Moreover, the permissions have implied relationships as shown in Table 5. A role r

has the manage or execute permission on an activity aj implied that role r also has the

view, agg_view and awareness permissions on aj. A role r possesses the view permission

on an activity aj implied that role r also has the agg_view and awareness permissions on

this activity. Finally, a role r has the agg_view permission on an activity aj implied that

role r also has the awareness permission on aj.

5.3. Permissions on a virtual activity without considering duty-conflict

relationships among base activities

This section presents the derivations of the permissions of a role r on a virtual

activity without considering duty-conflict relationships among the base activities. Next

section presents the derivations considering the duty-conflict relationships among the

base activities.

 Let P(r, aj) be the set of permissions of role r on an base activity aj and P(r, vai) be

the set of permissions of role r on a virtual activity vai. For strict privilege principle,

P(r,vai) can be derived by the intersection of permissions on base activities belong to vai,

as illustrated in the following.

32

I
ij vaa

ji arPvarP
∈∀

=),(),(

We use the example illustrated in Figure 2, Section 2.3, to illustrate the derivation.

The base activities, a1, a2 and a3 in the base process, are aggregated into the virtual

activity, va1, in the process-views. If P(r, a1), P(r, a2), P(r, a3) is {manage}, {execute}

and {view}, respectively. According to the strict privilege principle, P(r, va1) are the

intersection of permissions on base activities belong to va1, which results in {view}.

Notably, the implied permissions shown in Table 5 should be considered in deriving the

permissions on a virtual activity.

Above derivation may be too strict for data aggregation, since the derivation shows

that if a role r does not have agg_view permission on all base activities in vai, then the

permissions of role r on virtual activity vai will not contain agg_view permission.

However, data aggregation may be specified on part of base activities in vai. A role r

should be able to read Dr(vai), the aggregate data object of a virtual activity vai, if role r

has the agg_view permission on all base activity aj ∈ r
vai

S , as described in the following

equation.

agg_view ∈ P(r, vai), if P(r, aj) contains agg_view permission for all aj ∈ r
vai

S

If a role r has the agg_view permission but not the view permission on a base activity

aj in a virtual activity vai; the agg_view permission on vai is derived for role r. Role r may

deduce the data object of aj that r does not have the permission to view. For example, a

virtual activity, va1, is aggregated from two base activities, a1 and a2. A personal

computer manufacturer contains two factories. Each factory reports the amount of

product to head office, where a1 reports the amount of product in factory one, two

thousands PCs, and a2 reports the amount of product in factory two, three thousands PCs.

The va1 reports the total amount of product in both factories, i.e. five thousands PCs.

However, the permission of a role r can only know the amount of product in factory one,

and not factory two. Role r should not have the permission to know the total amount of

product in both factories, since the amount of product in factory two may be deduced.

Accordingly, the derivation of the agg_view permission on a virtual activity is modified

as the following, by considering the data deduction rule.

33

Equation (1):

I
ij vaa

ji arPvarP
∈∀

=),(),(

agg_view ∈ P(r, vai), if P(r, aj) contains agg_view permission for all aj ∈ r
vai

S ;

and the data deduction rule is satisfied.

Data deduction rule:

There is no data deduction on the data object of aj for aj ∈ r
vai

S and view ∉ P(r, aj).

Some enterprises adopt lenient privilege principle to increase the convenient and

flexibility in process management. Least privilege principle is to make sure that only

those permissions required for the activities conducted by members of the role are

assigned to the role. For least privilege principle, the permissions of role r on a virtual

activity are the necessary access rights defined by the process modeler.

5.4. Permissions on a virtual activity considering duty-conflict

relationships among base activities

Section 3.1 has defined several duty-conflict relationships among tasks (activities).

A base process contains a set of tasks, and some duty-conflict relationships may exist

among tasks. The derivation of a role r’s permissions on a virtual activity needs to

consider duty-conflict relationships among base activities.

For strict privilege principle, if the base activities ax and ay are duty-conflict tasks, ax

⊕ay; virtual activity vai only contains two base activities ax and ay, the permission of a

role r on virtual activity vai is illustrated in Table 6.

Two base activities ax and ay are duty-conflict activities that are aggregated as a

virtual activity vai. According to the authorization rules for SoD defined in section 3.2,

two duty-conflict tasks cannot be assigned to the same role. If role r has the execute

permission on both base activities ax and ay, then only the minimum and basic permission

“awareness” on vai can be authorized to role r. Moreover, under the strict privilege

principle, if role r has the view permission on both base activities ax and ay, then only the

“awareness” permission on vai can be authorized to role r. Notably, the implied

permissions should be considered in the authorization.

34

Table 6. Permissions of role r under strict privilege principle

ax⊕ay

Permission on ax Permission on ay

Permission on vai
vai = {ax, ay}

execute execute
manage
view

agg_view

awareness

awareness
awareness
awareness
agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)

awareness

manage manage
view
agg_view

awareness

awareness
awareness
agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)

awareness

view view

agg_view

awareness

awareness
agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)

awareness

agg_view agg_view

awareness

agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)

awareness

awareness awareness awareness

For the case that role r has the view permission on ax and the agg_view permission

on ay, the agg_view permission on vai can be authorized to role r, if the data deduction

rule is satisfied; otherwise, only the “awareness” permission on vai can be authorized to

role r. The data deduction rule states that there is no data deduction on the data object of aj

for aj ∈ r
vai

S and view ∉ P(r, aj). A role should not deduce some unauthorized permissions

on the data objects. For example, three base activities are aggregated into a virtual activity

vai. If role r has the view permission on one base activity ax and the agg_view permission

on the other two base activities ay and az, the agg_view (e.g. SUM aggregation)

permission on vai can be authorized to role r, since role r can not deduce the data

information of ay and az. Nevertheless, if a role has the view permission on ax and ay; and

the agg_view permission (no view permission) on az, the agg_view (e.g. SUM

aggregation) permission on vai can not be authorized to role r, since role r can deduce the

35

data information of az. The other derivations are similar, and thus are omitted for clarity.

In order to increase the flexibility, an organization may adopt lenient privilege

principle. For lenient privilege principle, if the base activities ax and ay are duty-conflict

tasks, ax⊕ay; virtual activity vai only contains two base activities ax and ay, the permission

of a role r on virtual activity vai is illustrated in Table 7.

Table 7. Permissions of role r under lenient privilege principle

ax⊕ay

Permission on ax Permission on ay

Permission on vai
vai = {ax, ay}

execute execute
manage
view
agg_view

awareness

awareness
awareness
awareness
agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)

awareness

manage manage
view

agg_view

awareness

awareness
view
agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)

awareness

view view

agg_view

awareness

view
agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)

awareness

agg_view agg_view

awareness

agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)

awareness

awareness awareness awareness

The main difference between the strict and lenient privilege principles is to loosen

the view-view violation. Under the strict privilege principle, if role r has the view

permission on both base activities ax and ay, then only the “awareness” permission on vai

can be authorized to role r. For the lenient privilege principle, if role r has the view

permission on both base activities ax and ay, then the “view” permission on vai can be

authorized to role r. If role r has the manage permission on ax and the view permission on

36

ay, then the “view” permission on vai can be authorized to role r. However, if role r has the

execute permission on both base activities ax and ay, then only the “awareness”

permission on vai can be authorized to role r, in order to achieve the constraint of SoD.

As described in section 5.2, if the “execute” permission on ax is authorized to role r,

then the implied permissions are also assigned to role r, i.e., P(r, ax) = {execute, view,

agg_view, awareness}. If role r also has the “execute” permission on ay, then the “view”

permission on vai is derived for role r, according to Table 7, which violates the SoD

principle. To ensure no violation of SoD, the maximum privilege of role r’s permissions

should be used to derive role r’s permissions on vai. The privileges of the permissions are

ranked as follows: execute > manage > view > agg_view > awareness. Let r
a j

Pmax

denote the maximum privilege of role r’s permission on activity aj.

r
a j

Pmax = the higest ranked permission in P(r, aj)

For duty conflict tasks, the maximum privileges of role r’s permissions on base

activities are used to derive role r’s permissions on virtual activity, according to Table 7.

Table 7 shows the derivation of role r’s permission on a virtual activity that contains

two duty-conflict activities. The derivation for general cases that a virtual activity may

contain a set of base activities with duty-conflict relationships is described as Figure 8.

The algorithm creates a temporary virtual activity, tmpvaj for each pair of duty-conflict

tasks ax and ay in vai, where tmpvaj = { ax, ay }. Then role r’s permissions on tmpvaj are

derived according to Table 7 by using the maximum privilege of P(r, ax) and P(r, ay)

(i.e. r
ax

Pmax and r
ay

Pmax), respectively. Once role r’s permissions on duty-conflict tasks

are derived, the algorithm then uses equation (1) described in Section 5.3 to derive role

r’s permissions on the virtual activity vai.

37

Algorithm The algorithm of derivation for general cases

tmpVA ={}

for each pair of duty-conflict tasks ax⊕ay and ax, ay ∈ vai

Create a temporary virtual activity tmpvaj = { ax, ay }

P(r, tmpvaj) = the set of permissions derived according to Table 7,

 by using the r
ax

Pmax and r
ay

Pmax

tmpVA = tmpVA∪{ tmpvaj }

endfor;

for each base activity ax ∈ vai

if there is no ay ∈ vai such that ax⊕ay then

tmpVA = tmpVA∪{ ax }

endfor;

P(r, vai) = I
tmpVAa

j
j

arP
∈∀

),(

if P(r, aj) contains agg_view permission for all aj ∈ r
tmpVAS ; and the data deduction rule

 is satisfied.

P(r, vai) = P(r, vai) ∪{ agg_view }

Figure 8. The algorithm of derivation for general cases

38

Chapter 6. System Implementation and Demonstration

This chapter will elucidate the implementation, demonstration and discussion of the

system.

6.1. System implementation

Various authorization rules are incorporated into the system to achieve separation of

duty in the assignment of tasks to roles and users. A graphical interface is also supported

to enable security managers to specify tasks, roles and users, and impose appropriate

authorization rules. Figure 9 depicts the system architecture which integrates a workflow

management system.

Figure 9. The system architecture

The system contains databases and four modules, including a client application

module, a user authentication module, an authorization controller, and an activation

controller. The databases store information required to identify users, authorization rules

for SoD, user/role/task assignments and the historical record of role/task activations. The

client application provides a graphical user interface (GUI) between the user and the

system. The user authentication module supports user authentication to validate the user’s

identity. The system ensures that only authorized users can conduct operations such as

activating roles, executing tasks, and accessing objects. The authorization controller

governs role-task and user-role assignments. Role activations and task executions

Client
Application

WFMS

Database
Management

System (DBMS)

Authorization
Rules for SoD

User/Role/Task
Assignment

History
Record

Transaction Server (TS)

Authorization Controller

Activation Controller

IIOP ODBC

run-time activity
planning-time activity protocol

User's
WorkList

Design
Module

RunTime
Module

Static
Authorization

Dynamic
Authorization

User Authentication

User
Identification

39

conducted by users are verified to ensure that authorization constraints for SoD are not

violated.

The workflow management system (WfMS) supports the design and enactment of

workflows. The design module assists a workflow designer to specify a workflow in the

planning phase. The design module supports the assignment of roles/users to each task in

a workflow. The assignment must be validated by interaction with the authorization

controller to ensure that no authorization constraints for SoD are violated. Furthermore,

the design module implements the user/role-task planning algorithms, as illustrated in

Chapter 4, to generate initial workflow activation plans. The run-time module is

responsible for the enactment of workflows in the run-time phase, including the execution

and scheduling of tasks. The run-time module controls the task execution flow and

assigns a user to perform the current task. The assignment must also be validated by

interaction with the authorization controller to verify authorization constraints of SoD.

Moreover, the run-time module executes the plan-adjust algorithm described in Section

4.3, to find a valid user for the current task, if the planned user cannot activate the current

task.

The activation controller manages role/task activation and interaction with users and

WfMS. The run-time module of WfMS provides each user with his/her work-list via the

activation controller. Furthermore, the activation controller handles users’ requests for

role/task activation and issues an authorization request to the authorization controller to

verify the satisfaction of authorization constraints for SoD.

During the run-time phase, a user may issue a request to activate a role or execute

certain tasks in his/her work-list. First, his/her identity must be verified by the

authentication module. Then the client application sends the user’s request to the

activation controller. The activation controller communicates with the authorization

controller to manage the authorization. The activation controller examines the related

authorization rules, assignments and historical records to authorize the role/task

activation. If the request for role/task activation is confirmed as legal and adequate, then

the activation controller sends the user’s request to the WfMS. Finally, the WfMS allows

the user to execute the authorized task.

Sybase’s EAS (Enterprise Application Server) 3.0 is used to develop the system. EAS

is an integrated development tool, including a front-end tool, an object-based

40

development tool, a transaction server, and a database management system (DBMS). The

prototype system is a three-tier architecture with the transaction server (TS) as the middle

tier between the client application and the DBMS server. The client application program

provides the interface between the user and the system. The DBMS stores authorization

data and process/task data. The system is implemented with Windows NT 4.0 as the

server side and Windows 2000 as the client side. Rational Rose 4.0 is used to analyze and

design the system, while PowerDesign 7.0 is used to develop databases managed by

Sybase SQLAnywhere 6.0 DBMS. PowerBuilder 7.02 is used to develop client

applications and the modules in the transaction server. Notably, the application program

on the client side communicates with the Transaction Server using IIOP (Internet

Inter-ORB Protocol). The client application program serves the user by calling the

business objects supported in the authorization controller, the activation controller and

the TS. The TS retrieves the required data from the DBMS server via ODBC.

6.2. System demonstration

This section describes a procurement process to demonstrate the application of the

system to managing authorization for business processes. The system provides the

security administrator with a GUI to manage the authorization, involving enacting

authorization rules, duty-conflict relationships, objects (documents, tasks, roles, users)

and their relationships, as shown in Figure 10.

The authorization management mainly supports the specification of authorization data

necessary for authorization control. The specification is conducted in the planning phase.

Figure 10 reveals that “Issuing item-request” and “Approving item-request” are tasks in

the “Submitting purchase request” sub-process. “Approving item-request” supervises

“Issuing item-request”. An initial workflow activation plan of the sub-process,

“Submitting purchase request”, generated in the planning phase according to the

user/role-task planning algorithms, is as follows. Mary/Clerk is assigned to “Issuing

item-request”, and John/Assistant-Manager is assigned to “Approving item-request”.

During the run-time phase, the system provides the login user with a GUI to conduct

role/task activations. The activation controller provides the user with the authorized role

list and the assigned task list. Additionally, the activation controller communicates with

the authorization controller to verify the users’ requests on activating a role/task. Once the

request is verified to satisfy the dynamic constraints for SoD, the user is allowed to play

41

the role or execute the task.

Figure 10. Enactment of data for authorization control

Assume that Mary is unavailable to perform the task “Issuing item-request” in the

current workflow instance (workflow instance no. 135). The plan-adjust algorithm finds

that John is a valid user to activate the task “Issuing item-request” in the current workflow

instance (wf-no. 135). Figure 11 indicates that John is authorized to play the roles of the

assistant manager and the clerk of the human resource department. John has successfully

performed the task “Issuing item-request’ on issuing a request to purchase computers

(CPU P4 1.4GHz, wf- no. 135). Figure 12 shows that even though John is authorized as

an assistant manager, he cannot activate the task “Approving item-request” to approve the

request to purchase a computer (CPU P4 1.4GHz, workflow instance no. 135), since the

request was issued by John, himself. Such approval would violate the SoD constraints.

Notably, in other workflow instances, John can play the role of the assistant manager to

activate the “Approving item-request” task to approve requests issued by other clerks.

42

Figure 11. Activation of “Issuing item-request” by John as Clerk

Figure 12. Verifying SoD in the activation of “Approving item-request” by John as

assistant manager

43

6.3. Discussion

A case organization, i.e., an information department of the Army data management

center, was invited to evaluate and test run our prototype system. A procurement process

is deployed to evaluate the system. Notably, only some necessary roles and users

participated in the procurement-process were considered for evaluation purposes.

Detailed comments provided in the evaluation responses by those who had used the

proposed prototype system are as follows.

(1) A preliminary planning phase is required to specify the capabilities of the roles and

users as well as the duty-conflict relationships among tasks. The case organization

needs to specify, for each task, the set of capable roles that can execute the task, and,

for each role, the set of capable users that can activate the role. However, the

operational procedure of the case organization does not include such a planning

phase. Accordingly, the case organization needs to redefine its operational procedure

to accommodate such a planning phase, increasing, however, the workload of the

case organization.

(2) The workflow designer in the case organization directly assigns users/roles to tasks,

according to the organization’s understanding of the duties associated with

roles/users. There is no system means and verification to ensure that the principle of

separation of duty is not violated. The proposed system provides a graphical

interface in which the security manager can specify tasks, roles and users, and

implement appropriate authorization rules to maintain separation of duties. The

response of the case organization is very positive regarding the aid provided by our

system for verifying the principle of separation of duty.

(3) The case organization uses primarily user ids and passwords for security control.

The security control of our system is a more complex process that requires

tasks/roles/users to be specified and separation of duties to be verified. Such a

complex process is inconvenient when the case organization seeks flexibly to adjust

manpower when executing workflows. For example, an unplanned role/user may

need to perform an unauthorized task due to workflow exceptions or emergent

organizational needs. However, the case organization agreed that our system is

helpful in providing a more secure mechanism for controlling the execution of

tasks/workflows.

44

Chapter 7. Comparison with Related Work

Existing researches include role/task-based security model for SoD, task-based

authorization model, and role-based authorizations for workflows. Thomas et al. [29]

proposed task-based authorization control to manage the execution states of tasks by

controlling the run-time execution status of tasks. They considered neither SoD nor

authorizations among tasks, roles and users. Schier [23] also proposed a role and task

based security model. Although authorization rules for SoD have been designed, they are

merely derived from SoD in RBAC. The definition of mutual exclusive tasks is simply

derived from the definition of mutual exclusive roles. Duty-conflict relationships

between tasks have not been explored. In addition, the proposed authorization rules for

SoD are merely extended from SoD in RBAC. They considered neither execution

dependency nor role-based authorizations for workflow tasks. In contrast, this work

provides a novel analysis and defines various duty-conflict relationships among tasks.

Various authorization rules for execution-dependent SoD have been proposed.

Although several researchers have addressed role-based access control and

authorization management in workflow systems, few have considered authorization

planning in assigning workflow tasks to roles/users. Bertino et al. [5] proposed a flexible

model for the specification and enforcement of authorization constraints in workflow

management systems. A logical authorization language, defined as clauses in a logic

program, is proposed to express authorization constraints on role assignments and user

assignments. Deductive approach is then used to conduct consistency checking on the

logical constraints. Moreover, algorithms have been proposed for authorization planning

in assigning users and roles to workflow tasks such that no authorization constraints are

violated. The comparison of their work with ours can be elucidated as follows. First,

although examples have been presented to illustrate how to express static and dynamic

SoD via the proposed authorization language, they considered neither the execution

dependency nor the variations of SoD that arises from different duty-relationships among

tasks. On the contrary, we have defined several authorization rules for SoD based on

various duty-conflict and execution dependent relationships. The execution-dependent

SoD supports the enforcement of SoD across users’ active sessions and historical sessions.

Second, the authorization planning algorithms proposed by Bertino et al. mainly find

valid assignments by consistency checking with deductive inference on authorization

45

constraints expressed in logic language. Deductive inference needs to check all

constraints to find if there is inconsistency. Different from their work, our approach finds

valid assignments by verifying SoD constraints based on various duty-conflict

relationships among tasks, and in particular, the execution dependency among tasks in

workflow instances. Only tasks that are duty-conflict and execution dependent need to be

verified. Moreover, we have considered the AND/XOR split structure of a workflow to

explore the execution dependency.

With the rapid growth of Internet usage for business applications, conducting

workflow management on the Internet is an inevitable trend for business commerce. Ahn

et al. [1] developed a system architecture for enforcing role-based access control in

Web-based workflow management systems. The architecture mainly consists of a role

server for maintaining user-role assignments and issuing certificates with client’s role

information. Role-based authorization is conducted as follows. The client needs to

request a client certificate with role information, implemented as an X.509v3 certificate

with role attributes, and presents it to the Web server of the workflow system. The Web

server then retrieves role information from the certificate to verify if the client has the

privileges to execute the task by the role. Detailed implementation has been presented to

show the feasibility of the proposed system. However, the proposed role-based

authorization is still based on the simple RBAC96 model.

Atluri and Huang proposed a Workflow Authorization Model (WAM) for

workflows [3]. The model associates each task with authorization templates that specify

static parameters of authorization defined during the design time. When a task of a

workflow instance starts to execute in run time, the actual authorization of granting a

subject to execute the task is derived from the authorization templates. The WAM model

has also been enhanced to incorporate separation of duty constraints. Huang and Atluri

[13] also presented a secure Web-based workflow management system (SecureFlow).

The SecureFlow system is developed based on the WAM. A workflow authorization

server, which is separated from the WfMS, is employed to support the specification and

enforcement of security policies based on role-based access control and separation of

duty. In addition, a simple 4GL language is used to specify authorization constraints.

Botha and Eloff [6] presented access control requirements in document-centric

workflow systems. A Context-sensitive Access Control model, which is based on

46

role-based access control, is proposed to protect unauthorized access to documents

(sensitive information) used in workflow systems. The model considers conflicting tasks,

conflicting users (e.g. family members) and access history of document in supporting

dynamic SoD requirements. Moreover, an agent-based approach is used to implement the

proposed model.

As the demand of business globalization increases, inter-organizational workflows

are gaining importance in collaborative business environments. From this aspect, access

control mechanisms and security models have been proposed for inter-organizational

workflows [2][16]. Kang et al. [16] proposed a notion of role domain, instead of an

organization’s role structure, to specify the data access policy associated with each task of

the workflow. To participate in the inter-organizational workflow, an organization needs

to map its role structure to the role domain for the workflow. The role domain approach

decouples the workflow-specific security structure from an organization’s security

structure. X.509 certificate is used to provide user identity and role/organization

information. The mechanism also supports context-based access control, in which data

access is enforced according to the capability (context) of each task, i.e., read/write

permissions on fields of data objects. Moreover, Atluri et al. [2] considered the issues of

conflict-of-interest among competing organizations of inter-organizational workflows in

decentralized workflow environments. The model mainly prevents sensitive dependency

information or sensitive output of a task leaking to another task agent (organization) with

conflict-of-interest.

The comparisons of our work with above literatures [1][2][3][6][13][16] are

illustrated as follows. First, they did not consider authorization planning for assigning

workflow tasks to roles/users. In contrast, we have developed the user/role/task planning

algorithms in planning-time phase and the plan-adjust algorithm in run-time phase,

respectively. The user/role/task planning algorithms generate initial workflow activation

plans in advance, which assign tasks to a set of valid roles/users, to satisfy the constraints

of SoD. The plan-adjust algorithm identifies an available user authorized to activate the

current task, and generates a new activation plan. Second, they considered neither the

execution dependency nor the variations of SoD that arises from different

duty-relationships among tasks. On the contrary, we have defined several authorization

rules for SoD based on various duty-conflict and execution dependent relationships.

Finally, some researchers have addressed access control mechanisms for

47

inter-organizational workflows. Inter-organizational workflows are gaining importance

in B-to-B commerce. Our current work does not focus on inter-organizational

environments, though some of the proposed work can still be applied in such

environments. Further investigation is required to extend our work to inter-organization

workflows, and thus is proposed as future work.

48

Chapter 8. Conclusions and Future Works

8.1. Summary

Authorization management and access control are essential in supporting secure

workflow management systems. This work presents a novel analysis and defines various

task-based SoD constraints, such as duty-supervising and execution-dependent SoD. The

user/role/task planning algorithms in planning phase have been developed to generate

initial workflow activation plans in advance, while the plan-adjust algorithm in run-time

phase has been developed to determine an available user authorized to activate the current

task. The proposed approach facilitates the effective authorization management of

workflows to assign tasks to roles or users, while enforcing task-based SoD. Secure

task-based access to workflow related data is enforced via effective authorization

management.

Process-view is a good solution that different workflow participants acquire different

needs and types of authority. This work analyzes the grouping and aggregate function of a

virtual activity; and further, explains the permissions of a virtual activity in a

process-view. Moreover, this work discusses the permissions for a role on a virtual

activity aggregated from duty-conflict base activities.

Moreover, a prototype system has been developed to manage the authorization to

perform tasks in workflow environments. The proposed system was evaluated by a case

organization. The evaluation results have the following implications. First, the proposed

system requires that enterprises plan the capabilities of roles and users in advance.

However, enterprises may not have clearly identified the capabilities of roles and users.

The policy of separation of duty may not be specified in organizations. To implement the

proposed system in enterprises, a re-engineering process is required to adjust

organizations’ operational procedures for specifying roles, users and security policy.

Accordingly, the proposed system is more complex and increases the workload required

for security validation. Second, the proposed system enforces a strict security control. In

practice, an enterprise may require flexibility to adapt to dynamically changing business

environments. Strict authorization enforcement can achieve separation of duty and thus

prevent fraud, by sacrificing flexibility and convenience.

49

8.2. Future Works

Our future work will address three themes. First, duty-conflict relationships are

essential to design SoD constraints. Further work is necessary to explore more kinds of

duty-conflict relationships. Second, the execution dependency is proposed and employed

to support the enforcement of SoD across various users’ sessions. The concept of

execution dependency can be similarly applied to tasks of different workflows. However,

deriving such execution dependency across different workflows requires further study.

Third, inter-organization workflows are gaining importance in B-to-B commerce.

Although some works have addressed access control in this aspect, they disregard the

coordination behavior in inter-organizational workflows [18][24][25]. Future research

will be to investigate the authorizations and access control in inter-organizational

workflows.

50

References

[1] Ahn, G-J, Sandhu, R., Kang, M., Park, J., “Injecting RBAC to Secure a Web-based
Workflow System”, In Proceedings of 5th ACM Workshop on Role-Based Access
Control, 2002.

[2] Atluri, V., Chun, S.A., Mazzoleni, P., “A Chinese Wall Security Model for
Decentralized Workflow Systems”, Proceedings of the 8th ACM conference on
Computer and Communications Security, 2001.

[3] Atluri, V., Huang W-K, “An Authorization Model for Workflows”, Proceedings of
the fifth European Symposium on Research in Computer Security, Rome, Italy, pp.
44 – 64, 1996.

[4] Barkley, J., “Implementing Role Based Access Control Using Object Technology”,
First ACM Workshop on Role Based Access Control, November, 1995.

[5] Bertino, E., Ferrari, E., Atluri, V., “Specification and Enforcement of Authorization
Constraints in Workflow Management Systems”, ACM Transactions on Information
and System Security, Vol. 2, No. 1, pp 65 – 104, 1999.

[6] Botha, R.A., Eloff, Jan H.P., “Access Control in Document-centric Workflow
Systems — An Agent-based Approach”, Computers & Security, Vol.20, No.6,
pp.525-532, 2001.

[7] Cichocki, A., Helal, A., Rusinkiewicz, M., Woelk, D., “Workflow and Process
Automation: Concepts and Technology”, Kluwer Academic Publishers, 1998.

[8] Coulouris, G., Dollimore, J., Roberts, M., “Role and Task-based Access Control in
the PerDis Groupware Platform”, Third ACM Workshop on Role-Based Access
Control, George Mason University, VA, October, 1998.

[9] Ferraiolo, D.F., Cugini, J., Kuhn, R., “Role-Based Access Control (RBAC): Features
and Motivations”, Proceedings of 11th Annual Computer Security Application
Conference, IEEE Computer Society Press, pages 241-248, December, 1995.

[10] Ferraiolo, D.F., Kuhn, R., “Role-Based Access Control”, In Proceedings of 15th
NIST-NCSC National Computer Security Conference, pages 554-563, October,
1992.

[11] Georgakopoulos, D., Hornick, M., Sheth, A., “An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure”,
Distributed and Parallel Databases, pages 119-153, 1995.

51

[12] Gligor, V.D., Gavrila, S.I., Ferraiolo, D., “On the Formal Definition of
Separation-of-Duty Policies and Their Composition”, Proceedings of IEEE
Symposium on Security and Privacy, IEEE Computer Society, May, 1998.

[13] Huang, W-K, Atluri, V., “SecureFlow: A secure web-based workflow management
system”, In Proceedings of 4th ACM Workshop on Role-Based Access Control,
pages 83-94, Fairfax, VA, October, 1999.

[14] Joshi, J., Bertino, E., Shafiq, B., Ghafoor, A., “Dependencies and Separation of Duty
Constraints in GTRBAC”, Proceedings of the eighth ACM Symposium on Access
Control Models and Technologies (SACMAT’03), p51-63, June 2-3, 2003.

[15] Kang, M.H., Froscher, J.N., Sheth, A.P., Kochut, K.J., Miller, J.A., “A multilevel
secure workflow management system”, In Proceedings of the 11th Conference on
Advanced Information Systems Engineering (CAiSE'99), pages 271-285,
Heidelberg, Germany, June, 1999.

[16] Kang, M.H., Park, J.S., Froscher, J.N., “Access Control Mechanisms for
Inter-organizational Workflow”, Sixth ACM Symposium on Access Control Models
and Technologies (SACMAT 2001), May 3-4, 2001.

[17] Kappel, G., Lang, P., Rausch-Schott, S., Retschitzegger, W., “Workflow
Management Based on Objects, Rules, and Roles”, IEEE Bulletin of the Technical
Committee on Data Engineering, Vol. 18/1, pp. 11-17, March, 1995.

[18] Koetsier, M., Grefen, P., Vonk, J., “Contracts for Cross-Organizational Workflow
Management”, Proceedings of the 1st International Conference on Electronic
Commerce and Web Technologies, pp. 110-121, London, UK, 2000.

[19] Lee, B.G., Narayanan, N.H., Chang K.H., “An Integrated Approach to Distributed
Version Management and Role-based Access Control in Computer Supported
Collaborative Writing”, The Journal of Systems and Software, 59 (2001), pp.
119-134, 2001.

[20] Li, N., Bizri, Z., Tripunitara, M.V., “On Mutually-Exclusive Roles and Separation of
Duty”, Proceedings of the 11th ACM conference on Computer and Communications
Security (CCS’04), p42-51, October 25-29, 2004.

[21] Nash, M.J., Poland, K.R., “Some Conundrums Concerning Separation of Duty”,
Proceedings of IEEE Computer Society Symposium on Security and Privacy, IEEE
Computer Society Press, May, 1990.

[22] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman C.E., “Role-Based Access
Control Models”, IEEE Computer, 29(2), pp.38-47, February, 1996.

52

[23] Schier, K., “Multifunctional Smartcards for Electronic Commerce — Application of
the Role and Task Based Security Model”, 14th Annual Computer Security
Applications Conference, December, 1998.

[24] Schulz, K.A., Orlowska, M.E., “Facilitating cross-organizational workflows with a
workflow view approach”, Data & Knowledge Engineering, 51, p109-147, 2004.

[25] Shen, M., Liu, D.R., “Coordinating Interorganizational Workflows based on
Process-Views”, Proceedings of the DEXA 2001 12th International Conference on
Database and Expert Systems Applications, pp. 274-283, Munich, Germany, Sept.,
2001, LNCS 2113, Springer-Verlag Berlin Heidelberg.

[26] Shen, M., Liu, D.R., “Discovering role-relevant process-views for disseminating
process knowledge”, Expert Systems with Applications, 26, p301–310, 2004.

[27] Simon, R.T., Zurko, M.E., “Separation of Duty in Role-Based Environments”, 10th
Computer Security Foundations Workshop, June 10-12, 1997.

[28] Strembeck, M., Neumann G., “An Integrated Approach to Engineer and Enforce
Context Constraints in RBAC Environments”, ACM Transactions on Information
and System Security, Vol. 7, No. 3, p392-427, August 2004.

[29] Thomas, R.K., Sandhu, R.S., “Task-Based Authorization Controls (TBAC): A
Family of Models for Active and Enterprise-oriented Authorization Management”,
Proceedings of the IFIP WG11.3 Workshop on Database Security, August 11-13,
1997.

[30] Weitz, W., “Workflow modeling for Internet-Based Commerce: An Approach Based
on High-Level Petri Nets”, Proceedings of International IFIP/GI Working
Conference TREC’98, Hamburg, Germany, June 3-5, 1998.

[31] Wolf, R., Keinz, T., Schneider, M., “A Model for Context-dependent Access Control
for Web-based Services with Role-based Approach”, Proceedings of the 14th
International Workshop on Database and Expert Systems Applications (DEXA’03),
2003.

[32] Workflow Management Coalition, “Workflow Management Coalition: Workflow
Reference Model”, Technical report WfMC TC-1003, Jan. 19, 1995.

