EREEE BRI S S £ R RlanE LS - pLl
Role and Task Based Authorization Management

for Workflows

ME GBS A TR T
Role and Task:Based Authorization Management

for Workflows

L 4
¥
2R
\?ﬂ?'\?

R £

~rfe
AR L A

\1_

bRy Rl B

LA = - T

DEEN - ENISY S CiENiane 2.3 L5

Role and Task Based Authorization Management for Workflows

PN B G S 5 Student : Mei-Yu Wu
4n Wards L Bl3tic Advisor : Dr. Duen-Ren Liu
Bl = i~ 8
AU A S
fEds <
ArDissertation

Submitted to Institute of Information Management
College of Management
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

n
Information Management

January 2005

Taipei, Taiwan, Republic of China

PEARAY e £

Role and Task Based Authorization Management for Wor kflows
Student: Mei-Yu Wu Advisor: Dr. Duen-Ren Liu

Institute of Information Management
National Chiao Tung University

Abstract

Role-based authorizations for assigning tasks of workflows to roles/users are crucial
to security management in workflow management systems. The authorizations must
enforce Separation of Duty (SoD) constraints to prevent fraud and errors. This work
analyzes and defines several duty-conflict relationships among tasks, and designs
authorization rules to enforce SoD constraints based on the analysis. A novel
authorization model that incorporates authorization rules is then proposed to support the
planning of assigning tasks to roles/users,.and the run-time activation of tasks. Different
from existing work, the proposed authorization:model considers the AND/XOR split
structures of workflows and execution dependency among tasks to enforce separation of
duties in assigning tasks to roles/users. Moreover, this work discusses the authorization
management of organizational”.rolés#in a process-view. A process-view, an abstracted
process derived from a base process, c¢an provide adaptable task granularity to suit
different needs of workflows participants. Authorization mechanisms are proposed to
derive a role’s permissions on virtual activities based on the role’s permissions on base
activities. The proposed authorization mechanisms consider duty-conflict relationships
among base activities to enforce SoD. A prototype system is developed to realize the

effectiveness of the proposed authorization model.

Keywords : Role-based access control, workflow, process-view, authorization

management, separation of duty

Acknowledgement

Bovn g LB § LR AN NDE RIS SI% 0 R AT LT
ER LI tets i,\,;}hg A A ;Ln THRE Y W R ‘F'ﬁ}@: ZeltELA

RPEAEF E o R RAORITRHF S X REFDEFT R R

PRl B FA R BRI R 8 Y R BARERR
ua§4ﬁﬁ,ﬁﬁ@wgﬁkié’%%érﬁwﬁ’mm$%¢i$%ﬁﬂ
{

PG REAGT RN IGHFAE S FAE o 0t BREHERfHER

Fobo BREBTF MRS R RS S A BRI AP P AT B
R RS Ee ~F R ag s 27 288 gk R A pEe e A

Bofs o AER A A A H TREHR gt Fo M R T RS
BN F O 1 A AE R S hpE ko BB R L R

SRS SEESE-E TS EU S ST e

% % 2005/01

il

Contents

ADSIFACT e r e et [
ACKNOWIEOGEMENT ...ttt st sreenaeenee s i
CONEENTIS e bt e b b e n e nre e nr e n e I
I o 01U =PRI v
LISt Of TADIES ... s Vi
(O gF=To 1 (= gt IR 014 0o [1 [ox o o USRS 1
L1, IMIOTIVALION . .ttt ettt ettt sttt e bt e be e st e bt e esbe e beesabeenbeeeas 1

1.2 GOQIS ettt et et ea 2

1.3, CONIDULIONS ..ttt ettt et ettt st 2

L4, OTZANIZAtION.....cuvieeiiieeeiieeeieeeeieeesteeesaeeesereeestteeesaseeessseeesseeesseeessseeessseeesseennns 3
Chapter 2. RelAtOd WOIK ..ottt e e 4
2.1. Role-based Access CONtrol..........cceoriiiiiiiiiiiiinieiieee e 4
2.1.1. Separation Of AUty st il et 5

2.2. WOrkflow ManagemeIIL........ s sesestoevrsotsreeeseeessreessseeessseeessseeesssesessseesssseessseenns 6

2.3, Process-VIEW it oo iadtd it et e e 7
Chapter 3. Task-based Separation OF DULYo. oo 9
3.1. Analysis of duty-conflictirelationships vocovveviiiiiieniieiieieceeee e, 10

3.2. Authorization rules forS8OD.......ccttiii i, 11
Chapter 4. Authorization Model for Workflows..........ccccoviiiiiiniininc e 17
4.1. Role-task planning algorithm...........ccceeviiiieiiiieiiieeieecee e 18
4.1.1. Execution-dependency considering the AND/XOR split structure20

4.2. User-Role-Task planning algorithm............ccccoeeviiieiiiiniiiieiieceeeeeeeeee 21

4.3. Plan-adjust al@orithm..........cccviiiiiiiiiiiciie e 22

4.4, THUStrative €XaAMPIEScccvvieeiiieeeiieeiiieerieeeeiee et e erteeesereeeereeeeaeeesaeessaeeeanns 24
Chapter 5. Authorization Management for Process-Viewccccvenerinneenennenn 28
5.1. Grouping and data aggregationsceeecveeecieesiiieesieeesieeereeeeeeeereeeeree e 28

5.2. The permissions ON @N ACTIVILY ...cccuveeeeuieeriueeeriieesieeesreeesreeesereeesseeesseeesseeenns 30

5.3. Permissions on a virtual activity without considering duty-conflict
relationships among base aCtiVItIes........cevveeeriieeriieeiiie e 31

5.4. Permissions on a virtual activity considering duty-conflict relationships among
DASE ACTIVITIES ..euvieiieeniieeiieeiie ettt ettt ettt e et e et e sbe e et e e saeeenbeenae 33

il

Chapter 6. System Implementation and Demonstration...........cccoccevvevveveeseereesnnn 38

6.1. System implementation............cceccuierieeriienieeiierie ettt 38
6.2. System demONSIAtION........cceeviieriieriieiie ettt ettt ee e ebeesaeeebeenenas 40
0.3, DISCUSSION ..euviiiiiieiieetierite et ett e et e stteeteesteeesbeessaesnbeeseessseenseesnseeseeenseenseesnsens 43
Chapter 7. Comparison with Related WOrKc.ccoevveceiieieciiceee e 44
Chapter 8. Conclusionsand FUtUre WOrKsS........cccoevieeiecin s 48
8.1, SUIMMATYiieiiiieeiie ettt ettt ettt e ettt e st e e st e e st e e sabeeesabeeesabeeenabeeenns 48
8.2, FULUIE WOTKSeiiiiiiiieiiecie ettt ettt et et be e enseens 49
REFEIENCES ... 50

v

List of Figures

Figure 1. Role-Based Access Control Model............coceriiriiiiiiiniiiiiiicccicecee 4
Figure 2. EXamples Of ProCESS-VIEWSccccuieiiiiriieiiieiiieieeeie et sene e 7
Figure 3. The role-task planning algorithmcccooiiiiiiiiiii e 19
Figure 4. The user-role-task assignment algorithmcccccoeviiiiiiiiiniienieeeee e, 22
Figure 5. Plan adjust algorithm in run-time phase.............cceceeiiiiiiiininiiieeceees 23
Figure 6. An example of WOrkflow Wccooiiiiiiiiiiiiicc e 25
Figure 7. Example of a virtual activity “scheduling production”.............ccccceeverninnnnnn, 29
Figure 8. The algorithm of derivation for general Cases...........cccceveveerierieerieencieeieeennenn 37
Figure 9. The system archite€Cture............cooueeriieiieiiiieie et 38
Figure 10. Enactment of data for authorization eontrol.............c.ccccevvierciienienciieieeen. 41
Figure 11. Activation of “Issuing item-request” by John as Clerkc..ccoceevueriennnne. 42

Figure 12. Verifying SoD in the activation of “Approving item-request” by John as

ASSISTANT MANAZET ... i iiiieee et atifon i eeeeeeente et et e sttt e et sae et eeeesbeetesanesaeens 42

List of Tables

Table 1. The meaning of functions contained in authorization rules............cccceeeueeueens 11
Table 2. The implied meaning of fUNCHIONScccveeiiieeiiiriiieiieieee e 12
Table 3. Capable roles of each task and duty-conflict relationships in workflow W 25
Table 4. Capable usSers 0f TOIES.ccuiiiiiriieiieie ettt ebe e e 27
Table 5. Permissions 0N QCHIVITYccuieruieriieniieiieeiie ettt ettt et e e e siee e as 30
Table 6. Permissions of role r under strict privilege principle..........cccevevrevrienreeciiennnnnns 34
Table 7. Permissions of role r under lenient privilege principle..........cccceeveeenieriiiennns 35

vi

Chapter 1. Introduction

1.1. Motivation

As effective process management tools, workflow management systems (WfMSs)
enable a business to analyze, simulate, design, enact, control and monitor its business
processes[7][11][17][30][32]. A workflow (process) consists of a set of tasks (activity),
and the ordering of tasks, or control flow dependencies, that specify the order of
execution among the tasks. Workflows commonly process sensitive business information.
The important information should be controlled securely to avoid attack by outsider or
unauthorized access by insiders. Therefore, adequate access control mechanisms are
needed to protect workflow-related sensitive information from insecure access.
Consequently, security policies with appropriate authorization mechanisms are required

to ensure that tasks are performed by authorized users.

Role-based access control (RBAC, [4][91[10][22][28][31]) has become a widely
accepted access control mechanism for security management. Role-based authorizations
for assigning tasks of workflows to roles/users are crucial to security management in
workflow management systems. Therauthorizations must enforce Separation of Duty
(SoD) constraints to prevent. fraud and . ‘errors. Separation of duty (SoD)
[9][12][14][20][21][22][27] is a security principle to spread the responsibility and
authority for a complex action or task over different users or roles, to prevent fraud and
errors. Under this principle, conflicting (mutually exclusive) tasks are executed by

different roles/users.

Thomas et al. [29] presented task-based authorization control to manage the
execution of tasks by controlling the run-time execution status of tasks. They considered
neither SoD nor authorizations among tasks, roles and users. Schier [23] also presented a
role and task-based security model. Although authorization rules for SoD have been
designed, they are merely derived from SoD in RBAC. Moreover, Lee et al. [19]
implemented role-based access control in computer supported collaborative writing
(CSCWriting). They focused on integrating distributed version management and RBAC
for CSCWriting environments. Accordingly, they did not consider the issues of role-base

authorizations and SoD.

A novel virtual workflow process, i.e., a process-view, in a WIMS is proposed by
Shen and Liu [26]. A process-view, i.e., an abstracted process derived from an
implemented base process, is employed to provide aggregate abstraction of a process.
They focused on develop view mechanism in workflow management systems. They did
not discuss the aggregation of virtual activity and permissions for a role in a

process-view.
1.2. Goals

According to the motivations, this dissertation lists major goals as follows:

Analyze and define several duty-conflict relationships among tasks
Design authorization rules to enforce separation of duty constraints
Propose an authorization model

To derive the aggregation of virtual activity

Analyze and define privilege principle for a role in a Process-view

Implement a prototype system

To evaluate the system
1.3. Contributions

This work analyzes and defines various duty-conflict relationships among tasks
from the aspect of how enterprises set up tasks. A task defines a set of task-related
privileges to be assigned to roles or users. Assigning a task to a role or a user gives the
role or the user the duty to perform the task; the duty is then called a task-duty. Some
duty-relationships are enforced on tasks to ensure the correctness of the work and to
support auditing. The duty relationship between two tasks is called a duty-conflict
relationship. Moreover, this work designs authorization rules for SoD, based on the
defined duty-conflict relationships and execution dependencies of workflow tasks. A
novel authorization model that incorporates authorization rules is then proposed to
support the planning of assigning tasks to roles/users, and the run-time activation of tasks.
Different from existing work, the proposed model enforces SoD by taking into account
the AND/XOR split structure of workflows and execution dependency among tasks in

assigning tasks to roles/users.

Besides, this work also discusses the authorization management in process-views.

Process-views allow a workflow management system to provide various aggregated
views of a process for different levels or departments in an organization or for different
organizations in a supply chain. An aggregation of a set of base activities called a virtual
activity. This work discusses the authorization management of organizational roles in a
process-view. The derivation of a virtual process (process-view) involves grouping the
base activities in a base process and aggregation functions into virtual activities. This
work defines several permissions for a role on base activities. The permissions for a role
on a virtual activity are according to the permissions of aggregated base activities under
strict or lenient privilege principle. An algorithm is proposed to derive permissions for a
role on the virtual activity in general cases. The derivation also considers the
duty-conflict relationships among base activities. Furthermore, a prototype system that
can conduct authorization management in task-based workflow environments is designed
and implemented. An analyzed procurement process is deployed in the system to

demonstrate the proposed authorization management of workflow tasks.
1.4. Organization

The rest of this paper is organized as follows. Chapter 2 presents the related work on
role-based access control, workflow/management and process view. Chapter 3 analyzes
and defines various duty-conflict relationships among tasks, and presents authorization
rules for SoD. Chapter 4 illustrates ‘the proposed algorithms for planning role-task and
user-role-task assignments and plan-adjust algorithm in run-time. Chapter 5 discusses the
authorized permissions for a role in a process-view. Chapter 6 elucidates the architecture
and implementation of the system. Chapter 7 compares related work with our proposed

work. Conclusions and future works are finally made in Chapter 8.

Chapter 2. Related Work

In this chapter, we will discuss the related work with our topic including role-based

access control, workflow management, and process-view.

2.1. Role-based Access Control

Role-based access control (RBAC, [4][9][10][22]) has become a widely accepted
access control mechanism for security management. Ferraiolo proposes the concept of
role-based access control (RBAC) and elucidate RBAC is a non-discretionary access
control [10]. In role-based access control model [9][10], a user can play several roles and
a role can be assigned to several users. The permission assignments are not assigned to
users but to roles. The permissions are enacted with roles and roles are authorized to users.
Permissions assign to roles will reduce the complex of management and easy to change

access control rules when employee left or change to another position in the organization.

o

L RH
UA ROLE
USER ';.HIERARCHY
ASSIGNMENT : P

g PERMIS
: PA \ SIONS
. PERMISSIO
:ASSIGNMENT
: A

Figure 1. Role-Based Access Control Model
Reference: [22]

The role-based access control model, proposed by Sandhu etc. illustrated in Figurel,
contains users, roles, permissions and sessions.[22] Users are people in real world or
executable program as subject. Roles are the position of the organization and in other
words, the collection of the permissions. For example in bank environment, “teller” and

“accountant” are all a kind of role. Permissions are the privilege to access the objects in

the systems. Sessions are the collection of activating users and users can change roles

dynamically to achieve the purpose of least privilege.

The authorizations for granting access permissions are based on the concept of roles.
A role represents a duty or a job position (title) with the authority and responsibility to
perform certain job functions within an organization. In RBAC, access permission is
associated with roles, and users are assigned to appropriate roles. By assigning users to

roles, rather than permission, RBAC reduces the complexity of the access control.

2.1.1. Separation of duty

Moreover, authorization constraints or policies must be defined to enforce the legal
assignment of access privileges to roles and roles to users, and thereby ensure secure
access. Separation of duty (SoD) [9][12][21][22][27] is the most important feature of
role-based access control model. SoD is a security principle to spread the responsibility
and authority for a complex action or task over different users or roles, to prevent fraud
and errors. Under this principle, conflicting (mutually exclusive) roles are authorized to
different users. For example, .“purchaser’-and “cashier” are mutually exclusive role
therefore they should not b¢& authorized to the Same user. There are two kinds of
separation of duty, i.e. strong €xclusion, namely static separation of duty (SSoD), and the
weak exclusion, namely dynanti¢ separation of duty (DSoD). SSoD restricts that a user
cannot own two mutual exclusive roles'while DSoD allows that a user owns two mutual

exclusive roles but cannot activate them at the same time.

Thomas et al. [29] presented task-based authorization control to manage the
execution of tasks and to provide an authorization mechanism for task execution through
the control of run time execution status of tasks. They considered neither SoD nor
authorizations among tasks, roles and users. Schier [23] also presented a role and
task-based security model. Although authorization rules for SoD have been designed
based on mutual exclusive (duty-conflict) tasks, the proposed work is merely an
extension of RBAC model. Their definition of mutual exclusive tasks is simply derived
from the definition of mutual exclusive roles in RBAC. In addition, the proposed
authorization rules for SoD are merely derived from SoD in RBAC. Schier’s
authorization rules only contain static and dynamic SoD. Extending from the rule in
RBAC that mutual exclusive roles cannot be assigned to the same user, mutual exclusive

tasks con not be assigned to the same role or user. Moreover, Lee et al. [19] implemented

role-based access control in computer supported collaborative writing (CSCWriting).
They focused on integrating distributed version management and RBAC for CSCWriting
environments. Accordingly, they did not consider the issues of role-base authorizations

and SoD.

2.2. Workflow management

Several researchers [1][2][3][5][6][13][14][15][16] have addressed role-based
access control and authorization management in workflow systems. Workflow
management systems allow businesses to analyze, simulate, design, enact, control and
monitor their overall business processes. The major issues concern the design of
role-based authorization mechanisms in support of separation of duty. Bertino et al. [5]
elucidated a flexible model to specify and enforce authorization constraints in workflow
management systems. A logical authorization language, defined as clauses in a logic
program, is proposed to express authorization constraints on role assignments and user
assignments. Ahn et al. [1] developed a system architecture to enforce role-based access
control in Web-based workflow:management.systems. The architecture mainly consists
of a role server for maintaihing user-role”assigniments and issuing certificates with
client’s role information. Atluri and Huang proposed a Workflow Authorization Model
(WAM) [3]. The model associates each task with authorization templates that specify
static parameters of authorization defined during the design period. Huang and Atluri [13]
also presented a secure Web-based workflow management system (SecureFlow). Botha
and Eloff [6] considered conflicting tasks, conflicting users (such as family members) and

the access history of documents to support the SoD requirements for workflow systems.

Furthermore, as the demand for the globalization of business increases, access
control mechanisms and security models of inter-organizational workflows are presented
[2][16]. Atluri et al. [2] considered the issues of conflict-of-interest among competing
organizations of inter-organizational workflows in decentralized workflow environments.
A variation of Chinese Wall Security model is proposed to address such issues. The
model mainly prevents sensitive dependency information or sensitive output of a task
leaking to another task agent (organization) with conflict-of-interest. Kang et al. [16]
proposed a notion of role domain, instead of an organization’s role structure, to specify

the data access policy associated with each task of the workflow.

Most of the above literatures have addressed SoD constraints in role-based
authorizations of workflows. Although SoD has been discussed, most of the works do not
consider SoD constraints in relation to various duty-conflict relationships and
execution-dependencies among tasks. A task specifies the rights of each member of a set
of roles to perform operations on each member of a set of object categories. [§] Moreover,
they do not consider authorization planning for assigning users/roles to workflow tasks. If
we only use role-based access control to achieve the objective of separation of duty for
organization, it is not enough to show the real activity in the organization, i.e. task-based
enterprising environment. Although Bertino et al. [5] proposed algorithms for
authorization planning to assign roles/users to workflow tasks, their algorithms mainly
determine wvalid assignments by consistency-checking authorization constraints
expressed in logical language, and making deductive inferences. Although examples
have been presented to illustrate how to express static and dynamic SoD via the proposed
authorization language, they also do not consider the variations of SoD that arise from
various duty relationships among, .tasks: . Furthermore, the proposed authorization

planning algorithms do not consider the. AND/XOR split structure of a workflow.

2.3. Process-View

Workflow management System allows various participants to collaborate in
effectively managing a workflow-controlled business process. Shen and Liu [26] propose
a process-view workflow management to provide appropriate process abstraction for
various roles within an enterprise. Process-views are derived through the bottom-up

aggregation of activities to provide various levels of abstraction of a base process as

Figure 2.
2 o)
pr 0Cess-views by &
various views on AN Q
the same base managerial level accounting dep. marketing dep. partner 1 partner 2

process

a
base pr ocess alHazH‘%

Figure 2. Examples of Process-views
Reference: [26]

7

For example, a process modeler can design an appropriate process-view for the
marketing department as follows. The base activities, a;, a; and a3, in the base process are
mapped into the virtual activity, va;, in the process-views. The base activities a4 and as are

mapped into the virtual activity va, and as and a; are mapped into vas.

A process-view is proposed for providing adaptable task granularity. The design of a
process-view must first identify all base activities within it and then arrange them based
on dependencies and ordering structures. A process-view is a two-tuple <VA, VD>,
where VA is a virtual activities and VD is a set of virtual dependencies. Process-views
allow a process modeler to flexibly provide different roles with appropriate views of an
implemented process. For example, process-views provide high-level managers with
aggregated information on a desired process which is different from the need for
accountant. They focus the process-view derived from base process neither derive the
aggregation of virtual activity nor analyze and define permissions for a role on a virtual

activity in a process-view.

Chapter 3. Task-based Separation of Duty

A workflow consists of a set of tasks, and their order of execution, according to
control flow dependencies [11][32]. The various tasks in a workflow are typically
performed by multiple collaborating users/roles in an organization. A role implicitly
defines a job position and its corresponding authority to perform a set of tasks. Each task
is assigned to one or more roles. Users are assigned appropriate roles based on their
capabilities. A role can be assigned to one or several users. Moreover, roles are partially
ordered by organizational position within the organization. For two roles R and R, R > R,

if the position of R, is higher than the position of R, in the organization.

Workflow management systems generally include process definition tools and
workflow engines [32]. A process definition tool supports facilities that define a
workflow (process definition) during the period of design, while a workflow engine
governs the run-time enactment of workflow according to the process definition. Tasks
are executed according to the control flow dependencies in a workflow. During run-time,
a single execution of a workflow (process)is called-a workflow (process) instance, while
the execution of a task (activity) within.a workflow instance is called a task instance [32].
Each instance represents a separate execution of the process, and has its own associated
process instance data. Here, an execution/activation of a workflow/task represents an

enactment of a workflow/task instance.

[Execution-dependency] Two tasks T; and Tj are execution-dependent tasks, denoted as

Ti ~ T;, if they are correlated, such that the execution (processing) of one task (T;)
depends on the execution (processing) of the other task (T;). T; X T;indicates that tasks T;

and T; are not execution-dependent.

Execution dependency among tasks can generally be derived from the accessed data
objects. If task T; accesses data objects that are created/modified by task Tj, then the
execution of T; depends on the execution of T;. For instance, a simple procurement
workflow includes two tasks, “purchase” and “verify” which are execution-dependent in
the process of purchasing items (workflow instance). The authorization of the “verify”
task on a computer (purchased item) must consider the authorization of the “purchase”

task on a computer.

Separation of duty (SoD) [9][12][21][22][27] is a security principle that spreads
the responsibility and authority for a complex action or task over various users or roles, to
prevent fraud or error. In general, two strategies can be used to enforce the separation of
duty. Static separation of duty prevents conflicting (mutually exclusive) roles or
operations from being assigned to the same user. Dynamic separation of duty provides
flexibility by allowing conflicting roles or operations be assigned to a user, but the user
must not activate them at the same time. Notably, static SoD constraints are imposed
during design time, while dynamic SoD constraints are imposed during run-time.
Although SoD has been addressed, most work does not consider SoD with respect to

various duty-conflict relationships and execution- dependencies among tasks.

3.1. Analysisof duty-conflict relationships

A task defines a set of task-related privileges to be assigned to roles or users.
Assigning a task to a role or a user gives the role or the user the duty to perform the task;
the duty is then called a task-duty. The'planning of tasks not only defines task-privileges,
but also implicitly defines task=dutiesiof roles/users. Some duty-relationships such as
duty-balancing and duty-supetvising are enforced on tasks to ensure the correctness of
the work and to support auditing. . The“duty relationship between two tasks is called a
duty-conflict relationship, as if assigning the two-tasks to the same user or role results in
fraud. We have defined several'“duty relationships, including duty-conflict,
duty-balancing, duty-supervising, duty-coordinating and non-proprietary duty. For
clarity, this work presents duty-conflict, duty-balancing, and duty-supervising

relationships.

[Duty-Conflict Tasks] Two tasks T; and Tj are duty-conflict tasks, denoted as T; ® Tj, if

they have duty-conflict relationships; that is, their implicit task-duties conflict.

Duty-conflict relationships can be further distinguished into duty-balancing and

duty-supervising relationships.

[Duty-Balancing Tasks] Two tasks T; and Tj are duty-balancing tasks, denoted as T; = Tj,
if the implicit task-duty of T; (T;) is to review task T; (T;). T; and T; have an equal level of
task duty.

[Duty-Supervising Tasks| Task T; supervises task Tj, denoted as T; > Tj, if the implicit

10

task-duty of T; is to supervise task T;. T has a higher task-duty than T;.

Tasks that have duty-conflict (duty-balancing) relationships should not be assigned
to the same role/user, to ensure separation of duty. If T; has a higher task-duty than T;, T;
must be performed by a role with a higher position than the role that performs T;. The
duty-balancing relationship is commutable; T; = T; implies Tj = T;. The duty-balancing
relationship is also a kind of duty-conflict relationship; that is, Ti=T; = T; @ T;. The
duty-supervising relationship is not commutative; T; > T; does not imply T; > T;. The
duty-supervising relationship is also a kind of duty-conflict relationship; T; > T; = T; @

T;.

3.2. Authorization rulesfor SoD

This section presents authorization rules based on various duty-relationships among
tasks. The designed authorization rules can enforce the principle of separation of duty
(SoD) in the assignment and activatieniof roles or tasks. Several novel authorization rules,
including duty-supervising and,execution=dependent rules, have been designed to impose
the SoD in task-based access control environments, such as workflow management
systems. For clarity, we only present some of the proposed authorization rules. Table 1
lists the defined functions used.in. the authorization rules. In this work, O denotes an
object, T atask, R arole and S a subject. Table 2 shows the implicit meanings of functions
used in authorization rules. For example, the function “T € active tasks(R)” implies the
function “T € authorized tasks(R)”. “Role R can activate task T”, implies that role R is

authorized to perform task T.

Table 1. The meaning of functions contained in authorization rules

Functions Meaning
authorized tasks(R) The set of tasks that were assigned to role R
authorized roles(S) The set of roles that were assigned to user S
authorized tasks(S) The set of tasks that were assigned to user S
authorized objects(T) The set of objects that were assigned to task T

11

active tasks(R)

The set of tasks that are activated by role R

active_roles(S)

The set of roles that are activated by user S

active tasks(S, R)

The set of tasks that are executed by user S as role R

active_objects(S, R, T)

The set of objects that are accessed by user S in role R

to execute task T

activated roles(S)

The set of roles that were activated by user S

executed_tasks(S, R)

The set of tasks that were executed by user S in role R

accessed _objects(S, R, T)

The set of objects that were accessed by user S in role R

to execute task T

Table

2. The implied meaning of functions

Functions

Implied functions

T € active_tasks(R)

T € authotized tasks(R)

R € active roles(S)

R € authorized roles(S)

T € active_tasks(S, R)

R & active roles(S) ; T € authorized tasks(R)

O € active objects(S, R, T)

T € active tasks(S, R); O € authorized objects(T)

R € activated roles(S)

R € authorized roles(S)

T € executed tasks(S, R)

R € authorized roles(S) ; T € authorized_tasks(R)

O € accessed _objects(S, R,

T)| R € authorized roles(S) ; T € authorized tasks(R) ;

O € authorized objects(T)

SoD variations are either

static or dynamic, as described below.

Satic SoD: Static SoD requires that two duty-conflict tasks cannot be assigned to the

same role or user. The authorization constraints on user-role/role-task assignments are

validated during the design phase to enforce SoD.

12

Rulel : [Satic SoD — Roleand Task]

VT;, Tj € TaskSet, Re RoleSet

Ti € authorized_tasks(R) and (T; & T;) = T; ¢ authorized tasks(R)

If task T; (for example, preparing a check) and task T; (for example, auditing a check)
have a duty-conflict relationship, and role R was authorized to perform task Tj, then role

R cannot also be authorized to perform task Tj .

Rule?2 : [Satic SoD — User, Roleand Task]

VT, T; € TaskSet, Ry,R, € RoleSet, S € SubjectSet and x#y, 17]

Ti € authorized tasks(Ry) and T; € authorized tasks(Ry) and

R, € authorized_roles(S) and (Ti & Tj) = R, ¢ authorized_roles(S)

If tasks T; and T; have a duty=conflict telationship; roles Ry and R, are authorized to
perform tasks T; and Tj, respectively; also, if role R was assigned to user S, then role R,

can not also be assigned to uset S.

Dynamic SoD variations. Static SoD 'is'too strict to describe a real-world security
principle. The constraints of dynamic SoD variations are weaker than those of static SoD.
Dynamic SoD variations provide flexibility by allowing two duty-conflict tasks to be
assigned to different roles and then to the same user. The authorization constraints on
role/task/object activation are then validated during the run-time phase to enforce SoD.
For example, dynamic SoD enforces that a user cannot activate different duty-conflict
roles simultaneously. Notably, dynamic SoD variations may also strictly require

duty-conflict tasks cannot be assigned to the same role, as in Rule 1.

The authorization rules for dynamic SoD variations include authorization rules for
dynamic SoD and execution-dependent SoD. Authorization rules for dynamic SoD
specify whether a user (subject) may activate several roles, execute several tasks and/or
access several objects simultaneously. The authorization rules that govern
execution-dependent SoD mainly enforce SoD during the activation of

execution-dependent tasks. Two tasks are execution-dependent if they are work-related

13

and the execution (process) of one task (B) depends on the execution (process) of the
other task (A). For example, the tasks of a single workflow instance are
execution-dependent. Defining authorization rules requires that execution-dependency

among tasks be considered to enforce SoD.

SoD can be enforced on various levels, including the role-level (role activation),
task-level (task execution) or the object-level (object access). The authorization rules for
SoD on the task-level are presented below. The authorization rules for SoD on other

levels are similar, and are therefore omitted for clarity.

A subject may activate two duty-conflict roles simultaneously but cannot activate the
roles to execute duty-conflict tasks, as described in Rule 3. Tasks T; and T; have a
duty-conflict relationship. If role Ry was authorized to perform task Tj; role R, was
authorized to perform task T;, and user S has activated role Ry, then user S can activate
role Ry but can not execute task Tj in role Ry. Formally, “a user activates a role” or “a role
executes a task” implies that the role has been assigned to the user and that the task has

been assigned to the role.

Rule 3 : [Dynamic SoD]

VT;, T; € TaskSet, Ry ,Ry € RoleSet, S € SubjectSet, and x#y, 17
(T; © Tj) and Ti € active tasks(S, Ry) and Ry € active roles(S) and T; €
authorized_tasks(Ry) = T; & active_tasks(S, Ry)

A session denotes a particular instance of a connection of a user to the system. At any
moment, a user may establish several sessions. Dynamic SoD focuses on enforcing SoD
within the user’s current active sessions, while execution-dependent SoD enforces SoD
across current active sessions and previous (historical) sessions. The SoD is enforced
beyond the user’s active sessions via execution dependency among tasks, as described in

Rule 4. Tasks T; and Tj are duty-conflict and execution-dependent tasks (T; & T; and T;
~ T;). Subject S executed task T; in role Ry, and role Ry is authorized to perform task T;.

Subject S can activate Ry, but subject S cannot execute task T; in role Ry. Notably, the
execution-dependent relationship does not imply a duty-conflict relationship. Two tasks
may have execution-dependency without a duty-conflict relationship. A stricter rule can

be defined as follows. Tasks T; and Tj are duty-conflict and execution-dependent tasks.

14

Roles Ry and Ry are authorized to perform tasks T; and T;, respectively. If subject S has

activated role Ry, then S cannot activate Ry

Rule 4 : [Execution-dependent SoD)

VT, Tj € TaskSet, Ry, Ry € RoleSet, S € SubjectSet, and x#y, 17]
(T; @ T;) and (T; ~ T;) and T; € executed_tasks(S, Ry) and Ry € active_roles(S) and T; €
authorized tasks(Ry) = Tj ¢ active tasks(S, Ry)

Notably, the execution-dependent relationship does not imply a duty-conflict relationship.
Two tasks may have execution-dependency without a duty-conflict relationship. A stricter rule
can be defined as follows. Tasks T; and T; are duty-conflict and execution-dependent tasks. Roles
Ry and Ry are authorized to perform tasks T; and Tj, respectively. If user S activated role Ry, then S

cannot activate R,.

The above illustrates the authorization rules for duty-conflict tasks. Those rules also
apply to duty-balancing tasks. The duty-stpervising relationship is also a kind of
duty-conflict relationship; that'is, [T; &=-T; =T; & T;. Accordingly, dynamic SoD for
duty-supervising tasks must follow the dynamic SoD for duty-conflict tasks. Furthermore,
additional authorization rules-are requited for duty-supervising tasks, as described in
Rule 5. Users Sa and Sg activate roles Ry and Ry to execute task T; and Tj, respectively. If
tasks T; and T; have a duty-supervising relationship, T; > T;. Role Ry must have a higher

position than role Ry.

Rule 5 : [Dynamic SoD for duty-supervising tasks])

VT, Tj € TaskSet, Ry,Ry € RoleSet, SA,Sg € SubjectSet and x#y, 17]
T; € active_tasks(Sg, Ry) and T; € active_tasks(Sa, Ry) and (T; = Tj) = Ry >Ry

SoD for duty-supervising tasks can also be enforced across sessions via
execution-dependent relationships. Execution-dependent SoD for duty-supervising tasks
must follow the authorization rules for execution-dependent SoD for duty-conflict tasks.
Additionally, Rule 6 is applied. If subject Sg has executed task T; in role Ry; Sa activates
R, to execute task Tj; tasks T; and T; are duty-supervising and execution-dependent tasks,

then role Ry must have a higher position than R,

15

Rule 6 : [Execution-dependent SoD for duty-supervising tasks])

VT, T; € TaskSet, Ry,Ry € RoleSet, Sx,Sg € SubjectSet and x#y, i#j, A*B
T; € executed_tasks(Sg, Ry) and T; € active_tasks(Sa, Ry) and (T; > T;) and (T; ~ Tj) =

R, >R,

16

Chapter 4. Authorization Model for Wor kflows

The proposed authorization model handles the assignment of workflow tasks to
roles/users. The assignments must satisfy the authorization constraints for SoD defined in
Chapter 3. The proposed authorization model includes the planning phase and the
run-time phase. The planning phase generates initial workflow activation plans in
advance. These plans assign tasks to a set of valid roles/users, to satisfy the constraints of
SoD. The planning phase is carried out before the workflow execution starts, while the
run-time phase is executed upon the actual activation of each task during the execution of
the workflow. The enactment of a workflow decides the current task to be activated.
According to the selected role/user activation plan (current plan) generated by the
planning phase, the run-time phase identifies the user authorized to activate the current
task in a certain role. Dynamic SoD variations are more realistic security policies. Both
planning and run-time phases assign tasks to roles/users to satisfy dynamic SoD
variations. The authorization must also satisfy.the constraints of execution-dependent
SoD, specified in Chapter 3, sincel workflow tasks generally have execution-dependent
relationships. The planning phase includes two algorithms, for role-task planning and
user-role-task planning, to determinewvalidrrole-task assignments and user-role-task
assignments, respectively. The planning begins with role-task planning, and then assigns

users to tasks in user-role-task planning. Sections 4.1 and 4.2 detail the algorithms.

Notably, the current activation plan may need to be modified during the run-time
phase for the following reasons. The planned user, authorized to perform the current task
according to the current plan, may not be available. Furthermore, the activation of the
current task by the planned user may violate the constraints (authorization rules) of
dynamic SoD variations since the activation plan is generated in the planning phase
before the workflow is executed. The planning phase can consider only the assignment of
those tasks of the workflow that are being planned, and cannot verify run-time activation
of tasks when a user activates several tasks from more than one workflow execution.
Consequently, the activation of the current task by the planned user must be verified to
ensure that constraints of dynamic SoD variations are not violated. If the authorization
check fails, the current activation plan must be modified. The run-time phase identifies
an available user authorized to activate the current task, and generates a new activation
plan from the current activation plan. Section 4.3 presents the plan-adjust algorithm to

17

determine a new valid activation plan in the run-time phase.

4.1. Role-task planning algorithm

Figure 3 depicts the role-task planning algorithm. The algorithm first invokes the
GenExecDependency() function to generate the execution dependency among tasks of the
workflow W. The algorithm then invokes the recursive function RoleAssignment() to
generate the set of all valid role-task assignments in the input workflow. If no valid
role-task assignment is found, then the algorithm returns a failure; otherwise, it returns
success. The tasks of the input workflow are recorded in a list, Tlist, ordered with a
topological order according to the ordering dependency in the workflow. The algorithm
uses RTplan to record a valid role-task activation plan, that is, a list of role-task
assignments, (R;, Tj), for each task T; in Tlist. AlIRTplans records the set of all valid

assignments generated by the algorithm.

The RoleAssignment() function finds valid role assignments for current task by
recursively finding role assignmerits for the next-task in Tlist. Notably, the assignment of
valid roles to current tasks must satisfy the.constraints of SoD. The SoD verification must
satisfy the constraints of execution-dependent SoD as specified in Chapter 3, since
workflow tasks have execution-dependeént teélationships. When planning the activation of
current task, the algorithm conducts.SoD verification based on the duty-relationships
among the current task and all previously assigned tasks. Notably, the assigned tasks are
those activated before the current task during workflow execution, since tasks are planned
(assigned) in topological order, according to the ordering dependency (control flow) of

the workflow.

Algorithm The role-task planning algorithm
Input: 1) workflow W;
2) capable_roles(T;); the set of roles which have the capability to execute task T;.
3) Tlist: a list of tasks with topological order in a workflow W
Output: Fail if no valid role-task assignment; Success, otherwise.
assigned_role(T): the role assigned to execute task T in an activation plan;
valid_roles(T): the set of roles that are valid (authorized) to execute task T;
RTplan: a valid role-task plan, i.e., a list of role-task assignment, <R;, T;>, of tasks in Tlist;
AlIRTplans: a set of all valid RTplans;

begin

18

GenExecDependency(Tlist, W)
T, = the first task of Tlist; AlIRTplans= {}; RTplan= {};
for each task T; € Tlist do assigned(T;) = False;
return RoleAssignment(T);
end;

function RoleAssignment(T;: task) : Boolean
begin
valid_roles(T;) = {r | r € capable _roles(T;)};
for each task T; where T, e Tlist, T; ~ T, and assigned(T;) == True do
if T; @ T, then valid_roles(T;) = valid_roles(T;) — assigned_role(T))
if T; > T, then valid_roles(T;) = {r| r € valid_roles(T;) and r > assigned_role(T))};
if Ty> T, then valid_roles(T;) = {r| r € valid_roles(T;) and r < assigned_role(T))};
endfor;
result = Fail;
Tk = NextTaskFromTaskList(Tlist, T));
R = ChooseNextRole(valid_roles(T;));
while R is not Null do
assigned role(T) = R;
assigned(T;) = True;
if Tx==1Null then
{ RTplan = CreateNewRTplan(Tlist);
AddRoleTaskPlans(AlIRTplans, RTplan);
result = Success; }
else if RoleAssignement(T,) == Success then
result = Success;
R = ChooseNextRole(valid_roles(T)));
endwhile;
assigned(T;) = False;
return result;
end

Figure 3. The role-task planning algorithm

Initially, valid_roles(T;) is the set of roles that are capable to execute the current task

Ti. According to the roles previously assigned to tasks and the SoD constraints, roles that

are not valid to activate T; are excluded from valid_roles(T;). Considering each previously

assigned task Tj, where T; and T; have execution-dependency (T; ~ T), valid roles for task

19

Ti must exclude the role assigned to T; that has a duty-conflict relationship with task T (T;
@ Ti). Moreover, if T and T; have a duty-supervising relationship, T; > Tj, then valid roles

of task T; must have a higher position than the role assigned to T;.

After the SoD verification has been conducted, valid_roles(T;) is the set of roles that
can validly activate the current task T;. The while-loop considers each role in
valid_roles(T;) as a seed to explore possible role-task activation plans by recursively
finding role assignments for the subsequent task Ty in Tlist. If the current task is the last
task in Tlist, then a valid role-task assignment of the workflow has been found. A new
RTplan, an <assigned role(T), T;j> list, is created to record the role assignments
according to the assigned_role(T;), for each task T in Tlist. The RTplan is added to the
AlIRTplans. The algorithm finds all valid role-task plans of a workflow. If only one
role-task plan is needed, then the statement “result = Success” in the while-loop can be

changed to “return Success”. The algorithm then returns only one valid role-task plan.

The complexity of the role-task planning algorithm is O(m") in worst case, which m
is the maximum number of capable roles-of-all tasks and n is the number of tasks in the

workflow.

4.1.1. Execution-dependency consideringthe AND/XOR split structure

The GenExecDependency() ‘function-can be implemented by simply assigning
execution dependency to all tasks of the workflow W, without considering the AND/XOR
split structure of the workflow. The AND-SPLIT structure splits the workflow execution
into multiple parallel paths (tasks) that are all executed, while the XOR-SPLIT structure
splits the workflow execution into multiple mutually exclusive alternative paths
(XOR-paths), only one of which is executed. Tasks in different XOR-paths are not
executed in the same workflow instance. Thus, no execution dependency exists among
tasks in different XOR paths. Further checking can be conducted to remove the execution
dependency from tasks in different XOR-paths. Our current implementation checks the
AND/XOR split structure to determine execution dependency. Moreover, as described in
Chapter 3, execution dependency among tasks can be derived from the accessed data
objects. If task T; accesses data objects that are created/modified by task Tj, then the
execution of T; depends on the execution of T;. The GenExecDependency() function can
also be further implemented by checking the accessed data objects to determine the

execution dependency among tasks.

20

4.2. User-Role-Task planning algorithm

Figure 4 shows the user-role-task planning algorithm. The algorithm primarily
invokes the recursive function User Assignment() to find a valid user-role-task assignment
of the input workflow based on the valid RTplan generated by the role-task planning
algorithm. If no valid user-role-task assignment is found, the algorithm returns failure;
otherwise, it returns success. The RTplan s a list of valid role-task assignments, <R;, Ti>,
of tasks in Tlist. The algorithm uses URTplan to record a valid user-role-task activation
plan; that is, a list of user-role-task assignments, <U;, R, T{>, for each task T; in Tlist. The
UserAssignment() function determines valid user assignments for current <role, task>
pair by recursively finding user assignments for subsequent <role, task> in RTplan. The
assignments must satisfy the SoD constraint that no duty-conflict (duty-supervising)
tasks are assigned to the same user. Notably, duty-supervising and duty-balancing
relationships imply duty-conflict relationships. The user-role-task planning algorithm is
similar to the role-task planning algorithm depicted in Figure 3, and a detailed
explanation of the algorithm is*thus omitted.”Notably, the algorithm can be easily
modified to find the set of -all valid-user-role-fask assignments, AllURTplans. The
complexity of the user-role-task planning‘algorithm is O(Q") in worst case, which Q is the
maximum number of capable~users of all role-task assignments and n is the number of

tasks in the workflow.

Algorithm The user-role-task planning algorithm
Input: 1) capable_users(R); the set of users which have the capability to activate role R.
2) Tlist: a list of tasks with topological order in a workflow
3) RTplan: a valid role-task plan, i.c., a list of role-task assignment, <R;, T;>, of tasks in
Tlist;
Output: Fail if no valid user-role-task assignment; Success, otherwise.
assigned_user(R, T): the user assigned to execute task T as role R in an activation plan;
valid_users(R, T): the set of users that are valid (authorized) to execute task T as role R;
URTplan: a valid user-role-task plan, i.e., a list of user-role-task assignment, <U;, R, T;>, of tasks
in Tlist;
begin
<Ry, T;> = the first role-task assignment of RTplan; URTplan = {};
for each role-task assignment <R, T;> € RTplan do assigned(R, T;) = False;
return UserAssignment(RTplan, Ry, Ty);
end;

21

function User Assignment(RTplan: role-task assignment, R;: role, T;: task) : Boolean
begin
valid users(R, T)) = { u| u e capable_users(R)};
for each task T; where T, € Tlist, T; ~T; and assigned(R;, T;) == True do
if T; @ T, then valid_users(R, T;) = valid_users(R;, T;) — assigned_user(R;, T;)
endfor;
<Ry, Tx> = NextRoleTaskFromRTPlan(RTPlan, <R, T;>);
U = ChooseNextUser(valid_users(R, T)));
while U is not Null do
assigned user(R;, T)) = U;
assigned(R;, T;) = True
if <R, T,> == Null then
{ URTplan = CreateNewURTplan(RTplan)
return Success; }
elseif UserAssignement(RTplan, R¢, Ty) == Success then return Success;
U = ChooseNextUser(valid_users(R;,'T;));
endwhile;
assigned(R;, T;) = False;
return Fail;
end

Figure 4. The user-role-task assignment algorithm

4.3. Plan-adjust algorithm

The activation plans generated by the role-task planning and the user-role-task

planning algorithms can be utilized in various ways. For instance, the workflow engine

may store some RTplans in advance, without storing a URTplan. The user assignments

are then determined in run-time to enact each task, using the user-role-task planning

algorithm. Notably, the assignment must satisfy the constraints (authorization rules) of

dynamic SoD variations. Moreover, a minimal workload policy may be implemented to

choose the user with the lowest workload from all users that satisfy the SoD constraints.

The complexity of the plan-adjust algorithm is O(Q"*"") which Q is the maximum

number of capable users of unassigned role-task assignments, n is the number of tasks in

the workflow and K is from the kg, task need to be reassigned tasks.

22

Case 1: Some RTplans and URTplans for the workflow W are stored in advance.
URTplan-adjust (W, Ty)
begin
Find another valid URTplan, NUplan, from URTplanSet, where NUplan contains <U;, R, T;>,
fori =1 to n, and NUplan satisfies the following conditions.
(a) Uy== AU, and R== AR, fori =1 to k-1.
(b) The activation of Ty, <Uy, Ry, T>, satisfies the constraints of dynamic SoD variations.
(¢) Uy hasthe lowest workload among users satisfying (a) and (b).
if no valid URTplan can be found, then invoke the RTplan-adjust(W, T.) to find a valid
URTplan.
if no valid URTplan can be found, then the enactment of workflow W aborts and fails.
end

Case 2: Some RTplans for the workflow W are stored in advance.
RTplan-adjust (W, Ty)
begin
repeat
Find another valid RTplan, NRplan, from, RTplanSet, where NRplan contains < R, T;>, for i =
1 to n, and NRplan satisfies the following conditions.
(a) R==AR, fori=1 to kzlL
(b) The activation of Ty, <Rg Ti>, safisfies the constraints of dynamic SoD variations.
if a valid RTplan, NRplan, has been-found then
begin

Set assigned _users(R, T;) = AU;, according to the actual activations of task T;, <AU;, AR,
T>, fori=1to k-1.

Set assigned_users(R;, T;) = False, for j =K to n.

Invoke the User Assignment(NRplan, Ry, Ti) algorithm to find a valid URTplan, NUplan,
where the activation of Ty, <Uy, Ry, T,>, in NUplan satisfies constraints of dynamic SoD
variations.

endif
until no more valid RTplan exists or a valid URTplan has been found
if no valid URTplan can be found, then the enactment of workflow W aborts and fails.
end

Figure 5. Plan adjust algorithm in run-time phase

An alternative approach is to store some RTplans and some URTplans in advance.

The enactment of a workflow is based on the chosen activation plan. The run-time phase

23

executes the plan-adjust algorithm to find an available user for the current task and to
generate a new activation plan based on the actual activation of tasks, as described below.
The plan-adjust algorithm is invoked when the planned user, assigned to activate the
current task, is not available, or when the run-time activation of the current task by the

planned user violates the constraints of dynamic SoD variations.

Assume that the workflow W involves n tasks, T1, To, ..., Tn, Wwhere Ty, Ty, ..., Tka
have been activated and Ty is the current task to be activated. Let <AU;, AR, Ti> represent
the actual activation of task T; by user AU; in role AR, for i = 1 to k-1. The activation plan
of the current task is <PUy, PRy, Ti\>. However, PU is not available, or the constraints of
dynamic SoD variations are violated. RTplanSet and URTplanSet contain some RTplans
and some URTplans, respectively. The URTplan-adjust() algorithm, depicted in Figure 5,
finds another valid URTplan, called NUplan, from URTplanSet, where NUplan follows
the actual activation of task T;, <AU;, AR, T;>, for i = 1 to k-1, such that the activation of
current task Ty, <Uy, R, Ti>, satisfies the constraints of dynamic SoD variations. The
RTplan-adjust() algorithm finds aether valid RTplan, called NRplan, from RTplanSet,
where NRplan follows the actual activation of task T;, <AR, Ti>, fori =1 to k-1. The
algorithm then finds a valid URTplan, called NUplan, based on NRplan and the actual
activation of task T, <AUi, AR,—~Tps=for/i = 1 to k-1, by invoking the
User Assignment(NRplan, Ry, Ty)‘algorithm. The activation of Ty, <Uj, Ry, Ti>, in NUplan,

must satisfy the constraints of dynamic SoD variations.

4.4. lllustrative examples

In this section, we use an example to illustrate how the algorithms perform in the
assignment of tasks to roles and users. Figure 6 shows a workflow W which contains six
tasks, from T to Ts. After the task T, the execution is split into two paths. For the case of
AND-split, two parallel paths will be executed concurrently; as a result, T3, Ts and T4 will
be executed in the same workflow instance, and thus may have execution-dependency.
For the case of XOR-split, only one path will be executed; the execution of T4 excludes
the execution of T3 and Ts, and thus there is no execution dependency between T4 and T3
(Ts). The algorithms proposed in Section 4.1.1 take into account the AND/XOR split

structure in the assignment of tasks to roles/users.

24

Figure 6. An example of workflow W

Table 3 shows the capable roles that can perform each task and the duty-conflict
relationships among tasks of W. The role hierarchy is that R, has a higher position than
(supervises) Ry, Ry and R;; Ry, Ry and R, have higher positions than (supervise) Ra, Ry, Re
and Rg.

Table 3. Capable roles of each task and duty-conflict relationships in workflow W

Task Capableroles Duty-conflict relationship

Tl Ra; Rba RX) Ry; RZ) Rp Tl ® TZ

T2 Raa RX; RC; Rd: RY9 RZ’ Rp T2 @ T] 3 T3 > TZ: T4 > T2

Ts | Ry Ry, RiR, Ts=T,; Ts® Ts
T, | RuRy,R,R, Ta> Ty ; Te> Ty
Ts | RuR,,R,R, T;@ Ts ; T > Ts
Ts | Ry Te>Ta; T > Ts

The role-task planning algorithm first determines the execution dependency among
tasks of W, as described in Section 4.1. Notably, the AND/XOR split structure is
considered. The tasks of W are then assigned in topological order, Ty, T,, T3, T4, Ts, Té.
When assigning the current task, the algorithm checks each previously assigned task with
an execution dependency on the current task, to determine the roles that can be validly
assigned to the current task. T, is assigned to role R, and assgned(T,) is set to true. T, has
a duty-conflict relationship with T;. Consequently, the valid_roles(T>) do not include role
R, assigned to task T;. The valid roles for T, are Ry, R¢, Rq, Ry, R, and R;,. Ry is first
assigned to T,. The assignments of T3 and T, are different in the cases of AND-split and
XOR-split structures.

25

Suppose that the split structure is XOR-split. XOR-SPLIT structure splits into
multiple mutually exclusive alternative paths (XOR-paths), only one of which is executed.
Thus, no execution dependency exists among T4 and T3, as well as T4 and Ts. There is no
need to consider the duty-conflict relationships between tasks that have no execution
dependency. Since task Ts supervises task T, the role assigned to T3z must have a higher
position than the role assigned to T,. Consequently, T is assigned with role R;. In the
assignment of T4, only the role assigned to T, is considered to determine the valid role of
Ts, since T4 has execution dependency with T,, and T4 does not have execution
dependency with Tjs. T4 is assigned with role R, since T4 supervises T». In the following
steps, the valid roles of Ts are Ry, Ry and R,, which are derived by excluding the role R,
assigned to Ts. However, no valid role can be found for Te, under the assignment of Ty
with R, since T supervises T4 and Ts. The algorithm backtracks to try another valid role
of previous assigned task. By backtracking to the assignment of T, the algorithm chooses
a valid role R; of T,. In the following recursive call of RoleAssignment() function, the
valid roles of Tz are Ry, Ry, R, and R,,..Rgis,chosen for T;. The valid roles of T4 are Ry, Ry,
R, and R,,. Notably, for AND-split strueture,.the‘valid roles of T4 will be Ry, R, and R,
excluding the role R, assigned:to T3. Ry is chosen for T4. Next, the valid roles of Ts are Ry,
R, and R;,, which exclude the'role Ry assigned to Ts. R, is chosen for Ts. Next, the valid
role of Ty is Ry, which satisfy the SoD constraints. One possible valid RTplan has been
found, i.e., RTplan = {< R,, T1>, <Re, To>, <Ry, T3>, <Ry, T4>, <Ry, Ts>, <R, Te>}.
The algorithm can continue to find another valid RTplan = {< R,, T;>, <R., T>>, <Ry,
T3>, <Ry, T4>, <R, Ts>, <R, Te>}, by assigning Ts with the valid role R,. The
algorithm can find all valid RTplans by exploring all valid roles of each task.

The RTplans generated by the role-task planning algorithm are used as the input to
the user-role-task planning algorithm. The user-role-task planning algorithm finds valid
users for each pair of (role, task) assignment in a RTplan by employing the similar
approach of the role-task planning algorithm. Table 4 shows the capable users who have
the capability to play the role. The assignment is similar to the assignment of the role-task
planning algorithm, and thus the detailed illustrations of the assignment are omitted. The
user-role-task planning algorithm finds one possible URTplan shown as the following:
URTplan= {< Annie, R,, T1>, <Bob, R., T;>, < Frank, Ry, T3>, < Gary, Ry, T4>, < Gary,
Ry, Ts>, < Sam, R, Te>}. Similarly, the algorithm can find all valid URTplans by

exploring all valid users of each pair of (role, task) assignment.

26

Table 4. Capable users of roles.

Role Capableusersof arole

R. Annie, Bob, Calla, Gary, John, Sam

Ry Annie, Bob, David, Gary, John, Sam

R. Bob, Calla, David, Kevin, Mary, Nancy, Tom

Rq4 Calla, David, Ella, Kevin, Mary, Nancy, Tom

Ry Frank, Gary, John, Sam

Ry Gary, John, Kevin, Mary, Sam

R, Gary, John, Kevin, Nancy, Tom

R, Sam, Tom

27

Chapter 5. Authorization Management for Process-View

Adopting workflow management systems (WfMS) to manage business processes is
an important trend in modern enterprises. The new value of WIMS for enterprise is agility,
flexibility and visibility. WfMS can help decision makers fully utilize business processes.
However, workers (representing organizational roles) cannot easily obtain a global view

of a complex and large workflow.

A process-view, an abstracted process derived from a base process, is proposed to
provide adaptable task granularity in previous related work [26]. Process-view is a good
solution that different workflow participants can acquire different needs and types of
authority. For example, a general manager may require aggregated information on a
specific process rather than detailed information. In additional, an accounting manager
may not have the authority or need to know each specific step of the production flow.
These requirements necessitate the need,to design a novel model for assigning the

authority of process-oriented views of business tasks to organizational roles.

In base processes, access rights are associated-with roles, and users are assigned to
appropriate roles. The access rights/authorized permissions of roles for process-views are
not considered in existing researches. This work discusses the authorization management
of organizational roles in a process-view. Several base activities are aggregated into a
virtual activity in a process-view. An organizational role r’s permissions on a virtual
activity va; can be derived from r’s permissions on those base activities belong to va;.
Moreover, the derivation needs to consider the duty-conflict relationships among base

activities.

5.1. Grouping and data aggregations

The derivation of a virtual process (process-view) involves grouping the base
activities in a base process into virtual activities. A virtual activity contains a set of base
activities in the base process. Base activities may manipulate some data objects. Data
aggregations may be specified on a virtual activity to provide aggregate views of data
derived from the data objects of base activities. In general, data aggregations may apply
aggregate functions on collections of data objects manipulated by base activities of a

virtual activity. These aggregate functions are used in simple statistical computations,

28

including SUM, AVERAGE, MAXIMUM and MINIMUM, that summarize information
from data objects handled by the base activities. Different roles may have different needs

of data aggregations that are defined by the process modeler.

Let va represent a virtual activity and g denotes a base activity. D'(va) denotes the
aggregate data object of va; for role r; D(g) denotes the data object handled by g, i.e.,

data object of &, for brevity; S, is the set of base activities that are specified in the data

aggregation of va for role r; DS], is the set of data objects of base activities in S, used to

derive the aggregate data object of Va; for role r; and F denotes an aggregate function.

Sﬁa ={ & | &€ Vva: g is specified in the data aggregation of Va; for role r }

DS, =1 D(@) g€ S, }

The formal expression of aggregating the data objects of base activities to derive the

data object of va; for role r is illustrated in the following.
D'(va)=F ({D(&) | aje S 1) i-d.-DI(vay ~F.(Ds;,)

Notably, S;a, may include all or partial-base activities in va, as specified in the data

aggregation for role r defined by the process:modeler. The aggregate function may apply

to some or all data objects of base activities in Va;.

production
FAB |
receiving .| check production amount (FAB 1)
order stock
production
order amount stock amount FAB I

production amount (FAB 1)

FAB 1
FAB II

production amount

product manager : production amount <

sales manager : delivery amount <st0ck amount

Figure 7. Example of a virtual activity “scheduling production”

29

Figure 7 illustrates a virtual activity “scheduling production” which represents an
abstraction of four base activities “receiving order”, “check stock”, “production FAB I”
and “production FAB II”. Only production data are described for clarity. The data objects
of “receiving order”, “check stock”, “production FAB I”” and “production FAB II” are
order amount, stock amount, production amount (FAB I), and production amount (FAB
IT), respectively. The sales manager only needs to know the delivery amount, including

production distribution and stock amount but not the production details.

DS'® ™™ = { D(production FAB I), D(production FAB II), D(stock amount)}

Vg

The production manager may want to know the production amount but not the stock

amount.

DS, ™™ = { D(production FAB I), D(production FAB II)}

5.2. The permissions on an activity

A role is a job function defined aspa.named collection of responsibilities, which
reflect organizational regulations-and business procedures. Several permissions on an
activity are defined and illustrated in“Table-5. A role is assigned a collection of the
permissions on base activities. The permissions of role r on a virtual activity va can be

derived from role r’s permissions on base activities in va.

Table 5. Permissions on activity

Permissions Descriptions Implied Per missions on
on activity g activity g
manage Manage; Read the data object of g view, agg_view, awareness
execute Execute; Read/Write the data object of g | view, agg_view, awareness
view Read the data object of g; agg_view, awareness
agg_view Read aggregate data object awareness
awareness Be aware of g; null

30

For a role r, given a permission p on an activity a;, the access privilege of role r is

described as follows.

® manage: role I can monitor the progress of g and reassign a user to perform &;; role

I can read the data object of a,.
® execute: role r can execute g and read/write the data object of &;.
® view: role r can read the data object of &

e agg_view: role r can read D'(va), the aggregate data object of a virtual activity va;,

only ifrole r has the agg_view permission on all base activity g € S, . Notably, §,

is the set of base activities specified in the data aggregation of va; for role r.

® awareness: the basic and minimum permission for an activity; role r is aware of a,.

Notably, if role r only has the agg_view permission without the view permission on

a;, then role r can not read the data‘object of ;.

Moreover, the permissions have implied relationships as shown in Table 5. A role r
has the manage or execute permission.on an activity a implied that role r also has the
view, agg_view and awarenesspermissions-on a;. A role possesses the view permission
on an activity & implied that role r-also-has the agg_view and awareness permissions on
this activity. Finally, a role r has the agg_view permission on an activity & implied that

role r also has the awareness permission on &,.

5.3. Permissions on a virtual activity without considering duty-conflict
relationships among base activities

This section presents the derivations of the permissions of a role r on a virtual
activity without considering duty-conflict relationships among the base activities. Next
section presents the derivations considering the duty-conflict relationships among the

base activities.

Let P(r, &) be the set of permissions of role I on an base activity g and P(r, va) be
the set of permissions of role r on a virtual activity va. For strict privilege principle,
P(r,va) can be derived by the intersection of permissions on base activities belong to va;,

as illustrated in the following.

31

P(r,va)= (\P(r.a)

Vajevg

We use the example illustrated in Figure 2, Section 2.3, to illustrate the derivation.
The base activities, a;, & and ag in the base process, are aggregated into the virtual
activity, vay, in the process-views. If P(r, a;), P(r, &), P(r, ag) is {manage}, {execute}
and {view}, respectively. According to the strict privilege principle, P(r, va;) are the
intersection of permissions on base activities belong to va;, which results in {view}.
Notably, the implied permissions shown in Table 5 should be considered in deriving the

permissions on a virtual activity.

Above derivation may be too strict for data aggregation, since the derivation shows
that if a role r does not have agg_view permission on all base activities in va;, then the
permissions of role r on virtual activity va; will not contain agg_Vview permission.
However, data aggregation may be specified on part of base activities in va;. A role r

should be able to read D'(va;), the aggregate data object of a virtual activity va, if role r

has the agg_view permission on.all base activity.g; € SC% , as described in the following

equation.
agg_view e P(r, va), if P(r, &) contains/agg_ View permission for all & € S;a

If arole r has the agg_view permission‘but not the view permission on a base activity
g; in a virtual activity Va;; the agg_view permission on Vg is derived for role r. Role r may
deduce the data object of g; that r does not have the permission to view. For example, a
virtual activity, va;, is aggregated from two base activities, a; and &. A personal
computer manufacturer contains two factories. Each factory reports the amount of
product to head office, where a; reports the amount of product in factory one, two
thousands PCs, and &, reports the amount of product in factory two, three thousands PCs.
The va; reports the total amount of product in both factories, i.e. five thousands PCs.
However, the permission of a role r can only know the amount of product in factory one,
and not factory two. Role r should not have the permission to know the total amount of
product in both factories, since the amount of product in factory two may be deduced.
Accordingly, the derivation of the agg_view permission on a virtual activity is modified

as the following, by considering the data deduction rule.

32

Equation (1):

P(r,va)= (P(r.a)

Vajevy
agg_view € P(r, va), if P(r, &) contains agg_view permission for all g€ S, ;
and the data deduction rule is satisfied.

Data deduction rule:

There is no data deduction on the data object of g forgje S, andviewg P(r, &).

Some enterprises adopt lenient privilege principle to increase the convenient and
flexibility in process management. Least privilege principle is to make sure that only
those permissions required for the activities conducted by members of the role are
assigned to the role. For least privilege principle, the permissions of role r on a virtual

activity are the necessary access rights defined by the process modeler.

54.Permissions on a virtual “‘activity considering duty-conflict

relationships among-base activities

Section 3.1 has defined several duty-conflict relationships among tasks (activities).
A base process contains a set of tasks, and seme duty-conflict relationships may exist
among tasks. The derivation of a role I’s permissions on a virtual activity needs to

consider duty-conflict relationships among base activities.

For strict privilege principle, if the base activities ay and ay are duty-conflict tasks, ay

Day; virtual activity Va; only contains two base activities ax and ay, the permission of a

role r on virtual activity va; is illustrated in Table 6.

Two base activities ax and ay are duty-conflict activities that are aggregated as a
virtual activity va. According to the authorization rules for SoD defined in section 3.2,
two duty-conflict tasks cannot be assigned to the same role. If role r has the execute
permission on both base activities ay and ay, then only the minimum and basic permission
“awareness’ on Vva; can be authorized to role r. Moreover, under the strict privilege
principle, if role r has the view permission on both base activities a and ay, then only the
“awareness’ permission on V& can be authorized to role r. Notably, the implied

permissions should be considered in the authorization.

33

Table 6. Permissions of role r under strict privilege principle

D I
<D Permission on va;
Permission on a, Permission on a va - {3 a}
execute execute awareness
manage awareness
view awareness
agg_view agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)
awareness awareness
manage manage awareness
view awareness
agg_view agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)
awareness awareness
view view awareness
agg_view agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)
awareness awareness
agg_view agg_view agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)
awareness awareness
awareness awareness awareness

For the case that role r has the view permission on ay and the agg_view permission
on ay, the agg_view permission on vag; can be authorized to role r, if the data deduction
rule is satisfied; otherwise, only the “awareness”’ permission on Vg, can be authorized to

role r. The data deduction rule states that there is no data deduction on the data object of g;

forg e §, andview¢ P(r,). A role should not deduce some unauthorized permissions

on the data objects. For example, three base activities are aggregated into a virtual activity
va;. If role r has the view permission on one base activity ax and the agg_view permission
on the other two base activities ay and a, the agg view (e.g. SUM aggregation)
permission on Va can be authorized to role r, since role r can not deduce the data
information of a,and a,. Nevertheless, if a role has the view permission on ayand ay; and
the agg view permission (no View permission) on @, the agg view (e.g. SUM

aggregation) permission on V@ can not be authorized to role r, since role r can deduce the

34

data information of &;. The other derivations are similar, and thus are omitted for clarity.

In order to increase the flexibility, an organization may adopt lenient privilege
principle. For lenient privilege principle, if the base activities a and ay are duty-conflict

tasks, ax@®ay; virtual activity va; only contains two base activities ay and ay, the permission

of a role r on virtual activity Vg is illustrated in Table 7.

Table 7. Permissions of role r under lenient privilege principle

D -
KOS Permission on va
Permission on ay Permission on a, vai- {8 a}
execute execute awareness
manage awareness
view awareness
agg_view agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)
awareness awareness
manage manage awar eness
view view
agg_view agg_ view (if data deduction rule is satisfied)
awar eness (if data deduction rule is violated)
awareness awareness
view view view
agg_view agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)
awareness awareness
agg_view agg_view agg_view (if data deduction rule is satisfied)
awareness (if data deduction rule is violated)
awareness awareness
awareness awareness awareness

The main difference between the strict and lenient privilege principles is to loosen
the view-view violation. Under the strict privilege principle, if role r has the view
permission on both base activities ax and ay, then only the “awareness” permission on va
can be authorized to role r. For the lenient privilege principle, if role r has the view
permission on both base activities ay and ay, then the “view” permission on Vva; can be

authorized to role r. Ifrole r has the manage permission on & and the view permission on

35

ay, then the “view” permission on va; can be authorized to role r. However, if role r has the
execute permission on both base activities ay and a,, then only the “awareness’

permission on Va; can be authorized to role r, in order to achieve the constraint of SoD.

As described in section 5.2, if the “execute” permission on ay is authorized to role r,
then the implied permissions are also assigned to role r, i.e., P(r, ax) = {execute, view,
agg_view, awareness}. If role r also has the “execute” permission on ay, then the “view”
permission on Va; is derived for role r, according to Table 7, which violates the SoD
principle. To ensure no violation of SoD, the maximum privilege of role r’s permissions

should be used to derive role r’s permissions on Va;. The privileges of the permissions are

ranked as follows: execute > manage > view > agg_view > awareness. Let max F;rj

denote the maximum privilege of role I'’s permission on activity ;.

max Parj = the higest ranked permission in P(r, &)

For duty conflict tasks, the maximum, privileges of role r’s permissions on base

activities are used to derive role:r’s permissions on virtual activity, according to Table 7.

Table 7 shows the derivation of role I’s permisSion on a virtual activity that contains
two duty-conflict activities. The dérivatien-for general cases that a virtual activity may
contain a set of base activities with:duty-conflict relationships is described as Figure 8.
The algorithm creates a temporary virtual activity, tmpva, for each pair of duty-conflict
tasks ay and ay in Va;, where tmpva, = { ay, ay }. Then role r’s permissions on tmpva; are

derived according to Table 7 by using the maximum privilege of P(r, ay) and P(r, ay)

(i.e. max Parx and maxPary), respectively. Once role r’s permissions on duty-conflict tasks

are derived, the algorithm then uses equation (1) described in Section 5.3 to derive role

I’s permissions on the virtual activity va.

36

Algorithm The algorithm of derivation for general cases
tmpVA={}
for each pair of duty-conflict tasks ay®ay and ay, aye Va;
Create a temporary virtual activity tmpva, = { ay, ay }

P(r, tmpva)) = the set of permissions derived according to Table 7,

by using the maxP, and max Pary
tmpVA = tmpVAU { tmpva; }

endfor;

for each base activity axe va;
if there is no ay€ va; such that a,Day then
tmpVA =tmpVAU { a }
endfor;

P(r,va)=[]P(r.a)

VajetmpVA
if P(r, &) contains agg_view.permission for all'a; € S ,»; and the data deduction rule

is satisfied.

P(r, va) = P(r, va;) U { agg. view:}

Figure 8. The algorithm of derivation for general cases

37

Chapter 6. System Implementation and Demonstr ation

This chapter will elucidate the implementation, demonstration and discussion of the

system.

6.1. System implementation

Various authorization rules are incorporated into the system to achieve separation of
duty in the assignment of tasks to roles and users. A graphical interface is also supported
to enable security managers to specify tasks, roles and users, and impose appropriate
authorization rules. Figure 9 depicts the system architecture which integrates a workflow

management system.

Transaction Server (TS) Database
.. Management
- » User Authentication | Syste m%DBMS)
' Authorization Controller A User
R Cll.lent. -« Static Dynamic Identification
pplication ! Authorization || Authorization K\\\ - —
! ; . “~la| Authorization
1 7 N Rules for SoD
User's ! — \\
WorkList —m» Activation Controller s \ User/Role/Task
| .
! A Assignment
|
|
L €s1gn . unlime
> Module Module Record
IIOP ODBC
7777777 +» planning-time activity e protocol

——» run-time activity

Figure 9. The system architecture

The system contains databases and four modules, including a client application
module, a user authentication module, an authorization controller, and an activation
controller. The databases store information required to identify users, authorization rules
for SoD, user/role/task assignments and the historical record of role/task activations. The
client application provides a graphical user interface (GUI) between the user and the
system. The user authentication module supports user authentication to validate the user’s
identity. The system ensures that only authorized users can conduct operations such as
activating roles, executing tasks, and accessing objects. The authorization controller

governs role-task and user-role assignments. Role activations and task executions

38

conducted by users are verified to ensure that authorization constraints for SoD are not

violated.

The workflow management system (WfMS) supports the design and enactment of
workflows. The design module assists a workflow designer to specify a workflow in the
planning phase. The design module supports the assignment of roles/users to each task in
a workflow. The assignment must be validated by interaction with the authorization
controller to ensure that no authorization constraints for SoD are violated. Furthermore,
the design module implements the user/role-task planning algorithms, as illustrated in
Chapter 4, to generate initial workflow activation plans. The run-time module is
responsible for the enactment of workflows in the run-time phase, including the execution
and scheduling of tasks. The run-time module controls the task execution flow and
assigns a user to perform the current task. The assignment must also be validated by
interaction with the authorization controller to verify authorization constraints of SoD.
Moreover, the run-time module executes the plan-adjust algorithm described in Section
4.3, to find a valid user for the currént task, if the planned user cannot activate the current

task.

The activation controllermanages role/task activation and interaction with users and
WIMS. The run-time module of WfMS provides each user with his/her work-list via the
activation controller. Furthermore, the activation controller handles users’ requests for
role/task activation and issues an authorization request to the authorization controller to

verify the satisfaction of authorization constraints for SoD.

During the run-time phase, a user may issue a request to activate a role or execute
certain tasks in his/her work-list. First, his/her identity must be verified by the
authentication module. Then the client application sends the user’s request to the
activation controller. The activation controller communicates with the authorization
controller to manage the authorization. The activation controller examines the related
authorization rules, assignments and historical records to authorize the role/task
activation. If the request for role/task activation is confirmed as legal and adequate, then
the activation controller sends the user’s request to the WfMS. Finally, the WfMS allows

the user to execute the authorized task.

Sybase’s EAS (Enterprise Application Server) 3.0 is used to develop the system. EAS

is an integrated development tool, including a front-end tool, an object-based

39

development tool, a transaction server, and a database management system (DBMS). The
prototype system is a three-tier architecture with the transaction server (TS) as the middle
tier between the client application and the DBMS server. The client application program
provides the interface between the user and the system. The DBMS stores authorization
data and process/task data. The system is implemented with Windows NT 4.0 as the
server side and Windows 2000 as the client side. Rational Rose 4.0 is used to analyze and
design the system, while PowerDesign 7.0 is used to develop databases managed by
Sybase SQLAnywhere 6.0 DBMS. PowerBuilder 7.02 is used to develop client
applications and the modules in the transaction server. Notably, the application program
on the client side communicates with the Transaction Server using IIOP (Internet
Inter-ORB Protocol). The client application program serves the user by calling the
business objects supported in the authorization controller, the activation controller and

the TS. The TS retrieves the required data from the DBMS server via ODBC.

6.2. System demonstration

This section describes a procurement process.to demonstrate the application of the
system to managing authorization for business processes. The system provides the
security administrator with a GUI' to-manage the authorization, involving enacting
authorization rules, duty-conflict relationships; ebjects (documents, tasks, roles, users)

and their relationships, as shown in Figure 10.

The authorization management mainly supports the specification of authorization data
necessary for authorization control. The specification is conducted in the planning phase.
Figure 10 reveals that “Issuing item-request” and “Approving item-request” are tasks in
the “Submitting purchase request” sub-process. “Approving item-request” supervises
“Issuing item-request”. An initial workflow activation plan of the sub-process,
“Submitting purchase request”, generated in the planning phase according to the
user/role-task planning algorithms, is as follows. Mary/Clerk is assigned to “Issuing
item-request”, and John/Assistant-Manager is assigned to “Approving item-request”.
During the run-time phase, the system provides the login user with a GUI to conduct
role/task activations. The activation controller provides the user with the authorized role
list and the assigned task list. Additionally, the activation controller communicates with
the authorization controller to verify the users’ requests on activating a role/task. Once the

request is verified to satisfy the dynamic constraints for SoD, the user is allowed to play

40

the role or execute the task.

: TBAL Assignment

=10l x|

rAuthorization Fule Enactment
— atatic Separation of Duty

I roletask [T userfroletask

duty-conflict

duty-supervising [all [~ exist one

I non-proprietary duty [coordinating cuty
Update |

Dynamic Separation of Duty

duty-conflict

duty-supervisin

v non-proprigtary duty

= i Task
= *B Procurement Process
=l [Purchase request approval
= &3 Submitting purchase request
& Tssuing item-recuest

EfT-TE qUEsE
= & Rewiewing purchase budget
& Feviewing ttem-request
& Approving the budget
7 Purchase plan approval
[Venfication
[Case closing
[Payment request
[Payment
% Eole
fit Doc
% Ueer

| v

=

[activate rol_(+ executetas { access ohisclv execution-depende]

[execute task(” access objedv execution-dependert duty-supervis |

[coordinating dut |

ent | Duty-conflict Task

| TaskiD_[3Nb)

TETRE Approving item-request
Conflicting Task

Issuing item-request

supervising

Insert |

Delete |

Save | Exit |

Figure 10. Enactment of data for authorization control

Assume that Mary is unavailable to perform the task “Issuing item-request” in the

41

current workflow instance (wotkflow instance no, 135). The plan-adjust algorithm finds
that John is a valid user to activate the task “Issuing item-request” in the current workflow
instance (wf-no. 135). Figure 11 indicates'that John is authorized to play the roles of the
assistant manager and the clerk of the human resource department. John has successfully
performed the task “Issuing item-request’ on issuing a request to purchase computers
(CPU P4 1.4GHz, wt- no. 135). Figure 12 shows that even though John is authorized as
an assistant manager, he cannot activate the task “Approving item-request” to approve the
request to purchase a computer (CPU P4 1.4GHz, workflow instance no. 135), since the
request was issued by John, himself. Such approval would violate the SoD constraints.
Notably, in other workflow instances, John can play the role of the assistant manager to

activate the “Approving item-request” task to approve requests issued by other clerks.

Juser name : John

rAuthorization Rule Enactment

=10l]

—Static Separation of Duty
duty-conflict
duty-superviging

Il

I mon-proprietary duty [coordinsting dity

I~ | roletask [T usenraletash
I~ | exist ame

Dynamic Separation of Duty

duty-conflict

T e ol e e e et T e e R |

duty-supervisin [f=" excouie taahl” auoess objedv | execulion -dependent dity-supervis

¥ non-propristary duty [e

rRole Optl.On Doc ltem-request list RYiRTE G0N GR0000000135
€ HR Aszsistant Manager
& HR Clerk (TGN CPL Pentiumd 1.4GHz * 100
HD 40G *100
~ Task Option
& |szuing item-request
€ Issuing item-purchase
Guccess Y]
—
FLTAlHR Clerk/ohn [Pl 2002.05.13/22:38
tng. | Date |
Emp. | Date |
Mng. | Date |
e Save | Exit |

Figure 11. Activation of “Issuing item-request” by John as Clerk

i user name : John

rAuthorization Rule Enactment

9

=10l x|

- Static Separation of Duty
duty-conflict
duty-superviging

Il

I non-proprietary duty [| comrdinsting dity:

I™ | raletask [~ userioletash
I~ | exist ame

Dynamic Separation of Duty
duty-conflict

[T EctEtE e F T ereoie tae | Aress ChiEChv | EXeCutonEdepente|

duty-supervisin

[excoute tashl” access objedv | exectfion-dependent dity-superyis|

~Role Option

¥ nor-proprigtary duty ¥ canr et dut |

& HR Assistant Manager
© HR Clerk

- Task Option
& Approving item-request
© Approving item-purchase

CETEE x

f Instance No

0000000106 CPU Pl 700 MHz X 10001
0000000110

0000000111 CPU Pl 700MHZ = 100001
0000000132 CPU Pentium 4 1.4GHz =1
0000000133 CPU Pentiumd 1.4GHz * 1l
0000000134 CPU Pentiumd 1.4GHz = 1(

CPU Pentiumd 1.4GHz = 1lj

@ Violate Dynamic So0 Constraink

-

- Exit |

Save |

Figure 12. Verifying SoD in the activation of “Approving item-request” by John as

assistant manager

42

6.3. Discussion

A case organization, i.e., an information department of the Army data management

center, was invited to evaluate and test run our prototype system. A procurement process

is deployed to evaluate the system. Notably, only some necessary roles and users

participated in the procurement-process were considered for evaluation purposes.

Detailed comments provided in the evaluation responses by those who had used the

proposed prototype system are as follows.

(1)

()

€)

A preliminary planning phase is required to specify the capabilities of the roles and
users as well as the duty-conflict relationships among tasks. The case organization
needs to specify, for each task, the set of capable roles that can execute the task, and,
for each role, the set of capable users that can activate the role. However, the
operational procedure of the case organization does not include such a planning
phase. Accordingly, the case organization needs to redefine its operational procedure
to accommodate such a planning' phase;.increasing, however, the workload of the

case organization.

The workflow designer in the case organization directly assigns users/roles to tasks,
according to the organization’s—understanding of the duties associated with
roles/users. There is no system.means and verification to ensure that the principle of
separation of duty is not violated. The proposed system provides a graphical
interface in which the security manager can specify tasks, roles and users, and
implement appropriate authorization rules to maintain separation of duties. The
response of the case organization is very positive regarding the aid provided by our

system for verifying the principle of separation of duty.

The case organization uses primarily user ids and passwords for security control.
The security control of our system is a more complex process that requires
tasks/roles/users to be specified and separation of duties to be verified. Such a
complex process is inconvenient when the case organization seeks flexibly to adjust
manpower when executing workflows. For example, an unplanned role/user may
need to perform an unauthorized task due to workflow exceptions or emergent
organizational needs. However, the case organization agreed that our system is
helpful in providing a more secure mechanism for controlling the execution of

tasks/workflows.

43

Chapter 7. Comparison with Related Work

Existing researches include role/task-based security model for SoD, task-based
authorization model, and role-based authorizations for workflows. Thomas et al. [29]
proposed task-based authorization control to manage the execution states of tasks by
controlling the run-time execution status of tasks. They considered neither SoD nor
authorizations among tasks, roles and users. Schier [23] also proposed a role and task
based security model. Although authorization rules for SoD have been designed, they are
merely derived from SoD in RBAC. The definition of mutual exclusive tasks is simply
derived from the definition of mutual exclusive roles. Duty-conflict relationships
between tasks have not been explored. In addition, the proposed authorization rules for
SoD are merely extended from SoD in RBAC. They considered neither execution
dependency nor role-based authorizations for workflow tasks. In contrast, this work
provides a novel analysis and defines various duty-conflict relationships among tasks.

Various authorization rules for execution-dependent SoD have been proposed.

Although several reseatchers have ‘addressed role-based access control and
authorization management in workflow systems, -few have considered authorization
planning in assigning workflow tasks to toles/users. Bertino et al. [5] proposed a flexible
model for the specification and ‘enfercement of authorization constraints in workflow
management systems. A logical authorization language, defined as clauses in a logic
program, is proposed to express authorization constraints on role assignments and user
assignments. Deductive approach is then used to conduct consistency checking on the
logical constraints. Moreover, algorithms have been proposed for authorization planning
in assigning users and roles to workflow tasks such that no authorization constraints are
violated. The comparison of their work with ours can be elucidated as follows. First,
although examples have been presented to illustrate how to express static and dynamic
SoD via the proposed authorization language, they considered neither the execution
dependency nor the variations of SoD that arises from different duty-relationships among
tasks. On the contrary, we have defined several authorization rules for SoD based on
various duty-conflict and execution dependent relationships. The execution-dependent
SoD supports the enforcement of SoD across users’ active sessions and historical sessions.
Second, the authorization planning algorithms proposed by Bertino et al. mainly find

valid assignments by consistency checking with deductive inference on authorization

44

constraints expressed in logic language. Deductive inference needs to check all
constraints to find if there is inconsistency. Different from their work, our approach finds
valid assignments by verifying SoD constraints based on various duty-conflict
relationships among tasks, and in particular, the execution dependency among tasks in
workflow instances. Only tasks that are duty-conflict and execution dependent need to be
verified. Moreover, we have considered the AND/XOR split structure of a workflow to

explore the execution dependency.

With the rapid growth of Internet usage for business applications, conducting
workflow management on the Internet is an inevitable trend for business commerce. Ahn
et al. [1] developed a system architecture for enforcing role-based access control in
Web-based workflow management systems. The architecture mainly consists of a role
server for maintaining user-role assignments and issuing certificates with client’s role
information. Role-based authorization is conducted as follows. The client needs to
request a client certificate with role information, implemented as an X.509v3 certificate
with role attributes, and presents it'to the Web server of the workflow system. The Web
server then retrieves role information!/from the certificate to verify if the client has the
privileges to execute the task by the role. Detailed implementation has been presented to
show the feasibility of the, propesedysystem., However, the proposed role-based

authorization is still based on thé:simple RBAC96 model.

Atluri and Huang proposed a Workflow Authorization Model (WAM) for
workflows [3]. The model associates each task with authorization templates that specify
static parameters of authorization defined during the design time. When a task of a
workflow instance starts to execute in run time, the actual authorization of granting a
subject to execute the task is derived from the authorization templates. The WAM model
has also been enhanced to incorporate separation of duty constraints. Huang and Atluri
[13] also presented a secure Web-based workflow management system (SecureFlow).
The SecureFlow system is developed based on the WAM. A workflow authorization
server, which is separated from the WIMS, is employed to support the specification and
enforcement of security policies based on role-based access control and separation of

duty. In addition, a simple 4GL language is used to specify authorization constraints.

Botha and Eloff [6] presented access control requirements in document-centric

workflow systems. A Context-sensitive Access Control model, which is based on

45

role-based access control, is proposed to protect unauthorized access to documents
(sensitive information) used in workflow systems. The model considers conflicting tasks,
conflicting users (e.g. family members) and access history of document in supporting
dynamic SoD requirements. Moreover, an agent-based approach is used to implement the

proposed model.

As the demand of business globalization increases, inter-organizational workflows
are gaining importance in collaborative business environments. From this aspect, access
control mechanisms and security models have been proposed for inter-organizational
workflows [2][16]. Kang et al. [16] proposed a notion of role domain, instead of an
organization’s role structure, to specify the data access policy associated with each task of
the workflow. To participate in the inter-organizational workflow, an organization needs
to map its role structure to the role domain for the workflow. The role domain approach
decouples the workflow-specific security structure from an organization’s security
structure. X.509 certificate is used to provide user identity and role/organization
information. The mechanism also:Supports context-based access control, in which data
access is enforced according.to the ecapability (Context) of each task, i.e., read/write
permissions on fields of data objects. Moreover, Atluri et al. [2] considered the issues of
conflict-of-interest among competing organizations of inter-organizational workflows in
decentralized workflow environments. The model mainly prevents sensitive dependency
information or sensitive output of a task leaking to another task agent (organization) with

conflict-of-interest.

The comparisons of our work with above literatures [1][2][3][6][13][16] are
illustrated as follows. First, they did not consider authorization planning for assigning
workflow tasks to roles/users. In contrast, we have developed the user/role/task planning
algorithms in planning-time phase and the plan-adjust algorithm in run-time phase,
respectively. The user/role/task planning algorithms generate initial workflow activation
plans in advance, which assign tasks to a set of valid roles/users, to satisfy the constraints
of SoD. The plan-adjust algorithm identifies an available user authorized to activate the
current task, and generates a new activation plan. Second, they considered neither the
execution dependency nor the variations of SoD that arises from different
duty-relationships among tasks. On the contrary, we have defined several authorization
rules for SoD based on various duty-conflict and execution dependent relationships.

Finally, some researchers have addressed access control mechanisms for

46

inter-organizational workflows. Inter-organizational workflows are gaining importance
in B-to-B commerce. Our current work does not focus on inter-organizational
environments, though some of the proposed work can still be applied in such
environments. Further investigation is required to extend our work to inter-organization

workflows, and thus is proposed as future work.

47

Chapter 8. Conclusionsand Future Works

8.1. Summary

Authorization management and access control are essential in supporting secure
workflow management systems. This work presents a novel analysis and defines various
task-based SoD constraints, such as duty-supervising and execution-dependent SoD. The
user/role/task planning algorithms in planning phase have been developed to generate
initial workflow activation plans in advance, while the plan-adjust algorithm in run-time
phase has been developed to determine an available user authorized to activate the current
task. The proposed approach facilitates the effective authorization management of
workflows to assign tasks to roles or users, while enforcing task-based SoD. Secure
task-based access to workflow related data is enforced via effective authorization

management.

Process-view is a good solutien that different workflow participants acquire different
needs and types of authority. This work analyzes the grouping and aggregate function of a
virtual activity; and further, explains-the permissions of a virtual activity in a
process-view. Moreover, this work discusses the' permissions for a role on a virtual

activity aggregated from duty-conflict base activities.

Moreover, a prototype system has been developed to manage the authorization to
perform tasks in workflow environments. The proposed system was evaluated by a case
organization. The evaluation results have the following implications. First, the proposed
system requires that enterprises plan the capabilities of roles and users in advance.
However, enterprises may not have clearly identified the capabilities of roles and users.
The policy of separation of duty may not be specified in organizations. To implement the
proposed system in enterprises, a re-engineering process is required to adjust
organizations’ operational procedures for specifying roles, users and security policy.
Accordingly, the proposed system is more complex and increases the workload required
for security validation. Second, the proposed system enforces a strict security control. In
practice, an enterprise may require flexibility to adapt to dynamically changing business
environments. Strict authorization enforcement can achieve separation of duty and thus

prevent fraud, by sacrificing flexibility and convenience.

48

8.2. Future Works

Our future work will address three themes. First, duty-conflict relationships are
essential to design SoD constraints. Further work is necessary to explore more kinds of
duty-conflict relationships. Second, the execution dependency is proposed and employed
to support the enforcement of SoD across various users’ sessions. The concept of
execution dependency can be similarly applied to tasks of different workflows. However,
deriving such execution dependency across different workflows requires further study.
Third, inter-organization workflows are gaining importance in B-to-B commerce.
Although some works have addressed access control in this aspect, they disregard the
coordination behavior in inter-organizational workflows [18][24][25]. Future research
will be to investigate the authorizations and access control in inter-organizational

workflows.

49

References

[1]

Ahn, G-J, Sandhu, R., Kang, M., Park, J., “Injecting RBAC to Secure a Web-based
Workflow System”, In Proceedings of Sth ACM Workshop on Role-Based Access
Control, 2002.

Atluri, V., Chun, S.A., Mazzoleni, P., “A Chinese Wall Security Model for
Decentralized Workflow Systems”, Proceedings of the 8th ACM conference on

Computer and Communications Security, 2001.

Atluri, V., Huang W-K, “An Authorization Model for Workflows”, Proceedings of
the fifth European Symposium on Research in Computer Security, Rome, Italy, pp.
44 — 64, 1996.

Barkley, J., “Implementing Role Based Access Control Using Object Technology”,
First ACM Workshop on Role Based Access Control, November, 1995.

Bertino, E., Ferrari, E., Atluri, V., “Specification and Enforcement of Authorization
Constraints in Workflow Management Systems”, ACM Transactions on Information
and System Security, Vol. 2, No. 1, pp 65=104, 1999.

Botha, R.A., Eloff, JanZH.P., “Ac¢cess Control in Document-centric Workflow
Systems — An Agent-based Approach”, Computers & Security, Vol.20, No.6,
pp-525-532, 2001.

Cichocki, A., Helal, A., Rusinkiewicz, M., Woelk, D., “Workflow and Process

Automation: Concepts and Technology”, Kluwer Academic Publishers, 1998.

Coulouris, G., Dollimore, J., Roberts, M., “Role and Task-based Access Control in
the PerDis Groupware Platform”, Third ACM Workshop on Role-Based Access
Control, George Mason University, VA, October, 1998.

Ferraiolo, D.F., Cugini, J., Kuhn, R., “Role-Based Access Control (RBAC): Features
and Motivations”, Proceedings of 11th Annual Computer Security Application

Conference, IEEE Computer Society Press, pages 241-248, December, 1995.

[10] Ferraiolo, D.F., Kuhn, R., “Role-Based Access Control”, In Proceedings of 15th

NIST-NCSC National Computer Security Conference, pages 554-563, October,
1992.

[11] Georgakopoulos, D., Hornick, M., Sheth, A., “An Overview of Workflow

Management: From Process Modeling to Workflow Automation Infrastructure”,
Distributed and Parallel Databases, pages 119-153, 1995.

50

[12] Gligor, V.D., Gavrila, S.I., Ferraiolo, D., “On the Formal Definition of
Separation-of-Duty Policies and Their Composition”, Proceedings of IEEE
Symposium on Security and Privacy, IEEE Computer Society, May, 1998.

[13] Huang, W-K, Atluri, V., “SecureFlow: A secure web-based workflow management
system”, In Proceedings of 4th ACM Workshop on Role-Based Access Control,
pages 83-94, Fairfax, VA, October, 1999.

[14] Joshi, J., Bertino, E., Shafiq, B., Ghafoor, A., “Dependencies and Separation of Duty
Constraints in GTRBAC”, Proceedings of the eighth ACM Symposium on Access
Control Models and Technologies (SACMAT’03), p51-63, June 2-3, 2003.

[15] Kang, M.H., Froscher, J.N., Sheth, A.P., Kochut, K.J., Miller, J.A., “A multilevel
secure workflow management system”, In Proceedings of the 11th Conference on
Advanced Information Systems Engineering (CAiSE'99), pages 271-285,
Heidelberg, Germany, June, 1999.

[16] Kang, M.H., Park, J.S., Froscher, J.N., “Access Control Mechanisms for
Inter-organizational Workflow”, Sixth ACM Symposium on Access Control Models
and Technologies (SACMAT 2001), May. 3-4, 2001.

[17] Kappel, G., Lang, P, =Rausch-Schott, S., Retschitzegger, W., “Workflow
Management Based on Objects, Rules, and Roles”, IEEE Bulletin of the Technical
Committee on Data Engineering,Vol. 18/1, pp: 11-17, March, 1995.

[18] Koetsier, M., Grefen, P., Vonk, J., “Contraets for Cross-Organizational Workflow
Management”, Proceedings of* the'1st International Conference on Electronic
Commerce and Web Technologies, pp. 110-121, London, UK, 2000.

[19] Lee, B.G.,, Narayanan, N.H., Chang K.H., “An Integrated Approach to Distributed
Version Management and Role-based Access Control in Computer Supported
Collaborative Writing”, The Journal of Systems and Software, 59 (2001), pp.
119-134, 2001.

[20] L1, N., Bizri, Z., Tripunitara, M. V., “On Mutually-Exclusive Roles and Separation of
Duty”, Proceedings of the 11"™ ACM conference on Computer and Communications
Security (CCS’04), p42-51, October 25-29, 2004.

[21] Nash, M.J., Poland, K.R., “Some Conundrums Concerning Separation of Duty”,
Proceedings of IEEE Computer Society Symposium on Security and Privacy, IEEE
Computer Society Press, May, 1990.

[22] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman C.E., “Role-Based Access
Control Models”, IEEE Computer, 29(2), pp.38-47, February, 1996.

51

[23] Schier, K., “Multifunctional Smartcards for Electronic Commerce — Application of
the Role and Task Based Security Model”, 14th Annual Computer Security

Applications Conference, December, 1998.

[24] Schulz, K.A., Orlowska, M.E., “Facilitating cross-organizational workflows with a

workflow view approach”, Data & Knowledge Engineering, 51, p109-147, 2004.

[25] Shen, M., Liu, D.R., “Coordinating Interorganizational Workflows based on
Process-Views”, Proceedings of the DEXA 2001 12th International Conference on
Database and Expert Systems Applications, pp. 274-283, Munich, Germany, Sept.,
2001, LNCS 2113, Springer-Verlag Berlin Heidelberg.

[26] Shen, M., Liu, D.R., “Discovering role-relevant process-views for disseminating

process knowledge”, Expert Systems with Applications, 26, p301-310, 2004.

[27] Simon, R.T., Zurko, M.E., “Separation of Duty in Role-Based Environments”, 10th
Computer Security Foundations Workshop, June 10-12, 1997.

[28] Strembeck, M., Neumann G., “An Integrated Approach to Engineer and Enforce
Context Constraints in RBAC Environments”, ACM Transactions on Information
and System Security, Vol. 7, Ne. 3, p392-427, August 2004.

[29] Thomas, R.K., Sandhu, *R:S., “Task-Based “Authorization Controls (TBAC): A
Family of Models for Active and Enterprise-otiented Authorization Management”,
Proceedings of the IFIP-WGL1:3-Wotkshop on Database Security, August 11-13,
1997.

[30] Weitz, W., “Workflow modeling for Internet-Based Commerce: An Approach Based
on High-Level Petri Nets”, Proceedings of International IFIP/GI Working
Conference TREC’98, Hamburg, Germany, June 3-5, 1998.

[31] Wolf, R., Keinz, T., Schneider, M., “A Model for Context-dependent Access Control
for Web-based Services with Role-based Approach”, Proceedings of the 14"
International Workshop on Database and Expert Systems Applications (DEXA’03),
2003.

[32] Workflow Management Coalition, “Workflow Management Coalition: Workflow
Reference Model”, Technical report WEMC TC-1003, Jan. 19, 1995.

52

