Quantitative design of uncertain multivariable
control system with an inner-feedback loop

Indexing terms: Multivariable control systems, Inner-feedback loop, Noninteraction

Abstract: An additional inner-feedback loop is
used to reduce the channel interaction of a
multivariable control system such that the design
of outer-feedback loop can be treated as a single-
variable problem for ease in achieving the
required main-channel performance. The relative
error between the exact input-output relation
t;(jw) of channel 7 and its approximation #;(jew) =
{lw)f;:(jw)}/{1 + L(jw)} is introduced to provide
an effective measure for assessing the achieved
noninteraction. According to the approach
proposed, the single-input/single-output
quantitative-feedback-theory design method can
be applied directly for the design of both inner-
and outer-feedback loops.

1 Introduction

It is well known that an important reason for the use
of feedback structure in control-system design is the
possibility of reducing undesirable parameter-variation
effects [1]. This is because many problems of practical
interest appear as models with significant plant
uncertainty. Typical examples include flight control
and turbomachinery control over a flight envelope, as
well as general automotive-engine-control problems.
When multivariable feedback systems are concerned,
the problems involved include the sensitivity reduction
to the plant uncertainty and/or the reduction of
channel interaction existing in the plant.

Among several frequency-domain techniques at
present employed to solve this class of problems are the
H-infinity control theory [2, 3], and the quantitative-
feedback-theory (QFT) method [4, 5]. They are gener-
ally based on the single-loop configuration for practical
implementation. In contrast, Kidd [6] and Yau and
Nwokah [7, 8] used an additional inner-feedback loop,
in the so-called internal-model-reference-loop structure,
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to reduce both the plant uncertainty and the channel
interaction. In the latter two cases some theoretical
tools, such as the direct-Nyquist-array (DNA) plot and
the majorant matrix index of the compensated subsys-
tem, were proved to be very useful for assessing the
diagonal dominance achieved. It is observed that the
plant-phase information is neglected in designing the
inner-feedback loop, which may lead to some extent of
overdesign.
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Flg 1 Typical unity-feedback system with an additional inner-feedback
loop

In this paper, the two-loop configuration shown in
Fig. 1 is used for the design of an uncertain multi-
input/multi-output (MIMO) control system. To achieve
the prescribed noninteracting spec1ﬁcat10n on |{z;(jw)}/
{t;(w)}l, a practlcal mechanism is provided for gener-
atmg the desired inner-loop compensator. In order to
treat the design of outer-feedback loop as a single-vari-
able problem the relative error between the exact
input-output relation ¢#;(jo) of channel i and its
approximation 4(jo) = {L,(Gw)f;(jw)}/{1 + L(w)} is
introduced here to serve as an effective measure for
assessing the achieved noninteraction of the compen-
sated subsystem. Such a measure is proved to be rela-
tively simple even for the system of large dimension.
According to the approach proposed, the single-input/
single-output (SISO) QFT design method [9] can be
applied directly for the design of both inner- and outer-
feedback loops.

2 Problem formulation

The considered multivariable feedback control system
with two-loop configuration is shown in Fig. 1. Here
R(s) and Y(s) are the n-dimensional reference input and
output vectors, respectively; while P(s), H(s), G(s) and
F(s) are n x n rational transfer-function matrices repre-
senting the uncertain plant, the inner-feedback compen-
sator, the outer-feedforward compensator and the
prefilter matrix, respectively. In this paper, H(s), G(s)
and F(s) are assumed diagonal and designed to satisfy
the following system requirements:
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(i) System noninteracting specification:
ti; (Jw)
t;;(jw)
(ii) Main-channel performance specification:

ai(w) < [tu(jw)| < bi(w) i=1,2,...,n (2)
where ¢ ](]w) denotes the input—output relation from
channel j to i; a;{w), b;(w) and A w) are the properly
prescribed positive real functions of frequency w. In the

following, the following notations are defined for con-
venience:

SAijw<1 j?él, i,j:1,2,~.~,n (1)

P(s) = [pi;(s)]

P {W)}
H(s) = [his(s

)]
G(s) = dlag[ ii(9)]
F(s) = diag[fui(s)]

The symbol diag[] is used to indicate that the matrix []
is diagonal.

Referring to Fig. 1, the equivalent closed inner-loop
transfer-function matrix P(s), from U(s) to Y(s), can be
derived as

P(s) = [L+ P(s)H(s)] 'P(s) = [P

'(s) +H(s)]

1 1 1 -1
q11(s )'i'hll( s) 1q1z(s) qml(S)
_| =me 22 (5) Thaa(9) 2n (5)
1 1 1
() 2 () G (5) Thnn(s)
1 q11(s)/q12(s) q11(s)/qn(s) 7 1
1+1n1(s) 1+1n1(s)
q922(8)/921(8) 1 922(s)/g2n (5)
— 1+lh2(s) l+lh2(8)
Gnn(5)/0n1(5)  ann(s)/ana(s) , 1
1+ipn(s) 1+ip, (s)
q11(s) .
1+1llhl(5) 0( ) 0
go2(s
00 mew O
: : | nn:(s)
O 0 1i1l»l;m(s)
=7"(s)Qu(s)
(3)
where
1 Y12(s) Y1n($)
A | Ye(s) 1 o Yan(s)
w2 | 4)
Yn1(s) Tn2(s) -+ 1
a{gu(s)}Hau(s)} .. .
17 S y B = 1 vy 5
’7]() 1+lhz() ];éllj 727 n ()
A .
Ihi(s) = qii(s)hi(s) i=1,2,....n (6)
and
A FARSTINN P _ 3 gii(8) -
Qu(e) 2 dioglae(s)] = diog | L4005 =12, m
(7)

The gain of {g;(jw)}/{q;{jw)} reflects the plant coupling
of channel j on channel 7, which can be reduced by the
inner-loop compensator.
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In terms of the compensated subsystem P(s), the
overall closed-loop transfer-function matrix T(s) =
[t(s)], from R(s) to Y(s), is derived as

T(s) = [L+ P(5)G(s)] ' P(s)G(s)F(s) (8
Substituting eqn. 3 into eqn. 8§ gives
T(s) =[1 +T1(8)Qd(8)G(8)] Yy 9)Qa

= [v(s) + Qa(s)G(5)] "

(s)G(s)F(s)
Qu(s)G(5)F(s)

(9)
By defining L(s) = diag[l{s)] = Qu(s)G(s) and decom-
posing y(s) in eqn. 4 as y(s) = I + y(s), T(s) can be
rewritten as

T(s) = [+ 70(s) + L(s)] 7" L(5)F(s)

=T+ {I+L(5)} ()] I+ L(s)] ' L(s)F(s)
1 ~v12(s) . Yin{s)
) T11.(5)
Y21(s) 1 L 2a(s)
— 1+i2(s) 14-I2(s)
n{ 3) nZ.(S) . .
ey SRy o 1
Li(s)f11(s) 0
BRARENRYS
y 0 21+122(25) L 0
; ln(s)]inn(s)
0 0 1+in(s)
= o~ 1(s)T(s)
(10)
where
1 —Oélz(s) “Ofln(s)
—an1(8) 1 —a2n($)
als) £ (11)
—n1(8)  —aga(s) 1
() & Ll (12)
7 1+1:(s)
ll(s) = %Z(S)gii(s) (13)
and
= A 7 _ li(s) fis(s)
T = diag[t,;(s)] = diag { T+ 1(s) 1,2,...,n
(14)

In eqn. 14 it is found that, ,(s) = {L(s)/i{)}/{1 + I(s)}
possesses the familiar two-degree-of-freedom structure.
If eqn. 10 is arranged as a(s)T(s) = T(s) and both sides
of it are equated,

t;5(s tyi(s
s(5) = a;;(s) + ik (8) ki ()
tj;(s) i t55(s)
.774“ Z.a = 1727 » T <15)
t“(8> - tAu(S) + Z azktkz(s)
k=1, ket
i=1,2,....n (16)

are obtained.

Both eqgns. 15 and 16 will play a key role in develop-
ing a practical synthesis procedure for achieving the
prescribed system requirements of both eqns. 1 and 2.
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3 Inner-feedback loop design

The design goal of the inner-feedback loop is to
achieve the prescribed noninteracting specification
given in eqn. 1. In the work of Cheng, Liao and Wang
[10], it has been shown that, when a;(jw) in eqn. 12 is
bounded by a positive-real function oj(w), i.e.

g {jw) % 1

i = | Z2Uw) | | e Ge) X TG |
s (o)l = '1 + li(jw)! B 1+ lhi(jw) < ou(w)
#4045 =12...,n
(7

with gj(w) obtained from

n
0i (W) + Y oWk (W) = Ay (W)
k=1,k#1,5
J#FLLI=12,...n (18)
there would exist a fixed-point solution for the map-
ping & on the set a, which are defined as

Cti(Jw)
b tj; (jw)

—ag(w) + Y au(w)
k=1,k#i,j

trj (o)
tj;(jw)

j#t 4,7=1,2,...,n

(19)
respectively. A brief interpretation of this fact is given
below. First, from eqn. 19 it can be observed that, if all
{ti(w)} {1 o)}, for k = i, j, are the members of set a,
then

n

tij (jw) ol e (i | £
‘tp{ty‘j(j@}’sl 50 )Hk:l%i,j’ i) tj;(jw)
<o)+ D owl(w) ;W)
k=1,k=£4,j
= Aij(w)
(20)

Eqn. 20 clearly points out that @ [{z;(jw)}/{t;{jw)}] is
also a member of set a. It means that ®(-) maps the set
a into itself. By the Schauder fixed-point theorem [4],
the existence of a fixed point solution for mapping @
on set a is thus guaranteed.

From above statement, it is seen that both eqns. 17
and 18 provide a practical mechanism to design the
inner-feedback loop for assuring the given noninteract-
ing specification i.e.
tz] (]w) S /\ij (L«))
tj;(jw)

Therefore, two important results can be summarised:

(i) Using eqn. 18, the bound oj(w) for each j = i can be
obtained from the prescribed noninteracting bound
Ay(@).

(i) With this derived oy(w), eqn. 17 becomes one con-
straint for generating the desired inner-loop function

Li($)-
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4  Quter-feedback-loop design

The main concern here is to design the outer-feedback
loop for achieving the main channel-performance speci-
fication of eqn. 2. Owing to the simple form of Z;(jw)
derived in eqn. 14, the equation %(s) = {L(s)f;(s)}/{1 +
I(s)} is preferred for design. To assess such a possibil-
ity, the relative error between ,(jw) and the exact
t;(jw) is defined as

At (Jw) — ti(jw)

tii(jw)

It is seen that, if &(jw) can be bounded within some
small value, the approximation #;(jw) = #;(jw) may have
been obtained. In the following, a relation between this
relative error and the prescribed Ay (w) is explored.
First, the exact expression of efjw) is found, from
eqn. 16, to be

(21)

€i(jw)

n .
. C L teigw
a)= 3 anG L) (@
k=1,k#i iilJ
Taking account of eqns. 17 and 18 gives
. = oy | tei(gw
G € 3 laniw)] |22
k=1,k#1 t”(yw) (23)
' 23
A
< Y oun(wk(w) = Ei(w)
k=1,k#1

The above-defined E;(w) forms a possible upper bound
on &(jw). It turns out that the smaller the 4,(w), the
smaller the E{w). By allowing some small Efw)
between %(jw) and t,(jw), the main-channel perform-
ance can be approximately achieved by

li(jw) fii (Jw)

1+ ll( ] w)

The design problem now is to choose the proper com-
pensators g,{s) and fi(s) to satisfy the specification of
eqn. 24, subject to the equivalent plant d(s). The

SISO-QFT method [9] is preferred here to derive the
satisfied /(jw) and then g;(jw).

aii(w) < < bi(w) (24)

L (Jw) =

5 Synthesis procedure and numerical example

In this Section, a practical synthesis procedure is pro-
posed for the design of an uncertain MIMO feedback
system. When using eqn. 17 to design the inner-feed-
back loop, the maximum value of [{~g;(jw)}/{g;(jw)}|
for all j = i, over the plant-uncertainty range, is pre-
ferred. Also suppose that the following two conditions
are imposed on both loops;

mﬁ—(mlgﬂi i=1,2....n (25)
and

—1__'<5m» i=1,2...,n (26)

1+lh¢(jw) - ’ !

respectively, which will provide the proper stability
bound for each loop function in the high-frequency
range. Then eqn. 17 can be modified as

1 . U@'j (w)
) e {m{—qmw)}/{qmw)}lm

forj;éi,jzl,l...,n} w < wp

(27)
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where w), is the universal high frequency behind which
the feedback is not needed. From eqn. 27 it can be seen
that smaller 8; will lead to less overdesign in deriving
L,jw) but imposes a greater stability requirement on
[(s) due to eqn. 25. Thus, it is necessary to make trade-
offs on the selection of B; and/or f3;; between the
desired stability requirement and the degree of
overdesign. Based on both eqns. 26 and 27, the
permitted bounds on the inner-loop function /,{jw) =
g Go)h;{jw) can be calculated with the aid of the
rotated Nichols chart [9, 11]. With those derived
permitted bounds, the classical loop-shaping technique
will be used to find the satisfied ,{(s) and then A;(s).

0.08

. 0.06

3004
53]

0.02

0

0 005 010 015 0.20 0.25 0.30
AMw)

Fig.2 Relation of E(w) to Aw) forn=2, ., 6

Table 1: Data of Mw) and olw) for n < 6, giving Elw) =
0.04

n 2 3 4 5 6
M) 0.2 0.152 0.130 0.116 0.107
olw) 0.2 0.132 0.103 0.086 0.075

In designing the outer-feedback loop with respect to
the specification of eqn. 24, the value of E(w) should
be computed to assess the possible relative error
between £(jw) and t,{jw). If smaller E{w) is needed, the
prescribed A{w) should be reduced. To compute E(w)
quickly from the given A, (w), one can consider a partic-
ular case wherein the values of A w) and oy(w) are
chosen to be the same for all channels, respectively, i.e.
o) = o(w) and A(w) = Mw) for all j = i. By directly
replacing oy(w) and A{w) in eqn. 18 with o(w) and
Mw), respectively, the following formula is derived:

A )
o) = T ow) (28)
j # i?

1=1,2,...,n
where n is the dimension of the multivariable feedback
system. For any given A(w), the corresponding ofw) is
easily obtained from this formula. The E{w) in eqn. 23

thus becomes
ke3

Ew = Y. owiw) = Ew) (29)

k=1,ksi
Inserting eqn. 28 into eqn. 29 yields
—1)A2

1+ (n—2)\w)
The relation of E(w) to AMw) for n = 2, ..., 6 is plotted
in Fig. 2. Table 1 lists some numerical data of both the
corresponding Mw) and o(w), all of which result in
E(w) = 0.04. The detailed synthesis procedure is as fol-
lows.

(@) Determination of the value of o{w):

(1) Find the desired oj(w) from the prescribed noninter-
acting bound Afw), using eqn. 18 or eqn. 28 for the
particular case.
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(iiy Compute the vatue of E{w) from eqn. 23 or eqn. 30
for the particular case. if smaller E(w) is needed, the
designer can reduce the value of A;(w) and then repeat
step (D).

(b) Derivation of the inner-loop function [(jw) and
the A;(jow):

(i) Using the finally chosen oj(w), equs. 26 and 27 are
used as a basis on for generating the permitted bounds
on the nominal inner-loop function [,(jw) = A (jw)g..
0Uw) with the aid of the rotated Nichols chart [9, 11].

(ii) The desired /,(jw) should be shaped to sit on or
above the derived permitted bounds at frequencies of
interest. The compensator A,(jw) is then obtained from
the frequency data of {l,p(jw)}/{g:(w)} using the
curve-fitting method.

(¢) Derivation of the outer-loop function /(jw) and the
giljw):

(i) The equivalent plant ¢(s) is first derived according
to eqn. 7, i.e. gifs) = qi(s)/{1 + [,{s)}. Then, based on
eqns. 24 and 25, the permitted bounds on the nominal
loop function [y(jw) = g;(jw)dxn(w) is derived by using
the SISO-QFT method directly in the Nichols chart [9,
11}

(i) The desired /[(jw) should be shaped to sit on or
above the derived permitted bonds at frequencies of
interest. The compensator g;{(jw) is then obtained from
the frequency data of {ly(jw}/{d(w)} using the curve-
fitting method.

(d) Derivation of the prefilter f,(jw):

The overall system performance is achieved by suitably
choosing the prefilter f;(jw) to shift all responses of
{Gw)/{1 + I{jw)}| into the allowable bounds b;{w) and

ai{w).
6 Design example

The example which will be used here to illustrate the
design procedure is that previously studied by Horow-
itz [4]. The system to be considered consists of a 2 x 2
plant with plant transfer-function matrix

ki1 k12

— | 14+sA 1+sA
P(S) — +sA11 +k 12
1+sAz 1+sAaz

and a total of nine plant conditions as given in Table 2.

Table 2: Nine plant conditions used in example

E(I)anrgition 1 Koo ke ke An Apn Ap Ay
1 1 2 05 1 1 2 2 3
2 1 2 05 1 0.5 2
3 1 2 05 1 0.2 04 05 1
4 4 5 1 2 1 2 2 3
5 4 5 1 2 0.5 2
6 5 5 1 2 02 04 05 1
7 0 8 2 4 1 3
8 10 8 2 4 0.5 2
9 0 8 2 4 02 04 05 1

The nominal plant is taken from plant condition 1.
The allowable upper and lower bounds for |t (jw)], i.e.
bi{w) and a;{w), i = 1, 2, are given in Figs. 8 and 10.

IEE Proc.-Control Theory Appl., Vol. 144, No. 2, March 1997



To have proper stability margins for both loops,
choose f3; = 1dB and B,, = 8dB for i = 1, 2. Also
choose Ajx(w) = Ay (w) = 0.2 for w < 7 rad/s. Then, from
eqn. 28, Ox(w) = oy(w) = 0.2. The maximum relative
error within this frequency range is found to be E;(w) =
E>(w) = 0.04, which is acceptable in this example for
the desired noninteraction capability. There is thus no
need to reduce the value of A, {w). Based on eqns. 26
and 27, the permitted bounds on /,;(jw) for i = 1, 2 are
constructed in Figs. 3 and 4, respectively. The possible
lhy(s) are derived as

24(5 +1)
Ihio(s) = = ; T
E+D(S+ D35 + 55 + 1)
4.7(&+1
Ihoo(s) = (g + 1)

GG )R s T D

which are also plotted in Figs. 3 and 4. The Bode plots
of hjw), i = 1, 2, are shown in Fig. 5.

20 T T T T T T

gain,dB

-40F 200 A
50t 4
400
-60 —L ) [ i )
-300 -250 -200 150 -100 -50 0
phase, deg

Fig.3 Bounds B(jw) on Lyp(jw) in the Nichols chart, and ljo(jw)
designs

dw=01

¢ 400
-60 I L i ]
=300 -250  -200 -150 100 -50 0
phase,deg
Fig.4 Bounds B(jw) on Lyy(jw) in the Nichols chart, and l,py(jw)

designs
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20 o ~ gl
a S A ~
= hyljw) :
£ 0f ]
]
=20 L RN SRR L
107! 100 10! 102 103
w,rad/s

Fig.5 Bode plots of hy(jw) fori=1, 2

20 T

B(;04)

=201

gain,dB

B(j70)
B(j100) B (U-contour)
-60F  B(j150) T
#200
- 1 — 1
-300 -250 -200 -150 <100 -50
phase, deg
Fig.6 Bounds B(jw) on ly(jw) i the Nichols chart, and I,5(jw)
designs
20 T
0»
.20l
@
©
5 7
B(j70)
B(j100) »
7 :
-6k B(j150) ]
-80

-300 -250  -200 -150 <100 -50
phase, deg

Fig.7 Bounds B(jw) on lyp(jw) in the Nichols chart, and Iy (jw)
designs

Now, subject to the compensated subsystem P(s),
the desired g;(s) and fi{(s) are derived using the SISO-
QFT method. Based on eqns. 24 and 25, the permitted
bounds on [y(jw) for i = 1, 2 are constructed in Figs. 6
and 7, respectively. The possible /y(s) are then derived
as

; _ 1‘1(%4-1)
10(8)—8(§+1)( 32 +_1_4_s+1)
7 10607 100
0.75(£ +1
o) G+l

Cos(E D) (Sm + L4
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5 T T T T RN T T T TTTT ‘10 T T T T 117177 T T T UV TTTTT L
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-30
-35
_LO i) VI S R 1 [ R —70 | [N | Lt 1 111 1 LALIIXJ\j
107! 100 10! 102 10-1 100 10! 102
w,rad/s w, rad/s
Fig.8 Closed-loop frequency response of the final design for |t;;(jw)| Fig.11 Closed-loop frequency response of the final design for |ty;(jw)|
-10 T T I T T T T ITTTT T T T 1.2 upperbound T T T
-20 1.0+ yﬂ(t) 69 e
r"l r//
34 A
i 1 /'///
-30 0.8 7y~ lower bound
(/ ////
i/
B 40 0.6} i/ ]
c s
£ /
o (,’//
-50 0.4f i 7
A// I3
y/
-60 0.2} ;*/ y21(t) .
AL /13 4
-70 I RN b 1oLl L 11\ L 0 i 2’ 2‘ 70
o 100 o 02 0 05 10 15 0 5 3
w,rad/s time,s
Fig.12  Unit-step time response of the final design for y;;(t) and y,;(t)

Fig.9 Closed-loop frequency response of the final design for |t;,(jw))

5 T T T T T T T 12 upperSound 7 T T 7
0‘
1.0 yoo(t)
-10
08} 2\
4 4
-20 37
177/
- ! m
% 06 //
.30 /
£ //
o i
> 4
04|/ J
-40 A
£/
I
_50 .21 §/ 1
4
;,/‘l 1 y-lz(t)
7 3—== T _—
80— e %0 05 10 15 20 25 30
1 0 1 2 : : - : - -
10 10 w, rad/s 10 10 time, s
Fig.10  Closed-loop frequency response of the final design for |ty(jw)| Fig.13  Unit-step time response of the final design for y,,(t) and y;5(t)
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To achieve the overall system performance, the suitable
prefilters are chosen as

B (35 +1)
fll(S)_(Q%+1)(1s—2+1)
_(s+1)

f22(3)—(§+—1)2

The closed-loop frequency responses of each channel
for different plant condition are shown in Figs. 8-11.
The unit-step time responses of the final design are also
shown in Figs. 12 and 13. All requirements are satisfied
by the proposed approach.

7 Conclusion

The configuration proposed here is indeed a two-
degree-of-freedom structure. During the design, the
compensators H(s) and the (G(s), F(s)) pair are used to
achieve the prescribed noninteracting specification and
the main-channel-performance specification, respec-
tively. In a practical implementation, however, a single
compensator may be used to replace H(s) + G(s) by
using the curve-fitting method. In this paper, one fea-
ture of note is the use of relative error in achieving the
main channel performance. According to the proposed
approach, the classical frequency-domain technique can
be applied directly for designing both inner- and outer-
feedback loops.
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