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The flexural damping behaviors of composite laminates were characterized analytically in this study. A
2-D analytical model was developed based on the extension of Ni-Adams model [Ni RG, Adams RD.
The damping and dynamic moduli of symmetric laminated composite beams—theoretical and experi-
mental results. ] Compos Mater 1984;18(2):104-21] accounting for the energy dissipation contributed
by the laminar stresses of oy, and ¢,,. The specific damping capacity (SDC) of the composite was deter-
mined in accordance with the energy dissipation concept, which was defined as the ratio of the dissipated
energy to the stored energy for per circle of vibration. The 2-D analytical model was validated by com-
paring the SDC of [0/—60/60]s and [0/90/45/—45]; laminates with the experimental data and the finite
element (FEM) results. In addition, the effects of interlaminar stress on the flexural damping responses
of laminated plates were also characterized in the 3-D FEM analysis. Results indicated that the interlam-
inar stress effect may not be so significant that the current 2-D model is adequate for the evaluation of
the damping responses of the composite laminates. Furthermore, the present predictions, as compared to
the Ni-Adams [Ni RG, Adams RD. The damping and dynamic moduli of symmetric laminated composite
beams—theoretical and experimental results. ] Compos Mater 1984;18(2):104-21] and Adams-Mabheri
[Adams RD, Maheri MR. Dynamic flexural properties of anisotropic fibrous composite beams. Compos
Sci Technol 1994;50(4):497-514] models, generally demonstrate good agreements with the experimen-
tal data and the FEM results.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Polymeric composites possessing the high damping properties
of polymer matrices and the extraordinary characteristics of mate-
rial heterogeneity demonstrate the distinctive capability of dissi-
pating energy during flexural vibrations. The extent of the
flexural damping capacity of the composite laminates is generally
dependent on the material properties, the ply orientation, and
the stacking sequences. In past decades, there were several analyt-
ical models proposed for characterizing the damping responses of
composite laminates with various lay-up configurations [1-11]. A
comprehensive review on the models was provided by Chandra
et al. [12,13]. Among them, the models developed by Ni and Adams
[1], Adams and Maheri [2], Adams and Bacon [3], and Saravanos
and Chamis [4] with the attribute of straightforward physical con-
cept and simplified mathematical form were frequently referenced
in the literature. Although the mathematical formulations of the
models are different, the main concepts employed in the derivation
are quite similar.
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Based on the Ritz method, Berthelot and Sefrani [5] presented
an evaluation to consider the beam width effect on the damping
behaviors of unidirectional composites. The analysis was extended
into the damping responses of composite laminates [6]. Ohta et al.
[7] employed the 3-D theory of elasticity to evaluate the maximum
strain and kinetic energies of cross-ply laminates for the damping
analysis. The analytical formulation and governing equation were
interpreted by using Ritz’s method. Berthelot et al. [8] developed
a synthesis of damping analysis of laminate materials, laminates
with interleaved viscoelastic layers and sandwich materials using
finite element analysis. The approach was established in accor-
dance with the first-order laminate theory including the transverse
shear effects. The transverse shear effect on the damping responses
of 0° and 90° unidirectional laminates was also investigated by Yim
and Gillespie [9]. Wei et al. [10] derived the energy dissipation for-
mulation by constructing a damping matrix together with the vis-
co-elasticity theory to predict the damping behavior of fiber
composites. Recently, Billups and Cavalli [11] revisited the analyt-
ical models and tried to exemplify the differences among them in
terms of the numerical results. Unfortunately, the exclusive
distinctions in the fundamental mechanics were not pointed out
in their study, and only the numerical results obtained from the
models were compared with each other as well as with the
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experimental data. As a result, it is required to provide a classifica-
tion on these analytical models from the mechanics point of view
and validate their applicability to model the flexural damping
behaviors of composite laminates.

In this study, a 2-D analytical model, accounting for all in-plane
stress and strain quantities into the evaluation of energy dissipa-
tion, was developed. During the derivation, the distinct differences
between other analytical models were indicated lucidly. The model
predictions were then compared with the results obtained from
the FEM analysis and experimental data. Furthermore, the inter-
laminar stress effect on the flexural vibration of composite lami-
nates was also examined through the FEM analysis. The
applicability of the 2-D analytical models to the characterization
of flexural vibration of composite laminates was discussed.

2. Analytical model

In order to describe the flexural damping responses of compos-
ite laminates, a 2-D analytical model was proposed based on the
laminated plate theory together with the energy dissipation con-
cept. Without loss of generality, the laminates’ flexural vibration
was simulated by applying a cyclic bending moment M, in the x-
direction. It is noted that all fiber orientations of the laminates in
the following expressions are all referenced to the x-axis. For a
symmetric laminated composite subjected to pure bending mo-
ment M,, the corresponding curvature can be derived from the
laminated plate theory as [14]

Ci
X = % Mx
T
C*
—— (1)
Cc
Kxy :%Mx

where h" = % where h is the thickness of the composite laminate
and Cj; is the normalized flexural compliances. The detail derivation
of Eq. (1) is not presented at this point, but it can be found else-
where in the literature [1]. It is noted that in Eq. (1), the bending
moment as well as the curvatures are described with regard to
the x-y coordinate system, and the information associated with
the stacking sequences and the material properties are all included
in the compliance matrix Cj. From the thin plate assumption that
the strain in a material point is linearly proportional to the distance
measured from the mid-plane of the laminate in terms of the curva-
ture, the strain components can be expressed explicitly as

&y = ZKx
&y = ZKy (2)
Vry = 2Ky

where z is the distance referenced to the mid-plane of laminates.
Combining Eqs. (1) and (2) leads to the relationship of the strain
components to the bending moment M, as

& =2 C]jll*l Mx
=22 M, 3)
yxy =z hlf My

Subsequently, in accordance with the energy dissipation concept
[15], the SDC of materials can be defined as the ratio of the dissi-
pated energy to the stored energy for per circle of vibration, i.e.,

AU
v="7 )

where AU is the energy dissipation per cyclic vibration, and U is the
strain energy stored in the material systems when the deformation
is maximum. For the composite laminates under cyclic vibration,
the energy dissipation can be evaluated from the summation of
those calculated individually from the fiber direction, transverse
direction, and in-plane shear direction as

AU = AU; + AU, + AU, (5)
where AU, AU,, and AU;; denote the energy dissipation in the fi-

ber, transverse, and in-plane shear directions, respectively. The
quantities can be further expressed as

AUy =y Uy (6)
AU; = y7U; (7
AU = y7Un (8)

where V1, Y1, and ;7 indicate the SDC of a unidirectional compos-
ite in the fiber, transverse, and in-plane shear directions, respec-
tively; Uy, Us, and U, denote the corresponding strain energy in
the fiber, transverse, and in-plane shear directions as well. Without
loss of generality, we take AU; as an example in the following der-
ivation for the calculation of energy dissipation in the fiber direc-
tion. From Eq. (6), AU; can be expressed in terms of strain energy
in the fiber direction as

1

AU1 :l//LU] zl//Lj/é:]G]dv (9)
v

Subsequently, through the coordinate transformation relation, the

stress and strain components in the fiber direction can be correlated

to the corresponding components in the x-y coordinate; therefore,

the energy dissipation becomes

1
AUy =5 /v Yi(CPex + 5%y +C5),,) (P 0y +5°0y + 2c50,y)dv - (10)

where “s” denotes sin(0), “c” indicates cos(0), and 0 is the fiber ori-
entation with respect to the x-y coordinate. In conjunction with the
constitutive relation and Eq. (3), the energy dissipation in Eq. (10) is
written in terms of the bending moment M, as

1
AU, = 7l / Y1 (Cy +52Cy + esCig)
Vv
X [CZ(GHC;] +Q12C;, + Q16Cig) +52(Q12C;; +QC,y

2
n ok n * n * ra) ok 4
+ Qi) + 265(QusCyy + QnCy + sCil] (M) v
(1

where [Q] is the compliance matrix for the off-axis composites.
When the dimensions of the laminated plate are assumed to be

L in length, h in thickness, and “1” in width, the above integration

on the energy dissipation can be further deduced as

-h/2

L2
AU, =2 / M2dx [y, (Cy +$Cy + 6SCl)
JOo

0
X [CZ (anl +612C§2 +616C;5) +$2(612C4{1 + szCiz
2
A o Z
+QasCig) + 26(QusCry + QaCiy + Qo Ci)| </T> dz
(12)
It is noted that Eq. (12) indicates the total energy dissipation in the
fiber direction obtained by calculating the energy dissipation in
each ply and then adding them together by means of the integration

operation. In addition, for a laminated plate subjected to a bending
moment M,, the total strain energy is written as

1 L C L/2
UZE/O Miykcydx — hlg/o M2dx (13)



J.-L. Tsai, N.-R. Chang/Composite Structures 89 (2009) 443-447 445

Thus, from the energy dissipation concept provided in Eq. (4), the
SDC of composite laminate in the fiber direction i, can be deduced
as

a2
h"Cy Jo

X [C2(611C;1 +Q12C;, + Q16Cig) +52(Q12C;; + QG

+ QZGC;G) + ZCS(Q]GC% + QQGC;Z + GGGC;G)]ZZ dz (14)

Y (cPChy +5°Chy + csCle)

It is noted that the specific damping capacity in Eq. (14) is not relied
on the amplitude of vibration but the material properties and lay-
up configuration. In addition, ¥/; in Eq. (14) indicates the SDC of
composite laminates in the fiber direction which is different from
;. defined in Eq. (6). If the kth ply is occupying the region measured
from z =2z to z=Z" in the coordinate system, the integral opera-
tion in the Eq. (14) can be replaced by a summation operator as

Byr .
C N 4 Z (€*Cyy +52Cip + sCig)
11

X [C (Q},Cyy +Q5,C, + Q6 Che) + 57 (Q1,Chy + Q5,C5,
+Q56Cr6) +205(Q}6Cry + Q36Ciy + GEGC;G)] Wi (15)

where Wy = (k* — (k — 1)) is the weighting factor in the kth layer.
In the same manner, the damping capacity in the transverse and
in-plane shear direction can also be calculated, respectively, as

V===

gy =AUz _ BUr S
UGN

X [5 (Q},Cy + Q1,Chy + Q6 Cig) + €2(Q1,Cy + Q5,Chy
+Q5Cr6) — 205(Q46Cry + Q36Ciy + agscie)] Wi (16)

Z (s°C;, +¢2C;y — ¢sCg)

AU
l//12 - U
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SO Z[zcsc —2¢sCy,y — (¢ = $%)Cjg)
11

k * * Ak ok Ak * Ak *
X [CS( Gy + Q4,05 + Q1 Cle) — s(Q4,Chy + Q5,C5,

+Q5Cr6) — (¢ —52)(Q)6Cyy + Qb6Cry + @éGC?G)} We  (17)

As a result, from the energy dissipation concept defined in Egs. (4)
and (5), the SDC of the composite laminate under flexural vibration
would be given as

Y=y + Y, i (18)

Presently, it is worth mentioning that in the aforementioned deriva-
tion, all in-plane quantities, i.e., &, &y, Yxy, Ox, 0, and oy, were taken
into account for the calculation of strain energy and energy dissipa-
tion as well, which should be the same as the Saravanos—Chamis
model [4]. In fact, in the Saravanos—Chamis model, only the matrix
form was presented, and the explicit expression for the SDC of lam-
inates was not clearly addressed in the literature. For the sake of
comparison, the explicit formulation in the Saravanos-Chamis
model was reproduced by the authors although the process is quite
tedious. Results confirmed that the mathematical forms obtained
from the two models coincide with each other. However, the pres-
ent analytical model initiated from the fundamental mechanics
point of view provides a definite and straightforward evaluation
on the SDC of composite laminates, which can be easily employed
to compare with other analytical models.

In the forgoing derivation, if the stress components o, and o,
were neglected in the energy dissipation formulation given by
Eq. (10), the corresponding damping capacity in the fiber direction
would become

8‘// N/2 * * raY ok
Y = C.N° £ Z (*Cyy +5°Chy +¢sCig)[*(Q),Cyy + Q1,Cy
1
+QsCie) Wi (19)
Similarly, the SDC in other directions would be deduced as
Byr & Ak Ak
Yy = CN Z (s2Chy + 2Chy — sCig)[s*(Q, Gy + Q56
1
+Qi6Cie) Wi (20)
and
By < 2 2\ Ak
Y = Z [2csCyy — 2¢sCh, — (¢ — s7)Clgl[es(Q14 Cry

C;N? &
+ Q’fzciz + Qi Cip) Wi (21)

Basically, Egs. (19)-(21) are the SDC provided in the Adams-Maheri
model. Furthermore, if o, = 65, =0 and ¢, = 0 were assumed in the
energy dissipation function in Eq. (10), the SDC was deduced as

8y, A 2(0%.C. + Ot
C N £ E : (€2Chy +esCig)[c(Q1; Cry + Q15 Chy
11

+Q}6Cr6) Wi (22)
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which are the expressions produced in the Ni-Adams model.

In view of the forgoing, it was found that there are some phys-
ical quantities neglected in the Ni-Adams and Adams-Mabheri
models; therefore, the numerical results obtained from the models
would be different from the current 2-D analytical model. The val-
idations on the analytical models were conducted in the following
section by comparing the results with the finite element analysis
and the experimental data.

3. Finite element analysis

In order to verify the analytical model presented in the previous
section, a 3-D finite element analysis was conducted to character-
ize the SDC of a laminated plate subjected to pure bending. Be-
cause in the analytical models the calculations of SDC are based
on the 2-D stress states, for the comparison purpose, the in-plane
stress and strain components obtained from finite element analysis
were also employed in the evaluation of energy dissipation and the
SDC as well although the 3-D finite element analysis was per-
formed in reality. On the other hand, in order to understand the
interlaminar stress effect on the SDC of the composite laminates,
the 3-D results obtained from the FEM analysis were compared
with those calculated in the 2-D models.

In the finite element analysis, the SDC of composite laminates
can be determined by using the following formulation as

mﬁ AU(I()
= 200 (25)

where U is the total strain energy in the composites, and A U® indi-
cates the strain energy dissipation in the kth element. In the 2-D
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case, the energy dissipation in the kth element could be determined
as

AUY, = AU + AUYY + AU (26)

where AU, AU, and AUY) represent the energy dissipation in the
fiber, transverse, and in-plane shear directions, respectively. On the
other hand, for the 3-D case, the interlaminar energy dissipation,
i.e.,, AUs, AU,3, and AUj3, has to be taken into account. Therefore,
the energy dissipation formulation in the kth element would
become

AU, = AUY + AUY + AUY + AUY + AUY) + AU (27)

where AUz = lpTU3, AUys = lpLTU23, and AUq3 = l//LTU]3. It is noted
that since the information for out-of plane (interlaminar) damping
properties is lacking, the in-plane properties (y/r and ;1) were em-
ployed instead for the calculation of the out-of-plane energy dissi-
pation [16]. The material properties for the glass/epoxy and
graphite/epoxy used in the FEM simulation is summarized, respec-
tively, in Table 1, which was found in the reference [16]. In addition,
the total strain energy in the FEM analysis for the 2-D and 3-D cases
were calculated, respectively, as follows:

™1

Usp = Z i(glfglf + 0585 + 0585 + 05385, + 0385 + al,et,)  (28)
k=1
m

s = Y 501k + otk + oty 29)
k=1

With Eq. (25) together with Egs. (26)-(29), the corresponding SDC
of the laminates can be directly evaluated from FEM analysis. In this
study, the FEM analysis was conducted using a commercial code,
ANSYS 10.0, where SOLID46 element is selected to construct the
laminated composite structures. In addition, to simulate the pure
bending, couple forces were applied on both ends of the laminated
plate as shown in Fig. 1. For the prevention of rigid body translation
and rotation, the following displacement conditions

at(x1,x2,x3):<%,0,0>, uy=0, u=0 and us;=0 (30)

L —-W
at (X]7X2,X3): <§~T)0 ) u2:0 (3])
—L
at (x1,X2,X3) = 7,0,0 , Up=0; us=0 (32)
Table 1
Material properties of graphite/epoxy and glass/epoxy composites
Materials E Er Gir LT Yo Yr Yur
(Gpa)  (Gpa) (Gpa) (%) @) (%)
Graphite/epoxy 172.7 720 376 0291 045 422 7.05
composites (HMS/DX-
210)
Glass/epoxy composites 37.78 1090 4.91 0291 0.87 5.05 6.91

(GLASS/DX-210)

Fig. 1. Schematic of the laminated plates with boundary conditions.

were imposed on the composite laminates. In the above expression,
W and L represent the width and length of the laminates, respec-
tively; uy, up, and uz denote the displacement in x1, X,, and x5 direc-
tions, respectively.

4. Results and discussion

The flexural damping responses of the graphite epoxy compos-
ite laminates [0/—60/60]; and [0/90/45/—45]; obtained from the
analytical models are compared with the Ni-Adams model and
Adams-Maheri model in Fig. 2 and 3. The FEM results calculated
based on the 2-D stress states and 3-D stress states together with
the experimental data [1] are also included in the comparison. It
was found that the Ni-Adams and Adams-Maheri models are
mostly deviated from the FEM results and experimental data ex-
cept in some fiber orientations. Moreover, the current 2-D analyt-
ical model with all in-plane stress and strain quantities considered
in the calculation of energy dissipation is close to the 2-D finite ele-
ment results and experimental results. Nevertheless, there is still
little discrepancy between the present model and 2-D FEM analy-
sis, which could be attributed to the edge effect caused by either

——s7— Current model
—©6—— Ni-Adams
—&—— Adams-Maheri
o Experiment data
¢  FEM(2D)
B FEM(3-D)
Eo b b b b b b b b b b e bees

0
90 -75 60 -45 -30 -15 O 15 30 45 60 75 90
Outer layer fiber orientation (Degree)

Specific damping capacity (%)
w

Fig. 2. Flexural damping properties of graphite/epoxy laminates [0/—60/60];.

——7—— Current model
———&—— Ni-Adams
—&—— Adams-Maheri
[ ] Experiment data
* FEM (2-D)
| | FEM (3-D)

o
3}
T

Specific damping capacity (%)
w

90 -75 60 -45 -30 -15 O 15 30 45 60 75 90
Outer layer fiber orientation (Degree)

Fig. 3. Flexural damping properties of graphite/epoxy laminates [0/90/45/—45],.
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the free edges or the loading edges of the laminates. In general, the
variation of the stresses because of the edge effect was not taken
into account in the analytical model, but it was taken into account
in the FEM analysis.

In addition, in the 3-D finite element, because of the inclusion of
the interlaminar stress (out of plane stress) effect, the SDC are con-
sistently higher than those obtained from the 2-D FEM analysis and
the 2-D analytical model. A comparison of the results indicates that
the differences between the 2-D analysis and 3-D FEM results are
not so significant that the 2-D analytical model that provides a
lower bound solution can be utilized for the evaluation of damping
responses of composite laminates. Similar tendencies are also ob-
served in the glass/epoxy composites as shown in Figs. 4 and 5.
As a result, the 2-D analytical model, although it does not account
for the interlaminar stress effect, demonstrates the same tendency
as the FEM results and the experimental data as well. It is sug-
gested that the 2-D analytical model with physical and mathemat-

g
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[¥] 2 E
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Fig. 4. Flexural damping properties of glass/epoxy laminates [0/—60/60]s.

——s7—— Current model
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m FEM(3D)
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0.5
90 -75 -60 45 -30 -15 O 15 30 45 60 75 90
Outer layer fiber orientation (Degree)

Specific damping capacity (%)

Fig. 5. Flexural damping properties of glass/epoxy laminates [0/90/45/—45];.

ical simplicity is suitable for characterizing the damping responses
of the composite laminates.

5. Conclusions

The 2-D analytical models for characterizing flexural damping
properties of composite laminates were reviewed in the study. It
was found that when the in-plane stress and strain quantities that
were ignored in the Ni-Adams and Adams-Maheri models were
included in the present model for the calculation of energy dissipa-
tion, the results were the same as those deduced from the Sarav-
anos-Chamis model. When compared to the Ni-Adams and
Adams-Maheri models, the present models demonstrate good
agreement with the experimental data. In addition, to investigate
the interlaminar stress effect on the SDC of laminates, the FEM
analysis based on the 2-D stress and strain components and 3-D
stress and strain quantities was performed, respectively. The 3-D
results, because of more energy consumption, are considered to ex-
hibit relatively higher SDC values than the 2-D cases. On the other
hand, because the discrepancy is not substantial, the interlaminar
effect may be neglected in the modeling of the damping responses
of composite laminates. Moreover, the 2-D FEM results and the
present 2-D analytical model demonstrate good agreements with
each other, which indicate that the present 2-D analytical model
could provide lower bound solutions in the description of the
damping responses of composite laminates.
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